
An Empirical Study on Bidirectional Recurrent
Neural Networks for Human Motion Recognition
Pattreeya Tanisaro
Institute of Cognitive Science, University of Osnabrück, Germany
pattanisaro@uni-osnabrueck.de

Gunther Heidemann
Institute of Cognitive Science, University of Osnabrück, Germany
gheidema@uni-osnabrueck.de

Abstract
The deep recurrent neural networks (RNNs) and their associated gated neurons, such as Long
Short–Term Memory (LSTM) have demonstrated a continued and growing success rates with
researches in various sequential data processing applications, especially when applied to speech
recognition and language modeling. Despite this, amongst current researches, there are limited
studies on the deep RNNs architectures and their effects being applied to other application do-
mains. In this paper, we evaluated the different strategies available to construct bidirectional
recurrent neural networks (BRNNs) applying Gated Recurrent Units (GRUs), as well as investig-
ating a reservoir computing RNNs, i.e., Echo state networks (ESN) and a few other conventional
machine learning techniques for skeleton-based human motion recognition. The evaluation of
tasks focuses on the generalization of different approaches by employing arbitrary untrained
viewpoints, combined together with previously unseen subjects. Moreover, we extended the test
by lowering the subsampling frame rates to examine the robustness of the algorithms being
employed against the varying of movement speed.

2012 ACM Subject Classification Mathematics of computing → Time series analysis

Keywords and phrases Recurrent Neural Networks, Human Motion Classification, Echo State
Networks, Motion Capture, Bidirectional Recurrent Neural Networks

Digital Object Identifier 10.4230/LIPIcs.TIME.2018.21

1 Introduction

The recurrent neural networks, whose structures are similar to those of multilayer perceptrons
(MLPs) have been widely used for sequential data processing. Nonetheless, they are different
from the MLPs by allowing connections among hidden units, therefore the networks can retain
information of past inputs as a vector of activation for each time step which makes RNNs
exceedingly deep. Their depth, however, makes them difficult to train because the update of
the weight matrices with a gradient-based approach such as Backpropagation Through Time
(BPTT) leads to exploding and vanishing gradient problems [1]. Many techniques have been
introduced in order to solve these two issues, especially for the vanishing gradient problem,
but training RNNs was still a very difficult task and the applications were limited.

Since the emergence of special architecture for gradient-based methods called LSTM
[17], training RNNs has become easier and more successful in numerous tasks such as
speech recognition [12], acoustic modeling [24], sequence labeling in speech recognition
[13], handwriting recognition [15], language modeling and machine translation [30, 31, 4],
prediction of successful shooting in basketball [28], analyzing motion patterns in autonomous
driving [11], image caption [36] and learning of video representation [29]. The LSTM is
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designed to solve the vanishing gradient problem whereas truncating the gradient is harmless
to the networks because an LSTM can enforce a constant error flow within special units to
bridge time lags. Unlike the traditional recurrent unit which calculates the weighted sum of
inputs and directly applies the activation function, the LSTM unit contains a memory cell.
Furthermore, there are several studies such as [26] and [18] that reported their achievement of
an improvement of the output performance by introducing the depth to the RNNs. Typically,
any RNNs when unfolded in time might be considered deep themselves, because the input to
output in a given time span has crossed several nonlinear layers as computational paths [26].
Nonetheless, the depth of neural networks is usually defined by the number of feedforward
neural layers. Most studies in deep RNNs concentrate on sequence-to-sequence modeling,
particularly for language modeling for instance [30, 16, 18, 26, 6].

In our study, we focused on solving a classification problem using a special type of deep
RNNs, called bidirectional RNNs (BRNNs) which were first introduced by [27] in the late
1990s. Nevertheless, they started to attract attention many years later after a groundbreaking
achievement of sequence labeling in speech recognition by [13]. The BRNN is an RNN which
contains a separation of a forward and backward pass for positive and negative time direction.
Therefore, it is able to store the past and future context, whereas a conventional RNN can
only partially achieve this by delaying the output by certain time steps. Our study is set
up by employing more than 300 configurations for deep BRNNs after the preliminary tests,
of which we inspect how the classification performance is affected by changing the width
and the depth of the hidden layers. The designed networks are set up in a generic sense by
simply stacking multilayer RNNs to have the required depth. The evaluation is based on
three Motion Capture datasets for comparing BRNNs with ESNs [19, 20] and traditional
machine learning techniques. Motion Capture (MoCap) is a marker-based system which by
its high-dimensional nature, nonlinearities and long-range dependencies make it ideal for
studying the limitations of time series models [35]. Although the focus of our study is on this
particular domain, the design of BRNNs is not just solely specific for MoCap datasets. We
are convinced that the study is also applicable to other high dimensional time series data.

2 Related Work

Many studies have demonstrated a superior functionality of applying deep RNNs when
compared to shallow networks, for instance, [30] introduced a new architecture called
multiplicative RNNs by using multiplicative connections to allow the current input character
for the character-level in language modeling to determine the hidden-to-hidden weights.
However, this model was trained with Hessian-Free optimizer (HF) instead of gradient
descent. The work of [16] focused on a hierarchy of RNNs for character-level language
modeling using stochastic gradient descent. It proposed two alternative architectures which
are deep MLPs with three hidden layers stacked from one layer on top of each other with
temporal feedback loops. One architecture uses feedback loops from output but with the
last hidden layer contributing to the output layer, while another architecture allows all the
connections from each hidden layer contributing to the output layer. Four other different
models to construct deep RNNs have been proposed by [26] for three language models. Quite
recently, a hierarchical multiscale RNN model has been presented by [6]. It shows that the
proposed network architecture can learn the latent hierarchical multiscale structure from
temporal data for character-level language modeling. A similar study to our work which
employs bidirectional RNNs for classification tasks has been discussed in [14]. It used five
hidden layers of BRNNs with LSTM to classify 61 phoneme outputs in which each layer
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Figure 1 A deep BRNN with two hidden layers following [14]. The dashed-dotted lines indicate
the forward direction depicted by

−→
h t and the dashed lines indicate the backward direction

←−
h t.

consists of 2 · 250 cells. A comprehensive comparative study of deep RNNs has been revealed
in [12]. It demonstrated the results of using from one to five hidden layers while fixing the
number of neurons for all hidden layers. The results from this experiment exhibited that:
i) LSTM works better than the typical tanh neuron, ii) bidirectional RNNs with LSTM
also give better output performances than typical unidirectional RNNs with LSTM units,
and iii) the depth size is more important than the width size. In addition, by fixing the
number of neurons of each hidden layer, the networks with three hidden layers work as
well as those with five layers, while the number of weights of five hidden layers is almost
twice their number for three layers. Furthermore, the evaluation in [18] also confirms that
shallow BRNNs outperform shallow unidirectional RNNs on extracting sentence-level opinion
expression. It concludes that, for a large network, three hidden layers provide the best output
performance for their tasks. In case of a small network, two, three and four hidden layers show
equally good performance for certain sizes. By adding more layers, its performance decreases.
Further, the study suggests that in conventional stacked deep learners, every hidden layer
conceptually lies in a different representation space, and establishes a more abstract and
higher-level representation of the input. By taking these findings as our guidelines, we
then hypothesized that the activities at each layer could represent some forms of the action
descriptors.

3 Classification Approaches

3.1 Deep Bidirectional RNNs
Generally, the BRNN has been applied for sequence-to-sequence learning, particularly for
Natural-Language Processing (NLP) tasks. The structure of the BRNN consists of two
RNNs, one to compute the forward hidden sequences ~ht and the second is to compute
backward hidden sequences ~ht. Figure 1 shows an architecture of the BRNN for two hidden
layers. Let x = (x1, .., xT ) be an input sequence for T time steps. The final output yt is
accumulated across the T frames at the last layer and is classified by the probability of
human action classes using the Softmax function. We computed the output sequence at time
t of y according to [14] as:

yt = g(W−→
h ny

~ht +W←−
h ny

~ht + by) (1)

g(·) is an activation function, W−→
h y

and W←−
h y

are weight matrices at the output layer
and by is an output bias. The ~ht can be interpreted as a summary of the past from t = T to
1, whereas ~ht is the summary of the future from t = 1 to T . The activities in forward and
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Figure 2 Architecture of an ESN. The dashed lines denote the connections which are not
compulsory.

backward direction can be written by:
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where h0 is the input sequence.

3.2 Echo State Networks
An ESN shown in figure 2 is a type of RNN, whose design does not depend on updating
weights by gradient computation, but, instead it creates a random dynamical reservoir RNN .
The reservoir is then driven by the training data and leaves the weights untrained. The
output weights are computed at the readout connection using a linear regression of y(t). The
internal unit activities ~S in figure 2 can be updated by:

~S(t) = f(Win~x(t) +W ~S(t− 1) +Wfb~y(t)) (4)

f(· ) is an activation function of the neurons, a common choice is tanh(·) applied element-
wise. By employing the time warping of the input signals, the leaky integration rate [21]
α ∈ (0, 1] is adopted to determine the speed of the reservoir update dynamics. The update
rule for the internal units is extended to:

~Sleaky(t) = (1− α)~S(t− 1) + α~S(t). (5)

Applying a simple linear regression at the readout layer leads to output ~y(t):

~y(t) = Wout[~x(t); ~S(t)] (6)

3.3 Traditional Machine Learning Methods
Most work on time series classification for example, the well-known UCR archive, of which
all datasets are of one dimensional feature, focuses on an adaptation of distance measures
using 1-Nearest Neighbor (1-NN) with Euclidean Distance (ED) and Dynamic Time Warping
(DTW). Both techniques have proven to perform very well on the UCR archive, especially
DTW. Nevertheless, DTW has limited its applications only on the fixed length data (that
is one must extrapolate the shorter sequence in order to have an equal length between
two sequences) and gives rise to some issues for the case of multi-dimensional data e.g.,
the computational complexity and the selection of the dependent or independent warping
distance function [32].
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Figure 3 Different geometries representing eight models used in our experiment with varying
width of two and three hidden layers.

We adopted two transformation approaches to extract the feature vectors in our experi-
ments. They are i) a naïve method by stacking each frame on top of one another, and using
majority voting to decide the best course of action, and ii) a dimensionality reduction
technique of the zero-mean skeleton configuration for feature vectors demonstrated in
[34, 23]. The two best classifiers for MoCap classification, cited in [34], k-NN and Random
Forest (RF), were chosen for both transformation approaches.

4 Configurations

4.1 BRNN architectures
The RNNs with one hidden layer (1L) represent shallow networks, while those with more
than one hidden layers represent the deep RNNs. According to [14] and [18], three hidden
layers are sufficient to achieve the best performance, while adding more hidden layers worsens
the output performance. On this account, in our experiment, we concentrated on evaluating
geometries of the networks with two and three hidden layers as illustrated in figure 3. RNNs
with three stacked hidden layers numbered from bottom to top labeled as (L1 · L2 · L3) will
be referred to throughout the experiment indicating the number of units in one direction.
(We use the term cell or unit instead of neuron to emphasize the use of gated units in
RNNs.) Model 2L_A, as seen in the figure 3 is depicted for the two hidden layers in which
the number of cells of the two hidden layers is almost equal. The model 2L_B is for two
hidden layers, of which the number of neurons of L2 (top) is at least double the size of L1
(bottom), and vice versa for model 2L_C . Note that the first hidden layer (L1 connects to
the input nodes laying at the bottom. For models with three hidden layers, we extended the
geometries to five architectures as illustrated in figure 3. Here, we combined cell numbers
in {50, 100, 150, 200, 250, 300, 350, 400} to form these geometries which have a limited total
amount of cells from 2 · 200 up to 2 · 600 units.

4.2 BRNN configurations and hyperparameters
In order to verify the impact of the width and the depth on the network as well as to simplify
the experiment, several parameters in the experiment had been previously investigated. They
are: i) Cell type. In our experiment, instead of a well-known LSTM, we replaced each
cell unit at h with a gated recurrent unit called GRU [4]. GRU is a variation of a gating
mechanism and is comparable to LSTM and has been primarily used in machine translation
as encoder-decoder models. It is similar to LSTM in that the gating units modulate the
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flow of information inside the unit, but without memory cells. Comparative studies of using
traditional recurrent unit tanh, LSTM and GRU, found in [7] and [22] have shown that
the gated units, both the LSTM and GRU outperform the conventional recurrent unit. To
achieve certainty, we had examined these three cells in BRNNs in our preliminary tests.
The networks with GRU cells significantly outperformed the other two cells by more than
5% in all experiments. Therefore, our classification results were from applying the GRU
units to the networks. ii) Optimizer. In contrast to the optimizer benchmark for RNNs
in Penn TreeBank language modeling [8] which mentions that Adam and RMSProp do not
work well with RNNs, we found that in our case, both of them converged very quickly
even with a very small learning rate and gave good output performance. The primary
test was carried out for a shallow BRNN. The selected learning rates for each optimizer
here were the recommended values in the papers based on MNIST dataset. For the rest
of the experiments, we chose RMSProp as our default optimizer which outperformed all
other optimizers. iii) Regularization. Because of the limited amount of data, we cannot
take out some data for validation. Nonetheless, we added a regularization term L2 to the
objective function with a fixed regulation λ = 0.02. It is interesting to note that increasing
the regularization parameter from 0.01 to 0.02 increases the recognition rate by about 3-5%
in most models. We applied the norm clipping with a maximum gradient norm limited to
one, and no dropout was applied.

4.3 ESN configurations
The ESN configurations in the experiments follow the guidelines suggested in [33] which
demonstrated the influence of the ESN settings on various datasets on the UCR archive.
Several key parameters are: i) Sparsity of the reservoir. In corresponding with BRNN
networks which have the networks size in 2 · {200, .., 600}, we set the reservoir size using only
half of BRNN with connectivity of 10, 30, 50 and 70% respectively. ii) Spectral radius
which is considered to be big for the tasks that require an extensive history of an input,
while one is served as a reference point. We picked 5.0 from [33]. iii) Leaky rate which
can be regarded as time warping of the input signals was fixed at 0.1 for all configurations.
iv) Input scaling: was set to 2.0 similar to [33] and v) regularization coefficient was
fixed at 0.1. Moreover, the network weight was set to have a uniform distribution in the
range of [-0.5,0.5] and no feedback connection was considered here.

4.4 Traditional machine learning configurations
For the direct naïve method, we employed two popular classifiers for classification, 1-NN
and RF with 75 trees, which yielded best output performance in [34]. To prove the case
of a combined manifold learning with classification, we chose the PCA with two and three
components associated with RF and 1-NN.

5 Datasets and Experimental Setups

5.1 Datasets
We evaluated the proposed techniques as described in section 3 and 4 using three MoCap
datasets, MHAD-27, MHAD-10 and HDM05.

MHAD-271 [2] consists of 27 different actions performed by eight subjects. Each subject
repeated the same action four times. The dataset contains a total of 861 data sequences,
where three sequences were corrupted and removed from the dataset on the official website.
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Figure 4 The recognition rates of MHAD-10 from designated network architectures using five-fold
cross validation. The setup does not condition on the separation of test subjects from the training
set.

The training was performed on six subjects, and two subjects were left out for the test.
The recognition rate was reported on an average of 28 combinations. This dataset was
recorded using 20 markers. Therefore, we have the feature vector which is captured in
3D space for BRNN of size (3 · 20)× 120, where 120 is the amount that is close to the
maximal sequence length of this dataset. Zeros were appended to the shorter sequences
in BRNNs. It is important to note that ESN can handle different lengths of the data
sequences, so the data is trained with the original length.

MHAD-10 [2] is a 3D MoCap dataset of six subjects performing 10 different hand gestures
tracked with 25 markers. The four additional markers comparison with MHAD-27 were
put on the left and right hand and a thumb, and one additional marker was put on a
spine. Each subject repeats an action 5 times (trials). Therefore, we have a total of 300
videos with various sequence lengths. For BRNN, we chose to fix the number of sequences
to 150 which is close to the maximal length of the sequence in the dataset. This makes
a feature vector size of (3 · 25) × 150. The training is performed on five subjects from
all trials and an unseen subject is left out for testing. Hence the recognition rate is an
average of six-fold cross-validation.

HDM05 [25] was originally made up of 130 classes consisting of five subjects performing
actions with and without repeating the same cycles separately. This created a total of
2343 sequences. We followed [5, 9, 38] in grouping non-repetitive and repetitive motions
together yielding 65 actions. There were about 20 actions which have samples less than 20
i.e., throwBasketball, throwFarR and jumpDown having only 14 trials each, while actions
such as walk, elbowToKnee and runOnPlaceStart have 94, 80, 74 trials, respectively.
This leads to an unbalancing of data and causes a huge bias towards a particular action.
Nonetheless, since we focused on the action recognition of unseen subjects, therefore four
subjects were used in the training set and one subject was for the test. We reduced the
original number of markers to 19, where some nearby sensors e.g., on the spine as used
in MHAD were merged. The average sequence length is 261 with the maximum of 901.
With the limitation of our computational capacity, we set the data using the fixed length
of 400 for BRNNs. Therefore, the feature vectors of BRNNs have a size of (3 · 19)× 400.
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Figure 5 The recognition rates of MHAD-10 by excluding test subjects from the training set.
Left) Changing the total number of GRU units in one direction of BRNN or the reservoir size
of ESN. Right) Extending the test on the left by changing subsampling factors of test data of
untrained viewpoints.
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Figure 6 The recognition rates of MHAD-27 by excluding test subjects from the training set.
Left) Changing the total number of GRU units in one direction of BRNN or the reservoir size
of ESN. Right) Extending the test on the left by changing subsampling factors of test data of
untrained viewpoints.

5.2 Experimental Setups

We normalized each sequence with respect to its in-frame reference of that dataset, where
the reference is the joint that laid at the center of the skeletal torso. The evaluations were
composed of three experiments: i) Having some insights of deep networks strategies
by varying the width and height of the network. In this experiment, we did not
impose conditions on separation of test subjects from the training set. ii) Finding a few
good models by varying the number of cells in the networks using unknown
subjects. The experiment was set up in a way to find a few good models of each dataset by
varying the number of cells in the networks in 200-600 units (one direction in BRNN and the
total units in a reservoir for ESN), where the test subjects were excluded from the training
set. More than 300 configurations for BRNN were constructed to obtain the best output
and created some insights of construction strategies for deep networks. iii) Extending
the test using untrained viewpoints with the variations of speed. We enhanced
the experiment by extending the training set to have five camera angles {−90, 45, 0, 45, 90},
whereas test angles are in {−80,−70, ..., 70, 80}. Moreover, we subsampled the original test
data using a subsampling factor of 1, 2, 3, 4 and 5, while the training data still remained the
same. The subsampling factor of 2 means that every 2nd frame of the data will be taken
instead of each single frame (factor of 1).
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Figure 7 The recognition rates of HDM05 by excluding test subjects from the training set. Left)
Changing the total number of GRU units in one direction of BRNN or the reservoir size of ESN.
Right) Extending the test on the left by changing subsampling factors of test data of untrained
viewpoints.

6 Experimental Results

6.1 Discussion of results

Firstly, we investigated the effects of geometries of BRNNs following the construction
strategies depicted in Figure 3. The recognition rates of MHAD-10 performing on average
of five-fold cross-validation using shallow and deep BRNNs are shown in Figure 4. Moreover,
the recognition rates of each strategy are the average of two runs with the standard deviation
of ±3%. These test results gain very high recognition rates because they are not based on the
separation of test subjects from the training set. It is obvious that the recognition rates which
are better than 98% (the yellow shaded area in Figure 4) can only be achieved when the
networks are relatively large i.e., the number of cells is greater than 2 · 400. Furthermore, the
models which have any layer containing 50 cells yield output worse than others. This might
be because the input feature of MHAD-10 has a size of 75 and any form of dimensionality
reduction at any hidden layer in RNNs by shrinking the network’s width is not suitable.
Hence, by the experimental results, we conclude that the width of a hidden layer next to the
input layer in one direction should be larger than the size of the input features.

We enhanced the experiment by excluding test subjects from the training set to
examine the generalization of the models. The recognition rates of three datasets for
two experimental setups of MHAD-10, MHAD-27 and HDM05 can be found in Figure 5, 6
and 7 on the left and right of the figures respectively. In these figures, only a few best models
of BRNN were chosen from various configurations based on five geometries in Figure 3.
Furthermore, the results also demonstrate the output of the shallow networks, the output of
ESNs in section 3.2 and the output of machine learning approaches from section 3.3.

The results of the first experiment displayed on the left of Figure 5, 6 and 7 show that
the shallow and deep BRNNs significantly outperform other methods in the MHAD-10 and
MHAD-27 dataset. The deep BRNNs are slightly better than the other methods on large
networks for HDM05. In addition, there are some considerable differences in recognition
rates among both datasets and algorithms, especially for MHAD-10. Even though MHAD-10
consists of only 10 actions, nine out of these actions are the movements of solely the right
hand. On the contrary, even though MHAD-27 consists of more actions than MHAD-10, the
actions also involve a variety of movements of hands and legs which leads to overall better
recognition rates of all methods. The dimensionality reduction techniques in combination
with RF outperform other machine learning techniques and are close to the winner of HDM05
using deep networks, BRNN2C using the total of 2 · 600 cells. The confusion matrix of
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HDM05 using BRNN2B model on Figure 7-left is depicted in Figure 8. Actions with one
hundred percent recognition rate (recall) from all runs (filled with dark brown in Figure 9) are
for instance, clapAboveHead, jogLeftCircle, rotateArmsBothBackward, standUpKneelToStand
and so forth. The most common misclassified actions in all classifiers are between deposit and
grab as the trajectories of actions drawn in Figure 9. It is difficult to track the trajectories
in 3D of a stationary image by eye; hence, we projected a 3D image onto a 2D plane and
as we can see, the trajectories from these two groups cannot be distinguished. Therefore,
when we allow classification using top three correctness, the recognition rates increase by
12-15% in all methods. For HDM05, there are no significant differences among different
classification methods. When applying subsampling factors to simulate the changes of
movement speed for the test data of MHAD-10 and MHAD-27 using untrained viewpoints,
then increasing the subsampling factor decreases the recognition rate. Interestingly, however,
this effect does not apply to HDM05. This might be because only HDM05 consists of
non-repetitive and repetitive sequences in one action which allows the networks to easily
capture the changes of patterns of the action as varying of movement speeds, while MHAD-10
and MHAD-27 only consist of one periodic movement in each action. Besides, by increasing
the number of viewpoints in training deep BRNNs, the recognition rates of HDM05 have
been increasing by approximately 10% on arbitrary untrained viewpoints.

The results also reveal that deep BRNNs using two layers for the total number of cells
greater than 2 · 500 units such as BRNN2A and BRNN2B surpass all other models for all
three datatsets, including three layers of BRNNs. The shallow BRNNs work equally well
or even better than the deep BRNN for MHAD-10 and MHAD-27 but not for HDM05.
It is important to note that models with three hidden layers do not perform better than
models with two hidden layers, while training such gradient-based approaches requires a
large amount of computation time on GPU. The computation time and cost of training and
testing BRNNs is much greater than training ESNs, which the training is only performed
for the output weights at the readout where there is no cyclic dependency. Training and
testing using dimensionality reduction methods demand the least time and computational
power. Considering the time complexity for the gradient-based learning by BPTT, it must be
analyzed in terms of space for the number of values stored and the time complexity in terms
of the number of arithmetic operations required [37]. Therefore, measuring architecture
complexity of RNNs is not a trivial task. Nonetheless, for our configurations when the
network is fully connected and all weights are adaptable, if the shallow network requires time
T to complete the task, the deep network can be expected to complete the task in about
L · T , where L is the number of hidden layers.

A Comparison. Other studies which resemble our first experiment use only one default view
and do not exclude test subjects from training data. Furthermore, some approaches apply
some prior filters before passing data to the networks, for instance, [3] proposed a hybrid
MLPs which reported the recognition rate with an accuracy of 95% on HDM05 on 10-fold
evaluation. Next, [9] introduced deep BRNN by stacking BRNNs using LSTM units on each
skeleton part yielding the best result of 96.92% for HDM05. Followed by [38] which use deep
BRNNs with LSTM units on body parts similar to [9] but added a so-called co-occurrence
matrix and dropout to a three-LSTM layer with two feedback layers. It accounted for the
recognition rate of 97.25%.
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Figure 8 Confusion matrix of HDM05 with 65 actions on average of 2-folds using best model
of BRNN2B (2 · [100 · 400]). The weighted colors are computed from the percentage of the total
number of that action. The thick pink rectangle at the left corner shows a group of actions which
significantly misclassified in all methods. The red horizontal and vertical blue lines are drawn to
highlight groups of the actions.

6.2 Visualization of BRNN
Last hidden layer. For the BRNNs, only half of the output activities of the last hidden
layer contribute to the output layer as can be seen in Figure 10. This figure could explain
why the number of cells in one direction at the last hidden layer needs to be much greater
than the number of the output classes which are required by the Softmax function at the
output.

Visualization of input and other hidden layers. Multidimensional time-series data cannot
be directly visualized, therefore investigating its behavior is very difficult. One common
approach that is normally used in order to get some insight into high dimensional time-series
data is by examining their distance matrix. One benefit of using distance matrices, such as
Euclidean distance is that we can further analyze the matrix using recurrence plots (RPs)
[10] by applying a threshold distance and the Heaviside function. The RPs can tell when the
phase space trajectory of the dynamic system re-occur roughly in the same area in the phase
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Figure 9 Most common misclassified patterns are the confusion between “deposit” and “grab” .
Top) From left to right: 3D projection of depositFloor of default view, and the rotated 2D projections
of depositFloor , depositLow, depositMiddle and depositHigh, Bottom) grabFloor in 3D and 2D
projections of grabFloor , grabLowR, grabMiddle and grabHigh.

Figure 10 The activities from the last hidden layer with 2 · 150 cells of MHAD-10 dataset. The
left side shows the activities from forward and the right side from the backward direction.

space. Figure 11 shows the Euclidean distance matrices of a subject in HDM05 performing
an elbowToKnee. The left-most of the figure shows the distance matrix of the input which
reveals a few harmonic oscillations that can be observed by the checkerboard structures. The
next three figures are the activities from the first hidden layer L1 for the combination of
both directions, for forward and backward direction, respectively. We can infer from the
changes of one state of learning to another that the networks opt to differentiate their output
activities at each layer. At the upper layer, the scale of the differentiation is larger. The
very dark blue corresponds to distance zero and red to the maximum distance between the
features in this time span.

7 Conclusion

During the course of conducting our research, we have demonstrated the various influences
of various geometries of the deep BRNN’s upon human motion recognition. It is crucial to
have some empirical insights to amend and influence both the width and depth of the model
to suit the research requirements and objectives. The evaluations of the classifications were
performed by focusing on the generalization and the robustness of the models by testing on
unseen subjects with the variation of movement speeds. The results showed that BRNNs
outperformed ESNs and other conventional classification techniques. Correspondingly, we
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Figure 11 The Euclidean distance matrices of a subject performing elbowToKnee. From left
to right: i) input ii) the retrieved activities from the first hidden layer of combined directions, iii)
forward and iv) backward direction.

discovered that any form of dimensionality reduction, caused by reducing the width of the
hidden layers to less than the number of input features or reducing the width of last hidden
layer in one direction less than the output units is unsatisfactory. The shallow networks
should be included and examined in the experiment as they may not only demonstrate good
performance for some datasets, but also provide some insights into the impact of hyper
parameters. Nonetheless, to achieve the best outcomes, based on our research, we strongly
recommend that deep RNN’s as the method of choice for researchers to employ.
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A Lists of Complete Actions

Table 1 Ten hand gestures in MHAD-10 from default view at 0◦.

Action #Trials minLength maxLength meanLength

RHHighWave 30 55 161 85

RHCatch 30 38 75 54

RHHighThrow 30 44 78 56

RHDrawX 30 55 81 64

RHDrawTick 30 43 72 57

RHDrawCircle 30 54 89 67

RHHorizontalWave 30 52 139 70

RHForwardPunch 30 42 71 55

RHHammer 30 51 85 65

HandClap 30 47 68 57

B Confusion Matrices from Various Models of Unseen Subjects with
Untrained Viewpoints

Figure 12 Confusion Matrices of MHAD-27 of the first testing fold from two classification
methods. Left) Subspaces employing RF with PCA. Right) Majority vote using 1-NN.
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Table 2 27 actions in MHAD-27 from default view at 0◦.

Action #Trials minLength maxLength meanLength

ArmCross 32 50 86 64

ArmCurl, 32 42 86 59

BaseballSwing 32 63 90 74

BasketballShoot 32 46 81 60

Bowling 32 64 101 76

Boxing 32 51 92 68

Catch 32 41 74 59

Clap 32 51 78 61

DrawCircleCCW 32 64 98 74

DrawCircleCW 32 66 95 75

DrawTriangle 32 61 106 77

DrawX 31 55 81 66

Jog 32 51 82 67

Knock 32 53 95 67

Lunge 32 63 103 80

PickupAndThrow 32 68 125 87

Push 32 47 80 62

SitToStand 32 47 69 54

Squat 31 50 116 82

StandToSit 32 46 71 57

SwipeLeft 32 48 76 61

SwipeRight 32 47 75 59

TennisServe 32 52 94 67

TennisSwing 32 44 87 64

Throw 32 44 70 58

Walk 31 60 104 76

Wave 32 49 81 65

Figure 13 Confusion Matrices of MHAD-27 of 27 folds. Left) BRNN of 2 · [300 · 300] cells. Right)
ESN with network size of 600 neurons.
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Table 3 65 actions in HDM05 from default view at 0◦.

Action #Trials minLength maxLength meanLength

cartwheel 28 281 701 450

clap 31 32 211 109

clapAboveHead 31 59 657 248

depositFloor 32 181 641 363

depositHigh 28 129 509 245

depositLow 28 196 481 277

depositMiddle 29 178 662 270

elbowToKnee 80 93 574 243

grabFloor 16 186 401 268

grabHigh 29 170 460 258

grabLowR 29 191 544 294

grabMiddle 28 112 352 210

hitHandHead 13 141 281 226

hopBothLegs 55 56 432 151

hopLLeg 64 62 254 119

hopRLeg 65 58 246 116

jogLeftCircle 32 197 400 292

jogOnPlaceStart 70 80 241 147

jogRightCircle 33 190 441 288

jumpDown 13 177 381 288

jumpingJack 65 116 484 201

kickLFront 43 129 841 294

kickLSide 39 131 721 315

kickRFront 45 121 668 296

kickRSide 44 127 740 310

lieDownFloor 20 301 901 655

punchLFront 45 119 761 263

punchLSide 45 90 721 235

punchRFront 45 138 761 286

punchRSide 42 97 662 242

rotateArmsBothBackward 32 62 649 214

rotateArmsBothForward 32 62 739 230

rotateArmsLBackward 32 57 708 215

rotateArmsLForward 32 55 739 215

rotateArmsRBackward 32 54 649 210

rotateArmsRForward 32 54 733 213

runOnPlaceStart 74 58 182 100

shuffleStepsStart 51 161 540 319

sitDownChair 20 154 441 318

sitDownFloor 20 224 601 407

sitDownKneelTieShoes 17 425 825 645

sitDownTable 20 162 401 270

skier 40 123 459 202

sneak 63 164 751 372

squat 65 136 823 271

staircaseDown 15 139 319 222

staircaseUp 27 164 444 292

standUpKneelToStand 17 100 301 182

standUpLieFloor 20 279 703 525

standUpSitChair 20 176 441 295

standUpSitFloor 20 167 641 403

standUpSitTable 20 121 454 250

throwBasketball 14 281 721 407

throwFarR 14 361 600 524

throwSitting 28 188 404 282

throwStanding 28 242 541 353

turnLeft 30 119 281 196

turnRight 30 135 260 196

walk 94 122 369 214

walkBackwards 30 158 433 299

walkLeft 32 277 659 411

walkLeftCircle 37 261 560 397

walkOnPlace 60 121 400 233

walkRightCircle 27 246 542 381

walkRightCrossFront 29 195 701 434
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Figure 14 Confusion Matrices of MHAD-10 with the same configurations of BRNN employing
2 · [50 · 150 · 250] cells, but testing on different subjects shown on the left and the right figure.

Figure 15 Confusion Matrices of HDM05 of all folds in each configuration. Two common
misclassified groups of actions are highlighted in the pink color. Left) BRNN of 2 · [200 · 400] cells.
Right) BRNN of 2 · [250 · 250] cells.
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