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Abstract
Ad-hoc radio networks and multiple access channels are classical and well-studied models of
distributed systems, with a large body of literature on deterministic algorithms for fundamental
communications primitives such as broadcasting and wake-up. However, almost all of these
algorithms assume knowledge of the number of participating nodes and the range of possible IDs,
and often make the further assumption that the latter is linear in the former. These are very
strong assumptions for models which were designed to capture networks of weak devices organized
in an ad-hoc manner. It was believed that without this knowledge, deterministic algorithms must
necessarily be much less efficient.

In this paper we address this fundamental question and show that this is not the case. We
present deterministic algorithms for blind networks (in which nodes know only their own IDs),
which match or nearly match the running times of the fastest algorithms which assume network
knowledge (and even surpass the previous fastest algorithms which assume parameter knowledge
but not small labels).

Specifically, in multiple access channels with k participating nodes and IDs up to L,
we give a wake-up algorithm requiring O( k log L log k

log log k ) time, improving dramatically over the
O(L3 log3 L) time algorithm of De Marco et al. (2007), and a broadcasting algorithm requir-
ing O(k logL log log k) time, improving over the O(L) time algorithm of Gąsieniec et al. (2001)
in most circumstances. Furthermore, we show how these same algorithms apply directly to
multi-hop radio networks, achieving even larger running time improvements.
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1 Introduction

In this paper we address the fundamental question in distributed computing of whether basic
communication primitives can be efficiently performed in networks in which the participating
nodes have no knowledge about the network structure. Our focus is on deterministic
algorithms.
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1.1 Models and problems
We consider the two classical, and related, models of distributed communication: multiple
access channels (cf. [19, 28]) and ad-hoc multi-hop radio networks (cf. [2, 8, 14, 27]).

1.1.1 Multiple access channels
A set of k nodes, with unique identifiers (IDs) from {1, . . . , L}, share a communication
channel. Time is divided into discrete steps, and in every step each node chooses to either
transmit a message to the channel or listen for messages. A transmission is only successful if
exactly one node chooses to transmit in a given time-step; otherwise all nodes hear silence.

1.1.2 Ad-hoc multi-hop radio networks
The network is modeled by a directed graph N = (V,E), with |V | = n, where nodes
correspond to transmitter-receiver stations. The nodes have unique identifiers from {1, . . . , L}.
A directed edge (v, u) ∈ E means that node v can send a message directly to node u. To
make propagation of information feasible, we assume that every node in V is reachable in N

from any other. Time is divided into discrete steps, and in every step each node chooses to
either transmit a message to all neighbors or listen for messages. A listening node only hears
a transmission if exactly one neighbor transmitted; otherwise it hears silence.

It can be seen that multiple access channels are equivalent to single-hop radio networks
(that is, radio networks in which the underlying graph is a clique).

1.1.3 Node knowledge
We study blind versions of these models, by which we mean that the minimum possible
assumptions about node knowledge are made (and this is where our work differs most
significantly from previous work): we assume nodes do not know the parameters k, L, or n, or
any upper bounds thereof. In accordance with the standard model of ad-hoc radio networks
(for more elaborate discussion about the model, see, e.g., [1, 2, 6, 9, 10, 16, 21, 23, 27]), we
also make the assumption that a node does not have any prior knowledge about the topology
of the network, its in-degree and out-degree, or the set of its neighbors. In our setting, the
only prior knowledge nodes have is their own unique ID.

1.1.4 Tasks
In both models we consider the fundamental communication tasks of broadcasting (see, e.g.,
the survey [27] and the references therein) and wake-up (cf. [3, 8, 15]).

In the task of wake-up, nodes begin in a dormant state, and some non-empty subset of
nodes spontaneously ‘wake up’ at arbitrary (adversarially chosen) time-steps. Nodes are also
woken up if they receive messages. Nodes cannot participate (by transmitting) until they are
woken up, and our goal is to ensure that eventually all nodes are awake. We assume nodes
have access only to a local clock: they can count the number of time-steps since they woke
up, but there is no global awareness of an absolute time-step number.

The task of broadcasting is usually described as follows: one node begins with a message,
and it must inform all other nodes of this message via transmissions. However, to enable our
results to transfer from multiple access channels (single-hop radio networks) to multi-hop
radio networks, we will instead use broadcasting to refer to a more generalized task. Our
broadcasting task will be defined similarly to wake-up, with the only difference being that
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nodes have access to a global clock, informing them of the absolute time-step number. (In
multiple access channels, this task is usually also referred to as wake-up, specifying global
clock access, but here we will call it broadcasting to better differentiate.)

Notice that the standard broadcasting task in radio networks is a special case of this
task, in which only one node spontaneously wakes up. A global clock can be simulated by
appending the current global time-step to each transmitted message (and since all message
chains originate from the same source node, these time-steps will agree).

For both tasks, we wish to minimize the number of time-steps that elapse between the
first node waking up, and all nodes being woken. We are not concerned with the computation
performed by nodes within time-steps.

1.2 Related work
As fundamental communications primitives, the tasks of designing efficient deterministic
algorithms for broadcasting and wake-up have been extensively studied for various network
models for many decades.

1.2.1 Wake-up
The wake-up problem (with only local clocks) has been studied in both multiple access
channels and multi-hop radio networks (often separately, though the results usually transfer
directly from one to the other). It has been commonly assumed in the literature that network
parameters are known, and that IDs are small (L = nO(1)).

The first sub-quadratic deterministic wake-up protocol for radio networks was given
in by Chrobak et al. [8], who introduced the concept of radio synchronizers to abstract
the essence of the problem. They give an O(n5/3 logn)-time protocol for the wake-up
problem. Since then, there have been several improvements in running time, making use of
the radio synchronizer machinery: firstly to O(n3/2 logn) [4], and then to O(n log2 n) [3].
The current fastest protocol is O( n log2 n

log log n ) [13]. However, without the assumption of small
labels, all of these running times are increased. The algorithm of [13] as analyzed would give
O( n log L log(n log L)

log log(n log L) ) time, and similar time with k replacing n in multiple access channels.
All of these algorithms, like those we present here, are non-explicit.

There has been some work on wake-up in multiple access channels without knowledge
of network parameters: firstly an O(L4 log5 L) algorithm [15], and then an improvement
to O(L3 log3 L) [26]. It was believed that this algorithms in this setting were necessarily
much slower than those for when parameters were known; for example, [26] states “a crucial
assumption is whether the processors using the shared channel are aware of the total number
n of processors sharing the channel, or some polynomially related upper bound to such
number. When such number n is known, much faster algorithms are possible.”

There are no direct results for wake-up in radio networks with unknown parameters, but
the algorithm of [26] can be applied to give O(nL3 log3 L) time.

We note that randomized algorithms for wake-up have also been studied, both with and
without parameter knowledge; see [15, 19].

1.2.2 Broadcasting
Broadcasting is possibly the most studied problem in radio networks, and has a wealth of
literature in various settings. For the model studied in this paper, directed radio networks
with unknown structure and without collision detection, the first sub-quadratic deterministic
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broadcasting algorithm was proposed by Chlebus et al. [6], who gave an O(n11/6)-time
broadcasting algorithm. After several small improvements (cf. [7, 25]), Chrobak et al. [9]
designed an almost optimal algorithm that ns the task in O(n log2 n) time, the first to
be only a poly-logarithmic factor away from linear dependency. Kowalski and Pelc [21]
improved this bound to obtain an algorithm of complexity O(n logn logD) and Czumaj
and Rytter [14] gave a broadcasting algorithm running in time O(n log2 D). Here D is the
eccentricity of the network, i.e., the distance between the furthest pair of nodes. De Marco
[24] designed an algorithm that completes broadcasting in O(n logn log logn) time steps,
beating [14] for general graphs. Finally, the O(n logD log logD) algorithm of [13] came
within a log-logarithmic factor of the Ω(n logD) lower bound [10]. Again, however, these
results generally assume small node labels (L = O(n), though some of the earlier results only
require L = O(nc) for some constant c), and their running time results do not hold otherwise.
The situation where node labels can be large is less well-studied, though it is easy to see that
the algorithm of [9] still works, requiring O(n log2 L) time. In multiple access channels, a
O(k log L

k ) time algorithm exists [10]. Again, all of these algorithms are, like those presented
here, non-explicit.

All of these results also intrinsically require parameter knowledge. Without knowledge of n,
L, k, or D, the fastest algorithm known is the O(L) time algorithm of [15] for multiple access
channels. This algorithm is explicit, but has the strong added restriction that the first node
wakes up at global time-step 0. It also does not transfer to multi-hop radio networks, so the
best running time therein is the O(DL3 log3 L) given by the algorithm of [26]. Concurrently
with this work, randomized algorithms for broadcasting without parameter knowledge are
presented in [12], achieving a nearly optimal running time of O(D log n

D log2 log n
D + log2 n)

in the model we study here (that is, the model without collision detection).

Broadcasting, as a fundamental communication primitive, has been also studied in
various related models, including undirected networks, randomized broadcasting protocols,
models with collision detection, and models in which the entire network structure is known.
For example, if the underlying network is undirected, then an O(n logD)-time algorithm
due to Kowalski [20] exists. If spontaneous transmissions are allowed and a global clock
available, then deterministic broadcast can be performed in O(L) time in undirected networks
[6]. Randomized broadcasting has been also extensively studied, and in a seminal paper,
Bar-Yehuda et al. [2] designed an almost optimal broadcasting algorithm achieving the
running time of O((D + logn) · logn). This bound has been later improved by Czumaj
and Rytter [14], and independently Kowalski and Pelc [22], who gave optimal randomized
broadcasting algorithms that complete the task in O(D log n

D + log2 n) time with high
probability, matching a known lower bound from [23]. Haeupler and Wajc [17] improved
this bound for undirected networks in the model that allows spontaneous transmissions and
designed an algorithm that completes broadcasting in time O

(
D log n log log n

log D + logO(1) n
)

with high probability, improved to O
(

D log n
log D + logO(1) n

)
in [11]. In the model with collision

detection for undirected networks, an O(D + log6 n)-time randomized algorithm due to
Ghaffari et al. [16] is the first to exploit collisions and surpass the algorithms (and lower
bound) for broadcasting without collision detection.

For more details about broadcasting algorithms in various models, see e.g., [11, 14, 16,
20, 27] and the references therein.
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1.3 New results
We present algorithms for the fundamental tasks of broadcasting and wake-up in multiple
access channels (single-hop radio networks) and multi-hop radio networks which require no
knowledge of network parameters: nodes need know only their own unique ID.

Our wake-up algorithm takes O( k log L log k
log log k ) time in multiple access channels and

O( n log L log n
log log n ) time in multi-hop radio networks, improving dramatically over the previous

best O(L3 log3 L) and O(DL3 log3 L) respective running times of [26] (recall that k ≤ n ≤ L).
This is particularly significant in the case of large labels, since dependency on L has been im-
proved from cubic to logarithmic. Furthermore, our running time matches the O( n log L log n

log log n )
time of [13], the fastest algorithm with parameter knowledge and small node labels.

Our broadcasting algorithm takes O(k logL log log k) time in multiple access channels and
O(n logL log logn) time in multi-hop radio networks. This improves over the previous best
O(L) multiple access channel bound [15] in most cases. In radio networks the improvement
is even more pronounced, beating not only the O(DL3 log3 L) result of [26] but also the
O(n log2 L)-time algorithm of [9], which was the fastest result for large labels even when
network parameters are known. When labels are small (i.e., L = nO(1)), our result matches
the best running time for known parameters (O(n logD log logD) from [13]) for networks of
polynomial eccentricity.

We believe the primary value of our work is in challenging the long-standing assumption
that parameter knowledge is necessary for efficient deterministic algorithms in radio networks
and multiple access channels. We show that in fact, deterministic algorithms which do not
assume this knowledge can reach the fastest running times for those that do.

1.4 Previous approaches
Almost all deterministic broadcasting protocols with sub-quadratic complexity (that is, since
[6]) have relied on the concept of selective families (or some similar variant thereof, such
as selectors). These are families of sets for which one can guarantee that any subset of
[k] := {1, 2, . . . , k} below a certain size has an intersection of size exactly 1 with some member
of the family [6]. They are useful in the context of radio networks because if the members
of the family are interpreted to be the set of nodes which are allowed to transmit in a
particular time-step, then after going through each member, any node with a participating
in-neighbor and an in-neighborhood smaller than the size threshold will be informed. Most
of the recent improvements in broadcasting time have been due to a combination of proving
smaller selective families exist, and finding more efficient ways to apply them (i.e., choosing
which size of family to apply at which time) [6, 7, 9, 14].

Applying such constructs requires coordination between nodes, which relies on a global
clock, making them unsuitable for wake-up. To tackle this issue, Chrobak et al. [8] introduced
the concept of radio synchronizers. These are a development of selective families which
allow nodes to begin their behavior at different times. A further extension to universal
synchronizers in [4] allowed effectiveness across all in-neighborhood sizes.

Another similar extension of selective families came in 2010 with a paper by De Marco
[24], which used a transmission matrix to schedule node transmissions for broadcasting.
Like radio synchronizers, the application of this matrix allowed nodes to begin their own
transmission sequence at any time, and still provided a ‘selective’ property that guaranteed
broadcasting progress. The synchronization afforded by the assumption of a global clock
allowed this method to beat the time bounds given by radio synchronizers (and previous
broadcasting algorithms using selective families).
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The proofs of existence for selective families, synchronizers, and transmission matrices
follow similar lines: a probabilistic candidate object is generated by deciding on each element
independently at random with certain carefully chosen probabilities, and then it is proven
that the candidate satisfies the desired properties with positive probability, and so such an
object must exist. These types of proofs are all non-constructive (and therefore all resulting
algorithms non-explicit; cf. [5, 18] for an explicit construction of selective families with
significantly weaker size bounds).

In contrast, results on multiple access channels without parameter knowledge (notably
[15, 26]) have not used these types of combinatorial objects, and instead rely on some
results from number theory. The algorithm of [26], for instance, is to have nodes transmit
periodically, a node with ID v waiting pv steps between transmissions, where pv is the vth

smallest prime number. A number-theoretic result is then employed to show that eventually
one node will transmit alone. As a result, these algorithms have the advantage of being
explicit, but the disadvantage of slower running times.

1.5 Novel approach

We aim to apply the approach of using combinatorial objects proven by the probabilistic
method to the setting where network parameters are not known. One way to do this would
be to apply selectors (for example) of continually increasing size, until one succeeds. However,
since there are two parameters which must meet the correct values for a successful application
(k and L in the case of medium access channels), running times for this approach are poor.
Instead, we define, and prove the existence of, a single, infinite combinatorial object, which
can accommodate all possible values of parameters at the same time.

Another difference is that for all previous works using selective families or variants thereof,
the candidate object has been generated with the same sequence of probabilities for each node.
Here, however, in order to achieve good running times we need to have these probabilities
depending on the node ID. In essence, this means that nodes effectively use their own ID as
an estimate of the maximum ID in the network.

1.6 A note on non-explicitness

As mentioned, almost all deterministic broadcasting protocols with sub-quadratic complexity
have relied on selective families or variants thereof, and have been non-explicit results. Our
work here is also non-explicit, but while this is standard for deterministic radio network
algorithms, it may present more of an issue here, since our combinatorial structures are
infinite. It is not clear how the protocols we present could be performed by devices with
bounded memory, and as such this work is more of a proof-of-concept than a practical
algorithm. However, it is possible that our method could be adapted so that nodes’ behavior
could be generated by a finite-size (i.e., a function of ID) program; this would be a natural
and interesting extension to our work, and would overcome the problem.

Another issue which would remain is that nodes must perform the protocol indefinitely,
and never become aware that broadcasting has been successfully completed. However, this is
unavoidable in the model: Chlebus et al. [6] prove that acknowledged broadcasting without
parameter knowledge is impossible.
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2 Combinatorial objects

In this section we present the two combinatorial objects that we wish to use in our algorithms:
unbounded universal synchronizers and unbounded transmission schedules. After defining
them in Sections 2.1 and 2.2, we present their main properties in Theorems 3 and 12, and
then show how to apply them to obtain new deterministic algorithms for wake-up and
broadcasting in multiple access channels and in radio networks (Theorems 19, 20, 22, 23).

2.1 Unbounded universal synchronizers
For the task of wake-up, i.e., in the absence of a global clock, we will define an object called
an unbounded universal synchronizer for use in our algorithm.

We begin by defining the sets of circumstances our algorithm must account for:

I Definition 1. An (r, k)-instance X is a set K of k nodes with∑
v∈K

log v = r

and wake-up function ω : K → N.

(By using v as an integer here, we are abusing notation to mean the ID of node v.)
Here r is the main parameter we will use to quantify how ‘large’ our input instance is.

By using the sum of logarithms of IDs (which approximates the total number of bits needed
to write all IDs in use), we capture both the number of participating nodes and the length of
IDs in a single parameter. We require r to be an integer, so we round down accordingly, but
we omit floor functions for clarity since they do not affect the asymptotic result.

The wake-up function ω maps each node to the time-step it wakes up (either spontaneously
or by receiving a transmission) when our algorithm is run on this instance. This means
that the wake-up function depends on the algorithm, but there is no circular dependency:
whether nodes wake-up in time-step j only depends on the algorithm’s behavior in previous
time-steps, and the algorithm’s behavior at time-step j only depends on the wake-up function
up to j. We will also extend ω to sets of nodes in the instance by ω(K) := minv∈K ω(v).

We now define the combinatorial object that will be the basis of our algorithm:

I Definition 2. For a function g : N × N → N, an unbounded universal synchronizer
of delay g is a function S : N → {0, 1}N such that for any (r, k)-instance, there is some
time-step j ≤ ω(K) + g(r, k) with

∑
v∈K S(v)j−ω(v) = 1.

The unbounded universal synchronizer S is a function mapping node IDs to a sequence of
0s and 1s, which tell nodes when to listen and transmit respectively. The function g, which
we will call the delay function, tells us how many time-steps we must wait before a successful
transmission is guaranteed, so this is what we want to asymptotically minimize.

We will apply this object to perform wake-up as follows: each node v transmits a message
in time-step j (with its time-step count starting upon waking up) iff S(v)j = 1. Then, the
property guarantees that at some time-step j within g(r, k) time-steps of the first node
waking up, any (r, k)-instance will have a successful transmission. We call this S ‘hitting’ the
(r, k)-instance at time-step j. So, our aim is to show the existence of such an object, with g
growing as slowly as possible.

Our main technical result in this section is the following:

I Theorem 3. There exists an unbounded universal synchronizer of delay g, where
g(r, k) = O

(
r log k

log log k

)
.
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Our approach to proving Theorem 3 will be to randomly generate a candidate synchronizer,
and then prove that with positive probability it does indeed satisfy the required property.
Then, for this to be the case, at least one such object must exist.

Our candidate S : N→ {0, 1}N will be generated by independently choosing each S(v)j

to be 1 with probability c log v
j+2c log v and 0 otherwise, where c is some sufficiently large constant

to be chosen later.
While S is drawn from an uncountable set, we will only be concerned with events that

depend upon a finite portion of it, and countable unions and intersections thereof. Therefore,
we can use as our underlying σ-algebra that generated by the set of all events Ev,j = {S :
S(v)j = 1}, where v, j ∈ N, with the corresponding probabilities P [Ev,j ] = c log v

j+2c log v .
We set delay function g(r, k) = c2r log k

log log k .
To simplify our task, we begin with some useful observations:
First we note that since we only care about the asymptotic behavior of g, we can assume

that r is larger than a sufficiently large constant.
We also note that we need not consider all (r, k)-instances. For a given (r, k)-instance

and time-step j, let Kj be the set of nodes woken up by time j (with kj := |Kj |), and rj

be defined as r but restricted to the nodes in Kj . Let t be the earliest time-step such that
t > g(rt, kt), and curtail the (r, k)-instance to the corresponding (rt, kt)-instance of nodes in
Kt. It is easy to see that if we hit all curtailed (rt, kt)-instances within g(rt, kt) time, we
must hit all (r, k)-instances within g(r, k) time, so henceforth we will only consider curtailed
instances (i.e., we can assume that j ≤ g(rj , kj) for all j < g(r, k)).

Finally, we observe that, since nodes’ behavior is not dependent on the global clock, we
can shift all (r, k)-instances to begin at time-step 0.

To analyze the probability of hitting (r, k)-instances, define the load of a time-step f(j)
to be the expected number of transmissions in that time-step:

I Definition 4. For a fixed (r, k)-instance, the load f(j) of a time-step j is defined as∑
v∈Kj

P [v transmits] =
∑

v∈Kj

c log v
j − ω(v) + 2c log v .

We now seek to bound the load from above and below, since when the load is close to
constant we have a good chance of hitting.

I Lemma 5. All time-steps j ≤ g(r, k) have f(j) ≥ log log k
2c log k .

Proof. Fix a time-step j ≤ g(r, k), let Kj be the set of nodes awake by time-step j, and let
kj = |Kj | and rj =

∑
v∈Kj

log v, analogous to r and k. If kj = k, then

f(j) ≥
∑
v∈K

c log v
j + 2c log v ≥

cr

j + 2cr ≥
cr

2c2r log k
log log k

≥ log log k
2c log k .

If kj < k, then due to our curtailing of instances, we have j ≤ g(rj , kj). So,

f(j) ≥
∑

v∈Kj

c log v
j + 2c log v ≥

crj

j + 2crj
≥ crj

2c2rj log kj

log log kj

≥ log log kj

2c log kj
≥ log log k

2c log k . J

Having bounded load from below, we also seek to bound it from above. Unfortunately,
the load in any particular time-step can be very high, but we can get a good bound on at
least a constant fraction of the columns.
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I Lemma 6. Let F denote the set of time-steps j ≤ g(r, k) such that log log k
2c log k ≤ f(j) ≤ log log k

3 .
Then |F | ≥ cr log k

2 log log k .

Proof. The total load over all time-steps can be bounded as follows:∑
j≤g(r,k)

f(j) =
∑

j≤g(r,k)

∑
v∈Kj

c log v
j − ω(v) + 2c log v ≤

∑
v∈K

∑
ω(v)<j≤g(r,k)

c log v
j − ω(v) + 2c log v

≤
∑
v∈K

c log v
∑

j≤g(r,k)

1
j + 2c log v ≤

∑
v∈K

c log v ln 2g(r, k)
4c log v .

Let Ki = {v ∈ K : r
k·2i ≤ log v < r

k·2i−1 }, for i ≥ 1, and K ′ = {v ∈ K : log v ≥ r
k}

If
∑

v∈Ki
log v > r

2i then r < 2i
∑

v∈Ki
log v ≤ 2i

∑
v∈Ki

r
k·2i ≤ r . This gives a contra-

diction, so we must have
∑

v∈Ki
log v ≤ r

2i . Then,∑
j≤g(r,k)

f(j) ≤
∑
v∈K

c log v ln 2g(r, k)
4c log v ≤

∑
i≥1

∑
v∈Ki

c log v ln g(r, k)
2c log v +

∑
v∈K′

c log v ln g(r, k)
2c log v

≤
∑
i≥1

∑
v∈Ki

c log v ln g(r, k)
2c r

k·2i

+
∑

v∈K′

c log v ln g(r, k)
2c r

k

=
∑
i≥1

∑
v∈Ki

c log v ln ck2i−1 log k
log log k +

∑
v∈K′

c log v ln ck log k
2 log log k

≤
∑
i≥1

cr2−i(2 ln k + (i− 1) ln 2) + 2cr ln k ≤ 5cr ln k ≤ 8cr log k .

Therefore, at most 24cr log k
log log k time-steps have load higher than log log k

3 . Since by Lemma 5
all time-steps have load at least log log k

2c log k ,we have |F | ≥ g(r, k)− 24cr log k
log log k ≥

c2r log k
2 log log k (provided

we pick c ≥ 7). J

Now that we have bounded load, we show how it relates to hitting probability. The
following lemma, or variants thereof, has been used in several previous works such as [24],
but we prove it here for completeness.

I Lemma 7. Let xi, i ∈ [n], be independent {0, 1}-valued random variables with P [xi = 1] ≤
1
2 , and let f =

∑
i∈[n] P [xi = 1]. Then P

[∑
i∈[n] xi = 1

]
≥ f4−f .

Proof.

P

∑
i∈[n]

xi = 1

 =
∑

j∈[n]

P [xj = 1 ∧ ∀i6=j xi = 0] ≥
∑

j∈[n]

P [xj = 1] · P [∀i xi = 0]

≥ f · P [∀i xi = 0] = f ·
∏

i∈[n]

(1− P [xi = 1]) ≥ f ·
∏

i∈[n]

4−P[xi=1]

= f · 4−
∑

i∈[n]
P[xi=1] = f4−f . J

We can use Lemma 7 to show that the probability that we hit on our ‘good’ time-steps
(those in F ) is high:

I Lemma 8. For any time-step j ∈ F , the probability that j hits is at least log log k
3c log k .

Proof. log log k
2c log k ≤ f(j) ≤ log log k

3 , and so f(j)4−f(j) is minimized at f(j) = log log k
2c log k and is

therefore at least log log k
2c log k 4−

log log k
2c log k ≥ log log k

3c log k . J
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We now bound the number of possible instances we must hit:

I Lemma 9. For any (sufficiently large) r, the number of unique (r, k)-instances is at most
25r.

Proof. The total number of bits used in all node IDs in the instance is at most r. There
are at most 2r+1 possible bit-strings of length at most r, and at most 2r ways of dividing
each of these into substrings (for individual IDs), giving at most 22r+1 sets of node IDs. The
number of possible wake-up functions ω : K → N is at most g(r, k)k, since all nodes must be
awake by g(r, k) time or the instance would have been curtailed.

g(r, k)k = 2k log g(r,k) ≤ 21.1k log r = 21.1(k log k+k log r
k ) ≤ 21.3(k log(k0.9)+r) ≤ 22.9r .

So, the total number of possible (r, k)-instances is at most 22r+1+2.9r ≤ 25r. J

I Lemma 10. For any (sufficiently large) r, the probability that S does not hit all (r, k)-
instances is at most 2−3r

Proof. Fix some (r, k)-instance. The probability that it is not hit within g(k, r) time-steps
is at most∏

j∈F

(1− log log k
3c log k ) ≤ e−|F |

log log k
3c log k ≤ e− 2

3 cr = 2− 2cr
3 ln 2 ,

by Lemma 8. Hence, if we set c = 9, by a union bound the probability that any (r, k)-instance
is not hit is at most 25r · 2− 18r

3 ln 2 ≤ 2−3r . J

We can now prove our main theorem on unbounded universal synchronizers (Theorem 3):

Proof. By Lemma 10 and a union bound over r, the probability that S does not hit all
instances is at most

∑
r∈N 2−3r < 1. Therefore S is an unbounded universal synchronizer of

delay g with non-zero probability, so such an object must exist. J

2.2 Unbounded transmission schedules
For the task of broadcasting, i.e., when a global clock is available, we can make use of the
global clock to improve our running time. We again define an infinite combinatorial object,
which we will call an unbounded transmission schedule. We use the same definition of
(r, k)-instances as in the previous section.

I Definition 11. For a function h : N× N→ N, an unbounded transmission schedule
of delay h is a function T : N×N→ {0, 1}N such that T (v, ω(v))j = 0 for any j < ω(v), and
for any (r, k)-instance there is some time-step j ≤ ω(K) +h(r, k) with

∑
v∈K T (v, ω(v))j = 1.

The difference here from an unbounded universal synchronizer is that nodes now know the
global time-step in which they wake up, and so their transmission patterns can depend upon
it. This is the second argument of the function T . The other difference in the meaning of
the definition is that the output of T now corresponds to absolute time-step numbers, rather
than being relative to each node’s wake-up time as for unbounded universal synchronizers.
That is, the jth entry of a node’s output sequence tells it how it should behave in global
time-step j, rather than j time-steps after it wakes up.

Our existence result for unbounded transmission schedules is the following:
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I Theorem 12. There exists an unbounded transmission schedule of delay h, where
h(r, k) = O (r log log k).

Our method will again be to randomly generate a candidate unbounded transmission
schedule T , and then prove that it satisfies the required property with positive probability,
so some such object must exist.

Let d be a constant to be chosen later. Our candidate object T will be generated as follows:
for each node v, we generate a transmission sequence sv,j , j ∈ N, with sv,j independently
chosen to be 1 with probability d log v log log j

j+2d log v log log j and 0 otherwise.
However, these will not be our final probabilities for generating T . To make use of

our global clock, we will also divide time into short phases during which transmission
probability will decay exponentially. The lengths of these phases will be based on a function
z(j) := 2d1+log log log je, i.e., log log j rounded up to the next-plus-one power of 2. An
important property to note is that for all i, z(i)|z(i+ 1). We also generate a sequence pv,j ,
j ∈ N of phase values, each chosen independently and uniformly at random from the real
interval [0, 1]. These, combined with the global time-step number and current phase length,
will give us our final generation probabilities.

We set T (v, ω(v))j to equal 1 iff sv,j−ω(v) = 1 and pv,j−ω(v) ≤ 2−j mod z(j−ω(v)).
It can then be seen that

P [T (v, ω(v))j = 1] = d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2j mod z(j−ω(v)) .

The reason we split the process of random generation into two steps (using our phase
values) is that now, if we shift all wake-up times in an (r, k)-instance by the same multiple
of z(x), then node behavior in the first x time-steps after ω(K) does not change. We will
require this property when analyzing T .

Our probabilistic analysis is with respect to the σ-algebra generated by all events
Ev,ω(v),j = {T : T (v, ω(v))j = 1}, with v, ω(v), j ∈ N, and with the corresponding probabilit-
ies given above.

Let load f(j) of a time-step j be again defined as the expected number of transmissions
in that time-step:

f(j) :=
∑

v∈Kj

d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2j mod z(j−ω(v)) .

We will set our delay function h(r, k) = d2r log log k.
Again we make some observations that allow us to narrow the circumstances we must

consider: firstly that we can again assume that r is larger than a sufficiently large constant,
and secondly that we need only look at curtailed instances (i.e., we can assume that
j − ω(K) ≤ h(rj , kj) for all j < h(r, k)). This time, however, we cannot shift instances to
begin at time-step 0, because node behavior is dependent upon global time-step number.

We follow a similar line of proof as before, except with some extra complications in
dealing with phases. We first consider only time-steps at the beginning of each phase, i.e.,
time-steps ω(K) < j ≤ ω(K) + h(r, k) with j mod z(h(r, k)) ≡ 0, and we will call these basic
time-steps. Notice that for basic time-steps,

f(j) =
∑

v∈Kj

d log v log log(j − ω(v))
j − ω(v)2d log v log log(j − ω(v)) .

We bound the load of basic time-steps from below:
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I Lemma 13. All basic time-steps j have f(j) ≥ 1
2d .

Proof. Fix a basic time-step j, let Kj be the set of nodes awake by time-step j, and let
kj = |Kj | and rj =

∑
v∈Kj

log v, analogous to r and k. If kj = k, then

f(j) ≥
∑
v∈K

d log v log log(j − ω(v))
j − ω(v) + 2d log v log log(j − ω(v)) ≥

∑
v∈K

d log v log log h(r, k)
h(r, k) + 2d log v log log h(r, k)

≥
∑
v∈K

d log v log log k
2d2r log log k ≥

dr

2d2r
= 1

2d .

If kj < k, then due to our curtailing of instances, we have j − ω(K) ≤ h(rj , kj). So,

f(j) ≥
∑

v∈Kj

d log v log log(j − ω(v))
j − ω(v) + 2d log v log log(j − ω(v)) ≥

∑
v∈K

d log v log log h(rj , kj)
h(rj , kj) + 2d log v log log h(r, k)

≥
∑
v∈K

d log v log log kj

2d2rj log log kj
≥ drj

2d2rj
= 1

2d . J

We next examine time-steps at the end of phases, i.e., with ω(K) < j ≤ ω(K) + h(r, k)
and j mod z(h(r, k)) ≡ −1, and call these ending time-steps. Note that for ending time-steps,

f(j) =
∑

v∈Kj

d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2z(j−ω(v))−1 .

We bound the load of (a constant fraction of) ending time-steps from above:

I Lemma 14. Let F denote the set of ending time-steps j such that f(j) ≤ 1. Then
|F| ≥ d2r

2 .

Proof. Let t be the first ending time-step. The total load over all ending time-steps can be
bounded as follows:

∑
ending timestep j

f(j) ≤
h(r,k)/z(h(r,k))∑

i=0
f(t+ iz(h(r, k))) ≤

d2r∑
i=0

f(t+ iz(h(r, k))) .

Applying the definition of f , f(t+ iz(h(r, k))) is equal to:

∑
v∈Kt+iz(h(r))

d log v log log(t+ iz(h(r, k))− ω(v))2−z(t+iz(h(r,k))−ω(v))−1

(t+ iz(h(r, k))− ω(v) + 2d log v log log(t+ iz(h(r, k))− ω(v))) ,

which is bounded from above when t− ω(v) = 0:

f(t+ iz(h(r, k))) ≤
∑

v∈Kt+iz(h(r))

d log v log log(iz(h(r)))
(iz(h(r, k)) + 2d log v log log(iz(h(r, k))))2z(iz(h(r,k)))

≤
∑

v∈Kt+iz(h(r,k))

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k))) .
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So,

∑
ending timestep j

f(j) ≤
d2r∑
i=0

∑
v∈Kt+iz(h(r,k))

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k)))

≤
∑
v∈K

d2r∑
i=0

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k)))

≤
∑
v∈K

d2r∑
i=0

2d log v log log(iz(h(r, k)))
iz(h(r, k)) log2(iz(h(r, k)))

≤
∑
v∈K

2d log v
∞∑

i=0

log log(iz(h(r, k)))
iz(h(r, k)) log2(iz(h(r, k)))

≤ 10dr .

Here the last inequality follows since the second sum converges to a constant less than
5, which can be seen by inspection of the first three terms and using the integral bound∫∞

2
log log x
x log2 x

< 2
Therefore, at most 10dr ending time-steps have load higher than 1, and so at least

d2r − 10dr ≥ d2r
2 (provided we set d ≥ 5) ending time-steps have f(j) ≤ 1. J

We can use Lemma 14 to show that we have sufficiently many time-steps with load within
the interval [ 1

2d , 1]:

I Lemma 15. Let F be the set of time-steps ω(K) < j ≤ ω(K) +h(r, k) with 1
2d ≤ f(j) ≤ 1.

Then |F| ≥ d2r
2 .

Proof. It can be seen that load decreases by at most a multiplicative factor of 3 between
consecutive time-steps (since the contribution of each node decreases by at most a factor
of 3). So, since every base time-step has load at least 1

2d , for every ending timestep j with
f(j) ≤ 1, there is some j′ in the preceding phase with 1

2d ≤ f(j′) ≤ 1. J

Since these time-steps have constant load, they have constant probability of hitting:

I Lemma 16. For any time-step j ∈ F , the probability that j hits is at least 1
3d .

Proof. By Lemma 7, the probability that j hits is at least f(j)4−f(j). This is minimized
over the range [ 1

2d , 1] at f(j) = 1
2d and is therefore at least 4−

1
2d

2d ≥ 1
3d . J

We now need to know how many unique (r, k)-instances we must hit. Since we are only
concerned with the first h(r, k) time-steps after the first node wakes up, we need only consider
(r, k)-instances which are unique within this time range.

I Lemma 17. For any (sufficiently large) r, the number of unique (up to the first h(r, k)
steps after activation) (r, k)-instances is at most 25r.

Proof. As before (in Lemma 9) there are at most 22r+1 sets of node IDs. The number of
possible wake-up functions ω : K → N for a fixed ω(K) is again at most h(r, k)k, and though
we are using a different delay function to the previous section, the calculations used to prove
Lemma 9 still hold.

h(r, k)k = 2k log h(r,k) ≤ 21.1k log r = 21.1(k log k+k log r
k ) ≤ 21.3(k log(k0.9)+r) ≤ 22.9r .

However, now our object does depend on ω(K), though as we noted we can shift all
activation times by a multiple of z(h(r, k)) and behavior during the time-steps we analyze is

DISC 2018
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Algorithm 1 Wake-up at a node v.
for j from 1 to ∞, in time-step ω(v) + j, do

v transmits iff S(v)j = 1
end for

Algorithm 2 Broadcasting at a node v.
for j from 1 to ∞, in time-step j, do

v transmits iff T (v, ω(v))j = 1
end for

unchanged. So our total number of instances to consider is multiplied by z(h(r, k)), and is
upper bounded by 22r+1+2.9rz(h(r, k)) ≤ 25r . J

I Lemma 18. For any (sufficiently large) r, the probability that T does not hit all (r, k)-
instances is at most 2−3r.

Proof. Fix some (r, k)-instance. The probability that it is not hit within h(r, k) time-steps
is at most∏

j∈F
(1− 1

3d ) ≤ e−
|F|
3d ≤ e− dr

6 = 2− dr
6 ln 2 .

Hence, if we set d = 34, by a union bound the probability that any (r, k)-instance is not
hit is at most 25r · 2− 34r

6 ln 2 ≤ 2−3r . J

We can now prove our main theorem on unbounded transmission schedules (Theorem 12):

Proof. By Lemma 18 and a union bound over r, the probability that T does not hit all
instances is at most

∑
r∈N 2−3r < 1. Therefore T is an unbounded transmission schedule of

delay h with non-zero probability, so such an object must exist. J

3 Algorithms for multiple access channels

Armed with our combinatorial objects, our algorithms are now extremely simple, and are
the same for multiple access channels as for multi-hop radio networks.

Let S be an unbounded universal synchronizer of delay g, where g(r, k) = O
(

r log k
log log k

)
,

and T be an unbounded transmission schedule of delay h, where h(r, k) = O(r log log k).
Our algorithms are simply applications of these objects.

I Theorem 19. Algorithm 1 performs wake-up in multiple access channels in time
O
(

k log L log k
log log k

)
, without knowledge of k or L.

Proof. By the definition of an unbounded universal synchronizer, there is some time-step
within

g(r, k) = O

(
r log k

log log k

)
= O

(
k logL log k

log log k

)
time-steps of the first activation in which only one node transmits, and this completes
wake-up. J
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I Theorem 20. Algorithm 2 performs broadcasting in multiple access channels in time
O(k logL log log k), without knowledge of k or L.

Proof. By the definition of an unbounded transmission schedule, there is some time-step
within h(r, k) = O(r log log k) = O(k logL log log k) time-steps of the first activation in which
only one node transmits, and this completes broadcasting. J

4 Algorithms for radio networks

To see how our results on multiple access channels (Theorems 19 and 20) transfer directly to
multi-hop radio networks, we apply the analysis method of [13] for radio network protocols.
The idea is that we fix a shortest path p = (p0, p1, . . . pd) from some source node to some
target node, and then classify all nodes into layers depending on the furthest node along the
path to which they are an in-neighbor, i.e., layer Li = {v : max j such that (v, pj) ∈ E = i}.
We wish to quantify how long a layer can remain leading, that is, the furthest layer to contain
awake nodes. The key point is that we can regard these layers as multiple access channels:
though they are not necessarily cliques, all we need is for a single node in the layer to transmit
and then the layer ceases to be leading. Once the final layer ceases to be leading, the target
node must be informed, and since this node was chosen arbitrarily we obtain a time-bound
for informing the entire network. Thereby the problem is reduced to a sequence of at most D
single-hop instances, whose sizes sum to at most n. For full details of this analysis method
see [13].

Therefore we can use the following lemma from [13] (paraphrased to fit our notation) to
analyze how our algorithms perform in radio networks.

I Lemma 21 (Lemma 10 of [13]). Let X : [n]→ N be a non-decreasing function, and define
Y (n) to be the supremum of the function

∑n
i=1 X(`i), where non-negative integers `i satisfy

the constraint
∑n

i=1 `i ≤ n. If a broadcast or wake-up protocol ensures that any layer of size
` remains leading for no more than X(`) time-steps, then all nodes wake up within Y (n)
time-steps.

I Theorem 22. Algorithm 1 performs wake-up in radio networks in time O( n log L log n
log log n ),

without knowledge of n or L.

Proof. By Theorem 19, any layer of size ` remains leading for no more than X(`) time-steps,
where X(`) = O( ` log L log `

log log ` ). Y (n, h) is then maximized by setting `1 = n and `i = 0 for every
i > 1. So, by Lemma 21, wake-up is performed for the entire radio network in O( n log L log n

log log n )
time. J

I Theorem 23. Algorithm 2 performs broadcasting in radio networks in O(n logL log logn)
time, without knowledge of n or L.

Proof. By Theorem 20, any layer of size ` remains leading for no more than X(`) time-steps,
where X(`) = O(` logL log log `). Y (n, h) is then maximized by setting `1 = n and `i = 0
for i > 1. So, by Lemma 21, broadcasting is performed for the entire radio network in
O(n logL log logn) time. J
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5 Conclusions

We have shown that deterministic algorithms for communications primitives in multiple
access channels and multi-hop radio networks need not assume parameter knowledge, or
small IDs, to be efficient. One possible next step would be to show a means by which nodes
could generate efficient transmission schedules based on some finite (i.e., with size bounded
by some function of ID) advice string; this would go some way towards making the algorithm
practical.
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