
32nd International Symposium
on Distributed Computing

DISC 2018, October 15–19, New Orleans, Louisiana, USA

Edited by

Ulrich Schmid
Josef Widder

LIPIcs – Vo l . 121 – DISC 2018 www.dagstuh l .de/ l ip i c s

Editors
Ulrich Schmid Josef Widder
Embedded Computing Systems Group Embedded Computing Systems Group
TU Wien TU Wien
Vienna, Austria Vienna, Austria
s@ecs.tuwien.ac.at widder@ecs.tuwien.ac.at

ACM Classification 2012
Software and its engineering → Distributed systems organizing principles, Computing methodologies →
Distributed computing methodologies, Computing methodologies → Concurrent computing methodologies,
Hardware → Fault tolerance, Networks, Information systems → Data structures, Theory of computation,
Theory of computation → Models of computation, Theory of computation → Design and analysis of
algorithms

ISBN 978-3-95977-092-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-092-7.

Publication date
October, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.DISC.2018.0

ISBN 978-3-95977-092-7 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-092-7
http://www.dagstuhl.de/dagpub/978-3-95977-092-7
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.DISC.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-092-7
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Christel Baier (TU Dresden)
Javier Esparza (TU München)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

DISC 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Ulrich Schmid . 0:ix–0:x

Symposium Organization
. 0:xi–0:xiv

2018 Edsger W. Dijkstra Prize in Distributed Computing
Yehuda Afek, Idit Keidar, Boaz Patt-Shamir, Sergio Rajsbaum, Ulrich Schmid,
Gadi Taubenfeld . 0:xv

2018 Principles of Distributed Computing Doctoral Dissertation Award
Lorenzo Alvisi, Idit Keidar, Andréa W. Richa, Alex Schwarzmann 0:xvii

Details of the DISC’18 Reviewing Process
. 0:xix–0:xx

Invited Talks

Autonomous Vehicles: From Individual Navigation to Challenges of Distributed
Swarms

Sándor P. Fekete . 1:1–1:1

Challenges for Machine Learning on Distributed Platforms
Tom Goldstein . 2:1–2:3

Logical Analysis of Distributed Systems: The Importance of Being Constructive
Michael Mendler . 3:1–3:1

Regular Papers

Selecting a Leader in a Network of Finite State Machines
Yehuda Afek, Yuval Emek, and Noa Kolikant . 4:1–4:17

The Role of A-priori Information in Networks of Rational Agents
Yehuda Afek, Shaked Rafaeli, and Moshe Sulamy . 5:1–5:18

Distributed Approximate Maximum Matching in the CONGEST Model
Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman . 6:1–6:17

State Machine Replication Is More Expensive Than Consensus
Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and
Dragos-Adrian Seredinschi . 7:1–7:18

Allocate-On-Use Space Complexity of Shared-Memory Algorithms
James Aspnes, Bernhard Haeupler, Alexander Tong, and Philipp Woelfel 8:1–8:17

Almost Global Problems in the LOCAL Model
Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela 9:1–9:16

A Population Protocol for Exact Majority with O(log5/3 n) Stabilization Time
32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

and Θ(log n) States
Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser,
Peter Kling, and Tomasz Radzik . 10:1–10:18

Integrated Bounds for Disintegrated Storage
Alon Berger, Idit Keidar, and Alexander Spiegelman . 11:1–11:18

Distributed Recoloring
Marthe Bonamy, Paul Ouvrard, Mikaël Rabie, Jukka Suomela, and Jara Uitto . . . 12:1–12:17

A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration
Sebastian Brandt, Jara Uitto, and Roger Wattenhofer . 13:1–13:17

Multi-Shot Distributed Transaction Commit
Gregory Chockler and Alexey Gotsman . 14:1–14:18

Deterministic Blind Radio Networks
Artur Czumaj and Peter Davies . 15:1–15:17

Detecting Cliques in CONGEST Networks
Artur Czumaj and Christian Konrad . 16:1–16:15

A Wealth of Sub-Consensus Deterministic Objects
Eli Daian, Giuliano Losa, Yehuda Afek, and Eli Gafni . 17:1–17:17

NUMASK: High Performance Scalable Skip List for NUMA
Henry Daly, Ahmed Hassan, Michael F. Spear, and Roberto Palmieri 18:1–18:19

TuringMobile: A Turing Machine of Oblivious Mobile Robots with Limited
Visibility and Its Applications

Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, and Giovanni Viglietta . . . 19:1–19:18

Beeping a Deterministic Time-Optimal Leader Election
Fabien Dufoulon, Janna Burman, and Joffroy Beauquier . 20:1–20:17

An Almost Tight RMR Lower Bound for Abortable Test-And-Set
Aryaz Eghbali and Philipp Woelfel . 21:1–21:19

Distributed Set Cover Approximation: Primal-Dual with Optimal Locality
Guy Even, Mohsen Ghaffari, and Moti Medina . 22:1–22:14

Order out of Chaos: Proving Linearizability Using Local Views
Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and
Sharon Shoham . 23:1–23:21

Redundancy in Distributed Proofs
Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry . 24:1–24:18

Local Verification of Global Proofs
Laurent Feuilloley and Juho Hirvonen . 25:1–25:17

A Simple Parallel and Distributed Sampling Technique: Local Glauber Dynamics
Manuela Fischer and Mohsen Ghaffari . 26:1–26:11

Fast Multidimensional Asymptotic and Approximate Consensus
Matthias Függer and Thomas Nowak . 27:1–27:16

Contents 0:vii

Local Queuing Under Contention
Paweł Garncarek, Tomasz Jurdziński, and Dariusz R. Kowalski 28:1–28:18

Derandomizing Distributed Algorithms with Small Messages: Spanners and
Dominating Set

Mohsen Ghaffari and Fabian Kuhn . 29:1–29:17

Distributed MST and Broadcast with Fewer Messages, and Faster Gossiping
Mohsen Ghaffari and Fabian Kuhn . 30:1–30:12

New Distributed Algorithms in Almost Mixing Time via Transformations from
Parallel Algorithms

Mohsen Ghaffari and Jason Li . 31:1–31:16

Time-Message Trade-Offs in Distributed Algorithms
Robert Gmyr and Gopal Pandurangan . 32:1–32:18

Faster Distributed Shortest Path Approximations via Shortcuts
Bernhard Haeupler and Jason Li . 33:1–33:14

A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols
Yael Tauman Kalai, Ilan Komargodski, and Ran Raz . 34:1–34:16

Adapting Local Sequential Algorithms to the Distributed Setting
Ken-ichi Kawarabayashi and Gregory Schwartzman . 35:1–35:17

Strong Separations Between Broadcast and Authenticated Channels
Julian Loss, Ueli Maurer, and Daniel Tschudi . 36:1–36:17

Broadcast and Minimum Spanning Tree with o(m) Messages in the Asynchronous
CONGEST Model

Ali Mashreghi and Valerie King . 37:1–37:17

Fault-Tolerant Consensus with an Abstract MAC Layer
Calvin Newport and Peter Robinson . 38:1–38:20

Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds
Merav Parter and Hsin-Hao Su . 39:1–39:18

Congested Clique Algorithms for Graph Spanners
Merav Parter and Eylon Yogev . 40:1–40:18

Lattice Agreement in Message Passing Systems
Xiong Zheng, Changyong Hu, and Vijay K. Garg . 41:1–41:17

Brief Announcements

Brief Announcement: Local Distributed Algorithms in Highly Dynamic Networks
Philipp Bamberger, Fabian Kuhn, and Yannic Maus . 42:1–42:4

Brief Announcement: Randomized Blind Radio Networks
Artur Czumaj and Peter Davies . 43:1–43:3

Brief Announcement: Deterministic Contention Resolution on a Shared Channel
Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak 44:1–44:3

DISC 2018

0:viii Contents

Brief Announcement: Generalising Concurrent Correctness to Weak Memory
Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick 45:1–45:3

Brief Announcement: Exact Size Counting in Uniform Population Protocols in
Nearly Logarithmic Time

David Doty, Mahsa Eftekhari, Othon Michail, Paul G. Spirakis, and
Michail Theofilatos . 46:1–46:3

Brief Announcement: A Tight Lower Bound for Clock Synchronization in
Odd-Ary M-Toroids

Reginald Frank and Jennifer L. Welch . 47:1–47:3

Brief Announcement: On Simple Back-Off in Unreliable Radio Networks
Seth Gilbert, Nancy Lynch, Calvin Newport, and Dominik Pajak 48:1–48:3

Brief Announcement: Fast and Scalable Group Mutual Exclusion
Shreyas Gokhale and Neeraj Mittal . 49:1–49:3

Brief Announcement: On the Impossibility of Detecting Concurrency
Éric Goubault, Jérémy Ledent, and Samuel Mimram . 50:1–50:4

Brief Announcement: Effects of Topology Knowledge and Relay Depth on
Asynchronous Consensus

Dimitris Sakavalas, Lewis Tseng, and Nitin H. Vaidya . 51:1–51:4

Brief Announcement: Loosely-stabilizing Leader Election with Polylogarithmic
Convergence Time

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa . 52:1–52:3

Preface

DISC, the International Symposium on DIStributed Computing, is an international forum
on the theory, design, analysis, implementation and application of distributed systems and
networks. DISC is organized in cooperation with the European Association for Theoretical
Computer Science (EATCS).

This volume contains the papers presented at DISC 2018, the 32nd International Sym-
posium on Distributed Computing, held on October 15–19, 2018 in New Orleans, USA.
It includes the citation for the 2018 Edsger W. Dijkstra Prize in Distributed Computing,
jointly sponsored by DISC and PODC (the ACM Symposium on Principles of Distributed
Computing), that was presented at PODC 2018 to Bowen Alpern and Fred B. Schneider for
their paper “Defining Liveness.” The volume also includes the citation for the 2018 Doctoral
Dissertation Award, also jointly sponsored by DISC and PODC, that was presented at
DISC 2018 to Rati Gelashvili for his PhD thesis titled “On the Complexity of Synchroniza-
tion,” supervised by Nir Shavit at the Massachusetts Institute of Technology. DISC 2018 also
featured three keynote lectures, presented by Sándor P. Fekete (TU Braunschweig, Germany)
on “Autonomous Vehicles: From Individual Navigation to Challenges of Distributed Swarms,”
Tom Goldstein (University of Maryland, USA) on “Challenges for Machine Learning on Dis-
tributed Platforms,” and Michael Mendler (Otto-Friedrich University of Bamberg, Germany)
on “Logical Analysis of Distributed Systems: The Importance of Being Constructive.” An
abstract of each keynote lecture is included in the proceedings.

Like DISC 2017, DISC 2018 received a very high number of submissions (161 regular
papers and 4 brief announcements). Every submission was read and evaluated by at least
three members of the PC, assisted by 172 external reviewers, using a refined reviewing
process (outlined on page xix). The Program Committee finally selected 38 regular papers
and 11 brief announcements for inclusion in the conference program and in the proceedings.
Among the latter, 10 are the result of inviting the authors of rejected regular submissions to
provide a brief announcement version of their work. Each of those summarizes ongoing work
or recent results, which were considered interesting by the PC members and where it could
be expected that these results will appear as full papers in later conferences or journals.

The Best Paper Award for DISC 2018 was shared by Gregory Chockler and Alexey
Gotsman for their paper “Multi-Shot Distributed Transaction Commit,” and Ali Mashreghi
and Valerie King for their paper “Broadcast and Minimum Spanning Tree with o(m) Messages
in the Asynchronous CONGEST Model.” Unfortunately, the authors of the nominated
best student paper had to withdraw their submission at the very last moment. Revised
and expanded versions of several additional selected regular papers will be considered for
publication in a special issue of the journal Distributed Computing.

Two workshops were co-located with DISC 2018: The 7th Workshop on Advances in
Distributed Graph Algorithms (ADGA), chaired by Merav Parter, on October 15, 2018, and
the 2nd Workshop on Storage, Control, Networking in Dynamic Systems (SCNDS), organized
by Kishori Konwar and Lewis Tseng, on October 19, 2018.

We wish to thank the many contributors to DISC 2018: the authors of the submitted
papers, the PC members and the reviewers, the three keynote speakers, the conference general
chair and local organizer Costas Busch, the publicity chair Peter Robinson, the proceedings
32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:x Preface

chair Josef Widder, the web chair Wyatt Clements, all the workshop organizers led by the
workshop chair Gokarna Sharma, and the DISC Steering Committee, led by Yoram Moses,
for its guidance. Special thanks go to Andréa W. Richa, the PC chair of DISC 2017, for her
invaluable support, and to Roman Kuznets for providing EasyChair expertise.

October 2018 Ulrich Schmid
DISC 2018 Program Chair

Symposium Organization

DISC, the International Symposium on Distributed Computing, is an annual forum for
presentation of research on all aspects of distributed computing. It is organized in cooperation
with the European Association for Theoretical Computer Science (EATCS). The symposium
was established in 1985 as a biannual International Workshop on Distributed Algorithms on
Graphs (WDAG). The scope was soon extended to cover all aspects of distributed algorithms
and WDAG came to stand for International Workshop on Distributed AlGorithms, becoming
an annual symposium in 1989. To reflect the expansion of its area of interest, the name was
changed to DISC (International Symposium on DIStributed Computing) in 1998, opening
the symposium to all aspects of distributed computing. The aim of DISC is to reflect the
exciting and rapid developments in this field.

Program Chair

Ulrich Schmid TU Wien, Austria

Program Committee

Ittai Abraham VMware Research Group, USA
Marcos K. Aguilera VMware Research Group, USA
Dan Alistarh IST, Austria
Hagit Attiya Technion, Israel
Janna Burman U. Paris-Sud, France
Christian Cachin IBM Research Zurich, Switzerland
Gregory Chockler Royal Holloway U. of London, UK
Guy Even Tel Aviv U., Israel
Pierre Fraigniaud CNRS & U. Paris-Diderot, France
Mohsen Ghaffari ETH Zurich, Switzerland
Seth Gilbert NUS, Singapore
Robert Gmyr U. of Houston, USA
Emmanuel Godard Aix-Marseille U., France
Bernhard Haeupler CMU, USA
Petr Kuznetsov Telecom ParisTech, France
Silvio Lattanzi Google Research, Switzerland
Christoph Lenzen MPI for Informatics, Germany
Marios Mavronicolas U. of Cyprus, Cyprus
Sayan Mitra U. of Illinois, USA
Yoram Moses Technion, Israel
Achour Mostefaoui U. of Nantes, France
Gopal Pandurangan U. of Houston, USA
Rafael Pass Cornell Tech, USA
Andrzej Pelc U. of Quebec, Canada
Rajmohan Rajaraman Northeastern U., USA
32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xii Symposium Organization

Sergio Rajsbaum UNAM, Mexico
Binoy Ravindran Virginia Tech, USA
Andréa W. Richa Arizona State U., USA
Peter Robinson McMaster U., Canada
Nicola Santoro Carleton U., Canada
Stefan Schmid U. of Vienna, Austria
Ulrich Schmid (chair) TU Wien, Austria
Pierre Sens Sorbonne U., France
Gokarna Sharma Kent State U., USA
Jukka Suomela Aalto University, Finland
Nitin Vaidya Georgetown University, USA
Jennifer Welch Texas A&M, USA
Josef Widder TU Wien, Austria
Haifeng Yu NUS, Singapore

Steering Committee

Roberto Baldoni Sapienza Università di Roma, Italy
Cyril Gavoille Bordeaux University, France
Fabian Kuhn U. Freiburg, Germany
Yoram Moses (chair) Technion, Israel
Andréa Richa Arizona State University, USA
Jukka Suomela Aalto University, Finland

Local Organization

Costas Busch (general chair) Louisiana State U., USA
Gokarna Sharma (workshop chair) Kent State U., USA
Josef Widder (proceedings chair) TU Wien, Austria
Peter Robinson (publicity chair) McMaster U., Canada
Wyatt Clements (web chair) Louisiana State U., USA

External Reviewers

Saeed Akhoondian Amiri Nathalie Bertrand Bogdan Chlebus
Maya Arbel Aditya Biradavolu Richard Cleve
Balaji Arun Lelia Blin Pierluigi Crescenzi
John Augustine Michael Blondin Gianlorenzo D’Angelo
Alkida Balliu Trevor Brown Shantanu Das
Evangelos Bampas Irina Calciu Ajoy K. Datta
Joffroy Beauquier Sarah Cannon Peter Davies
Ohad Ben-Baruch Armando Castañeda Joshua Daymude
Ran Ben Basat Jérémie Chalopin Jean-Lou De Carufel
Petra Berenbrink Bapi Chatterjee Carole Delporte
Cédric Bérenger Soumyottam Chatterjee Gianluca De Marco

Symposium Organization 0:xiii

Stéphane Devismes Eleni Kanellou Boaz Patt-Shamir
Dave Dice Mohamed Karaoui Ami Paz
Giuseppe A. Di Luna Idit Keidar Sriram Pemmaraju
Michael Dinitz Maleq Khan Eloi Perdereau
David Doty Peter Kling Matthieu Perrin
Swan Dubois Marek Klonowski Seth Pettie
Fabien Dufoulon Kishori Konwar Nguyen Dinh Pham
Chinmoy Dutta Janne H. Korhonen Pavan Poudel
Romaric Duvignau Amos Korman Mikaël Rabie
Faith Ellen Eric Koskinen Matthieu Rambaud
Ahmed Elsayed Artur Kraska Nicolas Rivera
Yuval Emek Clyde Kruskal Luis Rodrigues
Ittay Eyal Fabian Kuhn Will Rosenbaum
Chuchu Fan Sandeep Kulkarni Eric Ruppert
Reza Fathi Saptaparni Kumar Joel Rybicki
Michael Feldmann Shay Kutten Laura Schmid
Klaus-Tycho Foerster Marie Laveau Robert Schweller
Tom Friedetzky Douglas Lea Michael Scott
Tobias Friedrich Tuomo Lempiäinen Elaine Shi
Matthias Függer Mehraneh Liaee Hussin Sibai
Juan A. Garay Giuliano Losa Devan Sohier
Leszek Gasieniec Victor Luchangco Ana Sokolova
Rati Gelashvili Jan Marcinkowski Alexander Spiegelman
Konstantinos Georgiou Umang Mathur Hsin-Hao Su
George Giakkoupis Alex Matveev Tigran Tonoyan
Brighten Godfrey Alexandre Maurer Jesper Larsson Träff
Wojciech Golab Moti Medina Jerry Trahan
Alexey Gotsman Yuri Meshman Amitabh Trehan
Ofer Grossman Zarko Milosevic Philippas Tsigas
Jan Hackfeld Mohamed Mohamedin Przemysław Uznański
Magnus M. Halldorsson Anisur Rahaman Molla Viktor Vafeiadis
David Harris William K. Moses Jr. Mario Valencia-Pabon
Danny Hendler Cameron Musco Kapil Vaswani
Maurice Herlihy Danupon Nanongkai Giovanni Viglietta
Ellis Hershkowitz Emanuele Natale Marko Vukolić
Eshcar Hillel Ofer Neiman Yuexuan Wang
Kristian Hinnenthal Mikhail Nesterenko Ben Wiederhake
Juho Hirvonen Calvin Newport Thomas Wies
Damien Imbs Nicolas Nicolaou Eric Winfree
Joseph Izraelevitz Peter Niebert Chuan Xu
Taisuke Izumi Ruslan Nikolaev Himank Yadav
Prasad Jayanti Thomas Nowak Yukiko Yamauchi
Siddhartha Jayanti André Nusser Maxwell Young
Denis Jeanneau Dennis Olivetti Ahad N. Zehmakan
Tomasz Jurdzinski Eran Omri Akka Zemmari
Hirotsugu Kakugawa Rotem Oshman
Nikolaos Kallimanis Aurojit Panda

DISC 2018

0:xiv Symposium Organization

Sponsoring Organizations

European Association for
Theoretical Computer Science

College of Engineering
Louisiana State University

National Science Foundation

Oracle

VMware

DISC 2018 acknowledges the use of the EasyChair system for handling submissions and
managing the review process, and LIPIcs for producing and publishing the proceedings.

2018 Edsger W. Dijkstra Prize in Distributed
Computing

The Edsger W. Dijkstra Prize in Distributed Computing was created to acknowledge out-
standing papers on the principles of distributed computing whose significance and impact
on the theory or practice of distributed computing have been evident for at least a decade.
The Prize is sponsored jointly by the ACM Symposium on Principles of Distributed Comput-
ing (PODC) and the EATCS Symposium on Distributed Computing (DISC). This award is
presented annually, with the presentation taking place alternately at PODC and DISC. The
2018 Edsger W. Dijkstra Prize in Distributed Computing has been presented at PODC 2018
at the Royal Holloway University, London, UK.

The 2018 Award Committee, composed of Ulrich Schmid (Chair), Yehuda Afek, Idit
Keidar, Boaz Patt-Shamir, Sergio Rajsbaum and Gadi Taubenfeld, has selected

Bowen Alpern and Fred B. Schneider

to receive the 2018 Edsger W. Dijkstra Prize in Distributed Computing for the outstanding
paper:

Bowen Alpern and Fred B. Schneider:
Defining liveness.

Information Processing Letters 21(4),
October 1985, pages 181–185.

Concurrent and distributed algorithms today are characterized in terms of safety (“bad
things” do not happen) and liveness (“good things” do happen). This seminal paper is what
gave semantic legitimacy to that decomposition. Safety and liveness for concurrent programs
had been suggested earlier by Lamport, but liveness was only formally defined for the first
time in the winning paper, where it was accompanied by a compelling justification—that
every (what we today call a) “trace property” is the conjunction of a safety and a liveness
property. The liveness definition and accompanying decomposition theorem thus establish
that safety and liveness are not only intuitively appealing but are also formally orthogonal.
As a consequence, they constitute the basic building blocks of all (trace) properties and thus
underlie a substantial number of papers that appeared at PODC and DISC so far.

Moreover, subsequent work has shown that invariants suffice for verifying safety properties
and that variant functions on well-founded domains are suitable for verifying liveness proper-
ties. So, of the possible ways to decompose properties, the decomposition into safety and
liveness provides the added value of also suggesting approaches for verifying each property.
Further evidence of the importance of this work is that its topological characterizations and
decomposition proof have since been scaled-up to safety and liveness hyperproperties, which
express confidentiality and other important correctness concerns that trace properties cannot.

The 2018 Dijkstra Prize Committee:
Yehuda Afek, Tel Aviv University
Idit Keidar, Technion
Boaz Patt-Shamir, Tel Aviv University
Sergio Rajsbaum, UNAM
Ulrich Schmid (chair), TU Wien
Gadi Taubenfeld, IDC Herzliya

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2018 Principles of Distributed Computing
Doctoral Dissertation Award

The winner of the 2018 Principles of Distributed Computing Doctoral Dissertation Award is
Dr. Rati Gelashvili, for his dissertation titled “On the Complexity of Synchroniza-
tion,” written under the supervision of Prof. Nir Shavit at the Massachusetts Institute of
Technology.

The field of distributed algorithms revolves around efficiently solving synchronization
tasks, such as leader election and consensus in different models. Gelashvili’s thesis provides
an extraordinary study of the complexity of solving synchronization tasks, which is both
deep and broad. It makes significant contributions towards understanding the complexity of
solving synchronization tasks in various models. In particular, it pushes the boundary of our
understanding of consensus, the algorithmic process by which asynchronous computation
threads coordinate with each other, which has been the subject of extensive research for over
30 years.

In one part of his thesis, Gelashvili challenges the underpinnings of Herlihy’s consensus-
based computability hierarchy, which has been the theoretical basis for classifying the
computational power of concurrent data structures and synchronization primitives in multi-
processors and multicore machines for two and a half decades. He observes that Herlihy’s
classical hierarchy treats synchronization instructions as distinct objects, an approach that
is far from the real-world, where multiprocessors do let processes apply supported atomic
instructions to arbitrary memory locations. Gelashvili shows that, contrary to common belief,
solving consensus does not require multicore architectures to support “strong” synchronization
instructions such as compare-and-swap. Rather, combinations of “weaker” instructions such
as decrement and multiply suffice. He goes on to propose an alternative complexity-based
hierarchy for concurrent objects. The dissertation further opens a new line of research by
proving a linear-space bound for the anonymous case of randomized consensus, the first
major progress on this problem in 15 years, which won the Best Paper Award at DISC 2015,
and for which Gelashvili developed novel lower bound techniques. Apart from their great
importance, these results are also technically complex and mathematically beautiful.

The award. The Principles of Distributed Computing Doctoral Dissertation Award is
sponsored jointly by the ACM Symposium on Principles of Distributed Computing‘(PODC)
and the EATCS Symposium on Distributed Computing (DISC). It is presented annually,
with the presentation taking place alternately at PODC and DISC. The 2018 award has been
presented at DISC 2018, New Orleans, USA.

The 2018 Principles of Distributed Computing Doctoral Dissertation Award Committee:
Lorenzo Alvisi, Cornell
Idit Keidar (chair), Technion
Andréa W. Richa, ASU
Alex Schwarzmann, UConn

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Details of the DISC’18 Reviewing Process

Since DISC 2018 was expected to get a similar number of submissions as DISC 2017, a large
PC consisting of 39 distinguished members of the community was formed in an attempt to
sufficiently cover all the 17 topics specifically addressed in the call for papers. In addition,
stimulated by concerns with the reviewing process used at DISC and PODC in the past1, a
number of quality-enhancing measures were foreseen for DISC 2018.

Besides enforcing the requirement for self-contained submissions (15 pages LIPIcs, without
references) by disallowing appendices but encouraging full versions on publicly accessible
archives like arXiv or HAL, which facilitates a fair comparison of submissions given the tight
reviewing time constraints, the following measures were implemented:
(i) To facilitate effective paper bidding, EasyChair’s ability to match the selected topics of

the submissions with the selected topics of expertise of the PC members was used to
generate an initial bidding proposal for every PC member that could be modified during
the actual paper bidding phase. The result of the bidding phase allowed EasyChair to
find an optimal paper assignment (3 reviewers per submission) in a single assignment
run, in negligible time.

(ii) In order not to rule out the most competent reviewers for a submission by an overly
restrictive conflict of interest policy, prohibitive CoI (like supervisor or personal relations,
to be declared during bidding as usual) that forbid any access to the reviewing process,
and milder forms of CoI (like occasional co-authorship, to be declared in the “comments
to the PC section” of the reviews) were distinguished.

(iii) A reviewing process with two intermediate reviews before the final review was enforced.
The first intermediate review just asked for the reviewers’ actual expertise for reviewing
the assigned papers [1 week after paper assignment], the second intermediate review asked
for an estimate of the overall merit figure (and optionally major strengths and weaknesses)
[3 weeks after paper assignment]. The intermediate reviews were used to assign additional
PC members/reviewers to submissions that either did not have at least 2 reviewers with
expertise 3 (“knowledgable”) or 4 (“expert”), or suffered from controversial merit figure
estimates (a difference larger or equal to 3, from knowledgable reviewers). At the end,
50 (resp. 3) submissions ended up with 4 (resp. 5) reviewers.

(iv) The full reviews were due 6 weeks after paper assignment, which allowed 3 weeks of
discussion before the PC meeting. During paper discussion, the reviewers of a submission
were supposed to either (i) resolve controversial merit figures or (ii) to determine both a
proponent and an opponent is willing to make his/her case for/against the submission in
the PC meeting. At the end, only 8 submissions did not fall under (i) and thus needed to
be dealt with in the PC meeting.

(v) The PC meeting (July 9–10, 2018) was set up as a virtual one using Adobe Connect. As
there were only few submissions up for discussion, each of those was assigned a fixed
time slot where all interested PC members could join. Depending on the outcome of
the discussion, either the controversial scores were appropriately modified or additional
reviews were provided.
As a result, 23 submissions ended up with an average expertise-weighted score of at
least 1.7, which has been set as the threshold for a “safe accept” (at least two “accept”

1 Also raised explicitly by a group of members of the community in the DISC 2017 business meeting.

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xx Details of the DISC’18 Reviewing Process

and no reject), and 16 submissions with an average expertise-weighted score of at least 1.3,
which has been set as the threshold for a “possible accept” (at least one “accept” and no
reject). The PC eventually decided to accept all these submissions as full papers, and
to invite all authors of 25 submissions with an average expertise-weighted score of at
least 0.3 (at least two weak accepts) to submit a brief announcement version of their
work. Ultimately, 11 accepted this invitation and submitted a brief announcement, all of
which were finally accepted after a short round of additional reviewing.

Autonomous Vehicles: From Individual Navigation
to Challenges of Distributed Swarms
Sándor P. Fekete
Department of Computer Science, TU Braunschweig, 38106 Braunschweig, Germany
s.fekete@tu-bs.de

https://orcid.org/0000-0002-9062-4241

Abstract
Recent years have seen impressive advancements in the development of robots on four wheels:
autonomous cars. While much of this progress is owed to a combination of breakthroughs in arti-
ficial intelligence and improved sensors, dealing with complex, non-ideal scenarios, where errors
or failures can turn out to be catastrophic is still largely unsolved; this will require combining
“fast”, heuristic approaches of machine learning with “slow”, more deliberate methods of discrete
algorithms and mathematical optimization. However, many of the real challenges go beyond
performance guarantees for individual vehicles and aim at the behavior of swarms: How can we
control the complex interaction of a distributed swarm of vehicles, such that the overall behavior
can measure up to and go beyond the capabilities of humans? Even though many of our engi-
neering colleagues do not fully realize this yet, there is no doubt that this will have to be based
to no small part on expertise in distributed algorithms.

I will present a multi-level overview of results and challenges, ranging from information ex-
changes of small groups all the way to game-theoretic mechanisms for large-scale control. Appli-
cation scenarios do not just arise from road traffic (where short response times, large numbers
of vehicles and individual interests give rise to many difficulties), but also from swarms of au-
tonomous space vehicles (where huge distances, times and energies make distributed methods
indispensable).

2012 ACM Subject Classification Theory of computation → Distributed algorithms, Theory of
computation → Algorithmic game theory and mechanism design

Keywords and phrases Autonomous vehicles, interaction, robot swarms, game theory

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.1

Category Invited Talk

© Sándor P. Fekete;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-9062-4241
https://doi.org/10.4230/LIPIcs.DISC.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Challenges for Machine Learning on Distributed
Platforms

Tom Goldstein1

University of Maryland, College Park, MD, USA
tomg@cs.umd.edu

Abstract
Deep neural networks are trained by solving huge optimization problems with large datasets and
millions of variables. On the surface, it seems that the size of these problems makes them a
natural target for distributed computing. Despite this, most deep learning research still takes
place on a single compute node with a small number of GPUs, and only recently have researchers
succeeded in unlocking the power of HPC. In this talk, we’ll give a brief overview of how deep
networks are trained, and use HPC tools to explore and explain deep network behaviors. Then,
we’ll explain the problems and challenges that arise when scaling deep nets over large system,
and highlight reasons why naive distributed training methods fail. Finally, we’ll discuss recent
algorithmic innovations that have overcome these limitations, including “big batch” training
for tightly coupled clusters and supercomputers, and “variance reduction” strategies to reduce
communication in high latency settings.

2012 ACM Subject Classification Computing methodologies → Machine learning

Keywords and phrases Machine learning, distributed optimization

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.2

Category Invited Talk

1 How do we train neural nets

Deep neural networks are one of the most flexible and powerful tools in machine learning.
Neural networks are complex models that are “trained” by solving a large optimization that
minimizes an objective function, called the “loss,” that measures how well the neural net
fits to training data. Computing this loss function is expensive because it requires summing
over every element in a large training dataset. To avoid this expense, neural optimization
problems are commonly solved using stochastic gradient descent (SGD). This algorithm
works by randomly sampling a small batch of data on each iteration, forming an approximate
loss function using only this small data sample, and then doing an approximate gradient
descent step using this approximate loss function. This SGD algorithm was originally adopted
because computers in the 1980s didn’t have the computing power to evaluate the exact loss
function (which requires the full dataset). SGD only uses a small batch of data on each
iteration, and this makes each gradient decent update cheap, but “noisy” (inexact).

1 Support for this work was provided by DARPA Lifelong Learning Machines (FA8650-18-2-7833), the
US Office of Naval Research (N00014-17-1-2078), the US National Science Foundation (CCF-1535902),
and the Sloan Foundation.

© Tom Goldstein;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 2; pp. 2:1–2:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomg@cs.umd.edu
https://doi.org/10.4230/LIPIcs.DISC.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Challenges for Distributed Machine Learning

2 Why is training on HPC platforms hard?

It is commonly said that SGD is an “inherently serial” algorithm; the (k + 1)th iteration of
SGD uses the result if the kth iteration as a starting point, and so iterations need to take
place one at a time. Furthermore, each iteration is cheap when a small batch size is used.
This makes the algorithm hard to scale – when the batch size is small, iterations are cheap
and don’t require enough work to spread over a large number of workers. For example, with
a minibatch size of 128 data samples (which is fairly standard for many imaging problems)
and 128 workers, each worker would be processing only 1 image/sample per iteration, and the
workers would have to communicate after each computation. In this case, the communication
costs would far outweigh the compute costs, and training would be inefficient. This is largely
what motivated the recent emergence of GPUs for machine learning. On a GPU, a single
iteration of SGD can be split over 1000s of small cores in a shared memory architecture. In
this case, we’re still doing the same old serial SGD algorithm, but using lots of parallelism
to get each serial step done faster. This only works on a GPU because all of the cores
are synchronized and memory is shared, which means there is little or no communication
overhead.

3 Can’t we just use bigger batch sizes?

There’s an obvious (but naive) solution to the scalability problem described about: increase
the batch size. This gives us more accurate (i.e., less “noisy”) gradient computations that
should make the algorithm converge faster. With bigger batch sizes, there’s lots more work to
do per iteration, and this work can be spread over many workers. Furthermore, if convergence
happens in fewer iterations, then this could speed things up and enable training with lower
wall-clock time.

But big batch training poses a problem: the argument above assumes that more accurate
big-batch gradients work better than less accurate small-batch gradients. Shockingly, this
is the opposite of what happens in practice; larger batches and more accurate gradients
are worse for neural optimization. You need the noise to find good minimizers. Big-batch
algorithms sometimes get stuck in local minimizers of the non-convex loss functions, or
else find global minimizers that perform poorly on new data samples that weren’t used
for training. In contrast, noisy methods “bounce out” of these local minimizer traps, and
tend to find global minimizers that perform well on new data points that aren’t used for
training. This good behavior of small batch SGD is known as “implicit regularization”; while
there are many minimizers to neural loss functions, small-batch SGD creates a bias towards
minimizers that avoid “over-fitting,” and perform well on test data. The difference between
small batch and large batch optimization, and the cause of implicit regularization is still not
well understood. The qualitative differences between large and small batch training were
recently explored in [3].

4 So what can be done to scale up SGD in distributed environments?

There are three main approaches to scaling up SGD.
Find a way to use bigger batches without finding bad minimizers: While using big
batches in a naive way results in poor models, it is possible to use big batches in a more
sophisticated way that still performs well. In one approach [2], we start with a small
batch size at the early stages of optimization, and quickly expand the batch size to be

T. Goldstein 2:3

very large. We show that this approach helps mitigate the loss in performance that comes
from starting with a big batch, while simultaneously making it easier to automate the
training process.
Find a way to reduce communication overhead so that SGD can tolerate small batches:
This usually requires an algorithm that can do multiple iterations on a worker before
communicating back to a central server. By using delayed asynchronous communication,
algorithms avoid being communication bound because they keep working while they wait
for communication to happen in a separate (often asynchronous) thread. Special variants
of SGD can be developed in which workers share information that enables them to “stay
on the same page” and search for similar solutions even when communication is infrequent.
This direction was explored in [1].
Find problem domains where iterations are so expensive that HPC is needed, even for
small batch sizes: One such problem domain is the processing 3D datasets (as opposed to
2D images). Processing videos and 3D volumes requires a large amount of memory and
far more FLOPS per byte than 2D processing. This is a new frontier domain where HPC
is likely to be dominant.

References
1 Soham De and Tom Goldstein. Efficient distributed SGD with variance reduction. In

2016 IEEE 16th International Conference on Data Mining (ICDM), pages 111–120. IEEE,
2016. doi:10.1109/ICDM.2016.0022.

2 Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Automated inference with
adaptive batches. In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pages 1504–1513. PMLR, 2017. URL: http://proceedings.
mlr.press/v54/de17a.html.

3 Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of
neural nets, 2017. arXiv:1712.09913v1.

DISC 2018

http://dx.doi.org/10.1109/ICDM.2016.0022
http://proceedings.mlr.press/v54/de17a.html
http://proceedings.mlr.press/v54/de17a.html
http://arxiv.org/abs/1712.09913v1

Logical Analysis of Distributed Systems: The
Importance of Being Constructive
Michael Mendler
The Otto-Friedrich University of Bamberg, Bamberg, Germany

Abstract
The design and analysis of complex distributed systems proceeds along numerous levels of ab-
stractions. One key abstraction step for reducing complexity is the passage from analog transistor
electronics to synchronously clocked digital circuits. This significantly simplifies the modelling
from continuous differential equations over the real numbers to discrete Mealy automata over
two-valued Boolean algebra. Although typically taken for granted, this step is magic. How do we
obtain clock synchronization from asynchronous communication of continuous values? How do
we decide on the discrete meaning of continuous signals without a synchronization clock? From
a logical perspective, the possibility of synchronization is paradoxical and appears “out of thin
air.” The chicken-or-egg paradox persists at higher levels abstraction for distributed software.
We cannot achieve globally consistent state from local communications without synchronization.
At the same time we cannot synchronize without access to globally consistent state. From this
perspective, distributed algorithms such as for leader election, consensus or mutual exclusion do
not strictly solve their task but merely reduce one synchronization problem to another.

This talk revisits the logical justification of the synchronous abstraction claiming that cor-
rectness arguments, in so far as they are not merely reductions, must intrinsically depend on
reasoning in classical logic. This is studied at the circuit level, where all software reductions
must end. The well-known result that some synchronization elements cannot be implemented in
delay-insensitive circuits is related to Berry’s Thesis according to which digital circuits are delay-
insensitive if and only if they are provably correct in constructive logic. More technically, the
talk will show how non-inertial delays give rise to a constructive modal logic while inertial delays
are inherently non-constructive. This gives a logical explanation for why inertial delays can be
used to build arbiters, memory-cells and other synchronization elements, while non-inertial delays
are not powerful enough. Though these results are tentative, they indicate the importance of
logical constructiveness for metastable-free discrete abstractions of physical behavior. This also
indicates that metastability is an unavoidable artifact of the digital abstraction in classical logic.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics, The-
ory of computation → Constructive mathematics, Computing methodologies → Concurrent al-
gorithms, Hardware → Hardware validation

Keywords and phrases Hardware synchronisation, inertial delays, delay-insensitive circuits, con-
structive circuits, metastability, constructive modal logic

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.3

Category Invited Talk

Funding This work is partially supported by the German Research Council (DFG) under grant
number ME-1427/6-2.

Acknowledgements This work is based on joint work with Tom Shiple and Gérard Berry.

© Michael Mendler;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Selecting a Leader in a Network of Finite State
Machines
Yehuda Afek1

Tel Aviv University, Tel Aviv, Israel
afek@cs.tau.ac.il

Yuval Emek2

Technion - Israel Institute of Technology, Haifa, Israel
yemek@technion.ac.il

Noa Kolikant
Tel Aviv University, Tel Aviv, Israel
noakolikant@mail.tau.ac.il

Abstract
This paper studies a variant of the leader election problem under the stone age model (Emek and
Wattenhofer, PODC 2013) that considers a network of n randomized finite automata with very
weak communication capabilities (a multi-frequency asynchronous generalization of the beeping
model’s communication scheme). Since solving the classic leader election problem is impossible
even in more powerful models, we consider a relaxed variant, referred to as k-leader selection, in
which a leader should be selected out of at most k initial candidates. Our main contribution is
an algorithm that solves k-leader selection for bounded k in the aforementioned stone age model.
On (general topology) graphs of diameter D, this algorithm runs in Õ(D) time and succeeds
with high probability. The assumption that k is bounded turns out to be unavoidable: we prove
that if k = ω(1), then no algorithm in this model can solve k-leader selection with a (positive)
constant probability.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases stone age model, beeping communication scheme, leader election, k-
leader selection, randomized finite state machines, asynchronous scheduler

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.4

1 Introduction

Many distributed systems rely on the existence of one distinguishable node, often referred
to as a leader. Indeed, the leader election problem is among the most extensively studied
problems in distributed computing [23, 9, 29, 3]. Leader election is not confined to digital
computer systems though as the dependency on a unique distinguishable node is omnipresent
in biological systems as well [27, 34, 28]. A similar type of dependency exists also in networks
of man-made micro- and even nano-scale sub-microprocessor devices [16].

The current paper investigates the task of electing a leader in networks operating under
the stone age (SA) model [20] that provides an abstraction for distributed computing by nodes
that are significantly inferior to modern computers in their computation and communication
capabilities. In this model, the nodes are controlled by randomized finite automata and

1 The work of Y. Afek was partially supported by a grant from the Blavatnik Cyber Security Council and
the Blavatnik Computer Science Research Fund.

2 The work of Y. Emek was supported in part by an Israeli Science Foundation grant number 1016/17.

© Yehuda Afek, Yuval Emek, and Noa Kolikant;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 4; pp. 4:1–4:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afek@cs.tau.ac.il
mailto:yemek@technion.ac.il
mailto:noakolikant@mail.tau.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Selecting a Leader in a Network of Finite State Machines

can communicate with their network neighbors using a fixed message alphabet based on a
weak communication scheme that can be viewed as an asynchronous extension of the set
broadcast (SB) communication model of [25] (a formal definition of our model is provided in
Section 1.1).

Since the state space of a node in the SA model is fixed and does not grow with the size
of the network, SA algorithms are inherently uniform, namely, the nodes are anonymous and
lack any knowledge of the network size. Unfortunately, classic impossibility results state
that leader election is hopeless in these circumstances (even under stronger computational
models): Angluin [4] proved that uniform algorithms cannot solve leader election in a network
with success probability 1; Itai and Rodeh [26] extended this result to algorithms that are
allowed to fail with a bounded probability.

Thus, in the distributed systems that interest us, leader election cannot be solved by the
nodes themselves and some “external help” is necessary. This can be thought of as an external
symmetry breaking signal that only one node is supposed to receive. Symmetry breaking
signals are actually quite common in reality and can come in different shape and form. A
prominent example for such external signaling occurs during the development process of
multicellular organisms, when ligand molecules flow through a cellular network in a certain
direction, hitting one cell before the others and triggering its differentiation [35].

But what if the symmetry breaking signal is noisy and might be received by a handful
of nodes? Is it possible to detect that several nodes received this signal? Can the system
recover from such an event or is it doomed to operate with multiple leaders instead of one?

In this paper, we study the k-leader selection problem, where at most k (and at least 1)
nodes are initially marked as candidates, out of which exactly one should be selected. On
top of the relevance of this problem to the aforementioned questions, it is also motivated
by the following application. Consider scenarios where certain nodes, including the leader,
may get lost during the network deployment process, e.g., a sensor network whose nodes
are dropped from an airplane. In such scenarios, one may wish to produce k > 1 candidate
leaders with the purpose of increasing the probability that at least one of them survives; a
k-leader selection algorithm should then be invoked to ensure that the network has exactly
one leader when it becomes operational.

The rest of the paper is organized as follows. In Section 1.1, we provide a formal definition
of the distributed computing model used in the paper. Our results are summarized in
Section 1.2 and some additional related literature is discussed in Section 1.3. A k-leader
selection algorithm that constitutes our main technical contribution, is presented in Section 2,
whereas Section 3 provides some negative results.

1.1 Model
The distributed computing model considered in this paper follows the stone age (SA) model
of Emek and Wattenhofer [20]. Under this model, the communication network is represented
by a finite connected undirected graph G = (V,E) whose nodes are controlled by randomized
finite automata with state space Q, message alphabet Σ, and transition function τ whose
role is explained soon.

Each node v ∈ V of degree dv is associated with dv input ports (or simply ports), one
port ψv(u) for each neighbor u of v in G, holding the last message σ ∈ Σ received from u at v.
The communication model is defined so that when node u sends a message, the same message
is delivered to all its neighbors v; when (a copy of) this message reaches v, it is written into
port ψv(u), overwriting the previous message in this port. Node v’s (read-only) access to its
own ports ψv(·) is very limited: for each message type σ ∈ Σ, it can only distinguish between
the case where σ is not written in any port ψv(·) and the case where it is written in at least
one port.

Y. Afek, Y. Emek, and N. Kolikant 4:3

The execution is event driven with an asynchronous scheduler that schedules the afore-
mentioned message delivery events as well as node activation events.3 When node v ∈ V
is activated, the transition function τ : Q× {0, 1}Σ → 2Q×Σ determines (in a probabilistic
fashion) its next state q′ ∈ Q and the next message σ′ ∈ Σ to be sent based on its current
state q ∈ Q and the current content of its ports. Formally, the pair (q′, σ′) is chosen uniformly
at random from τ(q, χv), where χv ∈ {0, 1}Σ is defined so that χv(σ) = 1 if and only if σ is
written in at least one port ψv(·).

To complete the definition of the randomized finite automata, one has to specify the set
Qin ⊆ Q of initial states that encode the node’s input, the set Qout ⊆ Q of output states
that encode the node’s output, and the initial message σ0 ∈ Σ written in the ports when the
execution begins. SA algorithms are required to have termination detection, namely, every
node must eventually decide on its output and this decision is irrevocable.

Following the convention in message passing distributed computing (cf. [32]), the run-time
of an asynchronous SA algorithm is measured in terms of time units scaled to the maximum of
the time it takes to deliver any message and the time between any two consecutive activations
of a node. Refer to [20] for a more detailed description of the SA model.

The crux of the SA model is that the number of states in Q and the size of the message
alphabet Σ are constants independent of the size (and any parameter) of the graph G.
Moreover, node v cannot distinguish between its ports and in general, its degree may be
larger than |Q| (and |Σ|).

Weakening the Communication Assumptions. The model defined in the current paper is
a restriction of the model of [20], where the algorithm designer could choose an additional
constant bounding parameter b ∈ Z>0, providing the nodes with the capability to count the
number of ports holding message σ ∈ Σ up to b. In the current paper, the bounding parameter
is set to b = 1. This model choice can be viewed as an asynchronous multi-frequency variant
of the beeping communication model [11, 2].

Moreover, in contrast to the existing SA literature, the communication graph G = (V,E)
assumed in the current paper may include self-loops of the form (v, v) ∈ E which means, in
accordance with the definition of the SA model, that node v admits port ψv(v) that holds
the last message received from itself. Using the terminology of the beeping model literature
(see, e.g., [2]), the assumption that the communication graph is free of self-loops corresponds
to a sender collision detection, whereas lifting this assumption means that node v may not
necessarily distinguish its own transmitted message from those of its neighbors.

It turns out that self-loops have a significant effect on the power of SA algorithms.
Indeed, while a SA algorithm that solves the maximal independent set (MIS) problem with
probability 1 is presented in [20] under the assumption that the graph is free of self-loops, we
prove in Section 3 that if the graph is augmented with self-loops, then no SA algorithm can
solve this problem with a bounded failure probability. To distinguish between the original
model of [20] and the one considered in the current paper, we hereafter denote the latter
by SA	.

3 The only assumption we make on the event scheduling is FIFO message delivery: a message sent by
node u at time t is written into port ψv(u) of its neighbor v before the message sent by u at time t′ > t.

DISC 2018

4:4 Selecting a Leader in a Network of Finite State Machines

1.2 Results
Throughout, the number of nodes and the diameter of the graph G are denoted by n and D,
respectively. We say that an event occurs with high probability (whp) if its probability is at
least 1− n−c for an arbitrarily large constant c. Our main technical contribution is cast in
the following two theorems.

I Theorem 1. For any constant k, there exists a SA	 algorithm that solves the k-leader
selection problem in Õ(D) time whp.4

I Theorem 2. If the upper bound k on the number of candidates may grow as a function
of n, then there does not exist a SA algorithm (operating on graphs with no self-loops) that
solves the k-leader selection problem with a failure probability bounded away from 1.

We emphasize that the failure probability of the SA	 algorithm promised in Theorem 1
(i.e., the probability that the algorithm selects multiple leaders or that it runs for more
than Õ(D) time) is inverse polynomial in n even though each individual node does not (and
cannot) possess any notion of n – to a large extent, this, together with the termination
detection requirement, capture the main challenge in designing the promised algorithm.5
The theorem assumes that k = O(1) and hides the dependency of the algorithm’s parameters
on k. A closer look at its proof reveals that our SA	 algorithm uses local memory and
messages of size O(log k) bits. Theorem 2 asserts that the dependence of these parameters
on k is unavoidable. Whether this dependence can be improved beyond O(log k) remains an
open question.

1.3 Additional Related Literature
As mentioned earlier, the SA model was introduced by Emek and Wattenhofer in [20] as an
abstraction for distributed computing in networks of devices whose computation and commu-
nication capabilities are far weaker than those of a modern digital computer. Their main
focus was on distributed problems that can be solved in sub-diameter (specifically, logO(1) n)
time including MIS, tree coloring, coloring bounded degree graphs, and maximal matching.
This remained the case also in [19], where Emek and Uitto studied SA algorithms for the
MIS problem in dynamic graphs. In contrast, the current paper considers the k-leader
selection problem – an inherently global problem that requires Ω(D) time.

Computational models based on networks of finite automata have been studied for many
years. The best known such model is the extensively studied cellular automata that were
introduced by Ulam and von Neumann [31] and became popular with Martin Gardner’s
Scientific American column on Conway’s game of life [24] (see also [37]).

Another popular model that considers a network of finite automata is the population
protocols model, introduced by Angluin et al. [5] (see also [6, 30]), where the network
entities communicate through a sequence of atomic pairwise interactions controlled by a
fair (adversarial or randomized) scheduler. This model provides an elegant abstraction for
networks of mobile devices with proximity derived interactions and it also fits certain types of
chemical reaction networks [18]. Some work on population protocols augments the model with

4 The asymptotic notation Õ(·) may hide logO(1) n factors.
5 If we aim for a failure probability inverse polynomial in k (rather than n) and we do not insist on
termination detection, then the problem is trivially solved by the algorithm that simply assigns a
random ID from a set of size kO(1) to each candidate and then eliminates a candidate if it encounters
an ID larger than its own.

Y. Afek, Y. Emek, and N. Kolikant 4:5

a graph defined over the population’s entities so that the pairwise interactions are restricted
to graph neighbors, thus enabling some network topology to come into play. However, for
the kinds of networks we are interested in, the fundamental assumption of sequential atomic
pairwise interactions may provide the population protocol with unrealistic advantage over
weaker message passing variants (including the SA model) whose communication schemes
do not enable a node to interact with its individual neighbors independently. Furthermore,
population protocols are typically required to eventually converge to a correct output and are
allowed to return arbitrary (wrong) outputs beforehand, a significantly weaker requirement
than the termination detection requirement considered in this paper.

The neat amoebot model introduced by Dolev et al. [17] also considers a network of
finite automata in a (hexagonal) grid topology, but in contrast to the models discussed so
far, the particles in this network are augmented with certain mobility capabilities, inspired
by the amoeba contraction-expansion movement mechanism. Since its introduction, this
model was successfully employed for the theoretical investigation of self-organizing particle
systems [36, 15, 13, 16, 14, 10, 12], especially in the context of programmable matter.

Leader election is arguably the most fundamental problem in distributed systems coordin-
ation and has been extensively studied from the early days of distributed computing [23, 22].
It is synonymous in most models to the construction of a spanning tree – another fundamental
problem in distributed computing – where the root is typically the leader. Leader election
has many applications including deadlock detection, choosing a key/password distribution
center, and implementing a distributed file system manager. It also plays a key role in tasks
requiring a reliable centralized coordinating node, e.g., Paxos and Raft, where leader election
is used for consensus – yet another fundamental distributed computing problem, strongly
related to leader election. Notice that in our model, leader selection does not (and cannot)
imply a spanning tree, but it does imply consensus.

Angluin [4] proved that uniform algorithms cannot break symmetry in a ring topology with
success probability 1. Following this classic impossibility result, many symmetry breaking
algorithms (with and without termination detection) that relax some of the assumptions
in [4] were introduced [1, 7, 26, 33, 3]. Itai and Rodeh [26] were the first to design randomized
leader election algorithms with bounded failure probability in a ring topology, assuming that
the nodes know n. Schieber and Snir [33] and Afek and Matias [3] extended their work to
arbitrary topology graphs.

2 SA	 Algorithm for k-Leader Selection

In this section, we present our SA	 algorithm and establish Theorem 1. We start with some
preliminary definitions and assumptions presented in Section 2.1. Sections 2.2 and 2.3 are
dedicated to the basic subroutines on which our algorithm relies. The algorithm itself is
presented in Section 2.4, where we also establish its correctness. Finally, in Section 2.5, we
analyze the algorithm’s run-time.

2.1 Preliminaries
As explained in Section 1.1, the execution in the SA (and SA) model is controlled by an
asynchronous scheduler. One of the contributions of [20] is a SA synchronizer implementation
(cf. the α-synchronizer of Awerbuch [8]). Given a synchronous SA algorithm A whose
execution progresses in fully synchronized rounds t ∈ Z>0 (with simultaneous wake-up), the
synchronizer generates a valid (asynchronous) SA algorithm A′ whose execution progresses
in pulses such that the actions taken by A′ in pulse t are identical to those taken by A

DISC 2018

4:6 Selecting a Leader in a Network of Finite State Machines

in round t.6 The synchronizer is designed so that the asynchronous algorithm A′ has the
same bounding parameter b (= 1 in the current paper) and asymptotic run-time as the
synchronous algorithm A.

Although the model considered by Emek and Wattenhofer [20] assumes that the graph
has no self-loops, it is straightforward to apply their synchronizer to graphs that do include
self-loops, hence it can work also in our SA	 model. Consequently, in what follows, we
restrict our attention to synchronous SA	 algorithms. Specifically, we assume that the
execution progresses in synchronous rounds t ∈ Z>0, where in round t, each node v
(1) receives the messages sent by its neighbors in round t− 1;
(2) updates its state; and
(3) sends a message to its neighbors (same message to all neighbors).

Since we make no effort to optimize the size of the messages used by our algorithm, we
assume hereafter that the message alphabet Σ is identical to the state space Q and that node v
simply sends its current state to its neighbors at the end of every round. Nevertheless, for
clarity of the exposition, we sometimes describe the algorithm in terms of sending designated
messages, recalling that this simply means that the states of the nodes encode these messages.

To avoid cumbersome presentation, our algorithm’s description does not get down to the
resolution of the state space Q and transition function τ . It is straightforward though to
implement our algorithm as a randomized finite automaton, adhering to the model presented
in Section 1.1. In this regard, at the risk of stating the obvious, we remind the reader that if
k is a constant, then a finite automaton supports arithmetic operations modulo O(k).

In the context of the k-leader selection problem, we use the verb withdraw when referring
to a node that ceases to be a candidate.

2.2 The Ball Growing Subroutine
We present a generic ball growing subroutine in graph G = (V,E) with at most k candidates.
The subroutine is initiated at (all) the candidates, not necessarily simultaneously, through
designated signals discussed later on. During its execution, some candidates may withdraw;
in the context of this subroutine, we refer to the surviving candidates as roots.

The ball growing subroutine assigns a level variable λ(v) ∈ {0, 1, . . . ,M − 1} to each
node v, where M = 2k + 2. Path P = (v1, . . . , vq) in G is called incrementing if λ(vj+1) =
λ(vj) + 1 mod M for every 1 ≤ j ≤ q − 1. The set of nodes reachable from a root r via an
incrementing path is referred to as the ball of r, denoted by B(r). We design this subroutine
so that the following lemma holds.

I Lemma 3. Upon termination of the ball growing subroutine,
(1) every incrementing path is a shortest path (between its endpoints) in G;
(2) every root belongs to exactly one ball (its own); and
(3) every non-root node belongs to at least one ball.

Intuition spotlight: A natural attempt to design the ball growing subroutine is to
grow a breadth first search tree around candidate r, layer by layer, so that node v at
distance d from r is assigned with level variable λ(v) = d mod M . This is not necessarily

6 We emphasize the role of the assumption that when the execution begins, the ports hold the designated
initial message σ0. Based on this assumption, a node can “sense” that some of its neighbors have not
been activated yet, hence synchronization can be maintained right from the beginning.

Y. Afek, Y. Emek, and N. Kolikant 4:7

0

2

1

3

1

1

2

2

2

3

1

2

2 2

2

3

3
3

3

3

1234

B

C

A

Figure 1 The result of a ball growing process invoked at candidate A in round 1, candidate B in
round 2, and candidate C in round 3. The level variables λ(·) are depicted by the numbers written
inside the nodes and the balls are depicted by the dashed curves. The boundary nodes appear with
a gray background. The DAG ~G is depicted by the oriented edges.

possible though when multiple candidates exist: What happens if the ball growing
processes of different candidates reach v in the same round? What happens if these ball
growing processes reach several adjacent nodes in the same round? If we are not careful,
these scenarios may lead to incrementing paths that are not shortest paths and even to
cyclic incrementing paths. Things become even more challenging considering the weak
communication capabilities of the nodes that may prevent them from distinguishing
between the ball growing processes of different candidates.

The ball growing subroutine is implemented under the SA	 model by disseminating
GrowBall(`) messages, ` ∈ {0, 1, . . . ,M − 1}, throughout the graph. Consider a candidate r
and let s(r) be the round in which it is signaled to invoke the ball growing subroutine. If r
receives a GrowBall(·) message in some round t ≤ s(r), then r withdraws and subsequently
follows the protocol like any other non-root node; otherwise, r becomes a root in round s(r). If
s(r) is even (resp., odd), then r assigns λ(r)← 0 (resp., λ(r)← 1) and sends a GrowBall(λ(r))
message.

Consider a non-root node v and let g(v) be the first round in which it receives a GrowBall(·)
message. Notice that v may receive several GrowBall(`) messages with different arguments `
in round g(v) – let L be the set of all such arguments `. Node v assigns λ(v)← `′ and sends
a GrowBall(`′) message at the end of round g(v), where `′ is chosen to be any integer in
{0, 1, . . . ,M − 1} that satisfies:
(i) `′ − 1 mod M ∈ L; and
(ii) `′ + 1 mod M /∈ L.

This completes the description of the ball growing subroutine. Refer to Figure 1 for an
illustration.

Intuition spotlight: Condition (i) ensures that v joins the ball B(r) of some root r. By
condition (ii), nodes do not join B(r) “indirectly” (this could have led to incrementing
paths that are not shortest paths).

Proof of Lemma 3. Consider a (root or non-root) node v ∈ V and let p(v) be the round
in which v starts its active participation in the ball growing process. More formally, if v is
a root (i.e., it is a candidate signaled to invoke the ball growing subroutine strictly before

DISC 2018

4:8 Selecting a Leader in a Network of Finite State Machines

receiving any GrowBall(·) message), then p(v) = s(v); otherwise, p(v) = g(v). The following
properties are established by (simultaneous) induction on the rounds:

In any round t ≥ p(v), variable λ(v) is even if and only if p(v) is even.
In any round t ≥ p(v), node v has a neighbor u with λ(u) = λ(v)− 1 mod M if and only
if v is not a root.
In any round t ≥ p(v), node v belongs to ball B(r) for some root r.
In any round t ≥ p(v), if v ∈ B(r) for some root r, then the incrementing path(s) that
realize this relation are shortest paths in the graph.
If u, v ∈ B(r) for some root r and p(u) = p(v), then λ(u) = λ(v).
The total number of different arguments ` in the GrowBall(`) messages sent during a
single round is at most k.
Non-root node v finds a valid value to assign to λ(v) in round g(v) = p(v).

The assertion follows. J

I Observation 4. If t is the earliest round in which the ball growing process is initiated at
some candidate, then the process terminates by round t+O(D).

Boundary Nodes. We will see in Section 2.4 that our algorithm detects candidate multipli-
city by identifying the existence of multiple balls in the graph. The key notion in this regard
is the following one (see Figure 1): Node v is said to be a boundary node if
(1) v ∈ B(r) ∩B(r′) for roots r 6= r′; or
(2) v ∈ B(r) for some root r and there exists a neighbor v′ of v such that v′ /∈ B(r).

I Observation 5. If the graph has multiple roots, then every ball includes at least one
boundary node.

Node v is said to be a locally observable boundary node if it has a neighbor v′ such that
λ(v′) /∈ {λ(v) + ` mod M | ` = −1, 0,+1}. Notice that by Lemma 3, there cannot be a ball
that includes both v and v′ since then, at least one of the incrementing paths that realize
these inclusions is not a shortest path. Therefore, a locally observable boundary node is in
particular a boundary node.

The Directed Acyclic Graph ~G. Given two adjacent nodes u and v, we say that v is a
child of u and that u is a parent of v if λ(v) = λ(u) + 1 mod M ; a childless node is referred
to as a leaf. This induces an orientation on a subset F of the edges, say, from parents to
their children (up the incrementing paths), thus introducing a directed graph ~G whose edge
set is an oriented version of F (see Figure 1). Lemma 3 guarantees that ~G is acyclic (so, it
is a directed acyclic graph, abbreviated DAG) and that it spans all nodes in V . Moreover,
the sources and sinks of ~G are exactly the roots and leafs of the ball growing subroutine,
respectively, and the source-to-sink distances in ~G are upper-bounded by the diameter D
of G.

We emphasize that the in-degrees and out-degrees in ~G are unbounded. Nevertheless,
the simplifying assumption that the messages sent by the nodes encode their local states,
including the level variables λ(·) (see Section 2.1), ensures that node v can distinguish between
messages received from its children, messages received from its parents, and messages received
from nodes that are neither children nor parents of v.

Y. Afek, Y. Emek, and N. Kolikant 4:9

2.3 Broadcast and Echo over ~G

The assignment of level variables λ(·) by the ball growing subroutine and the child-parent
relations these variables induce provide a natural infrastructure for broadcast and echo (B&E)
over the aforementioned DAG ~G so that the broadcast (resp., echo) process progresses up
(resp., down) the incrementing paths. These are implemented based on Broadcast and Echo
messages as follows.

The broadcast subroutine is initiated at (all) the roots, not necessarily simultaneously,
through designated signals discussed later on and root r becomes broadcast ready upon
receiving such a signal. A non-root node v becomes broadcast ready in the first round in
which it receives Broadcast messages from all its parents. A (root or non-root) node v that
becomes broadcast ready in round tb0 = tb0(v) keeps sending Broadcast messages throughout
the round interval [tb0, tb1), where tb1 = tb1(v) is defined to be the first round (strictly) after tb0
in which
(i) v receives Broadcast messages from all its children; and
(ii) v does not receive a Broadcast message from any of its parents.

(Notice that conditions (i) and (ii) are satisfied vacuously for the leaves and roots, respectively.)
The echo subroutine is implemented in a reversed manner: It is initiated at (all) the

leaves, not necessarily simultaneously, after their role in the broadcast subroutine ends so
that leaf v becomes echo ready in round tb1(v). A non-leaf node v becomes echo ready in
the first round in which it receives Echo messages from all its children. A (leaf or non-leaf)
node v that becomes echo ready in round te0 = te0(v) keeps sending Echo messages throughout
the round interval [te0, te1), where te1 = te1(v) is defined to be the first round (strictly) after te0
in which
(i) v receives Echo messages from all its parents; and
(ii) v does not receive an Echo message from any of its children.

(Notice that conditions (i) and (ii) are satisfied vacuously for the roots and leaves, respectively.)

I Lemma 6. The following properties hold for every B&E process:
Rounds tb0(v), tb1(v), te0(v), and te1(v) exist and tb0(v) < tb1(v) ≤ te0(v) < te1(v) for every
node v.
If node v is reachable from node u 6= v in DAG ~G, then tbi(u) < tbi(v) and tei (u) > tei (v)
for i ∈ {0, 1}.
If t is the latest round in which the process is initiated at some root, then the process
terminates by round t+O(D).

Proof. Follows since ~G is a DAG and all paths in ~G are shortest paths. J

Auxiliary Conditions. In the aforementioned implementation of the broadcast (resp., echo)
subroutine, being broadcast (resp., echo) ready is both a necessary and sufficient condition
for a node to start sending Broadcast (resp., Echo) messages. In Section 2.4, we describe
variants of this subroutine in which being broadcast (resp., echo) ready is a necessary, but
not necessarily sufficient, condition and the node starts sending Broadcast (resp., Echo)
messages only after additional conditions, referred to later on as auxiliary conditions, are
satisfied.

Acknowledged Ball Growing. As presented in Section 2.2, the ball growing subroutine
propagates from the roots to the leaves. To ensure that root r is signaled when the construction
of its ball B(r) has finished (cf. termination detection), r initiates a B&E process one round
after it invokes the ball growing subroutine. The valid operation of this process is guaranteed

DISC 2018

4:10 Selecting a Leader in a Network of Finite State Machines

since the ball growing process propagates at least as fast as the B&E process. We call the
combined subroutine acknowledged ball growing.

2.4 The Main Algorithm
Our k-leader selection algorithm consists of two phases executed repeatedly in alternation:

phase 0, a.k.a. the detection phase, that detects the existence of multiple candidates whp;
and
phase 1, a.k.a. the elimination phase, in which all candidates but one withdraw with
probability at least 1/4.

Starting with a detection phase, the algorithm executes the phases in alternation until the
first detection phase that does not detect candidate multiplicity. Each node v maintains a
phase variable φ(v) ∈ {0, 1} that indicates v’s current phase.

The two phases follow a similar structure: The (surviving) candidates start by initi-
ating an acknowledged ball growing process. Among its other “duties”, this ball growing
process is responsible for updating the phase variables φ(·) of the nodes: node v with
φ(v) = p that receives a GrowBall(·) message from node u with φ(u) = p+ 1 mod 2 assigns
φ(v)← p+ 1 mod 2. When updating the phase variable φ(v) to φ(v) = p+ 1 mod 2, node v
ceases to participate in phase p, resetting all phase p variables. Recalling the definition of
the ball growing subroutine (see Section 2.2), this means in particular that if a candidate r
with φ(r) = p receives a GrowBall(·) message from node u with φ(u) = p+ 1 mod 2, then
r withdraws and subsequently follows the protocol like any other non-root node.

Intuition spotlight: The ball growing process of phase p+ 1 mod 2 essentially “takes
control” over the graph and “forcibly” terminates phase p (at nodes where it did not
terminate already). We design the algorithm to ensure that at any point in time, there
is at most one p value for which there is an ongoing ball growing process in the graph
(otherwise, we may get to undesired situations such as all candidates withdrawing).

Upon termination of the acknowledged ball growing process, the roots run 2k back-to-back
B&E iterations, initiating the broadcast process of the next B&E iteration one round after
the echo process of the previous B&E iteration terminates (the choice of the parameter 2k
will become clear soon). Each node v maintains a variable ι(v) ∈ {0, 1, . . . , 2k} that stores
v’s current B&E iteration. This variable is initialized to ι(v)← 0 during the acknowledged
ball growing process (considered hereafter as B&E iteration 0) and incremented subsequently
from i − 1 to i when v becomes broadcast ready in B&E iteration i (see Section 2.3). A
phase ends when the echo process of B&E iteration 2k terminates.

The ι(·) variables may differ across the graph and to keep the B&E iterations in synchrony,
we augment the B&E subroutines with the following auxiliary conditions (see Section 2.3):
Node v with ι(v) = i (i.e., in B&E iteration i) does not start to send Broadcast (resp., Echo)
messages as long as it has a non-child (resp., non-parent) neighbor u with ι(u) = i− 1.7 We
emphasize that this includes neighbors u that are neither children nor parents of v.

For the sake of the next observation, we globally map the B&E iterations to sequence
numbers so that B&E iterations 0, 1, . . . , 2k of the first phase (which is a detection phase)
are mapped to sequence numbers 1, 2, . . . , 2k + 1, respectively, B&E iterations 0, 1, . . . , 2k
of the second phase (which is an elimination phase) are mapped to sequence numbers
2k + 2, 2k + 3, . . . , 4k + 2, respectively, and so on. Let σ(v) be a variable (defined only for
the sake of the analysis) indicating the sequence number of node v’s current B&E iteration.

7 This can be viewed as imposing the α-synchronizer of [8] on the B&E iterations of the balls.

Y. Afek, Y. Emek, and N. Kolikant 4:11

I Observation 7. For every two roots r and r′, we have |σ(r)− σ(r′)| ≤ k − 1.

We say that round t is 0-dirty (resp., 1-dirty) if some node v with φ(v) = 0 (resp.,
φ(v) = 1) sends a GrowBall(·) message in round t; the round is said to be clean if it is neither
0-dirty nor 1-dirty. Observation 7 implies that if φ(r) = p and ι(r) = k for some root r in
round t, then φ(r′) = p and 1 ≤ ι(r′) ≤ 2k − 1 for any other root r′ in round t, hence the
ball growing process of this phase has already ended and the ball growing process of the next
phase has not yet started.

I Corollary 8. Let t0 and t1 be some 0-dirty and 1-dirty rounds, respectively. If t0 ≤ t1
(resp., t1 ≤ t0), then there exists some t0 < t′ < t1 (resp., t1 < t′ < t0) such that round t′ is
clean.

2.4.1 The Detection Phase
In the detection phase, the nodes test for candidate multiplicity in the graph. If the graph
contains a single candidate r, then the algorithm terminates upon completion of this phase
and r is declared to be the leader. Otherwise, certain boundary nodes (see Section 2.2) realize
whp that multiple balls exist in their neighborhoods and signal the roots that they should
proceed to the elimination phase (rather than terminate the algorithm) upon completion of
the current detection phase. This signal is carried by Proceed messages delivered from the
boundary nodes to the roots of their balls down the incrementing paths in conjunction with
the Echo messages of the (subsequent) B&E iterations.

For the actual candidate multiplicity test, once all nodes in the (inclusive) neighborhood
of node v participate in the detection phase, node v checks if it is a locally observable
boundary node and triggers a Proceed message delivery if it is. As the name implies, this
check can be performed (locally) under the SA	 model assuming that the messages sent by
the nodes encode their local states, including the level variables.

Intuition spotlight: Although every locally observable boundary node is a boundary
node, not all boundary nodes are locally observable: a node may belong to several
different balls or two adjacent nodes with the same level variable may belong to different
balls. For this kind of scenarios, randomness is utilized to break symmetry between the
candidates and identify (some of) the boundary nodes.

Consider some root r with φ(r) = 0 upon termination of the acknowledged ball growing
subroutine and recall that at this stage, r runs 2k back-to-back B&E iterations. In each round
of these 2k B&E iterations, r picks some symbol s uniformly at random (and independently
of all other random choices) from a sufficiently large (yet constant size) symbol space S and
sends a RandSymbol(s) message. This can be viewed as a random symbol stream Sr ∈ S∗
that r generates, round by round, and sends to its children.

The random symbol streams Sr are disseminated throughout B(r) and utilized by the
nodes (the boundary nodes in particular) to test for candidate multiplicity. For clarity of
the exposition, it is convenient to think of a node v that does not send a RandSymbol(s)
message, s ∈ S, as if it sends a RandSymbol(⊥) message for the default symbol ⊥ /∈ S. The
mechanism in charge of disseminating Sr up the incrementing paths works as follows: If
non-root node v with φ(v) = 0 receives RandSymbol(s) messages with the same argument s
from all its parents at the beginning of round t, then v sends a RandSymbol(s) message at
the end of round t; in all other cases, v sends a RandSymbol(⊥) message.

DISC 2018

4:12 Selecting a Leader in a Network of Finite State Machines

Throughout this process, each node v verifies that
(1) all RandSymbol(s) messages sent by v’s parents in round t carry the same argument s;

and
(2) any RandSymbol(s) message sent by a neighbor u of v with λ(u) = λ(v) in round t carries

the same argument s as in the RandSymbol(s) message that v sends in round t (this is
checked by v in round t+ 1).

If any of these two conditions does not hold, then v triggers a Proceed message delivery.
A root that completes all 2k B&E iterations in the detection phase without receiving any
Proceed message terminates the algorithm and declares itself as the leader.

Intuition spotlight: Since the aforementioned random tests should detect candidate
multiplicity whp (i.e., with error probability inverse polynomial in n) and since the size of
the symbol space S from which the random symbol streams Sr are generated is bounded,
it follows that the length of the random symbol streams must be |Sr| ≥ Ω(logn). How
can we ensure that |Sr| ≥ Ω(logn) if the nodes cannot count beyond some constant?

To ensure that the random symbol stream Sr is sufficiently long, we augment the echo
subroutine invoked during B&E iteration k of the detection phase (out of the 2k B&E iterations
in this phase) with one additional auxiliary condition referred to as the geometric auxiliary
condition: Consider some node v with φ(v) = 0 and ι(v) = k (i.e., in the k-th B&E iteration
of the detection phase) and suppose that it becomes echo ready (for B&E iteration k) in
round t0. Then, v tosses a fair coin c(t) ∈r {0, 1} in each round t ≥ t0 until the first round t′
for which c(t′) = 1; node v does not send Echo messages until round t′. This completes the
description of the detection phase.

I Lemma 9. If multiple roots start a detection phase, then all of them receive a Proceed
message before completing their (respective) 2k B&E iterations whp.

Intuition spotlight: The proof’s outline is as follows. We use the geometric auxiliary
conditions to argue that there exists some root that spends Ω(logn) rounds in B&E it-
eration k whp. Employing Observation 7, we conclude that the random symbol stream
generated by every root r is Ω(logn)-long whp. Conditioned on that, we prove that
there exists some boundary node v ∈ B(r) that triggers a Proceed message delivery whp
and that the corresponding Proceed message is delivered to r before the phase ends.

Proof of Lemma 9. Fix some detection phase. For a root r, let cr be the number of
rounds r spends in B&E iterations 1, 2, . . . , 2k − 1, that is, the number of rounds in which
1 ≤ ι(r) ≤ 2k − 1 (during this detection phase). We first argue that cr ≥ Ω(logn) for all
roots r whp. To that end, let Xv be the number of rounds in which node v is prevented from
sending its Echo messages in B&E iteration k due to the geometric auxiliary condition (t′− t0
in the aforementioned notation of the geometric auxiliary condition) and notice that this
auxiliary condition is designed so that Xv is a geometric random variable with parameter 1/2.
Therefore,

Pr
(∧

v∈V

Xv < log(n)/2
)

=
(

1− 2− log(n)/2
)n

=
(
1− 1/

√
n
)n ≤ e−

√
n .

Condition hereafter on the event that Xv∗ ≥ log(n)/2 for some node v∗, namely, v∗ is
prevented from sending its Echo messages (in B&E iteration k) for at least log(n)/2 =
Ω(logn) rounds. Let r∗ be a root such that v∗ ∈ B(r∗). By the definition of auxiliary

Y. Afek, Y. Emek, and N. Kolikant 4:13

conditions, B&E iteration k of r∗ takes at least Ω(logn) rounds. Observation 7 guarantees
that by the time r∗ starts B&E iteration k, every other root must have already started
B&E iteration 1 (of this detection phase). Moreover, no root can start B&E iteration 2k
before r∗ finishes B&E iteration k. We conclude that every root r spends at least Ω(logn)
rounds in B&E iterations 1, 2, . . . , 2k − 1, thus establishing the argument.

Let Zr be the prefix of the random symbol stream Sr generated by root r during the
first cr − 1 rounds it spends in B&E iterations 1, 2, . . . , 2k − 1, i.e., during all but the last
round of these B&E iterations (the reason for this missing round is explained soon), and let
zr = |Zr|. We have just showed that zr = cr − 1 ≥ Ω(logn) for all roots r whp.

The assertion is established by proving that if multiple roots r exist in the graph and
zr ≥ Ω(logn) for all of them, then for every root r, there exists some node v ∈ B(r) that
triggers a Proceed message delivery while ι(v) ≤ 2k−1 whp. Indeed, if the Proceed message
delivery is triggered by v while ι(v) ≤ 2k − 1, then a Proceed message is delivered to r with
the Echo messages of B&E iteration 2k at the latest, thus r does not terminate the algorithm
at the end of this detection phase and by the union bound, this holds simultaneously for all
roots r whp.

To that end, recall that node v sends a RandSymbol(s) message with some symbol
s ∈ S ∪ {⊥} in every round of the detection phase. In the scope of this proof, we say
that v posts the symbol stream (s1, . . . , sz) in rounds t1, . . . , tz if sj is the argument of the
RandSymbol(·) message sent by v in round tj for every 1 ≤ j ≤ z.

Consider some root r and let v be a boundary node in B(r) that minimizes the distance
to r. If v is locally observable, then it triggers a Proceed message delivery (deterministically)
already when ι(v) = 0, so assume hereafter that v is not locally observable. Let Q be an
incrementing (r, v)-path and denote the length of Q by q. Taking t̂ to be the round in which
B&E iteration 1 of r begins, recall that r posts Zr in rounds t̂, t̂ + 1, . . . , t̂ + zr − 1. The
choice of v ensures that all nodes of Q other than v are not boundary nodes, therefore if
q ≥ 1 (i.e., if v 6= r), then the node that precede v along Q – denote it by u – posts Zr in
rounds t̂ + q − 1, t̂ + q, . . . , t̂ + q + zr − 2. Moreover, by the definition of Zr, specifically,
by the choice of zr = cr − 1, we know that 0 ≤ ι(v) ≤ 2k − 1 (and φ(v) = 0) in all rounds
t̂ ≤ t ≤ t̂+ q + zr.

If v belongs to multiple balls, which necessarily means that v 6= r and q ≥ 1 (see Lemma 3),
then v has another parent u′ 6= u such that u′ ∈ B(r′) for some root r′ 6= r. The probability
that u′ posts Zr in rounds t̂+ q − 1, t̂+ q, . . . , t̂+ q + zr − 2 is at most |S|−zr . Otherwise, if
v belongs only to ball B(r), then all its parents post Zr in rounds t̂+q−1, t̂+q, . . . , t̂+q+zr−2
(this holds vacuously if q = 0 and v = r has no parents), thus v posts Zr in rounds
t̂+ q, t̂+ q + 1, . . . , t̂+ q + zr − 1. Since v is a non-locally observable boundary node (that
belongs exclusively to ball B(r)), it must have a neighbor v′ with λ(v′) = λ(v) such that
v′ /∈ B(r). The probability that v′ posts Zr in rounds t̂+ q, t̂+ q + 1, . . . , t̂+ q + zr − 1 is at
most |S|−zr as well. Therefore, the probability that v does not trigger a Proceed message
delivery while ι(v) ≤ 2k − 1 is upper-bounded by |S|−zr which completes the proof since
zr ≥ Ω(logn) and since |S| is an arbitrarily large constant. J

2.4.2 The Elimination Phase
In the elimination phase, each candidate r picks a priority π(r) uniformly at random (and
independently) from a totally ordered priority space P ; a candidate whose priority is (strictly)
smaller than πmax = maxr π(r) is withdrawn. Taking the priority space to be P = {1, . . . , k},
it follows by standard balls-in-bins arguments that the probability that exactly one candidate
picks priority k, which implies that exactly one candidate survives, is at least 1/4 (in fact, it
tends to 1/4 as k →∞).

DISC 2018

4:14 Selecting a Leader in a Network of Finite State Machines

Intuition spotlight: The priorities of the candidates are disseminated in the graph so
that candidate r withdraws if it encounters a priority π > π(r). This is implemented
on top of the ball growing subroutine invoked at the beginning of the elimination phase
so that the ball growing process of root r “consumes” the ball of root r′ if π(r) > π(r′),
eventually reaching r′ and instructing it to withdraw. The structure of the phase
(specifically, the 2k B&E iterations that follow the ball growing process) guarantees that
only roots r with π(r) = πmax reach the end of the phase (without being withdrawn).

We augment the ball growing subroutine invoked at the beginning of the elimination
phase with the following mechanism: When candidate r is signaled to invoke the ball growing
subroutine (so that it becomes a root), it appends its priority π(r) to the GrowBall(·)
message it sends. A non-root node v that joins the ball of r records r’s priority in variable
π(v)← π(r). A (root or non-root) node v that receives a GrowBall(·) message with priority
(strictly) larger than π(v), behaves as if this is the first GrowBall(·) message it receives in
this phase. In particular, v resets all the variables of this phase and (re-)joins a ball from
scratch. If v is a root, then it also withdraws.

Notice that Observation 7 still holds for the aforementioned augmented implementation
of the ball growing subroutine. Therefore, when root r reaches B&E iteration k, i.e., ι(r) = k,
all other roots r′ are in some B&E iteration 1 ≤ ι(r′) ≤ 2k − 1 which means that there
is no “active” ball growing processes in the graph, that is, the current round is clean (of
GrowBall(·) messages). Since a candidate r with π(r) < πmax is certain to be withdrawn
by some GrowBall(·) message appended with priority π > π(r), we obtain the following
observation.

I Observation 10. If root r completes its 2k B&E iterations in an elimination phase, then
with probability at least 1/4, no other candidates exist in the graph.

2.5 Run-Time
The correctness of our algorithm follows from Lemma 9 and Observation 10. To establish
Theorem 1, it remains to analyze the algorithm’s run-time.

The first thing to notice in this regard is that the geometric auxiliary condition does
not slow down the k-th iteration of the detection phase by more than an O(logn) factor
whp. Combining Observation 4 with Lemma 6, we can prove by induction on the phases
that the j-th phase (for j ≤ nO(1)) ends by round O(D(k + logn)) whp, which is O(D logn)
assuming that k is fixed. The analysis is completed due to Observation 10 ensuring that the
algorithm terminates after O(logn) elimination phases whp.

3 Negative Results

We now turn to establish some negative results that demonstrate the necessity of the assump-
tion that k = O(1). Our attention in this section is restricted to SA and SA	 algorithms
operating under a fully synchronous scheduler on graph families {Ln}n≥1 and {L	

n }n≥1,
where Ln is a simple path of n nodes and L	

n is Ln augmented with self-loops.
The main lemma established in this section considers the k-candidate binary consensus

problem, a version of the classic binary consensus problem [21]. In this problem, each node v
gets a binary input in(v) ∈ {0, 1} and returns a binary output out(v) ∈ {0, 1} under the
following two constraints: (1) all nodes return the same output; and (2) if the nodes return
output b ∈ {0, 1}, then there exists some node v such that in(v) = b. In addition, at most k
(and at least 1) nodes are initially marked as candidates (thus distinguished from the rest of

Y. Afek, Y. Emek, and N. Kolikant 4:15

the nodes). We emphasize that the marked candidates do not affect the validity of the output.
Since a k-leader selection algorithm clearly implies a k-candidate binary consensus algorithm,
Theorem 2 is established by proving Lemma 11. Note that the proof of this lemma is based
on a probabilistic indistinguishability argument, similar to those used in many distributed
computing negative results, starting with the classic result of Itai and Rodeh [26].

I Lemma 11. If the upper bound k on the number of candidates may grow as a function
of n, then there does not exist a SA algorithm that solves the k-candidate binary consensus
problem on the graphs in {Ln}n≥1 with a failure probability bounded away from 1.

Proof. Assume by contradiction that there exists such an algorithm A and let Σ denote its
message alphabet. For b = 0, 1, consider the execution of A on an instance that consists of
path L2, where node v1 is a candidate, node v2 is not a candidate, and in(v1) = in(v2) = b.
By definition, there exist constants pb > 0 and `b and message sequences Sb,1, Sb,2 ∈ Σ`b

such that when A runs on this instance, with probability at least pb, node vj , j ∈ {1, 2},
reads message Sb,j(t) in its (single) port in round t = 1, . . . , `b and outputs out(vj) = b at
the end of round `b.

Now, consider graph Ln for some sufficiently large n (whose value will be determined
later on) and consider a subgraph of Ln, referred to as a Qb-gadget, that consists of 2`b + 2
contiguous nodes v1, . . . , v2`b+2 of the underlying path Ln, all of which receive input in(vi) = b.
Moreover, the nodes v1, . . . , v2`b+2 are marked as candidates in an alternating fashion so
that if vi is a candidate, then vi+1 is not a candidate, constrained by the requirement that
v`b+1 is a candidate (and v`b+2 is not). The key observation is that when A runs on Ln,
with probability at least qb = p2`b+2

b , the nodes v`b+1 and v`b+2 of the Qb-gadget read
messages Sb,1(t) and Sb,2(t), respectively, in (all) their ports in round t = 1, . . . , `b and
output b at the end of round `b, independently of the random bits of the nodes outside the
Qb-gadget.

Fix ` = `0 + `1 + 2 and define a Q-gadget to be a subgraph of Ln that consists of a
Q0-gadget appended to a Q1-gadget, so, in total, the Q-gadget is a (sub)path that contains
2`0 +2`1 +4 = 2` nodes, ` of which are candidates. Following the aforementioned observation,
when A runs on Ln, with probability at least q = q0 · q1, some nodes in the Q-gadget
output 0 and others output 1; we refer to this (clearly invalid) output as a failure event of
the Q-gadget.

Since p0, p1, `0, and `1 are constants that depend only on A, ` = `0 + `1 + 2, q0 = p2`0+2
0

and q1 = p2`1+2
1 are also constants that depend only on A, and thus q = q0 · q1 is also

a constant that depends only on A. Take z to be an arbitrarily large constant. If n is
sufficiently large, then we can embed y = dz/qe pairwise disjoint Q-gadgets in Ln. Indeed,
these Q-gadgets account to a total of ` · y candidates and recalling that z, q, and ` are
constants, this number is smaller than k = k(n) for sufficiently large n. When A runs on Ln,
each of these y Q-gadgets fails with probability at least q (independently). Therefore, the
probability that all nodes return the same binary output is at most (1− q)y. The assertion
follows since this expression tends to 0 as y →∞ which is obtained as z →∞. J

The proof of Lemma 11 essentially shows that no SA algorithm can distinguish between L2
and Ln with a bounded failure probability. When the path is augmented with self-loops,
we can use a very similar line of arguments to show that no SA	 algorithm can distinguish
between L	

1 and L	
n with a bounded failure probability. This allows us to establish the

following lemma that should be contrasted with the SA MIS algorithm of [20] that works on
general topology graphs (with no self-loops) and succeeds with probability 1.

I Lemma 12. There does not exist a SA	 algorithm that solves the MIS problem on the
graphs in {L	

n }n≥1 with a failure probability bounded away from 1.

DISC 2018

4:16 Selecting a Leader in a Network of Finite State Machines

References
1 Karl R. Abrahamson, Andrew Adler, Lisa Higham, and David G. Kirkpatrick. Probabil-

istic solitude verification on a ring. In Proceedings of ACM Symposium on Principles of
Distributed Computing (PODC), pages 161–173, 1986.

2 Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, and Fa-
bian Kuhn. Beeping a maximal independent set. In Proceedings of International Symposium
on Distributed Computing (DISC), pages 32–50, 2011.

3 Yehuda Afek and Yossi Matias. Elections in anonymous networks. Inf. Comput., 113(2):312–
330, 1994.

4 Dana Angluin. Local and global properties in networks of processors (extended abstract). In
Proceedings of ACM SIGACT Symposium on Theory of Computing (STOC), pages 82–93,
1980.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006.

6 James Aspnes and Eric Ruppert. An Introduction to Population Protocols, pages 97–120.
Springer Berlin Heidelberg, 2009.

7 Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing on an anonymous ring. J.
ACM, 35(4):845–875, 1988.

8 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.
9 Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,

counting, leader election, and related problems. In Proceedings of ACM SIGACT Sym-
posium on Theory of Computing (STOC), pages 230–240, 1987.

10 Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov
chain algorithm for compression in self-organizing particle systems. In Proceedings of ACM
Symposium on Principles of Distributed Computing (PODC), pages 279–288, 2016.

11 Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Proceed-
ings of International Symposium on Distributed Computing (DISC), pages 148–162, 2010.

12 Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W.
Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal coating
for programmable matter. Natural Computing, 17(1):81–96, 2018.

13 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of International Conference on Nanoscale Computing and
Communication (NANOCOM), pages 21:1–21:2, 2015.

14 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Proceedings of ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 289–299, 2016.

15 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, Thim Stroth-
mann, and Shimrit Tzur-David. Infinite object coating in the Amoebot model. CoRR,
abs/1411.2356, 2014. arXiv:1411.2356.

16 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa,
and Christian Scheideler. Leader election and shape formation with self-organizing pro-
grammable matter. In Proceedings of International Conference on DNA Computing and
Molecular Programming (DNA), pages 117–132, 2015.

17 Shlomi Dolev, Robert Gmyr, Andréa W. Richa, and Christian Scheideler. Ameba-inspired
self-organizing particle systems. CoRR, abs/1307.4259, 2013. arXiv:1307.4259.

18 David Doty. Timing in chemical reaction networks. In Proceedings of ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 772–784, 2014.

http://arxiv.org/abs/1411.2356
http://arxiv.org/abs/1307.4259

Y. Afek, Y. Emek, and N. Kolikant 4:17

19 Yuval Emek and Jara Uitto. Dynamic networks of finite state machines. In Proceedings
of International Colloquium on Structural Information and Communication Complexity
(SIROCCO), pages 19–34, 2016.

20 Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Proceedings of
ACM Symposium on Principles of Distributed Computing (PODC), pages 137–146, 2013.

21 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

22 Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a synchronous ring. J.
ACM, 34(1):98–115, 1987.

23 Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

24 M. Gardner. The fantastic combinations of John Conway’s new solitaire game ‘life’. Sci-
entific American, 223(4):120–123, 1970.

25 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen,
Kerkko Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing,
with connections to modal logic. Distributed Computing, 28(1):31–53, 2015.

26 Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Inf. Comput.,
88(1):60–87, 1990.

27 Laurent Keller and Peter Nonacs. The role of queen pheromones in social insects: queen
control or queen signal? Animal Behaviour, 45(4):787–794, 1993.

28 Jennie J. Kuzdzal-Fick, David C. Queller, and Joan E. Strassmann. An invitation to die:
initiators of sociality in a social amoeba become selfish spores. Biology letters, 6(6):800–802,
2010.

29 Ivan Lavallée and Christian Lavault. Spanning tree construction for nameless networks. In
Proceedings of International Workshop on Distributed Algorithms (WDAG), pages 41–56,
1990.

30 Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. New Models for Popula-
tion Protocols. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2011.

31 John Von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press,
Champaign, IL, USA, 1966.

32 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

33 Baruch Schieber and Marc Snir. Calling names on nameless networks. Inf. Comput.,
113(1):80–101, 1994.

34 Joanna M. Setchell, Marie Charpentier, and E. Jean Wickings. Mate guarding and paternity
in mandrills: factors influencing alpha male monopoly. Animal Behaviour, 70(5):1105–1120,
2005.

35 Jonathan M.W. Slack. Essential developmental biology. John Wiley & Sons, 2009.
36 NSF workshop on self-organizing particle systems (SOPS). http://sops2014.cs.upb.de/,

2014.
37 Stephen Wolfram. A New Kind of Science. Wolfram Media Inc., Champaign, Ilinois, US,

United States, 2002.

DISC 2018

http://sops2014.cs.upb.de/

The Role of A-priori Information in Networks of
Rational Agents
Yehuda Afek
Tel-Aviv University, Tel-Aviv, Israel
afek@post.tau.ac.il

Shaked Rafaeli
Tel-Aviv University, Tel-Aviv, Israel
shakedr@mail.tau.ac.il

Moshe Sulamy
Tel-Aviv University, Tel-Aviv, Israel
moshe.sulamy@cs.tau.ac.il

Abstract
Until now, distributed algorithms for rational agents have assumed a-priori knowledge of n, the
size of the network. This assumption is challenged here by proving how much a-priori knowledge is
necessary for equilibrium in different distributed computing problems. Duplication – pretending
to be more than one agent – is the main tool used by agents to deviate and increase their utility
when not enough knowledge about n is given.

We begin by proving that when no information on n is given, equilibrium is impossible for
both Coloring and Knowledge Sharing. We then provide new algorithms for both problems when
n is a-priori known to all agents. However, what if agents have partial knowledge about n? We
provide tight upper and lower bounds that must be a-priori known on n for equilibrium to be
possible in Leader Election, Knowledge Sharing, Coloring, Partition and Orientation.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases rational agents, distributed game theory, coloring, knowledge sharing

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.5

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1711.
04728.

Funding This research was supported by the Israel Science Foundation (grant 1386/11).

Acknowledgements We would like to thank Doron Mukhtar for showing us the ring partition
problem and proving it is unbounded, when we thought such problems do not exist. We would
also like to thank Michal Feldman, Amos Fiat, and Yishay Mansour for helpful discussions.

1 Introduction

The complexity and simplicity of most distributed computing problems depend on the inherent
a-priori knowledge given to all participants. Usually, the more information processors in a
network start with, the more efficient and simple the algorithm for a problem is. Sometimes,
this information renders an otherwise unsolvable problem, solvable.

In game-theoretic distributed computing, algorithms run in a network of rational agents
that may deviate from an algorithm if they deem the deviation more profitable for them.
Rational agents have always been assumed to know the number of participants in the

© Yehuda Afek, Shaked Rafaeli, and Moshe Sulamy;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afek@post.tau.ac.il
mailto:shakedr@mail.tau.ac.il
mailto:moshe.sulamy@cs.tau.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2018.5
https://arxiv.org/abs/1711.04728
https://arxiv.org/abs/1711.04728
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 The Role of A-priori Information in Networks of Rational Agents

network [1, 4, 7, 24, 43], when in fact this assumption is not only very unrealistic in today’s
Internet, but also provides agents with non-trivial information which is critical for equilibrium.

Consider for example a large world-wide social network on which a distributed algorithm
between a large portion of its members is run. It does not necessarily have the time to verify
the number of participants, or the service it provides with the algorithm will be irrelevantly
slow. If n is known to all participants, as was assumed in previous works about rational
agents, that would not be a problem. However, what if n is not known beforehand and this
allows one of the participants to skew the result in his favor?

The problems we examine here can be solved in the game-theoretic setting when n is
a-priori known. However, learning the size of the network reliably is not possible with rational
agents and thus we show that some a-priori knowledge of n is critical for equilibrium. That
is, without any knowledge of n, equilibrium for these problems is impossible. In contrast,
these problems can be solved without knowledge of n if the participants are not rational,
since we can acquire the size of the network using broadcast and echo.

When n is not a-priori known, agents may deviate from the algorithm by duplicating
themselves to affect the outcome. This deviation is also known as a Sybil Attack [20],
commonly used to manipulate internet polls, increase page rankings in Google [15] and affect
reputation systems such as eBay [14, 16]. In this paper, we use a Sybil Attack to prove
impossibility of equilibria. For each problem presented, an equilibrium when n is known
is provided here, or in previous work. Thus when n is not known an agent must duplicate
to increase its utility, or otherwise if no agent duplicates and the network is 2-connected, a
simple broadcast and echo would reveal the actual network size n and the existing equilibrium
would apply. Obviously, deviations from the algorithm that include both duplicating and
additional cheating, such as lying about the input of duplicated agents or fixing the result of
a random coin flip, are also possible. When considering a deviation, an agent assumes it is
the only deviating agent, and we assume that there are no coalitions of cheating agents.

Intuitively, the more agents an agent is disguised as, the more power to affect the output
of the algorithm it has. For every problem, we strive to find the maximum number of
duplications a cheater may be allowed to duplicate without gaining the ability to affect the
output, i.e., equilibrium is still possible. This maximum number of duplications depends on
whether other agents will detect that a duplication has taken place, since the network could
not possibly be this large. To detect this situation they need to possess some knowledge
about the network size, or about a specific structure.

We translate this intuition into a precise relation between the lower bound α and the
upper bound β ≥ α on n, that must be a-priori known in order for equilibrium to be
possible. We denote this relation f -bound. These bounds hold for both deterministic and
non-deterministic algorithms.

These bounds show what algorithms may be used in specific networks. For example,
in an internal business network, some algorithms may work because every member in the
network knows there are no more than several thousand computers in the network, while for
other algorithms this knowledge is not tight enough.

Table 1 summarizes our contributions and related previous work (where there is a citation).
Known n refers to algorithms in which n is a-priori known to all agents. Unknown n refers
to algorithms or impossibility of equilibrium when agents a-priori know no bound on n. The
f -bound for each problem is a function f for which there is an equilibrium when the a-priori
bounds on n satisfy α ≤ β ≤ f(α), and no equilibrium exists when β > f(α). A problem
is ∞-bound if there is an equilibrium given any finite bound, but no equilibrium exists if
no bound or information about n is a-priori given. A problem is unbounded if there is an
equilibrium even when neither n nor any bound on n is given.

Y. Afek, S. Rafaeli, and M. Sulamy 5:3

Table 1 Summary of paper contributions, equilibria and impossibility results for different problems
with different a-priori knowledge about n.
* f -bound proven for a ring graph, otherwise holds for any 2-connected graph

Problem Known n Unknown n f -bound

Coloring
X

Section 4
Impossible
Section 3 ∞*

Leader Election
X

ADH’13 [4]
Impossible
ADH’13 [4] (α+ 1)

Knowledge Sharing X
AGLS’14 [7]

Impossible
Section 3

(2α− 2)*
2-Knowledge Sharing ∞

Partition, Orientation
X

Section 5
X

Section 5 Unbounded

1.1 Related Work

The connection between distributed computing and game theory stemmed from the problem
of secret sharing [37]. Further works continued the research on secret sharing and multiparty
computation when both Byzantine and rational agents are present [2, 18, 21, 22, 23, 31].

Another line of research presented the BAR model (Byzantine, acquiescent and rational)
[8, 33, 42], while a related line of research discusses converting solutions with a mediator to
cheap talk [2, 3, 12, 13, 19, 27, 32, 38, 40, 41].

Abraham, Dolev, and Halpern [4] were the first to present protocols for networks of rational
agents, specifically protocols for Leader Election. In [7] the authors continue this line of
research by providing basic building blocks for game theoretic distributed algorithms, namely
a wake-up and knowledge sharing equilibrium building blocks. Algorithms for consensus,
renaming, and leader election are presented using these building blocks. Consensus was
researched further by Halpern and Vilacça [24], who showed that there is no ex-post Nash
equilibrium, and a Nash equilibrium that tolerates f failures under some minimal assumptions
on the failure pattern. Yifrach and Mansour [43] studied fair Leader Election protocols,
giving an almost tight resilience analysis. Bank, Sulamy, and Waserman [11] examined the
case where the id space is limited, calculating the minimal threshold for equilibrium.

Coloring and Knowledge Sharing have been studied extensively in a distributed setting
[9, 10, 17, 26, 28, 29, 39]. An algorithm for Knowledge Sharing with rational agents was
presented in [7], while Coloring with rational agents has not been studied previously, to the
best of our knowledge.

Distributed algorithms in which n is not known either implicitly or explicitly have been
extensively studied in many other contexts, see for example [5, 25]. In last year’s DISC in
the permisionless network model and the context of consensus for blockchain [34, 35, 36]
similar bounds (factor 2 in their case) on the number of cheating agents have been proved
for the consensus task, in the synchronous case.

2 Model

We use the standard message-passing, synchronous model, where the network is a bidirectional
graphG = (V,E) with n nodes, each node representing an agent with unlimited computational
power, and |E| edges over which they communicate in rounds. G is assumed to be 2-vertex-

DISC 2018

5:4 The Role of A-priori Information in Networks of Rational Agents

connected1. Throughout the entire paper, n always denotes the actual number of nodes in
the network.

Initially, each agent knows its own id and input, but not the id or input of any other
agent. For any information that an agent does not know, we assume its prior is uniformly
distributed over all possible values. For example, considering the prior of an agent over the
ids of all other agents, at round 0 each possible permutation of the n− 1 ids in the network
is equally possible. Similarly for all possible sets of input vectors, preference vectors, network
size, etc. Furthermore, we assume all agents start the protocol together at round 0, i.e., all
agents wake-up at the same time. If not, we can use the Wake-Up [7] building block to relax
this assumption.

2.1 Equilibrium in Distributed Algorithms
Informally, a distributed algorithm is an equilibrium if no agent at no point in the execution
can do better by unilaterally deviating from the algorithm. When considering a deviation,
an agent assumes all other agents follow the algorithm, i.e., it assumes it is the only agent
deviating. We assume there are no coalitions of cheating agents.

Formally, let oa be the output of agent a, let Θ be the set of all possible output vectors,
and denote the output vector O = (o1, . . . , on) ∈ Θ, where O[a] = oa. Let ΘL be the set of
legal output vectors, in which the protocol terminates successfully, and let ΘE be the set of
erroneous output vectors, such that Θ = ΘL ∪ΘE and ΘL ∩ΘE = ∅.

Each agent a has a utility function ua : Θ→ N. The higher the value assigned by ua to
an output vector, the better this vector is for a. As in previous works [4, 7, 43], the utility
function is required to satisfy the Solution Preference which guarantees that an agent never
has an incentive to fail the algorithm. Otherwise, they would simply be Byzantine faults.
An agent fails the algorithm only when it detects that another agent had deviated.

I Definition 1 (Solution Preference). The utility function ua of an agent a never assigns a
higher utility to an erroneous output than to a legal one, i.e.:

∀a,OL ∈ ΘL, OE ∈ ΘE : ua(OL) ≥ ua(OE)

We differentiate the legal output vectors, which ensure the output is valid and not
erroneous, from the correct output vectors, which are output vectors that are a result of a
correct execution of the algorithm, i.e., without any deviation. For example, in a Consensus
protocol that decides by a majority and a network where the majority of agents received 1
as input and at least one agent received 0, deciding on 0 is legal, as it is a valid output for
Consensus, but incorrect, as it necessarily resulted in a deviation from the protocol in use.
The Solution Preference guarantees agents never prefer an erroneous output. However, they
may prefer a legal but incorrect output.

The Solution Preference property introduces the threat agents face when deviating:
Agents know that if another agent catches them cheating, it outputs ⊥ and the algorithm
fails. In other words, the output is erroneous, i.e., in ΘE .

For simplicity, we assume agents only have preferences over their own output, i.e., for
any O1, O2 ∈ ΘL in which O1[a] = O2[a], ua(O1) = ua(O2). Additionally, each agent a has a

1 This property was shown necessary in [7], since if a bottleneck node exists it can alter any message
passing through it. Such a deviation cannot be detected since all messages between the sub-graphs
this node connects must traverse through it. This node can then skew the algorithm according to its
preferences.

Y. Afek, S. Rafaeli, and M. Sulamy 5:5

single preferred output value pa, and we normalize the utility function values, such that2:

ua(O) =
{

1 oa = pa and O ∈ ΘL

0 oa 6= pa or O ∈ ΘE

(1)

Our results hold for any utility function that satisfies Solution Preference. For clarity
and ease of presentation we assume Equation 1.

I Definition 2 (Expected Utility). Let r be a round in a specific execution of an algorithm.
Let a be an arbitrary agent. For each possible output vector O, let xO(s, r) be the probability,
estimated by agent a at round r, that O is output by the algorithm if a takes step s 3, and
all other agents follow the algorithm. The Expected Utility a estimates for step s in round r
of that specific execution is:

Es,r[ua] =
∑
O∈Θ

xO(s, r) · ua(O)

An agent will deviate whenever the deviating step has a strictly higher expected utility
than the expected utility of the next step of the algorithm, even if that deviating step also
increases the risk of an erroneous output.

Let Λ be an algorithm. If by deviating from Λ and taking step s, the expected utility of
a is higher, we say that agent a has an incentive to deviate (i.e., cheat). For example, at
round r algorithm Λ may dictate that a flips a fair binary coin and sends the result to all of
its neighbors. Any other action by a is considered a deviation: whether the message was
not sent to all neighbors, sent later than it should have, or whether the coin toss was not
fair, e.g., a only sends 0 instead of a random value. If no agent can unilaterally increase its
expected utility by deviating from Λ, we say that the protocol is an equilibrium. Equilibrium
is defined over a single deviating agent, i.e., there are no coalitions of agents.

I Definition 3 (Distributed Equilibrium). Let s(r) denote the next step of algorithm Λ in
round r. Λ is an equilibrium if for any deviating step s̄, at any round r of every possible
execution of Λ:

∀a, r, s̄ : Es(r),r[ua] ≥ Es̄,r[ua]

2.2 Knowledge Sharing
The Knowledge Sharing problem (adapted from [7]) is defined as follows:
1. Each agent a has a private input ia, in addition to its id, and a function q, where q is

identical at all agents.
2. A Knowledge Sharing protocol terminates legally if all agents output the same value, i.e.,
∀a, b : oa = ob 6= ⊥. Thus the set ΘL is defined as: O ∈ ΘL ⇐⇒ ∀a, b : O(a) = O(b) 6= ⊥.

3. A Knowledge Sharing protocol terminates correctly (as described in Section 2.1) if each
agent outputs at the end the value q(I) over the input values I = {i1, . . . , in} of all other
agents4.

2 This is the weakest assumption since it still leaves a cheating agent with the highest incentive to deviate,
while still satisfying Solution Preference. A utility assigning a lower value for failure than oa 6= pa would
deter a cheating agent from deviating.

3 A step specifies the entire operation of the agent in a round. This may include drawing a random
number, performing any internal computation, and the contents and timing of any message delivery.

4 Notice that any output is legal as long as it is the output of all agents, but only a single output value is
considered correct for a given input vector.

DISC 2018

5:6 The Role of A-priori Information in Networks of Rational Agents

Figure 1 Agent a acting as separate agents a1, a2.

4. The function q satisfies the Full Knowledge property:

I Definition 4 (Full Knowledge Property). A function q fulfills the full knowledge property if,
for each agent that does not know at least one input value of another agent, any output in the
range of q is equally possible. Formally, for any 1 ≤ j ≤ m, fix (x1, . . . , xj−1, xj+1, . . . , xm)
and denote zy = |{xj |q(x1, . . . , xj , . . . , xm) = y}|. A function q fulfills the full knowledge
property if, for any possible output y in the range of q, zy is the same5.

We assume that each agent a prefers a certain output value pa.

2.2.1 2-Knowledge Sharing
The 2-Knowledge Sharing problem is a Knowledge Sharing problem with exactly 2 distinct
possible output values.

2.3 Coloring
In the Coloring problem [17, 28], ΘL is any O such that ∀a : oa 6= ⊥ and ∀(a, b) ∈ E : oa 6= ob.
We assume that every agent a prefers a specific color pa.

3 Impossibility With No Knowledge

Here we prove that the common assumption that n is known is the key to the possibility of
equilibrium for many problems: Without any a-priori knowledge about n, neither Knowledge
Sharing nor Coloring have equilibria.

Let a be a malicious agent with δ outgoing edges. A possible deviation for a is to simulate
imaginary agents a1, a2 and to answer over some of its edges as a1, and over the others as
a2, as illustrated in Figure 1. From this point on a acts as if it is 2 agents. Here we assume
that the id space is much larger than n, allowing us to disregard the probability that the
fake id collides with an existing id, an issue dealt with in [11].

In our proofs we consider a weakened cheating agent that must decide on its duplication
scheme at the very beginning of the algorithm, before any messages are exchanged. Thus,
when the algorithm begins, it runs in a modified graph G′ that is not the true graph G

and contains duplications, but cannot be altered further by a cheater during the run of the
algorithm. If this weakened cheater contradicts the possibility of equilibria, then surely a
cheater that can make additional duplications while the algorithm runs would be able to

5 The definition assumes input values are drawn uniformly, otherwise the definition of zy can be expanded
to the sum of probabilities over every input value for xj .

Y. Afek, S. Rafaeli, and M. Sulamy 5:7

Figure 2 Graph H created by two arbit-
rary sub-graphs D,E.

Figure 3 Example of agent a pretending
to be E′ = E ∪ {a1, a2}.

adapt to the information it receives and increase its utility by creating more duplications6.
This weakening only strengthens our impossibility proofs.

Regarding the output vector, notice that an agent that pretends to be more than one
agent still outputs a single output at the end. The duplication causes agents to execute
the algorithm as if it is executed on a graph G′ (with the duplicated agents) instead of the
original graph G; however, the output is considered legal if O = (oa, ob, . . .) ∈ ΘL rather
than if (oa1 , oa2 , ob, . . .) ∈ ΘL.

It is important to emphasize that for any non-trivial distributed algorithm that is an
equilibrium, the outcome cannot be calculated using only private data without communication.
For rational agents, no agent can calculate the output privately at the beginning of the
algorithm, since if it could calculate the output and know that its resulting utility will be 0,
it would surely lie over its initial information to avoid losing, preventing equilibrium. If it
knows its resulting utility is 1, it has no incentive to cheat. But there isn’t always a solution
in which everyone gains. This means that at round 0, for any agent a and any step s of the
agent that does not necessarily result in algorithm failure, it must hold that: Es,0[ua] /∈ {0, 1}
(a value of 0 means an agent will surely not get its preference, and 1 means it is guaranteed
to get its preference).

In this section we label agents in the graph as a1, ..., an, set in a clockwise manner in a
ring and in an arbitrary order in any other topology. These labels are not known to the
agents themselves.

3.1 Impossibility of Knowledge Sharing

I Theorem 5. There is no algorithm for Knowledge Sharing that is an equilibrium in a
2-connected graph when agents have no a-priori knowledge of n.

Proof. Assume by contradiction that Λ is a Knowledge Sharing algorithm that is an equi-
librium in any graph of agents who have absolutely no knowledge about n. Let D, E be
two arbitrary 2-connected graphs of rational agents. Consider the execution of Λ on graph
H created by D,E, and adding two nodes a1, a2 and connecting these nodes to 1 or more
arbitrary nodes in both D and E (see Figure 2).

Recall that the vector of agents’ inputs is denoted by I = i1, i2, · · · , in, and n = |H| =
|D|+ |E|+ 2. Let tD be the first round after which q(I) can be calculated from the collective
information that all agents in D have (regardless of the complexity of the computation), and

6 A cheater can be forced to commit using a Wake-Up protocol. Since no mechanism exists to ensure
authenticity, an agent will choose what information to send (false ID, false input, false neighbors). The
exchanged information, as Theorem 5 shows, is already altered by a cheater and the process is not an
equilibrium.

DISC 2018

5:8 The Role of A-priori Information in Networks of Rational Agents

similarly tE the first round after which q(I) can be calculated in E. Consider the following
three cases:
1. tE < tD: q(I) cannot yet be calculated in D at round tE . Let E′ = E ∪ {a1, a2}. Since

E ⊂ E′, the collective information in E′ at round tE is enough to calculate q(I). Since n
is not known, an agent a could emulate the behavior of E′, making the agents believe the
algorithm runs on H rather than D. In this case, this cheating agent knows at round
tE the value of q(I) in this execution, but the collective information of agents in D is
not enough to calculate q(I), which means the output of agents in D still depends on
messages from E′, the cheater. Thus, if a learns that the output q(I) 6= pa, it can simulate
all possible runs of the algorithm in a state-tree, and select a course of action that has at
least some probability of leading to an outcome q(I) = pa. Such a message surely exists
because otherwise, D would have also known the value of q(I). In other words, a finds
a set of messages that might cause the agents in D to decide a value x 6= q(I). In the
case where pa = x, agent a increases its expected utility by sending a set of messages
different than that decreed by the protocol. Thus, agent a has an incentive to deviate,
contradicting distributed equilibrium.

2. tD = tE : both E and D have enough collective information to calculate q(I) at the same
round. The collective information in E at round tE already exists in E′ at round tE − 1.
Since tD = tE , the collective information in D is not enough to calculate q(I) in round
tE − 1. Thus, similarly to Case 1, a can emulate E′ and has an incentive to deviate.

3. tE > tD: Symmetric to Case 1.

Thus, Λ is not an equilibrium for the Knowledge Sharing problem. J

I Corollary 6. When a cheating agent pretends to be more than n agents, there is no algorithm
for Knowledge Sharing that is an equilibrium when agents have no a-priori knowledge of n.

Proof. Let H be a graph such that |D| = |E|. Follow the proof of Theorem 5. J

3.2 Impossibility of Coloring
The proof of Theorem 5 relies on the Full Knowledge property of the Knowledge Sharing
problem, i.e., no agent can calculate the output before knowing all the inputs. Recall that
the Coloring problem, however, is a more local problem [30], and nodes may color themselves
without knowing anything about distant nodes.

I Theorem 7. There is no algorithm for Coloring that is an equilibrium in a 2-connected
graph when agents have no a-priori knowledge of n.

Proof. Our proof is constructed by showing a type of graph in which a cheater could deviate
to increase its expected utility, regardless of the algorithm. Surprisingly, this graph is simply
a ring. Recall that an agent outputs a single color, even if it pretends to be several agents. In
Coloring, a cheating agent only wishes to influence the output color of its original neighbors
to enable it to output its preferred color while maintaining the legality of the output. The
key to showing an incentive to deviate is defining a way to assess the precise point in which
a cheater gains an advantage. We do this by generalizing the notion of expected utility:

I Definition 8 (Group Expected Utility). Let r be a round in an execution ε, and let M be a
group of agents. For any set S = {s1, . . . , s|M |} of steps of agents in M , let Ψ be the set of
all possible executions for which the same messages traverse the links that income and outgo
to/from M as in ε until round r, and in round r each agent in M takes the corresponding
step in S. For each possible output vector O, let xO be the sum of probabilities over Ψ that

Y. Afek, S. Rafaeli, and M. Sulamy 5:9

Figure 4 Ring with 3 agents a9, a10, a1

colliding on their preferred color.
Figure 5 Ring with 3 agents colliding on

their preferred color, with groups L′, R′.

O is decided by the protocol. For any agent v, the Group Expected Utility of uv by M taking
steps S at round r in execution ε is: EM,S,r[uv] =

∑
O∈Θ

xOuv(O).

Note that agents can also estimate the expected utility of other agents by considering a
different utility function over the same output vectors of the execution ε.

Assume by contradiction that Γ is a Coloring algorithm that is an equilibrium in a ring
with n agents {a1, . . . , an}. Let G be a ring with a segment of k consecutive agents, k ≥ 3,
all of which have the same color preference p. Assume w.l.o.g., they are centered around an
if k is odd and around an, a1 if even. Let L be the group of agents {an−1, . . . , abn2 c+1}, and
R the group of agents {a1, . . . , adn2 e−1}. Denote L′ = L ∪ {adn2 e, an} and R

′ = V \ L′ (see
Figures 4 and 5).

I Definition 9. Let Y be a group of agents (e.g., L or R). In any round r in an execution,
let Sr(Y) denote the vector of steps of agents in Y according to the protocol. We say Y
knows the utility of agent a if it holds that EY,Sr(Y)[ua] ∈ {0, 1}. We say Y does not know
the utility of agent a if 0 < EY,Sr(Y)[ua] < 1.

Recall that at round 0 no agent (or group of agents) knows its utility or the utility of any
other agent. Consider an execution of Γ on ring G and the groups L,R in the following cases:
1. L does not know uan throughout the entire execution of the algorithm, i.e., for agents in

L it holds that 0 < Pr[on 6= p] < 1. Then if L is emulated by a cheating agent, it has an
incentive to deviate and set its output to p (as otherwise its utility is guaranteed to be 0).

2. L knows uan at some round tL, and R does not know uan before round tL. Consider
round tL − 1 and group L′: In round tL, L knows the utility of an, thus the collective
information of agents in L at round tL already exists in L′ at round tL − 1. If L′ knows
that uan = 1, then its utility is already 1; otherwise, L′ knows that uan = 0. Consider the
group R′ ⊂ R, that does not know uan at round tL − 1. If L′ is emulated by a cheating
agent a, it can send messages that increase its probability to output p from 0 to some
positive probability, increasing its expected utility and thus it has an incentive to deviate.

3. R knows uan before round tL: symmetric to Case 2.

By the contradictory example for a ring, there is no equilibrium for Coloring 2-connected
graphs when agents have no a-priori knowledge of n. J

DISC 2018

5:10 The Role of A-priori Information in Networks of Rational Agents

4 Algorithms

Here we present algorithms for Knowledge Sharing (Section 4.1) and Coloring (Section 4.2).
In the previous section we saw that in Knowledge Sharing, if a duplicating agent can pretend
to be more than n agents equilibrium is impossible (Corollary 6). The Knowledge Sharing
algorithm presented here is an equilibrium in a ring when no cheating agent pretends to be
more than n agents, proving a tight bound and improving the Knowledge Sharing algorithm
in [7]. The Coloring algorithm is an equilibrium in any 2-connected graph when agents
a-priori know n.

Notice that using an algorithm as a subroutine is not trivial in this setting, even if the
algorithm is an equilibrium, as the new context as a subroutine may allow agents to deviate
towards a different objective than was originally proven. Thus, whenever a subroutine is
used, its equilibrium should be proved.

4.1 Knowledge Sharing in a Ring
First we describe the Secret-Transmit(ia,r,b) building block in which an agent a transmits
its input ia to an agent b of its choosing, such that b learns ia at round r and no other
agent in the ring learns any information about this input. Several Secret-Transmits can
be executed concurrently. To achieve this, agent a selects a random number Ra, and let
Xa = Ra ⊕ ia. It sends Ra clockwise and Xa counter-clockwise until each reaches the agent
before b. At round r − 1, these neighbors of b simultaneously send b the values Xa and Ra,
thus b receives the information at round r.

We assume a global orientation around the ring. This assumption can be easily relaxed
via Leader Election [7], which is an equilibrium in this application since the orientation has
no effect on the output. The algorithm works as follows:

Algorithm 1 Knowledge Sharing in a Ring.
1: All agents execute Wake-Up [7] to learn the ids of all agents and n′, the size of the ring

(which may include duplications)
2: For each agent a, denote b1a the clockwise neighbor of a, and b2a the agent at distance
bn

′

2 c counter-clockwise from a

3: Each agent a simultaneously performs:
SecretTransmit(ia, n′, b1a)
SecretTransmit(ia, n′, b2a)

4: At round n′ + 1, each agent sends its input around the ring
5: At round 2n′ output q(I)

I Theorem 10. In a ring, Algorithm 1 is an equilibrium when no cheating agent pretends to
be more than n agents.

Proof. Assume by contradiction that a cheating agent pretending to be d ≤ n agents has an
incentive to deviate. W.l.o.g., the duplicated agents are a1, . . . , ad (recall the indices 1, . . . , n′
are not known to the agents).

Let n′ be the size of the ring including the duplicated agents, i.e., n′ = n+ d− 1. The
clockwise neighbor of an′ is a1, denoted b1an′ . Denote ac = b2an′ the agent at distance bn

′

2 c
counter-clockwise from an′ , and note that c ≥ d.

When an′ calls Secret-Transmit to a1, an′ holds Rn′ of that transmission until round
n′ − 1. When an′ calls Secret-Transmit to ac, ac+1 holds Xn′ of that transmission until

Y. Afek, S. Rafaeli, and M. Sulamy 5:11

round n′ − 1. By our assumption, the cheating agent duplicated into a1, . . . , ad. Since
d < c+ 1, the cheater receives at most one piece (Xn′ or Rn′) of each of an′ ’s transmissions
before round n′. So, there is at least one input that the cheater does not learn before round
n′. According to the Full Knowledge property (Definition 4), for the cheater at round n′ − 1
any output is equally possible, so its expected utility for any value it sends is the same, thus
it has no incentive to cheat regarding the values it sends in round n′ − 1.

Let aj ∈ {a1, . . . , ad} be an arbitrary duplicated agent. In round n′, iaj is known by
its clockwise neighbor b1aj and by b2aj , the agent at distance bn

′

2 c counter-clockwise from aj .
Since the number of counter-clockwise consecutive agents in {b1aj , aj , . . . , b

2
aj} is greater than

dn
′

2 e ≥ n, at least one of b1aj , b
2
aj is not a duplicated agent. Thus, at round n′, the input of

each agent in {a1, . . . , ad} is already known by at least one agent /∈ {a1, . . . , ad}.
At round n′ − 1 the cheater does not know the input value of at least one other agent,

so by the Full Knowledge property it has no incentive to deviate. At round n′ for each
duplicated agent, its input is already known by a non-duplicated agent, which disables the
cheater from lying about its input from round n′ and on.

Thus, the cheating agent has no incentive to deviate, contradicting our assumption. J

In other words, in Algorithm 1 an agent has no incentive to deviate unless it duplicates
more than n agents.

4.2 Coloring in General Graphs
Here, agents are given exact a-priori knowledge of n. Since agent ids are private and agents
may cheat about their id, ids cannot be used to decide which of two neighbors that desire the
same color actually gets it. However, an orientation over an edge is shared by both agents,
and an acyclic orientation over the graph can be used to break ties.

Note that since the agents are rational, unless agent a knows that one or more of its
neighbors output a’s preferred color pa, it will output pa itself, regardless of the algorithm
step, which is a deviation. Thus, any coloring algorithm must ensure that whenever an agent
can output its preferred color, it does, otherwise the agent has a trivial incentive to deviate.

We present Algorithm 2 that uses two subroutines to obtain a coloring. Draw (Algorithm 3)
is an equilibrium in which agent a randomizes a number different from those of its neighbors
and commits to it. Prompt (Algorithm 4) is a query that ensures a receives the correct
drawn number from a neighbor. A full explanation is provided in the full paper [6].

I Theorem 11. Algorithm 2 is an equilibrium for Coloring when agents a-priori know n.

Proof. Let a be an arbitrary agent. Assume in contradiction that at some round r there is a
possible cheating step s such that s 6= sr and Es,r[ua] > Esr,r[ua].

Consider the possible deviations for a in every phase of Algorithm 2:
Wake-Up: The order by which agents initiate Algorithm 3 has no effect on the order by
which they will later set their colors. Hence, a has no incentive to publish a false id in
the Wake-Up building block.
Draw is an equilibrium: An agent and a witness send a random number simultaneously.
Publishing a false S value will be caught by the verification in step 10 of Algorithm 2.
Sending a color message not in order will be immediately recognized by the neighbors,
since S values were verified.
Agent a might output a different color than the color dictated by Algorithm 2. But if the
preferred color is available, then outputting it is the only rational behavior. Otherwise,
the utility for the agent is already 0 in any case. J

DISC 2018

5:12 The Role of A-priori Information in Networks of Rational Agents

Algorithm 2 Coloring via Acyclic Orientation (for agent a).
1: Run Wake-Up . After which all agents know graph topology
2: set T := ∅ . T is the set of values already taken by a’s neighbors (N(a))
3: for i = 1, ..., n do
4: if ida = i’th largest id in V then . Draw random numbers in order of id
5: Draw(T)
6: else
7: wait |Draw| rounds . Wait for Draw, takes a constant number of rounds
8: if received S(v) from v ∈ N(a) then . S(v) is the value of v from Draw

9: T = T ∪ {S(v)} . Add S(v) to set of taken values
10: for u ∈ N(a) simultaneously do
11: Prompt(u) . Since we must validate the value received in line 8
12: wait until all prompts are completed in the entire graph . At most n rounds
13: for round t = 1, ..., n do:
14: if S(a) = t then . Wait for your turn, decreed by your S value
15: if ∀v ∈ N(a) : ov 6= pa then oa := pa
16: else oa := minimum color unused by any v ∈ N(a)
17: send oa to N(a)

Algorithm 3 Draw(T) Subroutine (for agent a and the witness w(a)).
Denote X = {1, ..., n} \ T . X is the set of numbers not drawn by neighbors

1: w(a) := node b s.t. idb is minimal in N(a) . N(a) is the set of neighbors of a
send witness to w(a) . choose neighbor with minimal id as witness

2: r(a) := random{1, ..., |X|} drawn by a
r(w(a)) := random{1, ..., |X|} drawn by w(a)
send r(a) to w(a)
receive r(w(a)) from w(a) . a and witness jointly draw a random number

3: Let q := r(a) + r(w(a)) mod |X|.
Set S(a) := q’th largest number in X
send S(a) to all u ∈ N(a) . Calculate S(a) and publish to neighbors

Algorithm 4 Prompt(b) Subroutine (for agent a).
upon receiving a prompt(b) message from b ∈ N(a):

1: p := shortest simple path a→ w(a)→ b . w(a) is set by a preceding call to Draw
send S(a), b via p . If v 6= w(a) is asked to relay S(a), v fails the algorithm
send S(a) to b via e = (a, u) . b validates that both messages received are consistent

Y. Afek, S. Rafaeli, and M. Sulamy 5:13

Table 2 Knowledge Bounds; summary of results.
∗ – Bound is tight only in rings.

Bound Problem
α+ 1 Leader Election
2α− 2 Knowledge Sharing∗
∞ Coloring∗, 2-Knowledge Sharing

unbounded Partition, Orientation

5 How Much Knowledge Is Necessary?

In Section 3 we have shown that with rational agents, knowledge of n is crucial; however,
in some cases, bounds on the value of n may be enough for equilibrium. In this section we
examine the effects of a-priori knowledge that bound the possible value of n. We show that
the possibility of equilibria depends on the range [α, β] in which n might be, and show these
ranges for different problems. Table 2 summarizes our results.

Partition and Orientation have equilibria without any knowledge of n; however, the
former is constrained to even-sized rings, and the latter is a trivial problem in distributed
computing (radius 1 in the LOCAL model [29]).

I Definition 12 ((α, β)-Knowledge). We say agents have (α, β)-Knowledge about the actual
number of agents n, α ≤ β, if all agents a-priori know that the value of n is in [α, β]. Agents
have no information about the distribution over [α, β], i.e., they assume it is uniform.

I Definition 13 (f -Bound). Let f : N→ N. A problem P is f -bound if:
There exists an algorithm for P that is an equilibrium given (α, β)-Knowledge for any
α, β such that β ≤ f(α).
For any algorithm for P, there exist α, β where β > f(α) such that given (α, β)-Knowledge
the algorithm is not an equilibrium.

In other words, a problem is f -bound if given (α, β)-Knowledge, there is an equilibrium
when β ≤ f(α), and there is no equilibrium if β > f(α).

A problem is ∞-bound if there is an equilibrium given any bound f , but there is no
equilibrium with (1,∞)-Knowledge. A problem is unbounded if there is an equilibrium with
(1,∞)-Knowledge.

Consider an agent a at the start of a protocol given (α, β)-Knowledge. If a pretends to
be a group of d agents, it can be caught when d+ n− 1 > β, since agents might count the
number of agents and catch the cheater. Moreover, any duplication now involves some risk
since the actual value of n is not known to the cheater (similar to [11]).

An arbitrary cheating agent a simulates executions of the algorithm for every possible
duplication, and evaluates its expected utility. Denote D a duplication scheme in which an
agent pretends to be d agents. Let PD = P [d+ n− 1 ≤ β] be the probability, from agent a’s
perspective, that the overall size does not exceed β. If for agent a there exists a duplication
scheme D at round 0 such that ED,0[ua] · PD > Es(0),0[ua], then agent a has an incentive to
deviate and duplicate itself. For each problem we look for the maximal range of α, β where
no d exists that satisfies the inequality above.

5.1 Knowledge Sharing
I Theorem 14. Knowledge Sharing in a ring is (2α− 2)-bound.

DISC 2018

5:14 The Role of A-priori Information in Networks of Rational Agents

Proof. Assume agents have (α, β)-knowledge for some α, β. A cheating agent a chooses d,
the number of agents it pretends to be, that maximizes its expected utility.

Let k be the size of the range of the output function q (Definition 4). By Definition 4,
any output is equally possible. Therefore, without deviation the expected utility of a at
round 0 is: Es(0),0[ua] = 1

k .
Corollary 6 shows that when a cheating agent pretends to be more than n agents, it

gains an advantage (thus there is no equilibrium). According to Theorem 10, Algorithm 1
is an equilibrium for Knowledge Sharing in a ring when a cheating agent pretends to be n
agents or less. If n is in the range [α, β], a duplicates to d agents to maximize the probability
that d > n and thus the duplication increases its expected utility, while also minimizing the
probability that d+ n− 1 > β and a is caught.

To successfully gain an advantage a must duplicate to at least d ≥ α, or otherwise d is
surely < n and by Theorem 10, there is an equilibrium. Further notice that d ≤ dβ2 e+ 1 (the
+1 is a itself) since a higher value of d increases the probability of a to be caught without
increasing the probability of gaining any advantage.

From a’s perspective at the beginning of the algorithm, the value of n is uniformly
distributed over [α, β]. Let X > 1

k be the utility a gains by pretending to be d > n agents if
it is not caught, i.e., if d+ n− 1 ≤ β. The probability to duplicate to d > n agents and not
be caught is d−α

β−α+1 . On the other hand, when pretending to be d ≤ n agents without being

caught the utility of a does not change and is 1
k , and this has a probability of d

β
2 e+1−d
β−α+1 . In

all other cases d+ n− 1 > β and a is caught, resulting in a utility of 0. Thus, the expected
utility of agent a at round 0 is:

ED,0[ua] = X · d− α
β − α+ 1 + 1

k
·
dβ2 e+ 1− d
β − α+ 1 (2)

The expected utility in (2) reaches a maximum at d = bβ2 c+ 1, so set d to that number as
the best cheating strategy. Recall that a deviates from the algorithm whenever ED,0[ua] > 1

k :

ED,0[ua] = X ·
bβ2 c+ 1− α
β − α+ 1 + 1

k
·
dβ2 e − b

β
2 c

β − α+ 1 >
1
k

(3)

As k grows, 1
k approaches 0. By setting 1

k = 0 Equation 3 shows that agent a has
an incentive to deviate when bβ2 c + 1 − α > 0. When β is even: β > 2α − 2, otherwise:
β > 2α− 1. Thus, Algorithm 1 is an equilibrium for Knowledge Sharing when agents have
(α, β)-knowledge such that β ≤ 2α− 2, and there exist α, β > 2α− 2 such that there is no
equilibrium for Knowledge Sharing when agents have (α, β)-knowledge. By Definition 13,
Knowledge Sharing is (2α− 2)-bound in rings. J

To find the f -bound for any specific value of k and in any graph, we derive β as a function
of α:{

β is even β(kX − 2) > 2αkX − 2kX − 2α+ 2
β is odd β(kX − 2) > 2αkX − kX − 2α

(4)

I Corollary 15. 2-Knowledge Sharing in a ring is ∞-bound.

Proof. The inequalities in 4 are satisfiable only if X > 2 · 1
k . Since X ≤ 1, the inequalities

cannot be satisfied in 2-Knowledge Sharing (k = 2) and a has no incentive to deviate, given
any bound on n. J

Y. Afek, S. Rafaeli, and M. Sulamy 5:15

Algorithm 5 Coloring in a Ring.
1: Wake-Up to learn the size of the ring.
2: Assume arbitrary global direction over the ring (can be relaxed via Leader Election [7]).
3: Run 2-Knowledge Sharing to randomize a single global bit b ∈ {0, 1}.
4: Publish the preferred color of each agent simultaneously over the entire ring.
5: In each group of consecutive agents that prefer the same color, if b = 0 the even agents

(according to the orientation) output their preferred color, else the odd agents do.
6: If an agent has no neighbors who prefer the same color, it outputs its preferred color.
7: Any other agent outputs the minimal available color.

5.2 Coloring
I Theorem 16. Coloring in a ring is ∞-bound.

Proof. Consider Algorithm 5 which solves coloring in a ring using 2-Knowledge Sharing.
It is easy to see that Algorithm 5 is an equilibrium and results in a legal coloring of the

ring. It uses 2-Knowledge Sharing and thus, following Corollary 15, it proves Theorem 16. J

5.3 Leader Election
In the Leader Election problem, each agent a outputs oa ∈ {0, 1}, where oa = 1 means that
a was elected leader and oa = 0 means otherwise. ΘL = {O|∃a : oa = 1,∀b 6= a : ob = 0}. An
agent prefers either 0 or 1.

I Theorem 17. Leader Election is (α+ 1)-bound.

Proof. Recall that any Leader Election algorithm must be fair [4], i.e., every agent must
have equal probability of being elected leader for the algorithm to be an equilibrium.

Given f(α) = α+ 1, the actual number of agents n is either α or α+ 1. If an agent follows
the protocol, the probability of being elected is 1

n . If it duplicates itself once, the probability
that one of its instances is elected is 2

n+1 , but if n = α+ 1 then n′ > β, it is easily detected
and its utility is 0. Thus ED,0[ua] = 1

2
2

n+1 <
1
n , i.e., no agent has an incentive to deviate.

Given f(α) = α+ 2, then n is in [α, α+ 2]. If an agent follows the protocol, its expected
utility is still 1

n . If it duplicates itself once, the probability that a duplicate is elected
is still 2

n+1 , however only if n = α + 2 then n′ > β and the cheater is caught. Thus,
ED,0[ua] = 2

3
2

n+1 >
1
n for any n > 3. So the agent has an incentive to deviate. J

5.4 Ring Partition
In the Ring Partition problem, the agents of an even-sized ring are partitioned into two,
equally-sized groups: group 0 and group 1. An agent prefers to belong to either group 0 or 1.
In the full paper [6] we prove:

I Theorem 18. Ring Partition is unbounded.

5.5 Orientation
In the Orientation problem, the two ends of each edge must agree on a direction for the edge.
An agent prefers certain directions for its edges. In the full paper [6] we prove:

I Theorem 19. The Orientation problem is unbounded.

DISC 2018

5:16 The Role of A-priori Information in Networks of Rational Agents

6 Discussion

In this paper we have shown that the assumption that n is a-priori known, commonly made in
previous works, has a critical role in the possibility of equilibrium. In realistic scenarios, the
exact size of the network may not be known to all members, or only estimates on the exact
size are known in advance. In such networks, the use of duplication gives an agent power to
affect the outcome of most algorithms, and in some cases makes equilibrium impossible. In
this work we did not identify any problem that requires exact knowledge of n for equilibrium.
Even in Leader Election, equilibrium is possible as long as n is known to be in a margin of 2.

When bounds on n are known, the f -bounds we have proven in Section 5 show that the
initial knowledge required for equilibrium depends on the balance between two factors: The
amount of duplications necessary to increase an agent’s expected utility, and the probability
that the cheater is caught duplicating. In order for an agent to have an incentive to duplicate
itself, an undetected duplication needs to be more profitable than following the algorithm
while also involving low risk of being caught.

Our results suggest several open directions that may be of interest:
1. Finding an equilibrium for Knowledge Sharing in a general graph with at most n du-

plications. This would be the missing piece that, along with our impossibility proof in
Theorem 5, would prove the f -bound of 2α− 2 is tight for general graphs.

2. Algorithms and impossibility results for other problems, as well as tight f -bounds.
3. Finding a problem that is α-bound, i.e., has an equilibrium only when n is known exactly.
4. Finding more problems that have equilibrium without any knowledge of n in any graph

(unlike Partition) and a non-constant radius in the LOCAL model (unlike Orientation).
5. Exploring the effects of initial knowledge of n in an asynchronous setting.

References
1 Ittai Abraham, Lorenzo Alvisi, and Joseph Y. Halpern. Distributed computing meets

game theory: Combining insights from two fields. SIGACT News, 42(2):69–76, 2011. doi:
10.1145/1998037.1998055.

2 Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Y. Halpern. Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty compu-
tation. In PODC, pages 53–62, 2006. doi:10.1145/1146381.1146393.

3 Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. Lower bounds on implement-
ing robust and resilient mediators. In TCC, pages 302–319, 2008. doi:10.1007/
978-3-540-78524-8_17.

4 Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. Distributed protocols for leader
election: A game-theoretic perspective. In DISC, pages 61–75, 2013. doi:10.1007/
978-3-642-41527-2_5.

5 Norman Abramson. The aloha system: Another alternative for computer communications.
In Proceedings of the November 17-19, 1970, Fall Joint Computer Conference, AFIPS ’70
(Fall), pages 281–285, New York, NY, USA, 1970. ACM.

6 Y. Afek, S. Rafaeli, and M. Sulamy. Cheating by Duplication: Equilibrium Requires Global
Knowledge. ArXiv e-prints, 2017. arXiv:1711.04728.

7 Yehuda Afek, Yehonatan Ginzberg, Shir Landau Feibish, and Moshe Sulamy. Distributed
computing building blocks for rational agents. In Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing, PODC ’14, 2014.

8 Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin, Jean-Philippe Martin,
and Carl Porth. Bar fault tolerance for cooperative services. In SOSP, pages 45–58, 2005.
doi:10.1145/1095810.1095816.

http://dx.doi.org/10.1145/1998037.1998055
http://dx.doi.org/10.1145/1998037.1998055
http://dx.doi.org/10.1145/1146381.1146393
http://dx.doi.org/10.1007/978-3-540-78524-8_17
http://dx.doi.org/10.1007/978-3-540-78524-8_17
http://dx.doi.org/10.1007/978-3-642-41527-2_5
http://dx.doi.org/10.1007/978-3-642-41527-2_5
http://arxiv.org/abs/1711.04728
http://dx.doi.org/10.1145/1095810.1095816

Y. Afek, S. Rafaeli, and M. Sulamy 5:17

9 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons, 2004.

10 B. Awerbuch, M. Luby, A. V. Goldberg, and S. A. Plotkin. Network decomposition and
locality in distributed computation. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, SFCS ’89, pages 364–369, Washington, DC, USA, 1989.
IEEE Computer Society. doi:10.1109/SFCS.1989.63504.

11 D. Bank, M. Sulamy, and E. Waserman. Reaching Distributed Equilibrium with Limited
ID Space. ArXiv e-prints, 2018. arXiv:1804.06197.

12 Imre Bárány. Fair distribution protocols or how the players replace fortune. Math. Oper.
Res., 17(2):327–340, 1992. doi:10.1287/moor.17.2.327.

13 Elchanan Ben-Porath. Cheap talk in games with incomplete information. J. Economic
Theory, 108(1):45–71, 2003. doi:10.1016/S0022-0531(02)00011-X.

14 Rajat Bhattacharjee and Ashish Goel. Avoiding ballot stuffing in ebay-like reputation
systems. In Proceedings of the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-
peer Systems, P2PECON ’05, pages 133–137, New York, NY, USA, 2005. ACM.

15 Monica Bianchini, Marco Gori, and Franco Scarselli. Inside pagerank. ACM Trans. Internet
Technol., 5(1):92–128, 2005.

16 Alice Cheng and Eric Friedman. Sybilproof reputation mechanisms. In Proceedings of the
2005 ACM SIGCOMM Workshop on Economics of Peer-to-peer Systems, P2PECON ’05,
pages 128–132, New York, NY, USA, 2005. ACM.

17 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Inf. Control, 70(1):32–53, 1986.

18 Varsha Dani, Mahnush Movahedi, Yamel Rodriguez, and Jared Saia. Scalable rational
secret sharing. In PODC, pages 187–196, 2011. doi:10.1145/1993806.1993833.

19 Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a game theoretic
problem. In CRYPTO, pages 112–130, 2000. doi:10.1007/3-540-44598-6_7.

20 John R. Douceur. The sybil attack. In Revised Papers from the First International Work-
shop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260, London, UK, UK, 2002. Springer-
Verlag.

21 Georg Fuchsbauer, Jonathan Katz, and David Naccache. Efficient rational secret shar-
ing in standard communication networks. In TCC, pages 419–436, 2010. doi:10.1007/
978-3-642-11799-2_25.

22 S. Dov Gordon and Jonathan Katz. Rational secret sharing, revisited. In SCN, pages
229–241, 2006. doi:10.1007/11832072_16.

23 Adam Groce, Jonathan Katz, Aishwarya Thiruvengadam, and Vassilis Zikas. Byzantine
agreement with a rational adversary. In ICALP (2), pages 561–572, 2012. doi:10.1007/
978-3-642-31585-5_50.

24 Joseph Y. Halpern and Xavier Vilaça. Rational consensus: Extended abstract. In Pro-
ceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC ’16,
pages 137–146, New York, NY, USA, 2016. ACM.

25 L. Kleinrock and F. Tobagi. Packet switching in radio channels: Part i - carrier sense
multiple-access modes and their throughput-delay characteristics. IEEE Transactions on
Communications, 23(12):1400–1416, December 1975.

26 Fabian Kuhn and Rogert Wattenhofer. On the complexity of distributed graph coloring.
In Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’06, pages 7–15, New York, NY, USA, 2006. ACM. doi:10.1145/
1146381.1146387.

27 Matt Lepinski, Silvio Micali, Chris Peikert, and Abhi Shelat. Completely fair sfe and
coalition-safe cheap talk. In PODC, pages 1–10, 2004. doi:10.1145/1011767.1011769.

DISC 2018

http://dx.doi.org/10.1109/SFCS.1989.63504
http://arxiv.org/abs/1804.06197
http://dx.doi.org/10.1287/moor.17.2.327
http://dx.doi.org/10.1016/S0022-0531(02)00011-X
http://dx.doi.org/10.1145/1993806.1993833
http://dx.doi.org/10.1007/3-540-44598-6_7
http://dx.doi.org/10.1007/978-3-642-11799-2_25
http://dx.doi.org/10.1007/978-3-642-11799-2_25
http://dx.doi.org/10.1007/11832072_16
http://dx.doi.org/10.1007/978-3-642-31585-5_50
http://dx.doi.org/10.1007/978-3-642-31585-5_50
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1145/1011767.1011769

5:18 The Role of A-priori Information in Networks of Rational Agents

28 N. Linial. Legal coloring of graphs. Combinatorica, 6(1):49–54, 1986. doi:10.1007/
BF02579408.

29 Nathan Linial. Distributive graph algorithms global solutions from local data. In Proceed-
ings of the 28th Annual Symposium on Foundations of Computer Science, SFCS ’87, pages
331–335, Washington, DC, USA, 1987. IEEE Computer Society. doi:10.1109/SFCS.1987.
20.

30 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

31 Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behavior in multi-
party computation. In CRYPTO, pages 180–197, 2006. doi:10.1007/11818175_11.

32 Robert McGrew, Ryan Porter, and Yoav Shoham. Towards a general theory of non-
cooperative computation. In TARK, pages 59–71, 2003. doi:10.1145/846241.846249.

33 Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When selfish meets evil:
byzantine players in a virus inoculation game. In PODC, pages 35–44, 2006. doi:10.1145/
1146381.1146391.

34 Rafael Pass and Elaine Shi. Hybrid Consensus: Efficient Consensus in the Permissionless
Model. In 31st International Symposium on Distributed Computing (DISC 2017), 2017.

35 Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 380–409, Cham, 2017.
Springer International Publishing.

36 Rafael Pass and Elaine Shi. Rethinking large-scale consensus. Cryptology ePrint Archive,
Report 2018/302, 2018. URL: https://eprint.iacr.org/2018/302.

37 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. doi:10.1145/
359168.359176.

38 Yoav Shoham and Moshe Tennenholtz. Non-cooperative computation: Boolean functions
with correctness and exclusivity. Theoretical Computer Science, 343(1–2):97–113, 2005.

39 Márió Szegedy and Sundar Vishwanathan. Locality based graph coloring. In Proceedings
of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pages
201–207, New York, NY, USA, 1993. ACM. doi:10.1145/167088.167156.

40 Amparo Urbano and Jose E. Vila. Computational complexity and communication: Co-
ordination in two-player games. Econometrica, 70(5):1893–1927, September 2002. URL:
http://ideas.repec.org/a/ecm/emetrp/v70y2002i5p1893-1927.html.

41 Amparo Urbano and José E. Vila. Computationally restricted unmediated talk under
incomplete information. Economic theory, 2004.

42 Edmund L. Wong, Isaac Levy, Lorenzo Alvisi, Allen Clement, and Michael Dahlin. Regret
freedom isn’t free. In OPODIS, pages 80–95, 2011. doi:10.1007/978-3-642-25873-2_7.

43 Assaf Yifrach and Yishay Mansour. Fair leader election for rational agents in asynchronous
rings and networks. In PODC ’18, 2018. doi:10.1145/3212734.3212767.

http://dx.doi.org/10.1007/BF02579408
http://dx.doi.org/10.1007/BF02579408
http://dx.doi.org/10.1109/SFCS.1987.20
http://dx.doi.org/10.1109/SFCS.1987.20
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1007/11818175_11
http://dx.doi.org/10.1145/846241.846249
http://dx.doi.org/10.1145/1146381.1146391
http://dx.doi.org/10.1145/1146381.1146391
https://eprint.iacr.org/2018/302
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/167088.167156
http://ideas.repec.org/a/ecm/emetrp/v70y2002i5p1893-1927.html
http://dx.doi.org/10.1007/978-3-642-25873-2_7
http://dx.doi.org/10.1145/3212734.3212767

Distributed Approximate Maximum Matching in
the CONGEST Model
Mohamad Ahmadi1

University of Freiburg, Germany
mahmadi@cs.uni-freiburg.de

Fabian Kuhn2

University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Rotem Oshman
Tel Aviv University, Israel
roshman@tau.ac.il

Abstract
We study distributed algorithms for the maximum matching problem in the CONGEST model,
where each message must be bounded in size. We give new deterministic upper bounds, and a
new lower bound on the problem.

We begin by giving a distributed algorithm that computes an exact maximum (unweighted)
matching in bipartite graphs, in O(n logn) rounds. Next, we give a distributed algorithm that
approximates the fractional weighted maximum matching problem in general graphs. In a graph
with maximum degree at most ∆, the algorithm computes a (1−ε)-approximation for the problem
in time O

(
log(∆W)/ε2), where W is a bound on the ratio between the largest and the smallest

edge weight. Next, we show a slightly improved and generalized version of the deterministic
rounding algorithm of Fischer [DISC ’17]. Given a fractional weighted maximum matching solu-
tion of value f for a given graph G, we show that in time O((log2(∆) + log∗ n)/ε), the fractional
solution can be turned into an integer solution of value at least (1− ε)f for bipartite graphs and
(1− ε) · g−1

g · f for general graphs, where g is the length of the shortest odd cycle of G. Together
with the above fractional maximum matching algorithm, this implies a deterministic algorithm
that computes a (1 − ε) · g−1

g -approximation for the weighted maximum matching problem in
time O

(
log(∆W)/ε2 + (log2(∆) + log∗ n)/ε

)
.

On the lower-bound front, we show that even for unweighted fractional maximum matching in
bipartite graphs, computing an (1−O(1/

√
n))-approximate solution requires at least Ω̃(D+

√
n)

rounds in CONGEST. This lower bound requires the introduction of a new 2-party communication
problem, for which we prove a tight lower bound.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Mathemat-
ics of computing → Approximation algorithms

Keywords and phrases distributed graph algorithms, maximum matching, deterministic round-
ing, communication complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.6

Related Version A full version of the paper is available at [1], http://tr.informatik.uni-
freiburg.de/reports/report286/report00286.pdf.

1 Supported by ERC Grant No. 336495 (ACDC).
2 Supported by ERC Grant No. 336495 (ACDC).

© Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 6; pp. 6:1–6:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mahmadi@cs.uni-freiburg.de
mailto:kuhn@cs.uni-freiburg.de
mailto:roshman@tau.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2018.6
http://tr.informatik.uni-freiburg.de/reports/report286/report00286.pdf
http://tr.informatik.uni-freiburg.de/reports/report286/report00286.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Distributed Approximate Maximum Matching in the CONGEST Model

1 Introduction

In the maximum matching problem, we are given a graph G, and asked to find a maximum-size
set of edges of G which do not share any vertices. In the weighted version of the problem, the
graph edges are associated with weights, and our goal is to find a set of vertex-disjoint edges
that maximizes the total weight. Maximum matching is a fundamental graph optimization
problem, extensively studied in the classical centralized setting, as well as in other settings
such as streaming algorithms (e.g., [24]) and sublinear-time approximation (e.g., [29]). The
problem has also received significant attention from the distributed computing community,
so far focusing on approximation algorithms (cf. Section 2).

In this paper we study maximum matching in the CONGEST model, a synchronous
network communication model where messages are bounded in size. We consider both exact
and approximate maximum matching, weighted and unweighted, and give new upper bounds
and a lower bound. Our upper bounds are deterministic, while the lower bound holds for
randomized algorithms as well. Our contributions are as follows.

1.1 Exact Unweighted Maximum Matching in Bipartite Graphs
In the sequential world, the fastest-known algorithm for finding a maximum matching
in unweighted bipartite graphs is the Hopcroft–Karp algorithm [17]. Its running time is
O(m ·

√
n) on graphs with n nodes and m edges. Its central building block is a fast way,

using breadth-first-search, to find a maximal set of node-disjoint augmenting paths: paths of
alternating matching and non-matching edges, used to increase the size of the matching.

A naive implementation of the Hopcroft–Karp algorithm in the CONGEST model would
yield an algorithm requiring O(n3/2) rounds. Taking inspiration and ideas from Hopcroft–
Karp, we are able to instead give an algorithm that takes only O(n logn) rounds. More
specifically, we obtain the following result.

I Theorem 1. The deterministic round complexity in the CONGEST model of computing an
exact maximum matching in unweighted, bipartite graphs is O(s∗ log s∗), where s∗ is the size
of a maximum matching.

Note that the algorithm is not assumed to initially know the value s∗.
The core of our algorithm is a procedure that finds a single augmenting path of length k in

O(k) rounds. Together with the well-known fact that if we are given a matching of size s∗− `,
we are guaranteed to have an augmenting path of length at most O(s∗/`), this procedure
implies the above result. To our knowledge, this is the first non-trivial algorithm for exact
bipartite maximum matching in the CONGEST model.

1.2 Approximate Fractional Weighted Maximum Matching
One strategy for computing an approximate maximum matching is to first solve the fractional
version of the problem, and then round the solution to obtain an integral matching. A
fractional matching is the natural linear programming (LP) relaxation of the notion of a
matching, where instead of taking a set of edges (where each edge is “taken” or “not taken”), we
instead assign each edge e ∈ E a value ye ∈ [0, 1]. Whereas before, we required that each node
participate in at most one edge of the matching, we now require that for each node v, the sum
of the values of v’s edges must be at most 1. This is a linear constraint:

∑
u∈N(v) y{u,v} ≤ 1.

To compute a fractional matching, we can thus bring to bear the powerful machinery
of linear programming (LP). In particular, the fractional maximum matching problem is a
packing LP. Packing LPs and their duals, covering LPs, are a class of LPs for which there

M. Ahmadi, F. Kuhn, and R. Oshman 6:3

are particularly efficient distributed solutions (e.g., [19, 26]). In this paper, we extend an
approach that was developed by Eisenbrand, Funke, Garg, and Könemann [9] to solve the
fractional set cover problem. We prove the following theorem.

I Theorem 2. Let G = (V,E,w) be a weighted graph. Assume that ∆ is the maximum degree
of G, and let W denote the ratio between the largest and smallest edge weight. Then, for
every ε > 0, there is a deterministic O

(
log(∆W)/ε2)-time CONGEST algorithm to compute

a (1− ε)-approximation for the maximum weighted fractional matching problem in G.

The algorithm is based on another distributed implementation of the algorithm of [9],
which appeared in [19]. The algorithm of [19] is general: it approximates general covering
and packing LPs. When applied to the weighted fractional matching problem, the algorithm
of [19] computes a (1 − ε)-approximation in time O

(
log(∆W)/ε4), which was the best

(1− ε)-approximation for the problem in the CONGEST model prior to the present work.
As we are only interested in the matching problem, our algorithm is simpler than the

algorithm of [19], and more importantly, our algorithm significantly improves the ε-dependency
of computing a (1− ε)-approximate fractional matching in the CONGEST model.

1.3 Deterministic Rounding of Fractional Matchings
After computing a fractional matching, we wish to round the edge values to {0, 1}, to obtain
an integral matching with roughly the same weight.

Randomized rounding of LP solutions, in order to obtain approximate solutions of
the corresponding integer LPs, has been used for a while, even in the distributed context
(e.g., [18,19]). However, deterministic distributed rounding algorithm have only been studied
recently. In [11], Fischer gave an amazingly simple and elegant deterministic O(log2 ∆)-time
algorithm, which rounds a fractional unweighted matching into an integral matching that
is smaller by only a constant factor. Repeating this rounding step O(logn) times, Fischer
obtains a maximal matching in deterministic time O(log2 ∆ logn).3

At its core, the approach of Fischer [11] solves the problem on bipartite graphs, and
it decomposes the problem of rounding a fractional matching to the problem of rounding
fractional matchings on paths and even cycles. Our contribution in this part of the paper is
two-fold. First, while Fischer loses a constant factor when rounding the matching, we show
that a simple change in the algorithm allows us to only lose a factor (1 − ε) on bipartite
graphs. Second, we generalize the technique to also work for weighted (fractional) matching.

I Theorem 3. Let G = (V,E,w) be a weighted graph, y be a fractional matching of G, and
ε > 0 be a parameter. There is a deterministic O

(log2(∆/ε)+log∗ n
ε

)
-time CONGEST algorithm

that computes an matching M of G such that the ratio between the total weight of M and the
value of the given fractional weighted matching y is at least 1− ε if G is bipartite, and at
least (1− ε) · g−1

g if G is not bipartite and g is the length of the shortest odd cycle of G.

In combination with Theorem 2, we obtain a deterministic CONGEST algorithm to
compute a (1 − ε)-approximate maximum weighted matching in bipartite graphs in time
O
(log(∆W)

ε2 + log2(∆/ε)+log∗ n
ε

)
. For general graphs, we obtain a (2/3− ε)-approximate maxi-

mum weighted matching in the same asymptotic time. To the best of our knowledge, this is
the first CONGEST algorithm that obtains an approximation ratio better than 1/2 for the
weighted maximum matching problem in general graphs.

3 Actually, the earlier polylog-time deterministic algorithms for computing a maximal matching [14,15]
can also be interpreted as approximate rounding algorithms. However, these algorithms are not explicitly
phrased in this way.

DISC 2018

6:4 Distributed Approximate Maximum Matching in the CONGEST Model

1.4 Lower Bound for (1− O(1/
√

n))-Approximate Fractional
Matching

As we said above, in this paper we show that a (1− ε)-approximate maximum matching in
bipartite graphs can be computed in time Õ(1/ε2) (ignoring the logarithmic terms in n,∆
and W). Is this dependence on ε optimal? We do not yet know, but we are able to show
that Õ(1/ε) rounds are necessary, for sufficiently small ε:

I Theorem 4. There exists a constant α ∈ (0, 1), such that any randomized algorithm that
computes a (1− α/

√
n)-multiplicative approximation to the maximum fractional matching in

unweighted, bipartite graphs with diameter O(logn) requires Ω(
√
n/ logn) rounds.

The lower bound is based on the framework of [27], and it is shown by reduction from
two-party communication complexity. Given a fast algorithm A for approximate fractional
matching, we construct a protocol for two players, Alice and Bob, to solve a communication
complexity problem, by simulating the execution of A in a network that the players construct.

In contrast to [27], here we are not interested in a verification problem. In [27], in addition
to the network graph, there is a set of marked edges, and the goal is to check whether the
marked edges satisfy some property. Thus, we can give the algorithm a “hard subgraph to
check”, even if the corresponding search problem is easy: e.g., [27] shows that checking if the
marked edges form a spanning tree is hard (Ω̃(

√
n+D) rounds), even though constructing a

spanning tree is easy (O(D) rounds). Here, we do not give the algorithm a set of marked
edges, and instead we allow the algorithm to compute any feasible fractional matching.

To prove the lower bound, we argue that a good approximation to the maximum matching
on odd paths “looks different” from one on even paths, and this difference allows us to solve
a communication complexity problem, PXA, that we introduce for this purpose. We prove,
using information complexity [4], that the randomized communication complexity of PXA is
linear. One unusual feature of this lower bound is that at the end of the simulation, each
player only knows part of the matching constructed. Thus, we cannot guarantee that both
players will “see” the difference between odd and even paths, but at least one of them will.
The problem PXA reflects this: instead of asking the players to agree on an output, each
player produces its own output, and at least one of them must “be correct”.

For lack of space, many technical details are omitted in this version of the paper. They
appear in the full version of the paper [1].

2 Related Work

We survey here only the most directly relevant work. In particular, we mostly focus on
the CONGEST model, and we discuss only some of the work for the LOCAL model, where
messages do not need to be of bounded size.

The first polynomial-time algorithm for unweighted maximum matching in general graphs
was given by Edmonds [7,8]. It was preceded by the algorithm of Hopcroft and Karp [17],
which is restricted to bipartite graphs. Our exact algorithm for bipartite graphs is inspired
by and uses insights from the Hopcroft–Karp algorithm.

Because exact maximum matching is a “global problem”, work on distributed algorithms
has mostly been focused on approximation algorithms. The first ones were for the maximal
matching problem; in the unweighted case, a maximal matching is also a 1/2-approximation to
the maximum matching. Even in the 80s, simple and elegant solutions for maximal matching
in O(logn) rounds were known [2,16,23]. (These papers give PRAM algorithms, but they
translate to the CONGEST model easily.) The best randomized distributed algorithm for
maximal matching is due to Barenboim et al. [5], and has time complexity O(log ∆+log3 logn).

M. Ahmadi, F. Kuhn, and R. Oshman 6:5

On the deterministic side, maximal matching was first shown to be solvable in polyloga-
rithmic distributed time, O(log4 n) rounds, in [14, 15]. While they do not explicitly analyze
the message size, we believe that their algorithm can be implemented in the CONGEST model.
Currently, the best deterministic algorithm (in CONGEST and LOCAL) is from [11], and
requires O(log2 ∆ logn) rounds. As one of our algorithms heavily builds on the techniques
of [11], we discuss them in more detail in Section 6. The best lower bound for maximal
matching, and more generally, for obtaining constant or polylogarithmic approximations
for unweighted maximum matching, is Ω

(
min

{
log ∆

log log ∆ ,
√

logn
log logn

})
[20]. The lower bound

even holds for randomized algorithms in the LOCAL model.
Beyond the simple 1/2-approximation provided by a maximal matching, there is series of

works on the distributed complexity of obtaining a (1− ε)-approximate maximum cardinality
matching. All are based on the framework of Hopcroft and Karp [17], of repeatedly computing
a (nearly) maximal vertex-disjoint set of short augmenting paths. The first such algorithm
is [21], a randomized CONGEST algorithm with time complexity O(logn) for every constant
ε > 0; however, the dependence on ε is exponential in 1/ε. This was recently improved in [3],
which gives a randomized algorithm with time complexity O

(
poly(1/ε) · log ∆

log log ∆
)
. Note that

the ∆-dependency of the running time matches the lower bound of [20]. There are also
deterministic distributed algorithms to obtain a (1− ε)-approximate maximum cardinality
matching in polylogarithmic time [6, 10,12,13], but they require the LOCAL model.

As for weighted matching, the first paper to explicitly study distributed approximation of
the weighted maximum matching is [28]. They give a randomized O(log2 n)-time algorithm
with an approximation ratio of 1/5. This result for the weighted case was later improved in [22]
and in [21], which give O(logn)-round randomized CONGEST algorithms with approximation
ratios (1/4−ε) and (1/2−ε), respectively. In [3], Bar-Yehuda et al. improve the running time
and provide a (1/2− ε)-approximation in time O(log ∆/ log log ∆). The only known polylog-
time deterministic CONGEST algorithm for approximate weighted maximum matching in
general graphs is the (1/2 − ε)-approximation algorithm by Fischer [11], which runs in
O
(

log2 ∆ · log 1
ε

)
rounds.

3 Model and Definitions

Communication model. Our algorithms and lower bounds are designed for the CONGEST
model [25]. The network is modeled as an undirected n-node graph G = (V,E), where each
node has a unique O(logn)-bit identifier. Time is divided into synchronous rounds; in each
round, each node can send an O(logn)-bit message to each of its neighbors in G. We are
interested in the time complexity of an algorithm, which is defined as the number of rounds
that are required until all nodes terminate.

For simplicity, we assume that all nodes know the maximum degree ∆ of G. In all our
algorithms, one can replace the value of ∆ by a polynomial upper bound, without changing
the asymptotic results. We note that at the cost of a slightly more complicated algorithm,
the knowledge of n and ∆ can also be dropped completely. If the edges of G have weights,
we assume that we > 0 is the weight of edge e. We assume that the weights are normalized
such that for all e ∈ E, we have 0 < we ≤ 1. We further assume that the nodes know a
value W such that the smallest weight is at least 1/W .

Distributed matching. When we say that a distributed algorithm computes a matching,
we mean that when the algorithm terminates, each node of the graph knows which of its
edges is in the matching (if any). Since the graph is undirected, both endpoints of an edge
must agree about whether it is in the matching or not. For fractional matching, each node
knows the value of all of its edges, and again, both endpoints of the edge agree on its value.

DISC 2018

6:6 Distributed Approximate Maximum Matching in the CONGEST Model

Notation. Let G = (V,E) be an undirected graph. The bipartite double cover of G is
the graph G2 := G×K2 = (V × {0, 1} , E2), where there is an edge between two nodes (u, i)
and (v, j) in E2 if and only if {u, v} ∈ E and i 6= j. Hence, in G2, every node u of G is
replaced by two nodes (u, 0) and (u, 1) and every edge {u, v} of G is replaced by the two
edges {(u, 0), (v, 1)} and {(u, 1), (v, 0)}. If G is a weighted graph with edge weights we for
e ∈ E, we assume that the bipartite double cover G2 is also weighted and each edge of G2
has the same weight as the underlying edge in G. Throughout the paper, log refers to the
logarithm to base 2.

4 Exact Integral Maximum Matching in Bipartite Graphs

Here we present an O(n logn)-round deterministic algorithm to compute a maximum integral
matching for a given n-node bipartite graph. The algorithm is based on finding augmenting
paths and using them to increase the size of the matching we are constructing, as in the
celebrated Hopcroft–Karp sequential algorithm for matching in bipartite graphs [17]. We
give a somewhat informal description of the algorithm here; the full version appears in [1].

Let us review some basic notions. Given a matching M , we say that a node v ∈ V is
matched if one of its edges is in the matching, and otherwise we say that v is free. A path
u0, u1, . . . , uk is called alternating (with respect to M) if u0 is free, every odd-numbered
edge {u2i, u2i+1} (where 2i+ 1 ≤ k) is in the matching M , and every even-numbered edge
{u2i+1, u2i+2} (where 2i+ 2 ≤ k) is not in the matching. If an alternating path ends in a
free node, then it is called an augmenting path, and in this case we can increase the size of
the matching by removing all the even-numbered edges along the path from the matching,
and instead adding all the odd-numbered edges.

Our algorithm is based on the following observation, which forms the basis for the
Hopcroft–Karp algorithm:

I Lemma 5 ([17]). Consider an unweighted graph G, and let M∗ be a maximum matching
in G. Then for any positive integer ` and any matching M in G, if |M | ≤ (1− 1/`)|M∗|,
then there is an augmenting path of length less than 2` in G w.r.t. M .

From Lemma 5 we get an upper bound on the length of the shortest augmenting path
remaining for a matching of given size:

I Corollary 6. If the maximum matching in G has size s∗, and M is a matching of size
|M | = i, then M has an augmenting path of length less than 2ds∗/(s∗ − i)e.

Proof. We have: |M | = i = s∗−(s∗−i) = s∗ (1− 1/(s∗/(s∗ − i))) ≤ s∗ (1− 1/ds∗/(s∗ − i)e).
Therefore, by Lemma 5, there is an augmenting path of length less than 2ds∗/(s∗ − i)e. J

Note that the length of the shortest remaining augmenting path depends on the size s∗ of
the maximum matching, which we do not know. To get an upper bound on the length of
the shortest augmenting path, we need a lower bound on s∗. Thus, we first deterministically
compute a 2-approximation ŝ ∈ [s∗/2, s∗], using, e.g., [11] or [19], in O(logn) rounds. We set
s = 2ŝ. We are guaranteed that s ≥ s∗, and hence s/(s−i) ≥ s∗/(s∗−i), so we can safely use s
in place of s∗ when computing an upper bound on the length of the shortest augmenting path.

The core of our algorithm is a procedure called SetupPath: given an upper bound k on
the length of the shortest augmenting path, SetupPath(k) finds an augmenting path in O(k)
rounds. We describe this procedure below, but before showing how we find an augmenting
path, let us describe the overall structure of the algorithm.

M. Ahmadi, F. Kuhn, and R. Oshman 6:7

Let s∗ be the size of the maximum matching in G. Our strategy is as follows: we start
with an empty matching M , and improve it by searching for augmenting paths one-by-one:
for each i = 1, 2, . . . , n− 1, we call SetupPath(2ds/(s− i)e), spending O(s/(s− i)) rounds
searching for an augmenting path of length O(s/(s− i)); if we find one, we apply it to M to
increase its size by at least 1. Note that by Corollary 6 and the fact that s ≥ s∗, if |M | = i,
then indeed there is an augmenting path of length less than 2ds/(s− i)e. (If |M | > i, then
we might not find an augmenting path in the current iteration, but this is fine; we move on
to the next value of i.)

The time spent constructing the matching is
n−1∑
i=1

O (s/(s− i)) = O(s log s) = O(s∗ log s∗).

Now let us explain how we find each augmenting path.

4.1 Setting Up an Augmenting Path: Procedure SetupPath

In the SetupPath procedure, we are given an upper bound 2k+1 on the length of the shortest
remaining augmenting path, and we want to find and “set up” a collection of vertex-disjoint
augmenting paths, in O(k) rounds. Setting up a path means assigning the path a unique
path ID, informing all path nodes that they are on the path, and having them confirm
that they will participate in the path. Once this is done, we augment the matching along
all augmenting paths that were successfully set up. (To augment along the path, we only
need each path node to know its successor and predecessor on the path.) Note that unlike
Hopcroft–Karp, here we do not insist on finding a maximal set of vertex-disjoint augmenting
paths; we are satisfied with merely finding and setting up one augmenting path, provided
there is one with length ≤ 2k + 1.

Finding the path

To find the augmenting path, we perform a k+ 1-round BFS along alternating paths, starting
from all free nodes. Initially, each free node sends out a BFS token carrying its ID along all
its edges, and tries to have the network propagate this token along alternating paths: in odd
rounds the token is sent along edges that are not in the matching, and in even rounds it is
sent along matching edges. However, every node in the network forwards at most one BFS
token, the first one it receives. (If multiple BFS tokens are received in the same round, the
one with the smallest ID will be forwarded.) BFS tokens received in subsequent rounds (or
in the same round but with a larger ID) are discarded.

During the BFS traversal, each node v stores the BFS token that it propagated, if there
is one, in a local variable srcv. Also, node v stores the neighbor from which srcv was received
in the local variable predv. (If srcv was received from multiple neighbors in the same round,
then v chooses an arbitrary neighbor.)

An augmenting path is detected in round r if in this round, two adjacent nodes u, v
both send each other BFS tokens of distinct free nodes srcu 6= srcv. This means that
the alternating-path BFS started by srcu has “met” the one started by srcv, yielding an
augmenting path (i.e., an alternating path that starts and ends at a free node).

We show that if 2`+ 1 is the length of the shortest augmenting path in the graph, u is
the free node with the minimum ID among the nodes that have augmenting paths of length
2`+ 1, and v is the node with the minimum ID to which u has an augmenting path of length
2` + 1, then some augmenting path between u and v is detected in round ` + 1. This is
because only free nodes start a BFS traversal, and no free node can “block” the BFS started
by u unless it has a shorter alternating path to the same node. But this would then imply

DISC 2018

6:8 Distributed Approximate Maximum Matching in the CONGEST Model

a shorter augmenting path than the one u has, and we assumed that u has the shortest
augmenting path present. Since we know that there exists an alternating path with length
at most 2k + 1, we only need to develop the BFS to depth k + 1 before some augmenting
path is detected. Therefore this phase requires k + 1 rounds.

Setting up the path

When u and v detect an augmenting path in round r, they assign it the path identifier
(r, {srcu, srcv} , {u, v}). Path identifiers are sorted in lexicographic order, and we assume
some fixed ordering on unordered pairs of IDs. If a node detects more than one augmenting
path at the same time, it keeps the one with the smallest path identifier. (This can happen
if the augmenting path has length 1, that is, if there are two adjacent free nodes.)

Next, u and v inform all the path nodes of the detected path’s ID, by sending messages
backwards along the pred pointers of the nodes on the path. As we traverse backwards, each
node stores its successor on the path in a local variable succ. (Note that the succ fields point
“inwards”, towards the edge that detected the path.)

Eventually, each free node receives a (possibly empty) list of augmenting path IDs for
which it is an endpoint. (Note that each inner path node can only receive one path ID; only
endpoints of the path may receive more than one path ID.) At this point, each free node
selects the smallest path ID (in lexicographic order), and discards the others. We know that
of the augmenting paths detected, the one with the smallest path ID will be selected by both
its endpoints, so at least one augmenting path survives.

We now sweep forward along each selected path, to confirm that it is properly set up:
the two endpoints send each other confirmation messages carrying the path ID, by having
the path nodes forward the messages along the path. If an inner path node does not receive
confirmation from both endpoints, it discards the path, and similarly, if an endpoint of the
path does not receive confirmation from the other endpoint, it discards the path.

5 Fractional Matching Approximation

We first describe a distributed approximation scheme for the weighted fractional matching
problem. The algorithm is based on distributed algorithm for general covering and packing
linear programs, which appeared in [19]. Further, the distributed algorithm in [19] itself
is based on a sequential fractional set cover algorithm by Eisenbrand, Funke, Garg, and
Könemann [9].

Reduction to the Bipartite Case: We first show how to reduce the problem of computing
a fractional (weighted) matching for a general graph G to the fractional maximum matching
problem on two-colored bipartite graphs.

I Lemma 7. Let G = (V,E) be a graph with positive edge weights we ≥ 0 for all e ∈ E and
let H = (V × {0, 1} , EH) be the bipartite double cover of G.
(1) Let x be a fractional matching of G and let y be an edge vector of H such that for every

edge {(u, i), (v, 1− i)} of H, y{(u,i),(v,1−i)} = x{u,v}. Then, y is a fractional matching
of H of size

∑
e∈EH

weye = 2 ·
∑
e′∈E we′xe′ .

(2) Let z be a fractional matching of H and let y be an edge vector of G such that for
every edge {u, v} of G, y{u,v} = (z{(u,0),(v,1)} + z{(u,1),(v,0)})/2. Then y is a fractional
matching of G of size

∑
e∈E weye = 1

2 ·
∑
e′∈EH

we′ze′ .

Proof. Follows immediately from the definition of the bipartite double (cf. Section 3). J

M. Ahmadi, F. Kuhn, and R. Oshman 6:9

Distributed Algorithm for 2-Colored Bipartite Graphs

In light of Lemma 7, we can w.l.o.g. assume that we are given a weighted bipartite graph
B = (V0∪̇V1, E, w) for which the bipartition is given (i.e., a node knows whether it is in V0
or in V1). We further define V := V0 ∪ V1 to be the set of all nodes.

Formulation as a Linear Program. The maximum weighted fractional matching problem
can be phrased as a packing linear program (LP). As it will be convenient to describe
our algorithm, we use the following non-standard way to describe the maximum matching
problem as an LP. Consider some fractional matching z that assigns a value ze ≥ 0 to each
edge e ∈ E. Instead of directly computing the variables ze, we make a simple change of
variable and we assign a value ye ≥ 0 to each node such that ye = we · ze. In terms of the
variables ye, we then obtain the following packing LP:

max
∑
e∈E

ye s.t. ∀v ∈ V :
∑

e∈E:v∈e

ye
we
≤ 1 and ∀e ∈ E : ye ≥ 0. (1)

After solving (1), we obtain a weighted fractional machting z of the same quality by setting
ze := ye/we for each edge e ∈ E. The dual covering LP of (1) is defined as follows:

min
∑
v∈V

xv s.t. ∀e = {u, v} ∈ E : xu
we

+ xv
we
≥ 1 and ∀v ∈ V : xv ≥ 0. (2)

Note that (2) is a variation of the fractional vertex cover LP. We will design an algorithm that
solves (2) and (1) at the same time. The algorithm is based on an adaptation of the greedy
set cover algorithm (the vertex cover problem is a special case of the set cover problem). It
is therefore most natural to think of the algorithm primarily as an algorithm for solving (2).

The Distributed Fractional Matching Algorithm. Our algorithm has a real-valued param-
eter α > 1 and an integer parameter f ≥ 1. The values of both parameters will be fixed later.
Recall that we assume that all edge weights we are normalized and the node know a value
W ≥ 1 such that 1/W < we ≤ 1 for all edges e ∈ E.

The algorithm maintains a variable xv ≥ 0 for each node v ∈ V and variables ye ≥ 0 and
re ∈ [0, 1] for each edges e ∈ E. Initially, we set xv := 0, ye := 0, and re := 1 for all nodes
v ∈ V and all edges e ∈ E. Throughout the algorithm, the values of xv and ye only increase
and the value of re only decreases. We further define a generalized notion of the degree of a
node v as γ(v) :=

∑
e∈E:v∈e

re

we
and we define γ̂(v) := maxu∈{v}∪N(v) γ(u).

Our algorithm consists of phases: a node v participates in a phase as long as γ(v) > 0
and v terminates as soon as γ(v) = 0. Alg. 1 gives the details of a single phase.

Before analyzing the algorithm in detail, we make some simple observations. First note
that whenever we increase some variable xv by 1, in line 8, we make sure that the total
increase to the edge variables ye is also equal to 1. The increase of the variables ye is
proportional to their contribution to the generalized node degree γ(v). At the end, we
therefore have

∑
v∈V xv =

∑
e∈E ye. Further, consider some node v ∈ V and some incident

edge e. Each time, we increase xv by 1, we divide re by a factor α1/we . We set re = 0 as
soon as re becomes less than α−f at the end of the algorithm, for every edge e = {u, v}, we
therefore have xu + xv ≥ we · f and thus xu

we
+ xv

we
≥ f . Hence, all inequalities of the LP (2)

are “over-satisfied” by a factor at least f and we can therefore obtain a feasible solution x′

for LP (2) by setting x′v := xv/f . The solution y for the fractional matching LP (1) is
feasible. In order to obtain a feasible solution y′, we compute the value Yv :=

∑
e∈E:v∈e

ye

we

for each nodes v and for each edge e = {u, v}, we set y′e := ye/max {Yu, Yv}. By LP duality,

DISC 2018

6:10 Distributed Approximate Maximum Matching in the CONGEST Model

Algorithm 1: A single phase of the fractional matching algorithm.
1 for i ∈ {0, 1} do
2 for all v ∈ Vi in parallel do
3 if γ(v) > 0 then
4 θv := γ̂(v)/α;
5 while γ(v) ≥ θv do
6 xv := xv + 1;
7 for all e ∈ E : v ∈ e do
8 ye := ye + re/we

γ(v) ; re := re/α
1/we ;

9 if re ≤ α−f then re := 0

the optimal solutions of (1) and (2) have the same values and we can therfore lower bound
the approximation ratio of our fractional matching algorithm by the ratio f/maxv∈V Yv ≤ 1.
The following lemma and corollary show that for suitable choices of the parameters α and f ,
this ratio can be made arbitrarily close to 1. The proof is similar to the analyses in [9,19]
and it appears in the full version of this paper [1].

I Lemma 8. At the end of running the above fractional weighted matching algorithm, for
all nodes v ∈ V , we have

Yv ≤
α2

α− 1 ·
(

ln(W∆) + (f + 1) lnα
)
.

I Corollary 9. Let ε ∈ (0, 1/2] be a parameter. By choosing α = 1 + ε/c and choosing
f = 2c · ln(∆W)/ε2 for a sufficiently large constant c, the above fractional matching algorithm
can be used to compute a (1− ε)-approximate fractional weighted matching in an arbitrary
weighted graph G = (V,E).

It remains to bound the time complexity of the algorithm in the distributed setting.
The proof appears in the full version of this paper [1]. It shows that a single phase of the
algorithm can be implemented in O(1) CONGEST model rounds and that the total number
of phases is O(log(W∆)/ε2).

I Lemma 10. The described fractional weighted matching algorithm can be implemented in
O(f + logα(W∆)) rounds in the CONGEST model.

Together with Corollay 9, Lemma 10 directly proves Theorem 2.

6 Deterministic Rounding of Fractional Matchings

For rounding the obtained fractional matching from Section 5, we adapt the technique by
Manuela Fischer in [11]. In [11], Fischer shows how to round a fractional matching to an
integral matching at the cost of losing a non-trivial constant factor (in the unweighted and in
the weighted case). We show that a simple adaptation of the algorithm allows to keep the loss
within a (1 + ε)-factor in the unweighted bipartite case. We further show that the method
can also be generalized to the weighted bipartite case while only losing a (1 + ε)-factor in
the rounding.

M. Ahmadi, F. Kuhn, and R. Oshman 6:11

Normalizing the Fractional Matching. As for the fractional maximum matching problem
in Section 5, we first solve the problem in 2-colored bipartite graphs, and we then show how
to extend the solution to general graphs. The following lemma further shows that we can
assume that we start with a normalized fractional matching where all the fractional edge
values are of the form 2−i for some integer i ≥ 0. The relatively straightforward proof of the
following lemma is omitted in this short version of the paper.

I Lemma 11. At the cost of at most an ε-fraction of an optimal matching, the problem of
rounding a weighted fractional matching y of a graph G with maximum degree ∆ can be
reduced to the problem of rounding a weighted fractional matching y′ on a multigraph G′ such
that for all edges e of G′, we have y′e = 2−i for some non-negative integer i = O

(
log(∆/ε)

)
.

Basic Rounding Strategy. We use the same basic rounding approach as Fischer [11]. In
the following, we assume that we are given a biparite (multi-)graph B = (V0∪̇V1, E) and a
normalized fractional matching y that assigns a value ye = 2−i for some integer i ≥ 0 to
each edge e ∈ E. For convenience, let Ei be the set of edges e ∈ E for which ye = 2−i and
let Bi := (V0∪̇V1, Ei) be the subgraph of B induced by the edges in Ei. Assume further
that k is the largest integer such that Ek 6= ∅, i.e., for which there is some edges e ∈ E with
ye = 2−k. For a given parameter δ > 0, we describe a rounding algorithm that rounds each
edge e ∈ Ek either to value 0 or to value 2−(k−1) such that the total value of the fractional
(weighted) matching does not decrease by more than a factor 1− δ.

In order to do the rounding of the edges in Ek, we define a virtual graph B′k as follows.
For each node v ∈ V , let dk(v) be the number of edges in Ek that are incident to v. If
dk(v) ≥ 1, we create sv := ddk(v)/2e virtual nodes v1, . . . , vsv

and we arbitrarily divide the
dk(v) edges in Ek that are incident to v among the nodes v1, . . . , vsv such that each node vi
receives at most two such edges (i.e., if dk(v) is even, all virtual nodes vi get two edges and if
dk(v) is odd, one of the virtual nodes gets one edge and the others get two edges). Note that
the graph B′k has maximum degree 2 and because B′k is bipartite, it means that it consists of
disjoint paths and even cycles. The next lemma shows that we can use an arbitrary matching
of B′k to select the set of edges in Ek, which are rounded up to value 2−(k−1). The proof of
the lemma appears in the full version [1].

I Lemma 12. Let M ′k be a matching of the graph B′k and let Mk the corresponding subset
of edges of Ek. Further, let y′ be obtained from the fractional matching y of B by setting
y′e = ye for all e 6∈ Ek, y′e = 2ye for all e ∈Mk and y′e = 0 for all e ∈ Ek \Mk. Then y′ is a
valid fractional matching of B.

Further, if the total weight of M ′k is at least (1− δ)/2 of the total weight of B′k for some
δ ≥ 0, the total weight of y′ is at most a (1− δ)-factor smaller than the total weight of y.

The above rounding of edges is the main difference between the approach of [11] and our
algorithm. In [11], to be on the safe side, the fractional matching value of the edge incident to
a virtual node of degree 1 is always rounded down unless the total fractional matching value
at the respective node is far from 1. This simple change makes the rounding more efficient
and it also makes it easier to argue that the rounded matching is not much smaller than
the original matching, in particular in the case of weighted matchings. Lemma 12 implies
that rounding fractional matchings to integral matchings essentially boils down to computing
almost maximum (weighted) matchings in graphs of maximum degree 2.

Approximating Maximum Matching in Paths and Cycles. As discussed above, Lemma 12
essentially reduces the problem of rounding (weighted) fractional matchings to solving the
weighted maximum matching problem in paths and cycles.

DISC 2018

6:12 Distributed Approximate Maximum Matching in the CONGEST Model

I Lemma 13. Let G = (V,E) be a weighted n-node graph with maximum degree 2 and
assume that W is the total weight of all edges of G. Let δ > 0 be a parameter, and let g be
the length of the shortest odd cycle of G.4 In the CONGEST model, a matching of weight at
least g−1

g · (1− δ) · W/2 can be computed in time O
(1
δ · log∗ n

)
.

If G = (V0∪̇V1, E) is a bipartite graph for which the bipartition (V0, V1) is given, there is
an O(1/δ)-time algorithm that computes a matching of total weight at least (1− δ)W/2.

Proof Sketch. The full proof of the lemma appears in the full version [1]. The main idea
of the proof is as follows. For short paths and cycles, it is straightforward to compute the
required matchings. For long paths, we define an edge to be `-light if its weight is at most the
average weight in some subpath of length `. We then choose a set L of `-light edges such that
after removing those edges, the matchings of the remaining paths can be computed efficiently
(either because the paths are sufficiently short or in the case of 2-colored bipartite graphs
because we have a 2-edge coloring of the paths that allows to find the matching). If the `-light
edges in L are sufficiently separated, one can show that we only lose a (1−O(1/`))-factor in
the matching size. J

Putting the Pieces Together. We now have all the tools that are needed for the rounding
and we can therefore prove Theorem 3.

Proof of Theorem 3. First of all, we assume that y is at least a 1/3-approximation. If not,
one can directly apply the weighted (2 + ε)-approximation algorithm of [11] to obtain the
claim of the theorem. Because y is at least a 1/3-approximation and because the optimal
fractional matching size is at least

∑
e∈E we/∆, we directly round down matching values

that are smaller than ε/(12∆), i.e., if ye ≤ ε/(12∆), we set ye := 0. This reduces the value
of the weighted fractional matching y at most by a factor (1− ε/4).

Using Lemma 7, we now first move to the bipartite double cover of G and by using
Lemma 11, we create a multi-graph in which all matching values are negative powers of 2.
Assume that the smallest matching value is 2−k. Because all matching values of y are
at least ε/(12∆), we have k = O(log(∆/ε)). We apply k iterations of the basic rounding,
each time, we round the edges of the currently smallest values. In order to lose at most
another (1 − ε/4)-factor throughout the k phases of rounding, we make sure that in each
of the k iterations, we only lose a (1−O(ε/k))-factor. In Lemma 12, we therefore have to
set δ = O(ε/k) = O(ε/ log(∆/ε)). Because B′k is a 2-colored bipartite graph, Lemma 13
implies that the matching of B′k which is necessary by Lemma 12 can be computed in time
O(1/δ) = O(log(∆/ε)/ε). After the k steps of rounding, we therefore obtain a matching
of the bipartite double cover H of G of size at least (1− ε/2) times the value of the given
fractional matching of H. When using Lemma 7 to transform this matching back to G, we
only obtain a fractional matching of G. However, this fractional matching is half-integral
and rounding it to an integer matching can therefore be achieved by another application of
Lemma 13. However, this time, we do not have a 2-coloring of the graph and G might also
not be bipartite. The time for this last rounding step is therefore O(log∗ n/ε) and we lose a
factor (1−O(ε)) · g−1

g . J

4 Note that if G is bipartite, we have g = ∞.

M. Ahmadi, F. Kuhn, and R. Oshman 6:13

7 Lower Bound

In this section we show that computing a (1−O(1/
√
n))-approximation to the maximum

fractional matching requires Ω(
√
n) rounds, even in bipartite graphs of diameter O(logn),

and even for randomized algorithms which may err with constant probability.
Our graph construction is based on [27]: it is a collection of Θ(

√
n) long paths, of

length Θ(
√
n), connected to each other by a tree, which reduces the diameter to O(logn).

The lower bound is by reduction from a 2-party communication complexity problem that
we introduce for this purpose. Our lower bound is, very informally speaking, “all about”
distinguishing even paths from odd paths; the communication complexity problem reflects
this, and it asks the players to distinguish “odd inputs” from “even inputs”.

One might wonder why we do not simply reduce from Set Disjointness, as is usually done
(e.g., in [27]). The reason is that Set Disjointness is a decision problem: given sets X,Y ⊆ [n],
the players must decide whether X ∩ Y = ∅. This suffices for [27], because the typical setup
there is that the input graph has some marked edges in it, and the goal is to decide whether
the subgraph induced by the marked edges satisfies some property. In contrast, here we are
interested in a search problem: unlike [27], we do not have a set of marked edges as part of
the input; there is only the network graph, on which the algorithm must approximate the
maximum fractional matching.

Another difficulty that we must overcome is that our reduction does not allow both
players to compute the same output. Instead, the players may output different bits, and we
view their answer is the Boolean AND of their output bits.

The 2-Player Communication Problem

Let XOR-to-And, or XA for short, be the following problem: the players receive input bits
x, y ∈ {0, 1}, respectively, and their goal is to output bits a, b ∈ {0, 1}, respectively, such
that a∧ b = x⊕ y. That is, if x⊕ y = 1, then both players should output 1, but if x⊕ y = 0,
then at least one player should output 0.

For n ≥ 1, let PXAn,δ (“promise XOR-to-And”) be the following problem: the players are
given n copies of XA, x1, y1, . . . , xn, yn, with the promise that for at least n/3 copies i we
have xi ⊕ yi = 1, and for at least (2/5)n copies i we have xi ⊕ yi = 0. The goal is to solve at
least δn of the copies correctly; that is, the players should produce outputs a1, b1, . . . , an, bn
such that for at least δn coordinates i we have ai ∧ bi = xi ⊕ yi. The players are not charged
for writing their outputs, only for the communication between them.

I Theorem 14. The randomized communication complexity of PXAn,δ is Ω((1− δ)n).

We omit the proof of the communication lower bound here, as it uses standard techniques
in information complexity [4]; see the full version [1] for this proof.

The Reduction

Given a CONGEST algorithm A that computes a (1−Θ(1/
√
n))-multiplicative approxima-

tion to the maximum fractional matching, we construct a 2-party protocol for PXAΘ(
√
n,δ)

(for a small constant δ).
Fix a parameter k = Θ(

√
n), and assume for simplicity that n/k is an integer. Assume

that the algorithm A runs in time at most n/k − 1 = O(
√
n).

On inputs x, y ∈ {0, 1}k, Alice and Bob construct a graph Gx,y = (V,Ex,y), consisting of
k paths, each of length 2n/k, denoted π0, . . . , πk−1, where πi = (i, 0), (i, 1), . . . , (i, 2n/k)
for each i ∈ [k].

DISC 2018

6:14 Distributed Approximate Maximum Matching in the CONGEST Model

A complete binary tree, with n/k+1 leaves denoted `0, . . . , `n/k. Each leaf `i is connected
to each path node (j, 2i) for j = 0, . . . , n/k. The edges {{`i, (j, 2i)}}j∈[k],i∈[n/k+1] are
called bridges.

An additional n/k + 1 nodes denoted x0, . . . , xn/k, with an edge {`i, xi} connecting xi to
the tree leaf `i for each i ∈ [n/k + 1]. Nodes x0, . . . , xn/k are called spines.

For each i ∈ [k], if xi = 1, Alice prepends an edge eAi = {(i, A), (i, 0)} at the beginning of
the path πi.

For each i ∈ [k], if yi = 1, Bob appends an edge eBi = {(i, B), (i, 2n/k)} at the end of the
path πi.

Let πx,yi be the extended path πi, after Alice or Bob either add or do not add their edge
to their respective endpoints of πi. The length of each extended path πx,yi is 2n/k + 1 if
xi ⊕ yi = 1, and either 2n/k or 2n/k + 2 if xi ⊕ yi = 0. We argue that a good approximate
matching algorithm must distinguish between these two cases on a noticeable fraction of the
paths, allowing the players to solve PXA.

The players simulate the execution of A for n/k − 1 rounds, until it terminates. The
simulation is very similar to the one in [27], with each player initially simulating almost all
nodes of the graph, but simulating fewer and fewer nodes as the execution of the algorithm
progresses. Specifically, at each time t ≤ n/k − 1, let V tA = [k]× {A, 0, 1, . . . , 2n/k − t} and
V tB = [k]×{B, t, t+ 1, . . . , 2n/k} be the path nodes simulated by Alice and Bob, respectively,
at time t. At each time t, each player can compute the messages that the nodes in V t+1

A

(resp. V t+1
B) will receive in the current round from their neighbors on the path, because it

knows the neighbors’ local states at time t. In addition to the path nodes, the players also
simulate the tree nodes and the spine nodes, fewer and fewer in each round. This part of the
simulation is again very similar to [27], and we omit it here.

When A terminates, both players know the states of nodes (i, n/k−1), (i, n/k), (i, n/k+1)
for each i ∈ [k]. This overlap is important for our reduction.

Let EA be the set of edges such that at the end of the simulation, Alice has the local
states of both endpoints of the edge, and therefore knows the value the algorithm assigned
to this edge. Similarly define EB for Bob. Let M be the fractional matching computed by
the algorithm.

Producing Outputs

After the simulation ends, the players examine the fractional matching produced by the
algorithm, and use it to produce outputs, as follows.

For a path π = u0, . . . , uk−1, let π−1 = uk−1, . . . , u0 be the inverse path, and let
odd-edges(π) = {{u2i, u2i+1} | 2i+ 1 < k} be the set of odd-numbered edges along the path
(the first edge, the third edge, and so on). Note that if π has odd length (an odd number
of edges), then odd-edges(π) = odd-edges(π−1), but if π has even length, then odd-edges(π)
and odd-edges(π−1) are a partition of the edges of π.

For each i ∈ [k], Alice outputs ai = 1 iff from her perspective, every odd-numbered
edge “that she can still see” has value greater than 1/2. That is, ai = 1 iff for every
e ∈ odd-edges(πx,yi) ∩ EA we have M(e) > 1/2. Bob does the same, but he views the
path in reverse, because he is at the other end of it: he outputs bi = 1 iff for every
e ∈ odd-edges((πx,yi)−1) ∩EB we have M(e) > 1/2. We argue that this odd-looking decision
rule indeed captures the fact that M “looks different” on odd-length and even-length paths.

M. Ahmadi, F. Kuhn, and R. Oshman 6:15

Correctness of the Deduction

First, note that we can effectively ignore the bridge edges, and assume that they have weight
zero: If M assigns non-zero weight to some bridge edge {`i, (j, 2i)}, we can “shift” this
weight onto the corresponding spine edge {`i, xi} and zero out the weight of the bridge edge.
The resulting matching M ′ agrees with M on all the path edges, but since it now induces
disconnected components consisting of the k paths and the tree (the bridges have value 0), it
must “solve each path individuallly”. We can also ignore the tree and spines, because they
do not contribute too much to the total value. For simplicity, let us assume here that M
is a (1−Θ(1/

√
n))-multiplicative approximation to the maximum matching on the paths

πx,y1 , . . . , πx,yk .
Next, observe that ifM is a (1−Θ(1/

√
n))-multiplicative approximation to the maximum

fractional matching, then for a constant fraction of our k = Θ(
√
n) paths, M must be an

O(1)-additive approximation to the maximum fractional matching on the path: the optimal
fractional matching has total value at most 2n on all the paths (this is a coarse upper
bound), so missing even a constant value α ∈ (0, 1) on β

√
n paths leads to a multiplicative

approximation of only 1− αβ/(2
√
n).

We set the constants so that for a δ-fraction of the k paths, M is at least a 1/3-
additive approximation. Then we show that for any path πx,yi , if M achieves a 1/3-additive
approximation to the maximum matching on πx,yi , then the players correctly solve coordinate i,
that is, ai ∧ bi = xi ⊕ yi.

The heart of the lower bound is the following simple observation:

I Lemma 15. Let π be a path with 2r + 1 edges, r ≥ 0, and let M be a 1/3-additive
approximation to the maximum fractional matching on π. Then for all e ∈ odd-edges(π) we
have M(e) > 1/2.

Proof. Suppose not, and let e ∈ odd-edges(π) be an edge with M(e) ≤ 1/2. Removing
edge e from π splits the path into two even-length paths (the suffix and the prefix), with
combined length 2r. On an even path of 2i edges, the maximum fractional matching has
total value i, and therefore the total value of M on the two even-length paths is at most r.
Because M(e) ≤ 1/2, the total value of M on π is at most r + 1/2. But the maximum
fractional matching on π has total value r+ 1, so M is not a 1/3-additive approximation. J

I Corollary 16. If M is a 1/3-additive approximation on πx,yi , and xi ⊕ yi = 1 (so πx,yi has
odd length), then for every odd-numbered edge e ∈ odd-edges(πx,yi) we have M(e) > 1/2.

This shows that for odd-length paths that are well-approximated by M , the players do indeed
solve XA correctly. What about even-length paths? Here the situation is even simpler:

I Lemma 17. If xi ⊕ yi = 0, then there exists an edge

e ∈ (odd-edges(πx,yi) ∩ EA) ∪
(
odd-edges((πx,yi)−1) ∩ EB

)
with M(e) ≤ 1/2.

Proof. Recall that when xi⊕yi = 0, the length of πx,yi is even, and therefore odd-edges(πx,yi)
and odd-edges((πx,yi)−1) form a partition of the path edges. Recall also that the overlap of
the edges simulated by the players at the end, EA ∩EB , contains at least two adjacent edges
on each path. Because M is feasible, it assigns value ≤ 1/2 to at least one of these edges,
and since the edge is either in odd-edges(πx,yi) or in odd-edges((πx,yi)−1), at least one of the
players will output 0. J

DISC 2018

6:16 Distributed Approximate Maximum Matching in the CONGEST Model

References
1 M. Ahmadi, F. Kuhn, and R. Oshman. Distributed approximate maximum matching in the

congest model. Technical Report 286, U. Freiburg, Dept. of Computer Science, 2018. URL:
http://tr.informatik.uni-freiburg.de/reports/report286/report00286.pdf.

2 N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

3 R. Bar-Yehuda, K. Censor-Hillel, M. Ghaffari, and G. Schwartzman. Distributed approxi-
mation of maximum independent set and maximum matching. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC), pages 165–174, 2017.

4 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–
732, 2004.

5 L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry
breaking. In Proceedings of 53th Symposium on Foundations of Computer Science (FOCS),
2012.

6 A. Czygrinow and M. Hańćkowiak. Distributed algorithm for better approximation of the
maximum matching. In 9th Annual International Computing and Combinatorics Confer-
ence (COCOON), pages 242–251, 2003.

7 J. Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. Canadian Journal
of mathematics, pages 449–467, 1965.

8 J. Edmonds. Paths, trees, and flowers. J. of Res. the Nat. Bureau of Standards, 69 B:125–
130, 1965.

9 F. Eisenbrand, S. Funke, N. Garg, and J. Könemann. A combinatorial algorithm for
computing a maximum independent set in a t-perfect graph. In Proceedings of 14th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 517–522, 2003.

10 G. Even, M. Medina, and D. Ron. Distributed maximum matching in bounded degree
graphs. In Proceedings of the 2015 International Conference on Distributed Computing and
Networking (ICDCN), pages 18:1–18:10, 2015.

11 M. Fischer. Improved deterministic distributed matching via rounding. In Proceedings of
31st Symposium on Distributed Computing (DISC), pages 17:1–17:15, 2017.

12 M. Fischer, M. Ghaffari, and F. Kuhn. Deterministic distributed edge-coloring via hyper-
graph maximal matching. In Proceedings of 58th IEEE Annual Symposium on Foundations
of Computer Science (FOCS), pages 180–191, 2017.

13 M. Ghaffari, D. G. Harris, and F. Kuhn. On derandomizing local distributed algorithms,
2017. arXiv:1711.02194.

14 M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity of com-
puting maximal matchings. In Proceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 219–225, 1998.

15 M. Hańćkowiak, M. Karoński, and A. Panconesi. A faster distributed algorithm for com-
puting maximal matchings deterministically. In Proceedings of the Eighteenth Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 219–228, 1999.

16 A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal matching. Inf.
Process. Lett., 22(2):57–60, 1986.

17 R. M. Karp and J. E. Hopcroft. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 1973.

18 F. Kuhn and T. Moscibroda. Distributed approximation of capacitated dominating sets.
In Proceedings of 19th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 161–170, 2007.

19 F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proceed-
ings of 17th Symposium on Discrete Algorithms (SODA), pages 980–989, 2006.

http://tr.informatik.uni-freiburg.de/reports/report286/report00286.pdf
http://arxiv.org/abs/1711.02194

M. Ahmadi, F. Kuhn, and R. Oshman 6:17

20 F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local computation: Lower and upper
bounds. J. of the ACM, 63(2), 2016.

21 Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching.
In Proceedings of the 20th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 129–136, 2008.

22 Z. Lotker, B. Patt-Shamir, and A. Rosén. Distributed approximate matching. SIAM
Journal on Computing, 39(2):445–460, 2009.

23 M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15:1036–1053, 1986.

24 Andrew McGregor. Finding graph matchings in data streams. In Approximation, Ran-
domization and Combinatorial Optimization. Algorithms and Techniques, pages 170–181,
2005.

25 D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
26 S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for fractional packing

and covering problems. Mathematics of Operations Research, 20:257–301, 1995.
27 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal

Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012.

28 M. Wattenhofer and R. Wattenhofer. Distributed weighted matching. In Proceedings of
18th International Distributed Computing Conference (DISC), pages 335–348, 2004.

29 Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approxima-
tion algorithm for maximum matchings. In STOC ’09, pages 225–234, 2009.

DISC 2018

State Machine Replication Is More Expensive
Than Consensus

Karolos Antoniadis
EPFL, Lausanne, Switzerland
karolos.antoniadis@epfl.ch

Rachid Guerraoui
EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Dahlia Malkhi
VMware Research, Palo Alto, USA
dmalkhi@vmware.com

Dragos-Adrian Seredinschi
EPFL, Lausanne, Switzerland
dragos-adrian.seredinschi@epfl.ch

Abstract
Consensus and State Machine Replication (SMR) are generally considered to be equivalent prob-
lems. In certain system models, indeed, the two problems are computationally equivalent: any
solution to the former problem leads to a solution to the latter, and vice versa.

In this paper, we study the relation between consensus and SMR from a complexity perspect-
ive. We find that, surprisingly, completing an SMR command can be more expensive than solving
a consensus instance. Specifically, given a synchronous system model where every instance of
consensus always terminates in constant time, completing an SMR command does not necessar-
ily terminate in constant time. This result naturally extends to partially synchronous models.
Besides theoretical interest, our result also corresponds to practical phenomena we identify em-
pirically. We experiment with two well-known SMR implementations (Multi-Paxos and Raft)
and show that, indeed, SMR is more expensive than consensus in practice. One important im-
plication of our result is that – even under synchrony conditions – no SMR algorithm can ensure
bounded response times.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Consensus, State machine replication, Synchronous model

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.7

Related Version A full version of the paper is available at [4], https://infoscience.epfl.ch/
record/256238.

Acknowledgements We wish to thank our colleagues from the Distributed Computing Labor-
atory (DCL) for the many fruitful discussions. We are also thankful towards Willy Zwaenepoel
and Jad Hamza, as well as the anonymous reviewers for providing us with helpful comments.

© Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-Adrian Seredinschi;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karolos.antoniadis@epfl.ch
mailto:rachid.guerraoui@epfl.ch
mailto:dmalkhi@vmware.com
mailto:dragos-adrian.seredinschi@epfl.ch
https://doi.org/10.4230/LIPIcs.DISC.2018.7
https://infoscience.epfl.ch/record/256238
https://infoscience.epfl.ch/record/256238
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 State Machine Replication Is More Expensive Than Consensus

1 Introduction

Consensus is a fundamental problem in distributed computing. In this problem, a set of
distributed processes need to reach agreement on a single value [32]. Solving consensus is one
step away from implementing State Machine Replication (SMR) [49, 31]. Essentially, SMR
consists of replicating a sequence of commands – often known as a log – on a set of processes
which replicate the same state machine. These commands represent the ordered input to
the state machine. SMR has been successfully deployed in applications ranging from storage
systems, e.g., LogCabin built on Raft [43], to lock [13] and coordination [27] services. At
a high level, SMR can be viewed as a sequence of consensus instances, so that each value
output from an instance corresponds to a command in the SMR log.

From a solvability standpoint and assuming no malicious behavior, SMR can use consensus
as a building block. When the latter is solvable, the former is solvable as well (the reverse
direction is straightforward). Most previous work in this area, indeed, explain how to build
SMR assuming a consensus foundation [21, 36, 33], or prove that consensus is equivalent
from a solvability perspective with other SMR abstractions, such as atomic broadcast [14, 42].
An important body of work also studies the complexity of individual consensus instances [28,
22, 35, 47]. SMR is typically assumed to be a repetition of infinitely many consensus
instances [29, 34] augmented with a reliable broadcast primitive [14], so at first glance it
seems that the complexity of an SMR command can be derived from the complexity of the
underlying consensus. We show that this is not the case.

In practice, SMR algorithms can exhibit irregular behavior, where some commands
complete faster than others [12, 40, 54]. This suggests that the complexity of an SMR
command can vary and may not necessarily coincide with the complexity of consensus.
Motivated by this observation, we study the relation between consensus and SMR in terms
of their complexity. To the best of our knowledge, we are the first to investigate this
relation. In doing so, we take a formal, as well as a practical (i.e., experimental) approach.
Counter-intuitively, we find that SMR is not necessarily a repetition of consensus instances.

We show that completing an SMR command can be more expensive than solving a
consensus instance. Constructing a formalism to capture this result is not obvious. We
prove our result by considering a fully synchronous system, where every consensus instance
always completes in a constant number of rounds, and where at most one process in a round
can be suspended (e.g., due to a crash or because of a network partition). A suspended
process in a round is unable to send or deliver any messages in that round. Surprisingly,
in this system model, we show that it is impossible to devise an SMR algorithm that can
complete a command in constant time, i.e., completing a command can potentially require a
non-constant number of rounds. We also discuss how this result applies in weaker models, e.g.,
partially synchronous, or if more than one process is suspended per round (see Section 3.2).

At a high level, the intuition behind our result is that a consensus instance “leaks,”
so that some processing for that instance is deferred for later. Simply put, even if a
consensus instance terminates, some protocol messages belonging to that instance can remain
undelivered. Indeed, consensus usually builds on majority quorum systems [51], where a
majority of processes is sufficient and necessary to reach agreement; any process which is not
in this majority may be left out. Typically, undelivered messages are destined to processes
which are not in the active majority – e.g., because they are slower, or they are partitioned
from the other processes. Such a leak is inherent to consensus: the instance must complete
after gathering a majority, and should not wait for additional processes. If a process is not
in the active majority, that process might as well be faulty, e.g., permanently crashed.

K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi 7:3

In the context of an SMR algorithm, when successive consensus instances leak, the same
process can be left behind across multiple SMR commands; we call this process a straggler.
Consequently, the deferred processing accumulates. It is possible, however, that this straggler
is in fact correct. This means that eventually the straggler can become part of the active
quorum for a command. This can happen when another process fails and the quorum must
switch to include the straggler. When such a switch occurs, the SMR algorithm might not
be able to proceed before the straggler recovers the whole chain of commands that it misses.
Only after this recovery completes can the next consensus instance (and SMR command)
start. Another way of looking at our result is that a consensus instance can neglect stragglers,
whereas SMR must deal with the potential burden of helping stragglers catch-up.1

We experimentally validate our result in two well-known SMR systems: a Multi-Paxos
implementation (LibPaxos [3]) and a Raft implementation (etcd [2]). Our experiments
include the wide-area and clearly demonstrate the difference in complexity, both in terms of
latency and number of messages, between a single consensus instance and an SMR command.
Specifically, we show that even if a single straggler needs to be included in an active quorum,
SMR performance noticeably degrades. It is not unlikely for processes to become stragglers in
practical SMR deployments, since these algorithms typically run on commodity networks [6].
These systems are subject to network partitions, processes can be slow or crashed, and
consensus-based implementations can often be plagued with corner-cases or implementation
issues [8, 30, 13, 25], all of which can lead to stragglers.

Our contribution in this paper is twofold. First, we initiate the study of the relation, in
terms of complexity, between consensus and SMR. We devise a formalism to capture the
difference in complexity between these two problems, and use this formalism to prove that
completing a single consensus instance is not equivalent to completing an SMR command
in terms of their complexity (i.e., number of rounds). More precisely, we prove that it is
impossible to design an SMR algorithm that can complete a command in constant time,
even if consensus always completes in constant time. Second, we experimentally validate our
theoretical result using two SMR systems in both a single-machine and a wide-area network.

Roadmap. The rest of this paper is organized as follows. We describe our system model
in Section 2. In Section 3 we present our main result, namely that no SMR algorithm can
complete every command in a constant number of rounds. Section 4 presents experiments to
support our result. We describe the implications of our result in Section 5, including ways to
circumvent it and a trade-off in SMR. Finally, Section 6 concludes the paper.

2 Model

This paper studies the relation in terms of complexity between consensus and State Machine
Replication (SMR). In this section we formulate a system model that enables us to capture
this relation, and also provide background notions on consensus and SMR.

We consider a synchronous model and assume a finite and fixed set of processes Π =
{p1, p2, . . . , pn}, where |Π| = n ≥ 3. Processes communicate by exchanging messages. Each
message is taken from a finite set M = {m1, . . . }, where each message has a positive and a
bounded size, which means that there exists a B ∈ N+ such that ∀m ∈M, 0 < |m| ≤ B.

1 We note that this leaking property seems not only inherent in consensus, but in any equivalent replication
primitive, such as atomic broadcast.

DISC 2018

7:4 State Machine Replication Is More Expensive Than Consensus

A process is a state machine that can change its state as a consequence of delivering
a message or performing some local computation. Each process has access to a read-only
global clock, called round number, whose value increases by one on every round. In each
round, every process pi: (1) sends one message to every other process pj 6= pi (in total pi

sends n − 1 messages in each round);2 (2) delivers any messages sent to pi in that round;
and (3) performs some local computation.

An algorithm in such a model is the state machine for each process and its initial
state. A configuration corresponds to the internal state of all processes, as well as the
current round number. An initial configuration is a configuration where all processes are
in their initial state and the round number is one. In each round, up to n(n− 1) messages
are transmitted. More specifically, we denote a transmission as a triplet (p, q,m) where
p, q ∈ Π(p 6= q) and m ∈ M . For instance, transmission (pi, pj ,mi,j) captures the sending
of message mi,j from process pi to process pj . We associate with each round an event,
corresponding to the set of transmissions which take place in that round; we denote this event
by τ ⊆ {(pi, pj ,mi,j) : i, j ∈ {1, . . . , n} ∧ i 6= j}. An execution corresponds to an alternating
sequence of configurations and events, starting with an initial configuration. An execution
e+ is called an extension of a finite execution e if e is a prefix of e+. Given a finite execution
e, we denote with E(e) the set of all extensions of e. We assume deterministic algorithms:
the sequence of events uniquely defines an execution.

Failures. Our goal is to capture the complexity – i.e., cost in terms of number of synchronous
rounds – of a consensus instance and of an SMR command, and expose any differences in
terms of this complexity. Towards this goal, we introduce a failure mode which omits all
transmissions to and from at most one process per round.

We say that a process pi is suspended in round r associated with the event τ , if ∀m ∈M and
∀j ∈ {1, . . . , n} with j 6= i, (pi, pj ,m) /∈ τ and (pj , pi,m) /∈ τ , hence |τ | = n(n−1)−2(n−1) =
(n − 1)(n − 2). If a process pi is not suspended in a round r, we say that pi is correct in
round r. In a round associated with an event τ where all processes are correct there are no
omissions, hence |τ | = n(n− 1). A process pi is correct in a finite execution e if there is a
round in e where pi is correct. Process pi is correct in an infinite execution e if there are
infinitely many rounds in e where pi is correct. For our result, it suffices that in each round
a single process is suspended. Note that each round in our model is a communication-closed
layer [18], so messages omitted in a round are not delivered in any later round.

A suspended process represents a scenario where a process is slowed down. This may
be caused by various real-world conditions, e.g., a transient network disconnect, a load
imbalance, or temporary slowdown due to garbage collection. In all of these, after a short
period, connections are dropped and message buffers are reclaimed; such conditions can
manifest as message omissions. The notion of being suspended also represents a model where
processes may crash and recover, where any in-transit messages are typically lost.

There is a multitude of work [44, 45, 47, 9, 48] on message omissions (e.g., due to link
failures) in synchronous models. Our system model is based on the mobile faults model [44].
Note however that our model is stronger than the mobile faults model, since we consider that
either exactly zero or exactly 2(n − 1) message omissions occur in a given round.3 Other
powerful frameworks, such as layered analysis [41], the heard-of model [15], or RRFD [20]
can be used to capture omission failures, but we opted for a simpler approach that can
specifically express the model which we consider.

2 As a side note, if a process pi does not have something to send to process pj in a given round, we simply
assume that pi sends an empty message.

3 If a process p is suspended, then n − 1 messages sent by p and n − 1 messages delivered to p are omitted.

K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi 7:5

Algorithm 1 Consensus.
1: procedure Propose(pi, vi) . pi proposes value vi

2: decision←⊥
3: . round 1
4: ∀p ∈ Π \ {pi}, send(p, vi) . Π is the set of processes
5: values← {vi} ∪ { each value v delivered from process p (∀p ∈ Π \ {pi}) }
6: if |values| 6= 1 then . pi is correct in round 1
7: decision ← deterministicFunction(values)
8: else . pi was suspended
9: . pi cannot decide yet

10: . round k (k ≥ 2): consensus instance completes in round 2
11: ∀p ∈ (Π \ {pi}) ∪ {client}, send(p, decision) . broadcast decided value
12: values← {decision} ∪ { each decision d delivered from process p (∀p ∈ Π \ {pi}) }
13: decision← d where d ∈ values and d 6=⊥

2.1 Consensus
In the consensus problem, processes have initial values which they propose, and have to
decide on a single value. Consensus [10] is defined by three properties: validity, agreement,
and termination. Validity requires that a decided value was proposed by one of the processes,
whilst agreement asks that no two processes decide differently. Finally, termination states
that every correct process eventually decides. In the interest of having an “apples to apples”
comparison with SMR commands (defined below, Section 2.2), we introduce a client (e.g.,
learner in Paxos terminology [33]), and say that a consensus instance completes as soon
as the client learns about the decided value. This client is not subject to being suspended,
and after receiving the decided value, the client broadcasts this value to the other processes.
Algorithm 1 is a consensus algorithm based on this idea.

It is easy to see that in such a model consensus completes in two rounds: processes
broadcast their input, and every process uses some deterministic function (e.g., maximum)
to decide on a specific value among the set of values it delivers. Since all processes deliver
exactly the same set of n− 1 (or n) values, they reach agreement. In the second round, all
processes send their decided value (a process that was suspended in the first round might send
⊥) to all the other processes, including the client. Since n ≥ 3 and at least n− 1 processes
are correct in the second round, the client delivers the decided value (i.e., a value that is
not ⊥) and thus the consensus instance completes by the end of round two. Afterwards
(starting from the third round), the client broadcasts the decided value to all the processes,
so eventually every correct process decides, satisfying termination. Note that if a process is
suspended in the first round (but correct in the second round), it will decide in the second
round, after delivering the decided value from some other process. Algorithm 1 represents
this solution in which the red and blue lines correspond to the synchronous model’s send
and deliver actions respectively.

We remark that Algorithm 1 does not contradict the lossy link impossibility result of
Santoro and Widmayer [44], even though our model permits more than n − 1 message
omissions in a round, since the model we consider is stronger.

We emphasize that although correct processes can decide in the first round, we consider
that the consensus instance completes when the client delivers the decided value. Hence, the
consensus instance in Algorithm 1 completes in the second round. In more practical terms,
this consensus instance has a constant cost.

DISC 2018

7:6 State Machine Replication Is More Expensive Than Consensus

2.2 State Machine Replication
The SMR approach requires a set of processes (i.e., replicas) to agree on an ordered sequence
of commands [31, 49]. We use the terms replica and process interchangeably. Informally,
each replica has a log of the commands it has performed, or is about to perform, on its copy
of the state machine.

Log. Each replica is associated with a sequence of decided and known commands which
we call the log. The commands are taken from a finite set C = {c1, . . . , ck}. We denote
the log with `(e, p) where e is a finite execution, p is a replica, and each element in `(e, p)
belongs to the set C ∪ {ε}. Specifically, `(e, p) corresponds to commands known by replica
p after all the events in a finite execution e have taken place (e.g., `(e, p) = ci1 , ε, ci3). For
1 ≤ i ≤

∣∣`(e, p)∣∣, we denote with `(e, p)i the i-th element of sequence `(e, p). If there is an
execution e and ∃p ∈ Π and ∃i ∈ N+ such that `(e, p)i = ε, this means that replica p does
not have knowledge of the command for the i-th position in its log, while at least one replica
does have knowledge of this command (i.e., ∃p′ 6= p ∈ Π : `(e, p′)i 6= ε). We assume that
if a process knows about a command c, then c exists in `(e, p). To keep our model at a
high-level, we abstract over the details of how each command appears in the log of each
replica, since this is typically algorithm-specific. Additionally, state-transfer optimizations or
snapshotting [43] are orthogonal to our discussion.

An SMR algorithm is considered valid if the following property is satisfied for any finite exe-
cution e of that algorithm: ∀p, p′ ∈ Π and for every i such that 1 ≤ i ≤ min(

∣∣`(e, p)∣∣ ,∣∣`(e, p′)∣∣),
if `(e, p)i 6= `(e, p′)i then either `(e, p)i = ε or `(e, p′)i = ε. In other words, consider a replica
p which knows a command for a specific log position i, i.e., `(e, p)i = ck, where ck ∈ C.
Then for the same log position i, any other process p′ can either know command ck (i.e.,
`(e, p′)i = ck), not know the command (i.e., `(e, p′)i = ε), or have no information regarding
the command (i.e.,

∣∣`(e, p′)∣∣ < i). In this paper, we only consider valid SMR algorithms.
In what follows, we define what it means for a replica to be a straggler, as well as how

replicas first learn about commands.

Stragglers. Intuitively, stragglers are replicas that are missing commands from their log.
More specifically, let L be maxp |`(e, p)|. We say that q is a k-straggler if the number of non-ε
elements in `(e, q) is at most L− k. A replica p is a straggler in an execution e if there exists
a k ≥ 1 such that p is a k-straggler. Otherwise, we say that the replica is a non-straggler.
A replica that is suspended for a number of rounds could potentially miss commands and
hence become a straggler.

Client. Similar to the consensus client, there is a client process in SMR as well. In SMR,
however, the client proposes commands. The client acts like the (n+ 1)-th replica in a system
with n replicas and its purpose is to supply one command to the SMR algorithm, wait until
it receives (i.e., delivers) a response for the command it sent, then send another command,
etc. A client, however, is different from the other replicas, since an SMR algorithm has no
control over the state machine operating in the client and the client is never suspended. A
client operates in lock-step4 as follows:

4 Clients need not necessarily operate in lock-step, but can employ pipelining, i.e., can have multiple
commands outstanding. Practical systems employ pipelining [43, 3, 2], and we account for this aspect
later in our practical experiments of Section 4.

K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi 7:7

sends a command c ∈ C to all the n replicas in some round r;
waits until some replica responds to the client’s command (i.e., the response of applying
the command).5

A replica p can respond to a client command c only if it has all commands preceding c in
its log. This means that ∃i : `(e, p)i = c and ∀j < i, `(e, p)j 6= ε. We say that the client is
suggesting a command c at a round r if the client sends a message containing command c
to all the replicas in round r. Similarly, we say that a client gets a response for command
c at a round r if some replica sends a message to the client containing the response of the
command c in round r.

SMR Algorithm. Algorithm 1 shows that consensus is solvable in our model. It seems
intuitive that SMR is solvable in our model as well. To prove that this is the case, we
introduce an SMR algorithm. Roughly speaking, this algorithm operates as follows. Each
replica contains an ordered log of decided commands. A command is decided for a specific log
position by executing a consensus instance similar to Algorithm 1. The SMR algorithm takes
care of stragglers through the use of helping. Specifically, each replica tries to help stragglers
by sending commands which the straggler might be missing. Due to space constraints, we
defer the detailed description and the proof of the SMR algorithm, which can be seen as a
contribution in itself, to our corresponding technical report [4]. As we show next (Section 3),
no SMR algorithm can respond to a client in a finite number of rounds. Hence, even with
helping, our SMR algorithm cannot guarantee a constant response either. Finally, note that
our definition of a valid SMR algorithm does not include a liveness property since this is
not needed for our result. Nevertheless, the SMR algorithm we propose guarantees that if a
client suggests a command, then the client eventually gets a response.

3 Complexity Lower Bound on State Machine Replication

We now present the main result of our paper. Roughly speaking, we show that there is no
State Machine Replication (SMR) algorithm that can always respond to a client in a constant
number of rounds. We also discuss how this result extends beyond the model of Section 2.

3.1 Complexity Lower Bound
We briefly describe the idea behind our result. We observe that there is a bounded number
of commands that can be delivered by a replica in a single round, since messages are of
bounded size, a practical assumption (Lemma 1). Using this observation, we show that
in a finite execution e, if each replica pi is missing βi commands, then an SMR algorithm
needs Ω(mini βi) rounds to respond to at least one client command suggested in an extension
e+ ∈ E(e) (Lemma 2). Finally, for any r ∈ N+, we show how to construct an execution e
where each replica misses enough commands in e, so that a command suggested by a client
in an extension e+ ∈ E(e) cannot get a response in less than r rounds (Theorem 3). Hence,
no SMR algorithm in our model can respond to every client command in a constant number
of rounds.

I Lemma 1. A single replica can deliver up to a bounded number (that we denote by Ψ) of
commands in a round.

5 We consider that a command is applied instantaneously on the state machine (i.e., execution time for
any command is zero).

DISC 2018

7:8 State Machine Replication Is More Expensive Than Consensus

p1

p2
. . .

pn

a1 a2 . . . an

Figure 1 Constructed execution of Theorem 3. Red dashed lines correspond to rounds where a
replica is suspended. Replica p1 is suspended for a1 rounds, replica p2 for a2 rounds, etc.

Proof. Since any message m is of bounded size B (∀m ∈ M,|m| ≤ B), the number of
commands message m can contain is bounded. Let us denote with ψ the maximum number
of commands any message can contain. Since the number of commands that can be contained
in one message is at most ψ, a replica can transmit at most ψ commands to another replica
in one round. Therefore, in a given round a replica can deliver from other replicas up to
Ψ = (n− 1)ψ commands. In other words, a replica cannot recover faster than Ψ commands
per round. J

I Lemma 2. For any finite execution e, if each replica pi is a βi-straggler (i.e., pi misses βi

commands), then there is a command suggested by the client in some execution e+ ∈ E(e)
such that we need at least dmini(βi/Ψ)e rounds to respond to it.

Proof. Consider an execution e+ ∈ E(e) such that in a given round r, a client suggests to
all replicas a command c, where round r exists in e+ but does not exist in e. This implies
that replicas are not yet aware of command c in e, so command c should appear in a log
position i where i is greater than maxp

∣∣`(e, p)∣∣. In order for a replica to respond to the
client’s command c, the replica first needs to have all the commands preceding c in its log.
For this to happen, some replica needs to get informed about βi commands. Note that from
Lemma 1, a replica can only deliver Ψ commands in a round. Therefore, a replica needs at
least dβi/Ψe rounds to get informed about the commands it is missing (i.e., recover), and
hence we need at least dmini(βi/Ψ)e rounds for the client to get a response for c. J

I Theorem 3. For any r ∈ N+ and any SMR algorithm with n replicas (n ≥ 3), there exists
an execution e, such that a command c which the client suggests in some execution e+ ∈ E(e)
cannot get a response in less than r rounds.

Proof. Assume by contradiction that, given an SMR algorithm, each command suggested by
a client needs at most a constant number of rounds k to get a response. Since we can get a
response to a command in at most k rounds, we can make a replica “miss” any number of
commands by simply suspending it for an adequate amount of rounds.

To better convey the proof we introduce the notion of a phase. A phase is a conceptual
construct that corresponds to a number of contiguous rounds in which a specific replica is
suspended. Specifically, we construct an execution e consisting of n phases. Figure 1 conveys
the intuition behind this execution. In the i-th phase, replica pi is suspended for αi rounds,
and αi 6= αj for i 6= j. The idea is that after the n-th phase, each replica is a straggler
and needs more than k rounds to become a non-straggler and be able to respond to a client
command suggested in a round o, where o exists in e+ but not in e. We start from the n-th
phase, going backwards. In the n-th phase, we make replica pn miss enough commands, say
βn. In general, the number βn of commands is such, that if a client suggests a command

K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi 7:9

at the end of the n-th phase, the client cannot get a response from within k rounds of the
command being suggested. For this to hold, it suffices to miss βn = kΨ + 1 commands. In
order to miss βn commands, we have to suspend pn for at least βnk rounds, since a client
may submit a new command every (at most) k rounds. Thus, we set αn = βnk. Similarly,
replica pn−1 has to miss enough commands (βn−1) such that it cannot get all the commands
in less than k rounds. Note that after pn−1 was suspended for αn−1 rounds, replica pn took
part in αn rounds. During these αn rounds, replica pn−1 could have recovered commands
it was missing. Therefore, pn−1 must miss at least βn−1 = (αn + k)Ψ + 1 commands and
αn−1 = βn−1k. In the same vein, ∀i ∈ {1, . . . , n} βi = ((

n∑
j=i+1

αj) + k)Ψ + 1.

With our construction we succeed in having βi/Ψ = (
n∑

j=i+1
αj) + k + 1/Ψ > k for every

i ∈ {1, . . . , n}. Therefore, using Lemma 2, after the n phases, each replica needs more than
k rounds to get informed about commands it is missing from its log, a contradiction. J

Theorem 3 states that there exists no SMR algorithm in our model that can respond to
every client command in a constant number of rounds.

3.2 Extension to other Models
The system model we use in this paper (Section 2) lends itself to capture naturally the
difference in complexity (i.e., number of rounds) between consensus and SMR. It is natural
to ask whether this difference extends to other system models – and which are those models.
Identifying all the models where our result applies, or does not apply, is a very interesting
topic which is beyond the scope of this paper, but we briefly discuss it here.

Consider models which are stronger than ours. An example of a stronger model is one
that is synchronous with no failures; such a model would disallow stragglers and hence both
consensus and SMR can be solved in constant time. Similarly, if the model does not restrict
the size of messages (see Lemma 1), then an SMR command can complete in constant time,
circumventing our result. We further discuss how our result can be circumvented in Section 5.

A more important case is that of weaker, perhaps more realistic models. If the system
model is too weak – if consensus is not solvable [19] – then it is not obvious how consensus
relates to SMR in terms of complexity. Such a weak model, however, can be augmented, for
instance with unreliable failure detectors [14], allowing consensus to be solved. Informally,
during well-behaved executions of such models, i.e., executions when the system behaves
synchronously and no failures occur [28], SMR commands can complete in constant time.

Most practical SMR systems [16, 13, 43, 40] typically assume a partially synchronous
or an asynchronous model with failure detectors [14], and executions are not well-behaved,
because failures are prone to occur [6]. We believe our result applies in these practical
settings, concretely within synchronous periods (or when the failure detector is accurate,
respectively) of these models. During such periods, if at least one replica can suffer message
omissions, completing an SMR command can take a non-constant amount of time. Indeed,
in the next section, we present an experimental evaluation showing that our result holds in a
partially synchronous system.

4 The Empirical Perspective

Our goal in this section is to substantiate empirically the theoretical result of Section 3. We
first cover details of the experimental methodology. Then we discuss the evaluation results
both in a single-machine environment, as well as on a practical wide-area network (WAN).

DISC 2018

7:10 State Machine Replication Is More Expensive Than Consensus

4.1 Experimental Methodology

We use two well-known State Machine Replication (SMR) systems: (1) LibPaxos, a Multi-
Paxos implementation [3], and (2) etcd [2], a mature implementation of the Raft protocol [43].
We note that LibPaxos distinguishes between three roles of a process: proposer, acceptor,
and learner [33]. To simplify our presentation, we unify the terminology so that we use
the term replica instead of acceptor, the term client replaces learner, and the term leader
replaces proposer. Each system we deploy consists of three replicas, since this is sufficient to
validate our result and moreover it is a common deployment practice [16, 23]. We employ
one client. In LibPaxos, we use a single leader, which corresponds to a separate role from
replicas. In Raft, one of the three replicas acts as the leader.

Using these two systems, we measure how consensus relates to SMR in terms of cost in
the following three scenarios:
1. Graceful: when network conditions are uniform and no failures occur; this scenario only

applies to the single-machine experiments of Section 4.2;
2. Straggler: a single replica is slower than the others (i.e., this is a straggler) but no

failures occur, so the SMR algorithm needs not rely on the straggler;
3. Switch: a single replica is a straggler and a failure occurs, so the SMR algorithm has to

include the straggler on the critical path of agreement on commands.

Due to the difficulty of running synchronous rounds in a practical system, our measure-
ments are not in terms of rounds (as in the model of Section 2). Instead, we take a lower-level
perspective. We report on the cost, i.e., number of messages, and the latency measured at
the client.6 Specifically, in each experiment, we report on the following three measurements.

First, we present the cost of each consensus instance i in terms of number of messages
which belong to instance i, and which were exchanged between replicas, as well as the client.
Each consensus instance has an identifier (called iid in LibPaxos and index in Raft), and
we count these messages up to the point where the instance completes at the client. Recall
that in our model (Section 2.1) we similarly consider consensus to complete when the client
learns the decided value. This helps us provide an “apples to apples” comparison between
the cost of consensus instances and SMR commands (which we describe next).

Second, we measure the cost of each SMR command c. Each command c is associated
with a consensus instance i. The cost of c is similar to the cost of i: we count messages
exchanged between replicas and the client for instance i.7 The cost of a command c, however,
is a more nuanced measurement. As we discussed already, a consensus instance typically
leaks messages, which can be processed later. Also, both systems we consider use pipelining,
so that a consensus instance i may overlap with other instances while a replica is working
on command c. Specifically, the cost of c can include messages leaked from some instance
j, where j < i (because a replica cannot complete command c without having finished all
previous instances) but also from some instance k, with k > i (these future instances are
being prepared in advance in a pipeline, and are not necessary for completing command c).

Third, we measure the latency for completing each SMR command. An SMR command
starts when the client submits this command to the leader, and ends when the client learns
the command. In LibPaxos, this happens when the client gathers replies for that command
from two out of three replicas; in Raft, the leader notifies the client with a response.

6 Note that it is simple to convert rounds to messages, considering our description of rounds in Section 2.
7 For LibPaxos, the cost of consensus and SMR includes additionally messages involving the leader.

K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi 7:11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900
 0

 2

 4

 6

 8

 10

 12

 14

 16
C

o
s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

(a) Graceful scenario: all replicas experience uniform conditions and no failures occur.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900
 0

 2

 4

 6

 8

 10

 12

 14

 16

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

(b) Straggler scenario: one of the three replicas is a straggler.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900
 0

 2

 4

 6

 8

 10

 12

 14

 16

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

Quorum switches
 to include the straggler

(c) Switch scenario: one of the three replicas is a straggler and the active quorum switches to include
this straggler.

Figure 2 Experimental results with LibPaxos on a single-machine setup. We compare the cost of
SMR commands with the cost of consensus instances in three scenarios.

We consider both a single-machine setup and a WAN. The former setup serves as a
controlled environment where we can vary specifically the variable we seek to study, namely
the impact of a straggler when quorums switch. For this experiment, we use LibPaxos and
we discuss the results thoroughly. The latter setup reflects real-world conditions which we
use to validate against our findings in the single-machine setup, and we experiment with
both systems. In all executions the client submits 1000 SMR commands; we ignore the first
100 (warm-up) and the last 50 commands (cool-down) from the results. We run the same
experiment three times to confirm that we are not presenting outlying results.

DISC 2018

7:12 State Machine Replication Is More Expensive Than Consensus

4.2 Experimental Results on a Single Machine

We experiment on an Intel Core i7-3770K (3.50GHz) equipped with 16GB of RAM. Since
there is no network in these experiments, spurious network conditions – which can arise in
practice, as we shall see next in Section 4.3 – do not create noise in our results. To make one
of the replicas a straggler, we make this replica relatively slower through a random delay
(via the select system call) of up to 500us when this replica processes a protocol message.

In Figure 2a we show the evolution of the three measurements we study for the graceful
execution. The mean latency is 5590us with a standard deviation of 730us, i.e., the
performance is very stable. This execution serves as a baseline.

In Figure 2b we present the result for the straggler scenario. The average latency,
compared with Figure 2a, is slightly smaller, at 5005us; the standard deviation is 403us. The
explanation for this decrease is that there is less contention (because the straggler backs-off
periodically), so the performance increases. In this scenario, additionally, there is more
variability in the cost of SMR commands, which is a result of the straggler replica being less
predictable in how many protocol messages it handles per unit of time.

For both Figures 2a and 2b, the average cost of an SMR command is the same as the
average cost of a consensus instance, specifically around 12 messages. There is, however, a
greater variability in the cost of SMR commands – ranging from 5 to 30 messages – while
consensus instances are more regular – between 11 and 13 messages. As we mentioned already,
the variability in the cost of SMR springs from two sources: (1) consensus instances leak
into each other, and (2) the use of pipelining, a crucial part in any practical SMR algorithm,
which allows consensus instances to overlap in time [27, 46].

Pipelining allows the leader to have multiple outstanding proposals, and these are
typically sent and delivered in a burst, in a single network-level packet. This means that some
commands can comprise just a few messages (all the other messages for such a command
have been processed earlier with previous commands, or have been deferred), whereas some
commands comprise many more messages (e.g., messages leaked from previous commands, or
processed in advance from upcoming commands). In our case, the pipeline has size 10, and
we can distinguish in the plots that the bumps in the SMR cost have this frequency. Larger
pipelines allow higher variability in the cost of SMR. Importantly, to reduce the effect of
pipelining on the cost of SMR commands, this pipeline size of 10 is much smaller than it is
used in practice, which can be 64, 128, or larger [2, 3].

Figure 2c shows the execution where we stop one replica, so the straggler has to take
part in the active quorum. The moment when the straggler has to recover all the missing
state and start participating is evident in the plot. This happens at SMR command 450. We
observe that SMR command 451 has considerably higher cost. This cost comprises all the
messages which the straggler requires to catch-up, before being able to participate in the
next consensus instance. The cost of consensus instance 451 itself is no different than other
consensus instances. Since the straggler becomes the bottleneck, the latency increases and
remains elevated for the rest of the execution. The average latency in this case is noticeably
higher than in the two previous executions, at 10730us (standard deviation of 4726us). For
this execution, we observe the same periodical bumps in the cost of SMR commands. Because
the straggler replica is on the critical path of agreement, these bumps are more pronounced
and less frequent: the messages concerning the straggler (including to and from other replicas
or the client) accumulate in the incoming and outgoing queues and are processed in bursts.

K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi 7:13

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180
C

o
s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

(a) Straggler scenario: the replica in Frankfurt is a straggler, since this is the farthest from the leader in
Ireland. The system forms a quorum using the replicas in London and Paris.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

Quorum switches
 to include the straggler

(b) Switch scenario: at SMR command 450 we switch out the replica in London. The straggler in
Frankfurt then becomes part of the active quorum.

Figure 3 Experimental results with LibPaxos on the WAN. Similar to Figure 2, we compare the
cost of SMR commands with the cost of consensus instances.

4.3 Wide-area Experiments

We deploy both LibPaxos and Raft on Amazon EC2 using t2.micro virtual machines [1]. For
LibPaxos, we colocate the leader with the client in Ireland, and we place the three replicas in
London, Paris, and Frankfurt, respectively. Similarly, for Raft we colocate the leader replica
along with the client in Ireland, and we place the other two replicas in London and Frankfurt.
Under these deployment conditions, the replica in Frankfurt is naturally the straggler, since
this is the farthest node from Ireland (where the leader is in both systems). Therefore, we
do not impose any delays, as we did in the earlier single-machine experiments. Furthermore,
colocating the client with the leader minimizes the latency between these two, so the latency
measurements we report indicate the actual latency of SMR.

Figures 3 and 4 present our results for LibPaxos and Raft, respectively. To enhance
visibility, please note that we use different scales for the y and y2 axes. These experiments
do not include the graceful scenario, because the WAN is inherently heterogeneous.

The most interesting observation is for the switch scenarios, i.e., Figures 3b and 4b. In
these experiments, when we stop one of the replicas at command 450, there is a clear spike
in the cost of SMR, which is similar to the spike in Figure 2c. Additionally, however, there is
also a spike in latency. This latency spike does not manifest in single-machine experiments,
where communication delays are negligible. Moreover, on the WAN the latency spike extends
over multiple commands, because the system has a pipeline so the latency of each command
being processed in the pipeline is affected while the straggler is catching up. After this spike,
the latency decreases but remains slightly more elevated than prior to the switch, because
the active quorum now includes the replica from Frankfurt, which is slightly farther away;
the difference in latency is roughly 5ms.

DISC 2018

7:14 State Machine Replication Is More Expensive Than Consensus

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

 100

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

(a) Straggler scenario: the replica in Frankfurt is a straggler. The active quorum consists of the leader
in Ireland and the replica in London.

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

 100

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

Quorum switches
 to include the straggler

(b) Switch scenario: we stop the replica in London at SMR command 450. Thereafter, the active quorum
must switch to include the straggler in Frankfurt.

Figure 4 Experimental results with Raft on the WAN. Similar to Figures 2 and 3, we compare
the cost of SMR commands with the cost of consensus instances.

Beside the latency spike at SMR command 450, these experiments reveal a few other
glitches, for instance around command 830 in Figure 3a, or command 900 in Figure 4b. In
fact, we observe that unlike our single-machine experiments, the latency exhibits a greater
variability. As we mentioned already, this has been observed before [12, 40, 54] and is largely
due to the heterogeneity in the network and the spurious behavior this incurs. This effect is
more notable in LibPaxos, but Raft also shows some variability. The latter system reports
consistently lower latencies because an SMR command completes after a single round-trip
between the leader and replicas [43].

As a final remark, our choice of parameters is conservative, e.g., execution length or
pipeline width. For instance, in executions longer than 1000 commands we can exacerbate
the difference in cost between SMR commands and consensus instances. Longer executions
allow a straggler to miss even more state which it needs to recover when switching.

5 Discussion

The main implication of Theorem 3 is that it is impossible to devise a State Machine
Replication (SMR) algorithm that can bound its response times. There are several conditions,
however, which allow to circumvent our lower bound, which we discuss here. Moreover,
when our result does apply, we observe that SMR algorithms can mitigate, to some degree,
the performance degradation in the worst-case, i.e., when quorums switch and stragglers
become necessary. These algorithms experience a trade-off between best-case and worst-case
performance. We also discuss how various SMR algorithms deal with this trade-off.

K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi 7:15

Circumventing the Lower Bound. Informally, our result applies to SMR systems which
fulfill two basic characteristics: i) messages are bounded in size, and ii) replicas can straggle
for arbitrary lengths of time. Simply put, if one of these conditions does not hold, then we
can circumvent Theorem 3. We discuss several cases when this can happen.8

For instance, if the total size of the state machine is bounded, as well as small in size, then
the whole state machine can potentially fit in a single message, so a straggler can recover in
bounded time. This is applicable in limited practical situations. We are not aware of any
SMR protocol that caps its state. But this state can be very small in some applications,
e.g., if SMR is employed towards replicating only a critical part of the application, such as
distributed locks or coordination kernels [27, 39].

The techniques of load shedding or backpressure [53] can be employed to circumvent
our result. These are application-specific techniques which, concretely, allow a system to
simply drop or deny a client command if the system cannot fulfill that command within
bounded time. Other, more drastic, approaches to enforce strict latencies involve resorting
to weak consistency or combining multiple consistency models in the same application [24],
or provisioning additional replicas proactively when stragglers manifest [17, 50].

Best-case Versus Worst-case Performance Trade-off. When our lower bound holds, an
SMR algorithm can take steps to ameliorate the impact which stragglers have on performance
in the worst-case (i.e., when quorums switch). Coping with stragglers, however, does not
come for free. The best-case performance can suffer if this algorithm expends resources (e.g.,
additional messages) to assist stragglers. Concretely, these resources could have been used
to sustain a higher best-case throughput. When a straggler becomes necessary in an active
quorum, however, this algorithm will suffer a smaller penalty for switching quorums and
hence the performance in the worst-case will be more predictable.

This is the trade-off between best- and worst-case performance, which can inform the
design of SMR algorithms. Most of the current well-known SMR protocols aim to achieve
superior best-case throughput by sacrificing worst-case performance. This is done by reducing
the replication factor, also known as a thrifty optimization [40]. In this optimization, the
SMR system uses only F + 1 instead of 2F + 1 replicas – thereby stragglers are non-existent
– so as to reduce the amount of transmitted messages and hence improve throughput or other
metrics [3, 38, 40]. In the worst-case, however, when a fault occurs, this optimization requires
the SMR system to either reconfigure or provision an additional replica on the spot [37, 38],
impairing performance.

Multi-Paxos proposes a mode of operation that can strike a good balance between best-
and worst-case performance [32]. Namely, replicas in this algorithm can have gaps in their
logs. When gaps are allowed, a replica can participate in the agreement for some command
on log position k even if this replica does not have earlier commands, i.e., commands in log
positions l with l < k. As long as the leader has the full log, the system can progress. Even
when quorums switch, stragglers can participate without recovery. If the leader fails, however,
the protocol halts [52, 11] because no replica has the full log, and execution can only resume
after some replica builds the full log by coordinating with the others. It would be interesting
in future work to experiment with an implementation that allows gaps, but LibPaxos does
not follow this approach [3], and we are not aware of any such implementation.

8 We do not argue that we can guarantee bounded response times in a general setting, only in the model
we consider in Section 2.

DISC 2018

7:16 State Machine Replication Is More Expensive Than Consensus

It is interesting to note that there is not much work on optimizing SMR performance
for the worst-case, e.g., by expediting recovery [11], and this is a good avenue for future
research, perhaps with applicability in performance-sensitive applications. We believe SMR
algorithms are possible where replicas balance among themselves the burden of keeping each
other up to date collaboratively, e.g., as attempted in [7]. This would minimize the amount
of missing state overall (and at any single replica), so as to be prepared for the worst-case,
while minimizing the impact on the best-case performance.

6 Concluding Remarks

We examined the relation between consensus and State Machine Replication (SMR) in terms
of their complexity. We proved the surprising result that SMR is more expensive than a
repetition of consensus instances. Concretely, we showed that in a synchronous system where
a single instance of consensus always terminates in a constant number of rounds, completing
one SMR command can potentially require a non-constant number of rounds. Such a scenario
can occur if some processes are stragglers in the SMR algorithm, but later the stragglers
become active and are necessary to complete a command. We showed that such a scenario
can occur if even one process is a straggler at a time.

Our result – that an SMR algorithm cannot guarantee a constant response time, even
if otherwise the system behaves synchronously – brought into focus a trade-off in SMR.
In a nutshell, this is the trade-off between the best-case performance and the worst-case
performance of an SMR algorithm. On the one hand, such an algorithm can optimize
for the worst-case performance. In this case, the algorithm can dedicate resources (e.g.,
by provisioning additional processes or assisting stragglers) to preserve its performance
even when faults manifest, translating into lower tail latencies; there are certain classes of
SMR-based applications where latencies and their variability are very important [5, 16, 17].
On the other hand, an SMR algorithm can optimize for best-case performance, i.e., during
fault-free periods, so that the algorithm advances despite stragglers being left arbitrarily
behind [26, 40]. This strategy means that the algorithm can achieve superior throughput,
but its performance will be more sensible to faults.

Additionally, we supported our formal proof with experimental results using two well-
known SMR implementations (a Multi-Paxos and a Raft implementation). Our experiments
highlighted the difference in cost between a single consensus instance and an SMR command.
To the best of our knowledge, we are the first to formally – as well as empirically – investigate
the performance-cost difference between consensus and SMR.

References
1 Amazon EC2. http://aws.amazon.com/ec2/. [Online; accessed 9-May-2018].
2 etcd. https://github.com/coreos/etcd. [Online; accessed 9-May-2018].
3 LibPaxos3. https://bitbucket.org/sciascid/libpaxos. [Online; accessed 9-May-2018].
4 Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-Adrian Seredinschi.

State Machine Replication is More Expensive Than Consensus. Technical Report 256238,
EPFL, 2018. URL: https://infoscience.epfl.ch/record/256238.

5 B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravindran. Speeding up Consensus by
Chasing Fast Decisions. In DSN, 2017.

6 Peter Bailis and Kyle Kingsbury. The network is reliable. ACM Queue, 12(7):20, 2014.
7 Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, and Miguel Correia. On the

efficiency of durable state machine replication. In ATC, 2013.

http://aws.amazon.com/ec2/
https://github.com/coreos/etcd
https://bitbucket.org/sciascid/libpaxos
https://infoscience.epfl.ch/record/256238

K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi 7:17

8 Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for the
masses with bft-smart. In DSN, 2014.

9 Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill Winkler. Grace-
fully degrading consensus and k-set agreement in directed dynamic networks. Theoretical
Computer Science, 726:41–77, 2018.

10 Christian Cachin, Rachid Guerraoui, and Luìs Rodrigues. Introduction to Reliable and
Secure Distributed Programming. Springer, 2011.

11 Lásaro Jonas Camargos, Rodrigo Malta Schmidt, and Fernando Pedone. Multicoordinated
agreement protocols for higher availability. In Network Computing and Applications, 2008.

12 Daniel Cason, Parisa J Marandi, Luiz E Buzato, and Fernando Pedone. Chasing the tail
of atomic broadcast protocols. In SRDS, 2015.

13 Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: An engin-
eering perspective. In PODC, 2007.

14 Tushar D. Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

15 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in distrib-
uted systems with benign faults. Distributed Computing, 22(1):49–71, Apr 2009.

16 James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,
Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey
Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi
Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google’s globally distributed database. ACM TOCS, 31(3):8:1–8:22, 2013.

17 Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM,
56(2):74–80, 2013.

18 Tzilla Elrad and Nissim Francez. Decomposition of distributed programs into
communication-closed layers. Science of Computer Programming, 2(3):155–173, 1982.

19 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

20 Eli Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony. In PODC, 1998.

21 Álvaro García-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey. Paxos consensus,
deconstructed and abstracted (extended version). CoRR, abs/1802.05969, 2018.

22 Chryssis Georgiou, Seth Gilbert, Rachid Guerraoui, and Dariusz R. Kowalski. On the
complexity of asynchronous gossip. In PODC, 2008.

23 Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In
SOSP, 2003.

24 Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremental consistency
guarantees for replicated objects. In OSDI, 2016.

25 Heidi Howard and Jon Crowcroft. Coracle: Evaluating Consensus at the Internet Edge. In
SIGCOMM, 2015.

26 Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible Paxos: Quorum Inter-
section Revisited. In OPODIS, 2016.

27 Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX ATC, 2010.

28 Idit Keidar and Sergio Rajsbaum. On the cost of fault-tolerant consensus when there are
no faults: Preliminary version. SIGACT News, 32(2):45–63, 2001.

29 M. Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind Reliable,
Scalable, and Maintainable Systems. O’Reilly Media, 2017.

DISC 2018

7:18 State Machine Replication Is More Expensive Than Consensus

30 Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan Fekete. MDCC:
Multi-data center consistency. In EuroSys, 2013.

31 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Com-
mun. ACM, 21(7):558–565, 1978.

32 Leslie Lamport. The part-time parliament. ACM TOCS, 16(2):133–169, 1998.
33 Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
34 Leslie Lamport. Lower bounds for asynchronous consensus. In Future Directions in Dis-

tributed Computing, pages 22–23. Springer, 2003.
35 Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.
36 Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Stoppable Paxos. TechReport, Microsoft

Research, 2008.
37 Leslie Lamport and Mike Massa. Cheap paxos. In DSN, 2004.
38 Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and Mi-

chael Williams. Replication in the Harp File System. In SOSP, 1991.
39 John MacCormick, Nick Murphy, Marc Najork, Chandu Thekkath, and Lidong Zhou. Box-

wood: Abstractions as the foundation for storage infrastructure. In OSDI, 2004.
40 Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is More Consensus in

Egalitarian Parliaments. In SOSP, 2013.
41 Yoram Moses and Sergio Rajsbaum. A layered analysis of consensus. SIAM Journal on

Computing, 31(4):989–1021, 2002.
42 A. Mostefaoui and M. Raynal. Low cost consensus-based atomic broadcast. In Proceedings.

2000 Pacific Rim International Symposium on Dependable Computing, 2000.
43 Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.

In ATC, 2014.
44 Nicola Santoro and Peter Widmayer. Time is not a healer. In STACS, 1989.
45 Nicola Santoro and Peter Widmayer. Agreement in synchronous networks with ubiquitous

faults. Theoretical Computer Science, 384(2):232–249, 2007.
46 Nuno Santos and André Schiper. Tuning paxos for high-throughput with batching and

pipelining. In International Conference on Distributed Computing and Networking, pages
153–167. Springer, 2012.

47 Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and lower bounds for
consensus under link failures. SIAM Journal on Computing, 38(5):1912–1951, 2009.

48 Ulrich Schmid, Bettina Weiss, and John Rushby. Formally verified byzantine agreement in
presence of link faults. In ICDCS, 2002.

49 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

50 Emil Sit, Andreas Haeberlen, Frank Dabek, Byung-Gon Chun, Hakim Weatherspoon,
Robert Morris, M Frans Kaashoek, and John Kubiatowicz. Proactive Replication for Data
Durability. In IPTPS, 2006.

51 Robert H Thomas. A majority consensus approach to concurrency control for multiple
copy databases. ACM TODS, 4(2):180–209, 1979.

52 Gustavo M. D. Vieira, Islene C. Garcia, and Luiz Eduardo Buzato. Seamless paxos coordin-
ators. CoRR, abs/1710.07845, 2017. arXiv:1710.07845.

53 Matt Welsh, David Culler, and Eric Brewer. Seda: An architecture for well-conditioned,
scalable internet services. In SOSP, 2001.

54 Benjamin Wester, James A Cowling, Edmund B Nightingale, Peter M Chen, Jason Flinn,
and Barbara Liskov. Tolerating latency in replicated state machines through client specu-
lation. In NSDI, 2009.

http://arxiv.org/abs/1710.07845

Allocate-On-Use Space Complexity of
Shared-Memory Algorithms

James Aspnes1

Yale University Department of Computer Science, New Haven, CT, USA

Bernhard Haeupler
Carnegie Mellon School of Computer Science, Pittsburgh, PA, USA

Alexander Tong2

Yale University Department of Computer Science, New Haven, CT, USA

Philipp Woelfel
University of Calgary, Department of Computer Science, Calgary, AB, Canada

Abstract
Many fundamental problems in shared-memory distributed computing, including mutual exclu-
sion [8], consensus [18], and implementations of many sequential objects [14], are known to require
linear space in the worst case. However, these lower bounds all work by constructing particu-
lar executions for any given algorithm that may be both very long and very improbable. The
significance of these bounds is justified by an assumption that any space that is used in some
execution must be allocated for all executions. This assumption is not consistent with the storage
allocation mechanisms of actual practical systems.

We consider the consequences of adopting a per-execution approach to space complexity,
where an object only counts toward the space complexity of an execution if it is used in that
execution. This allows us to show that many known randomized algorithms for fundamental
problems in shared-memory distributed computing have expected space complexity much lower
than the worst-case lower bounds, and that many algorithms that are adaptive in time complexity
can also be made adaptive in space complexity.

For the specific problem of mutual exclusion, we develop a new algorithm that illustrates an
apparent trade-off between low expected space complexity and low expected RMR complexity.
Whether this trade-off is necessary is an open problem.

For some applications, it may be helpful to pay only for objects that are updated, as opposed
to those that are merely read. We give a data structure that requires no space to represent
objects that are not updated at the cost of a small overhead on those that are.

2012 ACM Subject Classification Theory of computation → Distributed computing models,
Computing methodologies→ Shared memory algorithms, Software and its engineering→Mutual
exclusion

Keywords and phrases Space complexity, memory allocation, mutual exclusion

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.8

1 Supported in part by NSF grants CCF-1637385 and CCF-1650596.
2 Supported by NSF grant CCF-1650596.

© James Aspnes, Bernhard Haeupler, Alexander Tong, and Philipp Woelfel;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

1 Introduction

The space complexity of shared-memory distributed data structures and protocols, measured
in terms of the number of distinct objects needed to implement them, is typically linear
in the number of processes. On the upper bound side, this follows from the ability to
implement most algorithms using a single output register for each process (which might
hold very large values). On the lower bound side, linear lower bounds have long been
known for fundamental problems like mutual exclusion [8] and implementing many common
shared-memory objects [14]; and have been shown more recently for consensus [10, 18].

Linear bounds are not terrible, but they do limit the scalability of concurrent data
structures for very large numbers of processes. The structure of the known lower bound
proofs suggest that executions requiring linear space may be rare: known bounds on mutual
exclusion and perturbable objects may construct exponentially long executions, while the
bounds on consensus depend on constructing very specific executions that are avoidable if
the processes can use randomization.

We propose considering per-execution bounds on the space complexity of a shared-memory
protocol, where the protocol is charged only for those objects that it actually uses during
the execution. This allows for expected space-complexity bounds and high-probability space
complexity bounds, which would be meaningless if an algorithm is charged for all objects,
used or not.

We define this measure formally in Section 2. We believe that our measure gives a more
refined description of the practical space complexity of many shared-memory algorithms,
and observe in our analysis of previously known algorithms in Section 3 that our measure
formalizes notions of allocate-on-use space complexity that have already been informally
considered by other researchers.

Charging only for objects used has strong practical justifications:
In a system that provides storage allocation as part of its memory management, it may
be that unused registers or pages have no actual cost to the system. Alternatively, it may
be possible to construct high-level storage allocation mechanisms even in an adversarial
setting that allow multiple protocols with dynamic space needs to share a large fixed
block of memory.
Given an algorithm with low expected space complexity – or better yet, with high-
probability guarantees of low space complexity – we may be able to run it in fixed space
at the cost of accepting a small chance that the algorithm fails by attempting to exceed
its space bound. Thus randomized space complexity can be a tool for trading off space
for probability of failure.

To show the applicability of our measure, we also include several positive results: In
Section 3, we demonstrate that many known algorithms for fundamental shared-memory
algorithms either have, or can be made to have with small tweaks, low space complexity
in most executions. In Section 4, we describe a new randomized algorithm for mutual
exclusion that achieves O(logn) space complexity with high probability for polynomially
many invocations.

In Section 5, we consider an alternative measure that charges only objects that are
updated and not those that are only read. We show that this is equivalent up to logarithmic
factors to the allocate-on-use measure.

Finally, we discuss open problems in Section 6.

J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:3

1.1 Model
We consider a standard asynchronous shared-memory model in which a collection of n pro-
cesses communicate by performing operations on shared-memory objects. Concurrency
is modeled by interleaving operations; each operation takes place atomically and is a step of
the process carrying it out. For convenience, we assume that the identity of an operation
includes the identity both of the process carrying out the operation and of the object to
which it is applied. An execution is a sequence of operations.

Scheduling is controlled by an adversary. If the processes are randomized, then each
process has access to local coins that may or may not be visible to the adversary. An adaptive
adversary may observe the internal states of the processes, including the results of local coin-
flips, but cannot predict the outcome of future coin-flips. An oblivious adversary simply
provides in advance a list of which process carries out an operation at each step, without
being able to react to the choices made by the processes. We may also consider adversaries
with powers intermediate between these two extremes. In each case, the interaction between
the processes and the adversary gives a probability distribution over executions. But rather
than make this probability distribution explicit, we will usually just generalize the notion of
an execution to a random variable H that maps to each possible execution with a probability
determined by the distribution.

1.1.1 Time complexity
The individual step complexity of an algorithm executed by a single process is the number
of steps carried out by that process before it finishes. The total step complexity is the
total number of steps over all processes. For mutual exclusion algorithms, we may consider
the remote memory reference (RMR) complexity, in which read operations on a register
are not counted if (a) the register has not changed since the last read by the same process
(in the distributed shared memory model or (b) no operation has been applied to the
registers since the last read by the same process (in the cache-coherent model).

2 Space complexity

The traditional measure of space complexity is worst-case space complexity, the number
of distinct objects used by the protocol across all executions. We consider instead the space
complexity of individual executions.

I Definition 1. The space complexity of an execution H of a shared-memory system is
the number of distinct objects O such that H includes at least one operation on O.

For randomized algorithms, this allows us to talk about expected space complexity
– the expected value of the space complexity of the execution resulting from the random
choices of the processes – and high-probability bounds on space complexity – where the
bound applies to the space complexity of all but a polynomially-small fraction of executions.

For adaptive algorithms, this allows the space complexity of an execution to depend on
the number of participating processes.

3 Examples of allocate-on-use space complexity

In this section, we analyze the space complexity of several recent algorithms from the
literature. These include the current best known algorithms (in terms of expected individual
step complexity) for implementing test-and-set [11] and consensus [3] from atomic registers,

DISC 2018

8:4 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

assuming an oblivious adversary. We also include some related algorithms to demonstrate
how charging only for objects used can illuminate trade-offs that might not otherwise be
visible.

I Theorem 2.
1. Let H be an execution of the RatRace algorithm for adaptive test-and-set of Alistarh et

al. [2], with k participants. Then the space complexity of H is Θ(k) with high probability.
2. Let H be an execution of the randomized test-and-set of Alistarh and Aspnes [1]. Then

the space complexity of H is Θ(log logn) with high probability.
3. Let H be an execution of the randomized test-and-set of Giakkoupis and Woelfel [11].

Then the space complexity of H is Θ(logn) with high probability.
4. Let H be an execution of the Θ(log logn) expected time m-valued randomized consensus

protocol of Aspnes [3]. Then the space complexity of H is Θ
(

log logn · log m
log log m

)
in

expectation.

Proof.
1. The RatRace algorithm works by having each processes randomly select a path through

a binary tree until it manages to acquire a node using a splitter [16], then fight its way
back to the root by winning a 3-process consensus object at each node. Both the splitter
and consensus object associated with each node require a constant number of registers
to implement, so the space complexity is determined by the number of nodes in the
subtree traversed by processes. An analysis of a similar algorithm for adaptive collect [6]
is used to show that the size of the tree is Θ(k) with high probability, so Θ(k) of the
O(n3) registers pre-allocated in the RatRace algorithm are used. This implies that the
algorithm uses Θ(k) space with high probability.
Because our model does not require pre-allocating a specific bounded address space,
RatRace can be modified to use an unbounded number of possible processes and still get
the claimed bounds as a function of k.

2. The Alistarh-Aspnes TAS runs the processes through a sequence of Θ(log logn) sifter
objects, each implemented using a one-bit atomic register. The authors show that with
high probability, a constant number of processes remain at the end of this sequence,
which then enter a RatRace TAS object. The sifter array uses Θ(log logn) space in all
executions. From the previous argument, the RatRace object uses O(1) space with high
probability.

3. The Giakkoupis-Woelfel TAS also uses a sequence of sifter objects; these reduce the
number of remaining processes to O(1) in only Θ(log∗ n) rounds, but the cost is an
increase in the space required for each object to O(logn). However, after the first sifter
the number of remaining processes drops to O(logn) with high probability, so subsequent
sifter objects can be implemented in O(log logn) space. This makes the space required
dominated by the initial sifter object, giving the claimed bound.

4. The Aspnes consensus algorithm uses a sequence of rounds, where each round uses a
structure based on the Alistarh-Aspnes sifter to reduce the number of distinct identities
followed by an adopt-commit object to detect agreement. This produces agreement in
Θ(log logn) rounds on average.
Using the adopt-commit of Aspnes and Ellen [4], we get Θ(1) space for each round for
the sifter plus Θ

(
log m

log log m

)
for the adopt-commit object. Multiplying by Θ(log logn)

expected rounds gives the claimed bound. J

J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:5

Curiously, all of the variation in space usage for the test-and-set algorithms analyzed
above can be attributed to RatRace, either by itself or as a backup for a faster algorithm
for winnowing the processes down to a constant number. Using a worst-case measure of
space complexity hides the cost of these winnowing steps behind the polynomial worst-case
space complexity of RatRace. Using our measure instead exposes an intriguing trade-off
between time and space complexity, where the Alistarh-Aspnes algorithm obtains O(log logn)
space complexity at the cost of Θ(log logn) individual step complexity, while the Giakkoupis-
Woelfel algorithm pays O(logn) space complexity but achieves a much better Θ(log∗ n)
individual step complexity. Whether this trade-off is necessary is an open problem.

4 Monte Carlo Mutual Exclusion

In this section, we present a Monte Carlo mutual exclusion algorithm, which uses only
O(logn) registers, and against a weak adaptive adversary satisfies mutual exclusion with
high probability for polynomially many passages through the critical section. This can be
used directly, or can be combined with Lamport’s fast mutual exclusion algorithm [15] to
give an algorithm that uses O(logn) space initially, then backs off to a traditional O(n) space
algorithm when the Monte Carlo algorithm fails. The combined algorithm thus guarantees
mutual exclusion in all executions while using only O(logn) space with high probability for
polynomially many passages through the critical section.

A mutual exclusion algorithm provides two methods, lock() and unlock(). Each process
repeatedly calls lock() followed by unlock(). When a process’s lock() call terminates, it is
in the critical section (CS). The algorithm satisfies mutual exclusion, if for any execution,
no processes are in the critical section at the same time. An infinite execution is fair, if each
process that is in the CS or has a pending lock() or unlock() call either takes infinitely
many steps or enters the remainder section (which happens when it is not in the CS and has
no lock() or unlock() call pending). A mutual exclusion algorithm is deadlock-free, if in
any infinite fair execution, each lock() and unlock() call terminates. If it is randomized,
and in an infinite fair execution each lock() and unlock() call terminates with probability
1, then we call it randomized deadlock-free.

Burns and Lynch [8] proved that any deterministic deadlock-free mutual exclusion
algorithm implemented from registers, requires at least n of them. For fewer than n registers,
the proof constructs exponentially long executions such that at the end two processes end up
in the CS. But there are no mutual exclusion algorithms known that use o(n) registers and
do not fail provided that only polynomially many lock() calls are made. Here we present a
randomized algorithm that has this property with high probability, i.e., it uses only O(logn)
registers, and in an execution with polynomially many lock() calls mutual exclusion is
satisfied with high probability.

Our algorithm works for a weak adaptive adversary, which cannot intervene between a
process’s coin flip and its next shared step. I.e., it schedules a process based on the entire
system state, and then that process flips its next coin, and immediately performs its following
shared memory step.

The time efficiency of mutual exclusion algorithms is usually measured in terms of remote
memory references (RMR) complexity. Here we consider the standard cache-coherent (CC)
model. Each processor keeps local copies of shared variables in its cache; the consistency of
copies in different caches is maintained by a coherence protocol. An RMR occurs whenever a
process writes a register (which invalidates all valid cache copies of that register), and when a
process reads a register of which it has no valid cache copy. The RMR complexity of a mutual

DISC 2018

8:6 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

exclusion algorithm is the maximum number of RMRs any lock() and unlock() method
incurs. The best deterministic mutual exclusion algorithms use O(n) registers and have an
RMR complexity of O(logn) [17], which is tight [5]. Randomized Las Vegas algorithms can
beat the deterministic lower bound (e.g. [7, 13, 12]), but they all use at least a linear or even
super-linear number of registers and stronger compare-and-swap primitives.

Our algorithm has an expected amortized RMR complexity of O(n): In any execution
with L lock() calls, the total expected number of RMRs is O(n · L).

4.1 The algorithm
Pseudocode for our Monte Carlo mutual exclusion algorithm is given in Figure 1.

The idea of the algorithm is that to reach the critical section, a process must climb a
slippery ladder whose rungs are a set of Γ = O(logn) Boolean registers S0, . . . , SΓ−1. Each
of these registers is initially 0.

To climb the ladder, a process executing a lock() call attempts to acquire each rung by
flipping a coin. With probability 1/2, it writes a 1 to the register and continues to the next.
With probability 1/2, it reads the register instead. If the process reads a 0, it tries again; if
a 1, it falls back to the bottom of the ladder. The first process to write a 1 will always rise,
preventing deadlock. Roughly half of the remaining processes that reach each rung will fall,
leaving only a single process with high probability after O(logn) rungs. For processes that
fall, the number of steps they take in their ascent has a geometric distribution, so each such
process takes O(1) steps per attempt.

At the bottom of the ladder, a process spins on an auxiliary register A, that is modified
only by processes executing unlock() calls. This ensures that the expected amortized RMR
complexity of each passage through the critical section is O(n), as each call to unlock()
releases at most n processes, each of which takes O(1) steps before spinning on A again.

To avoid ABAs, register A stores a sequence number that increases with each write. This
means that for infinitely many lock() calls, the values stored in A are unbounded. But if
each process calls lock() at most polynomially many times (after which no guarantee for
the mutual exclusion property can be made anyway), then O(logn) bits suffice for A.

I Theorem 3. There is a randomized exclusion algorithm implemented from O(logn) bounded
shared registers with expected amortized RMR complexity O(n), such that for a polynomial
number of lock() calls, the algorithm is randomized deadlock-free, and satisfies mutual
exclusion with high probability.

4.2 Proof of Theorem 3
The proof is divided into three parts. Section 4.2.1 shows mutual exclusion holds for
polynomially many passages through the critical section with high probability. Section 4.2.2
shows deadlock-freedom. Section 4.2.3 gives the bound on RMR complexity.

4.2.1 Mutual exclusion
We consider a random execution of the algorithm, and let Ct denote the configuration reached
at point t, and Lt denote the number of completed lock() calls at point t.

The idea of this part of the proof is that we define a potential function Φ(Ct) that becomes
exponentially large if more than one process enters the critical section simultaneously. We
then show that the expected value of Φ(Ct) is proportional to Lt, and in particular that it
is small if few lock() calls have finished. This gives a bound on the probability that two
processes are in the critical section using Markov’s inequality.

J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:7

Class Lock(Γ).

shared:
Boolean Register S0, . . . , SΓ−1

Register A initially (⊥, 0)

local:
Integers i, seq = 0 (seq has global scope)

Method lock()

1 i = 0
2 while i < Γ do
3 Choose random rnd ∈ {R, W} s.t. P rob(rnd = W) = 1

2
4 if rnd = R then
5 if Si = 1 then
6 i = 0;
7 end
8 else
9 Si.write(1); i = i + 1

10 end
11 if i = 0 then
12 a = A

13 if S0 = 1 then
14 while A = a do “nothing” done
15 end
16 end
17 end

Method unlock()

18 i = Γ
19 while i > 0 do
20 Si−1.write(0); i := i− 1
21 end
22 A.write(myID, seq + 1); seq = seq + 1

Figure 1 Monte Carlo Mutual Exclusion.

To denote the value of a local variable of a process p, we add subscript p to the variable
name. For example, ip denotes the value of p’s local variable i. To bound the probability of
error, we define a potential function. The potential of a process p ∈ {1, . . . , n} is

α(p) =

−1 if p is poised to read in lines 12-14

and entered this section through line 6
2ip − 1 otherwise.

(4.1)

Hence, α(p) = −1 if and only if p is poised in lines 12-14, and prior to entering that section
it read Sip

= 1 in line 5. The potential of register index j ∈ {0, . . . ,Γ− 1} is

β(j) = −Sj · wj (4.2)

DISC 2018

8:8 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

Finally, the potential of the system at time t is

Φ(Ct) =
n∑

p=1
α(p) +

Γ−1∑
j=0

β(j) + (n− 1) (4.3)

I Lemma 4. Suppose at some point t1 process p reads Sj1 = 1 in line 5, and at a point
t2 ≥ t1 it reads Sj2 = 1 in line 5. Then at some point t′ ∈ [t1, t2] either the value of S0
changes from 0 to 1, or the value of A changes.

Proof. After reading Sj1 = 1 at point t1, process p proceeds to execute line 13, and thus it
executes lines 12-14 during [t1, t2]. Let t′ ∈ [t1, t2] be the point when it reads S0 in line 13.

First assume S0 = 1 at point t′. Then p enters the while-loop in line 14, and does not
leave the while-loop until A has changed at least once since p’s previous read of A in line 12.
Hence, in that case A changes at some point between [t1, t2], and the claim is true.

Now assume S0 = 0 at point t′. We show that S0 changes from 0 to 1 at some point in
[t′, t2], which proves the claim. If j2 = 0, then at point t2 process p reads S0 = 1, so this
is obvious. Hence, assume j2 > 0. Then before point t2 process p must increment its local
variable ip by at least one, which means it writes 1 to S0 in line 9. J

I Lemma 5. For a random execution that ends at point t with L lock() calls completed,
E [Φ(Ct)] ≤ 2n(L+ 1).

Proof. Consider the initial configuration C0 where each process is poised to begin a lock()
call and all registers are 0. Then for all processes p, α(p) = 0, and for all j ∈ {0, . . . ,Γ− 1},
β(j) = 0. Hence, Φ(C0) = n− 1 < n. We bound the expected value of Φ(Ct) in subsequent
steps by case analysis. Whenever the adversary schedules a process p that has a pending
lock() or unlock() call, p will do one of the following:
(1) Set Sip

= 0 in line 20;
(2) Exit Lines 12–14 having entered from line 5;
(3) Exit Lines 12–14 having entered from line 6;
(4) Stay in Lines 12–14;
(5) Choose rndp at random in line 3 and then immediately either read Sip in line 5 or write

Sip
in line 9.

We will show that in cases (1), (2), (4), and (5) the expected change in Φ is less than or
equal to 0. In case (3) Φ increases by 1. However, case (3) can only occur at most twice per
process per successful lock call leading to our bound on Φ(Ct).

(1) Suppose p sets Sip−1 = 0 in line 20. Then α(p) decreases by 2ip−1. If Sip−1 was 1,
then βip−1 increases by Sip−1 and Φ does not change. If Sip−1 was 0, then Φ decreases.

(2) Next suppose p reads S0 = 0 in line 13 or reads some A 6= ap in line 14 having entered
from line 5 (i.e., α(p) = 0). Then p becomes poised to execute line 3 and Φ does not change.

(3) Next suppose p reads S0 = 0 in line 13 or p reads some A 6= ap in line 14 having
entered from line 6p = R (i.e., when α(p) = −1). Then no register gets written, p’s local
variable i remains at value 0, and p ceases to be poised to execute a line in the range 12-14,
so α(p) increases from −1 to 0. So Φ increases by 1.

(4) Next, suppose p reads S0 = 1 in line 13, reads A in line 12, or reads A = ap in line 14.
Then no register gets written, α(p) does not change, and p’s local variable i remains at 0, so
Φ stays the same.

(5) Finally, suppose that when p gets scheduled it chooses rndp at random, and then
it either reads or writes Sip , depending on its random choice rndp. First assume Sip = 0
when p gets scheduled. If rndp = R, then p reads Sip

in line 5, and becomes poised to either

J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:9

read A in line 12 (if ip = 0) entering this section from line 5 so α(p) does not change, or
becomes poised to choose rndp at random again in line 3. In either case Φ does not change.
If rndp = W , then p proceeds to write 1 to Sip

in line 9, increments its local variable i to
i′p = ip + 1, and either enters the critical section (if i′p = Γ), or becomes poised to make
another random choice in line 3. Hence, the value of α(p) increases by 2ip (from 2ip − 1 to
2ip+1 − 1). Since Sip changes from 0 to 1, the value of β(ip) decreases by 2ip . Therefore, the
change of potential Φ is 0.

Now suppose Sip
= 1 when p gets scheduled. If rndp = R, then p reads Sip

= 1 in line 5,
and then immediately sets i to 0, and becomes poised to read A in line 12 entering from
line 6. Thus, p’s new potential is −1. No register gets written, so Φ changes by the same
amount as α(p), which is −2ip . If rndp = W , then p writes 1 to Sip in line 5, then increments
its local variable i to i′p = ip + 1, and either enters the critical section if i′p = Γ, or become
poised to make another random choice in line 3. Hence, p’s potential increases by 2ip . To
summarize, if Sip

= 1, then with probability 1/2 the value of Φ increases by 2ip , and with
probability 1/2 it decreases by 2ip . Therefore the expected value of Φ does not change in
this case.

The only time Φ can increase in expectation is in case (3), in which case it increases by 1.
We will now show that for any process p, this case can happen at most twice per critical
section. Case (3) can only occur by entering lines 12–14 by reading Sip

= 1 in line 5.
By Lemma 4 we have that if process p reads Sip

= 1 at t1 and t2 > t1, then the value
of S0 changes from 0 to 1 or the value of A changes at some point t′ ∈ [t1, t2]. Let Ut be
the number of completed unlock() calls, Lt be the number of completed lock() calls, and
At be the value of Aseq at time t. Since Aseq is only incremented at the end of a completed
lock call, At ≤ Ut. Since an unlock call is preceded by a successful lock() call, Ut ≤ Lt.
Hence At ≤ Lt. The number of times S0 changes from 0 to 1 is also bounded by one more
than the number of completed lock() calls at time t. Value 0 is written to S0 only once per
unlock() call. Thus the number of times S0 changes from 0 to 1 is at most 1 + Ut ≤ 1 + Lt,
and at any time t, the number of times a process p has taken a step of type (3) is at most
1 + 2Lt. We thus have

E [Φ(Ct)] ≤ Φ(C0) + n(1 + 2L) = (n− 1) + n+ 2nL < 2n(L+ 1). (4.4)

J

I Lemma 6. In any execution, at any point there exists at least one process pmax with local
variable ipmax such that Sj = 0 for all j ∈ {ipmax , . . . ,Γ− 1}.

Proof. Consider any point t during an execution of the mutual exclusion algorithm. Let
pmax be a process such that ipmax

is maximal at that point. For the purpose of contradiction
assume there is an index j ∈ {ipmax , . . . ,Γ− 1}, such that Sj = 1 at point t. Let p′ be the
last process that writes 1 to Sj at some point t′ ≤ t. I.e.,

Sj = 1 throughout (t′, t]. (4.5)

Moreover, when p′ writes 1 to Sj in line 9 at point t′, ip′ = j, and immediately after writing
it increments ip′ to j + 1. Since ip′ ≤ ipmax

≤ j at point t, process p′ must at some later
point t∗ ∈ (t′, t) decrement ip′ from j+ 1 to j. This can only happen when p′ executes line 20
while ip′ = j + 1. But then p′ also writes 0 to Sj at t∗ ∈ (t′, t), which contradicts (4.5). J

I Lemma 7. In any reachable configuration C, Φ(C) is non-negative.

DISC 2018

8:10 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

Proof. By Lemma 6 there exists a process pmax such that Sj = 0 for all j ∈ {ipmax,...,Γ−1}.
Then

α(pmax) = 2ipmax − 1 =
ipmax−1∑

j=0
2j ≥

Γ−1∑
j=0

Sj · 2j = −
Γ−1∑
j=0

β(j).

Since α(p) ≥ −1 for each other process p,

Φ(C) = n− 1 +
∑

p

α(p) +
Γ−1∑
j=0

β(j) ≥ n− 1 +
∑

p 6=pmax

α(p) ≥ n− 1 +
∑

p 6=pmax

−1 = 0. J

I Lemma 8. If C is a configuration in which at least two processes are in the critical section,
Φ(C) ≥ 2Γ.

Proof. Suppose that in C, distinct processes p1 and p2 are in the critical section. Then
α(p1) = α(p2) = 2Γ − 1. Since α(p) ≥ −1 for each other process, and β(j) ≥ −2j

Φ(C) ≥
(
2(2Γ − 1) + (n− 2) · (−1)

)
+

Γ−1∑
j=0
−2j

+ (n− 1) = 2Γ (4.6)

J

I Lemma 9. For Γ = c logn, the probability that mutual exclusion is violated at any point
before L lock() calls finish is O

(
L2 · n−c+1).

Proof. Let tj for j ∈ {2, . . . , L} be the point when the j-th lock() call completes. By
Lemma 5, E[Φ(Ctj

)] = O(n · j), so by Lemmas 7, 8 and Markov’s inequality,

Pr
[
Ctj
∈ Cfail

]
≤ Pr

[
Φ(Ctj

) ≥ 2Γ] = O

(
n · j
2Γ

)
.

Mutual exclusion is violated before L lock() calls finish if and only if it is violated after
` lock() calls finish for some ` ∈ {2, . . . , L− 1}. The probability of that event is

Pr
[
∃j ∈ {2, . . . , L− 1} : Ctj

∈ Cfail

]
≤ Pr

[
∃j ∈ {2, . . . , L− 1} : Φ(Ctj

) ≥ 2Γ]
≤

L−1∑
j=2

Pr
[
Φ(Ctj

) ≥ 2Γ] = O

L−1∑
j=2

n(j + 1)
2Γ

 = O

(
n · L2

nc

)
= O

(
L2

nc−1

)
.

J

4.2.2 Deadlock-freedom
I Lemma 10. The algorithm is randomized deadlock-free.

Proof. Consider any point t in an infinite fair execution, in which at least one process has a
pending lock() call. We will show that some process enters the critical section after point t
with probability 1.

Suppose no process enters the critical section in [t,∞). Since unlock() is wait-free,
there is a point t1 ≥ t such that after t1 there are no more pending unlock() calls. Hence,
throughout [t1,∞) no process writes 0 to any register Sj , j ∈ {0, . . . ,Γ− 1}. In other words,
only value 1 may get written to any register Sj after point t1. Since there are only a finite

J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:11

number of registers Sj , there is a point t2 such that no register Sj , j ∈ {0, . . . ,Γ−1}, changes
value after t2. By Lemma 6 there is a process pmax such that at point t2 we have Sj = 0 for
all j ∈ {ipmax

, . . . ,Γ− 1}. Let i∗ be the value of ipmax
at point t2. Thus,

Si∗ = · · · = SΓ−1 = 0 throughout [t2,∞). (4.7)

If i∗ > 0, then at t2 process pmax is not poised to execute a shared memory operation in
lines 12-14 (because ipmax

= i∗ at that point). Hence, pmax is either poised to read in line 5
or to write in line 9. The latter is not possible, as pmax would eventually write 1 to Si∗ ,
contradicting (4.7). If pmax reads in line 5, then it reads 0 from Sipmax

, where ipmax = i∗ > 0,
and so it will begin another iteration of the while-loop with ipmax

= i∗. Repeating the
argument, pmax will execute an infinite number of iterations of the outer while-loop, each
time choosing at random rnd = R, and then reading Si∗ in line 5. This event has probability
0.

Hence, consider the case i∗ = 0. First assume that at some point after t2 some process p
is not poised to execute line 14. Then due to (4.7) the if-condition in line 13 remains false for
p throughout [t3,∞), so p executes an infinite number of iterations of the outer while-loop.
With probability 1 process p will eventually in some iteration choose rnd = W in line 3 and
then write 1 to some register Sj , j ∈ {0, . . . ,Γ− 1}. This contradicts (4.7) since we assumed
i∗ = 0.

Thus, throughout [t2,∞) all processes with pending lock() calls are stuck in the inner
while-loop in line 14. Consider any process q stuck in the while-loop, and let T be the point
when it read A for last time prior to becoming stuck. Let a∗ be the value of A at point T .
Register A gets only written in line 22, and due to the increasing sequence number, the same
value never gets written twice. Hence, since q is stuck in line 14, it reads A = a∗ infinitely
many times, and thus

no process writes A throughout [T,∞). (4.8)

But at some point T1 > T and before q becomes stuck in the while-loop, it reads S0 = 1 in
line 13. By (4.7), after T1 some process writes 0 to S0, and then it will eventually write to A.
This contradicts (4.8). J

4.2.3 RMR Bound
I Lemma 11. In an execution with L invoked lock() calls, the expected total number of
RMRs is O

(
(n+ Γ)L

)
.

The remainder of this section is devoted to the proof of this lemma.
Let Xp,` denote the number of RMRs a process p incurs in line `, where ` is one of 5, 9,

12, 13, 14, 20, and 22. These are the only lines where a process executes shared memory
operations, so the total number of RMRs is obtained by summing over all Xp,`.

We now consider a random execution, and condition on the event that the random
execution contains L lock() calls.

I Lemma 12. For each j ∈ {0, . . . ,Γ− 1}, each process incurs in total at most L+ 1 RMRs
by reading value 0 from register Sj.

Proof. Value 0 is written to Sj (in line 20) only once per unlock() call. Only the first read
by a process in the execution, or the first read following such a write of value 0 can at the
same time return 0 and incur an RMR. Now the claimed bound follows from the fact that
there are at most L lock(), and thus at most L unlock() calls. J

DISC 2018

8:12 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

I Lemma 13. For any process p we have

Xp,12 +Xp,14 ≤ L+ 1 and Xp,13 ≤ 2(L+ 1).

Proof. The value of A changes at most once per unlock() call, and thus at most L times
during execution E. Hence, process p incurs at most L+ 1 RMRs by reading A. This proofs
the claimed upper bound on Xp,12 +Xp,14.

By Lemma 12, the number of RMRs incurred by p’s reads of value 0 in line 13 is at most
L + 1. If process p reads 1 from S0 in that line, then, due to the while-loop in line 14, it
does not read S0 again until A changed at least once since p’s preceding read of A in line 12.
In particular, for each read of value 1 from S0, there is a distinct RMR incurred by p when
reading A in line 14. Hence, Xp,13 ≤ L+ 1 +Xp,14 ≤ 2(L+ 1). J

I Lemma 14. E[
∑

p Xp,9] = O
(
(n+ Γ)L)

)
Proof. For b ∈ {0, 1} let Zb denote the number of times a write in line 9 (by any process)
overwrites value b with value 1. Thus,∑

p

Xp,9 = Z0 + Z1. (4.9)

Since each register Sj is reset to 0 only once per unlock() call, it can change from 0 to 1 at
most L+ 1 times. Accounting for Γ registers, we obtain

Z0 ≤ Γ(L+ 1). (4.10)

Now suppose Sj = 1 when process p makes a random choice in line 3. With probability
1− 1/w process p decides to read, and if it does so, it reads Sj = 1. Hence, p overwrites in 9
a register that has value 1 in expectation at most 1/(1− 1/w)− 1 = 1/(w − 1) times before
p reads a register with value 1 in line 5. By Lemma 4 between any two such reads, either
S0 changes from 0 to 1 or A changes, and each of these events happens at most once per
unlock() call. Thus, the expected number of times process p writes to a register Sj that has
value 1 is at most 1 + 1/(w − 1) · L. Summing over all processes we obtain E[Z1] = O(n · L)
(recall that Z0 = Z1 = 0 if L = 0). Now the claim follows from (4.9) and (4.10). J

I Lemma 15. For any process p we have

E[Xp,5] = O
(
(n+ Γ)L

)
.

Proof. Let Yp denote the number of times process p reads a value of 1 in line 5. By Lemma 4,
between any two such consecutive reads, either the value of A changes, or S0 changes from 0
to 1. Since S0 can change from 1 to 0 at most L times (once for each unlock() call), it can
change from 0 to 1 at most L+ 1 times. The value of A can also change at most once for
each unlock() call, and thus at most L times. Hence, Yp ≤ 2L+ 2.

By Lemma 12 process p incurs at most L+ 1 RMRs by reading value 0 from S0 in line 5.
Now suppose j > 0. Then p reads Sj only after writing 1 to Sj−1 in line 9, which contributes
to Xp,5. Because p chooses to write Sj (instead of reading it) with probability 1/w, the
expected number of times p can read Sj in consecutive iterations of the while-loop (and thus
before changing ip) is at most w − 1. Hence, for all x,

E[Xp,5 |Xp,9 = x] ≤ E[Yp |Xp,9 = x] + L+ 1 + x(w − 1) ≤ 3(L+ 1) + x(w − 1)

Summing this conditional expectation weighted with Pr [Xp,9 = x] over all values of x, yields

E[Xp,5] ≤ 3L+ 3 + E[Xp,9] · (w − 1).

Now the claim follows from Lemma 14. J

J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:13

Lemma 11 now follows from Lemmas 12, 13, and 14:

Proof of Lemma 11. If L = 0, then no process calls lock() or unlock(), so the lemma is
trivially true. Hence, we assume w.l.o.g. that L ≥ 1. Since there are at most L unlock()
calls in total, we have∑

p

Xp,20 ≤ Γ · L and
∑

p

Xp,22 ≤ L. J

4.3 When the algorithm fails
Because the algorithm is randomized, there is a nonzero chance that it violates mutual
exclusion even in short executions. We can guard against this using Lamport’s fast mutual
exclusion algorithm [15], which is now often abstracted in the form of a splitter object [16].
Lamport’s fast mutual exclusion algorithm uses O(1) space and O(1) time to either allow a
process into the critical section or deny it entry, and works as long as at most one process at
a time invokes it. Because our algorithm guarantees mutual exclusion for polynomially many
critical sections with high probability, in most executions we will not see multiple processes
attempting to access the Lamport mutex, and so each process will successfully acquire this
mutex. In the even that a process does not acquire the Lamport mutex, then our algorithm
has failed; the process can then unlock the randomized algorithm and move over to a backup
algorithm to attempt to acquire a mutex there. A 2-process mutex algorithm (using O(1)
space and O(1) time) can then be used to choose between processes leaving the Lamport
mutex and the backup mutex.

Because the combined mutex never uses more than O(n) objects, the high-probability
O(logn) space bound also gives a bound on expected space. The full result is:

I Corollary 16. There is a randomized mutual exclusion algorithm with expected amortized
RMR complexity O(n), such that the algorithm is randomized deadlock-free; satisfies mutual
exclusion in all executions; uses at most O(n) objects in all executions; and, for a polynomial
number of lock() calls, uses O(logn) objects in expectation and with high probability.

5 Simulating allocation on update

With a more refined space complexity measure comes the need to develop new tools for
minimizing this measure. In this section, we describe a technique for designing protocols
where the space complexity is proportional to the number of objects that are updated as
opposed to all objects that are accessed. We distinguish between update operations that
can change an object’s state and read operations that cannot; an object is considered to
be updated if an update operation is applied to it, even if its state is not changed by this
particular application.

Counting only updates corresponds to an allocate-on-update model where merely
reading an object costs nothing. We show that this model gives costs equivalent up to a
factor logarithmic in size of the address space to the allocate-on-use model of Definition 1.

To obtain this result, we construct a data structure where the objects O1, O2, . . . are the
leaves of a binary search tree whose internal nodes are one-bit registers that record if any
object in their subtree has been updated. A read operation on some object Oi starts at the
root of the tree and follows the path to Oi until it sees a 0, indicating that Oi can be treated
as still being in its initial state, or reaches Oi and applies the operation to it. Conversely, an
update operation starts by updating Oi and then sets all the bits in order along the path
from Oi to the root.

DISC 2018

8:14 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

R〈〉

R0

R00

R001

R0010

O4 O5

R0011

O6 O7

R01

O2 O3

O1

Figure 2 Tree derived from Elias gamma code.

The structure of the tree is based on the well-known correspondence between binary
trees and prefix-free codes. Here the left edge leaving each node is labeled with a 0 and the
right edge with a 1, the path to each leaf gives a code word, and the path to each internal
node gives a proper prefix of a code word. The particular code we will use to construct the
tree is the Elias gamma code [9]. This encodes each positive integer i as a sequence of
bits, by first expressing i as its unique binary expansion 1i1i2 . . . in, and then constructing a
codeword γ(i) = 0n1i1i2 . . . in. This gives a codeword for each positive integer i with length
2blg ic+ 1 = O(log i). The first few levels of the resulting tree are depicted in Figure 2.

Pseudocode for the simulation is given in Algorithm 4. Each register is labeled by a
codeword prefix. The objects are labeled with their original indices.

I Lemma 17. Algorithm 4 gives a linearizable implementation of O1, O2, . . . , such that in
any execution in which update operations start on at most m objects, and the maximum index
of these objects is s:
1. The space complexity is O(m log s).
2. The step complexity of an apply(π) operation where π is an update to Oi is O(log i).
3. The step complexity of an apply(π) operation where π is a read of Oi is O(min(log i, log s)).

Proof. We start by showing linearizability.
Given a concurrent execution H of Algorithm 4, we will construct an explicit linearization

S. The first step in this construction is to assign a linearization point to each operation π in
H. If π is an update operation on some object Oi, its linearization point is the first step in
H at which (a) π has been applied to Oi, and (b) every bit in an ancestor of Oi is set. If π is
a read operation, its linearization point is the step at which either π is applied to Oi, or the
process executing π reads a 0 from an ancestor of Oi. In the case of an update operation π,
the linearization point follows the step in which π is applied to Oi and precedes the return
of π (since π cannot return without setting all ancestors of Oi to 1). In the case of a read
operation π, the linearization point corresponds to an actual step of π. In both cases, the
linearization point of π lies within π’s execution interval.

J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:15

Algorithm 4: Applying operation π to object Oi.

procedure apply(π)
Let Oi be the object on which π is an operation
Let x1x2 . . . xk be the encoding of i
if π is an update then

r ← π(Oi)
for j ← k − 1 . . . 0 do

Rx1...xj
← 1

end
return r

else
for j ← 0 . . . k − 1 do

if Rx1...xj = 0 then
return π applied to the initial state of Oi

end
end
// Reached only if all nodes on path are 1
return π(Oi)

end
end

If we declare ρ ≤ σ whenever ρ’s linearization point precedes σ’s, we get a preorder on
all operations in H. Because each operation’s lineaerization point lies within its execution
interval, this preorder is consistent with the observed execution order in H. But it is not
necessarily a total order because update operations that are applied to the same object Oi

may be assigned the same linearization point: the first step at which all ancestors of Oi are
1. Should this occur, we break ties by ordering such updates according to the order in which
they were applied to Oi. We now argue that the resulting total order gives a sequential
execution S on O1, O2, This requires showing that each operation that returns in H

returns the same value in H as it would in S.
Fix some particular Oi. The operations on Oi can be divided into three groups:

1. Read operations that observe 0 in an ancestor of Oi.
2. Update operations that are applied to Oi before all ancestors of Oi are 1.
3. Read or update operations that are applied to Oi after all ancestors of Oi are 1.

That these groups include all operations follows from the fact that any update operation
is applied either before or after all ancestors of Oi are 1, and any read operation that does
not observe a 0 will eventually be applied to Oi after all ancestors of Oi are 1.

Now observe that all operations in the first group are assigned linearization points before
the step at which all ancestors of Oi are 1; in the second group, at this step; and in the
third group, after this step. So S restricted to Oi consists of a group of read operations
that return values obtained from the inital state of Oi, consistent with having no preceding
updates; followed by a sequence of updates linearized in the same order that they are applied
to Oi in H; followed by a sequence that may contain mixed updates and reads that are
again linearized in the same order that they are applied to Oi in H. Since the first group of
operations contain only read operations, the operations applied to Oi in H start with the
same initial state as in S, and since they are the same operations applied in the the same
order, they return the same values.

DISC 2018

8:16 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

For space complexity, observe that any object accessed in the execution is either (a) an
object Oi that is updated; (b) a register that is the ancestor of an object that is updated; or
(c) a register or object all of whose ancestors are set to 1. Since a register is set to 1 only if
it is an ancestor of an updated object, and since each such register has at least one child
that is either in category (a) or (b), there is an injection from the set of registers and objects
in category (c) to their parents in category (b). Category (a) requires m space; (b) requires
O(m log s) space; and thus (c) also requires O(m log s) space. This gives O(m log s) space
total.

Time complexity of updates is immediate from the code; apply(π) traverses O(log i)
nodes to reach Oi. For reads, apply(π) follows a path of length O(log i) that stops early if it
reaches a node not on the path to an updated object; since any such path to an updated
object has length O(log s), this gives the claimed bound. J

We believe that these overheads are the best possible using a binary tree structure.
However, using a tree with higher arity (equivalent to using a code with a larger alphabet)
could produce a lower time complexity overhead at the cost of more wasted space. We do
not have a lower bound demonstrating that this particular trade-off is necessary, so the exact
complexity of simulating allocate-on-update in the simpler allocate-on-access model remains
open.

6 Open problems

While we have started a formal approach to analyzing allocate-on-use space complexity for
shared-memory distributed algorithms, much remains to be done.

We have demonstrated that it is possible to solve mutual exclusion for a polynomial
number of locks with logarithmic space complexity with high probability. Our algorithm
pays for its low space complexity with linear RMR complexity. Curiously, it is possible to
achieve both O(1) space and RMR complexity with high probability using very long random
delays under the assumption that critical sections are not held for long; this follows from
Lamport’s fast mutual exclusion algorithm [15] and is essentially a randomized version of
the delay-based algorithm of Fischer described by Lamport. However, this algorithm has
poor step complexity even in the absence of contention. We conjecture that there exists
a randomized algorithm for mutual exclusion that simultaneously achieves O(logn) space
complexity, O(logn) RMR complexity, and O(logn) uncontended step complexity, all with
high probability assuming polynomially many passages through the critical section.

We have also shown that a system that assumes an allocate-on-update model can be
simulated in the stricter allocate-on-access model with a logarithmic increase in the number
of objects used. It is not clear whether this overhead is necessary, or whether it could be
eliminated with a more sophisticated simulation.

References
1 Dan Alistarh and James Aspnes. Sub-logarithmic test-and-set against a weak adversary. In

Distributed Computing: 25th International Symposium, DISC 2011, volume 6950 of Lecture
Notes in Computer Science, pages 97–109. Springer-Verlag, 2011.

2 Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui. Fast
randomized test-and-set and renaming. In Nancy A. Lynch and Alexander A. Shvartsman,
editors, Distributed Computing, 24th International Symposium, DISC 2010, Cambridge,
MA, USA, September 13-15, 2010. Proceedings, volume 6343 of Lecture Notes in Computer
Science, pages 94–108. Springer, 2010. doi:10.1007/978-3-642-15763-9_9.

http://dx.doi.org/10.1007/978-3-642-15763-9_9

J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:17

3 James Aspnes. Faster randomized consensus with an oblivious adversary. In 2012 ACM
Symposium on Principles of Distributed Computing, pages 1–8, 2012.

4 James Aspnes and Faith Ellen. Tight bounds for adopt-commit objects. Theory of Com-
puting Systems, 55(3):451–474, 2014. doi:10.1007/s00224-013-9448-1.

5 Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR lower bounds for mutual
exclusion and other problems. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 217–
226, 2008. doi:10.1145/1374376.1374410.

6 Hagit Attiya, Fabian Kuhn, C. Greg Plaxton, MirjamWattenhofer, and Roger Wattenhofer.
Efficient adaptive collect using randomization. Distributed Computing, 18(3):179–188, 2006.
doi:10.1007/s00446-005-0143-6.

7 Michael A. Bender and Seth Gilbert. Mutual exclusion with o(logˆ2 log n) amortized work.
In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 728–737. IEEE
Computer Society, 2011. doi:10.1109/FOCS.2011.84.

8 James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion. Inf.
Comput., 107(2):171–184, 1993. doi:10.1006/inco.1993.1065.

9 P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194–203, March 1975. doi:10.1109/TIT.1975.1055349.

10 Rati Gelashvili. On the optimal space complexity of consensus for anonymous processes. In
Yoram Moses, editor, Distributed Computing: 29th International Symposium, DISC 2015,
Tokyo, Japan, October 7-9, 2015, Proceedings, pages 452–466, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg. doi:10.1007/978-3-662-48653-5_30.

11 George Giakkoupis and Philipp Woelfel. On the time and space complexity of randomized
test-and-set. In Darek Kowalski and Alessandro Panconesi, editors, ACM Symposium on
Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18,
2012, pages 19–28. ACM, 2012. doi:10.1145/2332432.2332436.

12 George Giakkoupis and Philipp Woelfel. Randomized abortable mutual exclusion with
constant amortized RMR complexity on the CC model. In Elad Michael Schiller and
Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages
221–229. ACM, 2017. doi:10.1145/3087801.3087837.

13 Danny Hendler and Philipp Woelfel. Randomized mutual exclusion with sub-
logarithmic rmr-complexity. Distributed Computing, 24(1):3–19, 2011. doi:10.1007/
s00446-011-0128-6.

14 Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for non-
blocking implementations. SIAM J. Comput., 30(2):438–456, 2000. doi:10.1137/
S0097539797317299.

15 Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1):1–11,
1987. doi:10.1145/7351.7352.

16 Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci.
Comput. Program., 25(1):1–39, 1995.

17 Jae-Heon Yang and James H. Anderson. A fast, scalable mutual exclusion algorithm. Dis-
tributed Computing, 9(1):51–60, 1995. doi:10.1007/BF01784242.

18 Leqi Zhu. A tight space bound for consensus. In Daniel Wichs and Yishay Mansour,
editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 345–350. ACM, 2016. doi:
10.1145/2897518.2897565.

DISC 2018

http://dx.doi.org/10.1007/s00224-013-9448-1
http://dx.doi.org/10.1145/1374376.1374410
http://dx.doi.org/10.1007/s00446-005-0143-6
http://dx.doi.org/10.1109/FOCS.2011.84
http://dx.doi.org/10.1006/inco.1993.1065
http://dx.doi.org/10.1109/TIT.1975.1055349
http://dx.doi.org/10.1007/978-3-662-48653-5_30
http://dx.doi.org/10.1145/2332432.2332436
http://dx.doi.org/10.1145/3087801.3087837
http://dx.doi.org/10.1007/s00446-011-0128-6
http://dx.doi.org/10.1007/s00446-011-0128-6
http://dx.doi.org/10.1137/S0097539797317299
http://dx.doi.org/10.1137/S0097539797317299
http://dx.doi.org/10.1145/7351.7352
http://dx.doi.org/10.1007/BF01784242
http://dx.doi.org/10.1145/2897518.2897565
http://dx.doi.org/10.1145/2897518.2897565

Almost Global Problems in the LOCAL Model

Alkida Balliu
Aalto University, Finland
alkida.balliu@aalto.fi

Sebastian Brandt
ETH Zürich, Switzerland
brandts@ethz.ch

Dennis Olivetti
Aalto University, Finland
dennis.olivetti@aalto.fi

Jukka Suomela
Aalto University, Finland
jukka.suomela@aalto.fi

Abstract
The landscape of the distributed time complexity is nowadays well-understood for subpolyno-
mial complexities. When we look at deterministic algorithms in the LOCAL model and locally
checkable problems (LCLs) in bounded-degree graphs, the following picture emerges:

There are lots of problems with time complexities Θ(log∗ n) or Θ(logn).
It is not possible to have a problem with complexity between ω(log∗ n) and o(logn).
In general graphs, we can construct LCL problems with infinitely many complexities between
ω(logn) and no(1).
In trees, problems with such complexities do not exist.

However, the high end of the complexity spectrum was left open by prior work. In general graphs
there are problems with complexities of the form Θ(nα) for any rational 0 < α ≤ 1/2, while for
trees only complexities of the form Θ(n1/k) are known. No LCL problem with complexity between
ω(
√
n) and o(n) is known, and neither are there results that would show that such problems do

not exist. We show that:
In general graphs, we can construct LCL problems with infinitely many complexities between
ω(
√
n) and o(n).

In trees, problems with such complexities do not exist.
Put otherwise, we show that any LCL with a complexity o(n) can be solved in time O(

√
n) in

trees, while the same is not true in general graphs.

2012 ACM Subject Classification Theory of computation → Distributed computing models,
Theory of computation → Complexity classes

Keywords and phrases Distributed complexity theory, locally checkable labellings, LOCAL
model

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.9

Related Version The full version is available at https://arxiv.org/pdf/1805.04776.pdf.

Funding This work was supported in part by the Academy of Finland, Grant 285721.

© Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alkida.balliu@aalto.fi
mailto:brandts@ethz.ch
mailto:dennis.olivetti@aalto.fi
mailto:jukka.suomela@aalto.fi
https://doi.org/10.4230/LIPIcs.DISC.2018.9
https://arxiv.org/pdf/1805.04776.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Almost Global Problems in the LOCAL Model

1 Introduction

Recently, in the study of distributed graph algorithms, there has been a lot of interest on
structural complexity theory: instead of studying the distributed time complexity of specific
graph problems, researchers have started to put more focus on the study of complexity classes
in this context.

LCL problems. A particularly fruitful research direction has been the study of distributed
time complexity classes of so-called LCL problems (locally checkable labellings). We will
define LCLs formally in Section 2.2, but the informal idea is that LCLs are graph problems
in which feasible solutions can be verified by checking all constant-radius neighbourhoods.
Examples of such problems include vertex colouring with k colours, edge colouring with k
colours, maximal independent sets, maximal matchings, and sinkless orientations.

LCLs play a role similar to the class NP in the centralised complexity theory: these are
problems that would be easy to solve with a nondeterministic distributed algorithm – guess
a solution and verify it in O(1) rounds – but it is not at all obvious what the distributed
time complexity of solving a given LCL problem with deterministic distributed algorithms is.

Distributed structural complexity. In the classical (centralised, sequential) complexity
theory one of the cornerstones is the time hierarchy theorem [12]. In essence, it is known that
giving more time always makes it possible to solve more problems. Distributed structural
complexity is fundamentally different: there are various gap results that establish that there
are no LCL problems with complexities in a certain range. For example, it is known that
there is no LCL problem whose deterministic time complexity on bounded-degree graphs is
between ω(log∗ n) and o(logn) [7].

Such gap results have also direct applications: we can speed up algorithms for which the
current upper bound falls in one of the gaps. For example, it is known that ∆-colouring
in bounded-degree graphs can be solved in polylogn time [17]. Hence 4-colouring in 2-
dimensional grids can be also solved in polylogn time. But we also know that in 2-dimensional
grids there is a gap in distributed time complexities between ω(log∗ n) and o(

√
n) [5], and

therefore we know we can solve 4-colouring in O(log∗ n) time.
The ultimate goal here is to identify all such gaps in the landscape of distributed time

complexity, for each graph class of interest.

State of the art. Some of the most interesting open problems at the moment are related
to polynomial complexities in trees. The key results from prior work are:

In bounded-degree trees, for each positive integer k there is an LCL problem with time
complexity Θ(n1/k) [8].
In bounded-degree graphs, for each rational number 0 < α ≤ 1/2 there is an LCL problem
with time complexity Θ(nα) [1].

However, there is no separation between trees and general graphs in the polynomial region.
Furthermore, we do not have any LCL problems with time complexities Θ(nα) for any
1/2 < α < 1.

Our contributions. This work resolves both of the above questions. We show that:
In bounded-degree graphs, for each rational number 1/2 < α < 1 there is an LCL problem
with time complexity Θ(nα).
In bounded-degree trees, there is no LCL problem with time complexity between ω(

√
n)

and o(n).

A. Balliu, S. Brandt, D. Olivetti, and J. Suomela 9:3

Hence whenever we have a slightly sublinear algorithm, we can always speed it up to O(
√
n)

in trees, but this is not always possible in general graphs.

Key techniques. We use ideas from the classical centralised complexity theory – e.g. Turing
machines and regular languages – to prove results in distributed complexity theory.

In the positive result, the key idea is that we can take any linear bounded automaton
M (a Turing machine with a bounded tape), and construct an LCL problem ΠM such that
the distributed time complexity of Π is a function of the sequential running time of M .
Prior work [1] used a class of counter machines for a somewhat similar purpose, but the
construction in the present work is much simpler, and Turing machines are more convenient
to program than the counter machines used in the prior work.

To prove the gap result, we heavily rely on Chang and Pettie’s [8] ideas: they show that
one can relate LCL problems in trees to regular languages and this way generate equivalent
subtrees by “pumping”. However, there is one fundamental difference:

Chang and Pettie first construct certain universal collections of tree fragments (that do
not depend on the input graph), use the existence of a fast algorithm to show that these
fragments can be labelled in a convenient way, and finally use such a labelling to solve
any given input efficiently.
We work directly with the specific input graph, expand it by “pumping”, and apply a
fast algorithm there directly.

Open problems. Our work establishes a gap between Θ(n1/2) and Θ(n) in trees. The next
natural step would be to generalise the result and establish a gap between Θ(n1/(k+1)) and
Θ(n1/k) for all positive integers k.

2 Model and related work

As we study LCL problems, a family of problems defined on bounded-degree graphs, we
assume that our input graphs are of degree at most ∆, where ∆ = O(1) is a known constant.
Each input graph G = (V,E) is simple, connected, and undirected; here V is the set of nodes
and E is the set of edges, and we denote by n = |V | the total number of nodes in the input
graph.

2.1 Model of computation
The model considered in this paper is the well studied LOCAL model [14, 18]. In the LOCAL
model, each node v ∈ V of the input graph G runs the same deterministic algorithm. The
nodes are labelled with unique O(logn)-bit identifiers, and initially each node knows only its
own identifier, its own degree, and the total number of nodes n.

Computation proceeds in synchronous rounds. At each round, each node
sends a message to its neighbours (it may be a different message for different neighbours),
receives messages from its neighbours,
performs some computation based on the received messages.

In the LOCAL model, there is no restriction on the size of the messages or on the computational
power of a node. Hence, after t rounds in the LOCAL model, each node has knowledge about
the network up to distance t from him. The time complexity of an algorithm running in the
LOCAL model is determined by this radius-t that each node needs to explore in order to
solve a given problem. It is easy to see that, in this setting, every problem can be solved in
diameter time.

DISC 2018

9:4 Almost Global Problems in the LOCAL Model

2.2 Locally checkable labellings
Locally checkable labelling problems (LCLs) were introduced in the seminal work of Naor
and Stockmeyer [15]. These problems are defined on bounded degree graphs, so let F be
the family of such graphs. Also, let Σin and Σout be respectively input and output label
alphabets. Each node v of a graph G ∈ F has an input i(v) ∈ Σin, and must produce an
output o(v) ∈ Σout. The output that each node must produce depends on the constraints
defined with the LCL problem. Hence, let C be the set of legal configurations. A problem Π
is an LCL problem if

Σin and Σout are of constant size;
there exists an algorithm A able to check the validity of a solution in constant time in
the LOCAL model.

Hence, if the solution produced by the nodes is in the set C of valid configurations, then, by
just looking at its local neighbourhood, each node must output ‘accept’, otherwise, at least
one node must output ‘reject’. An example of an LCL problem is vertex colouring, where
we have a constant size palette of colours; nodes can easily check in 1 round whether the
produced colouring is valid or not.

2.3 Related work
Cycles and paths. LCL problems are fully understood in the case of cycles and paths.
In these graphs it is known that there are LCL problems having complexities O(1), e.g.
trivial problems, Θ(log∗ n), e.g. 3 vertex-colouring, and Θ(n), e.g. 2 vertex-colouring [9, 14].
Chang, Kopelowitz, and Pettie [7] showed two automatic speedup results: any o(log∗ n)-time
algorithm can be converted into an O(1)-time algorithm; any o(n)-time algorithm can be
converted into an O(log∗ n)-time algorithm.

Oriented grids. Brandt et al. [5] studied LCL problems on oriented grids, showing that, as
in the case of cycles and paths, the only possible complexities of LCLs are O(1), Θ(log∗ n),
and Θ(n), on n× n grids. However, while it is decidable whether a given LCL on cycles can
be solved in t-rounds in the LOCAL model [5, 15], it is not the case for oriented grids [5].

Trees. Although well studied, LCLs on trees are not fully understood yet. Chang and
Pettie [8] show that any no(1)-time algorithm can be converted into an O(logn)-time algorithm.
In the same paper they show how to obtain LCL problems on trees having deterministic and
randomized complexity of Θ(n1/k), for any integer k. However, it is not known if there are
problems of complexities between o(n1/k) and ω(n1/(k+1)).

General graphs. Another important direction of research is understanding LCLs on general
(bounded-degree) graphs. Using the techniques presented by Naor and Stockmeyer [15], it
is possible to show that any o(log log∗ n)-time algorithm can be sped up to O(1) rounds.
It is known that there are LCL problems with complexities Θ(log∗ n) [2, 3, 10, 16] and
Θ(logn) [4,7,11]. On the other hand, Chang et al. [7] showed that there are no LCL problems
with deterministic complexities between ω(log∗ n) and o(logn). It is known that there are
problems (for example, ∆-colouring) that require Ω(logn) rounds [4, 6], for which there are
algorithms solving them in O(polylogn) rounds [17]. Until very recently, it was thought that
there would be many other gaps in the landscape of complexities of LCL problems in general
graphs. Unfortunately, it has been shown in [1] that this is not the case: it is possible to
obtain LCLs with numerous different deterministic time complexities, including Θ(logα n)
and Θ(logα log∗ n) for any α ≥ 1, 2Θ(logα n), 2Θ(logα log∗ n), and Θ((log∗ n)α) for any α ≤ 1,
and Θ(nα) for any α < 1/2 (where α is a positive rational number).

A. Balliu, S. Brandt, D. Olivetti, and J. Suomela 9:5

3 Near-linear complexities in general graphs

In this section we show the existence of LCL problems having complexities in the spectrum
between ω(

√
n) and o(n). We first give the definition of a standard model of computation,

that is Linear Bounded Automata, and we then show that it is possible to encode the
execution of an LBA as a locally checkable labelling. We then define an LCL problem where
interesting instances are those in which one encodes the execution of a specific LBA in a
multidimensional grid. Depending on the number of dimensions of the grid, and on the
running time of the LBA, we obtain different time complexities.

3.1 Linear bounded automata
A Linear Bounded Automaton (LBA) MB consists of a Turing machine with a tape of
bounded size B, able to recognize the boundaries of the tape [13, p. 225]. We consider a
simplified version of LBAs, where the machine is initialized with an empty tape (no input is
present). We describe this simplified version of LBAs as a 5-tuple M = (Q, q0, f,Γ, δ), where:

Q is a finite set of states;
q0 ∈ Q is the initial state;
f ∈ Q is the final state;
Γ is a finite set of tape alphabet symbols, containing a special symbol b (blank), and two
special symbols, L and R, called left and right markers;
δ : Q \ {f} × Γ→ Q× Γ× {−,←,→} is the transition function.

The tape (of size B) is initialized in the following way:
the first cell contains the symbol L;
the last cell contains the symbol R;
all the other cells contain the symbol b.

The head is initially positioned on the cell containing the symbol L. Then, depending on the
current state and the symbol present on the current position of the tape head, the machine
enters a new state, writes a symbol on the current position, and moves to some direction.

In particular, the transition function δ is going to be described by a finite set of 5-tuples
(s0, t0, s1, t1, d) where:
1. The first 2 elements specify the input:

s0 indicates the current state;
t0 indicates the tape content on the current head position.

2. The remaining 3 elements specify the output:
s1 is the new state;
t1 is the new tape content on the current head position;
d specifies the new position of the head:

‘→’ means that the head moves to the next cell;
‘←’ indicates that the head moves to the previous cell;
‘−’ means the head does not move.

If δ is not defined on the current state and tape content, the machine terminates. The growth
of an LBA MB, denoted with g(MB), is defined as the running time of MB. For example,
it is easy to design a machine M that implements a binary counter, counting from all-0 to
all-1, and this gives a growth of g(MB) = Θ(2B).

Also, it is possible to define a unary k-counter, that is, a list of k unary counters (where
each one counts from 0 to B − 1 and then overflows and starts counting from 0 again) in
which when a counter overflows, the next is incremented. It is possible to achieve a growth

DISC 2018

9:6 Almost Global Problems in the LOCAL Model

of g(MB) = Θ(Bk) by carefully implementing these counters (for example by using a single
tape of length B to encode all the k counters at the cost of using more machine states and
tape symbols).

3.2 Grid structure
Each LCL problem we will construct in Section 3.4 is designed in a way that ensures that
the hardest input graphs for the LCL problem, i.e., the graphs providing the lower bound
instances for the claimed time complexity, have a (multidimensional) grid structure. In this
section, we introduce a class of graphs with this structure.

Let i ≥ 2 and d1, . . . , di be positive integers. The set of nodes of an i-dimensional grid
graph G consists of all i-tuples u = (u1, . . . , ui) with 0 ≤ uj ≤ dj for all 1 ≤ j ≤ i. We
call u1, . . . , ui the coordinates of node u and d1, . . . , di the sizes of the dimensions 1, . . . , i.
Let u and v be two arbitrary nodes of G. There is an edge between u and v if and only if
||u− v||1 = 1, i.e., all coordinates of u and v are equal, except one that differs by 1.

3.2.1 Grid labels
In addition to the graph structure, we add constant-size labels to each grid graph. Each
edge e = {u, v} is assigned two labels Lu(e) and Lv(e), one for each endpoint. Label Lu(e)
is chosen as follows:

Lu(e) = Nextj if vj − uj = 1;
Lu(e) = Prevj if uj − vj = 1.

Label Lv(e) is chosen analogously. If we want to focus on a specific label of some edge e and
it is clear from the context which of the two edge labels is considered, we may refer to it
simply as the label of e.

The labelling of the edges here is just a matter of convenience. We could equally well
assign the labels to nodes instead of edges, satisfying the formal criteria of an LCL problem
(and, for that matter, combine all input labels, and later output labels, of a node into a
single input, resp. output, label). Furthermore, we could also equally well encode the labels
in the graph structure. Hence all new time complexities presented in Section 3.4 can also be
achieved by LCL problems without input labels.

In the full version of this paper we prove that, assuming that the considered graph
contains a node not having any edge labelled with Prevj , for all dimensions j, then nodes
can locally check if they are in a valid grid graph.

3.2.2 Unbalanced grid graphs
In Section 3.2.1, we saw the basic idea behind ensuring that non-grid graphs are not among
the hardest instances for the LCL problems we construct. In this section, we will study the
ingredient of our LCL construction that guarantees that grid graphs where the dimensions
have “wrong” sizes are not worst-case instances. More precisely, we want that the hardest
instances for our LCL problems are grid graphs with the property that there is at least one
dimension 2 ≤ j ≤ i whose size is not larger than the size of dimension 1. In the following,
we will show how to make sure that unbalanced grid graphs, i.e., grid graphs that do not have
this property, allow nodes to find a valid output without having to see too far. In a sense, in
any constructed LCL, a locally checkable proof (of a certain well-specified kind) certifying
that the input graph is an unbalanced grid graph constitutes a valid (global) output.

A. Balliu, S. Brandt, D. Olivetti, and J. Suomela 9:7

Figure 1 An example of an unbalanced grid with 2 dimensions; nodes in green are labelled with
Unbalanced, while white nodes are labelled with Exempt.

Consider a grid graph with i dimensions of sizes d1, . . . , di. If d1 < dj for all 2 ≤ j ≤ i,
the following output labelling is regarded as correct in any constructed LCL problem:

For all 0 ≤ t ≤ d1, node v = (v1, . . . , vi) satisfying v1 = . . . = vi = t is labelled
Unbalanced.
All other nodes are labelled Exempt.

This labelling is clearly locally checkable, i.e., it can be described as a collection of local
constraints: Each node v labelled Unbalanced checks that it has exactly two “diagonal
neighbours” and that their positions relative to v are consistent with the above output
specification. Node v also may have only one diagonal neighbour, but only if it has no
incident edge labelled Prevj , or if it has an incident edge labelled Nextj for all 2 ≤ j ≤ i, but
no incident edge labelled Next1. The latter condition ensures that the described diagonal
chain of labels terminates at the end of dimension 1, but not at the end of any other dimension,
thereby guaranteeing that grid graphs that are not unbalanced do not allow the output
labelling specified above. Finally, the unique node without any incident edge labelled Prevj
checks that it is labelled Unbalanced, in order to prevent the possibility that each node simply
outputs Exempt. We refer to Figure 1 for an example of an unbalanced 2-dimensional grid
and its labelling.

3.3 Machine encoding
After examining the cases of the input graph being a non-grid graph or an unbalanced grid
graph, in this section, we turn our attention towards the last remaining case: that is the
input graph is actually a grid graph for which there is a dimension with size smaller than
or equal to the size of dimension 1. In this case, we require the nodes to work together to
create a global output that is determined by some LBA. Essentially, the execution of the
LBA has to be written (as node outputs) on a specific part of the grid graph. In order to
formalise this relation between the desired output and the LBA, we introduce the notion of
an LBA encoding graph in the following.

3.3.1 Labels
Let MB be an LBA, where B denotes the size of the tape. Let S` = (s`, h`, t`) be the whole
state of MB after step `, where s` is the machine internal state, h` is the position of the
head, and t` is the whole tape content. The content of the cell in position y ∈ {0, . . . , B − 1}
after step ` is denoted by t`[y]. We denote by (x, y)k the node v = (v1, . . . , vi) having v1 = x,
vk = y, and vj = 0 for all j 6∈ {1, k}. An (output-labelled) grid graph of dimension i is an
LBA encoding graph if there exists a dimension 2 ≤ k ≤ i satisfying the following.

DISC 2018

9:8 Almost Global Problems in the LOCAL Model

dk + 1 is equal to B.
For all 0 ≤ x ≤ min{g(MB), d1} and all 0 ≤ y ≤ B − 1, it holds that:

Node (x, y)k is labelled with Tape(tx[y]).
Node (x, y)k is labelled with State(sx).
Node (x, hx)k is labelled with Head.
Node (x, y)k is labelled with Dimension(k).

All other nodes are labelled with Exempt.

Intuitively, the 2-dimensional surface expanding in dimensions 1 and k (having all the other
coordinates equal to 0), encodes the execution of the LBA. The described labelling is locally
checkable, see the full version of this paper for details.

3.4 LCL construction
Fix an integer i ≥ 2, and let M be an LBA with growth g. As we do not fix a specific size of
the tape, g can be seen as a function that maps the tape size B to the running time of the
LBA executed on a tape of size B. We now construct an LCL problem ΠM with complexity
related to g. Note that ΠM depends on the choice of i. The general idea of the construction
is that nodes can either:

produce a valid LBA encoding, or
prove that dimension 1 is too short, or
prove that there is an error in the (grid) graph structure.

We need to ensure that on balanced grid graphs it is not easy to claim that there is an error,
while allowing an efficient solution on invalid graphs, i.e., graphs that contain a local error
(some invalid label), or a global error (a grid structure that wraps, or dimension 1 too short
compared to the others).

3.4.1 LCL Problem ΠM

Denote by L the set of output labels used for producing an LBA encoding graph. Formally,
we specify the LCL problem ΠM as follows. The input label set for ΠM is the set of labels
used in the grid labelling. The possible output labels are the following:
1. the labels from L;
2. an unbalanced label, Unbalanced;
3. an exempt label, Exempt;
4. an error label Error;
5. error pointers, i.e., all possible pairs (s, r), where s is either Nextj or Prevj for some

1 ≤ j ≤ i, and r ∈ {0, 1} is a bit whose purpose it is to distinguish between two different
types of error pointers, type 0 pointers and type 1 pointers.

Note that the separate mention of Exempt in this list is not strictly necessary since Exempt
is contained in L, but we want to recall the fact that Exempt can be used in both a proof of
unbalance and an LBA encoding.

Intuitively, nodes that notice that there is/must be an error in the grid structure, but are
not allowed to output Error because the grid structure is valid in their local neighborhood,
can point in the direction of an error. However, the nodes have to make sure that the error
pointers form a chain that actually ends in an error. In order to make the proofs in this
section more accessible, we distinguish between the two types of error pointers mentioned
above; roughly speaking, type 0 pointers will be used by nodes that (during the course of
the algorithm) cannot see an error in the grid structure, but notice that the grid structure

A. Balliu, S. Brandt, D. Olivetti, and J. Suomela 9:9

Figure 2 An example of an error pointer chain (shown in red). Nodes that are marked with a
red cross are those who actually see an error in the grid structure. The output of only some of the
depicted nodes is shown.

wraps around in some way, while type 1 pointers are for nodes that can actually see an
error. If the grid structure wraps around, then there must be an error somewhere (and nodes
that see that the grid structure wraps around know where to point their error pointer to),
except in the case that the grid structure wraps around “nicely” (e.g., along one dimension).
This exceptional case is the only scenario where, deviating from the above, an error pointer
chain does not necessarily end in an error, but instead may form a cycle; however, since the
constraints we put on error pointer chains are local constraints (as we want to define an LCL
problem), the global behaviour of the chain is irrelevant. We will not explicitly prove the
global statements made in this informal overview; for our purposes it is sufficient to focus on
the local views of nodes.

Note that if a chain of type 0 error pointers does not cycle, then at some point it will
turn into a chain of type 1 error pointers, which in turn will end in an error. Chains of type
1 error pointers cannot cycle. We refer to Figure 2 for an example of an error pointer chain.

An output labelling for problem ΠM is correct if the following conditions are satisfied.
1. Each node v produces at least one output label. If v produces at least two output labels,

then all of v’s output labels are contained in L \ {Exempt}.
2. Each node at which the input labelling does not satisfy the local grid graph constraints

given in Section 3.2.1 outputs Error. All other nodes do not output Error.
3. If a node v outputs Exempt, then v has at least one incident edge e with input label

Lv(e) ∈ {Prev1, . . . ,Previ}.
4. If the output labels of a node v are contained in L\ {Exempt}, then either there is a node

in v’s 2-radius neighbourhood that outputs an error pointer, or the output labels of all
nodes in v’s 2-radius neighbourhood are contained in L. Moreover, in the latter case v’s
2-radius neighbourhood has a valid grid structure and the local constraints of an LBA
encoding graph, given in Section 3.1, are satisfied at v.

5. If the output of a node v is Unbalanced, then either there is a node in v’s i-radius
neighbourhood that outputs an error pointer, or the output labels of all nodes in v’s
i-radius neighbourhood are contained in {Unbalanced,Exempt}. Moreover, in the latter
case v’s i-radius neighbourhood has a valid grid structure and the local constraints for a
proof of unbalance, given in Section 3.2.2, are satisfied at v.

6. Let v be a node that outputs an error pointer (s, r). Then zv(s) is defined, i.e., there
is exactly one edge incident to v with input label s. Let u be the neighbour reached by
following this edge from v, i.e., u = zv(s). Then u outputs either Error or an error pointer
(s′, r′), where in the latter case the following hold:

r′ ≥ r, i.e., the type of the pointer cannot decrease when following a chain of error
pointers;

DISC 2018

9:10 Almost Global Problems in the LOCAL Model

if r′ = 0 = r, then s′ = s, i.e., the pointers in a chain of error pointers of type 0 are
consistently oriented;
if r′ = 1 = r and s ∈ {Prevj ,Nextj}, s′ ∈ {Prevj′ ,Nextj′}, then j′ ≥ j, i.e., when
following a chain of error pointers of type 1, the dimension of the pointer cannot
decrease;
if r′ = 1 = r and s, s′ ∈ {Prevj ,Nextj} for some 1 ≤ j ≤ i, then s′ = s, i.e., any two
subsequent pointers in the same dimension have the same direction.

These conditions are clearly locally checkable, so ΠM is a valid LCL problem.

3.4.2 Time complexity

Let B be the smallest positive integer satisfying n ≤ Bi−1 · g(MB). We will only consider
LBAs with the property that B ≤ g(MB) and for any two tape sizes B1 ≥ B2 we have
g(MB1) ≥ g(MB2). The LCL problem ΠM has time complexity Θ(n/Bi−1) = Θ(g(MB)).
The following theorem is proved in the full version of this paper.

I Theorem 1. Problem ΠM has time complexity Θ(g(MB)).

3.4.3 Instantiating the LCL construction

Our construction is quite general and allows to encode a wide variety of LBAs to obtain
many different LCL complexities. As a proof of concept, we show some complexities that can
be obtained using some specific LBAs.

By using a k-unary counter, for constant k, we obtain a growth of Θ(Bk).
By using a binary counter, we obtain a growth of Θ(2B).

I Theorem 2. For any rational number 0 ≤ α ≤ 1, there exists an LCL problem with time
complexity Θ(nα).

Proof. Let j > k be positive integers satisfying α = k/j. Given an LBA with growth Θ(Bk)
and using a (j − k + 1)-dimensional grid graph, we obtain an LCL problem with complexity
Θ(n/Bj−k). We have that n = Θ(Bj−k ·g(MB)) = Θ(Bj), which implies B = Θ(n1/j). Thus
the time complexity of our LCL problem is Θ(n/n(j−k)/j) = Θ(nα). J

I Theorem 3. There exist LCL problems of complexities Θ(n
logi n), for any positive integer i.

Proof. Given an LBA with growth Θ(2B) and using an (i+ 1)-dimensional grid graph, we
obtain an LCL problem with complexity Θ(n/Bi). We have that n = Θ(Bi · g(MB)) =
Θ(Bi · 2B), which implies B = Θ(logn). Thus the time complexity of our LCL problem is
Θ(n/ logi n). J

4 Complexity gap on trees

In this section we prove that, on trees, there are no LCLs having complexity T between
ω(
√
n) and o(n). We show that, given an algorithm A that solves a problem in time T , it

is possible to speed up its running time to O(
√
n), by first constructing a virtual tree S in

which a ball of radius T corresponds to a ball of radius O(
√
n) of the original graph, and

then find a valid output for the original graph, having outputs for the virtual graph S.

A. Balliu, S. Brandt, D. Olivetti, and J. Suomela 9:11

φ

Figure 3 Example of a tree T and its skeleton T ′; nodes removed from T in order to obtain T ′

are shown in gray. In this example, τ is 3.

4.1 Skeleton tree

We first describe how, starting from a tree T = (V,E), nodes can distributedly construct a
virtual tree T ′, called the skeleton of T . Intuitively, T ′ is obtained by removing all subtrees
of T having a height that is less than some threshold τ .

More formally, let τ = c
√
n, for some constant c that will be fixed later. Each node v

starts by gathering its τ -radius neighbourhood, Ballv. Also, let dv be the degree of node v in
T . We partition Ballv, ∀v ∈ V , in dv components (one for each neighbour of v), and let us
denote these components with Ci(v), where 1 ≤ i ≤ dv. Each component Ci(v) contains all
nodes of Ballv present in the subtree rooted at the i-th neighbour of v, excluding v.

Then, each node marks as Del all the components that have low depth and broadcasts
this information. Informally, nodes build the skeleton tree by removing all the components
that are marked as Del by at least one node. More precisely, each node v, for each Ci(v), if
dist(v, w) < τ for all w in V (Ci(v)), marks all edges in E(Ci(v)) ∪ {{v, u}} as Del, where u
is the i-th neighbor of v. Then, v broadcasts Ballv and the edges marked as Del to all nodes
at distance at most τ + 2c. Finally, when a node v receives messages containing edges that
have been marked with Del by some node, then also v internally marks as Del those edges.

Now we have all the ingredients to formally describe how we construct the skeleton
tree. The skeleton tree T ′ = (V ′, E′) is defined in the following way. Intuitively, we
keep only edges that have not been marked Del, and nodes with at least one remaining
edge (i.e., nodes that have at least one incident edge not marked with Del). In particular,
E′ = {e ∈ E(T) | e is not marked Del}, and V ′ = {u ∈ V | ∃w ∈ V s.t. {u,w} ∈ E′}.
Also, we want to keep track of the mapping from a node of T ′ to its original node in T ;
let φ be such a mapping. Finally, we want to keep track of deleted subtrees, so let Tv
be the subtree of T rooted at v ∈ V ′ containing all nodes of Cj(v), for all j such that
Cj(v) has been marked as Del. See Figure 3 for an example.

4.2 Virtual tree

We now show how to distributedly construct a new virtual tree, starting from T ′, that
satisfies some useful properties. Informally, the new tree is obtained by pumping all paths
contained in T ′ having length above some threshold. More precisely, by considering only
degree-2 nodes of T ′ we obtain a set of paths. We split these paths in shorter paths of length
l (c ≤ l ≤ 2c) by computing a (c+ 1, c) ruling set. Then, we pump these paths in order to
obtain the final tree. Recall a (α, β)-ruling set R of a graph G guarantees that nodes in
R have distance at least α, while nodes outside R have at least one node in R at distance
at most β. It can be distributedly computed in O(log∗ n) rounds using standard colouring
algorithms [14].

DISC 2018

9:12 Almost Global Problems in the LOCAL Model

ψ

Figure 4 Example of the tree T ′′ obtained from T ′; nodes with degree greater than 2 (in blue)
are removed from T ′.

Figure 5 Blue nodes break the long paths P of T ′′ shown on the left into short paths Q shown
in black on the right; short paths (in the example, paths with length less then 4) are ignored.

More formally, we start by splitting the tree in many paths of short length. Let v a node
in V ′ and dT ′v its degree in T ′. Let T ′′ be the forest obtained by removing from T ′ each node
v having dT ′v > 2. T ′′ is a collection P of disjoint paths. Let ψ be the mapping from nodes
of T ′′ to their corresponding node in T ′. See Figure 4 for an example.

We now want to split long paths of P in shorter paths. In order to achieve this, nodes of
the same path can efficiently find a (c+ 1, c) ruling set in the path containing them. Nodes
not in the ruling set form short paths of length l, such that c ≤ l ≤ 2c, except for some paths
of P that were already too short, or subpaths at the two ends of a longer path. Let Q be
the subset of the resulting paths having length l satisfying c ≤ l ≤ 2c. See Figure 5 for an
example.

In order to obtain the final tree, we use the following function, called Replace. Informally,
given a graph G and a subgraph H connected to the other nodes of G via a set of nodes F ,
called poles, and given another graph H ′, it replaces H with H ′. This function is a simplified
version of the function Replace presented in [8] in Section 3.3.

I Definition 4 (Replace). Let H be a subgraph of G. The poles of H are those vertices in
V (H) adjacent to some vertex in V (G) \ V (H). Let F = (v1, . . . , vp) be a list of the poles
of H, and let F ′ = (v′1, . . . , v′p) be a list of nodes contained in H ′ (called poles of H ′). The
graph G′ = Replace(G, (H,F), (H ′, F ′)) is defined in the following way. Start with G, replace
H with H ′, and replace any edge {u, vi}, where u ∈ V (G) \ V (H), with {u, v′i}.

Informally, we will use the function Replace to substitute each path Q ∈ Q with a longer
version of it, that satisfies some useful properties. We will later define a function, Pump, that
is used to obtain these longer paths. The function Pump is defined in an analogous way to
the function Pump presented in [8] in Section 3.8. We now show which properties it satisfies.

I Definition 5 (Properties of Pump). Given a path Q ∈ Q of length l (c ≤ l ≤ 2c), consider
the subgraph QT of T , containing, for each v ∈ V (Q), the tree Tχ(v), where χ(v) = φ(ψ(v))),
that is, the path Q augmented with all the nodes deleted from the original tree that are
connected to nodes of the path. Let v1, v2 be the endpoints of Q.

The function Pump(QT , B) produces a new tree PT having two endpoints, v′1 and v′2,
satisfying that the path between v′1 and v′2 has length l′, such that cB ≤ l′ ≤ c(B + 1).
The new tree is obtained by replacing a subpath of Q, along with the deleted nodes
connected to it, with many copies of the replaced part, concatenated one after the other. Let

A. Balliu, S. Brandt, D. Olivetti, and J. Suomela 9:13

Figure 6 Example of QT , obtained by merging the path nodes (in black) with previously removed
trees connected to them (in red).

Figure 7 S (on the right) is obtained by pumping the black paths.

G′ = Replace(G, (QT , (v1, v2)), (PT , (v′1, v′2))). Pump satisfies that nodes v′1, v′2 ∈ G′ have the
same view as v1, v2 ∈ G at distance 2r (where r is the LCL checkability radius). Note that,
in the formal definition of Pump, we will set c as a function of r.

See Figure 6 for an example of QT .
The final tree S is obtained from T by replacing each path Q ∈ Q in the following way.

Let QT be the set containing all QT . Replace each subgraph QT with PT = Pump(QT , B).
Note that a node v can not see the whole set Q, but just all the paths Q ∈ Q that end at
distance at most τ + 2c from v. Thus each node locally computes just a part of S, that is
enough for our purpose. We call the subgraph of QT induced by the nodes of Q the main
path of QT , and we define the main path of PT in an analogous way. See Figure 7 for an
example.

Finally, we want to keep track of the real nodes of S. Nodes of S are divided in two parts,
So and Sp. The set So contains all nodes of T ′ that are not contained in any QT , and all nodes
that are at distance at most 2r from nodes not contained in any QT , while Sp = V (S) \ So.
Let η be a mapping from real nodes of the virtual graph (So) to their corresponding node
of T (this is well defined, by the properties of Pump), and let To = {η(v) | v ∈ So} (note
that also η−1 is well defined for nodes in To). Informally, To is the subset of nodes of T that
are far enough from pumped regions of S, and have not been removed while creating T ′.
Note that we use the function η to distinguish between nodes of S and nodes of T , but η is
actually the identity function between a subset of shared nodes. Let Virt be the function
that maps T to S, that is, S = Virt(T,B, c). See Figure 8 for an example.

4.3 Properties of the virtual tree
The following lemma bounds the size of the graph S, compared to the size of T .

I Lemma 6. The tree S has at most N = c(B + 1)n nodes, where n = |V (T)|, and
S = Virt(T,B, c).

Proof. S is obtained by pumping T . The main path of the subtree obtained by pumping
some QT ∈ QT has length at most c(B + 1). This implies that each node of the main path
of QT is copied at most c(B + 1) times. Also, a deleted tree Tv rooted at some path node
v is not connected to more than one path node. Thus, all nodes of T are copied at most
c(B + 1) times. J

DISC 2018

9:14 Almost Global Problems in the LOCAL Model

η

Figure 8 Nodes in yellow on the left are the ones in So, while the yellow ones on the right are
nodes in To. Note that, for the sake of simplicity, we consider 2r = 1.

The following lemma bounds the size of T ′ compared to the size of T ′′. Notice that,
this is the exact point in which our approach stops working for time complexities of O(

√
n)

rounds. This is exactly what we expect, since we know that there are LCL problems on trees
having complexity Θ(

√
n) [8].

I Lemma 7. For any path P = (x1, . . . , xk) of length k ≥ c
√
n that is a subgraph of T ′, at

most
√
n
c nodes in V (P) have degree greater than 2.

Proof. If a node xj ∈ P has dT ′v > 2, it means that it has at least one neighbour z 6∈
{xj−1, xj+1} in T ′ such that there exists a node w satisfying dist(xj , w) ≥ τ such that the
shortest path connecting xj and w contains z. Thus, for each node in P with dT ′v > 2, we
have at least other τ nodes not in P . If at least

√
n
c + 1 nodes of P have degree greater than

2, we would obtain a total of (
√
n
c + 1) · τ > n nodes, a contradiction. J

The following lemma compares distances in T with distances in S.

I Lemma 8. There exists some constant c such that, if nodes u, v of To are at distance at
least c

√
n in T , then their corresponding nodes η−1(u) and η−1(v) are at distance at least

cB
√
n/3 in S.

Proof. Consider a node u at distance at least τ from v in T . There must exist a path P in
T ′ connecting φ−1(u) and φ−1(v). By Lemma 7, at most

√
n
c nodes in P have degree greater

than 2, call the set of these nodes X. We can bound the number of nodes of P that are not
part of paths that will be pumped in the following way:

At most c
√
n+1
c+1 +

√
n
c + 1 nodes can be part of the ruling set. To see this, order the nodes

of P from left to right in one of the two canonical ways. The first summand bounds all
the ruling set nodes whose right-hand short path is of length at least c, the second one
bounds the ruling set nodes whose right-hand short path ends in a node x ∈ X, and the
last one considers the path that ends in φ−1(u) or φ−1(v).
At most

√
n
c (1 + 2(c− 1)) nodes are either in X or in short paths of length at most c− 1

on the sides of a node in X.
At most 2(c− 1) nodes are between φ−1(u) (or φ−1(v)) and a ruling set node.

While pumping the graph, in the worst case we replace paths of length 2c with paths of length
cB, thus dist(φ−1(u), φ−1(v)) ≥ (c

√
n+1−(c

√
n+1
c+1 +

√
n
c +1+

√
n
c (1+2(c−1))+2(c−1)))· cB2c −1,

which is greater than cB
√
n/3 for c and n greater than a large enough constant. J

4.4 Solving the problem faster
We now show how to speed up the algorithm A and obtain an algorithm running in O(

√
n).

First, note that if the diameter of the original graph is O(
√
n), every node sees the whole

graph in O(
√
n) rounds, and the problem is trivially solvable by bruteforce. Thus, in the

following we assume that the diameter of the graph is ω(
√
n). This also guarantees that To

is not empty.

A. Balliu, S. Brandt, D. Olivetti, and J. Suomela 9:15

Informally, nodes can distributedly construct the virtual tree S in O(
√
n) rounds, and

safely execute the original algorithm on it. Intuitively, even if a node v sees just a part of S,
we need to guarantee that this part has large enough radius, such that the original algorithm
can’t see outside the subgraph of S constructed by v.

More precisely, all nodes do the following. First, they distributedly construct S, in O(
√
n)

rounds. Then, each node v in To (nodes for which η−1(v) is defined), simulates the execution
of A on node η−1(v) of S, by telling A that there are N = c(B+ 1)n nodes. Then, each node
v in To outputs the same output assigned by A to node η−1(v) in S. Also, each node v in To
fixes the output for all nodes in Tv (η can be defined also for them, v sees all of them, and the
view of these nodes is contained in the view of v, thus it can simulate A in S for all of them).
Let Λ be the set of nodes that already fixed an output, that is, Λ = {{u} ∪ V (Tu) | u ∈ To}.
Intuitively Λ contains all the real nodes of S (nodes with a corresponding node in T) and
leaves out only nodes that correspond to pumped regions. Finally, nodes in V (T) \ Λ find a
valid output via bruteforce.

We need to prove two properties, the first shows that a node can safely execute A on the
subgraph of S that it knows, while the second shows that it is always possible to find a valid
output for nodes in V (T) \ Λ after having fixed outputs for nodes in Λ.

Let us choose a B satisfying τorig(N) ≤ cB
√
n/3, where τorig(N) is the running time of A.

Note that B can be an arbitrarily large function of n. Such a B exists for all τorig(x) = o(x).
We prove the following lemma.

I Lemma 9. For nodes in To, it is possible to execute A on S by just knowing the neigh-
bourhood of radius 2c

√
n in T .

Proof. First, note that by Lemma 6, the number of nodes of the virtual graph, |V (S)|, is
always at most N , thus, it is not possible that a node of S sees a number of nodes that is
more than the number claimed when simulating the algorithm.

Second, since B satisfies τorig(N) ≤ cB
√
n/3, and since, by Lemma 8 and the bound of

c
√
n on the depth of each deleted tree Tu, the nodes outside a 2c

√
n ball of nodes in To are at

distance at least cB
√
n/3 in S, the running time of A is less than the radius of the subtree

of S rooted at a node v that v distributedly computed and is aware of. This second part
also implies that nodes in To do not see the whole graph, thus they cannot notice that the
value of N is not the real size of the graph. J

4.5 Filling gaps by bruteforce
Using similar techniques presented in [8] we can show that, by starting from a tree T in
which nodes of Λ have already fixed an output, we can find a valid output for all the other
nodes of the graph, in constant time. See the full version for the details.

References
1 Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti,

and Jukka Suomela. New classes of distributed time complexity. In Proc. 50th Annual
Symposium on the Theory of Computing (STOC 2018). ACM, 2018 (to appear). arXiv:
1711.01871.

2 Leonid Barenboim. Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static,
dynamic, and faulty networks. Journal of the ACM, 63(5):47:1–47:22, 2016. doi:10.1145/
2979675.

3 Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆+1)-coloring in linear
(in ∆) time. SIAM Journal on Computing, 43(1):72–95, 2014. doi:10.1137/12088848X.

DISC 2018

http://arxiv.org/abs/1711.01871
http://arxiv.org/abs/1711.01871
http://dx.doi.org/10.1145/2979675
http://dx.doi.org/10.1145/2979675
http://dx.doi.org/10.1137/12088848X

9:16 Almost Global Problems in the LOCAL Model

4 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In Proc. 48th Annual Symposium on the Theory of Computing (STOC 2016), pages
479–488. ACM, 2016. doi:10.1145/2897518.2897570.

5 Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R.J.
Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański.
LCL problems on grids. In Proc. 35th ACM Symposium on the Principles of Distributed
Computing (PODC 2017), pages 101–110, 2017. doi:10.1145/3087801.3087833.

6 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complex-
ity of distributed edge colouring with small palettes. In Proc. 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2018). Society for Industrial and Applied Math-
ematics, 2018.

7 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between
randomized and deterministic complexity in the LOCAL model. In Proc. 57th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2016), pages 615–624. IEEE, 2016.
arXiv:1602.08166.

8 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. In Proc.
58th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2017), 2017.
arXiv:1704.06297.

9 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to op-
timal parallel list ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/
S0019-9958(86)80023-7.

10 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Proc.
57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016), pages
625–634, 2016. doi:10.1109/FOCS.2016.73.

11 Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and ori-
entations. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2017), pages 2505–2523. Society for Industrial and Applied Mathematics, 2017. doi:
10.1137/1.9781611974782.166.

12 Juris Hartmanis and Richard Edwin Stearns. On the computational complexity of al-
gorithms. Transactions of the American Mathematical Society, 117:285–306, 1965. doi:
10.1090/S0002-9947-1965-0170805-7.

13 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

14 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

15 Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

16 Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse
networks. Distributed Computing, 14(2):97–100, 2001. doi:10.1007/PL00008932.

17 Alessandro Panconesi and Aravind Srinivasan. The local nature of ∆-coloring and its
algorithmic applications. Combinatorica, 15(2):255–280, 1995. doi:10.1007/BF01200759.

18 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia, 2000.

http://dx.doi.org/10.1145/2897518.2897570
http://dx.doi.org/10.1145/3087801.3087833
http://arxiv.org/abs/1602.08166
http://arxiv.org/abs/1704.06297
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1109/FOCS.2016.73
http://dx.doi.org/10.1137/1.9781611974782.166
http://dx.doi.org/10.1137/1.9781611974782.166
http://dx.doi.org/10.1090/S0002-9947-1965-0170805-7
http://dx.doi.org/10.1090/S0002-9947-1965-0170805-7
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/BF01200759

A Population Protocol for Exact Majority with
O(log5/3 n) Stabilization Time and Θ(log n)
States
Petra Berenbrink
Universität Hamburg, Hamburg, Germany
petra.berenbrink@uni-hamburg.de

Robert Elsässer1

University of Salzburg, Salzburg, Austria
elsa@cs.sbg.ac.at

https://orcid.org/0000-0002-5766-8103

Tom Friedetzky
Durham University, Durham, U.K.
tom.friedetzky@dur.ac.uk

https://orcid.org/0000-0002-1299-5514

Dominik Kaaser
Universität Hamburg, Hamburg, Germany
dominik.kaaser@uni-hamburg.de

https://orcid.org/0000-0002-2083-7145

Peter Kling
Universität Hamburg, Hamburg, Germany
peter.kling@uni-hamburg.de

https://orcid.org/0000-0003-0000-8689

Tomasz Radzik2

King’s College London, London, U.K.
tomasz.radzik@kcl.ac.uk

https://orcid.org/0000-0002-7776-5461

Abstract
A population protocol is a sequence of pairwise interactions of n agents. During one interaction,
two randomly selected agents update their states by applying a deterministic transition function.
The goal is to stabilize the system at a desired output property. The main performance objectives
in designing such protocols are small number of states per agent and fast stabilization time.

We present a fast population protocol for the exact-majority problem, which uses Θ(logn)
states (per agent) and stabilizes in O(log5/3 n) parallel time (i.e., in O(n log5/3 n) interactions) in
expectation and with high probability. Alistarh et al. [SODA 2018] showed that exact-majority
protocols which stabilize in expected O(n1−Ω(1)) parallel time and have the properties of mono-
tonicity and output dominance require Ω(logn) states. Note that the properties mentioned
above are satisfied by all known population protocols for exact majority, including ours. They
also showed an O(log2 n)-time exact-majority protocol with O(logn) states, which, prior to our
work, was the fastest exact-majority protocol with polylogarithmic number of states. The stan-
dard design framework for majority protocols is based on O(logn) phases and requires that all

1 Robert Elsässer’s work has been supported by grant no. P 27613 of the Austrian Science Fund (FWF),
“Distributed Voting in Large Networks”.

2 Tomasz Radzik’s work has been supported by EPSRC grant EP/M005038/1, “Randomized algorithms
for computer networks”.

© Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petra.berenbrink@uni-hamburg.de
mailto:elsa@cs.sbg.ac.at
https://orcid.org/0000-0002-5766-8103
mailto:tom.friedetzky@dur.ac.uk
https://orcid.org/0000-0002-1299-5514
mailto:dominik.kaaser@uni-hamburg.de
https://orcid.org/0000-0002-2083-7145
mailto:peter.kling@uni-hamburg.de
https://orcid.org/0000-0003-0000-8689
mailto:tomasz.radzik@kcl.ac.uk
https://orcid.org/0000-0002-7776-5461
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 A Population Protocol for Exact Majority

agents are well synchronized within each phase, leading naturally to upper bounds of the order of
log2 n because of Θ(logn) synchronization time per phase. We show how this framework can be
tightened with weak synchronization to break the O(log2 n) upper bound of previous protocols.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Population Protocols, Randomized Algorithms, Majority

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.10

Related Version See [9], https://arxiv.org/abs/1805.05157, for the full version of this arti-
cle.

1 Introduction

We consider population protocols [4] for exact-majority voting. The underlying computation
system consists of a population of n anonymous (i.e., identical) agents, or nodes, and a
scheduler which keeps selecting pairs of nodes for interaction. A population protocol specifies
how two nodes update their states when they interact. The computation is a (perpetual)
sequence of interactions between pairs of nodes. The objective is for the whole system
to eventually stabilize in configurations which have the output property defined by the
considered problem. In the general case, the nodes can be connected according to a specified
graph G = (V,E) and two nodes can interact only if they are joined by an edge. Following the
scenario considered in most previous work on population protocols, we assume the complete
communication graph and the random uniform scheduler. That is, each pair of (distinct)
nodes has equal probability to be selected for interaction in any step and each selection is
independent of the previous interactions.

The model of population protocols was proposed in Angluin et al. [4] and has subsequently
been extensively studied to establish its computational power and to design efficient solutions
for fundamental tasks in distributed computing such as various types of consensus-reaching
voting. The survey from Aspnes and Ruppert [6] includes examples of population protocols,
early computational results, and variants of the model. The main design objectives for
population protocols are small number of states and fast stabilization time. The original
definition of the model assumes that the agents are copies of the same finite-state automaton,
so the number of states (per node) is constant. This requirement has later been relaxed
by allowing the number of states to increase (slowly) with the population size, to study
trade-offs between the memory requirements and the running times.

The (two-opinion) exact-majority voting is one of the basic settings of consensus voting [3,
4, 5]. Initially each node is in one of two distinct states qA and qB, which represent two
distinct opinions (or votes) A and B, with a0 nodes holding opinion A (starting in the state
qA) and b0 nodes holding opinion B. We assume that a0 6= b0 and denote the initial imbalance
between the two opinions by ε = |a0 − b0|/n ≥ 1/n. The desired output property is that all
nodes have the opinion of the initial majority. An exact majority protocol should guarantee
that the correct answer is reached, even if the difference between a0 and b0 is only 1 (cf. [3]).
In contrast, approximate majority would require correct answer only if the initial imbalance
is sufficiently large. In this paper, when we refer to “majority” protocol/voting/problem we
always mean the exact-majority notion.

https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://arxiv.org/abs/1805.05157

P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:3

Formal Model. We will now give further formalization of a population protocol and its
time complexity. Let S denote the set of states, which can grow with the size n of the
population (but keeping it low remains one of our objectives). A configuration of the system
is an assignment of states to nodes. Let q(v, t) ∈ S denote the state of a node v ∈ V at
step t (that is, after t individual interactions); (v, q(v, t))v∈V is the configuration of the
system at this step. Two interacting nodes change their states according to a common
deterministic transition function δ : S×S → S×S. A population protocol also has an output
function γ : S → Γ, which is used to specify the desired output property of the computation.
For majority voting, γ : S → {A,B}, which means that a node in a state q ∈ S assumes
that γ(q) is the majority opinion. The system is in an (output) correct configuration at a
step t if for each v ∈ V , γ(q(v, t)) is the initial majority opinion. We consider undirected
individual communications, that is, the two interacting nodes are not designated as initiator
and responder, so the transition functions must be symmetric. Thus if δ(q′, q′′) = (r′, r′′),
then δ(q′′, q′) = (r′′, r′), implying, for example, that δ(q, q) = (r, r).

We say that the system is in a stable configuration if no node will ever again change
its output in any configuration that can be reached. The computation continues (since it
is perpetual) and nodes may continue updating their states, but if a node changes from
a state q to another state q′ then γ(q′) = γ(q). Thus a majority protocol is in a correct
stable configuration if all nodes output the correct majority opinion and will do so in
all possible subsequent configurations. Two main types of output guarantee categorize
population protocols as either always correct, if they reach the correct stable configuration
with probability 1, or w.h.p. correct. A protocol of the latter type reaches a correct stable
configuration w.h.p.3, allowing that with some low but positive probability an incorrect stable
configuration is reached or the computation does not stabilize at all.

The notion of time complexity of population protocols which has lately been used to
derive lower bounds on the number of states [1, 2], and the notion which we use also in this
paper, is the stabilization time TS defined as the first round when the system enters a correct
stable configuration4. We follow the common convention of defining the parallel time as the
number of interactions divided by n. Equivalently, we group the interactions in rounds of
length n, called also (parallel) steps, and take the number of rounds as the measure of time.
In our analysis we also use the term period, which we define as a sequence of n consecutive
interactions, but not necessarily aligned with rounds.

The main result of this paper is a majority protocol with stabilization time O(log5/3 n)
w.h.p. and in expectation while using logarithmically many states. According to [2] this
number of states is asymptotically optimal for protocols with E(TS) = O(n1−ε), and to the
best of our knowledge this is the first result that offers stabilization in time O(log2−Ω(1) n)
with poly-logarithmic state space.

Related Literature. Draief and Vojnović [12] and Mertzios et al. [17] analyzed two similar
four-state majority protocols. Both protocols are based on the idea that the two opinions
have weak versions a and b in addition to the main strong versions A and B. The strong
opinions are viewed as tokens moving around the graph. Initially each node v has a strong
opinion A or B, and during the computation it has always one of the opinions a, b, A or B (so

3 A property P (n), e.g. that a given protocol reaches a stable correct configuration, holds w.h.p. (with high
probability), if it holds with probability at least 1 − n−α, where constant α > 0 can be made arbitrarily
large by changing the constant parameters in P (n) (e.g. the constant parameters of a protocol).

4 Some previous papers (e.g. [1, 11]) refer to this stabilization time as the convergence time.

DISC 2018

10:4 A Population Protocol for Exact Majority

is in one of these four states). Two interacting opposite strong opinions cancel each other and
change into weak opinions. Such pairwise canceling ensures that the difference between the
numbers of strong opinions A and B does not change throughout the computation (remaining
equal to a0 − b0) and eventually all strong opinions of the initial minority are canceled out.
The surviving strong opinions keep moving around the graph, converting the weak opposite
opinions. Eventually every node has the opinion (strong or weak) of the initial majority.

Mertzios et al. [17] called their protocol the 4-state ambassador protocol (the strong
opinions are ambassadors) and proved the expected stabilization time O(n5) for any graph
and O((n logn)/|a0−b0|) for the complete graph. Draief and Vojnović [12] called their 4-state
protocol the binary interval consensus, viewing it as a special case of the interval consensus
protocol of Bénézit et al. [7], and analyzed it in the continuous-time model. For the uniform
edge rates (the continuous setting roughly equivalent to our setting of one random interaction
per one time unit) they showed that the expected stabilization time for the complete graph
is at most 2n(logn+ 1)/|a0 − b0|. They also derived bounds on the expected stabilization
time for cycles, stars and Erdős-Rényi graphs.

The appealing aspect of the four-state majority protocols is their simplicity and the
constant-size local memory, but the downside is polynomially slow stabilization if the initial
imbalance is small. The stabilization time decreases if the initial imbalance increases, so
the performance would be improved if there were a way of boosting the initial imbalance.
Alistarh et al. [3] achieved such boosting by multiplying all initial strong opinions by the
integer parameter r ≥ 2. The nodes keep the count of the number of strong opinions they
currently hold. When eventually all strong opinions of the initial minority are canceled,
|a0 − b0|r strong opinions of the initial majority remain in the system. This speeds up both
the canceling of strong opinions and the converting of weak opinions of the initial minority,
but the price is the increased number of states. Refining this idea, Alistarh et al. [1] obtained
a majority protocol which has stabilization time O(log3 n) w.h.p. and in expectation and
uses O(log2 n) states.

A suite of constant-state polylogarithmic-time population protocols for various functions,
including exact majority, was proposed by Angluin et al. [5]. Their protocols are w.h.p.
correct and, more significantly, require a unique leader to synchronize the progress of the
computation. Their majority protocol w.h.p. reaches a correct stable configuration within
O(log2 n) time (with the remaining low probability, it either needs more time to reach the
correct output or it stabilizes with an incorrect output) and requires only a constant number
of states, but the presence of the leader node is crucial.

The protocols developed in [5] introduced the idea of alternating cancellations and
duplications, an idea that has been frequently used in subsequent majority protocols and also
forms the basis of our new protocol. This idea has the following interpretation within the
framework of canceling strong opinions. The canceling stops when it is guaranteed that w.h.p.
the number of remaining strong opinions is less than δn, for some small constant δ < 1/2.
Now each remaining strong opinion duplicates (once): if a node with a strong opinion
interacts with a node which does not hold a strong opinion then both nodes adopt the same
strong opinion. This process of duplicating opinions lasts long enough to guarantee, again
w.h.p., that all strong opinions have been duplicated. One phase of (partial) cancellations
followed by (complete) duplications takes w.h.p. O(logn) time, and O(logn) repetitions of
this phase increases the difference between the numbers of strong opinions A and B to Θ(n).
With such large imbalance between strong opinions, w.h.p. within additional O(logn) time
the minority opinion is completely eliminated and the majority opinion is propagated to all
nodes.

P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:5

Bilke et al. [11] showed that the cancellation-duplication framework from [5] can be
implemented without a leader if the agents have enough states to count their interactions.
They obtained a majority protocol which has stabilization time O(log2 n) w.h.p. and in
expectation, and uses O(log2 n) states. Berenbrink et al. [10] generalized the previous results
on majority protocols by working with k ≥ 2 opinions (plurality voting) and arbitrary graphs.
Their protocol is based on the methodology introduced earlier for load balancing [18] and
achieves O(polylogn) time using a polynomial number of states and assuming that the initial
advantage of the most common opinion is Ω(n/polylogn). For the case of complete graphs
and k = 2, their protocol runs w.h.p. in O(logn) time.

Recently Alistarh et al. [2] showed that any majority protocol which has expected
stabilization time of O(n1−ε), where ε is any positive constant, and satisfies the conditions
of monotonicity and output dominance5, requires Ω(logn) states. They also presented a
protocol which uses only Θ(logn) states and has stabilization time O(log2 n) w.h.p. and
in expectation. Their lower and upper bounds raised the following questions. Can exact
majority be computed in poly-logarithmic time with o(logn) states, if the time is measured
in some natural and relevant way other than time until (correct) stabilization? Can exact
majority be computed in o(log2 n) time with poly-logarithmically many states? (The protocol
in [2] and all earlier exact majority protocols which use poly-logarithmically many states have
time complexity at least of the order of log2 n.) Regarding the first question, one may consider
the convergence time instead of the stabilization time. For a random (infinite) sequence ω of
interaction pairs, let TC = TC(ω) denote the convergence time, defined as the first round
when (at some interaction during this round) the system enters a correct configuration (all
nodes correctly output the majority opinion) and remains in correct configurations in all
subsequent interactions (of this sequence ω). Clearly TC ≤ TS , since reaching a correct stable
configuration implies that whatever the future interactions may be, the system will always
remain in correct configurations.

Very recently Kosowski and Uznański [16] and Berenbrink et al. [8] have shown that the
convergence time TC can be poly-logarithmic while using o(logn) states. In [16] the authors
design a programming framework and accompanying compilation schemes that provide a
simple way of achieving protocols (including majority) which are w.h.p. correct, use O(1)
states and converge in expected poly-logarithmic time. They can make their protocols
always-correct at the expense of having to use O(log logn) states per node, while keeping
poly-logarithmic time, or increasing time to O(nε), while keeping a constant bound on the
number of states. In [8] the authors show an always-correct majority protocol which converges
w.h.p. in O(log2 n/log s) time and uses Θ(s+ log logn) states and an always-correct majority
protocol which stabilizes w.h.p. in O(log2 n/log s) time and uses O(s · logn/log s) states,
where parameter s ∈ [2, n].

The recent population protocols for majority voting often use similar technical tools
(mainly efficient constructions of phase clocks) as protocols for another fundamental problem
of leader election. There are, however, notable differences in computational difficulty of both
problems, so advances in one problem do not readily imply progress with the other problem.
For example, leader election admits always-correct protocols with poly-logarithmically fast
stabilization and Θ(log logn) states [13] (the lower bound here is only Ω(log logn) [1]).
Gasieniec and Stachowiak [14] have recently shown that leader election can be completed in

5 Informally, the running time of a monotonic protocol does not increase if executed with a smaller number
of agents. The output dominance means that if the positive counts of states in a stable configuration
are changed, then the protocol will stabilize to the same output.

DISC 2018

10:6 A Population Protocol for Exact Majority

expected time asymptotically significantly better than log2 n, but the best known time-bound
for w.h.p.-correctness is O(log2 n). The ideas in [14], however, are specific to leader election
and we do not see how they could be applied to improve expected time of majority voting.

Our Contributions. We present a majority population protocol with stabilization time
O(log5/3 n) w.h.p. and in expectation and O(logn) states. Since our protocol satisfies the
conditions of monotonicity and output dominance, in view of the lower bound shown in [2], this
implies the O(logn) number of states being asymptotically optimal for this type of protocols.
The main contribution of our protocol is that no majority protocol with O(polylogn) states
and running time O(log2−α n), for any constant α > 0, has been known before, not even if
the weaker notions of the “convergence time” or “w.h.p. correctness” were considered.

All known fast majority protocols with a poly-logarithmic number of states are based in
some way on the idea (introduced in [5]) of a sequence of Ω(logn) canceling-doubling phases.
Each phase has length Ω(logn) and the nodes are synchronized when they proceed from
phase to phase. Our new protocol still uses the overall canceling-doubling framework (as
explained in Section 2) but with shorter phases of length Θ(log2/3 n) each, at the expense of
weakening synchronization. We note that all existing majority protocols known to us cease
to function properly with sub-logarithmic phases. Such phases are too short to synchronize
nodes, resulting in there being, at the same time, nodes from different phases, and the
computation potentially getting stuck (opposite opinions from different phases cannot cancel
each other or we lose correctness). Moreover, we do not even have the guarantee that every
node will be activated at all during a short phase – in fact, we know some nodes will not.
The existing protocols require each node to be activated at least logarithmically many times
during each phase.

Our main technical contributions are mechanisms to deal with the nodes which advance
too slowly or too quickly through the short phases, that is, the nodes which are not in
sync with the bulk. In a nutshell, we group log1/3 n phases in one epoch, show that the
configuration of the system remains reasonably tidy throughout one epoch even without
explicit synchronization, and introduce “cleaning-up” and synchronization at the boundaries
between epochs. We believe that some of our algorithmic and analytical ideas developed for
fast majority voting may be of independent interest.

Outline. The remainder of the paper is organized as follows. We first, in Section 2, describe
the O(log2 n)-time, O(log2 n)-state Majority protocol presented in [11], which we use as
the baseline implementation of the canceling-doubling framework. We refer to the structure
and the main properties of this protocol when describing and analysing our new faster
protocols. In Section 3 we present our main protocol FastMajority1, which stabilizes in
O(log5/3 n) time and uses Θ(log2 n) states, and in Section 4 we outline the analysis of this
protocol. In Section 5 we outline how to modify protocol FastMajority1 yielding protocol
FastMajority2, which has the same O(log5/3 n) bound on the running time but uses only
Θ(logn) states. Further details of our protocols, including pseudocode and detailed proofs,
are given in the full version of the paper [9].

2 Exact majority: the general idea of canceling-doubling phases

We view the A/B votes as tokens which can have different values (or magnitudes). Initially
each node has one token of type A or B with value 1 (the base, or original, value of a token).
Throughout the computation, each node either has one token or is empty. In the following
we say that two tokens meet if their corresponding nodes interact.

P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:7

When two opposite tokens A and B of the same value meet, then they can cancel each
other and the nodes become empty. Such an interaction is called canceling of tokens.
When a token of type X ∈ {A,B} and value z interacts with an empty node, then this
token can split into two tokens of type X and half the value z/2, and each of the two
involved nodes takes one token. We call such an interaction splitting, duplicating or
doubling of a token.

We also use the notion of the age of a token, the number of times it has undergone
splitting. Thus the relation between the value z and the age g of a token is z = 1/2g. Each
node stores only the age of the token it possesses (if any), as its value can easily be computed
from its age and vice-versa. Note that any sequence of canceling and splitting interactions
preserves the difference between the sum of the values of all A and B tokens. This difference
is always equal to the initial imbalance. The primary objective is to eliminate all minority
tokens. When only majority tokens are left in the system (and this is recognized by at least of
the the nodes), the majority opinion can be propagated to all nodes w.h.p. within additional
O(logn) time via a broadcast process. In the broadcast process, if two nodes interact and
one of the nodes is in a final state, then the other node adopts the opinion of the first node
and switches to the final state as well, except when a conflict occurs. In such a case some
backup protocol is initiated that guarantees that the process always converges to the correct
result. Since a conflict occurs with a small probability only, the running time of the overall
protocol is O(log2 n) with high probability and in expectation. The details of this standard
process of propagating the outcome will be omitted from our descriptions and analysis. That
is, from now on we assume that the objective is to eliminate the minority tokens.

From a node’s local point of view, the computation of the O(log2 n)-time, O(log2 n)-state
Majority protocol consists of at most logn+ 2 phases and each phase consists of at most
C logn interactions, where C is a suitably large constant. Each node keeps count of phases
and steps (interactions) within the current phase, and maintains further information which
indicates the progress of computation. More precisely, each node v keeps the following data,
which require Θ(log2 n) states.

v.token ∈ {A,B, ∅} – the type of token held by v. If v.token = ∅ then the node is empty.
v.phase ∈ {0, 1, 2, . . . , logn+ 2} – the counter of phases.
v.phase_step ∈ {0, 1, 2, . . . , (C logn)− 1} – the counter of steps in the current phase.
Boolean flags, which are initially false and indicate the following status when set to true:
v.doubled – v has a token which has already doubled in the current phase;
v.done – the node has made the decision on the final output;
v.fail – the protocol has failed because of some inconsistencies.

If a node v is in neither of the two special states done and fail, then we say that v is in a
normal state: v.normal ≡ ¬(v.done ∨ v.fail). A node v is in Phase i if v.phase = i. If v
is in Phase i and is not empty, then the age of the token at v is either i if ¬v.doubled (the
token has not doubled yet in this phase) or i + 1 if v.doubled. Thus the phase of a token
(more correctly, the token’s host node) and the flag doubled indicate the age of this token.
Throughout the whole computation, the pair (v.phase, v.phase_step) can be regarded as the
(combined) interaction counter v.time ∈ {0, 1, 2, . . . , 2C log2 n)} of node v. This counter is
incremented by 1 at the end of each interaction. Thus, for example, if v.phase_step is equal
to 0 after such an increment, then node v has just completed a phase. Each phase is divided
into five parts defined below, where c is a constant discussed later.

The beginning, the middle and the final parts of a phase are buffer zones, consisting
of c logn steps each. The purpose of these parts is to ensure that the nodes progress
through the current phase in a synchronized way.

DISC 2018

10:8 A Population Protocol for Exact Majority

The second part is the canceling stage and the fourth part is the doubling stage, each
consisting of ((C−3c)/2) logn steps. If two interacting nodes are in the canceling stage of
the same phase and have opposite tokens then the tokens are canceled. If two interacting
nodes are in the doubling stage of the same phase, one of them has a token which has
not doubled yet in this phase and the other is empty, then this is a doubling interaction.

If nodes were simply incrementing their step counters by 1 at each interaction, then those
counters would start diverging too much for the canceling-doubling process to work correctly.
An important aspect of the Majority protocol, as well as our new faster protocols, is the
following mechanism for keeping the nodes sufficiently synchronized. When two interacting
nodes are in different phases then the node in the lower phase jumps up to (that is, sets
its step counter to) the beginning of the next phase. The Majority protocol relies on this
synchronization mechanism in the high-probability case when all nodes are in two adjacent
parts of a phase (that is, either in two adjacent parts of the same phase, or in the final part
of one phase and the beginning part of the next phase.) In this case the process of pulling all
nodes up to the next phase follows the pattern of broadcast. The node, or nodes, which have
reached the beginning of the next phase by way of normal one-step increments broadcast the
message “if you are not yet in my phase then proceed to the next phase.” By the time the
broadcast is completed (that is, by the time when the message has reached all nodes), all
nodes are together in the next phase. It can be shown that there is a constant β0 such that
w.h.p. the broadcast completes in β0n logn random pairwise interactions (see, for example [5];
other papers may refer to this process as epidemic spreading or rumor spreading).

The constant c in the definition of the parts of a phase is suitably smaller than the
constant C, but sufficiently large to guarantee the following two conditions: (a) the broadcast
from a given node to all other nodes completes w.h.p. within (c/5)n logn interactions; and
(b) for a sequence of (C/2)n logn consecutive interactions, w.h.p. for each node v and each
0 < t ≤ (C/2)n logn, the number of times v is selected for interaction within the first t
interactions differs from the expectation 2t/n by at most (c/5) logn. Condition (a) is used
when the nodes reaching the end of the current phase i initiate broadcast to “pull up” the
nodes lagging behind. Condition (a) implies that after (c/5)n logn interactions, w.h.p. all
nodes are in the next phase. Using Condition (b) with t = (c/5)n logn, we can also claim
that w.h.p. at this point all nodes are within the first (3/5)c logn steps of the next phase
(all nodes are in the next phase and no node interacted more than the expected (2/5)c logn
plus (1/5)c logn times). Finally Condition (b) applied to all (c/5)n logn ≤ t ≤ (C/2)n logn
implies that w.h.p. the differences between the individual counts of node interactions do not
diverge by more than c logn throughout this phase. We set c = C3/4 and take C large enough
so that c ≤ C/9 (to have at least 3c logn steps in the canceling and doubling stages) and
both Conditions (a) and (b) hold. This way we achieve the following synchronized progress
of nodes through a phase: w.h.p. all nodes are in the same part of the same phase before
they start moving on to the next part. Moreover, also w.h.p., for each canceling or doubling
stage there is a sequence of Θ(n logn) consecutive interactions when all nodes remain in this
stage and each one of them is involved in at least c logn interactions.

Thus throughout the computation of the Majority protocol, w.h.p. all nodes are in two
adjacent parts of a phase. In particular, w.h.p. the canceling and doubling activities of
the nodes are separated. This separation ensures that the cancellation of tokens creates a
sufficient number of empty nodes to accommodate new tokens generated by token splitting
in the subsequent doubling stage. If two interacting nodes are not in the same or adjacent
parts of a phase (a low, but positive, probability), then their local times (step counters)
are considered inconsistent and both nodes enter the special fail state. The details of the
Majority protocol are given in pseudocode in the full version [9].

P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:9

From a global point of view, w.h.p. each new phase p starts with all nodes in normal states
in the beginning of this phase. We say that this phase completes successfully if all nodes are
in normal states in the beginning part of the next phase p+ 1. At this point all tokens have
the same value 1/2p+1, and the difference between the numbers of opposite tokens is equal
to 2p+1|a0 − b0|. The computation w.h.p. keeps successfully completing consecutive phases,
each phase halving the value of tokens and doubling the difference between A tokens and
B tokens, until the critical phase pc, which is the first phase 0 ≤ pc ≤ logn − 1 when the
difference between the numbers of opposite tokens is

2pc |a0 − b0| > n/3. (1)

The significance of the critical phase is that the large difference between the numbers of
opposite tokens means that w.h.p. all minority tokens will be eliminated in this phase, if
they have not been eliminated yet in previous phases. More specifically, at the end of phase
pc, w.h.p. only tokens of the majority opinion are left and each of these tokens has value
either 1/2pc+1 if the token has split in this phase, or 1/2pc otherwise. If at least one token
has value 1/2pc , then this token has failed to double during this phase and assumes that the
computation has completed. Such a node enters the done state and broadcasts its (majority)
opinion to all other nodes. In this case phase pc is the final phase.

If at the end of the critical phase all tokens have value 1/2pc+1 then no node knows yet
that all minority tokens have been eliminated, so the computation proceeds to the next
phase pc + 1. Phase pc + 1 will be the final phase, since it will start with more than (2/3)n
tokens and all of them of the same type, so at least one token will fail to double and will
assume that the computation has completed and will enter the done state. The failure to
double is taken as an indication that w.h.p. all tokens of opposite type have been eliminated.
Some tokens may still double in the final phase and enter the next phase (later receiving the
message that the computation has completed) but w.h.p. no node reaches the end of phase
pc + 2 ≤ logn+ 1. Thus the done state is reached w.h.p. within O(log2 n) parallel time.

The computation may fail w.l.p.6 when the step counters of two interacting nodes are
not consistent, or a node reaches phase logn + 2, or two nodes enter the done state with
opposite-type tokens. Whenever a node realizes that any of these low-probability events has
occurred, it enters the fail state and broadcasts this state.

It is shown in [11] that the Majority protocol stabilizes, either in the correct all-done
configuration or in the all-fail configuration, within O(log2 n) time w.h.p. and in expectation.
The standard technique of combining a fast protocol, which w.l.p. may fail, with a slow always-
correct backup protocol gives an extended Majority protocol, which requires Θ(log2 n) states
per node and computes the exact majority within O(log2 n) time w.h.p. and in expectation.
The idea is to run both the fast and the slow protocols in parallel and make the nodes in
the fail state adopt the outcome of the slow protocol. The slow protocol runs in expected
polynomial, say O(nα), time, but its outcome is used only with low probability of O(n−α),
so it contributes only O(1) to the overall expected time.

We omit the details of using a slow backup protocol (see, for example, [2, 11]), and assume
that the objective of a canceling-doubling protocol is to use a small number of states s, to
compute the majority quickly w.h.p., say within a time bound T ′(n), and to also have low
expected time of reaching the correct all-done configuration or the all-fail configuration, say
within a bound T ′′(n). If the bounds T ′(n) and T ′′(n) are of the same order O(T (n)), then
we get a corollary that the majority can be computed with O(s) states in O(T (n)) time
w.h.p. and in expectation.

6 w.l.p. – with low probability – means that the opposite event happens w.h.p.

DISC 2018

10:10 A Population Protocol for Exact Majority

3 Exact majority in O(log5/3 n) time with Θ(log2 n) states

To improve on the O(log2 n) time of the Majority protocol, we reduce the length of a phase
to Θ(log1−a n), where a = 1/3. The new FastMajority1 protocol runs in O(log1−a n) ×
O(logn) = O(log5/3 n) time and requires Θ(log2 n) states per node. We will show in Section 5
that the number of states can be reduced to asymptotically optimal Θ(logn). We keep the
term a in the description and the analysis of our fast majority protocols to simplify notation
and to make it easier to trace where a larger value of a would break the proofs.

Phases of sub-logarithmic length are too short to ensure that w.h.p. all tokens progress
through the phases synchronously and keep up with required canceling and doubling, as
they did in the Majority protocol. In the FastMajority1 protocol, we have a small but
w.h.p. positive number of out-of-sync tokens, which move to the next phase either too early
or too late (with respect to the expectation) or simply do not succeed with splitting within
a short phase. Such tokens stop contributing to the regular dynamics of canceling and
doubling. The general idea of our solution is to group loga n consecutive phases (a total
of Θ(logn) steps) into an epoch, to attach further Θ(logn) steps at the end of each epoch
to enable the out-of-sync tokens to reach the age required at the end of this epoch, and to
synchronize all nodes by the broadcast process at the boundaries of epochs. When analyzing
the progress of tokens through the phases of the same epoch, we consider the tokens which
remain synchronized and the out-of-sync tokens separately.

We now proceed to the details of the FastMajority1 protocol. Each epoch consists of
2C logn steps, where C is a suitably large constant, and is divided into two equal-length parts.
The first part is a sequence of loga n canceling-doubling phases, each of length C log1−a n.
The purpose of the second part is to give sufficient time to out-of-sync tokens so that w.h.p.
they all complete all splitting required for this epoch. Each node v maintains the following
data, which can be stored using Θ(log2 n) states. For simplicity of notation, we assume
that expressions like loga n and C log1−a n have integer values if they refer to an index (or a
number) of phases or steps.

v.token ∈ {A,B, ∅} – type of token held by v.
v.epoch ∈ {0, 1, . . . , log1−a n+ 2} - the counter of epochs.
v.age_in_epoch ∈ {0, 1, . . . , loga n} – the age of the token at v (if v has a token) with
respect to the beginning of the current epoch. If v.token is A or B, then the age of this
token is g = v.epoch · loga n+ v.age_in_epoch and the value of this token is 1/2g.
v.epoch_part ∈ {0, 1} – each epoch consists of two parts, each part has C logn steps. The
first part, when v.epoch_part = 0, is divided into loga n canceling-doubling phases.
v.phase ∈ {0, 1, . . . , (loga n)− 1} – counter of phases in the first part of the current epoch.
v.phase_step ∈ {0, 1, . . . , (C log1−a n)− 1} – counter of steps (interactions) in the current
phase.
Boolean flags indicating the status of the node, all set initially to false:
v.doubled, v.done, v.fail – as in the Majority protocol;
v.out_of_sync – v has a token which no longer follows the expected progress through
the phases of the current epoch;
v.additional_epoch – the computation is in the additional epoch of 3 loga n phases,
with each of these phases consisting now of Θ(logn) steps.

We say that a node v is in epoch j if v.epoch = j, and in phase i (of the current
epoch) if v.phase = i. We view the triplet (v.epoch_part, v.phase, v.phase_step) as the (com-
bined) counter v.epoch_step ∈ {0, 1, 2, . . . , (2C logn) − 1} of steps in the current epoch,

P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:11

and the pair (v.epoch, v.epoch_step) as the counter v.time ∈ {0, 1, 2, . . . , (2C log2−a n) +
O(logn)} of the steps of the whole protocol. If a node v is not in any of the special states
out_of_sync, additional_epoch, done or fail, then we say that v is in a normal state:

v.normal ≡ ¬(v.out_of_sync ∨ v.additional_epoch ∨ v.done ∨ v.fail).

A normal token is a token hosted by a normal node. Each phase is split evenly into the
canceling stage (the first (C/2) log1−a n steps of the phase) and the doubling stage (the
remaining (C/2) log1−a n steps).

The vast majority of the tokens are normal tokens progressing through the phases of the
current epoch in a synchronized fashion. These tokens are simultaneously in the beginning
part of the same phase j and have the same age j (w.r.t. the end of the epoch). They first
try to cancel with tokens of the same age but opposite type during the canceling stage, and
if they survive, they then split during the subsequent doubling stage. At some later time
most of the tokens will still be normal, but in the beginning part of the next phase j + 1 and
having age j + 1. Thus the age of a normal token (w.r.t. the beginning of the current epoch)
is equal to its phase if the token has not yet split in this phase (this is recorded by setting
the flag doubled), or to its phase plus 1 otherwise.

As in the Majority protocol, we separate the canceling and the doubling activities to
ensure that the canceling of tokens first creates a sufficient number of empty nodes to
accommodate the new tokens obtained later from splitting. Unlike in the Majority protocol,
the FastMajority1 protocol does not have the buffer zones within a phase. Such zones
would not be helpful in the context of shorter sublogarithmic phases when anyway we cannot
guarantee that w.h.p. all nodes progress through a phase in a synchronously.

A token which has failed to split in one of the phases of the current epoch becomes an
out-of-sync token (the out_of_sync flag is set). Such a token no longer follows the regular
canceling-doubling phases of the epoch, but instead tries cascading splitting to break up
into tokens of age loga n (relative to the beginning of the epoch) as expected by the end of
this epoch. An out-of-sync token does not attempt canceling because there would be only
relatively few opposite tokens of the same value, so only a small chance to meet them (too
small to make a difference in the analysis). The tokens obtained from splitting out-of-sync
tokens inherit the out-of-sync status. A token drops the out-of-sync status if it is in the
second part of the epoch and has reached the age loga n. (Alternatively, out-of-sync tokens
could switch back to the normal status as soon as their age coincides again with their phase,
but this would complicate the analysis.) An out-of-sync node is a node hosting an out-of-sync
token. While each normal node and token is in a specific phase of the first part of an epoch
or is in the second part of an epoch, the out-of-sync nodes (tokens) belong to an epoch but
not to any specific phase. The objective for a normal token is to split into two halves in each
phase of the current epoch (if it survives canceling). The objective of an out-of-sync token is
to keep splitting in the current epoch (disregarding the boundaries of phases) until it breaks
into tokens as expected by the end of this epoch.

In our analysis we show that w.h.p. there are only O(n/2Θ(loga n)) out-of-sync tokens in
any one epoch. W.h.p. all out-of-sync tokens in the current epoch reach the age loga n (w.r.t.
the beginning of the epoch) by the midpoint of the second part of the epoch (that is, by the
step (3/2)C logn of the epoch), for each but the final epoch jf . In the final epoch at least
one out-of-sync token completes the epoch without reaching the required age.

When the system completes the final epoch, the task of determining the majority opinion
is not fully achieved yet. In contrast to the Majority protocol where on completion of the
final phase w.h.p. only majority tokens are left, in the FastMajority1 protocol there may

DISC 2018

10:12 A Population Protocol for Exact Majority

still be a small number of minority tokens at the end of the final epoch, so some further
work is needed. A node which has failed to reach the required age by the end of the current
epoch, identifying that way that this is the final epoch, enters the additional_epoch state and
broadcasts this state through the system to trigger an additional epoch of Θ(loga n) phases.
More precisely, the additional epoch consists of at most 3 loga n phases corresponding to
epochs jf − 1 (if jf > 0), jf and jf + 1, each phase now having Θ(logn) steps. W.h.p. these
phases include the critical phase pc and the phase pc + 1, defined by (1). The computation
of the additional epoch is as per the Majority protocol, taking O(log1+a n) time to reach
the correct all-done configuration w.h.p. or the all-fail configuration w.l.p.

Two interacting nodes first check the consistency of their time counters (the counters of
interactions) and switch to fail states if the difference between the counters is greater than
(1/4)C logn. If the counters are consistent but the nodes are in different epochs (so one near
the end of an epoch with the other being near the beginning of the next) then the node in
the lower epoch jumps up to the beginning of the next epoch. This is the synchronization
mechanism at the boundaries of epochs, analogous to the synchronization by broadcast at
the boundaries of phases in the Majority protocol. In the FastMajority1 protocol, however,
it is not possible to synchronize the nodes at the boundaries of (short) phases.

For details of the FastMajority1 protocol we refer the reader to the full version [9].

4 Analysis of the FastMajority1 protocol

Ideally we would like for all tokens to progress through the phases of the current epoch
synchronously, w.h.p., that is, all tokens being roughly in the same part of the same phase, as
in the Majority protocol. This would mean that w.h.p. at some (global) time all nodes are
in the beginning part of the same phase, ensuring that all tokens have the same value x, and
at some later point all nodes are in the end part of this phase and all surviving tokens have
value x/2. This ideal behavior is achieved by the Majority protocol at the cost of having
Θ(logn)-step phases. As discussed in Section 2, the logarithmic length of a phase also gives
sufficient time to synchronize w.h.p. the local times of all nodes at the end of a phase so that
they all end up together in the beginning part of the next phase.

Now, with phases having only Θ(log1−a n) steps, we face the following two difficulties
in the analysis. Firstly, while a good number of tokens split during such a shorter phase,
w.h.p. there are also some tokens which do not split. Secondly, phases of length o(logn)
are too short to keep the local times of the nodes synchronized. We can again show that a
good number of nodes proceed in synchronously, but w.h.p. there are nodes falling behind or
rushing ahead and our analysis has to account for them.

Counting the phases across the epochs, we define the critical phase pc as in (1). Similarly
as in the O(log2 n)-time Majority protocol, the computation proceeds through the phases
moving from epoch to epoch until it reaches the critical phase pc. The computation will
then get stuck in this phase or in the next phase pc + 1. Some tokens do not split in that
final phase, nor in any subsequent phase of the current epoch, because there are not enough
empty nodes to accommodate new tokens. Almost all minority tokens have been eliminated,
and so the creation of empty nodes by cancellations of opposite tokens has all but stopped.
This is the final epoch jf and the nodes which do not split to the value required by the
end of this epoch trigger the additional epoch of O(loga n) phases, each having Θ(logn)
steps. The additional epoch is needed because we do not have a high-probability guarantee
that all minority tokens are eliminated by the end of the final epoch. The small number of
remaining minority tokens may have various values which are inconsistent with the values of

P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:13

the majority tokens, so further cancellations of tokens might not be possible. The additional
epoch includes the phases of the three consecutive epochs jf − 1, jf and jf + 1 to ensure that
w.h.p. both phases pc and pc + 1 are included. Phase pc can be as early as the last phase in
epoch jf − 1 and phase pc + 1 can be as late as the first phase in epoch jf + 1.

The following conditions describe the regular configuration of the whole system at the
beginning of epoch j, and the corresponding Lemma 1 summarizes the progress of the
computation through this epoch. Recall that the FastMajority1 protocol is parameterized
by a suitably large constant C > 1 and our analysis refers also to another smaller constant
c = C3/4. We refer to the first (last) c log1−a n steps of a phase or a stage as the beginning
(end) part of this phase or stage. The (global) time steps count the number of interactions of
the whole system.
EpochInvariant(j) :
1. At least n(1− 1/23 loga n) nodes are in normal states, are in epoch j, and their epoch_step

counters are at most c loga n.
2. For each remaining node u,

a. u is in a normal state in epoch j − 1 and u.epoch_step ≥ (3/2)C logn (that is, u is in
the last quarter of epoch j − 1), or

b. u is in a normal or out-of-sync state in epoch j and u.epoch_step ≤ 4c logn.

I Lemma 1. Consider an arbitrary epoch j ≥ 0 such that phase pc belongs to an epoch
j′ ≥ j and assume that at some (global) step t the condition EpochInvariant(j) holds.
1. If phase pc does not belong to epoch j (that is, phase pc is in a later epoch j′ > j), then

w.h.p. there is a step t̃ ≤ t+ 2Cn logn when the condition EpochInvariant(j + 1) holds.
2. If both phases pc and pc+ 1 belong to epoch j, then w.h.p. there is a step t̃ ≤ t+ 2Cn logn

when
(∗) a node completes epoch j and enters the additional_epoch state (because it has a token

which has not split to the value required by the end of this epoch); and
all other nodes are in normal or out-of-sync states in the second part of epoch j or the
first part of epoch j + 1.

3. Otherwise, that is, if phase pc is the last phase in epoch j (and pc + 1 is the first phase in
epoch j + 1), then w.h.p. either there is a step t̃ ≤ t+ 2Cn logn when the above condition
(∗) for the end of epoch j holds, or all nodes eventually proceed to epoch j + 1 and there
is a step t̂ ≤ t+ 3Cn logn when the condition analogous to (∗) but for the end of epoch
j + 1 holds.

The condition PhaseInvariant1(j, i) given below describes the regular configuration of
the whole system at the beginning of phase 0 ≤ i ≤ loga n in epoch j ≥ 0. We note that the
last phase in an epoch is phase loga n− 1 and the condition PhaseInvariant1(j, loga n) refers
in fact to the beginning of the second part of the epoch. A normal token in the beginning
of phase i in epoch j has (absolute) value 2−(j loga n+i) and relative values 1, 2, 1/2i and
2loga n−i w.r.t. the beginning of this phase, the end of this phase, the beginning of this epoch
and the end of this epoch, respectively. It may also be helpful to recall that for a given
node v, phase i starts at v’s epoch step Ci log1−a n. Observe that EpochInvariant(j) implies
PhaseInvariant1(j, 0).
PhaseInvariant1(j, i) :
1. The set W of nodes which are normal and in the beginning part of phase i in epoch j has

size at least n(1−(i+1)/22 loga n). That is, a node v is inW if and only if v.normal is true,
v.phase_step ≤ c log1−a n, v.epoch = j, and either v.epoch_part = 0 and v.phase = i if
i < loga n, or v.epoch_part = 1 and v.phase = 0 if i = loga n.

DISC 2018

10:14 A Population Protocol for Exact Majority

2. Let U = V \W denote the set of the remaining nodes.
a. For each u ∈ U :

u is a normal node in epoch j − 1, u.epoch_step ≥ (3/2)C logn and i < (c/C) loga n;
or u is in a normal or out-of-sync state in epoch j and |u.epoch_step− Ci log1−a n| ≤
4c logn.

b. The total value of the tokens in U w.r.t. the end of epoch j is at most n(i+ 1)/22 loga n.

For an epoch 0 ≤ j and a phase 0 ≤ i < loga n in this epoch, let p(j, i) = j loga n+i denote
the global index of this phase. We show that w.h.p. the condition PhaseInvariant1(j, i) holds
at the beginning of each phase p(j, i) ≤ pc.

I Lemma 2. For arbitrary 0 ≤ j and 0 ≤ i ≤ loga n − 1 such that p(j, i) ≤ pc, assume
that the condition EpochInvariant(j) holds at some (global) time step t and the condition
PhaseInvariant1(j, i) holds at the step ti = t+i(C/2)n log1−a n. Then the following conditions
hold, where ti+1 = t+ (i+ 1)(C/2)n log1−a n.
1. If p(j, i) < pc, then w.h.p. at step ti+1 the condition PhaseInvariant1(j, i+ 1) holds.
2. If p(j, i) = pc, then w.h.p. at step ti+1 the total value, w.r.t. the end of epoch j, of the

minority-opinion tokens is O(n logn/22 loga n).

Lemma 2 is proven by analyzing the cancellations and duplications of tokens in one phase.
This lemma heavily uses Claim 6, in which it is essential that a ≤ 1/3. Lemma 1 is proven
by inductively applying Lemma 2. In turn, Theorem 3 below, which states the O(log5/3 n)
bound on the completion time of the FastMajority1 protocol, can be proven by inductively
applying Lemma 1 and by choosing a = 1/3.

I Theorem 3. The FastMajority1 protocol uses Θ(log2 n) states, computes the majority
w.h.p. within O(log5/3 n) time, and reaches the correct all-done configuration or the all-fail
configuration within expected O(log5/3 n) time.

I Corollary 4. The majority can be computed with Θ(log2 n) states in O(log5/3 n) time w.h.p.
and in expectation.

We now give some further explanation of the structure of our analysis, referring the reader
to the full version [9] for the formal proofs. Lemma 5 and Claim 6 show the synchronization
of the nodes which we rely on in our analysis. Lemma 5 is used in the proof of Lemma 1,
where we analyze the progress of the computation through one epoch consisting of O(n logn)
interactions (O(logn) parallel steps). Lemma 5 can be easily proven using first Chernoff
bounds for a single node and then the union bound over all nodes. The proof of Claim 6
is considerably more involved, but we need this claim in the proof of Lemma 2, where we
look at the finer scale of individual phases and have to consider intervals of Θ(log1−a n)
interactions of a given node. This claim shows, in essence, that most of the nodes stay tightly
synchronized when they move from phase to phase through one epoch. The epoch_step
counters of these nodes stay in a range of size at most c log1−a n.

I Lemma 5. For any constant C and for c = C3/4, during a sequence of t ≤ 2Cn logn
interactions, with probability at least 1−n−α(C) (for a suitable function α = ω(1)) the number
of interactions of each node is within c logn of the expectation of 2t/n interactions.

I Claim 6. For a fixed j ≥ 0, assume that EpochInvariant(j) holds at a time step t.
Let W ⊆ V be the set of n(1 − o(1)) nodes which satisfy at this step the condition 1 of
EpochInvariant(j) (that is, W is the set of nodes which are in epoch j with epoch_step
counters at most c loga n). Then at an arbitrary but fixed time step t < t′ ≤ t+ (3/4)Cn logn,

P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:15

w.h.p. all nodes in W are in epoch j and all but O(n/26 loga n) of them have their epoch_step
counters within c/2 · log1−a n from 2(t′ − t)/n.

Note that this claim only holds if a ≤ 1/3, otherwise one can not guarantee that w.h.p. all
but O(n/26 loga n) of the nodes in W have their epoch_step counters within c/2 · log1−a n of
2(t′ − t)/n.

Lemmas 7 and 8 describe the performance of the broadcast process in the population-
protocol model. Lemma 7 has been used before and is proven, for example, in [11]. Lemma 8
is a more detailed view at the dynamics of the broadcast process, which we need in the
context of Lemma 1 to show that the synchronization at the end epoch j gives w.h.p.
EpochInvariant(j + 1).

I Lemma 7. For any constant c, the broadcast completes with probability at least 1− n−α(c)

(for a suitable function α = ω(1)) within cn logn interactions.

I Lemma 8. Let b ∈ (0, 1) and c > 0 be arbitrary constants and let c1 be a sufficiently large
constant. Consider the broadcast process and let t1 be the first step when n/26 logb n nodes
are already informed and t2 = t1 + c1n logb n. Then the following conditions hold.
1. With probability at least 1− n−ω(1), n−O(n/26 logb n) nodes receive the message for the

first time within the c1n logb n consecutive interactions {t1 + 1, t1 + 2, . . . , t2}.
2. With probability at least 1− n−α(c) (for a suitable function α = ω(1)), t1 ≤ cn logn and

each node interacts at most 4c logn times in interval [1, t2].
3. With probability at least 1 − n−ω(1), there are n − O(n/26 logb n) nodes which interact

within interval [t1 + 1, t2] at least c1 logb n times but not more than 3c1 logb n times.

5 Reducing the number of states to Θ(log n)

Our FastMajority1 protocol described in Section 3 requires Θ(log2 n) states per node. Using
the idea underlying the constructions of leaderless phase clocks in [15] and [2], we now modify
FastMajority1 into the protocol FastMajority2, which still works in O(log5/3 n) time but
has only the asymptotically optimal Θ(logn) states per node.7 The general idea is to separate
from the whole population a subset of clock nodes, whose only functionality is to keep the
time for the whole system. The other nodes work on computing the desired output and check
whether they should proceed to the next stage of the computation when they interact with
clock nodes. We note that while we use similar general structure and terminology as in [2],
the meaning of some terms and the dynamics of our phase clock are somewhat different.
A notable difference is that in [2] the clock nodes keep their time counters synchronized on
the basis of the power of two choices in load balancing: when two nodes meet, only the lower
counter is incremented. In contrast, we keep the updates of time counters as in the Majority
and FastMajority1 protocols: both interacting clock nodes increment their time counters,
with the exception that the slower node is pulled up to the next Θ(logn)-length phase or
epoch, if the faster node is already there.

The nodes in the FastMajority2 protocol are partitioned into two sets with Θ(n) nodes
in each set. One set consists of worker nodes, which may carry opinion tokens and work
through canceling-doubling phases to establish the majority opinion. These nodes maintain
only information on whether they carry any token, and if so, then the value of the token

7 It may be possible to use instead the ideas underlying other phase clocks, e.g. the Θ(log logn)-state
phase clock from [13], but this would not result in fewer states being needed for our protocol.

DISC 2018

10:16 A Population Protocol for Exact Majority

(equivalently, the age of the token, that is, the number of times this token has been split).
Each worker node has also a constant number of flags which indicate the current activities
of the node (for example, whether it is in the canceling stage of a phase), but it does not
maintain a detailed step counter. The other set consists of clock nodes, which maintain
their detailed epoch-step counters, counting interactions with other clock nodes modulo
2C logn, for a suitably large constant C, and synchronizing with other clocks by the broadcast
mechanism at the end of epoch. Thus the clock nodes update their counters in the same way
as all nodes would update their counters in the FastMajority1 protocol.

The worker nodes interact with each other in a similar way as in FastMajority1, but now
to progress orderly through the computation they rely on the relatively tight synchronization
of clock nodes. A worker node v advances to the next part of the current phase (or to the
next phase, or the next epoch), when it interacts with a clock node whose clock indicates
that v should progress. There is also a third type of nodes, the terminator nodes, which
will appear later in the computation. A worker or clock node becomes a terminator node
when it enters a done or fail state. The meaning and function of these special states are as
in protocols Majority and FastMajority1.

A standard input instance, when each node is a worker with a token of value 1, is
converted into a required initial workers-clocks configuration during the following O(logn)-
time pre-processing. When two value-1 tokens of opposite type interact they cancel out and
one of the two involved nodes, say the one which has had the token B, becomes a clock node.
If two value-1 tokens of the same type interact and their step counters have different parity,
then the tokens are combined into one token of value 2. The combined toke is taken by one
node, while the other node, say the one with the odd counter, becomes a clock node. All
nodes count their interactions during the pre-processing, but the O(logn) states needed for
this are re-used when the pre-processing completes. At this point the worker nodes have an
input instance with the base value of tokens equal to 2. Some tokens may have value 1 (one
may view them as if already split in the first phase) and some nodes may be empty.

Referring to the state space of the FastMajority1 protocol, in the FastMajority2 pro-
tocol each worker node v maintains data fields v.token, v.epoch and v.age_in_epoch to carry
information about tokens and their ages, and a constant number of flags to keep track of
the status of the node and its progress through the current epoch and the current phase.
These include the status flags from the FastMajority1 protocol v.doubled, v.out_of_sync
and v.additional_epoch, and flags indicating the progress: the v.epoch_part flag from
FastMajority1 and a new (multi-valued) flag stage ∈ {beginning, canceling,middle, doubling,
ending}. The clock nodes maintain the epoch_step counters. The nodes have constant num-
ber of further flags, for example to support the initialization to workers and clocks and the
implementation of the additional epoch and the slow backup protocol. Thus in total each
node has only Θ(logn) states.

Further details of FastMajority2, including pseudocodes, details of the pre-processing
and outline of the proof of Theorem 9 which summarizes the performance of this protocol,
are given in the full version [9].

I Theorem 9. The FastMajority2 protocol uses Θ(logn) states, computes the exact majority
w.h.p. within O(log5/3 n) parallel time and stabilizes (in the correct all-done configuration or
in the all-fail configuration) within the expected O(log5/3 n) parallel time.

I Corollary 10. The exact majority can be computed with Θ(logn) states in O(log5/3 n)
parallel time w.h.p. and in expectation.

P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik 10:17

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest.

Time-space trade-offs in population protocols. In Philip N. Klein, editor, Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2560–2579. SIAM, 2017.
doi:10.1137/1.9781611974782.169.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2221–2239,
2018. doi:10.1137/1.9781611975031.144.

3 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in population
protocols. In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 47–56. ACM, 2015. URL: http://dl.acm.org/citation.
cfm?id=2767386, doi:10.1145/2767386.2767429.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006. doi:10.1007/s00446-005-0138-3.

5 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population pro-
tocols with a leader. Distributed Computing, 21(3):183–199, 2008.

6 James Aspnes and Eric Ruppert. An introduction to population protocols. In Benoît
Garbinato, Hugo Miranda, and Luís Rodrigues, editors, Middleware for Network Eccentric
and Mobile Applications, pages 97–120. Springer-Verlag, 2009.

7 Florence Bénézit, Patrick Thiran, and Martin Vetterli. Interval consensus: From quantized
gossip to voting. In Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP 2009, 19-24 April 2009, Taipei, Taiwan, pages 3661–3664.
IEEE, 2009. doi:10.1109/ICASSP.2009.4960420.

8 Petra Berenbrink, Robert Elässser, Tom Friedetzky, Dominik Kaaser, Peter Kling, and
Tomasz Radzik. Majority & stabilization in population protocols. Unpublished manuscript,
available on arXiv, May 2018.

9 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and
Tomasz Radzik. A population protocol for exact majority with O(log5/3 n) stabilization
time and asymptotically optimal number of states. Unpublished manuscript, available on
arXiv, May 2018. arXiv:1805.05157.

10 Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-Trenn, and Chris
Wastell. Plurality consensus via shuffling: Lessons learned from load balancing. CoRR,
abs/1602.01342, 2016. URL: http://arxiv.org/abs/1602.01342.

11 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Brief announcement:
Population protocols for leader election and exact majority with O(log2 n) states and
O(log2 n) convergence time. In Elad Michael Schiller and Alexander A. Schwarzmann, ed-
itors, Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC
2017, Washington, DC, USA, July 25-27, 2017, pages 451–453. ACM, 2017. Full version
available at arXiv:1705.01146. doi:10.1145/3087801.3087858.

12 Moez Draief and Milan Vojnovic. Convergence speed of binary interval consensus. In IN-
FOCOM 2010. 29th IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 15-19 March 2010, San
Diego, CA, USA, pages 1792–1800. IEEE, 2010. doi:10.1109/INFCOM.2010.5461999.

13 Leszek Gasieniec and Grzegorz Stachowiak. Fast space optimal leader election in population
protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete

DISC 2018

http://dx.doi.org/10.1137/1.9781611974782.169
http://dx.doi.org/10.1137/1.9781611975031.144
http://dl.acm.org/citation.cfm?id=2767386
http://dl.acm.org/citation.cfm?id=2767386
http://dx.doi.org/10.1145/2767386.2767429
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1109/ICASSP.2009.4960420
http://arxiv.org/abs/1805.05157
http://arxiv.org/abs/1602.01342
http://dx.doi.org/10.1145/3087801.3087858
http://dx.doi.org/10.1109/INFCOM.2010.5461999

10:18 A Population Protocol for Exact Majority

Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2653–2667,
2018. doi:10.1137/1.9781611975031.169.

14 Leszek Gasieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Almost logarithmic-
time space optimal leader election in population protocols. CoRR, abs/1802.06867, 2018.
arXiv:1802.06867.

15 Mohsen Ghaffari and Merav Parter. A polylogarithmic gossip algorithm for plurality con-
sensus. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing
PODC, pages 117–126, 2016.

16 A. Kosowski and P. Uznański. Population Protocols Are Fast. ArXiv e-prints, 2018. arXiv:
1802.06872v2.

17 George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos, and Paul G. Spi-
rakis. Determining majority in networks with local interactions and very small local memory.
In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Au-
tomata, Languages, and Programming, volume 8572 of Lecture Notes in Computer Science,
pages 871–882. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-662-43948-7_72.

18 Thomas Sauerwald and He Sun. Tight bounds for randomized load balancing on arbitrary
network topologies. In 53rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 341–350. IEEE
Computer Society, 2012. doi:10.1109/FOCS.2012.86.

http://dx.doi.org/10.1137/1.9781611975031.169
http://arxiv.org/abs/1802.06867
http://arxiv.org/abs/1802.06872v2
http://arxiv.org/abs/1802.06872v2
http://dx.doi.org/10.1007/978-3-662-43948-7_72
http://dx.doi.org/10.1109/FOCS.2012.86

Integrated Bounds for Disintegrated Storage
Alon Berger
Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

Idit Keidar
Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

Alexander Spiegelman
VMware Research, Israel

Abstract
We point out a somewhat surprising similarity between non-authenticated Byzantine storage,
coded storage, and certain emulations of shared registers from smaller ones. A common charac-
teristic in all of these is the inability of reads to safely return a value obtained in a single atomic
access to shared storage. We collectively refer to such systems as disintegrated storage, and show
integrated space lower bounds for asynchronous regular wait-free emulations in all of them. In a
nutshell, if readers are invisible, then the storage cost of such systems is inherently exponential
in the size of written values; otherwise, it is at least linear in the number of readers. Our bounds
are asymptotically tight to known algorithms, and thus justify their high costs.

2012 ACM Subject Classification Theory of computation → Distributed computing models,
Computing methodologies → Distributed algorithms

Keywords and phrases storage, coding, lower bounds, space complexity, register emulations

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.11

Acknowledgements We thank Yuval Cassuto, Gregory Chockler, Rati Gelashvili, and Yuanhao
Wei for many insightful discussions on space bounds for coded storage and emulations of large
registers from smaller ones.

1 Introduction

1.1 Space bounds for encoded, multi-register, and Byzantine storage
In many data sharing solutions, information needs to be read from multiple sources in order
for a single value to be reconstructed. One such example is coded storage where multiple
storage blocks need to be obtained in order to recover a single value that can be returned to
the application [5, 9, 10, 16–18, 22, 23]. Another example arises in shared memory systems,
where the granularity of atomic memory operations (such as load and store) is limited to a
single word (e.g., 64 bits) and one wishes to atomically read and write larger values [22]. A
third example is replicating data to overcome Byzantine faults (without authentication) or
data corruption, where a reader expects to obtain the same block from multiple servers in
order to validate it [1, 2, 19].

We refer to such systems collectively as disintegrated storage systems. We show that
such a need to read data in multiple storage accesses inherently entails high storage costs:
exponential in the data size if reads do not modify the storage, and otherwise linear in the
number of concurrent reads. This stands in contrast to systems that use non-Byzantine
replication, such as ABD [6], where, although meta-data (e.g., timestamps) is read from
several sources, the recovered value need only be read from a single source.

© Alon Berger, Idit Keidar, and Alexander Spiegelman;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 11; pp. 11:1–11:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Integrated Bounds for Disintegrated Storage

1.2 Our results
We consider a standard shared storage model (see Section 2). We refer to shared storage
locations (representing memory words, disks, servers, etc.) as objects. To strengthen our
lower bounds, we assume that objects are responsive, i.e., do not fail; the results hold a
fortiori if objects can also be unresponsive [19]. Objects support general read-modify-write
operations by asynchronous processes. We study wait-free emulations of a shared regular
register [20].

Section 3 formally defines disintegrated storage. We use a notion of blocks, which are
parts of a value kept in storage – code blocks, segments of a longer-than-word value, or full
copies of a replicated value. A key assumption we make is that each block in the shared
storage pertains to a single write operation; a similar assumption was made in previous
studies [11,23]. The disintegration property then stipulates that a reader must obtain some
number τ > 1 of blocks pertaining to a value v before returning v. For example, τ blocks are
needed in τ -out-of-n coded storage, whereas τ = f +1 in f -tolerant Byzantine replication. To
strengthen our results, we allow the storage to hold unbounded meta-data (e.g., timestamps),
and count only the storage cost for blocks. Note that the need to obtain τ blocks implies
that meta-data cannot be used instead of actual data.

In Section 4 we give general lower bounds that apply to all types of disintegrated storage –
replicated, coded, and multi-register. We first consider invisible reads, which do not modify
the shared storage. This is a common paradigm in storage systems and often essential where
readers outnumber writers and have different permissions. In this case, even with one reader
and one writer, the storage size can be exponential; specifically, if value sizes are D (taken
from a domain of size 2D), then we show a lower bound of τ + (τ − 1)

⌈
2D−1
L

⌉
blocks, where

L is the number of blocks in a reader’s local storage. That is, either the local storage of the
reader or the shared storage is exponential.

Section 5 studies a more restrictive flavor of disintegrated storage, called τ -common write,
where a reader needs to obtain τ blocks produced by the same write(v) operation in order
to return v. In other words, if the reader obtains blocks that originate from two different
writes of the same value, then it cannot recognize that they pertain to the same value, as is
the case when blocks hold parts of a value or code blocks rather than replicas. In this case,
the shared storage cost is high independently of the local memory size. Specifically, we show
a bound of τ · 2D blocks with invisible readers. In systems that use symmetric coding (i.e.,
where all blocks are of the same size, namely at least D/τ bits), this implies a lower bound
of D · 2D bits. For a modest value size of 20 bytes, the bound amounts to 2.66 · 1037 TB,
and for 1KB values it is a whopping 1.02 · 102457 TB.

We further consider visible reads, which can modify the objects’ meta-data. Such readers
may indicate to the writers that a read is ongoing, and signal to them which blocks to retain.
Using such signals, the exponential bound no longer holds – there are emulations that store
a constant number of values per reader [2, 5, 13,22]. We show that such linear growth with
the number of readers is inherent. Our results are summarized in Table 1.

These bounds are tight as far as regularity and wait-freedom go: relaxing either require-
ment allows circumventing our results [1, 19]. As for storage cost, our lower bounds are
asymptotically tight to known algorithms, whether reads are visible [2,5,22] or not [7,16,18,21].

We note that the study of the inherent storage blowup in asynchronous coded systems has
only recently begun [11,23] and is still in its infancy. In this paper, we point out a somewhat
surprising similarity between coded storage and other types of shared memory/storage, and
show unified lower bounds for all of them. Section 6 concludes the paper and suggests
directions for future work.

A. Berger, I. Keidar, and A. Spiegelman 11:3

Table 1 Lower bounds on shared storage space consumption, in units of blocks; D is the value
size, τ > 1 is the number of data blocks required in order to recover a value, L ≥ 1 is the maximal
number of blocks stored in a reader’s local data, and R the number of readers.

Invisible Reads Visible Reads

General Case τ + (τ − 1)
⌈

2D−1
L

⌉
τ + (τ − 1) · min

(⌈
2D−1

L

⌉
, R
)

Common Write
τ · 2D τ + (τ − 1) · min

(
2D − 1 , R

)
(e.g., coded storage)

1.3 Related work and applicability of our bounds
Several works have studied the space complexity of register emulations. Two recent works [11,
23] show a dependence between storage cost and the number of writers in crash-tolerant
storage, identifying a trade-off between the cost of replication (f + 1 copies for tolerating
f faults) and that of τ -out-of-n coding (linear in the number of writers). Though they do
not explicitly consider disintegrated storage, it is fairly straightforward to adapt the proof
from [23] to derive a lower bound of τW blocks with W writers. Here we consider the case
of single-writer algorithms, where this bound is trivial. Other papers [3, 15] show limitations
of multi-writer emulations when objects do not support atomic read-modify-write, whereas
we consider single-writer emulations that do use read-modify-write.

Chockler et al. [14] define the notion of amnesia for register emulations with an infinite
value domain, which intuitively captures the fact that an algorithm “forgets” all but a finite
number of values written to it. They show that a wait-free regular emulation tolerating
non-authenticated Byzantine faults with invisible readers cannot be amnesic, but do not
show concrete space lower bounds. In this paper we consider a family of disintegrated storage
algorithms, with visible and invisible readers, and show concrete bounds for the different
cases; if the size of the value domain is unbounded, then our invisible reader bounds imply
unbounded shared storage.

Disintegrated storage may also correspond to emulations of large registers from smaller
ones, where τ is the size of the big register divided by the size of the smaller one. Some
algorithms in this vein, e.g., [22], indeed have the disintegration property, as the writer writes
τ blocks to a buffer and a reader obtains τ blocks of the same write. These algorithms
are naturally subject to our bounds. Other algorithms, e.g., [12,13,20], do not satisfy our
assumption that each block in the shared storage pertains to a single write operation, and a
reader may return a value based on blocks written by different write operations. Thus, our
bounds do not apply to them. It is worth noting that these algorithms nevertheless either
have readers signal to the writers and use space linear in the number of readers, or have
invisible readers but use space exponential in the value size. Following an earlier publication
of our work in [8], Wei [25] showed that these costs – either linear in the number of visible
readers or exponential in the value size with invisible ones – are also inherent in emulations
of large registers from smaller ones that do share blocks among writes, albeit do not use
meta-data at all. Several questions remain open in this context: first, Wei’s bound is not
applicable to all types of storage we consider (in particular, Byzantine), and does not apply
to algorithms that use timestamps. Second, we are not familiar with any regular register
emulations where readers write-back data, and it is unclear whether our bound may be
circumvented this way.

Non-authenticated Byzantine storage algorithms that tolerate f faults need to read a
value f + 1 times in order to return it, and are thus τ -disintegrated for τ = f + 1. Note that
while our model assumes objects are responsive, it a fortiori applies to scenarios where objects

DISC 2018

11:4 Integrated Bounds for Disintegrated Storage

may be unresponsive. Some algorithms circumvent our bound either by providing only safe
semantics [19], or by forgoing wait-freedom [1]. Others use channels with unbounded capacity
to push data to clients [7, 21] or potentially unbounded storage with best-effort garbage
collection [18].

As for coded storage, whenever τ blocks are required to reconstruct a value, the algorithm
is τ -disintegrated. And indeed, previous solutions in our model require unbounded storage or
channels [9, 10, 16–18], or retain blocks for concurrent visible readers, consuming space linear
in the number of readers [5]. Our bounds justify these costs. Our assumption that each
block in the shared storage pertains to a single value is satisfied by almost all coded storage
algorithms we are aware of, the only exception is [24], which indeed circumvents our lower
bound but does not conform to regular register semantics. Other coded storage solutions,
e.g., [4], are not subject to our bound because they may recover a value from a single block.

2 Preliminaries

Shared storage model

We consider an asynchronous shared memory system consisting of two types of entities: A
finite set O = {o1, . . . , on} of objects comprising shared storage, and a set Π of processes.
Every entity in the system stores data: an object’s data is a single block from some domain
B, whereas a process’ data is an array of up to L blocks from B. We assume a bound L

on the number of blocks in the data array of each process. In addition, each entity stores
potentially infinite meta-data, meta. We denote an entity e’s data as e.data and likewise for
e.meta. A system’s storage cost is the number of objects in the shared storage, n.

Objects support atomic get and update actions by processes. We denote by ap an action
a performed by p and by o.ap an ap action at o. An o.updatep is an arbitrary read-modify-
write that possibly writes a block from B to o.data and modifies o.meta, p.meta, and p.data.
An o.getp may replace a block in p.data with o.data and may modify p.meta.

Algorithms, configurations, and runs

An algorithm defines the behaviors of processes as deterministic state machines, where state
transitions are associated with actions. A configuration is a mapping to states (data and
meta) from all system components, i.e., processes and objects. In an initial configuration all
components are in their initial states.

We study algorithms (executed by processes in Π) that emulate a high-level functionality,
exposing high-level operations, and performing low-level gets/updates on objects. We say
that high-level operations are invoked and return or respond. Note that, for simplicity, we
model gets and updates as instantaneous actions, because the objects are assumed to be
atomic, and we do not explicitly deal with object failures in this paper.

A run of algorithm A is a (finite or infinite) alternating sequence of configurations and
actions, beginning with some initial configuration, such that configuration transitions occur
according to A. Occurrences of actions in a run are called events. The possible events are
high-level operation invocations and responses and get/update occurrences. We use the
notion of time t during a run r to refer to the configuration reached after the tth event in r.
For a finite run r consisting of t events we define tr , t. Two operations are concurrent in a
run r if both are invoked in r before either returns. If a process p’s state transition from
state S is associated with a low-level action ap ∈ {getp, updatep}, we say that ap is enabled
in S. A run r′ is an extension of a (finite) run r if r is a prefix of r′; we denote by r′ \ r the

A. Berger, I. Keidar, and A. Spiegelman 11:5

suffix of r′ that starts at tr. If a high-level operation op has been invoked by process p but
has not returned by time t in a run r, we say that op’s invocation is pending at t in r. We
assume that each process’ first action in a run is an invocation, and a process has at most
one pending invocation at any time.

For e ∈ Π∪O, we denote by e.data(r, t) the set of distinct blocks stored in e.data at time
t in a run r. Since for an object o, |o.data (r, t)| = 1, we sometimes refer to o.data (r, t) as
the block itself, by slight abuse of notation. We say that p obtains a block b at time t in a
run r, if b /∈ p.data (r, t) and b ∈ p.data (r, t+ 1).

Register emulations

We study algorithms that emulate a shared register [20], which stores a value v from some
domain V. We assume that |V| = 2D > 1, i.e., values can be represented using D > 0 bits.
For simplicity, we assume that each run begins with a dummy initialization operation that
writes the register’s initial value and does not overlap any operation. The register exposes
high-level readp and writep(v) operations of values v ∈ V to processes p ∈ Π. We consider
single-writer (SW) registers where the application at only one process (the writer) invokes
writes, and hence omit the subscript p from write(v). The remaining R , |Π| − 1 processes
are limited to performing reads, and are referred to as readers. For brevity, we refer to the
subsequence of a run where a specific invocation of a write(v)/ readp is pending simply as a
write(v)/ readp operation.

We assume that whenever a readp operation is invoked at time t in a run r, p.data (r, t)
is empty. We consider two scenarios: (1) invisible reads, where reads do not use updates,
and (2) visible reads, where reads may perform updates that update meta-data (only) in
the shared storage. Note that readers do not write actual data, which is usually the case
in regular register emulations, defined below. In a single-reader (SR) register R = 1, and if
R > 1 the register is multi-reader (MR). If the states of the writer and the objects at the
end of a finite run r are equal to their respective states at the end of a finite run r′, we say
that tr and tr′ are indistinguishable to the writer and objects, and denote: tr ≈w tr′ .

Our safety requirement is regularity [20]: a read rd must return the value of either the
last write w that returns before rd is invoked, or some write that is concurrent with rd.
For liveness, we require wait-freedom, namely that every operation invoked by a process p
returns within a finite number of p’s actions. In other words, if p is given infinitely many
opportunities to perform actions, it completes its operation regardless of the actions of other
processes.

3 Disintegrated storage

As noted above, existing wait-free algorithms of coded and/or Byzantine-fault-tolerant storage
with invisible readers may store all values ever written [7, 9, 11, 16–18,21]. This is because if
old values are erased, it is possible for a slow reader to never find sufficiently many blocks of
the same value so as to be able to return it. If readers are visible, then a value per reader is
retained. We want to prove that these costs are inherent. The challenge in proving such space
lower bounds is that the aforementioned algorithms use unbounded timestamps. How can
we show a space lower bound if we want to allow algorithms to use unbounded timestamps?
We address this by allowing meta-data to store timestamps, etc., and by not counting the
storage cost for meta-data. For example, the above algorithms store timestamps in meta-data
alongside data blocks and use them to figure out which data is safe to return, but still need
τ actual blocks/copies of a value in order to return it. Note that for the sake of the lower

DISC 2018

11:6 Integrated Bounds for Disintegrated Storage

bound, we do not restrict how meta-data is used; all we require is that the algorithm read τ
data blocks of the same value (or write), and we do not specify how the algorithm knows
that they pertain to the same value (or write). To formalize the property that the algorithm
returns τ blocks pertaining to the same value or write, we need to track, for each block in
the shared storage, which write produced it. To this end, we define labels. Labels are only
an analysis tool, and do not exist anywhere. In particular, they are not timestamps, not
meta-data, and not explicitly known to the algorithm. As an external observer, we may add
them as abstract state to the blocks, and track how they change.

Labels

We associate each block b in the shared or local storage with a set of labels, Labels(b), as we
now explain. For an algorithm A and v ∈ V, denote by WAv the set of write(v) operations
invoked in runs of A. For V ⊆ V, we denote WAV ,

⋃
v∈V WAv , and let WA , WV. For

clarity, we omit A when obvious from the context, and refer simply to Wv, WV , and W. We
assume that the kth update event occurring in a write operation w ∈W tags the block b it
stores (if any) with a unique label 〈w, k〉, so Labels(b) becomes {〈w, k〉}.

Whereas our assumption that each block in the shared storage pertains to a single write
rules out associating multiple labels with such a block, we do allow the reader’s meta-data to
recall multiple accesses encountering the same block. For example, when blocks are copies of
a replicated value, the reader can store one instance of the value in local memory and keep a
list of the objects where the value was encountered. To this end, a block in a reader’s data
may be tagged with multiple labels: when a reader p obtains a block b from an object o at
time t in a run r, the block b in p.data (r, t+ 1) is tagged with Labels(o.data (r, t)); if at time
t′ > t p.data still contains b and p performs an action on an object o′ s.t. o′.data (r, t′) = b

and the latter is tagged with label `, p adds ` to Labels(b) (regardless of whether b is added
to p.data once more). When all copies of a block are removed from p.data, all its labels
are “forgotten”. We emphasize that labels are not stored anywhere, and are only used for
analysis.

We track the labels of a value v ∈ V at time t in a run r using the sets S–labels (v, r, t),
of labels in the shared storage, L–labelsp (v, r, t), of labels in process p’s local storage, and
All–labelsp (v, r, t), a combination of both. Formally,

S–labels (v, r, t) ,
(⋃

o∈O Labels(o.data (r, t))
)
∩ (Wv × N).

L–labelsp (v, r, t) ,
(⋃

b∈p.data(r,t) Labels(b)
)
∩ (Wv × N).

All–labelsp (v, r, t) , L–labelsp (v, r, t) ∪ S–labels (v, r, t).
For a time t in a run r and p ∈ Π, we define valuesp (r, t) , {v ∈ V | L–labelsp (v, r, t) 6= ∅}.

Similarly, we track labels associated with a particular write w ∈W accessible by process
p ∈ Π at time t in a run r:

S–labels (w, r, t) ,
(⋃

o∈O Labels(o.data (r, t))
)
∩ ({w} × N).

L–labelsp (w, r, t) ,
(⋃

b∈p.data(r,t) Labels(b)
)
∩ ({w} × N).

All–labelsp (w, r, t) , L–labelsp (w, r, t) ∪ S–labels (w, r, t).
We define writesp (r, t) , {w ∈ W | L–labelsp (w, r, t) 6= ∅}. Note that for all v ∈ V and
w ∈ Wv, (1) S–labels (w, r, t) ⊆ S–labels (v, r, t), (2) L–labelsp (w, r, t) ⊆ L–labelsp (v, r, t),
and (3) All–labelsp (w, r, t) ⊆ All–labelsp (v, r, t).

Since readers do not write-back:

I Observation 1. If the tth event in a run r is of a reader p ∈ Π, then for all v ∈ V, w ∈W:
All–labelsp (v, r, t) ⊆ All–labelsp (v, r, t− 1) and All–labelsp (w, r, t) ⊆ All–labelsp (w, r, t− 1).

A. Berger, I. Keidar, and A. Spiegelman 11:7

Disintegrated storage

Intuitively, in disintegrated storage register emulations, for a readp to return v, p must
encounter τ > 1 blocks corresponding to v that were produced by separate update events.
To formalize this, we use labels:

I Definition 2 (τ -disintegrated storage). If a return of v ∈ V by a readp invocation is enabled
at time t in a run r then |L–labelsp (v, r, t)| ≥ τ .

Thus, a reader can only return v if it recalls (in its local memory) obtaining blocks of v with
τ different labels.

A more restrictive case of τ -disintegrated storage occurs when readers cannot identify
whether two blocks pertain to a common value unless they are produced by a common write
that identifies them, e.g., with the same timestamp. This is the case when value parts or
code words are stored in objects rather than full replicas.

To capture this case, for a block b ∈
⋃
e∈O∪Π e.data, a value v ∈ V, and a write w ∈Wv,

if ∃k ∈ N s.t. 〈w, k〉 ∈ Labels(b), we say that w is an origin write of b and v is an origin value
of b. Common write τ -disintegrated storage is then defined:

I Definition 3 (common write τ -disintegrated storage). If a return of v ∈ V by a readp
invocation is enabled at time t in a run r then ∃w ∈Wv : |L–labelsp (w, r, t)| ≥ τ .

Note that we do not further require p.data to actually hold τ blocks with a common write,
because the weaker definition suffices for our lower bounds. For brevity, we henceforth refer
to a common write τ -disintegrated storage algorithm simply as τ -common write.

Permanence

Our lower bounds will all stem, in one way or another, from the observation that in wait-free
disintegrated storage, every run must reach a point after which some values (and in the case
of common write, also some writes) must permanently have a certain number of blocks in
the shared storage. This is captured by the following definition:

I Definition 4 (permanence). Consider a finite run r, k ∈ N, a set S ⊆ V, and a set of readers
Θ ⊂ Π. Let z ∈ V∪W be a value or a write operation. We say that z is 〈k, Θ, S〉-permanent
in r if in every finite extension r′ of r s.t. in r′ \ r readers in Θ do not take actions and
writes are limited to values from S, |S–labels (z, r′, tr′)| ≥ k.

Intuitively, this means that the shared storage continues to hold k blocks of z as long as
readers in Θ do not signal to the writer and only values from S are written. For brevity, when
the particular sets S and Θ are not important, we refer to the value shortly as k-permanent.
The observation below follows immediately from the definition of permanence:

I Observation 5. Let v ∈ V, w ∈Wv, k ∈ N, V2 ⊆ V1 ⊆ V, Θ1 ⊆ Θ2 ⊂ Π.
1. If w is 〈k, Θ1, V1〉-permanent in a finite run r then v is 〈k, Θ1, V1〉-permanent in r.
2. If v is 〈k, Θ1, V1〉-permanent in a finite run r then v is 〈k, Θ2, V2〉-permanent in all

finite extensions r′ of r where in r′ \ r writes are limited to values from V1 and readers
in Θ1 do not take actions.

Since each object holds a single block associated with a single label:

I Observation 6. For time t in a run r, the number of objects is: n ≥
∣∣⋃

v∈V S–labels (v, r, t)
∣∣.

Thus, if there are m different k-permanent values in a run, then n ≥ mk. We observe that
with invisible readers, the set Θ is immaterial:

DISC 2018

11:8 Integrated Bounds for Disintegrated Storage

I Observation 7. Consider k ∈ N, V ⊆ V, and a finite run r with an invisible reader p ∈ Π.
If z ∈ V ∪W is 〈k, {p}, V 〉-permanent in r then z is 〈k, ∅, V 〉-permanent in r.

The specific lower bounds for the four scenarios we consider differ in the number of
permanent values/writes and the number of blocks per value/write (k = τ − 1 or k = τ)
we can force the shared storage to retain forever in each case. Interestingly, our notion of
permanence resembles the idea that an algorithm is not amnesic introduced in [14] (see
Section 1.3), but is more fine-grained in specifying the number of permanent blocks and
restricting executions under which they are retained.

4 Lower bounds for disintegrated storage

In this section we provide lower bounds on the number of objects required for τ -disintegrated
storage regular wait-free register emulations. Section 4.1 proves two general properties
of regular wait-free τ -disintegrated storage algorithms. We show in Section 4.2 that with
invisible reads, unless the readers’ local storage size is exponential in D, the storage cost of
such emulations is at least exponential in D. Finally, Section 4.3 shows that if reads are
visible, then the storage cost increases linearly with the number of readers.

4.1 General properties
We first show that because readers must make progress even if the writer stops taking steps,
at least 2τ − 1 blocks are required regardless of the number of readers.

I Claim 8. Consider v1, v2 ∈ V and a run r of a wait-free regular τ -disintegrated storage
algorithm with two consecutive responded writes w1 ∈Wv1 followed by w2 ∈Wv2 . Let p ∈ Π
be a reader s.t. no readp is pending in r. Then there is a time t between the returns of w1
and w2 when |S–labels (v1, r, t)| ≥ τ and |S–labels (v2, r, t)| ≥ τ − 1.

Proof. We first argue that at the time ti, i ∈ {1, 2} when wi returns, |S–labels (vi, r, ti)| ≥ τ .
Assume the contrary. We build a run r′ identical to r up to ti. In r′, only process p performs
actions after time ti. Next, invoke a readp operation rd. By regularity and wait-freedom,
rd must return vi. Before performing actions on objects, p.data (r′, ti) is empty, thus, from
τ -disintegrated storage, p must encounter at least τ blocks with an origin value of vi in
order to return it. Since no process other than p takes actions, |S–labels (vi, r′, t′)| < τ for
all t′ ≥ ti onward, so rd cannot find these blocks and does not return vi, a contradiction. It
follows that in r′ at ti, and hence also in r at ti, |S–labels (vi, r, ti)| ≥ τ .

Next, if at t1, |S–labels (v2, r, t1)| ≥ τ − 1 then we are done. Otherwise, observe that
objects are accessed one-at-a-time. Therefore, and since |S–labels (v2, r, t1)| < τ − 1, there
exists a time t between t1 and t2 when |S–labels (v2, r, t)| = τ − 1.

Finally, assume that |S–labels (v1, r, t)| < τ . Build a run r′′ identical to r up to t, where
again only p takes actions after t. As above, it follows by regularity, τ -disintegrated storage,
and p.data (r′′, t) = ∅, that rd never returns, in violation of wait-freedom. It follows that
|S–labels (v1, r

′′, t)| = |S–labels (v1, r, t)| ≥ τ . J

The following lemma states that every non-empty set V can be split into two disjoint
subsets, where one contains a value that is (τ − 1)-permanent with respect to the other
subset. The idea is to show that in the absence of such a value, a reader’s accesses to the
shared storage may be scheduled in a way that prevents the reader from obtaining τ labels
of the same value. The logic of the proof is the following: we restrict writes to a set of
values V , and consider the set S of values with blocks in p.data ∩ V . If no value in S is

A. Berger, I. Keidar, and A. Spiegelman 11:9

(τ − 1)-permanent, then we can bring the shared storage to a state where none of the values
in S have τ labels, preventing the reader from obtaining the τ labels required to return.
By regularity, readers cannot return other values. The formal proof is slightly more subtle,
because it needs to consider L–labelsp as well as labels in the shared storage. It shows that
the total number of labels of values in S (in both the shared and local storage) remains below
τ whenever p takes a step.

I Lemma 9. Consider a non-empty set of values V ⊆ V, a set of readers Θ ⊂ Π, a reader
p ∈ Π \Θ, and a finite run r of a wait-free regular τ -disintegrated storage algorithm. Then
there is a subset S ⊆ V of size 1 ≤ |S| ≤ L and an extension r′ of r where some value v ∈ S
is 〈τ − 1, Θ ∪ {p}, V \ S〉-permanent and s.t. in r′ \ r writes are limited to values from V

and readers in Θ do not take steps.

Proof. Assume by contradiction that the lemma does not hold. We construct an extension
r′ of r where a readp operation includes infinitely many actions of p yet does not return. To
this end, we show that the following property holds at specific times in r′ \ r:

ϕ (r̂, t) , ∀v ∈ valuesp (r̂, t) ∩ V : |All–labelsp (v, r̂, t)| < τ.

First, extend r to r0 by returning any pending readp and write, invoking and returning
a write(v0) for some v0 ∈ V (the operations eventually return, by wait-freedom), and finally
invoking a readp operation rd without allowing it to take actions. We now prove by induction
that for all k ∈ N, there exists an extension r′ of r0 where (1) ϕ (r′, tr′) holds and in r′ \ r:
(2) writes are restricted to values from V , (3) p performs k actions on objects following rd’s
invocation, and (4) rd’s return is not enabled, and (5) processes in Θ do not take steps.

Base: for k = 0, consider r′ = r0. (3,5) hold trivially. (2) holds since the only write in
r′ \ r is of v0 ∈ V . Since p performs no actions following the invocation of rd, p.data (r′, tr′)
is empty. Therefore, (1) ϕ (r′, tr′) is vacuously true, and L–labelsp (v, r, t) is empty for all
v ∈ V, thus (4) rd’s return is not enabled by τ -disintegrated storage.

Step: assume inductively such an extension r1 of r0 with k ≥ 0 actions performed by p
following rd’s invocation. Since rd cannot return, by wait-freedom, an action ap is enabled
on some object. We construct an extension r2 of r1 by letting ap occur at time tr1 . We
consider two cases:

1. p does not obtain a block with an origin value in V \ valuesp (r1, tr1) at ap, thus
valuesp (r2, tr2) ∩ V ⊆ valuesp (r1, tr1) ∩ V . Then, by Observation 1 and the inductive
hypothesis, (1) ϕ (r2, tr2) holds and thus, by τ -disintegrated storage, rd cannot return any
value v ∈ valuesp (r2, tr2) ∩ V at tr2 . (4) It cannot return any other value in valuesp (r2, tr2)
by regularity, and r2 satisfies the induction hypothesis for k + 1, as (2,3,5) trivially hold.

2. p obtains a block with origin value u ∈ V \ valuesp (r1, tr1) at time tr1 . Then
|L–labelsp (u, r2, tr2)| = 1. By Observation 1 and the inductive hypothesis, for all v ∈
valuesp (r2, tr2) \ {u}, |L–labelsp (v, r2, tr2)| < τ , and thus rd’s return is not enabled at time
tr2 by τ -disintegrated storage and regularity.

Let S = valuesp (r2, tr2)∩V , and note that |S| ≥ 1 (since u ∈ S) and that |S| ≤ |p.data| ≤
L. By the contradicting assumption, u is not 〈τ − 1, Θ ∪ {p}, V \ S〉-permanent in r2, thus
there exists an extension r3 of r2 s.t. |S–labels (u, r3, tr3)| < τ − 1 and in r3 \ r2 writes are
limited to values from V \ S and no readers in Θ ∪ {p} take steps (3,5 hold). Since p takes
no steps in r3 \ r2, we have that L–labelsp (u, r3, tr3) = L–labelsp (u, r2, tr2), yielding:

|All–labelsp (u, r3, tr3)| ≤ |L–labelsp (u, r2, tr2)|+ |S–labels (u, r3, tr3)| < 1+(τ −1) = τ. (1)

All writes invoked after tr2 are from WV \S (2 holds), and therefore do not produce
new labels associated with values in S. Since no values in S are written after tr1 and

DISC 2018

11:10 Integrated Bounds for Disintegrated Storage

readers’ actions do not affect the sets S–labels, by Observation 1, we have that ∀v ∈ S,
All–labelsp (v, r3, tr3) ⊆ All–labelsp (v, r1, tr1), and since ϕ (r1, tr1) holds (inductively) and
S \ {u} ⊆ valuesp (r1, tr1) ∩ V ,

∀v ∈ S \ {u} : |All–labelsp (v, r3, tr3)| ≤ |All–labelsp (v, r1, tr1)| < τ. (2)

From Equations 1 and 2, and since valuesp (r3, tr3) ∩ V = valuesp (r2, tr2) ∩ V = S, we get
ϕ (r3, tr3) (1). Since rd′s return was not enabled at time tr2 and it took no actions since, its
return is still not enabled (4), and we are done. J

4.2 Invisible reads
We now consider a setting of a single reader and single writer where reads are invisible.
To show the following theorem, we “blow up” the shared storage by repeatedly invoking
Lemma 9, each time adding one more (τ − 1)-permanent value, yielding the following bound:

I Theorem 10. The storage cost of a regular τ -disintegrated storage wait-free SRSW register
emulation where reads are invisible is at least τ + (τ − 1)

⌈
2D−1
L

⌉
blocks.

When readers are invisible, the set Θ is of no significance, so we consider ∅. Given a set
of values V , the value added by Lemma 9 is 〈τ − 1, ∅, V \ S〉-permanent for a smaller set
of values V \ S where |S| ≤ L. Therefore, we can invoke Lemma 9 m =

⌈
2D−1
L

⌉
− 1 times

before running out of values, showing the following:

I Lemma 11. Let p ∈ Π be an invisible reader. There exist finite runs r0, ..., rm and sets of
values V0 ⊃ V1 ⊃ ... ⊃ Vm and U0 ⊂ U1 ⊂ ... ⊂ Um, such that for all 0 ≤ k ≤ m:
(1) |Vk| ≥ 2D − Lk, |Uk| = k, Vk ∩ Uk = ∅, and
(2) all elements of Uk are 〈τ − 1, ∅, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V and U0 = ∅. Assume inductively
that the lemma holds for k < m. Since m < 2D−1

L , we get: |Vk| > 2D −L 2D−1
L = 1. Since Vk

is non-empty and |∅| < R, by Lemma 9 there exist an extension rk+1 of rk where writes in
rk+1 \ rk are limited to values from Vk, a set S ⊂ Vk, 1 ≤ |S| ≤ L, and a value v ∈ S that is
〈τ − 1, {p}, Vk \ S〉-permanent in rk+1.

Let Vk+1 = Vk \S and Uk+1 = Uk ∪{v}. Note that, because Vk ∩Uk = ∅ and v ∈ S ⊂ Vk,
we get that Vk+1 ∩ Uk+1 = ∅ and |Uk+1| = |Uk| + 1 = k + 1. Since 1 ≤ |S| ≤ L we have
that Vk ⊃ Vk+1 and |Vk+1| ≥ |Vk| − |S| ≥ 2D − L(k + 1). By the inductive assumption and
Observation 5, all values in Uk are 〈τ − 1, ∅, Vk+1〉-permanent in rk+1. By Observation 7,
v is also 〈τ − 1, ∅, Vk+1〉-permanent in rk+1 and we are done. J

Our bound combines the 2τ − 1 blocks of Claim 8 with the (τ − 1)m from Lemma 11:

Proof (Theorem 10). Consider an invisible reader p ∈ Π and construct rm, Vm, and Um as
in Lemma 11. Note that Vm contains at least two distinct values that are not in Um, since
Vm ∩Um = ∅ and |Vm| ≥ 2D −Lm > 2D −L 2D−1

L = 1. Extend rm to rm+1 by invoking and
returning write(v) and write(v′) for v, v′ ∈ Vm.

By Claim 8, there is a time t ≥ trm
in rm+1 when there are 2τ − 1 blocks in the shared

storage with origin values of v or v′. In addition, by Lemma 11, Um consists of m values
that are 〈τ − 1, ∅, Vm〉-permanent in rm, and since writes in rm+1 \ rm are of values from
Vm, the values in Um remain 〈τ − 1, ∅, Vm〉-permanent in rm+1. By Observation 6:

n ≥ 2τ − 1 + (τ − 1)m = τ + (τ − 1)(m+ 1) = τ + (τ − 1)
⌈

2D − 1
L

⌉
. J

A. Berger, I. Keidar, and A. Spiegelman 11:11

4.3 Visible reads
We now consider systems where readers may write meta-data in the shared storage. We use a
similar technique as in Lemma 11, except that due to readers’ updates, the indistinguishability
argument can no longer be used. Instead, we invoke a new reader for each extension, and
therefore the number of runs might be limited by the number of readers, R:

I Theorem 12. The storage cost of a regular τ -disintegrated storage wait-free MRSW register
emulation with R readers is at least τ + (τ − 1) ·min

(⌈
2D−1
L

⌉
, R
)
blocks.

To achieve this bound, we use Lemma 9 again to construct N = min
(⌈

2D−1
L

⌉
, R
)
− 1

extensions of the empty run (note that it does not assume invisible reads).

I Lemma 13. There exist finite runs r0, ..., rN , sets of values V0 ⊃ V1 ⊃ ... ⊃ VN and
U0 ⊂ U1 ⊂ ... ⊂ UN , and sets of readers Θ0 ⊂ Θ1 ⊂ ... ⊂ ΘN , such that for all 0 ≤ k ≤ N :
(1) |Vk| ≥ 2D − Lk, |Uk| = |Θk| = k, Vk ∩ Uk = ∅, and
(2) all elements of Uk are 〈τ − 1, Θk, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V, Θ0 = U0 = ∅. Assume inductively
such rk, Vk, Uk, and Θk for k < N , and construct rk+1 as follows: since R− |Θk| > 0, there
is a reader p ∈ Π\Θk. Since N < 2D−1

L , we get |Vk| > 2D−LN > 1. Therefore, by Lemma 9,
there exist an extension rk+1 of rk where in rk+1 \ rk writes are limited to values from Vk
and readers in Θk do not take steps, a set S ⊆ Vk, 1 ≤ |S| ≤ L, and a value v ∈ S that is
〈τ − 1, Θk ∪ {p}, Vk \ S〉-permanent in rk+1.

Let Vk+1 = Vk \S and Uk+1 = Uk ∪{v}. Note that, because Vk ∩Uk = ∅ and v ∈ S ⊂ Vk,
it follows that Vk+1 ∩ Uk+1 = ∅ and |Uk+1| = k + 1. Furthermore, since 1 ≤ |S| ≤ L, we get:
Vk ⊃ Vk+1 and |Vk+1| ≥ |Vk| − |S| ≥ 2D − L(k + 1). Finally, let Θk+1 = Θk ∪ {p}. By the
inductive assumption and Observation 5, all values in Uk are 〈τ − 1, Θk+1, Vk+1〉-permanent
in rk+1, and so all of Uk+1 is 〈τ − 1, Θk+1, Vk+1〉-permanent in rk+1, as needed. J

From Lemma 13, in rN there is a set of N (τ − 1)-permanent values, inducing a cost of
(τ − 1)N . We use Claim 8 to increase the bound by 2τ − 1 additional blocks.

Proof (Theorem 12). Construct rN , VN , UN , and ΘN as in Lemma 13. Note that, since
R−N ≥ 1, there exists p ∈ ΠΘN . Since VN∩UN = ∅ and |VN | ≥ 2D−LN > 2D−L 2D−1

L = 1,
VN \UN contains at least two values. Extend rN to rN+1 by invoking and returning write(v)
and write(v′) for v, v′ ∈ VN \ UN .

By Claim 8, there is a time t ≥ trN
in rN+1 when there are 2τ − 1 blocks in the

shared storage with origin values of v or v′. UN consists of N additional values that are
〈τ − 1, ΘN , VN 〉-permanent in rN , and since in rN+1 \ rN writes are of values from VN and
no reader in ΘN takes steps, the values in UN remain 〈τ − 1, ΘN , VN 〉-permanent in rN+1.
By Observation 6, the storage cost is:

n ≥ 2τ − 1 + (τ − 1)N = τ + (τ − 1)(N + 1) = τ + (τ − 1) ·min
(⌈

2D − 1
L

⌉
, R

)
. J

5 Lower bounds for common write disintegrated storage

While the results of the previous section hold a fortiori for τ -common write algorithms, in this
case we are able to show stronger results, independent of the local storage size. Intuitively,
this is because readers can no longer reuse blocks they obtained from previous writes of

DISC 2018

11:12 Integrated Bounds for Disintegrated Storage

the same value, and so we can prolong the execution that blows up the shared storage by
rewriting values. Section 5.1 proves a general attribute of τ -common write algorithms. We
show in Section 5.2 that even with a single reader (and a single writer), if reads are invisible,
then the required storage cost is at least τ · 2D. In Section 5.3 we prove a bound for visible
reads.

5.1 General observation
In this section we define a property that is a special case of k-permanence, which additionally
requires that the set of labels associated with a write does not change.

I Definition 14 (Constancy). Consider a finite run r, k ∈ N, a set S ⊆ V, and a set of
readers Θ ⊂ Π. We say that a write w ∈ W is 〈k, Θ, S〉-constant in r if in every finite
extension r′ of r s.t. in r′ \ r readers in Θ do not take actions and writes are limited to
values from S, S–labels (w, r′, tr′) = S–labels (w, r, tr) and |S–labels (w, r′, tr′)| = k.

Similarly to Observation 7, it can be shown that:

I Observation 15. Consider V ⊆ V, k ∈ N, and a finite run r with an invisible reader
p ∈ Π. If w ∈W is 〈k, {p}, V 〉-constant in r then w is 〈k, ∅, V 〉-constant in r.

We next prove a stronger variant of Lemma 9 that allows us to add a permanent write
to the shared storage while some set C ⊆ W of writes are constant. Note that since the
number of writes of a value v is infinite and the number of constant writes in a finite run
is finite, for any non-empty V ⊆ V, WV \ C is non-empty.

I Lemma 16. Consider a non-empty set of values V ⊆ V, a set of readers Θ ⊂ Π, a reader
p ∈ Π \Θ, and a finite run r of a wait-free regular τ -common write algorithm. Let C be a
set of writes that are 〈τ − 1, Θ, V 〉-constant in r. Then there is an extension r′ of r where
some w ∈WV \ C returns and is 〈τ − 1, Θ ∪ {p}, V 〉-permanent, and s.t. in r′ \ r writes
are limited to WV and readers in Θ do not take actions.

Proof. Assume by contradiction that the lemma does not hold. We build an extension r′ of
r where a readp operation includes infinitely many actions of p yet does not return. To this
end, we show that the following property holds at specific times in r′ \ r:

ψ (r̂, t) , ∀w ∈ writesp (r̂, t) ∩WV : |All–labelsp (w, r̂, t)| < τ.

Note that, by definitions of τ -common write and of All–labels, whenever ψ (r′, t) holds, no
pending readp invocation can return a value v ∈ valuesp (r′, t) ∩ V .

First, extend r to r0 by returning any pending readp and write, invoking and returning
a write(v0) for some v0 ∈ V (the operations eventually return, by wait-freedom), and finally
invoking a readp operation rd without allowing it to take actions. We now prove by induction
that for all k ∈ N, there exists an extension r′ of r0 where (1) ψ (r′, tr′) holds, (2) no write
is pending at tr′ , and in r′ \ r: (3) writes are restricted to WV , (4) p performs k actions on
objects after invoking rd, (5) rd’s return is not enabled, and (6) processes in Θ do not take
steps.

Base: for k = 0, consider r′ = r0. (2,4,6) hold trivially. (3) holds since the only write in
r′ \ r is w0 ∈WV . Since p performs no actions following the invocation of rd, p.data (r′, tr′)
is empty. Therefore, (1) ψ (r′, tr′) is vacuously true, and L–labelsp (w, r′, tr′) is empty for all
w ∈WV , thus (5) rd’s return is not enabled by τ -common write.

A. Berger, I. Keidar, and A. Spiegelman 11:13

Step: assume inductively such an extension r1 of r0 with k ≥ 0 actions by p following
rd’s invocation. Since rd cannot return, by wait-freedom, an action ap is enabled on some
object. We construct an extension r2 of r1 by letting ap occur at time tr1 . We then consider
three cases:

1. p does not obtain a block with an origin write in WV \ writesp (r1, tr1) at ap, thus
(writesp (r2, tr2) ∩WV) ⊆ (writesp (r1, tr1) ∩WV). Then, by Observation 1 and the inductive
hypothesis, (1) ψ (r2, tr2) holds and thus, by τ -common write, rd cannot return any value
v ∈ valuesp (r2, tr2) ∩ V at tr2 . (5) It cannot return any other value in valuesp (r2, tr2) by
regularity, and r2 satisfies the induction hypothesis for k + 1 as (2,3,4,6) trivially hold.

2. p obtains a block with origin write w′ ∈ C ∩WV \ writesp (r1, tr1) at ap. Then
|L–labelsp (w′, r1, tr1)| = 0. Since w′ is 〈τ − 1, Θ, V 〉-constant in r and in r1 \ r writes are
restricted to WV and processes in Θ do not take steps (inductively), then by definition of
constancy, |S–labels (w′, r1, tr1)| = τ − 1. By Observation 1, for all w ∈ writesp (r2, tr2) ∩
WV : All–labelsp (w, r2, tr2) ⊆ All–labelsp (w, r1, tr1). Therefore |All–labelsp (w′, r2, tr2)| ≤
|L–labelsp (w′, r1, tr1)|+|S–labels (w′, r1, tr1)| = τ−1. Together with the inductive hypothesis,
∀w ∈ writesp (r2, tr2) ∩WV \ {w′}, |All–labelsp (w, r2, tr2)| ≤ |All–labelsp (w, r1, tr1)| < τ ;
ψ (r2, tr2) follows, thus (5) follows, and (2,3,4,6) trivially hold.

3. p obtains a block with origin write w′ ∈ WV \ (writesp (r1, tr1) ∪ C) at ap. Then
|L–labelsp (w′, r2, tr2)| = 1 and the number of labels of other writes in writesp (r2, tr2) does
not increase following ap, thus rd’s return is not enabled at tr2 by τ -common write and
regularity.

By the contradicting assumption, w′ is not 〈τ − 1, Θ ∪ {p}, V 〉-permanent in r2, thus
there is an extension r3 of r2 s.t. |S–labels (w′, r3, tr3)| < τ − 1 and in r3 \ r2 writes are
limited to WV and no readers in Θ ∪ {p} take steps (3,4,6 hold).S We further extend r3 to
r4 by letting any pending write return (2).

Let S = writesp (r2, tr2) ∩WV . Since every w ∈ S returns before tr2 by the inductive
assumption, the writes in r4 \ r2 do not produce new labels associated with w. Since
readers do not affect the sets S–labels, it follows that ∀w ∈ S : S–labels (w, r4, tr4) ⊆
S–labels (w, r3, tr3) ⊆ S–labels (w, r2, tr2). Next, p takes no steps in r4 \ r2 (4 holds), thus
∀w ∈ S : L–labelsp (w′, r4, tr4) = L–labelsp (w′, r2, tr2). It follows that:

|All–labelsp (w′, r4, tr4)| ≤ |L–labelsp (w′, r2, tr2)|+|S–labels (w′, r3, tr3)| < 1+(τ−1) = τ. (3)

Moreover, by Observation 1 and the inductive assumption that ψ (r1, tr1) holds,

∀w ∈ S \ {w′} : |All–labelsp (w, r4, tr4)| ≤ |All–labelsp (w, r1, tr1)| < τ. (4)

From Equations 3 and 4, and since writesp (r4, tr4) ∩WV = writesp (r2, tr2) ∩WV = S,
we get (1) ψ (r4, tr4). Since rd′s return is not enabled at tr2 and (4) it took no actions since,
its return is not enabled anywhere in r4 \ r1 (5), and we are done. J

5.2 Invisible reads
We prove the following theorem by constructing a run with an exponential number of τ -
permanent values. The idea is to show that if there is a value in the domain for which there
is no τ -permanent write, then infinitely many writes remain (τ − 1)-constant, which is of
course impossible.

I Theorem 17. The storage cost of a regular τ -common write wait-free SRSW register
emulation where reads are invisible is at least τ · 2D blocks.

DISC 2018

11:14 Integrated Bounds for Disintegrated Storage

I Lemma 18. Consider a non-empty set of values V ⊆ V and a finite run r. Let C be a set
of writes that are 〈τ − 1, ∅, V 〉-constant in r. Then there exists an extension r′ of r where
writes in r′ \ r are limited to WV , and some w ∈WV \ C is either 〈τ − 1, ∅, V 〉-constant
or 〈τ, ∅, V 〉-permanent in r′.

Proof. Let p ∈ Π be a reader. By Lemma 16, there is an extension r′ of r where writes in
r′ \ r are limited to WV and some w ∈ WV \ C returns and is 〈τ − 1, {p}, V 〉-permanent.
By Observation 7, if w is 〈τ, {p}, V 〉-permanent in r′, then w is 〈τ, ∅, V 〉-permanent in
r′ and the lemma follows. Otherwise, there exists an extension r′′ of r′ where in r′′ \ r′
writes are limited to WV and p takes no steps, and |S–labels (w, r′′, tr′′)| < τ . Since w is
〈τ − 1, {p}, V 〉-permanent in r′, |S–labels (w, r′′, tr′′)| = τ − 1.

We show that w is 〈τ − 1, ∅, V 〉-constant in r′′. Consider an extension r′′′ of r′′ where
writes are limited to values from V and p takes no steps in r′′′ \ r′′. Since w has already
returned by time tr′′ , no new blocks with an origin write of w can be added to the shared
storage in r′′′ after tr′′ . It follows that S–labels (w, r′′′, tr′′′) ⊆ S–labels (w, r′′, tr′′). However,
since w is 〈τ − 1, {p}, V 〉-permanent in r′, and in r′′′ \ r′ writes are limited WV and p

takes no steps, then |S–labels (w, r′′′, tr′′′)| ≥ τ − 1 = |S–labels (w, r′′, tr′′)|, yielding that
S–labels (w, r′′′, tr′′′) = S–labels (w, r′′, tr′′). Thus, w is 〈τ − 1, {p}, V 〉-constant in r′′. The
lemma follows from Observation 15. J

I Claim 19. Consider a finite run r and a non-empty V ⊆ V. Then there is an extension r′
of r s.t. writes in r′ \ r are limited to WV , and some w ∈WV is 〈τ, ∅, V 〉-permanent in r′.

Proof. Consider an algorithm with storage cost n, and let m = dn/(τ − 1)e + 1. Assume
by contradiction that the claim does not hold. We get a contradiction by constructing
m+ 1 extensions of r; r0, ..., rm with sets of writes C0 ⊂ C1 ⊂ · · · ⊂ Cm ⊆Wv s.t. for all
0 ≤ k ≤ m:
(1) writes in rk \ r are limited to WV , and
(2) Ck is a set of k writes that are 〈τ − 1, ∅, V 〉-constant in rk.
Note that in rm,

⌈
n
τ−1

⌉
+1 writes are 〈τ − 1, ∅, V 〉-constant, implying a storage cost greater

than n by Observation 6, a contradiction.
The construction is by induction. The base case vacuously holds for r0 = r, C0 = ∅.

Assume inductively such rk and Ck for k < m. By Lemma 18 there exists an extension rk+1
of rk where some w ∈WV \Ck is either 〈τ, ∅, V 〉-permanent or 〈τ − 1, ∅, V 〉-constant, and
writes in rk+1 \ rk are limited to WV . Since all writes in Ck are 〈τ − 1, ∅, V 〉-constant
in rk they are also 〈τ − 1, ∅, V 〉-constant in rk+1. By the contracting assumption, w is
not 〈τ, ∅, V 〉-permanent in rk+1 thus it is 〈τ − 1, ∅, V 〉-constant in the run. Let Ck+1 =
Ck ∪ {w}, therefore |Ck+1| = k + 1 and all writes in Ck+1 are 〈τ − 1, ∅, V 〉-constant in
rk+1, as needed. J

We are now ready to prove our lower bound of τ · 2D blocks:

Proof (Theorem 17). We show that there exist 2D + 1 finite runs r0, r1, . . . , r2D and sets of
values V0 ⊃ V1 ⊃ ... ⊃ V2D and U0 ⊂ U1 ⊂ ... ⊂ U2D , such that for all 0 ≤ k ≤ 2D:
(1) |Vk| = 2D − k, |Uk| = k, Vk ∩ Uk = ∅, and
(2) all elements of Uk are 〈τ, ∅, Vk〉-permanent in rk.

By induction. Base: r0 is the empty run, V0 = V, U0 = ∅. Assume inductively such rk,
Vk, and Uk for k < 2D, and construct rk+1 as follows: first, because |Vk| = 2D − k > 0, by
Claim 19 there is an extension rk+1 of rk where writes in rk+1 \ rk are limited to WVk

and
some w ∈WVk

is 〈τ, ∅, Vk〉-permanent.

A. Berger, I. Keidar, and A. Spiegelman 11:15

Consider the value v ∈ Vk written by w. By Observation 5, v is 〈τ, ∅, Vk〉-permanent in
rk+1. Let Vk+1 = Vk \{v}, then |Vk+1| = |Vk|−1 = 2D−(k+1). Further let Uk+1 = Uk∪{v}.
Note that, because Vk ∩ Uk = ∅, we get v /∈ Uk and hence Vk+1 ∩ Uk+1 = ∅ and |Uk+1| =
|Uk|+ 1 = k + 1. Since Vk ⊃ Vk+1, then v is 〈τ, ∅, Vk+1〉-permanent. Additionally, writes
in rk+1 \ rk are from WVk

, thus by the inductive assumption and Observation 5, values in Uk
are 〈τ, ∅, Vk+1〉-permanent in rk+1, and so all of Uk+1 are 〈τ, ∅, Vk+1〉-permanent in rk+1.

Finally, U2D holds 2D values that are 〈τ, ∅, ∅〉-permanent in r2D . By Observation 6:

n ≥ τ · 2D. J

5.3 Visible reads
To prove a lower bound on the cost of systems with visible reads, we create a similar
construction, except that the number of extensions might be limited by the number of
readers, R. Instead, the bound depends on min

(
2D − 1 , R

)
:

I Theorem 20. The storage cost of a regular τ -common write wait-free MRSW register
emulation is at least τ + (τ − 1) ·min

(
2D − 1 , R

)
blocks.

Let N = min
(
2D − 1 , R

)
− 1. We build a run with N (τ − 1)-permanent values:

I Lemma 21. There exist finite runs r0, r1, . . . , rN , sets of values V0 ⊃ V1 ⊃ ... ⊃ VN and
U0 ⊂ U1 ⊂ ... ⊂ UN , and sets of readers Θ0 ⊂ Θ1 ⊂ ... ⊂ ΘN , s.t. for all 0 ≤ k ≤ N :
(1) |Vk| = 2D − k, |Uk| = |Θk| = k, Vk ∩ Uk = ∅, and
(2) all elements of Uk are 〈τ − 1, Θk, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V, Θ0 = U0 = ∅. Assume inductively
such rk, Vk, Uk, and Θk for k < N , and construct rk+1 as follows: since R− |Θk| > 0, there
is a reader p ∈ Π \ Θk. Moreover, |Vk| > 2D − N > 0. Therefore, by Lemma 16, there is
an extension rk+1 of rk where writes in rk+1 \ rk are limited to WVk

, readers in Θk do not
take steps in rk+1 \ rk, and some w ∈WVk

returns and is 〈τ − 1, Θk ∪ {p}, Vk〉-permanent
in rk+1.

Let Θk+1 = Θk ∪ {p}, and consider the value v ∈ Vk written by w. By Observation 5, v
is 〈τ − 1, Θk+1, Vk〉-permanent. Let Vk+1 = Vk \ {v}, then |Vk+1| = 2D − (k + 1). Further
let Uk+1 = Uk ∪ {v}. Since Vk ∩ Uk = ∅, we get that Vk+1 ∩ Uk+1 = ∅ and |Uk+1| = k + 1.

Since Vk ⊃ Vk+1, v is 〈τ − 1, Θk+1, Vk+1〉-permanent. In addition, in rk+1 \ rk writes
are limited to WVk

and readers in Θk do not take steps, and since Θk ⊂ Θk+1, then by the
inductive assumption and Observation 5, all values in Uk are 〈τ − 1, Θk+1, Vk+1〉-permanent.
Therefore all elements of Uk+1 are 〈τ − 1, Θk+1, Vk+1〉-permanent in rk+1, as needed. J

From Lemma 21, in rN there is a set of N (τ − 1)-permanent values, inducing a cost of
(τ − 1)N . We use Claim 8 to increase the bound by 2τ − 1 additional blocks.

Proof (Theorem 20). Construct rN , VN , UN , and ΘN as in Lemma 21. Note that, since
R − N ≥ 1, there is a reader p ∈ Π \ ΘN . Since VN ∩ UN = ∅ and |VN | = 2D − N =
2D − (min

(
2D − 1 , R

)
− 1) ≥ 2, VN contains two values, and they are not in UN . Extend

rN to rN+1 by invoking and returning write(v) and write(v′) for v, v′ ∈ VN .
By Claim 8, there is a time t ≥ trN

in rN+1 when there are 2τ − 1 blocks in the
shared storage with origin values of v or v′. In addition, UN consists of N values that are
〈τ − 1, ΘN , VN 〉-permanent in rN , and since in rN+1 \ rN writes are of values from VN and
no reader in ΘN takes steps, the values in UN remain 〈τ − 1, ΘN , VN 〉-permanent in rN+1.
By Observation 6, the storage cost amounts to at least:

n ≥ 2τ − 1 + (τ − 1)N = τ + (τ − 1)(N + 1) = τ + (τ − 1) ·min
(
2D − 1 , R

)
. J

DISC 2018

11:16 Integrated Bounds for Disintegrated Storage

6 Discussion

We have shown lower bounds on the space complexity of regular wait-free τ -disintegrated
storage algorithms. Although our bounds are stated in terms of blocks, there are scenarios
where they entail concrete bounds in terms of bits. In replication, each block stores an
entire value, thus the block sizes are D bits. Other applications use symmetric coding
where all blocks are of equal size. Using a simple pigeonhole argument, it can be shown
that in τ -disintegrated storage emulations that use symmetric coding and that are not
(τ + 1)-disintegrated, the size of blocks is at least D/τ bits, yielding bounds of D · 2D and
D +D τ−1

τ ·min
(
2D − 1 , R

)
with invisible and visible readers, respectively.

Our lower bounds for the common write case explain, for the first time, why previous
coded storage algorithms have either had the readers write or consumed exponential (or even
unbounded) space. Similarly, they establish why previous emulations of large registers from
smaller ones have either had the readers write, had the writer share blocks among different
writes, or consumed exponential space.

Our work leaves several open questions. First, when replication is used as a means
to overcome Byzantine faults or data corruption, our results suggest that there might be
an interesting trade-off between the shared storage cost and the size of local memory at
the readers, and a possible advantage to systems that apply replication rather than error
correction codes: we have shown that, with invisible readers, the former require Ω(2D/L)
blocks, rather than the Ω(2D) blocks needed by the latter. Whether there are algorithms that
achieve this lower cost remains an open question. Second, it is unclear how the bounds would
be affected by removing our assumption that each block in the shared storage pertains to a
single write. Wei [25] has provided a partial answer to this questions by showing that similar
bounds hold without this assumption, but only in the case of emulating large registers from
smaller ones without meta-data at all. Similarly, it would be interesting to study whether
allowing readers to write data (and not only signals) impacts the storage cost. Finally, future
work may consider additional sub-classes of disintegrated storage, e.g., with unresponsive
objects, and show that additional costs are incurred in these cases.

References
1 Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos:

optimal resilience with byzantine shared memory. Distributed Computing, 18(5):387–408,
2006.

2 Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Wait-free regular storage
from byzantine components. Information Processing Letters, 101(2):60–65, 2007.

3 Marcos K. Aguilera, Burkhard Englert, and Eli Gafni. On using network attached disks
as shared memory. In Proceedings of the Twenty-second Annual Symposium on Principles
of Distributed Computing, PODC ’03, pages 315–324, New York, NY, USA, 2003. ACM.
doi:10.1145/872035.872082.

4 Marcos Kawazoe Aguilera, Ramaprabhu Janakiraman, and Lihao Xu. Using erasure codes
efficiently for storage in a distributed system. In 2005 International Conference on Depend-
able Systems and Networks (DSN’05), pages 336–345, June 2005.

5 Elli Androulaki, Christian Cachin, Dan Dobre, and Marko Vukolić. Erasure-coded byzan-
tine storage with separate metadata. In International Conference on Principles of Dis-
tributed Systems, pages 76–90. Springer, 2014.

6 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. Journal of the ACM (JACM), 42(1):124–142, 1995. doi:10.1145/200836.
200869.

http://dx.doi.org/10.1145/872035.872082
http://dx.doi.org/10.1145/200836.200869
http://dx.doi.org/10.1145/200836.200869

A. Berger, I. Keidar, and A. Spiegelman 11:17

7 Rida A Bazzi and Yin Ding. Non-skipping timestamps for byzantine data storage systems.
In International Symposium on Distributed Computing, pages 405–419. Springer, 2004.

8 Alon Berger, Idit Keidar, and Alexander Spiegelman. Integrated bounds for disintegrated
storage. arXiv preprint arXiv:1805.06265, 2018.

9 Christian Cachin and Stefano Tessaro. Optimal resilience for erasure-coded byzantine dis-
tributed storage. In Dependable Systems and Networks, 2006. DSN 2006. International
Conference on, pages 115–124. IEEE, 2006.

10 Viveck R. Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial. A coded shared
atomic memory algorithm for message passing architectures. In Network Computing and
Applications (NCA), 2014 IEEE 13th International Symposium on, pages 253–260. IEEE,
2014.

11 Viveck R. Cadambe, Zhiying Wang, and Nancy Lynch. Information-theoretic lower bounds
on the storage cost of shared memory emulation. In Proceedings of the 2016 ACM Sympo-
sium on Principles of Distributed Computing, PODC ’16, pages 305–313, New York, NY,
USA, 2016. ACM. doi:10.1145/2933057.2933118.

12 Soma Chaudhuri, Martha J Kosa, and Jennifer L Welch. One-write algorithms for multi-
valued regular and atomic registers. Acta Informatica, 37(3):161–192, 2000.

13 Tian Ze Chen and Yuanhao Wei. Step Optimal Implementations of Large Single-Writer
Registers. In Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone, editors, 20th
International Conference on Principles of Distributed Systems (OPODIS 2016), volume 70
of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–32:16, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
OPODIS.2016.32.

14 Gregory Chockler, Rachid Guerraoui, and Idit Keidar. Amnesic distributed storage. In
Distributed Computing, pages 139–151. Springer, 2007.

15 Gregory Chockler and Alexander Spiegelman. Space complexity of fault-tolerant register
emulations. In Proceedings of the ACM Symposium on Principles of Distributed Comput-
ing, PODC ’17, pages 83–92, New York, NY, USA, 2017. ACM. doi:10.1145/3087801.
3087824.

16 Dan Dobre, Ghassan Karame, Wenting Li, Matthias Majuntke, Neeraj Suri, and Marko
Vukolić. Powerstore: proofs of writing for efficient and robust storage. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security, pages 285–
298. ACM, 2013.

17 Partha Dutta, Rachid Guerraoui, and Ron R. Levy. Optimistic erasure-coded distributed
storage. In Proceedings of the 22nd International Symposium on Distributed Comput-
ing, DISC ’08, pages 182–196, Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/
978-3-540-87779-0_13.

18 Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter. Efficient
byzantine-tolerant erasure-coded storage. In Dependable Systems and Networks, 2004 In-
ternational Conference on, pages 135–144. IEEE, 2004.

19 Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared
objects. Journal of the ACM (JACM), 45(3):451–500, 1998.

20 Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–101, 1986.
21 Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In

International Symposium on Distributed Computing, pages 311–325. Springer, 2002.
22 Gary L Peterson. Concurrent reading while writing. ACM Transactions on Programming

Languages and Systems (TOPLAS), 5(1):46–55, 1983.
23 Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit Keidar. Space bounds for

reliable storage: Fundamental limits of coding. In Proceedings of the 2016 ACM Symposium

DISC 2018

http://dx.doi.org/10.1145/2933057.2933118
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.32
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.32
http://dx.doi.org/10.1145/3087801.3087824
http://dx.doi.org/10.1145/3087801.3087824
http://dx.doi.org/10.1007/978-3-540-87779-0_13
http://dx.doi.org/10.1007/978-3-540-87779-0_13

11:18 Integrated Bounds for Disintegrated Storage

on Principles of Distributed Computing, PODC ’16, pages 249–258, New York, NY, USA,
2016. ACM. doi:10.1145/2933057.2933104.

24 Zhiying Wang and Viveck R. Cadambe. On multi-version coding for distributed storage.
In Communication, Control, and Computing (Allerton), 2014 52nd Annual Allerton Con-
ference on, pages 569–575. IEEE, 2014.

25 Yuanhao Wei. Space complexity of implementing large shared registers. arXiv preprint
arXiv:1808.00481, 2018.

http://dx.doi.org/10.1145/2933057.2933104

Distributed Recoloring
Marthe Bonamy
CNRS, LaBRI, Université de Bordeaux, France
marthe.bonamy@u-bordeaux.fr

Paul Ouvrard
LaBRI, CNRS, Université de Bordeaux, France
paul.ouvrard@u-bordeaux.fr

Mikaël Rabie
Aalto University, Finland
mikael.rabie@aalto.fi

Jukka Suomela
Aalto University, Finland
jukka.suomela@aalto.fi

Jara Uitto
ETH Zürich, Switzerland; and University of Freiburg, Germany
jara.uitto@inf.ethz.ch

Abstract
Given two colorings of a graph, we consider the following problem: can we recolor the graph from
one coloring to the other through a series of elementary changes, such that the graph is properly
colored after each step?

We introduce the notion of distributed recoloring: The input graph represents a network of
computers that needs to be recolored. Initially, each node is aware of its own input color and
target color. The nodes can exchange messages with each other, and eventually each node has to
stop and output its own recoloring schedule, indicating when and how the node changes its color.
The recoloring schedules have to be globally consistent so that the graph remains properly colored
at each point, and we require that adjacent nodes do not change their colors simultaneously.

We are interested in the following questions: How many communication rounds are needed (in
the deterministic LOCAL model of distributed computing) to find a recoloring schedule? What
is the length of the recoloring schedule? And how does the picture change if we can use extra
colors to make recoloring easier?

The main contributions of this work are related to distributed recoloring with one extra color
in the following graph classes: trees, 3-regular graphs, and toroidal grids.

2012 ACM Subject Classification Theory of computation → Distributed computing models,
Theory of computation → Graph algorithms analysis

Keywords and phrases Distributed Systems, Graph Algorithms, Local Computations

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.12

Related Version The full version of this work is available at arXiv:1802.06742.

Funding This work was supported in part by ERC Grant No. 336495 (ACDC) and ANR project
DISTANCIA (ANR-17-CE40-0015).

Acknowledgements The authors would like to thank Nicolas Bousquet for helpful discussions
regarding the proof of Lemma 14.

© Marthe Bonamy, Paul Ouvrard, Mikaël Rabie, Jukka Suomela, and Jara Uitto;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marthe.bonamy@u-bordeaux.fr
mailto:paul.ouvrard@u-bordeaux.fr
mailto:mikael.rabie@aalto.fi
mailto:jukka.suomela@aalto.fi
mailto:jara.uitto@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.DISC.2018.12
https://arxiv.org/abs/1802.06742
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Distributed Recoloring

1 Introduction

In classical graph problems, we are given a graph and the task is to find a feasible solution.
In reconfiguration problems, we are given two feasible solutions – an input configuration and
a target configuration – and the task is to find a sequence of moves that turns the input
configuration into the target configuration.

Recoloring problems. Perhaps the most natural example of a reconfiguration problem is
recoloring: we are given a graph G and two proper k-colorings of G, let us call them s and t,
and the task is to find a way to turn s into t by changing the color of one node at a time,
such that each intermediate step is a proper coloring. More formally, the task is to find a
sequence of proper k-colorings x0, x1, . . . , xL such that x0 = s and xL = t, and xi−1 and xi

differ only at one node. Such problems have been studied extensively from the perspective of
graph theory and classical centralized algorithms, but the problems are typically inherently
global and solutions are long, i.e., L is large in the worst case.

In this work we introduce recoloring problems in a distributed setting. We show that there
are natural relaxations of the problem that are attractive from the perspective of distributed
graph algorithms: they admit solutions that are short and that can be found locally (e.g., in
sublinear number of rounds). Distributed recoloring problems are closely related to classical
symmetry-breaking problems that have been extensively studied in the area of distributed
graph algorithms, but as we will see, they also introduce new kinds of challenges.

Distributed recoloring. We will work in the usual LOCAL model of distributed computing:
Each node v ∈ V of the input graph G = (V,E) is a computer, and each edge e ∈ E represents
a communication link between two computers. Computation proceeds in synchronous rounds:
each node sends a message to each of its neighbors, receives a message from each of its
neighbors, and updates its local state. Eventually, all nodes have to announce their local
outputs and stop; the running time of the algorithm is the number of communication rounds
until all nodes stop. We assume that the algorithm is deterministic, and each node is labeled
with a unique identifier.

In distributed recoloring, each node v ∈ V is given two colors, an input color s(v) and
a target color t(v). It is guaranteed that both s and t form a proper coloring of G, that
is, s(u) 6= s(v) and t(u) 6= t(v) for all {u, v} ∈ E. Each node v ∈ V has to output a finite
recoloring schedule x(v) =

(
x0(v), x1(v), . . . , x`(v)

)
for some ` = `(v). For convenience, we

define xi(v) = x`(v) for i > `(v). We say that the node changes its color at time i > 0
if xi−1(v) 6= xi(v); let Ci be the set of nodes that change their color at time i. Define
L = maxv `(v); we call L the length of the solution. A solution is feasible if the following
holds:
1. x0 = s and xL = t,
2. xi is a proper coloring of G for all i,
3. Ci is an independent set of G for all i.
The key differences between distributed recoloring and classical recoloring are:
1. Input and output are given in a distributed manner: no node knows everything about G,

s, and t, and no node needs to know everything about xi or the length of the solution L.
2. We do not require that only one node changes its color; it is sufficient that adjacent nodes

do not change their colors simultaneously.
See Figure 1 for a simple example of distributed recoloring steps.

M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto 12:3

Input Coloring Target Coloring

Figure 1 Distributed recoloring: the input coloring s can be seen on the left and the target
coloring t on the very right. The illustration shows one possible way to reach the target coloring in
three steps by, in each step, changing the colors of an independent set of nodes.

Note that a solution to distributed recoloring is locally checkable in the following sense: to
check that a solution is feasible, it is enough to check independently for each edge {u, v} ∈ E
that the recoloring sequences x(u) and x(v) are compatible with each other, and for each
node v ∈ V that x(v) agrees with s(v) and t(v). However, distributed recoloring is not
necessarily an LCL problem [21] in the formal sense, as the length of the output per node is
not a priori bounded.

We emphasize that we keep the following aspects well-separated: what is the complexity
of finding the schedule, and how long the schedules are. Hence it makes sense to ask,
e.g., if it is possible to find a schedule of length O(1) in O(logn) rounds (note that the
physical reconfiguration of the color of the node may be much slower than communication
and computation).

Recoloring with extra colors. Recoloring is computationally very hard, as solutions do
not always exist, and deciding whether a solution exists is PSPACE-hard. It is in a sense
analogous to problems such as finding an optimal node coloring of a given graph; such
problems are not particularly interesting in the LOCAL model, as the complexity is trivially
global. To make the problem much more interesting we slightly relax it.

We define a k + c recoloring problem (a.k.a. k-recoloring with c extra colors) as follows:
We are given colorings with s(v), t(v) ∈ [k].
All intermediate solutions must satisfy xi(v) ∈ [k + c].

Here we use the notation [n] = {1, 2, . . . , n}.
The problem of k+c recoloring is meaningful also beyond the specific setting of distributed

recoloring. For example, here is an example of a very simple observation:

I Lemma 1. Recoloring with 1 extra color is always possible in any bipartite graph, with a
distributed schedule of length L = 3.

Proof. Let the bipartition be V = V1 ∪ V2. First each node v ∈ V1 switches to k + 1, then
each v ∈ V2 switches to color t(v), and finally each v ∈ V1 switches to color t(v). J

Incidentally, it is easy to extend this result to show that k-recoloring with c = χ− 1 extra
colors is always possible with a schedule of length O(c) in a graph with chromatic number
χ, and in particular k-recoloring with c = k − 1 extra colors is trivial. Figure 2 gives an
illustration of recoloring a bipartite graph with one extra color.

As a corollary, we can solve distributed k + 1 recoloring in trees in O(n) rounds, with a
schedule of length O(1): simply find a bipartition and apply the above lemma. However, is
this optimal? Clearly finding a bipartition in a tree requires Ω(n) rounds, but can we solve
recoloring with 1 extra color strictly faster?

These are examples of problems that we study in this work. We initiate the study
of distributed complexity of recoloring, with the ultimate objective of finding a complete

DISC 2018

12:4 Distributed Recoloring

1)

2)

3)

4)

Figure 2 In the input graph, a bipartition is given. Therefore, the target coloring can be reached
by using one extra color in three steps.

characterization of graph families and parameters k, c, and L such that distributed k + c

recoloring with schedules of length L can be solved efficiently in a distributed setting.
As we will see, the problem turns out to be surprisingly rich already in very restricted

settings such as grids or 3-regular trees. Many of the standard lower bound techniques fail;
in particular, known results on the hardness of graph coloring do not help here, as we are
already given two proper colorings of the input graph.

Contributions. Our main contribution is a comprehensive study of the complexity of
distributed recoloring in various graph families; the results are summarized in Tables 1–5.
The highlights of this work are the following results:
1. An algorithm for 3 + 1 recoloring on trees. On trees, 3-recoloring is inherently

global: it is easy to see that the worst-case running time is Θ(n) and the worst-case
schedule length is Θ(n). With one extra color, we can trivially find a schedule of length
O(1) in time O(n). However, we show that we can do much better: it is possible to find
a schedule of length O(1) in time O(logn).
Here the key component is a new algorithm that solves the following sub-problem in
O(logn) rounds: given a tree, find an independent set I such that the removal of I splits
the tree in components of size 1 or 2. This subroutine may find applications in other
contexts as well.
These results are presented in Section 5.

2. An algorithm for 3 + 1 recoloring for graphs of degree at most 3. In general
graphs, 3 + 1 recoloring is not necessarily possible; we can construct a small 4-regular
graph in which 3+1 recoloring is not solvable. However, we will show that if the maximum
degree of the graph is at most 3 (i.e., we have a subcubic graph), 3 + 1 recoloring is always
possible. Moreover, we can find a schedule of length O(logn) in time polylog(n).
This result is presented in Section 6.

3. Complexity of 3 + 1 recoloring on toroidal grids. We also give a complete charac-
terization of 3 + 1 recoloring in one particularly interesting family of 4-regular graphs:
2-dimensional toroidal grids (a.k.a. torus grid graphs, Cartesian graph products of two
cycles). While the case of 1-dimensional grids (cycles) is easy to characterize completely,
the case of 2-dimensional grids turns out to be much more interesting.
Here our main contribution is the following graph-theoretic result: in an h× w toroidal
grid, 3 + 1 recoloring is possible for any input if and only if (i) both h and w are even, or
(ii) h = 4, or (iii) w = 4. In all other cases we can find 3-colorings s and t such that t is
not reachable from s even if we can use 1 extra color.
As a simple corollary, 3 + 1 recoloring is inherently global from the perspective of
distributed computing, and it takes Θ(n) rounds to solve even if we have the promise
that e.g. h and w are even (and hence a schedule of length Θ(1) trivially exists).
This result is presented in Section 7.

M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto 12:5

Additionally, several simple upper and lower bounds and corollaries are given in Sections 4
and 8 and in the full version of the article.

Motivation. As a simple application scenario, consider the task of reconfiguring a system of
unmanned aerial vehicles. Here each node is an aircraft, the color corresponds to an altitude
range, and an edge corresponds to a pair of aircraft whose paths might cross and hence need
to be kept at different cruising altitudes to avoid collisions.

For each aircraft there are designated areas in which they can safely change their altitude.
To reconfigure the entire system, we could take all aircraft to these areas simultaneously.
However, this may be a costly maneuver.

Another possibility is to reserve a longer timespan during which a set X of aircraft may
change their altitudes, whenever they happen to be at convenient locations. Now if we let
two aircraft u, v ∈ X change their altitudes during the same timespan, we need to ensure
that any intermediate configuration is safe, regardless of whether u or v happens to change
its altitude first. Furthermore, we would like to complete reconfiguration in minimal time
(short schedule), and we would like to waste precious airspace as little as possible and hence
keep as few altitude levels as possible in reserve for reconfiguration (few extra colors).

This scenario – as well as many similar scenarios, such as the task of reconfiguring the
frequency bands of radio transmitters in a manner that never causes interference, even if
the clocks are not perfectly synchronized – give rise to the following variant of distributed
recoloring that we call weak recoloring: if two adjacent nodes u and v change their color
simultaneously at time i, then

{
xi−1(u), xi(u)

}
∩
{
xi−1(v), xi(v)

}
= ∅, that is, we have a

proper coloring regardless of whether u or v changes its color first.
Let us now contrast weak recoloring with strong recoloring, in which adjacent nodes never

change colors simultaneously. Trivially, strong recoloring solves weak recoloring. But the
converse is also true up to constant factors: if we have k input colors and a solution to weak
recoloring of length L, then we can also find a solution to strong recoloring of length kL. To
see this, we can implement one weak recoloring step in k strong recoloring substeps such
that in substep j nodes of input color j change their colors.

As our focus is on the case of a small number of input colors, we can equally well study
strong or weak recoloring here; all of our results hold for either of them. While weak recoloring
is closer to applications, we present our results using strong recoloring, as it has a more
convenient definition.

2 Related work

Reconfiguration and recoloring. Recoloring, and more generally combinatorial reconfigur-
ation has received attention over the past few years. Combinatorial reconfiguration problems
consist of finding step-by-step transformations between two feasible solutions such that all
intermediate results are also feasible. They model dynamic situations where a given solution
is in place and has to be modified, but no disruption can be afforded. We refer the reader
to the nice survey [24] for a full overview, and focus here on node coloring as a reference
problem.

As mentioned earlier, we introduce distributed recoloring here, but centralized recoloring
has been studied extensively before. Two main models are considered:
1. Node recoloring: at each step, we can recolor a node into a new color that does not appear

on its neighborhood
2. Kempe recoloring: at each step, we can switch the colors in a bichromatic component (we

operate a Kempe change).

DISC 2018

12:6 Distributed Recoloring

The usual questions are of the form: Given a graph G and an integer k, are all its k-
colorings equivalent (up to node or Kempe recolorings)? What is the complexity of deciding
that? What is the maximum number of operations needed to go from to the other?

All of those questions can also be asked for two specific k-colorings s and t of G. Are
they equivalent (up to node or Kempe recolorings)? What is the complexity of deciding
that? What is the maximum number of operations needed to go from s to t in G?

While the complexity of questions related to Kempe recoloring remains elusive, the
problems related to node recoloring are typically PSPACE-hard [6]. The related question
of deciding equivalence when a bound on the length of an eligible recoloring sequence is
given as part of the input has also been considered [7]. We know that the maximum number
of operations needed to go from one 3-coloring to another in a tree is Θ(n) [11]. While
(∆ + 1)-recoloring a graph with no node of degree more than ∆ is not always possible, having
∆+2 colors always suffices [16], and there are also meaningful results to obtain for the problem
of (∆ + 1)-recoloring [14]. Two other settings have received special attention: characterizing
fully when 3-recoloring is possible [11, 10], and guaranteeing short reconfiguration sequences
in the case of sparse graphs for various notions of sparse [4, 8].

Kempe changes were introduced in 1879 by Kempe in his attempted proof of the Four
Color Theorem [17]. Though this proof was fallacious, the Kempe change technique has
proved useful in, for example, the proof of the Five Color Theorem and a short proof of
Brooks’ Theorem. Most works on the topic initially focused on planar graphs, but significant
progress was recently obtained in more general settings. We know that all k-colorings of a
graph with no node of degree more than k are equivalent (w.r.t. Kempe changes), except in
the case of one very specific graph: the 3-prism [5, 15, 18].

Note that some other variants have also been studied, perhaps most notably the question
of how many nodes to recolor at once so that the graph can be recolored [19].

While we will not discuss Kempe recoloring in our work, we point out that recoloring
with extra colors is closely connected to Kempe recoloring: Kempe recolorability implies
recolorability with one extra color (while the converse is not true). Hence the negative results
related to one extra color also hold for Kempe recoloring.

Distributed graph coloring. Panconesi and Srinivasan [23] have used Kempe operations to
design efficient distributed algorithms for graph coloring with ∆ colors. Other than that
we are not aware of prior work on distributed recoloring. On the other hand, the literature
on the standard distributed coloring is vast. The best overview on the topic is the book
by Barenboim and Elkin [3]; the most important recent developments include the following
results. There is a randomized O

(
log∗ n+ 2

√
log log n

)
-time algorithm for (∆ + 1)-coloring

by Chang et al. [13]. In the case of trees, the number of colors can be reduced to ∆ with
the cost of increasing the runtime to O(log∆ logn) [12]. On the deterministic side, the best
known (∆ + 1)-coloring algorithm requires O(∆3/4 log ∆ + log∗ n) communication rounds [2].
In the case of trees, the rake-and-compress -method by Miller and Reif gives a 3-coloring in
time O(logn) [20].

However, there seems to be surprisingly little technology that one can directly transfer
between the coloring domain and recoloring domain. Toroidal grids are a good example: by
prior work [9], 3-coloring is an inherently global problem, and by the present work, 3 + 1
recoloring is an inherently global problem, but the arguments that are used in these proofs
are very different (despite the fact that both of them are related to the idea that a “parity”
is preserved).

M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto 12:7

3 Preliminaries

In this article, each graph G = (V,E) is a simple undirected graph where V represents its
node set and E its edge set. For a subset of nodes S ⊆ V , we denote by G[S] the subgraph
induced by S. For a node u ∈ V , we denote by N(u) the open neighborhood of u that is the
set of all the neighbors of u and by N [u] its closed neighborhood i.e. the set N(u) ∪ {u}. For
a subset S ⊆ V , its closed neighborhood corresponds to the set

⋃
u∈S N [u].

The degree of a node is the number of neighbors. A k-regular graph is a graph in which
all nodes have degree k, a cubic graph is the same thing as a 3-regular graph, and a subcubic
graph is a graph in which all nodes have degree at most 3. A tree is a connected acyclic
graph, and a k-regular tree is a tree in which each node has degree 1 or k.

A maximal independent set (MIS) S ⊆ V is an independent set (i.e. a set of pairwise
non-adjacent nodes) such that for each non-MIS node u /∈ S,N(u) ∩ S 6= ∅.

Given a graph G = (V,E), a list-assignment is a function which assigns to each node
v ∈ V a list of colors L(v). An L-coloring of G is a function c that assigns to each node
v ∈ V a color c(v) ∈ L(v) such that for any two adjacent nodes u, v ∈ V , we have c(u) 6= c(v).
A graph G is k-list-colorable if it admits an L-coloring for every list-assignment where the
list of each node is of size at least k. Therefore, list-coloring generalizes node-coloring if
we consider the special case where each node receives the same input list. The notion of
L-recoloring is the natural generalization of k-recoloring: the same elementary steps are
considered, and every intermediate coloring must be an L-coloring.

In order to output a recoloring schedule, it is convenient to consider the question of
recoloring a graph G from a coloring s to a coloring t, rather than the more symmetric
question of whether the two colorings are equivalent in the given setting. We take this
opportunity to note that we can reverse time and hence recoloring schedule from s to t also
yields a recoloring schedule from t to s. In the rest of the paper, we therefore address the
two questions as one.

4 Simple upper bounds

We will start by providing some simple upper bounds of recoloring problems:
I Lemma 2. In any graph, k + c recoloring for c = k − 1 is possible in 0 communication
rounds, with a schedule of length O(k).
Proof. Generalize the idea of Lemma 1; note that the schedule of node v depends only on
s(v) and t(v), and not on the colors of any other node around it. J

I Lemma 3. Let G be a graph of maximum degree at most ∆, and let k ≥ ∆ + 2. Then
k-recoloring with c extra colors is at least as easy as (k− 1)-recoloring with c+ 1 extra colors.
Proof. Given a k-coloring x, we can construct a (k − 1)-coloring x′ as follows: all nodes of
color k pick a new color from {1, 2, . . . , k−1} that is not used by any of their neighbors. Note
that x→ x′ is a valid step in distributed recoloring (nodes of color k form an independent
set), and by reversing the time, also x′ → x is a valid step.

Hence to recolor s → t with c extra colors, it is sufficient to recolor s′ → t′ with c + 1
extra colors (color k no longer appears in the input and target colorings and can be used
as an auxiliary color during recoloring). Then we can put everything together to form a
recoloring schedule s→ s′ → t′ → t, with only constant overhead in the running time and
schedule length. J

Please see the full version for more examples of simple upper and lower bounds.

DISC 2018

12:8 Distributed Recoloring

5 Recoloring algorithm for trees

In this section, we provide two efficient algorithms for recoloring and list-recoloring trees.
Note that Theorem 5 is tight; see the full version for more details.

I Theorem 4. For any k ∈ N, for every tree T on n nodes, for any two k-colorings α, β of
T , we can compute in O(logn) rounds how to recolor T from α to β with 1 extra color and a
schedule of length O(1).

I Theorem 5. For every tree T on n nodes and any list assignment L of at least 4 colors to
every node of T , for any two L-colorings α, β of T , we can compute in O(logn) rounds how
to L-recolor T from α to β with schedule of length O(logn).

We first discuss how to compute efficiently an independent set with some desirable
properties. For this, we use a simple modification of the rake and compress method by
Reif and Miller [20]. More precisely, we iterate rake and compress operations, and label
nodes based on the step at which they are reached. We then use the labels to compute an
independent set satisfying given properties. We finally explain how to make use of the special
independent set to obtain an efficient recoloring algorithm, in each case.

I Definition 6. A light h-labeling is a labeling V → [h] such that for any i ∈ [h]:
1. Any node labeled i has at most two neighbors with label ≥ i, at most one of which with

label ≥ i+ 1.
2. No two adjacent nodes labeled i both have a neighbor with label ≥ i+ 1.

I Lemma 7. There is an O(logn)-round algorithm that finds a light (2 logn)-labeling of a
tree.

Proof. As discussed above, we merely use a small variant of the rake and compress method.
At step i, we remove all nodes of degree 1 and all nodes of degree 2 that belong to a chain of
at least three nodes of degree 2, and assign them label i.

One can check that this yields a light labeling. It remains to discuss how many different
labels are used, i.e. how many steps it takes to delete the whole tree. Let us argue
that no node remains after 2 logn rounds. Let T be a tree, let V1 (resp. V2, V3) be the
number of nodes of degree 1 (resp. 2, ≥ 3) in the tree, and let T ′ be the tree obtained
from T by replacing any maximal path of nodes of degree 2 with an edge. Note that
|V (T ′)| = |V1| + |V3|. Let W be the set of nodes in T that have degree 2 with both
neighbors of degree 2. Note that |V2 \W | ≤ 2|E(T ′)| = 2(|V1|+ |V3| − 1). Note also that
|V1| ≥ |V3|, simply by the fact that there are fewer edges than nodes in a tree. It follows that
|W | ≥ |V2| − 2(|V1|+ |V3| − 1) = |V (T)| − |V1| − |V3| − 2(|V1|+ |V3| − 1) ≥ |V (T)| − 6|V1|.
Consequently, we obtain |W | + |V1| ≥ |V |

6 . In other words, at every step, we remove in
particular W ∪ V1, hence at least a sixth of the nodes. It follows that at after k steps,
the number of remaining nodes is at most n ·

(5
6
)k. Note that this is less than 1 once

k ≥ 2 logn. J

We now discuss how to make use of light h-labelings.

I Lemma 8. For any graph T , any 3-coloring α of T , and any integer h, let L be a light
h-labeling of T . There is an O(h)-round algorithm that finds a maximal independent set S
such that T \ S only has connected components on 1 or 2 nodes.

M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto 12:9

Proof. In brief, we proceed as follows: at step i = h, h− 1, . . . , 1, we first add all nodes of
label i which have a neighbor of label ≥ i+ 1 that is not in S (they form an independent set
by definition of a light label), then use the 3-coloring to obtain a fast greedy algorithm to
make S maximal on the nodes of label ≥ i. The detailed algorithm can be found in the full
version.

The fact that the output S is an independent set follows directly from the construction, as
does the fact that the running time in O(h) rounds. We note that no connected component
of T \ S contains nodes of different labels, due to the first operation at step i.

It remains to argue that for any i, the nodes of label i that do not belong to S only
form connected components of size 1 or 2. Assume for a contradiction that there is a node
u of label i which has two neighbors v and w, also of label i, such that none of {u, v, w}
belongs to S. By definition of a light label, the node u has no other neighbor of label ≥ i, a
contradiction to the fact that we build S to be an MIS among the nodes of label ≥ i. J

Combining Lemmas 7 and 8, and observing that a 3-coloring of a tree can be obtained in
O(logn) rounds, we immediately obtain the following.

I Lemma 9. There is an O(logn)-round algorithm that finds an MIS in a tree, such that
every component induced by non-MIS nodes is of size one or two.

We are now ready to prove Theorem 4.

Proof of Theorem 4. First, we use Lemma 9 to obtain in O(logn) rounds an MIS S such
that T \ S only has connected components of size 1 or 2. We recolor each node in S with the
extra color. Remove S, and recolor each component from α to β without using any extra
colors; this can be done in O(1) recoloring rounds. Each node in S can then go directly to
its color in β. J

Moving on to the list setting, we have to use a more convoluted approach since there is
no global extra color that we can use. Before discussing 4-list-recoloring, we discuss 3-list-
recoloring. For the sake of intuition, we start by presenting an algorithm for 3-recoloring
trees, and explain afterwards how to adapt it for the list setting.

I Lemma 10. For every tree T with radius at most p and for any two 3-colorings α, β of T ,
we can compute in O(p) rounds how to 3-recolor T from α to β with a schedule of length
O(p).

Proof. Let c : V → [3] be a 3-coloring of T . We introduce an identification operation: Given
a leaf u and a node v such that u and v have a common neighbor w, we recolor u with c(v),
and from then on we pretend that u and v are a single node. In other words, we delete u from
the tree we are considering, and reflect any recoloring of v to the node u. Note that these
operations can stack up: the recoloring of a single node might be reflected on an arbitrarily
large independent set in the initial tree.

We now briefly describe an algorithm to recolor a 3-coloring into a 2-coloring c′ in O(p)
rounds, with schedule O(p). First, root T on a node r which is at distance at most p of any
node of T . Any node of T which is not adjacent to the root has a grandparent, which is
defined as its parent’s parent.

Then, at each step, we consider the set A of leaves of T which have a grandparent, if
any. We identify each leaf in A with its grandparent (note that the notion of grandparent
guarantees that this operation is well-defined, and that the operation results in A being
deleted).

DISC 2018

12:10 Distributed Recoloring

This process stops when T consists only of the root r and its children. We select one of
the children arbitrarily and identify the others with it. This results in T being a single edge.
Note that the color partition of c′ is compatible with the identification operations, as we
only ever identify nodes at even distance of each other.

We then recolor T into c′: this is straightforward in the realm of 3-recoloring.
We can now choose a 2-coloring of T (this can be done in O(p) rounds), and apply the

above algorithm to 3-recolor both α and β to that 2-coloring. This results in a 3-recoloring
between α and β with schedule O(p). J

The same idea can be adapted to list coloring; we give a proof of the following result in
the full version of the article:

I Lemma 11. For every tree T with radius at most p, for any list assignment L of at least
3 colors to each node, for any two L-colorings α, β of T , we can compute in O(p) rounds
how to L-recolor T from α to β with schedule O(p).

To prove Theorem 5, we first split the tree in small components. We slightly adapt the
proof of Lemma 8; see the full version for the details:

I Lemma 12. For any tree T , any 3-coloring α of T , and any integer h, let L be a light
h-label of T . There is a O(h)-round algorithm that finds a maximal independent set S such
that no node has two neighbors in S and T \S only has connected components of radius O(h).

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Compute (in O(logn) rounds) an independent set S such any two
elements of S are at distance at least 2 of each other and every connected component of
T \ S has radius O(logn). By Lemmas 7 and 12 and the fact that a 3-coloring of a tree can
be computed in O(logn) rounds, we compute (in O(logn) rounds) an L-coloring γ of T \ S
such that every node adjacent to an element u ∈ S has a color different from α(u) and β(u).
Note that this coloring exists since any tree is 2-list-colorable. Use Lemma 11 to recolor each
connected component of T \ S from α to γ. Recolor every element of S with its color in β.
Use Lemma 11 to recolor each connected component T \S from γ to β. Note that this yields
an L-recoloring of T from α to β with schedule O(logn). J

Note that a direct corollary of Theorem 5 is that for any k−coloring α, β of a trees with
k ≥ 4, a schedule of length Θ(logn) can be found in Θ(logn) rounds.

6 Recoloring algorithm for subcubic graphs

In this section we study recoloring in subcubic graphs (graphs of maximum degree at most
3); our main result is summarized in the following theorem:

I Theorem 13. For every subcubic graph G on n nodes, for any two 3-colorings α, β of G,
we can compute in O(log2 n) rounds how to recolor G from α to β with 1 extra color and a
schedule of length O(logn).

A theta is formed of three node-disjoint paths between two nodes. Note that in particular
if a graph contains two cycles sharing at least one edge, then it contains a theta. We note
Bk(u) the set of nodes at distance at most k to u.

We show here, roughly, that there is around every node a nice structure that we can use
to design a valid greedy algorithm for the whole graph. This proof is loosely inspired by one
in [1]. The proofs of Lemmas 14 and 15 are given in the full version.

M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto 12:11

Algorithm 1 Decomposing into a small forest and an independent set.
Require: A subcubic graph G.
Ensure: A decomposition (F, S) of V (G) such that G[S] is an independent set and every

connected component of G[F] has radius at most logn.
1: for u in V (G) (in parallel) do
2: Acquire knowledge on B2 log n(u)
3: Select in the node set of B2 log n(u) a configuration C(u) that is a minimal theta or a

node of degree 1 or 2
4: end for
5: Compute a (4 logn, 8 logn)-ruling set X in G
6: Define A = ∪u∈X{C(u)}
7: Compute the distance of every node in G to an element of A
8: Let F = S = ∅
9: for i = 8 logn downto 1 do

10: Extend the partition (F, S) to the nodes at distance i from A, more precisely:
11: Each connected component is a path or cycle where no internal node has an already

assigned neighbor, let Ui be the set of the internal nodes
12: Assuming a pre-computed MIS on each layer for the sets Ui, assign that MIS to S
13: Extend greedily on the remaining nodes (which form bounded-size components),

assigning nodes to S when possible, to F when not
14: end for
15: Extend the partition (F, S) to the nodes belonging to an element of A using Lemma 15

I Lemma 14. For every subcubic graph G on n nodes, for every node u ∈ V (G), there is a
node v with degree at most 2 or a theta that is contained in B2 log n(u).

I Lemma 15. Let G be a subcubic graph, let p be an integer, and let A be a collection of
thetas and nodes of degree ≤ 2 in G each at distance at least 2 of each other. Let r ≥ 1 be
such that no element of A has diameter more than r

2 . If the nodes of G \ (
⋃

A∈AA) can be
partitioned into S and F such that G[S] is an independent set and G[F] is a forest of radius
at most p, then there is a partition (S′, F ′) of

⋃
A∈AA such that G[S ∪ S′] is an independent

set and G[F ∪ F ′] is a forest of radius at most p+ r.

I Lemma 16. Let G be a subcubic graph on n nodes. We can compute in O(log2 n) rounds
a partition (S, F) of the nodes of G that G[S] is an independent set and G[F] is a forest of
radius O(logn).

Proof. To that purpose, we combine the previous lemmas in Algorithm 1. The algorithm
computes a decomposition as desired and runs in O(logn) +RS(n) rounds, where RS(n) is
the number of rounds necessary to compute a (4 logn, 8 logn)-ruling set in a subcubic graph.
We derive from [22] that RS(n) = O(log2(n)), hence the conclusion. J

We are now ready to prove Theorem 13, which we do in a similar fashion as Theorem 4.

Proof. Use Lemma 16, and obtain a decomposition (S, F) as stated. Recolor all of S to the
extra color, then use Lemma 11 on each connected component of G[F] so that all nodes of
F reach their target color (remember that each connected component of G[F] has radius
O(logn)). Finally recolor each node of S with its target color. J

DISC 2018

12:12 Distributed Recoloring

7 Recoloring in toroidal grids

In this section we study toroidal grids (torus grid graphs). Throughout this section, an
h× w toroidal grid is the Cartesian graph product of cycles of lengths h and w; we assume
h ≥ 3 and w ≥ 3. A toroidal grid can be constructed from an h× w grid by wrapping both
boundaries around into a torus. In the full version, we show that e.g. 2 + 0, 3 + 0, and 4 + 0
recoloring is not always possible, and by Lemma 2 e.g. 2 + 1, 3 + 2, and 4 + 3 recoloring
is trivial. The first nontrivial case is 3 + 1 recoloring; in this section we give a complete
characterization of 3 + 1 recolorability in toroidal grids:

I Theorem 17. Let G be the h×w toroidal grid graph. Then 3 + 1 recoloring is possible for
any source and target coloring in the following cases: (i) both h and w are even, or (ii) h = 4,
or (iii) w = 4. For all other cases it is possible to construct 3-colorings s and t such that t is
not reachable from s by valid recoloring operations using 1 extra color.

This also shows that 3+1 recoloring is an inherently global problem in toroidal grids, even
if we have a promise that recoloring is possible. For example, if there was a sublinear-time
distributed recoloring algorithm A for 6× w grids for an even w, we could apply the same
algorithm in a 6× w grid with an odd w (the algorithm cannot tell the difference between
these two cases in time o(w)), and hence we could solve recoloring in 6× w grids for all w,
which contradicts Theorem 17. By a similar argument, distributed recoloring in non-toroidal
grids is also an inherently global problem.

Existence. To prove Theorem 17, let us start with the positive results. If h and w are even,
the graph is bipartite and recoloring is always possible by Lemma 1. The remaining cases
are covered by the following lemma.

I Lemma 18. Let G be a 4×w toroidal grid for any w ≥ 3, and let s and t be any 3-colorings.
Then there exists a recoloring from s to t with one extra color.

Proof. We first take an MIS S over pairs of consecutive columns, i.e. a set of indices of the
form (i, i + 1) such that every column j /∈ S is such that at least one of j − 1 and j + 2
belongs to S, every column i ∈ S is such that precisely one of i− 1 and i+ 1 is in S. Note
that indices are taken modulo w. For every pair in S, we select a maximal independent set
of the corresponding columns. The resulting union yields an independent set R. We then
greedily make R maximal columnwise away from S. We recolor R with the extra color. It
remains to argue that G \R can reach its targeted coloring. We note that since leaves are
not problematic, removing R essentially boils down to removing the columns with index in
S. Note that the remaining connected components are cycles of length 4. Cycles of length 4
can be always 3-recolored.

Note that the above proof yields in fact an O(logn) rounds algorithm that outputs an
O(1) schedule. We can improve it into an O(1)-round algorithm, simply by pointing out that
there is only a finite number of possible colorings for a column, and two adjacent columns
cannot have the same coloring. This allows us to compute S in constant time. J

Non-existence. Let us now prove the negative result. Our high-level plan is as follows. Let
G be an h× w toroidal grid. We will look at all tiles of size 2× 2. If G is properly colored
with k colors, so is each tile. The following two tiles are of special importance to us; we call
these tiles of type A:[

2 3
3 1

]
,

[
1 3
3 2

]
.

M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto 12:13

We are interested in the number of type-A tiles. For example, consider the following colorings
of the 3× 3 toroidal grid:

s =

1 2 3
2 3 1
3 1 2

 , t =

3 1 2
2 3 1
1 2 3

 .
Here s contains 3 tiles of type A (recall that we wrap around at the boundaries), while t does
not have any tiles of type A. In particular, s has an odd number of type-A tiles and t has an
even number of type-A tiles. In brief, we say that the A-parity of s is odd and the A-parity
of t is even. It turns out that this is sufficient to show that recoloring from s to t with one
extra color is not possible (see the full version of the article for the proof of this lemma):

I Lemma 19. Let G be a toroidal grid, and let s and t be two 3-colorings. If s and t have
different A-parities, then it is not possible to recolor G from s to t with 1 extra color.

Hence the A-parity of a coloring partitions the space of colorings in two components that
are not connected by 3 + 1 recoloring operations. To complete the proof of Theorem 17,
it now suffices to construct a pair of 3-colorings with different A-parities for each relevant
combination of h and w. We give the details in the full version.

8 Simple corollaries

I Lemma 20. Assume that we are given a graph G and input and target colorings with k ≥ 3
colors. Assume that in O(f(n)) rounds we can find an independent set I of G such that V \ I
induces a forest of trees of depth at most O(d(n)). Then in O(f(n) + d(n)) rounds we can
solve k + 1 recoloring, with a schedule of length O(d(n)).

Proof. Each node in I switches to color k + 1. We then use the algorithm described in the
proof of Lemma 10 to find a recoloring with schedule of length O(d(n)) for each connected
component after the removal of I. After that, each node of I can switch to its final color. J

I Lemma 21. In cycles and paths, 3+1 recoloring is possible in O(1) rounds, with a schedule
of length O(1).

Proof. Use the input coloring to find a maximal independent set I. Nodes of V \ I induce
paths of length O(1), apply Lemma 20. J

I Lemma 22. In subcubic graphs, 4 + 1 recoloring is possible in O(1) rounds, with a schedule
of length O(1).

Proof. Use the input coloring to find a maximal independent set I in constant time. Nodes
of I switch to color 5. Delete I; we are left with a graph G′ that consists of paths and isolated
nodes. Apply Lemmas 3 and 21 to solve 4 + 0 recoloring in each connected component of G′.
Finally nodes of I can switch to their target colors. J

DISC 2018

12:14 Distributed Recoloring

Table 1 Results: distributed recoloring in cycles (C) and paths (P).

graph input extra schedule communication reference
family colors colors length rounds

C/P 2 0 ∞ see full version
C/P 2 1 O(1) 0 Lemma 2

C 3 0 ∞ see full version
P 3 0 Θ(n) Θ(n) see full version
C/P 3 1 O(1) O(1) Lemma 21
C/P 3 2 O(1) 0 Lemma 2

C/P 4 0 O(1) O(1) Lemmas 21 and 3
C/P 4 3 O(1) 0 Lemma 2

Table 2 Results: distributed recoloring in 3-regular trees.

input extra schedule communication reference
colors colors length rounds

2 0 ∞ see full version
2 1 O(1) 0 Lemma 2

3 0 Θ(n) Θ(n) see full version
3 1 O(1) O(log n) Theorem 4
3 2 O(1) 0 Lemma 2

4 0 Θ(log n) Θ(log n) Theorem 5 and see full version
4 1 O(1) O(1) Lemma 22
4 3 O(1) 0 Lemma 2

5 0 O(1) O(1) Lemmas 22 and 3

Table 3 Results: distributed recoloring in trees.

input extra schedule communication reference
colors colors length rounds

2 0 ∞ see full version
2 1 O(1) 0 Lemma 2

3 0 Θ(n) Θ(n) see full version
3 1 O(1) O(log n) Theorem 4
3 2 O(1) 0 Lemma 2

4 0 Θ(log n) Θ(log n) Theorem 5 and see full version
4 1 O(1) O(log n) Theorem 4
4 3 O(1) 0 Lemma 2

M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto 12:15

Table 4 Results: distributed recoloring in toroidal grids. The distributed complexity of 4 + 1
recoloring is left as an open question. However, by prior work it is known that 4 + 1 recoloring is
always possible: grids are 4-regular graphs, therefore they are 4-recolorable with Kempe operations,
and hence also with 1 extra color.

input extra schedule communication reference
colors colors length rounds

2 0 ∞ see full version
2 1 O(1) 0 Lemma 2

3 0 ∞ see full version
3 1 ∞ Theorem 17
3 2 O(1) 0 Lemma 2

4 0 ∞ see full version
4 1 ? ?
4 2 O(1) O(1) see full version
4 3 O(1) 0 Lemma 2

5 0 ∞ see full version
5 1 O(1) O(1) see full version
5 4 O(1) 0 Lemma 2

6 0 O(1) O(1) Lemma 3 and see full version

Table 5 Results: distributed recoloring in subcubic graphs.

input extra schedule communication reference
colors colors length rounds

2 0 ∞ see full version
2 1 O(1) 0 Lemma 2

3 0 ∞ see full version
3 1 O(log n) O(log2 n) Theorem 13
3 2 O(1) 0 Lemma 2

4 0 ∞ see full version
4 1 O(1) O(1) Lemma 22
4 3 O(1) 0 Lemma 2

5 0 O(1) O(1) Lemma 3

DISC 2018

12:16 Distributed Recoloring

References
1 Pierre Aboulker, Marthe Bonamy, Nicolas Bousquet, and Louis Esperet. Distributed color-

ing in sparse graphs with fewer colours. arXiv preprint arXiv:1802.05582, 2018.
2 Leonid Barenboim. Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static, dy-

namic and faulty networks. In Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing (PODC), pages 345–354, 2015.

3 Leonid Barenboim and Michael Elkin. Distributed graph coloring: Fundamentals and recent
developments. Synthesis Lectures on Distributed Computing Theory, 4(1):1–171, 2013.

4 Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions.
European Journal of Combinatorics, 69:200–213, 2018.

5 Marthe Bonamy, Nicolas Bousquet, Carl Feghali, and Matthew Johnson. On a conjecture of
Mohar concerning Kempe equivalence of regular graphs. arXiv preprint arXiv:1510.06964,
2015.

6 Paul Bonsma and Luis Cereceda. Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science, 410(50):5215–
5226, 2009.

7 Paul Bonsma, Amer E Mouawad, Naomi Nishimura, and Venkatesh Raman. The com-
plexity of bounded length graph recoloring and CSP reconfiguration. In International
Symposium on Parameterized and Exact Computation, pages 110–121. Springer, 2014.

8 Nicolas Bousquet and Guillem Perarnau. Fast recoloring of sparse graphs. European Journal
of Combinatorics, 52:1–11, 2016.

9 Sebastian Brandt, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Patric RJ Öster-
gård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański. LCL
problems on grids. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, pages 101–110. ACM, 2017.

10 Luis Cereceda, Jan Van den Heuvel, and Matthew Johnson. Mixing 3-colourings in bipartite
graphs. European Journal of Combinatorics, 30(7):1593–1606, 2009.

11 Luis Cereceda, Jan Van Den Heuvel, and Matthew Johnson. Finding paths between 3-
colorings. Journal of graph theory, 67(1):69–82, 2011.

12 Yi-Jung Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between ran-
domized and deterministic complexity in the LOCAL model. In Foundations of Computer
Science (FOCS), pages 615–624, 2016.

13 Yi-Jung Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆ + 1)-coloring
algorithm? In Proceedings of the 50th ACM Symposium on Theory of Computing (STOC),
2018.

14 Carl Feghali, Matthew Johnson, and Daniël Paulusma. A reconfigurations analogue of
Brooks’ theorem and its consequences. Journal of Graph Theory, 83(4):340–358, 2016.

15 Carl Feghali, Matthew Johnson, and Daniël Paulusma. Kempe equivalence of colourings
of cubic graphs. European Journal of Combinatorics, 59:1–10, 2017.

16 Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a
low-degree graph. Random Structures & Algorithms, 7(2):157–165, 1995.

17 Alfred B Kempe. On the geographical problem of the four colours. American Journal of
Mathematics, 2(3):193–200, 1879.

18 Michel Las Vergnas and Henri Meyniel. Kempe classes and the Hadwiger conjecture.
Journal of Combinatorial Theory, Series B, 31(1):95–104, 1981.

19 Daniel C McDonald. Connectedness and Hamiltonicity of graphs on vertex colorings. arXiv
preprint arXiv:1507.05344, 2015.

20 Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals. Advances
in Computing Research, 5:47–72, 1989.

M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto 12:17

21 Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

22 Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for coloring
and network decomposition problems. In Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pages 581–592. ACM, 1992.

23 Alessandro Panconesi and Aravind Srinivasan. The local nature of ∆-coloring and its
algorithmic applications. Combinatorica, 15(2):255–280, 1995.

24 Jan van den Heuvel. The complexity of change. Surveys in Combinatorics, 409(2013):127–
160, 2013.

DISC 2018

A Tight Lower Bound for Semi-Synchronous
Collaborative Grid Exploration
Sebastian Brandt
ETH Zürich, Switzerland
brants@ethz.ch

Jara Uitto1

ETH Zürich, Switzerland
juitto@ethz.ch

Roger Wattenhofer
ETH Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
Recently, there has been a growing interest in grid exploration by agents with limited capabilities.
We show that the grid cannot be explored by three semi-synchronous finite automata, answering
an open question by Emek et al. [TCS’15] in the negative.

In the setting we consider, time is divided into discrete steps, where in each step, an adver-
sarially selected subset of the agents executes one look-compute-move cycle. The agents operate
according to a shared finite automaton, where every agent is allowed to have a distinct initial
state. The only means of communication is to sense the states of the agents sharing the same
grid cell. The agents are equipped with a global compass and whenever an agent moves, the
destination cell of the movement is chosen by the agent’s automaton from the set of neighboring
grid cells. In contrast to the four agent protocol by Emek et al., we show that three agents do
not suffice for grid exploration.

2012 ACM Subject Classification Computing methodologies → Mobile agents

Keywords and phrases Finite automata, Graph exploration, Mobile robots

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.13

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/1705.
03834.

1 Introduction

Consider the problem of exploring an infinite grid with a set of mobile robots, ants, or agents.
In practical applications, it is often desirable to make use of inexpensive and simple devices and
therefore, a finite automaton is an attractive choice for modeling these agents. Furthermore,
neither reliable communication nor synchronous time is always available and thus, distributed
and non-synchronous solutions are needed. Also exploration models inspired by biology
require these features; for example models for ant foraging assume limited capabilities and
distributed searching. In both settings mentioned above, it is often reasonable to assume
simple means of communication of nearby agents.

1 Partially supported by ERC Grant No. 336495 (ACDC).

© Sebastian Brandt, Jara Uitto, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brants@ethz.ch
mailto:juitto@ethz.ch
mailto:wattenhofer@ethz.ch
https://doi.org/10.4230/LIPIcs.DISC.2018.13
https://arxiv.org/abs/1705.03834
https://arxiv.org/abs/1705.03834
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

Semi-Synchrony

Recently, there has been a growing interest in studying constant memory agents performing
exploration on an infinite grid. An infinite grid is a natural discrete version of a plane which
disallows the bounded memory agents to make any use of the boundaries of the grid. Emek
et al. [17] introduced a model where the agents are able to communicate by sensing each
other’s states and showed a tight upper bound for the time needed for k agents to find a
treasure2 at distance D. As the first step into the model, let us introduce the way that the
semi-synchrony is defined. The time is divided into discrete time steps, and in each time
step, an adversarially chosen subset of the agents performs a look-compute-move cycle in
parallel. In each cycle, the chosen agents first sense the states of all the other agents in the
same cell and then, determined by their transition function, either stay still or move to an
adjacent grid cell. We point out that in every step, every agent performs the “look” action
before any agent executes their “compute” step, i.e., agents sharing a cell and activated in
the same time step see each other’s states before any of them executes a state transition.
This definition allows an arbitrary discrepancy in the number of steps the agents perform
but ensures that, whenever two agents meet, at least one of them will be able to sense the
presence of the other agent.

All input parameters, such as D and k are unknown to the agents and they are all initially
located in the origin of the grid. Motivated by the fact that ants are able to perform very
precise path integration, it is assumed that the agents are endowed with a global compass.

Previous Results

Following up on the above model, Emek et al. [16] studied the minimum number of agents
needed to explore the infinite grid, where exploring refers to reaching any fixed cell within
(expected) finite time. They showed that three randomized and four deterministic semi-
synchronous agents are enough for the exploration task. We want to point out that the
asynchronous environment in their paper is referred to as semi-synchronous in older litera-
ture [25, 26]. The paper left two open questions:

Can two agents controlled by a randomized FA solve the synchronous or asynchronous
version of the ANTS 3 problem?
Is there an effective FA-protocol for async-ANTS for three agents when no random
bits are available?

Very recently, Cohen et al. solved the first question by showing that two randomized agents
do not suffice [11]. The main result of this paper is a negative answer to the second question:

I Theorem 1. Three semi-synchronous agents controlled by a finite automaton are not
sufficient to explore the infinite grid.

Our result is obtained by solving two technical challenges. First, we carefully design
an adversarial schedule for the agents that, under the assumption that the agents actually
explore the entire grid, forces them to obey a movement pattern with the following property:
There is a fixed width w and fixed slope s auch that at any point in time, all agents are

2 In the deterministic case, exploring the grid and finding a treasure are equivalent. In the randomized
case, considering a treasure is more convenient as the exploration is equivalent to hitting every cell in
expected finite time.

3 The ANTS problem in their context is the same as our grid exploration problem.

S. Brandt, J. Uitto, and R. Wattenhofer 13:3

contained in a band of width w and slope s. Second, we formally show that the agents
cannot encode a super-constant amount of information in their relative positions. In other
words, while the relative distance can be unbounded and represent an unbounded amount of
information, we can bound the amount of information the agents can infer from their relative
positions. Due to space constraints, most of our proofs are deferred to the full version of the
paper [8].

2 Related Work

Graph exploration is a widely studied problem in the computer science literature. In the
typical setting one or more agents are placed on some node of a graph and the goal is to visit
every node and/or edge of the graph by moving along the edges. There is a wide selection
of variants of graph exploration and one of the standard ways to classify these variants
is to divide them into directed and undirected variants [12, 1]. In the directed model, the
edges of the graph only allow traversing into one direction, whereas in the undirected model,
traversing both ways is allowed. Our work assumes the undirected graph exploration model.

Other typical parameters of the problem are the conditions of a successful exploration and
symmetry breaking mechanisms. Some related works demand that the agents are required to
halt after a successful exploration [13] or that the agents must return to their starting point
after the exploration [3]. From the perspective of symmetry breaking, one characterization
is to break the problem into the case of equipping nodes with unique identifiers [23, 15]
and into the case where nodes are anonymous [9, 24, 5]. Since the memory of our agents
is restricted to a constant amount of bits with respect to the size of the graph, the unique
identifiers are not helpful.

The agents typically operate in look-compute-move cycles, where they first gather the
local information, then perform local computations, and finally, decide to which node they
move. This execution model can be divided into synchronous [26], semi-synchronous [25, 26]
and asynchronous variants [27, 19], referred to as FSYNC, SSYNC, and ASYNC. In the
FSYNC model, all agents execute their cycles simultaneously in discrete rounds. In the
SSYNC model only a subset (not necessarily proper) of the agents is activated in every
round and in the ASYNC model, the cycles are not assumed to be atomic. To avoid
confusion, we refer to the non-synchronous rounds as time steps. In this paper, we consider
the semi-synchronous model. Note that since the ASYNC model is weaker than the SSYNC
model, we directly obtain our lower bound result for the ASYNC model as well.

The standard efficiency measure of a graph exploration algorithm executed in the FSYNC
model is the number of synchronous rounds it takes until the graph is explored [23]. In
the non-synchronous models, this measure is typically generalized to the maximum delay
between activation times of any agent [10]. A widely-studied classic is the cow-path problem,
where the goal of the cow is to find food or a treasure on a line as fast as possible. There is
an algorithm with a constant competitive ratio for the case of a line and in the case of a grid,
a simple spiral search is optimal and the problem has been generalized to the case of many
cows [4, 22]. Some more recent work studied the time complexity of n distributed agents
searching for a treasure in distance D on a grid and a Θ(D/n2 +D) bound was shown in
the case of Turing machines without communication and in the case of communicating finite
automata [18, 17].

Our work does not focus on the time complexity of the problem, but rather on the
computability, i.e, what is the minimum number of agents that are required to find the
treasure. The canonical algorithm in the case of little memory is the random walk, where the

DISC 2018

13:4 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

classic result states that a random walk explores an n-node graph in polynomial time [2]. In
the case of infinite grids, it was shown in a recent paper that, even with a globally consistent
orientation, two randomized agents cannot locate the treasure in finite expected time [11].
By combining this result with previous work [6, 16], it follows that this lower bound is tight.
In the deterministic case, our lower bound of three deterministic semi-synchronous agents
closes the remaining gap in the results of [16].

Another typical measure for efficiency is the number of bits of memory needed per
agent [20, 13]. For example, it was shown by Fraigniaud et al., that Θ(D log ∆) bits are
needed for a single agent to locate the treasure, where D and ∆ denote the diameter and
the maximum degree of the graph, respectively. The memory of our agents is bounded by a
universal constant, independent of any graph parameters.

Work that falls close to our work is the study of graph exploration in labyrinths, i.e.,
graphs that can be seen as 2-dimensional grids, where some subset of the nodes cannot be
entered by the agents. The classic results state that all co-finite (finite amount of cells not
blocked) labyrinths can be explored by two finite automata and an automaton with two
pebbles [7], and that finite labyrinths (finite amount of cells are blocked) can be explored
using one agent with four pebbles [6], where a pebble is a movable marker. Furthermore,
it is known since long that there are finite and co-finite labyrinths where one pebble is not
enough [21] and that no finite set of finite automata can explore all planar graphs [24]. More
recently, it was shown that Θ(log logn) pebbles for an agent with Θ(log logn) memory is
the right answer for general graphs [14]. Notice that since we do not assume synchronous
communication between agents and a pebble can always be simulated by a finite automaton,
our result also yields the same bound for the pebble model.

3 Preliminaries

3.1 The Model
The model we use is the same as in [16]. We consider a group of n agents whose task is to
explore every cell of the infinite 2-dimensional grid where a cell is considered as explored
when it has been visited by at least one of the agents. We identify each cell of the grid with
a pair of integers, i.e., the grid can be considered as Z2, with two cells being neighbors if and
only if they differ in one coordinate by exactly 0 and in the other coordinate by exactly 1.

In the beginning, all agents are placed in the same cell, called the origin. W.l.o.g., we
will assume that the origin has the coordinates (0, 0). For the agents, all cells, including the
origin, are indistinguishable; in particular, they do not have access to the coordinates of the
cells.

Each agent is endowed with a compass, i.e., each agent is able to distinguish between
the four (globally consistent) cardinal directions in any cell and all agents have the same
notion of those directions. The behavior of each agent is governed by a deterministic finite
automaton. While we allow the agents to use different finite automata, we will assume that
the agents use the same finite automaton but have different initial states. Since in all cases
we consider, n is a constant, the two formulations are equivalent.

The only way in which communication takes place is the following: Each agent senses for
any state q of the finite automaton whether there is at least one other agent in the same cell
in state q. In each step of the execution, an agent moves to an adjacent cell or stays in the
current cell, solely based on its current state in the finite automaton and the subset of states
q for which another agent in state q is present in the current cell.

S. Brandt, J. Uitto, and R. Wattenhofer 13:5

Given the above, we are set to describe our finite automaton more formally. Let Q
denote the set of states, with each agent having its own initial state in Q. The set of input
symbols is 2Q, the set of all subsets of Q, reflecting the fact that for each state from Q an
agent in this state might be present or not in the considered cell. The transition function
δ : Q× 2Q → Q× {0, 1, 2, 3, 4} provides an agent in state q ∈ Q (sensing a subset Q′ ⊆ Q

of states present in the same cell) with a new state q′ ∈ Q and a movement, where 1, 2, 3, 4
stand for the four cardinal directions while 0 indicates that the agent stays in the current
cell.

The SSYNC [25, 26] environment in which the agents perform their exploration is
semi-synchronous. More specifically, we assume that the order of the steps of the agents
is determined by an adversarial scheduler that knows the finite automaton governing the
agents’ behavior. Each step of an agent is a complete look-compute-move cycle, where first
an agent senses for which states agents are present in the current cell, then it applies the
transition function with the sensed states and its own current state as input, and finally it
moves as indicated by the result. Cycles of different agents may occur at the same time, in
which case each of the agents completes the sensing before any of the agents starts to move.
Cycles that do not occur at the same time have no overlap, i.e., the movement performed
in an earlier cycle is completed before the sensing in a later cycle starts. Hence, we may
consider the order of the individual components of the execution as given by a mapping of
the agents’ steps to points in time.

We call such a mapping a schedule. Since the look-compute-move cycles of the agents
are atomic in nature, we can assume w.l.o.g. that the static configurations of the agents on
the grid (including the information about the states they are currently in) occur at integer
points in time t = 0, 1, . . . , and that the steps of the agents determining the transition from
one configuration to a new one take place between these points in time. If an agent’s action
is scheduled between time t and t+ 1, we say, for the sake of simplicity, that the action takes
place at time t. In order to prevent the adversary from delaying a single agent indefinitely,
we adopt the common requirement that each agent is scheduled infinitely often. For our
lower bound we will only use adversarial schedules where no two agents are scheduled at the
same time.

3.2 Definitions and Notation
For the notion of distance between two cells we will use the Manhattan distance. Let
c = (x, y), c′ = (x′, y′) be two cells of the infinite grid. Then, the distance between c and c′
is defined as Dist(c, c′) = |x− x′|+ |y − y′|. Moreover, we call the first coordinate of a cell
the x-coordinate and the second coordinate the y-coordinate. We denote the cell an agent
a occupies at time t by ct(a) = (xt(a), yt(a)). Similarly, we denote the state of the finite
automaton in which agent a is at time t by qt(a). If a = ai for some 1 ≤ i ≤ 3, then we also
write ci

t, x
i
t, y

i
t, q

i
t instead of ct(ai), xt(ai), yt(ai), qt(ai), respectively. Moreover, we denote the

number of states of the finite automaton governing the behavior of the three agents by N .
In our lower bound proof, we show for each finite automaton that three agents governed

by this automaton are not sufficient to explore the grid (or, more precisely, that there is an
adversarial schedule for this automaton under which the agents do not explore every cell
of the grid). In this context, we consider the number N as a constant, which also implies
that the result of applying any fixed polynomial function to N is a constant as well. For the
proof of our lower bound we require another intuitive definition. Let ` be an infinite line in
the Euclidean plane and d some positive real number. Let B be the set of all points in the
plane with integer coordinates and Euclidean distance at most d to `. Let B′ be the set of
all grid cells that have the same coordinates as some point in B. Then we call B′ a band.

DISC 2018

13:6 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

3.3 A Single Agent
Consider a single agent a moving on the grid. Since the number of states of its finite
automaton is finite, a must repeat a state at some point, i.e., there must be points in time
t, t′ such that qt(a) = qt′(a) and qt′′(a) 6= qt(a) for all t < t′′ < t′. As shown in [16], agent a
will then, starting at time t′, repeat the exact behavior it showed starting at time t regarding
both movement on the grid and updating of its state. We call the 2-dimensional vector
ct′(a) − ct(a) = (xt′(a) − xt(a), yt′(a) − yt(a)) the travel vector of agent a (from time t to
time t′). Moreover, we call the time difference t′ − t the travel period.

Note that travel vector and travel period do not depend on the choice of t and t′ (provided
t and t′ satisfy the properties mentioned above). In the case of multiple agents, we use
the same definitions for any time segment where only a single agent is scheduled and does
not encounter another agent. In particular, we can only speak of a travel vector and a
travel period when there are two points in time (in the considered time segment) where the
scheduled agent repeats a state and at both times as well as in the time between, the agent
is alone in its cell.

4 Techniques

In order to show our main result, we use a (large) proof by contradiction. In the following we
give a (very informal and possibly slightly inaccurate) high-level overview of how it proceeds.
Our assumption, that holds throughout the remainder of the paper, is that three agents
actually suffice to explore the grid. From this assumption, we derive a contradiction as
follows:

First, we fix an adversarial schedule for the three agents that has certain advantageous
properties. (We will show that it is already possible to derive a contradiction for this specific
schedule.) Then, using the finiteness of the number of configurations of agents in any bounded
area, we show that for each distance D there is a point in time such that from this time
onwards, there are always at least two agents that have distance at least D. However, since
we can prove that any two agents must meet infinitely often, there must be infinitely many
travels between the two far-away agents (which are not always the same agents). We show
that the vector along which such a travel takes place must have a fixed slope that is the
same for all such travel vectors (from a sufficiently large point in time on). Otherwise, there
would exist two subsequent travels forth and back of different slope, which would imply that
the traveling agent on its way back would miss the agent it is supposed to meet (which is the
agent from whose position the first of the two travels started, roughly speaking). This also
holds if the traveling agent explores some area to the left and right of its travel direction
(during its travel), since the distance D between the two endpoints can be made arbitrarily
large.

The crucial part of the proof is to show that the state of the traveling agent at the end
of its travel does not depend on the exact vector between the start and the endpoint of its
travel, but only on this vector “modulo” some other vector v that is obtained by combining
all of the finitely many possible traveling vectors of the aforementioned fixed slope. Proving
this statement enables us to show that, at the start of a travel, the information 1) about the
states and relative locations “modulo v” of the agents, and 2) about which agent is scheduled
next and which is the traveling agent, are sufficient to determine the same information at
the start of the next travel. Since there are only finitely many of these information tuples
(exactly because they contain only the modulo version of the relative locations), at some
point a tuple has to occur again. Hence, in a sense, the whole configuration consisting of

S. Brandt, J. Uitto, and R. Wattenhofer 13:7

the three agents repeats its previous movement from this point on, at least if one ignores
any movement in the direction of the fixed slope. Thus, in each repetition between two
occurrences of the information tuple, the whole configuration moves by some fixed (and
always the same) vector, which implies that the agents explore “at most half” of the grid.

5 The Schedule

From this section on, we assume that three semi-synchronous agents whose behavior is
governed by a finite automaton suffice to explore the grid. Let a1, a2 and a3 be these agents.
We start our proof by contradiction by specifying a schedule that we assume to be the
adversarial schedule for the remainder of this paper:

We first schedule agent a1 for some number of time steps, then agent a2, then a3, and
then we iterate, again starting with a1. The number of steps an agent is scheduled can vary.
In other words, we can describe our schedule as a sequence

S =
(
S1

1 ,S2
1 ,S3

1 ,S1
2 ,S2

2 ,S3
2 ,S1

3 , . . .
)

of subschedules where in each subschedule Si
j only agent ai is scheduled. The number of

time steps in a subschedule Si
j is determined as follows:

1. If there is a (finite) number u > 0 of time steps after which agent ai is in a cell occupied
by another agent, then the subschedule Si

j ends after umin time steps where umin denotes
the smallest such u.

2. If Case 1 does not apply, but there is a (finite) number u > 0 of time steps after which ai

is in the same state in the same cell as it was at some earlier point in time during Si
j ,

then do the following:
Fix a total order on the state space of ai’s finite automaton. (This total order can be
chosen arbitrarily, but in each application of Case 2 for agent ai the same order has to be
used.) Let q be the smallest state according to this order which ai assumes at least twice
in the same cell (if we scheduled ai indefinitely). Then Si

j ends after the smallest positive
number of steps after which ai is in state q and in a cell where ai would assume q at
least twice. Note that the property that ai would assume q twice implies that it would
repeat the exact behavior between the first and the second assumption of q infinitely
often afterwards, thus iterating through the exact same movement on and on.

3. If none of the two above cases occurs, i.e., ai would move on indefinitely without meeting
any other agent or being in the same state in the same cell as before, then we schedule as
follows: Let (x, y) be the travel vector of ai’s movement, and k the travel period. Then
the subschedule Si

j ends at the first time t (strictly after the start of Si
j) for which the

following property is satisfied:
For each cell (xr

t , y
r
t) occupied by an agent ar, r 6= i, we have that 1) xi

t− xr
t > k if x > 0,

and xi
t − xr

t < −k if x < 0, and 2) yi
t − yr

t > k if y > 0, and yi
t − yr

t < −k if y < 0. The
definition of the travel vector ensures that there is such a (finite) point in time t. Note
that Case 3 can only occur if x 6= 0 or y 6= 04. Moreover, if this case actually occurs,
then the complete subsequent schedule is adapted according to the following special rule
(overriding all of the above): After time t, the two agents ar, r 6= i, are scheduled for
one time step each (in arbitrary order), then agent ai is scheduled for k time steps, i.e.,
exactly one travel period, and then we iterate this new scheduling.

4 If x = y = 0, agent a stays within a constant distance from the cell where the subschedule started.
Hence, if Case 1 does not occur, every state/cell combination possible within this constant distance is
assumed implying that Case 2 must occur.

DISC 2018

13:8 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

q

(a)

q

q

q

(b)

Figure 1 In Figure 1a, Case 2 of our schedule is shown. Note that the agent already stops when
it visits the cell on the right (in state q) for the first time (unless this happens after 0 time steps).
In Figure 1b, we see Case 3 of our schedule. One agent would move arbitrarily far away if scheduled
sufficiently long. By letting this agent move away far enough and then scheduling it sufficiently
often for a long enough period of time, we make sure that it will not interact anymore with any of
the other two agents.

Observe that according to this schedule, the number of time steps a scheduled agent can
stay put in a cell during one of its subschedules is upper bounded by N . Also note that in
each of the three cases, the number of steps in the subschedule is positive (and finite). For
an illustration of Cases 2 and 3, see Figure 1. We now collect a few lemmas that highlight
certain properties of the three cases.

I Lemma 2. Case 3 cannot occur.

Proof. Recall that we assume (globally) that the three agents explore the entire infinite
grid. Assume that Case 3 occurs and let ai denote the agent that would move on indefinitely
without meeting another agent. Then, at the beginning of the first iteration according to the
special rule, the distance of agent ai to any of the other agents is more than k in at least one
(of x- and y-) direction and ai moves away from the agents according to the travel vector.
After each of the other agents makes a step, this distance is still at least k. Hence, agent
ai cannot encounter one of the other agents during its next k steps, since in total it moves
away from the other agents, according to the specification of Case 3.

The direction of the travel vector also ensures that the distance to the other agents is
again increased to more than k (in at least one direction). Thus, the same arguments hold
for the next iteration, and we obtain by induction that agent ai will never encounter another
agent after the occurrence of Case 3. It follows that, if three agents suffice to explore the
grid, then also a team of two agents and a separate single agent can explore the grid without
any communication between the team and the single agent. From [16], we know that this is
not possible since a team of two agents (hence, also a single agent) can only explore a band
of constant width. J

Following Lemma 2, we will assume in the following that Case 3 does not occur, i.e., each
agent’s subschedule ends because it encounters another agent or because it repeats a pair
state/cell. This allows us to group the possible subschedules of an agent into two categories:
We say that a subschedule Si

j is of type 1 if Si
j ends because of the condition given in Case 1,

and of type 2 if Si
j ends because of the condition given in Case 2.

I Lemma 3. Any subschedule of type 2 consists of at most N time steps.

Proof. Assume for a contradiction that there is a subschedule Si
j of type 2 that consists of

at least N + 1 time steps and starts at some time t. Then, by the pigeonhole principle, there
must be two points in time t < t′ < t′′ ≤ t+N + 1 such that qi

t′ = qi
t′′ . Moreover, it must

also hold that ci
t′ = ci

t′′ since otherwise ai would move according to some non-zero travel
vector (from time t′ onwards) which would imply that Si

j is not of type 2.

S. Brandt, J. Uitto, and R. Wattenhofer 13:9

This implies that if ai’s subschedule would also continue at and after time t+N + 1 on
an empty grid, then ai would cycle through the same movement on and on, starting from
time t′. Hence, if there is a cell c that is visited by ai in some state q in the (continued)
movement after time t′′, then there must also be a point in time before t′′ (during Si

j) at
which ai visits c in state q. It follows from the definition of our schedule that Si

j ends before
time t′′, yielding a contradiction to our assumption. J

I Lemma 4. Any subschedule Si
j of type 1, where agent ai ends in the same cell from which

it started, consists of at most N(2N + 1) time steps. More generally, any subschedule Si
j

of type 1, where ai ends in a cell of distance at most D from the cell from which it started,
consists of at most N(2N + 1 +D) time steps.

Proof. We start by proving the special case where ai ends in the same cell from which it
started. Suppose for a contradiction that there is a subschedule Si

j as described in the lemma
that consists of more than N(2N + 1) time steps. Let t and u denote the points in time
when Si

j starts and ends, respectively. Since ai does not encounter any other agent between
time t and time u, it behaves like a single agent on an empty grid between t and u. In
particular, there is a travel vector (x, y) of agent ai from time t + 1 to time u − 1 since
N(2N + 1)− 1 > N .

For reasons of symmetry, we can assume w.l.o.g. that x > 0 and y ≥ 0. Note that
x = 0 = y is not possible since in that case ai would cycle through the same (cyclic)
movement over and over without meeting any other agent, which would imply that Si

j is not
of type 1. Let p be the travel period which, according to its definition, is at most N . Let q
be the state whose second occurrence during Si

j (excluding the occurrence of the state at the
beginning of Si

j) comes earliest. Let t′ be the time when q occurs for the first time. Since
t′ ≤ t+N , we know that xi

t′ ≥ xi
t −N .

Now, as in each travel period ai increases the x-coordinate of the cell it occupies by at
least 1, it follows that at time t′ + 2N · p the x-coordinate of the cell ai occupies is at least
xi

t +N . Furthermore, since in each further travel period agent ai would advance by at least
one cell in (positive) x-direction in total and p ≤ N , after time t′ + 2N · p agent ai will never
have an x-coordinate of less than xi

t + 1, i.e., it will never reach ci
t then. But ai also cannot

have visited ci
t(= ci

u) between time t+ 1 and t′ + 2N · p since t′ + 2N · p ≤ t+N(2N + 1)
and we assumed that Si

j consists of more than N(2N + 1) time steps. Thus, we obtain a
contradiction, which proves the first lemma statement.

For the more general second statement, by an analogous proof we obtain that after time
t′ + 2N · p+D · p agent ai will never have an x-coordinate of less than xi

t + 1 +D, i.e., it
will never reach ci

u then. But, since t′ + 2N · p+D · p ≤ t+N(2N + 1 +D), ai also cannot
have visited ci

u between time t + 1 and t′ + 2N · p + D · p, under the assumption that Si
j

consists of more than N(2N + 1 +D) time steps. Hence, this assumption must be false, and
the lemma statement follows. J

6 Traveling and Meeting

Having defined and studied the schedule, we now proceed with our lower bound proof as
described in Section 4. The next lemma shows that for each distance there is a point in time
after which the farthest two agents are never closer than this distance.

I Lemma 5. For each distance D there is a time T such that at any time t ≥ T the largest
pairwise distance of the three agents is at least D.

DISC 2018

13:10 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

Figure 2 An example showing a possible movement (red) of an agent whose travel vector is given
by the black arrows. The agent performs the total movement given by the travel vector in at most
N time steps, or more precisely, during one travel period.

Proof. Suppose that the lemma statement is not true. Then there is an infinite sequence T
of points in time such that at each of these points in time the largest pairwise distance of the
three agents is less than D. Since the distances of the agents are less than D at all points in
time from T and the number of states the three agents can be in is finite, it follows that
there must be points in time t, t′ ∈ T such that 1) each agent is in the same state at t and t′,
2) xi

t − x
j
t = xi

t′ − x
j
t′ and yi

t − y
j
t = yi

t′ − y
j
t′ for all i, j ∈ {1, 2, 3}, i 6= j, and 3) the same

agent is scheduled to move next. Since the agents are oblivious of the absolute coordinates
of the grid, this implies that from time t′ on, the agents will repeat the exact behavior they
showed starting at time t. (Note that we use here that the schedule following a configuration
is uniquely determined by the above information.) Hence, at time t′ + (t′ − t) the agents will
again be in the exact same configuration and so on.

Define (x, y) = (xi
t′ − xi

t, y
i
t′ − yi

t), where i = 1 (which implies that this equation also
holds for i = 2, 3). Vector (x, y) describes the total movement of each of the agents during
each of the (repeating) time periods of length t′ − t. It follows that each cell that has not
been explored by time t must be at distance at most t′ − t from some cell that is obtained by
adding a multiple of the vector (x, y) to one cell from {c1

t , c
2
t , c

3
t}; otherwise it will never be

explored. Since each such cell at distance at most t′ − t (which is constant) must lie in a
band of constant width and “direction” (x, y) that contains c1

t , c2
t or c3

t , there are infinitely
many cells that must have been explored before time t. This yields a contradiction. J

For any distance D, we denote by TD the smallest time T for which it holds that at any
time t ≥ T the largest pairwise distance of the three agents is at least D. In the following we
collect a number of useful definitions regarding the meetings of different agents. In particular,
we distinguish between three different types of agents at times when one agent is traveling
from another agent to the far-away agent whose existence is certified by Lemma 5. For an
illustration of how a large distance between agents influences choices of travel vectors, see
Figure 2.

I Definition 6. For any t ≥ 0, we define the meeting set Mt as the set of agents that are
not alone in the cell they occupy, at time t. We call the infinite sequence (M0,M1, . . .) the
meeting sequence. If for a subsequence (Mt,Mt+1, . . . ,Mt+i) of the meeting sequence it holds
that i > 0, Mt 6= ∅ 6= Mt+i and Mt+j = ∅ for all 0 < j < i, then we call the pair (t, t + i)
a meeting pair. Now, let (t, u) be a meeting pair such that |Mt| = 2 = |Mu| and Mt 6= Mu.
Then we call (t, u) a travel meeting pair. Moreover, we call the (uniquely defined) agent a
contained in Mt ∩Mu a traveling agent (for (t, u)), the agent contained in Mt \ {a} a source
agent and the agent contained in Mu \ {a} a destination agent.

In order to continue according to our high-level proof idea from Section 4, we need a few
helping lemmas that highlight properties of the previous definitions. We start with a lemma
that shows an important property of the meeting sequence:

S. Brandt, J. Uitto, and R. Wattenhofer 13:11

I Lemma 7. Each of the three agents is contained in infinitely many of the Mt from the
meeting sequence.

Proof. Suppose that there is an agent ai that is not contained in infinitely many of the Mt,
i.e., there is a point in time u such that ai /∈ Mt for all t ≥ u. Then, starting from time
u, the exploration by the two agents ar, r 6= i is entirely independent of the exploration
by agent ai since they never meet again. Thus, we get a contradiction analogously to the
argumentation in the proof of Lemma 2. J

Next, we study travel meeting pairs more closely. In Lemma 8, we present bounds on the
number of subschedules of the different types of agents in the time frame given by a travel
meeting pair, and examine the types of the subschedules. Afterwards, in Lemma 9, we bound
the number of time steps between two subsequent travel meeting pairs from above. In both
cases, the results only hold from a large enough point in time onwards, but this is sufficient
for our purposes since before that point in time only a constant number of cells were explored.
Note that, in general, we do not attempt to minimize the dependence on N in our bounds as
showing the finiteness of certain parameters is, again, sufficient for our purposes. Instead we
prefer to choose the simplest arguments that lead to the desired finiteness results, even if
they augment the actual bound by a few factors of N .

I Lemma 8. There is a point in time T such that, for each travel meeting pair (t, u) with
t ≥ T , the following properties hold:
1. The traveling agent for (t, u) is scheduled exactly once (for a number of time steps)

between time t and time u.
2. The subschedule of the traveling agent is of type 1 and ends exactly at time u.
3. The source and the destination agent for (t, u) are scheduled at most once (for a number

of time steps).
4. If the source or the destination agent is scheduled, then its subschedule is of type 2.

Proof. Recall the definition of TD for any distance D. Let T ≥ T2N+1, and consider an
arbitrary travel meeting pair (t, u) with t ≥ T and traveling agent ai. Observe that if the
source agent is scheduled between time t and time u, then its subschedules must be of type
2, because the source agent is not contained in the meeting set Mu. Hence, if ai is not
scheduled at all between time t and time u, then the source agent must be scheduled at most
once (because of the specification of our schedule) which implies that its distance from ci

t at
time u is at most N , by Lemma 3. But since in this case ai and the destination agent meet
at ci

t at time u, we obtain a contradiction to the fact that T ≥ T2N+1. Thus, we know that
ai is scheduled at least once between time t and time u.

Now, assume for a contradiction that the first subschedule of ai between time t and time
u is of type 2. This implies that if one would schedule ai on and on, it would repeat a state
in the same (empty) cell after at most N + 1 time steps and then cycle through (a part of)
the same movement it performed before. Hence, even if there are more subschedules for ai

than one (between time t and time u), it will never reach a cell that has a distance of more
than N from ci

t. Since analogous statements hold for the source agent, we know that at time
u the distance between the source agent and the cell where ai and the destination agent
meet is at most 2N which again contradicts our specification of T . Thus, we know that the
first subschedule of ai is of type 1.

It follows that ai’s subschedule ends exactly at time u since the subschedule must end
with ai meeting the destination agent, which also implies that ai is scheduled exactly once
between time t and time u. Moreover, the subschedules of the source and the destination

DISC 2018

13:12 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

agent (if they are scheduled at all between time t and time u) must be of type 2 since (t, u)
is a (travel) meeting pair. Furthermore, by the nature of our schedule, the source and the
destination agent must be scheduled at most once between time t and time u. J

I Lemma 9. (Proof deferred to the full version) There is a point in time T such that the
following holds: If (t, u) and (t′, u′) are travel meeting pairs such that T ≤ t < t′ and there
exists no travel meeting pair (t′′, u′′) with t < t′′ < t′, then t′ − u ≤ 8(N + 1)5.

Using Lemma 9, we show in the following that for any travel meeting pair (t, u), the
information about the states of the agents, which two agents are in the same cell, and who is
scheduled next, all at time u, already uniquely determines a lot of information about the
agents at the starting time of the next travel meeting pair. Again, this result only holds from
a sufficiently large point in time onwards. This concludes our collection of helping lemmas.

I Lemma 10. (Proof deferred to the full version) There is a point in time T such that the
following holds: For any two subsequent travel meeting pairs (t, u), (t′, u′) with T ≤ t < t′,
the tuple (q1

u, q
2
u, q

3
u, a

next
u ,Mu) uniquely determines the tuple (q1

t′ , q
2
t′ , q

3
t′ , c

1
t′−c1

u, c
2
t′−c2

u, c
3
t′−

c3
u, a

next
t′ ,Mt′), where anext

u , resp. anext
t′ , denotes the agent scheduled at time u, resp. t′.

7 The Travel Vector and a Modulo Operation

After collecting the above helping lemmas, we are now all set to formally prove the (remaining)
statements from our proof sketch. Before going through the statements one by one, let us for
convenience define the notion of a travel: Let (t, u) be a travel meeting pair. By Lemma
8, we know that the traveling agent for (t, u) is scheduled exactly once between t and u.
We call the corresponding subschedule (or the movement during that subschedule) a travel.
Recall the definition of travel vector and travel period. Note that a travel only has a travel
vector (and period) if the traveling agent repeats a state (in empty cells) during the travel.
Furthermore, observe that if a travel has a travel vector, then at least one entry of the travel
vector is non-zero, due to the choice of our schedule. We now prove the first of the remaining
statements, namely, that after a certain point in time, any travel vector has the same slope.

I Lemma 11. There is a point in time T and a (possibly negative) ratio r such that each
travel starting at time T or later has travel vector (x, y) with y/x = r. For the sake of
simplicity, assume that r is set to ∞ if x = 0.

Proof. Let T be sufficiently large so that T ≥ TN+2 holds and Lemma 8 and Lemma 9
apply. Then we know that any travel starting at time T or later actually has a travel vector
(and period). Now, consider two travel meeting pairs (t, u) and (t′, u′) with T ≤ t < t′

such that there is no travel meeting pair (t′′, u′′) with t < t′′ < t′. Let (x, y), (x′, y′) be the
travel vectors for the travels corresponding to (t, u) and (t′, u′), respectively. Assume that
y′/x′ 6= y/x, where, again, we set the ratio to ∞ if the denominator is 0. Note that not
both of x and y (or x′ and y′) can be 0. Let c0 and c1 be the cells at which the travel with
travel vector (x, y) starts and ends, respectively, and c′0 and c′1 analogously for the travel
with travel vector (x′, y′).

By the characterization of the travel of a single agent and the fact that the travel
period is always at most N , we know that there are positive integers b and b′ such that
Dist(c1, c0 + b · (x, y)) ≤ N and Dist(c′1, c′0 + b′ · (x′, y′)) ≤ N . Moreover, by Lemma 3
and Lemma 8, the source agent for (t, u) travels at most a distance of N between time t
and u since its subschedule is of type 2 if the agent is scheduled at all. The same holds
for the destination agent for (t′, u′) between time t′ and u′. By Lemma 9, it follows that

S. Brandt, J. Uitto, and R. Wattenhofer 13:13

Dist(c0, c
′
1) ≤ 8(N + 1)5 + 2N (since the source agent for the first of the two travels is the

destination agent for the second) and Dist(c1, c
′
0) ≤ 8(N+1)5. Combining our above distance

observations, we also obtain Dist(c′1, c0 + b · (x, y) + b′ · (x′, y′)) ≤ N + 8(N + 1)5 +N , which
together with Dist(c0, c

′
1) ≤ 8(N + 1)5 + 2N implies Dist(c0, c0 + b · (x, y) + b′ · (x′, y′)) ≤

16(N + 1)5 + 4N .
Let D ≥ N be some positive integer. We now require, additionally to the above

requirements regarding T , that T ≥ TD. Also fix some arbitrary x, y, x′, y′ such that (x, y)
and (x′, y′) are possible travel vectors of a single agent. For a contradiction, assume that
x, y, x′, y′ have the properties specified at the beginning of the proof (which implies that also
all of the above conclusions hold).

At the time when the first of the two considered travels starts there are two agents at c0
and c1 while the last agent is in distance at most N from c0. Hence, the distance between
c0 and c1 is at least D −N . This implies that b · (|x|+ |y|) ≥ Dist(c1, c0) −N ≥ D − 2N .
Analogously, we obtain b′ · (|x′|+ |y′|) ≥ D− 2N . Since x, y, x′, y′ are fixed, we can therefore
make b and b′ arbitrarily large by increasing D. By increasing b and b′, we can in turn make
Dist(c0, c0 +b ·(x, y)+b′ ·(x′, y′)) arbitrarily large, since y′/x′ 6= y/x (which implies that there
is an angle between the two vectors (x, y) and (x′, y′) that is not 0◦ or 180◦). Hence, if D is
sufficiently large, then the above inequality Dist(c0, c0+b·(x, y)+b′ ·(x′, y′)) ≤ 16(N+1)5+4N
is not satisfied anymore, which shows that y′/x′ = y/x.

Note that the magnitude D has to reach for this (in our proof by contradiction) depends
on x, y, x′, y′. However, since the number of possible travel vectors of a single agent is
bounded by the number of states in its finite automaton, we can simply derive a sufficiently
large D for each of the finitely many possible combinations for x, y, x′, y′ and then choose a
T that is larger than all of the TD. J

Note that the exact value of r depends only on the finite automaton governing the
behavior of the three agents. From now on, we denote the ratio whose existence is certified
by Lemma 11 by r. W.l.o.g., we can (and will) assume that r ≥ 0 (and that r 6= ∞), for
reasons of symmetry. Recall that any travel vector has at least one non-zero entry. The next
step on our agenda is essentially to show that the state of an agent at the end of a travel
does not depend on (the full information about) the vector between start and endpoint of
that travel (and other parameters), but only on a reduced amount of information regarding
this vector (and the other parameters). More specifically, the required information about
this vector is the result of applying a certain modulo operation to the vector.

We then proceed by showing that the information about 1) the states of the agents, 2)
their relative locations after applying the modulo operation, 3) which agents shared a cell
most recently, and 4) which agent is scheduled next, at the start of a travel, is enough to
determine the exact same information at the end of the travel. Now, we benefit from the
previous reduction of information due to our modulo operation in the sense that we can
show that there are only constantly many combinations of relative locations of the three
agents (that can actually occur) after applying the modulo operation. This, in turn, implies
that there are only constantly many possibilities for the whole aforementioned information
tuple at the start and end of a travel, which will enable us to prove our main theorem. We
start by defining our modulo operation in Definition 12. Then we show a technical helping
lemma, Lemma 13, which finally enables us to prove the aforementioned relation between
the information tuple at the start and end of a travel in Lemma 14. Note that for technical
reasons, Lemma 14 gives a slightly different statement than indicated above, dealing with
travel meeting pairs instead of travels.

DISC 2018

13:14 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

I Definition 12. Let {(x1, y1), (x2, y2), . . . , (xk, yk)} be the set of travel vectors that the
agents can have if you let one of them explore the grid starting in an arbitrary state (which
clearly is a superset of the actually occurring travel vectors in our multi-agent case). Let R
be the subset of the above set that contains exactly the vectors (xj , yj) that satisfy yj/xj = r.
From now on, denote by x the least common multiple of the |xj | from the vectors in R and
set y := rx. It follows that (x, y) is a (possibly negative) integer multiple of any of the
vectors from R. Note that R cannot be empty since otherwise it is not possible that the
agents explore the entire grid, due to Lemma 7 and Lemma 11.

Now, let w, z be integers and let b be the smallest integer such that w + bx ≥ 0. (This is
well-defined since x > 0, due to r 6=∞.) We define (w, z) (mod (x, y)) := (w + bx, z + by).
For two cells (w′, z′), (w′′, z′′), we define (w′′, z′′)	 (w′, z′) := (w′′−w′, z′′−z′) (mod (x, y)).

Note that Definition 12 ensures that for any (w, z), (w′, z′) where (w′ − w, z′ − z) is a
multiple of (x, y), we have that (w, z) (mod (x, y)) = (w′, z′) (mod (x, y)).

I Lemma 13. Let a be an agent, q a state from a’s finite automaton and c, c′, c′′ cells of the
grid such that the following properties are satisfied:
1. Dist(c, c′) ≥ N and Dist(c′′, c′) ≥ N
2. There is an integer b such that c′′ − c = b · (w, z), where (w, z) is agent a’s travel vector

if it starts in state q.
3. If agent a starts in cell c in state q on an otherwise empty grid, then it arrives at c′ after

finite time.
4. If agent a starts in cell c′′ in state q on an otherwise empty grid, then it arrives at c′

after finite time.

Let q′ denote the state in which a arrives at c′ (for the first time) when starting from c

(in state q), and q′′ the state in which a arrives at c′ (for the first time) when starting from
c′′ (in state q). Then it holds that q′ = q′′.

Proof. If c = c′′, then the lemma holds trivially, thus assume that c 6= c′′. W.l.o.g., we can
assume that b > 0, which implies that, if agent a starts in cell c in state q (say, at time
t), then a arrives at some point in time u > t in cell c′′ in state q (possibly a visited c′′

before in some other state). Hence, if a does not visit cell c′ between time t and time u, then
the lemma also holds since after arriving at c′′ in state q, a will perform the exact same
movement as if it started in c′′ in state q.

Thus, consider the last remaining case, i.e., assume that a visits c′ for the first time at
some time t < t′ < u. W.l.o.g., we can assume that w and z are non-negative and w ≥ z.
(Also recall that at least one of w and z is non-zero.) Let c0, c1, . . . be the cells that a visits
in state q at and after time t, where c0 and ck, for some k > 0, are the cells that a visits
at time t and u, respectively, i.e., c0 = c and ck = c′′. Observe that cj+1 = cj + (w, z)
holds for each j. Denote the x-coordinates of c′ and ck = c′′ by x′ and x′′, respectively.
Since w ≥ z, it follows that Dist(cj , c

′) ≥ Dist(c′′, c′) ≥ N for all j ≥ k if x′ ≤ x′′, and
Dist(cj , c

′) ≥ Dist(c′′, c′) ≥ N for all 0 ≤ j ≤ k if x′ ≥ x′′. Let h be the largest index such
that a visits ch in state q at or before time t′. Then h < k, and Dist(ch, c

′) ≤ N − 1 since
traveling from ch (in state q) to ch+1 (in state q) takes a at most one travel period, so at
most N time steps. If x′ ≥ x′′, then we obtain a contradiction to our above observation, thus
it follows that x′ < x′′. But this implies Dist(cj , c

′) ≥ N for all j ≥ k which in turn implies
for all j ≥ k that c′ cannot be visited by a between visiting cj (in state q) and cj+1 (in state
q). Hence, a does not visit c′ at or after time u. Since a performs the exact same movement

S. Brandt, J. Uitto, and R. Wattenhofer 13:15

from time u onwards as if it would have initially started in c′′ in state q, it follows that agent
a starting in c′′ in state q never visits c′, which is a contradiction to our assumptions. Thus,
this last remaining case cannot occur, which completes the proof. J

I Lemma 14. (Proof deferred to the full version) Let (t, u) be a travel meeting pair. Consider
the tuple Qt := (q1

t , q
2
t , q

3
t , c

1
t	c2

t , c
1
t	c3

t , c
2
t	c3

t , a
next
t ,Mt), where anext

t again denotes the agent
that is scheduled at time t. There is a point in time T such that the following holds: If t ≥ T ,
then Qt uniquely determines the tuple Qu = (q1

u, q
2
u, q

3
u, c

1
u 	 c2

u, c
1
u 	 c3

u, c
2
u 	 c3

u, a
next
u ,Mu).

8 Three Semi-Synchronous Agents Do Not Suffice

We now conclude our lower bound proof with Theorem 1. Roughly speaking, Lemma 14
certifies that the behavior of the agents between any two subsequent occurrences of the same
fixed information tuple Qt is reasonably similar. Since there are only finitely many different
Qt that actually occur, it follows that the behavior of the agents loops, in a very informal
sense. From this, we can derive a contradiction to the assumption that all cells are explored.

I Theorem 1. Three semi-synchronous agents controlled by a finite automaton are not
sufficient to explore the infinite grid.

Proof. Suppose for a contradiction that three agents suffice to explore the grid. From the
definition of a travel meeting pair and Lemma 7, it follows that there are points in time
t1 < u1 ≤ t2 < u2 ≤ t3 < . . . such that (tj , uj) is a travel meeting pair for any j ≥ 1 and for
every travel meeting pair (t′, u′) there is a j ≥ 1 with t′ = tj and u′ = uj .

Recall the definition of Qt in Lemma 14. Let T be sufficiently large so that T ≥ T1 holds
(where T1 is just TD for D = 1) and Lemmas 8, 9, 10, 11 and 14 apply, and let k be an
index such that tk ≥ T and there is a h > k with h− k even and Qtk

= Qth
. Such a k must

exist since there is only a finite number of tuples of the general form Qt (after time T) and
the number of travel meeting pairs is infinite, by Lemma 7. Note that the finiteness of the
number of tuples, in particular the finiteness of the (combinations of the) relative locations
of the agents modulo (x, y), relies on the fact that the possible travel vectors after time T
are restricted by Lemma 11, together with the fact that in the time span given by a travel
meeting pair source and destination agent are scheduled for at most N steps, by Lemma 3
and Lemma 8.

Consider the sequence ((tk, uk), (tk+1, uk+1), . . . , (th, uh)) of travel meeting pairs, where
h is the smallest index such that h > k holds, h− k is even, and Qtk

= Qth
. We examine the

cells that are explored by the source agent for (tk, uk) between time tk and tk+1 and by the
destination agent for (tk+1, uk+1) (which is the same as the aforementioned source agent)
between time tk+1 and tk+2. Then we iterate this examination, in each iteration increasing
the indices by 2, and stop at time th. We say that the cells explored in the described way
are explored during even explorations.

In the first iteration, we obtain the following picture, where we denote the source agent
for (tk, uk) (i.e., the destination agent for (tk+1, uk+1)) by a: The exact vector by which
a moves between time tk and uk is uniquely determined by Qtk

, as observed in the proof
of Lemma 14. The exact vector by which a moves between time uk and tk+1 is uniquely
determined by Quk

, by Lemma 10. Similarly, the exact vectors by which a moves between
time tk+1 and uk+1 and between time uk+1 and tk+2 are uniquely determined by Qtk+1 and
Quk+1 , respectively.

Moreover, by combining Lemma 10 and Lemma 14, we see that Quk
, Qtk+1 , Quk+1 , and

Qtk+2 are all uniquely determined by Qtk
. Thus, the exact vector by which a moves between

time tk and time tk+2 is uniquely determined by Qtk
. Furthermore, by Lemma 3, Lemma 8,

DISC 2018

13:16 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

and Lemma 9, the number of cells a visits between time tk and time tk+2 is bounded by a
constant. Note that each Qtj

also uniquely determines which agent is the traveling agent
(and hence which agent is the source/destination agent) for (tj , uj), as observed in the proof
of Lemma 14.

For the second, third, . . . , iteration we obtain an analogous picture. Hence, the tuples
Qtk+2 , Qtk+4 , . . . are all uniquely determined by Qtk

, and the locations of the respective
source agents at times tk+2, tk+4, . . . are all uniquely determined by Qtk

and the location of
the source agent for (tk, uk) at time tk.

We obtain the following bigger picture: The location of the source agent for (tk, uk) at time
tk together with Qtk

uniquely determines both Qth
and the location of the source agent for

(th, uh) at time th, which, in turn, uniquely determine Qth+(h−k) and the location of the source
agent for (th+(h−k), uh+(h−k)) at time th+(h−k), and so on. Hence, there is a vector (w, z)
such that the locations of the respective source agents at times tk, th, th+(h−k), th+2(h−k), . . .

are c, c+ (w, z), c+ 2(w, z), . . . , where c denotes the cell occupied by the respective source
agent at time tk. Moreover, since the number of cells explored during an even exploration
between time tk and th (and similarly between time th+j(h−k) and th+(j+1)(h−k) for each
j ≥ 0) is bounded by a constant (which follows from a similar observation above), we get that
there is a constant L such that each cell explored during an even exploration has a distance
of at most L to some cell of the form c+ j′ · (w, z), where j′ is some non-negative integer.

Moreover, by Lemmas 3, 8, 9, 11, and the definition of even explorations, we know that
each explored cell is close to the travel of a traveling agent, i.e., there is a constant L′ such
that each cell explored at or after time tk has a distance of at most L′ to some cell of the
form c′+ j′′ · (x, y), where j′′ is some integer and c′ a cell explored during an even exploration.
Combining our observations and adding the fact that only a constant number of cells are
explored up to time tk, it follows that there is a constant L′′ such that each cell explored by
the agents has a distance of at most L′′ to some cell of the form c+ j′ · (w, z) + j′′ · (x, y),
where j′, j′′ are integers and j′ is non-negative. Hence, we can draw a line in the grid such
that all explored cells are to one side of the line, yielding a contradiction to the assumption
that three agents suffice to explore the grid. J

References
1 Susanne Albers and Monika Henzinger. Exploring Unknown Environments. SIAM Journal

on Computing, 29:1164–1188, 2000.
2 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz, and Charles Rackoff.

Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In
FOCS, pages 218–223, 1979.

3 Igor Averbakh and Oded Berman. A Heuristic with Worst-case Analysis for Minimax
Routing of Two Travelling Salesmen on a Tree. Discrete Appl. Math., 68(1-2):17–32, 1996.

4 Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. Searching in
the Plane. Information and Computation, 106:234–252, 1993.

5 M. A. Bender and D. K. Slonim. The Power of Team Exploration: Two Robots can Learn
Unlabeled Directed Graphs. In FOCS, pages 75–85, 1994.

6 M. Blum and W. J. Sakoda. On the capability of finite automata in 2 and 3 dimensional
space. In FOCS, pages 147–161, 1977.

7 Manuel Blum and Dexter Kozen. On the Power of the Compass (or, Why Mazes Are Easier
to Search Than Graphs). In FOCS, pages 132–142, 1978.

8 Sebastian Brandt, Jara Uitto, and Roger Wattenhofer. Tight Bounds for Asynchronous
Collaborative Grid Exploration. CoRR, abs/1705.03834, 2017. URL: http://arxiv.org/
abs/1705.03834.

http://arxiv.org/abs/1705.03834
http://arxiv.org/abs/1705.03834

S. Brandt, J. Uitto, and R. Wattenhofer 13:17

9 Lothar Budach. Automata and Labyrinths. Mathematische Nachrichten, 86(1):195–282,
1978.

10 Marek Chrobak, Leszek Gasieniec, Thomas Gorry, and Russell Martin. Group Search
on the Line, pages 164–176. Springer Berlin Heidelberg, 2015. doi:10.1007/
978-3-662-46078-8_14.

11 Lihi Cohen, Yuval Emek, Oren Louidor, and Jara Uitto. Exploring an Infinite Space with
Finite Memory Scouts. In SODA, pages 207–224, 2017.

12 Xiaotie Deng and Christos Papadimitriou. Exploring an Unknown Graph. Journal of Graph
Theory, 32:265–297, 1999.

13 Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree Exploration
with Little Memory. Journal of Algorithms, 51:38–63, 2004.

14 Yann Disser, Jan Hackfeld, and Max Klimm. Undirected Graph Exploration with
Θ(log logn) Pebbles. In SODA, pages 25–39, 2016.

15 Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal Constrained
Graph Exploration. ACM Trans. Algorithms, 2(3):380–402, 2006.

16 Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How
Many Ants Does it Take to Find the Food? Theor. Comput. Sci., 608:255–267, 2015.
doi:10.1016/j.tcs.2015.05.054.

17 Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. Solving the ANTS
Problem with Asynchronous Finite State Machines. In ICALP, pages 471–482, 2014.

18 Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sebastien Sereni. Collaborative
Search on the Plane Without Communication. In PODC, pages 77–86, 2012.

19 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed Coordination of a Set
of Autonomous Mobile Robots. In Intelligent Vehicles Symposium, pages 480–485, 2000.

20 Pierre Fraigniaud and David Ilcinkas. Digraphs Exploration with Little Memory, pages
246–257. Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-24749-4_22.

21 Frank Hoffmann. One Pebble Does Not Suffice to Search Plane Labyrinths. In FCT, pages
433–444, 1981.

22 Alejandro López-Ortiz and Graeme Sweet. Parallel Searching on a Lattice. In CCCG,
pages 125–128, 2001.

23 Petrişor Panaite and Andrzej Pelc. Exploring Unknown Undirected Graphs. In SODA,
pages 316–322, 1998.

24 H. A. Rollik. Automaten in Planaren Graphen, pages 266–275. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1979. doi:10.1007/3-540-09118-1_28.

25 Kazuo Sugihara and Ichiro Suzuki. Distributed Algorithms for Formation of Geometric
Patterns with Many Mobile Robots. Journal of Robotic Systems, 13(3):127–139, 1996.

26 Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots: Forma-
tion of Geometric Patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

27 Ichiro Suzuki and Masafurni Yarnashita. Distributed Anonymous Mobile Robots - Forma-
tion and Agreement Problems. In SIROCCO, pages 1347–1363, 1996.

DISC 2018

http://dx.doi.org/10.1007/978-3-662-46078-8_14
http://dx.doi.org/10.1007/978-3-662-46078-8_14
http://dx.doi.org/10.1016/j.tcs.2015.05.054
http://dx.doi.org/10.1007/978-3-540-24749-4_22
http://dx.doi.org/10.1007/3-540-09118-1_28

Multi-Shot Distributed Transaction Commit
Gregory Chockler
Royal Holloway, University of London, UK

Alexey Gotsman1

IMDEA Software Institute, Madrid, Spain

Abstract
Atomic Commit Problem (ACP) is a single-shot agreement problem similar to consensus, meant
to model the properties of transaction commit protocols in fault-prone distributed systems. We
argue that ACP is too restrictive to capture the complexities of modern transactional data stores,
where commit protocols are integrated with concurrency control, and their executions for differ-
ent transactions are interdependent. As an alternative, we introduce Transaction Certification
Service (TCS), a new formal problem that captures safety guarantees of multi-shot transaction
commit protocols with integrated concurrency control. TCS is parameterized by a certification
function that can be instantiated to support common isolation levels, such as serializability and
snapshot isolation. We then derive a provably correct crash-resilient protocol for implement-
ing TCS through successive refinement. Our protocol achieves a better time complexity than
mainstream approaches that layer two-phase commit on top of Paxos-style replication.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Atomic commit problem, two-phase commit, Paxos

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.14

1 Introduction

Modern data stores are often required to manage massive amounts of data while providing
stringent transactional guarantees to their users. They achieve scalability by partitioning data
into independently managed shards (aka partitions) and fault-tolerance by replicating each
shard across a set of servers [9, 14, 42, 34]. Implementing such systems requires sophisticated
protocols to ensure that distributed transactions satisfy a conjunction of desirable properties
commonly known as ACID: Atomicity, Consistency, Isolation and Durability.

Traditionally, distributed computing literature abstracts ways of achieving these properties
into separate problems: in particular, atomic commit problem (ACP) for Atomicity and
concurrency control (CC) for Isolation. ACP is formalised as a one-shot agreement problem
in which multiple shards involved in a transaction need to reach a decision on its final
outcome: commit if all shards voted to commit the transaction, and abort otherwise [13].
Concurrency control is responsible for determining whether a shard should vote to commit
or abort a transaction based on the locally observed conflicts with other active transactions.
Although both ACP and CC must be solved in any realistic transaction processing system,
they are traditionally viewed as disjoint in the existing literature. In particular, solutions for
ACP treat the votes as the inputs of the problem, and leave the interaction with CC, which
is responsible for generating the votes, outside the problem scope [38, 2, 23, 16].

1 Alexey Gotsman was supported by an ERC Starting Grant RACCOON.

© Gregory Chockler and Alexey Gotsman;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Multi-Shot Distributed Transaction Commit

This separation, however, is too simplistic to capture the complexities of many practical
implementations in which commit protocols and concurrency control are tightly integrated,
and as a result, may influence each other in subtle ways. For example, consider the classical
two-phase commit (2PC) protocol [15] for solving ACP among reliable processes. A transaction
processing system typically executes a 2PC instance for each transaction [32, 31, 34, 39].
When a processes pi managing a shard s receives a transaction t, it performs a local
concurrency-control check and accordingly votes to commit or abort t. The votes on t by
different processes are aggregated, and the final decision is then distributed to all processes.
If pi votes to commit t, as long as it does not know the final decision on t, it will have to
conservatively presume t as committed. This may cause pi to vote abort in another 2PC
instance for a transaction t′ conflicting with t, even if in the end t is aborted. In this case,
the outcome of one 2PC instance (for t′) depends on the internals of the execution of another
instance (for t) and the concurrency-control policy used.

At present, the lack of a formal framework capturing such intricate aspects of real
implementations makes them difficult to understand and prove correct. In this paper,
we take the first step towards bridging this gap. We introduce Transaction Certification
Service (TCS, §2), a new formal problem capturing the safety guarantees of a multi-shot
transaction commit protocol with integrated concurrency control. The TCS exposes a simple
interface allowing clients to submit transactions for certification via a certify request, which
returns commit or abort. A TCS is meant to be used in the context of transactional
processing systems with optimistic concurrency control, where transactions are first executed
optimistically, and the results (e.g., read and write sets) are submitted for certification to the
TCS. In contrast to ACP, TCS does not impose any restrictions on the number of repeated
certify invocations or their concurrency. It therefore lends itself naturally to formalising
the interactions between transaction commit and concurrency control. To this end, TCS
is parameterised by a certification function, which encapsulates the concurrency-control
policy for the desired isolation level, such as serializability and snapshot isolation [1]. The
correctness of TCS is then formulated by requiring that its certification decisions be consistent
with the certification function.

We leverage TCS to develop a formal framework for constructing provably correct multi-
shot transaction commit protocols with customisable isolation levels. The core ingredient of
our framework is a new multi-shot two-phase commit protocol (§3). It formalises how the
classical 2PC interacts with concurrency control in many practical transaction processing
systems [32, 31, 34, 39] in a way that is parametric in the isolation level provided. The
protocol also serves as a template for deriving more complex TCS implementations. We
prove that the multi-shot 2PC protocol correctly implements a TCS with a given certification
function, provided the concurrency-control policies used by each shard match this function.

We next propose a crash fault-tolerant TCS implementation and establish its correctness
by proving that it simulates multi-shot 2PC (§4). A common approach to making 2PC fault-
tolerant is to get every shard to simulate a reliable 2PC process using a replication protocol,
such as Paxos [16, 18, 9, 14, 42]. Similarly to recent work [41, 26], our implementation
optimises the time complexity of this scheme by weaving 2PC and Paxos together. In contrast
to previous work, our protocol is both generic in the isolation level and rigorously proven
correct. It can therefore serve as a reference solution for future distributed transaction commit
implementations. Moreover, a variant of our protocol has a time complexity matching the
lower bounds for consensus [24, 6] and non-blocking atomic commit [13].

The main idea for achieving such a low time complexity is to eliminate the Paxos consensus
required in the vanilla fault-tolerant 2PC to persist the final decision on a transaction at
a shard. Instead, the decision is propagated to the relevant shard replicas asynchronously.

G. Chockler and A. Gotsman 14:3

This means that different shard replicas may receive the final decision on a transaction at
different times, and thus their states may be inconsistent. To deal with this, in our protocol
the votes are computed locally by a single shard leader based on the information available to
it; other processes merely store the votes. Similarly to [29, 22], such a passive replication
approach requires a careful design of recovery from leader failures. Another reduction in
time complexity comes from the fact that our protocol avoids consistently replicating the
2PC coordinator: we allow any process to take over as a coordinator by accessing the current
state of the computation at shards. The protocol ensures that all coordinators will reach the
same decision on a transaction.

2 Transaction Certification Service

Interface. A Transaction Certification Service (TCS) accepts transactions from T and
produces decisions from D = {abort,commit}. Clients interact with the TCS using two
types of actions: certification requests of the form certify(t), where t ∈ T , and responses
of the form decide(t, d), where d ∈ D.

In this paper we focus on transactional processing systems using optimistic concurrency
control. Hence, we assume that a transaction submitted to the TCS includes all the
information produced by its optimistic execution. As an example, consider a transactional
system managing objects in the set Obj with values in the set Val, where transactions can
execute reads and writes on the objects. The objects are associated with a totally ordered set
Ver of versions with a distinguished minimum version v0. Then each transaction t submitted
to the TCS may be associated with the following data:

Read set R(t) ⊆ 2Obj×Ver: the set of objects with their versions that t read, which contains
at most one version per object.
Write set of W (t) ⊆ 2Obj×Val: the set of objects with their values that t wrote, which
contains at most one value per object. We require that any object written has also been
read: ∀(x,_) ∈W (t). (x,_) ∈ R(t).
Commit version Vc(t) ∈ Ver: the version to be assigned to the writes of t. We require
that this version be higher than any of the versions read: ∀(_, v) ∈ R(t). Vc(t) > v.

Certification functions. A TCS is specified using a certification function f : 2T × T → D,
which encapsulates the concurrency-control policy for the desired isolation level. The result
f(T, t) is the decision for the transaction t given the set of the previously committed
transactions T . We require f to be distributive in the following sense:

∀T1, T2, t. f(T1 ∪ T2, t) = f(T1, t) u f(T2, t), (1)

where the u operator is defined as follows: commit u commit = commit and d u abort =
abort for any d. This requirement is justified by the fact that common definitions of f(T, t)
check t for conflicts against each transaction in T separately.

For example, given the above domain of transactions, the following certification function
encapsulates the classical concurrency-control policy for serializability [40]: f(T, t) = commit
iff none of the versions read by t have been overwritten by a transaction in T , i.e.,

∀x, v. (x, v) ∈ R(t) =⇒ (∀t′ ∈ T. (x,_) ∈W (t′) =⇒ Vc(t′) ≤ v). (2)

A certification function for snapshot isolation (SI) [1] is similar, but restricts the certification
check to the objects the transaction t writes: f(T, t) = commit iff

∀x, v. (x, v) ∈ R(t) ∧ (x,_) ∈W (t) =⇒ (∀t′ ∈ T. (x,_) ∈W (t′) =⇒ Vc(t′) ≤ v). (3)

It is easy to check that the certification functions (2) and (3) are distributive.

DISC 2018

14:4 Multi-Shot Distributed Transaction Commit

Histories. We represent TCS executions using histories – sequences of certify and decide
actions such that every transaction appears at most once as a parameter to certify, and
each decide action is a response to exactly one preceding certify action. For a history h we
let act(h) be the set of actions in h. For actions a, a′ ∈ act(h), we write a ≺h a

′ when a occurs
before a′ in h. A history h is complete if every certify action in it has a matching decide
action. A complete history is sequential if it consists of pairs of certify and matching
decide actions. A transaction t commits in a history h if h contains decide(t,commit).
We denote by committed(h) the projection of h to actions corresponding to the transactions
that are committed in h. For a complete history h, a linearization ` of h [21] is a sequential
history such that: (i) h and ` contain the same actions; and (ii)

∀t, t′. decide(t,_) ≺h certify(t′) =⇒ decide(t,_) ≺` certify(t′).

TCS correctness. A complete sequential history h is legal with respect to a certification
function f , if its certification decisions are computed according to f :

∀a = decide(t, d) ∈ act(h). d = f({t′ | decide(t′,commit) ≺h a}, t).

A history h is correct with respect to f if h | committed(h) has a legal linearization. A TCS
implementation is correct with respect to f if so are all its histories.

A correct TCS can be readily used in a transaction processing system. For example,
consider the domain of transactions defined earlier. A typical system based on optimistic
concurrency control will ensure that transactions submitted for certification read versions
that already exist in the database. Formally, it will produce only histories h such that, for a
transaction t submitted for certification in h, if (x, v) ∈ R(t), then there exists a t′ such that
(x, v) ∈ W (t′), and h contains decide(t′,commit) before certify(t). It is easy to check
that, if such a history h is correct with respect to the certification function (2), then it is
also serializable. Hence, TCS correct with respect to certification function (2) can indeed be
used to implement serializability.

3 Multi-Shot 2PC and Shard-Local Certification Functions

We now present a multi-shot version of the classical two-phase commit (2PC) protocol [15],
parametric in the concurrency-control policy used by each shard. We then prove that the
protocol implements a correct transaction certification service parameterised by a given
certification function, provided per-shard concurrency control matches this function. Like
2PC, our protocol assumes reliable processes. In the next section, we establish the correctness
of a protocol that allows crashes by proving that it simulates the behaviour of multi-shot
2PC.

System model. We consider an asynchronous message-passing system consisting of a set
of processes P. In this section we assume that processes are reliable and are connected by
reliable FIFO channels. We assume a function client : T → P determining the client process
that issued a given transaction. The data managed by the system are partitioned into shards
from a set S. A function shards : T → 2S determines the shards that need to certify a given
transaction, which are usually the shards storing the data the transaction accesses. Each
shard s ∈ S is managed by a process proc(s) ∈ P. For simplicity, we assume that different
processes manage different shards.

G. Chockler and A. Gotsman 14:5

Algorithm 1: Multi-shot 2PC protocol at a process pi managing a shard s0.
1 next← −1 ∈ Z;
2 txn[] ∈ N→ T ;
3 vote[] ∈ N→ {commit,abort};
4 dec[] ∈ N→ {commit,abort};
5 phase[]← (λk. start) ∈ N→ {start,prepared,decided};

6 function certify(t)
7 send PREPARE(t) to proc(shards(t));

8 when received PREPARE(t)
9 next← next + 1;

10 txn[next]← t;
11 vote[next]← fs0({txn[k] | k < next∧phase[k] = decided∧dec[k] = commit}, t) u

gs0({txn[k] | k < next∧phase[k] = prepared∧vote[k] = commit}, t);

12 phase[next]← prepared;
13 send PREPARE_ACK(s0, next, t, vote[next]) to coord(t);

14 when received PREPARE_ACK(s, poss, t, ds) for every s ∈ shards(t)
15 send DECISION(t,

d
s∈shards(t) ds) to client(t);

16 forall s ∈ shards(t) do
17 send DECISION(poss,

d
s∈shards(t) ds) to proc(s)

18 when received DECISION(k, d)
19 dec[k]← d;
20 phase[k]← decided;

21 non-deterministically for some k ∈ N
22 pre: phase[k] = decided;
23 phase[k]← prepared;

24 non-deterministically for some k ∈ N
25 pre: phase[k] 6= start;
26 send PREPARE_ACK(s0, k, txn[t], vote[k]) to coord(t);

Protocol: common case. We give the pseudocode of the protocol in Algorithm 1 and
illustrate its message flow in Figure 1a. Each handler in Algorithm 1 is executed atomically.

To certify a transaction t, a client sends it in a PREPARE message to the relevant shards
(line 6)2. A process managing a shard arranges all transactions received into a total cer-
tification order, stored in an array txn; a next variable points to the last filled slot in the
array. Upon receiving a transaction t (line 8), the process stores t in the next free slot of txn.
The process also computes its vote, saying whether to commit or abort the transaction,
and stores it in an array vote. We explain the vote computation in the following; intuitively,

2 In practice, the client only needs to send the data relevant to the corresponding shard. We omit this
optimisation to simplify notation.

DISC 2018

14:6 Multi-Shot Distributed Transaction Commit

the vote is determined by whether the transaction t conflicts with a previously received
transaction. After the process managing a shard s receives t, we say that t is prepared at s.
The process keeps track of transaction status in an array phase, whose entries initially store
start, and are changed to prepared once the transaction is prepared. Having prepared the
transaction t, the process sends a PREPARE_ACK message with its position in the certification
order and the vote to a coordinator of t. This is a process determined using a function
coord : T → P such that ∀t. coord(t) ∈ proc(shards(t)).

The coordinator of a transaction t acts once it receives a PREPARE_ACK message for t from
each of its shards s, which carries the vote ds by s (line 14). The coordinator computes the
final decision on t using the u operator (§2) and sends it in DECISION messages to the client
and to all the relevant shards. When a process receives a decision for a transaction (line 18),
it stores the decision in a dec array, and advances the transaction’s phase to decided.

Vote computation. A process managing a shard s computes votes as a conjunction of
two shard-local certification functions fs : 2T × T → D and gs : 2T × T → D. Unlike the
certification function of §2, the shard-local functions are meant to check for conflicts only on
objects managed by s. They take as their first argument the sets of transactions already
decided to commit at the shard, and respectively, those that are only prepared to commit
(line 11). We require that the above functions be distributive, similarly to (1).

For example, consider the transaction model given in §2 and assume that the set of
objects Obj is partitioned among shards: Obj =

⊎
s∈S Objs. Then the shard-local certification

functions for serializability are defined as follows: fs(T, t) = commit iff

∀x ∈ Objs.∀v. (x, v) ∈ R(t) =⇒ (∀t′ ∈ T. (x,_) ∈W (t′) =⇒ Vc(t′) ≤ v), (4)

and gs(T, t) = commit iff

∀x ∈ Objs.∀v. ((x,_) ∈ R(t) =⇒ (∀t′ ∈ T. (x,_) 6∈W (t′))) ∧
((x,_) ∈W (t) =⇒ (∀t′ ∈ T. (x,_) 6∈ R(t′))).

(5)

The function fs certifies a transaction t against previously committed transactions T similarly
to the certification function (2), but taking into account only the objects managed by the
shard s. The function gs certifies t against transactions T prepared to commit.

The first conjunct of (5) aborts a transaction t if it read an object written by a transaction
t′ prepared to commit. To motivate this condition, consider the following example. Assume
that a shard managing an object x votes to commit a transaction t′ that read a version v1 of
x and wants to write a version v2 > v1 of x. If the shard now receives another transaction t
that read the version v1 of x, the shard has to abort t: if t′ does commit in the end, allowing
t to commit would violate serializability, since it would have read stale data. On the other
hand, once the shard receives the abort decision on t′, it is free to commit t.

The second conjunct of (5) aborts a transaction t if it writes to an object read by a
transaction t′ prepared to commit. To motivate this, consider the following example, adapted
from [37]. Assume transactions t1 and t2 both read a version v1 of x at shard s1 and a
version v2 of y at shard s2; t1 wants to write a version v′2 > v2 of y, and t2 wants to write a
version v2 > v1 of x. Assume further that s1 receives t1 first and votes to commit it, and s2
receives t2 first and votes to commit it as well. If s1 now receives t2 and s2 receives t1, the
second conjunct of (5) will force them to abort: if the shards let the transactions commit,
the resulting execution would not be serializable, since one of the transactions must read the
value written by the other.

G. Chockler and A. Gotsman 14:7

A simple way of implementing (5) is, when preparing a transaction, to acquire read locks
on its read set and write locks on its write set; the transaction is aborted if the locks cannot
be acquired. The shard-local certification functions are a more abstract way of defining the
behaviour of this and other implementations [32, 31, 34, 39, 37]. They can also be used to
define weaker isolation levels than serializability. As an illustration, we can define shard-local
certification functions for snapshot isolation as follows: fs(T, t) = commit iff

∀x ∈ Objs.∀v. (x, v) ∈ R(t)∧ (x,_) ∈W (t) =⇒ (∀t′ ∈ T. (x,_) ∈W (t′) =⇒ Vc(t′) ≤ v),

and gs(T, t) = commit iff

(x,_) ∈W (t) =⇒ (∀t′ ∈ T. (x,_) 6∈W (t′)).

The function fs restricts the global function (3) to the objects managed by the shard s. Since
snapshot isolation allows reading stale data, the function gs only checks for write conflicts.

For shard-local certification functions to correctly approximate a given global function f ,
we require the following relationships. For a set of transactions T ⊆ T , we write T | s to
denote the projection of T on shard s, i.e., {t ∈ T | s ∈ shards(t)}. Then we require that

∀t ∈ T .∀T ⊆ T . f(T, t) = commit ⇐⇒ ∀s ∈ shards(t). fs((T | s), t) = commit. (6)

In addition, for each shard s, the two functions fs and gs are required to be related to each
other as follows:

∀t. s ∈ shards(t) =⇒ (∀T. gs(T, t) = commit =⇒ fs(T, t) = commit); (7)

∀t, t′. s ∈ shards(t)∩ shards(t′) =⇒ (gs({t}, t′) = commit =⇒ fs({t′}, t) = commit). (8)

Property (7) requires the conflict check performed by gs to be no weaker than the one
performed by fs. Property (8) requires a form of commutativity: if t′ is allowed to commit
after a still-pending transaction t, then t would be allowed to commit after t′. The above
shard-local functions for serializability and snapshot isolation satisfy (6)-(8).

Forgetting and recalling decisions. The protocol in Algorithm 1 has two additional handlers
at lines 21 and 24, executed non-deterministically. As we show in §4, these are required for the
abstract protocol to capture the behaviour of optimised fault-tolerant TCS implementations.
Because of process crashes, such implementations may temporarily lose the information about
some final decisions, and later reconstruct it from the votes at the relevant shards. In the
meantime, the absence of the decisions may affect some vote computations as we explained
above. The handler at line 21 forgets the decision on a transaction (but not its vote). The
handler at line 24 allows processes to resend the votes they know to the coordinator, which
will then resend the final decisions (line 14). This allows a process that forgot a decision to
reconstruct it from the votes stored at the relevant shards.

Correctness. The following theorem shows the correctness of multi-shot 2PC. In particular,
it shows that the shard-local concurrency control given by fs and gs correctly implements
the shard-agnostic concurrency control given by a global certification function f .

I Theorem 1. A transaction certification service implemented using the multi-shot 2PC
protocol in Algorithm 1 is correct with respect to a certification function f , provided shard-local
certification functions fs and gs satisfy (6)-(8).

DISC 2018

14:8 Multi-Shot Distributed Transaction Commit

Client Coordinator Shard

PREPARE

PREPARE_ACK

DECISION DECISION

Client
Coordinator Shard

Leader Follower Leader Follower

PREPARE

PREPARE_ACK

DECISION DECISION

Client Coordinator

Shard

Leader Follower

PREPARE

ACCEPT_ACK

DECISION DECISION

ACCEPT

(a) (b) (c)

Figure 1 Message flow diagrams illustrating the behaviour of (a) multi-shot 2PC; (b) multi-shot
2PC with shards replicated using Paxos; (c) optimised protocol weaving together multi-shot 2PC
and Paxos.

We give the proof in [7, §A]. Its main challenge is that, in multi-shot 2PC, certification
orders at different shards may disagree on the order of concurrently certified transactions;
however, a correct TCS has to certify transactions according to a single total order. We use
the commutativity property (8) to show that per-shard certification orders arising in the
protocol can be merged into the desired single total order.

4 Fault-Tolerant Commit Protocol

System model. We now weaken the assumptions of the previous section by allowing
processes to fail by crashing, i.e., permanently stopping execution. We still assume that
processes are connected by reliable FIFO channels in the following sense: messages are
delivered in the FIFO order, and messages between non-faulty processes are guaranteed to
be eventually delivered. Each shard s is now managed by a group of 2f + 1 processes, out of
which at most f can fail. We call a set of f + 1 processes in this group a quorum for s. For a
shard s we redefine proc(s) to be the set of processes managing this shard. For simplicity, we
assume that the groups of processes managing different shards are disjoint.

Vanilla protocol. A straightforward way to implement a TCS in the above model is to
use state-machine replication [36] to make a shard simulate a reliable process in multi-shot
2PC; this is usually based on a consensus protocol such as Paxos [27]. In this case, final
decisions on transactions are never forgotten, and hence, the handlers at lines 21 and 24 are
not simulated. Even though this approach is used by several systems [9, 14, 42], multiple
researchers have observed that the resulting protocol requires an unnecessarily high number
of message delays [41, 26, 28]. Namely, every action of multi-shot 2PC in Figure 1a requires
an additional round trip to a quorum of processes in the same shard to persist its effect,
resulting in the message-flow diagram in Figure 1b. Note that the coordinator actions have
to be replicated as well, since multi-shot 2PC will block if the coordinator fails. The resulting
protocol requires 7 message delays for a client to learn a decision on a transaction.

Optimised protocol overview. In Algorithms 2 and 3 we give a commit protocol that
reduces the number of message delays by weaving together multi-shot 2PC across shards and
a Paxos-like protocol within each shard. We omit details related to message retransmissions
from the code. We illustrate the message flow of the protocol in Figure 1c and summarise
the key invariants used in its proof of correctness in Figure 2.

G. Chockler and A. Gotsman 14:9

A process maintains the same variables as in the multi-shot 2PC protocol (Algorithm 1)
and a few additional ones. Every process in a shard is either the leader of the shard or a
follower. If the leader fails, one of the followers takes over. A status variable records whether
the process is a leader, a follower or is in a special recovering state used during leader
changes. A period of time when a particular process acts as a leader is denoted using integer
ballots. For a ballot b ≥ 1, the process leader(b) = ((b− 1) mod (2f + 1)) is the leader of
the ballot. At any given time, a process participates in a single ballot, stored in a variable
ballot. During leader changes we also use an additional ballot variable cballot.

Unlike the vanilla protocol illustrated in Figure 1b, our protocol does not perform
consensus to persist the contents of a DECISION message in a shard. Instead, the final
decision on a transaction is sent to the members of each relevant shard asynchronously. This
means that different shard members may receive the decision on a transaction at different
times. Since the final decision on a transaction affects vote computations on transactions
following it in the certification order (§3), computing the vote on a later transaction at
different shard members may yield different outcomes. To deal with this, in our protocol only
the leader constructs the certification order and computes votes. Followers are passive: they
merely copy the leader’s decisions. A final decision is taken into account in vote computations
at a shard once it is received by the shard’s leader.

Failure-free case. To certify a transaction t, a client sends it in a PREPARE message to the
relevant shards (line 10). A process pi handles the message only when it is the leader of its
shard s0 (line 12). We defer the description of the cases when another process pj is resending
the PREPARE message to pi (line 13), and when pi has already received t in the past (line 14).

Upon receiving PREPARE(t), the leader pi first determines a process p that will serve as
the coordinator of t. If the leader receives t for the first time (line 16), then, similarly to
multi-shot 2PC, it appends t to the certification order and computes the vote based on
the locally available information. The leader next performs an analogue of “phase 2” of
Paxos, trying to convince its shard s0 to accept its proposal. To this end, it sends an ACCEPT
message to s0 (including itself, for uniformity), which is analogous to the “2a” message of
Paxos (line 21). The message carries the leader’s ballot, the transaction t, its position in
the certification order, the vote and the identity of t’s coordinator. The leader code ensures
Invariant 1 in Figure 2: in a given ballot b, a unique transaction-vote pair can be assigned to
a slot k in the certification order.

A process handles an ACCEPT message only if it participates in the corresponding ballot
(line 23). If the process has not heard about t before, it stores the transaction and the vote
and advances the transaction’s phase to prepared. It then sends an ACCEPT_ACK message to
the coordinator of t, analogous to the “2b” message of Paxos. This confirms that the process
has accepted the transaction and the vote. The certification order at a follower is always a
prefix of the certification order at the leader of the ballot the follower is in, as formalised by
Invariant 2. This invariant is preserved when the follower receives ACCEPT messages due to
the FIFO ordering of channels.

The coordinator of a transaction t acts once it receives a quorum of ACCEPT_ACK messages
for t from each of its shards s ∈ shards(t), which carry the vote ds by s (line 29). The
coordinator computes the final decision on t and sends it in DECISION messages to the client
and to each of the relevant shards. When a process receives a decision for a transaction
(line 33), the process stores it and advances the transaction’s phase to decided.

Once the final decision on a transaction is delivered to the leader of a shard, it is taken
into account in future vote computations at this shard. Taking as an example the shard-local
functions for serializability (4) and (5), if a transaction that wrote to an object x is finally

DISC 2018

14:10 Multi-Shot Distributed Transaction Commit

1. If ACCEPT(b, k, t1, d1,_) and ACCEPT(b, k, t2, d2,_) messages are sent to the same shard,
then t1 = t2 and d1 = d2.

2. After a process receives and acknowledges ACCEPT(b, k, t, d,_), we have txn = txn�k and
vote = vote�k, where txn and vote are the values of the arrays txn and vote at leader(b)
when it sent the ACCEPT message.

3. Assume that a quorum of processes in s received ACCEPT(b, k, t, d,_) and responded
to it with ACCEPT_ACK(s, b, k, t, d), and at the time leader(b) sent ACCEPT(b, k, t, d,_)
it had txn�k = txn and vote�k = vote. Whenever at a process in s we have status ∈
{leader, follower} and ballot = b′ > b, we also have txn�k = txn and vote�k = vote.

4. If ACCEPT(b, k1, t,_,_) and ACCEPT(b, k2, t,_,_) messages are sent to the same shard,
then k1 = k2.

5. At any process, all transactions in the txn array are distinct.
6. a. For any messages DECISION(_, k, d1) and DECISION(_, k, d2) sent to processes in the

same shard, we have d1 = d2.
b. For any messages DECISION(t, d1) and DECISION(t, d2) sent, we have d1 = d2.

7. a. Assume that a quorum of processes in s have sent ACCEPT_ACK(s, b1, k, t1, d1) and
a quorum of processes in s have sent ACCEPT_ACK(s, b2, k, t2, d2). Then t1 = t2 and
d1 = d2.

b. Assume that a quorum of processes in s have sent ACCEPT_ACK(s, b1, k1, t, d1) and a
quorum of processes in s have sent ACCEPT_ACK(s, b2, k2, t, d2). Then k1 = k2 and
d1 = d2.

Figure 2 Key invariants of the fault-tolerant protocol. We let α�k be the prefix of the sequence
α of length k.

decided to abort, then delivering this decision to the leader may allow another transaction
writing to x to commit.

Leader recovery. We next explain how the protocol deals with failures, starting from a
leader failure. The goal of the leader recovery procedure is to preserve Invariant 3: if in a
ballot b a shard s accepted a vote d on a transaction t at the position k in the certification
order, then this vote will persist in all future ballots; this is furthermore true for all votes the
leader of ballot b took into account when computing d. The latter property is necessary for
the shard to simulate the behaviour of a reliable process in multi-shot 2PC that maintains
a unique certification order. To ensure this property, our recovery procedure includes an
additional message from the new leader to the followers ensuring that, before a follower starts
accepting proposals from the new leader, it has brought its state in sync with that of the
leader (this is similar to [29, 22]). The ballot of the last leader a follower synchronised with
in this way is recorded in cballot.

We now describe the recovery procedure in detail. When a process pi suspects the
leader of its shard of failure, it may try to become a new leader by executing the recover
function (line 37). The process picks a ballot that it leads higher than ballot and sends it in
a NEW_LEADER message to the shard members (including itself); this message is analogous to
the “1a” message in Paxos. When a process receives a NEW_LEADER(b) message (line 39), it
first checks that the proposed ballot b is higher than his. In this case, it sets its ballot to b
and changes its status to recovering, which causes it to stop processing PREPARE, ACCEPT
and DECISION messages. It then replies to the new leader with a NEW_LEADER_ACK message
containing all components of its state, analogous to the “1b” message of Paxos.

G. Chockler and A. Gotsman 14:11

Algorithm 2: Fault-tolerant commit protocol at a process pi in a shard s0: failure-
free case.

1 next← −1 ∈ Z;
2 txn[] ∈ N→ T ;
3 vote[] ∈ N→ {commit,abort};
4 dec[] ∈ N→ {commit,abort};
5 phase[]← (λk. start) ∈ N→ {start,prepared,decided};
6 status ∈ {leader, follower,recovering};
7 ballot← 0 ∈ N;
8 cballot← 0 ∈ N;

9 function certify(t)
10 send PREPARE(t) to proc(shards(t));

11 when received PREPARE(t) from pj or a client
12 pre: status = leader;
13 if received from a process pj then p← pj else p← coord(t);
14 if ∃k. t = txn[k] then
15 send ACCEPT(ballot, k, t, vote[k], p) to proc(s0)
16 else
17 next← next + 1;
18 txn[next]← t;
19 vote[next]← fs0({txn[k] | k<next∧ phase[k]=decided∧ dec[k]=commit}, t)u

gs0({txn[k] | k<next∧ phase[k]=prepared∧ vote[k]=commit}, t);
20 phase[next]← prepared;
21 send ACCEPT(ballot, next, t, vote[next], p) to s0;

22 when received ACCEPT(b, k, t, d, p)
23 pre: status ∈ {leader, follower} ∧ ballot = b;
24 if phase[k] = start then
25 txn[k]← t;
26 vote[k]← d;
27 phase[k]← prepared;
28 send ACCEPT_ACK(s0, b, k, t, d) to p;

29 when for every s ∈ shards(t) received a quorum of ACCEPT_ACK(s, bg, posg, t, dg)
30 send DECISION(t,

d
s∈shards(t) ds) to client(t);

31 forall s ∈ shards(t) do
32 send DECISION(bs, poss,

d
s∈shards(t) ds) to proc(s)

33 when received DECISION(b, k, d)
34 pre: status ∈ {leader, follower} ∧ ballot ≥ b ∧ phase[k] = prepared;
35 dec[k]← d;
36 phase[k]← decided;

DISC 2018

14:12 Multi-Shot Distributed Transaction Commit

Algorithm 3: Fault-tolerant commit protocol at a process pi in a shard s0: recovery.
37 function recover()
38 send NEW_LEADER(any ballot b such that b > ballot ∧ leader(ballot) = pi) to s0;

39 when received NEW_LEADER(b) from pj

40 pre: b > ballot;
41 status← recovering;
42 ballot← b;
43 send NEW_LEADER_ACK(ballot, cballot, txn, vote, dec, phase) to pj ;

44 when received {NEW_LEADER_ACK(b, cballotj , txnj , votej , decj , phasej) | pj ∈ Q}
from a quorum Q in s0

45 pre: status = recovering ∧ ballot = b;
46 var J ← the set of j with the maximal cballotj ;
47 forall k do
48 if ∃j ∈ J. phasej [k] ≥ prepared then
49 txn[k]← txnj [k];
50 vote[k]← votej [k];
51 phase[k]← prepared;
52 if ∃j. phasej [k] = decided then
53 dec← decj [k];
54 phase[k]← decided;

55 next← min{k | phase[k] 6= start};
56 cballot← b;
57 status← leader;
58 send NEW_STATE(b, txn, vote, dec, phase) to proc(s0) \ {pi};

59 when received NEW_STATE(b, txn, vote, dec, phase) from pj

60 pre: b ≥ ballot;
61 status← follower;
62 cballot← b;
63 txn← txn;
64 vote← vote;
65 dec← dec;
66 phase← phase;

67 function retry(k)
68 pre: phase[k] = prepared;
69 send PREPARE(txn[k]) to proc(shards(txn[k]));

The new leader waits until it receives NEW_LEADER_ACK messages from a quorum of shard
members (line 44). Based on the states reported by the processes, it computes a new state
from which to start certifying transactions. Like in Paxos, the leader focusses on the states
of processes that reported the maximal cballot (line 46): if the k-th transaction is prepared
at such a process, then the leader marks it as accepted and copies the vote; furthermore, if
the transaction is decided at some process (with any ballot number), then the leader marks
it as decided and copies the final decision. Given Invariant 2, we can show that the resulting

G. Chockler and A. Gotsman 14:13

certification order does not have holes: if a transaction is prepared or decided, then so
are the previous transactions in the certification order.

The leader sets next to the length of the merged sequence of transactions, cballot to
the new ballot and status to leader, which allows it to start processing new transactions
(lines 55-57). It then sends a NEW_STATE message to other shard members, containing the
new state (line 58). Upon receiving this message (line 59), a process overwrites its state with
the one provided, changes its status to follower, and sets cballot to b, thereby recording
the fact that it has synchronised with the leader of b. Note that the process will not accept
transactions from the new leader until it receives the NEW_STATE message. This ensures that
Invariant 2 is preserved when the process receives the first ACCEPT message in the new ballot.

Coordinator recovery. If a process that accepted a transaction t does not receive the final
decision on it, this may be because the coordinator of t has failed. In this case the process
may decide to become a new coordinator by executing the retry function (line 67). For this
the process just re-sends the PREPARE(t) message to the shards of t. A leader handles the
PREPARE(t) message received from another process pj similarly to one received from a client.
If it has already certified the transaction t, it re-sends the corresponding ACCEPT message to
the shard members, asking them to reply to pj (line 14). Otherwise, it handles t as before.
In the end, a quorum of processes in each shard will reply to the new coordinator (line 28),
which will then broadcast the final decision (lines 30-31). Note that the check at line 14
ensures Invariants 4 and 5: in a given ballot b, a transaction t can only be assigned to a
single slot in the certification order, and all transactions in the txn array are distinct.

Our protocol allows any number of processes to become coordinators of a transaction at
the same time: unlike in the vanilla protocol of Figure 1b, coordinators are not consistently
replicated. Nevertheless, the protocol ensures that they will all reach the same decision, even
in case of leader changes. We formalise this in Invariant 6: part (a) ensures an agreement
on the decision on the k-th transaction in the certification order at a given shard; part (b)
ensures a system-wide agreement on the decision on a given transaction t. The latter part
establishes that the fault-tolerant protocol computes a unique decision on each transaction.

By the structure of the hander at line 29, Invariant 6 follows from Invariant 7, since, if a
coordinator has computed the final decision on a transaction, then a quorum of processes in
each relevant shard has accepted a corresponding vote. We next prove Invariant 7.

Proof of Invariant 7. (a) Let us assume that quorums of processes in s have sent
ACCEPT_ACK(s, b1, k, t1, d1) and ACCEPT_ACK(s, b2, k, t2, d2). Then ACCEPT(b1, k, t1, d1,_) and
ACCEPT(b2, k, t2, d2,_) have been sent to s. Assume without loss of generality that b1 ≤ b2.
If b1 = b2, then by Invariant 1 we must have t1 = t2 and d1 = d2. Assume now that b1 < b2.
By Invariant 3, when leader(b2) sends the ACCEPT message, it has txn[k] = t1. But then due
to the check at line 14, we again must have t1 = t2 and d1 = d2.

(b) Assume that quorums of processes in s have sent ACCEPT_ACK(s, b1, k1, t, d1) and
ACCEPT_ACK(s, b2, k2, t, d2). Then ACCEPT(b1, k1, t, d1,_) and ACCEPT(b2, k2, t, d2,_) have
been sent to s. Without loss of generality, we can assume b1 ≤ b2. We first show that
k1 = k2. If b1 = b2, then we must have k1 = k2 by Invariant 4. Assume now that b1 < b2.
By Invariant 3, when leader(b2) sends the ACCEPT message, it has txn[k1] = t. But then due
to the check at line 14 and Invariant 5, we again must have k1 = k2. Hence, k1 = k2. But
then by Invariant 7a we must also have d1 = d2. J

DISC 2018

14:14 Multi-Shot Distributed Transaction Commit

Protocol correctness. We only establish the safety of the protocol (in the sense of the
correctness condition in §2) and leave guaranteeing liveness to standard means, such as
assuming either an oracle that is eventually able to elect a consistent leader in every shard [5],
or that the system eventually behaves synchronously for sufficiently long [12].

I Theorem 2. The fault-tolerant commit protocol in Algorithms 2–3 simulates the multi-shot
2PC protocol in Algorithm 1.

We give the proof in [7, §B]. Its main idea is to show that, in an execution of the
fault-tolerant protocol, each shard produces a single certification order on transactions from
which votes and final decisions are computed. These certification orders determine the desired
execution of the multi-shot 2PC protocol. We prove the existence of a single per-shard
certification order using Invariant 3, showing that certification orders and votes used to
compute decisions persist across leader changes. However, this property does not hold of
final decisions, and it is this feature that necessitates adding transitions for forgetting and
recalling final decisions to the protocol in Algorithm 1 (lines 21 and 24).

For example, assume that the leader of a ballot b at a shard s receives the decision
abort on a transaction t. The leader will then take this decision into account in its vote
computations, e.g., allowing transactions conflicting with t to commit. However, if the leader
fails, a new leader may not find out about the final decision on t if this decision has not yet
reached other shard members. This leader will not be able to take the decision into account
in its vote computations until it reconstructs the decision from the votes at the relevant
shards (line 67). Forgetting and recalling the final decisions in the multi-shot 2PC protocol
captures how such scenarios affect vote computations.

Optimisations. Our protocol allows the client and the relevant servers to learn the decision
on a transaction in four message delays, including communication with the client (Figure 1c).
As in standard Paxos, this can be further reduced to three message delays at the expense of
increasing the number of messages sent by eliminating the coordinator: processes can send
their ACCEPT_ACK messages for a transaction directly to all processes in the relevant shards
and to the client. Each process can then compute the final decision independently. The
resulting time complexity matches the lower bounds for consensus [24, 6] and non-blocking
atomic commit [13].

In practice, the computation of a shard-local function for s depends only on the objects
managed by s: e.g., Objs for (4) and (5). Hence, once a process at a shard s receives the
final decision on a transaction t, it may discard the data of t irrelevant to s. Note that the
same cannot be done when t is only prepared, since the complete information about it may
be needed to recover from coordinator failure (line 67).

5 Related Work

The existing work on the Atomic Commit Problem (ACP) treats it as a one-shot problem with
the votes being provided as the problem inputs. The classic ACP solution is the Two-Phase
Commit (2PC) protocol [15], which blocks in the event of the coordinator failure. The
non-blocking variant of ACP known as Non-Blocking Atomic Commit (NBAC) [38] has been
extensively studied in both the distributed computing and database communities [38, 13, 33,
20, 23, 17, 18, 16]. The Three-Phase Commit (3PC) family of protocols [38, 3, 13, 2, 23] solve
NBAC by augmenting 2PC with an extra message exchange round in the failure-free case.
Paxos Commit [16] and Guerraoui et al. [18] avoid extra message delays by instead replicating

G. Chockler and A. Gotsman 14:15

the 2PC participants through consensus instances. While our fault-tolerant protocol builds
upon similar ideas to optimise the number of failure-free message delays, it nonetheless solves
a more general problem (TCS) by requiring the output decisions to be compatible with the
given isolation level.

Recently, Guerraoui and Wang [19] have systematically studied the failure-free complexity
of NBAC (in terms of both message delays and number of messages) for various combinations
of the correctness properties and failure models. The complexity of certifying a transaction in
the failure-free runs of our crash fault-tolerant TCS implementation (provided the coordinator
is replaced with all-to-all communication) matches the tight bounds for the most robust
version of NBAC considered in [19], which suggests it is optimal. A comprehensive study of
the TCS complexity in the absence of failures is the subject of future work.

Our multi-shot 2PC protocol is inspired by how 2PC is used in a number of systems [32,
31, 34, 39, 37, 9, 14]. Unlike prior works, we formalise how 2PC interacts with concurrency
control in such systems in a way that is parametric in the isolation level provided and give
conditions for its correctness, i.e., (6)-(8). A number of systems based on deferred update
replication [30] used non-fault-tolerant 2PC for transaction commit [32, 31, 34, 39]. Our
formalisation of the TCS problem should allow making them fault-tolerant using protocols
of the kind we presented in §4.

Multiple researchers have observed that implementing transaction commit by layering
2PC on top of Paxos is suboptimal and proposed possible solutions [41, 26, 28, 37, 11]. In
comparison to our work, they did not formulate a stand-alone certification problem, but
integrated certification with the overall transaction processing protocol for a particular
isolation level and corresponding optimisations.

In more detail, Kraska et al. [26] and Zhang et al. [41] presented sharded transaction
processing systems, respectively called MDCC and TAPIR, that aim to minimise the latency
of transaction commit in a geo-distributed setting. The protocols used are leaderless: to
compute the vote, the coordinator of a transaction contacts processes in each relevant
shard directly; if there is a disagreement between the votes computed by different processes,
additional message exchanges are needed to resolve it. This makes the worse-case failure-free
time complexity of the protocols higher than that of our fault-tolerant protocol. The protocols
were formulated for particular isolation levels (a variant of Read Committed in MDCC and
serializability in TAPIR). Both MDCC and TAPIR are significantly more complex than our
fault-tolerant commit protocol and lack rigorous proofs of correctness.

Sciascia et al. proposed Scalable Deferred Update Replication [37] for implementing
serializable transactions in sharded systems. Like the vanilla protocol in §4, their protocol
keeps shards consistent using black-box consensus. It avoids executing consensus to persist
a final decision by just not taking final decisions into account in vote computations. This
solution, specific to their conflict check for serializability, is suboptimal: if a prepared
transaction t aborts, it will still cause conflicting transactions to abort until their read
timestamp goes above the write timestamp of t.

Dragojević et al. presented a FaRM transactional processing system based on RDMA [11].
Like in our fault-tolerant protocol, in the FaRM atomic commit protocol only shard leaders
compute certification votes. However, recovery in FaRM is simplified by the use of leases
and an external reconfiguration engine.

Mahmoud et al. proposed Replicated Commit [28], which reduces the latency of transac-
tion commit by layering Paxos on top of 2PC, instead of the other way round. This approach
relies on 2PC deciding abort only in case of failures, but not because of concurrency control.
This requires integrating the transaction commit protocol with two-phase locking and does
not allow using it with optimistic concurrency control.

DISC 2018

14:16 Multi-Shot Distributed Transaction Commit

Schiper et al. proposed an alternative approach to implementing deferred update replica-
tion in sharded systems [35]. This distributes transactions to shards for certification using
genuine atomic multicast [10], which avoids the need for a separate fault-tolerant commit
protocol. However, atomic multicast is more expensive than consensus: the best known
implementation requires 4 message delays to deliver a message, in addition to a varying
convoy effect among different transactions [8]. The resulting overall latency of certification is
5 message delays plus the convoy effect.

Our fault-tolerant protocol follows the primary/backup state machine replication approach
in imposing the leader order on transactions certified within each shard. This is inspired
by the design of some total order broadcast protocols, such as Zab [22] and Viewstamped
Replication [29]. Kokocinski et al. [25] have previously explored the idea of delegating the
certification decision to a single leader in the context of deferred update replication. However,
they only considered a non-sharded setting, and did not provide full implementation details
and a correctness proof. In particular, it is unclear how correctness is maintained under
leader changes in their protocol.

6 Conclusion

In this paper we have made the first step towards building a theory of distributed transaction
commit in modern transaction processing systems, which captures interactions between atomic
commit and concurrency control. We proposed a new problem of transaction certification
service and an abstract protocol solving it among reliable processes. From this, we have
systematically derived a provably correct optimised fault-tolerant protocol.

For conciseness, in this paper we focussed on transaction processing systems using
optimistic concurrency control. We hope that, in the future, our framework can be generalised
to systems that employ pessimistic concurrency control or a mixture of the two. The simple
and leader-driven nature of our optimised protocol should also allow porting it to the Byzantine
fault-tolerant setting by integrating ideas from consensus protocols such as PBFT [4].

References
1 Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.

A critique of ANSI SQL isolation levels. In Conference on Management of Data (SIGMOD),
1995.

2 Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., 1986.

3 Andrea J. Borr. Transaction monitoring in ENCOMPASS: reliable distributed transaction
processing. In International Conference on Very Large Data Bases (VLDB), 1981.

4 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Symposium on
Operating Systems Design and Implementation (OSDI), 1999.

5 Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus. J. ACM, 43(4), 1996.

6 Bernadette Charron-Bost and André Schiper. Uniform consensus is harder than consensus.
J. Algorithms, 51(1), 2004.

7 Gregory Chockler and Alexey Gotsman. Multi-shot distributed transaction com-
mit (extended version). arXiv CoRR, 1808.00688, 2018. Available from
http://arxiv.org/abs/1808.00688.

8 Paulo R. Coelho, Nicolas Schiper, and Fernando Pedone. Fast atomic multicast. In Con-
ference on Dependable Systems and Networks (DSN), 2017.

G. Chockler and A. Gotsman 14:17

9 James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,
Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey
Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi
Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google’s globally-distributed database. In Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

10 Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4), 2004.

11 Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzel-
mann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises: Distributed
transactions with consistency, availability, and performance. In Symposium on Operating
Systems Principles (SOSP), 2015.

12 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2), 1988.

13 Cynthia Dwork and Dale Skeen. The inherent cost of nonblocking commitment. In Sym-
posium on Principles of Distributed Computing (PODC), 1983.

14 Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas Anderson. Scal-
able consistency in Scatter. In Symposium on Operating Systems Principles (SOSP), 2011.

15 Jim Gray. Notes on data base operating systems. In Operating Systems, An Advanced
Course, 1978.

16 Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Trans. Database
Syst., 31(1), 2006.

17 Rachid Guerraoui. Revisiting the relationship between non-blocking atomic commitment
and consensus. In Workshop on Distributed Algorithms (WDAG), 1995.

18 Rachid Guerraoui, Mikel Larrea, and André Schiper. Reducing the cost for non-blocking
in atomic commitment. In International Conference on Distributed Computing Systems
(ICDCS), 1996.

19 Rachid Guerraoui and Jingjing Wang. How fast can a distributed transaction commit? In
Symposium on Principles of Database Systems (PODS), 2017.

20 V. Hadzilacos. On the relationship between the atomic commitment and consensus prob-
lems. In Asilomar Workshop on Fault-Tolerant Distributed Computing, 1990.

21 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3), 1990.

22 Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance
broadcast for primary-backup systems. In Conference on Dependable Systems and Networks
(DSN), 2011.

23 Idit Keidar and Danny Dolev. Increasing the resilience of atomic commit at no additional
cost. In Symposium on Principles of Database Systems (PODS), 1995.

24 Idit Keidar and Sergio Rajsbaum. A simple proof of the uniform consensus synchronous
lower bound. Inf. Process. Lett., 85(1), 2003.

25 Maciej Kokocinski, Tadeusz Kobus, and Pawel T. Wojciechowski. Make the leader work: Ex-
ecutive deferred update replication. In Symposium on Reliable Distributed Systems (SRDS),
2014.

26 Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete. MDCC:
Multi-data center consistency. In European Conference on Computer Systems (EuroSys),
2013.

27 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2), 1998.

DISC 2018

14:18 Multi-Shot Distributed Transaction Commit

28 Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Ab-
badi. Low-latency multi-datacenter databases using replicated commit. Proc. VLDB En-
dow., 6(9), 2013.

29 Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Symposium on Principles of
Distributed Computing (PODC), 1988.

30 Fernando Pedone, Rachid Guerraoui, and André Schiper. The database state machine
approach. Distributed and Parallel Databases, 14(1), 2003.

31 Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. Score: A scalable one-copy seri-
alizable partial replication protocol. In International Middleware Conference (Middleware),
2012.

32 Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia, and Luís E. T. Rodrig-
ues. GMU: genuine multiversion update-serializable partial data replication. IEEE Trans.
Parallel Distrib. Syst., 27(10), 2016.

33 K. V. S. Ramarao. Complexity of distributed commit protocols. Acta Informatica, 26(6),
1989.

34 Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. G-DUR: A middleware for
assembling, analyzing, and improving transactional protocols. In International Middleware
Conference (Middleware), 2014.

35 Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine partial replication
in wide area networks. In Symposium on Reliable Distributed Systems (SRDS), 2010.

36 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4), 1990.

37 Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. Scalable deferred update replic-
ation. In Conference on Dependable Systems and Networks (DSN), 2012.

38 Dale Skeen. Nonblocking commit protocols. In Conference on Management of Data (SIG-
MOD), 1981.

39 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Symposium on Operating Systems Principles (SOSP), 2011.

40 Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Al-
gorithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann Pub-
lishers Inc., 2001.

41 Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K.
Ports. Building consistent transactions with inconsistent replication. In Symposium on
Operating Systems Principles (SOSP), 2015.

42 Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K.
Ports. When is operation ordering required in replicated transactional storage? IEEE Data
Eng. Bull., 39(1), 2016.

Deterministic Blind Radio Networks

Artur Czumaj
University of Warwick, Coventry, UK
A.Czumaj@warwick.ac.uk

Peter Davies
University of Warwick, Coventry, UK
P.W.Davies@warwick.ac.uk

Abstract
Ad-hoc radio networks and multiple access channels are classical and well-studied models of
distributed systems, with a large body of literature on deterministic algorithms for fundamental
communications primitives such as broadcasting and wake-up. However, almost all of these
algorithms assume knowledge of the number of participating nodes and the range of possible IDs,
and often make the further assumption that the latter is linear in the former. These are very
strong assumptions for models which were designed to capture networks of weak devices organized
in an ad-hoc manner. It was believed that without this knowledge, deterministic algorithms must
necessarily be much less efficient.

In this paper we address this fundamental question and show that this is not the case. We
present deterministic algorithms for blind networks (in which nodes know only their own IDs),
which match or nearly match the running times of the fastest algorithms which assume network
knowledge (and even surpass the previous fastest algorithms which assume parameter knowledge
but not small labels).

Specifically, in multiple access channels with k participating nodes and IDs up to L,
we give a wake-up algorithm requiring O(k log L log k

log log k) time, improving dramatically over the
O(L3 log3 L) time algorithm of De Marco et al. (2007), and a broadcasting algorithm requir-
ing O(k logL log log k) time, improving over the O(L) time algorithm of Gąsieniec et al. (2001)
in most circumstances. Furthermore, we show how these same algorithms apply directly to
multi-hop radio networks, achieving even larger running time improvements.

2012 ACM Subject Classification Theory of computation → Distributed algorithms, Networks
→ Network algorithms

Keywords and phrases Broadcasting, Deterministic Algorithms, Radio Networks

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.15

Funding Research partially supported by the Centre for Discrete Mathematics and its Applica-
tions (DIMAP), by EPSRC award EP/D063191/1, and by EPSRC award EP/N011163/1.

1 Introduction

In this paper we address the fundamental question in distributed computing of whether basic
communication primitives can be efficiently performed in networks in which the participating
nodes have no knowledge about the network structure. Our focus is on deterministic
algorithms.

© Artur Czumaj and Peter Davies;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:A.Czumaj@warwick.ac.uk
mailto:P.W.Davies@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.DISC.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Deterministic Blind Radio Networks

1.1 Models and problems
We consider the two classical, and related, models of distributed communication: multiple
access channels (cf. [19, 28]) and ad-hoc multi-hop radio networks (cf. [2, 8, 14, 27]).

1.1.1 Multiple access channels
A set of k nodes, with unique identifiers (IDs) from {1, . . . , L}, share a communication
channel. Time is divided into discrete steps, and in every step each node chooses to either
transmit a message to the channel or listen for messages. A transmission is only successful if
exactly one node chooses to transmit in a given time-step; otherwise all nodes hear silence.

1.1.2 Ad-hoc multi-hop radio networks
The network is modeled by a directed graph N = (V,E), with |V | = n, where nodes
correspond to transmitter-receiver stations. The nodes have unique identifiers from {1, . . . , L}.
A directed edge (v, u) ∈ E means that node v can send a message directly to node u. To
make propagation of information feasible, we assume that every node in V is reachable in N

from any other. Time is divided into discrete steps, and in every step each node chooses to
either transmit a message to all neighbors or listen for messages. A listening node only hears
a transmission if exactly one neighbor transmitted; otherwise it hears silence.

It can be seen that multiple access channels are equivalent to single-hop radio networks
(that is, radio networks in which the underlying graph is a clique).

1.1.3 Node knowledge
We study blind versions of these models, by which we mean that the minimum possible
assumptions about node knowledge are made (and this is where our work differs most
significantly from previous work): we assume nodes do not know the parameters k, L, or n, or
any upper bounds thereof. In accordance with the standard model of ad-hoc radio networks
(for more elaborate discussion about the model, see, e.g., [1, 2, 6, 9, 10, 16, 21, 23, 27]), we
also make the assumption that a node does not have any prior knowledge about the topology
of the network, its in-degree and out-degree, or the set of its neighbors. In our setting, the
only prior knowledge nodes have is their own unique ID.

1.1.4 Tasks
In both models we consider the fundamental communication tasks of broadcasting (see, e.g.,
the survey [27] and the references therein) and wake-up (cf. [3, 8, 15]).

In the task of wake-up, nodes begin in a dormant state, and some non-empty subset of
nodes spontaneously ‘wake up’ at arbitrary (adversarially chosen) time-steps. Nodes are also
woken up if they receive messages. Nodes cannot participate (by transmitting) until they are
woken up, and our goal is to ensure that eventually all nodes are awake. We assume nodes
have access only to a local clock: they can count the number of time-steps since they woke
up, but there is no global awareness of an absolute time-step number.

The task of broadcasting is usually described as follows: one node begins with a message,
and it must inform all other nodes of this message via transmissions. However, to enable our
results to transfer from multiple access channels (single-hop radio networks) to multi-hop
radio networks, we will instead use broadcasting to refer to a more generalized task. Our
broadcasting task will be defined similarly to wake-up, with the only difference being that

A. Czumaj and P. Davies 15:3

nodes have access to a global clock, informing them of the absolute time-step number. (In
multiple access channels, this task is usually also referred to as wake-up, specifying global
clock access, but here we will call it broadcasting to better differentiate.)

Notice that the standard broadcasting task in radio networks is a special case of this
task, in which only one node spontaneously wakes up. A global clock can be simulated by
appending the current global time-step to each transmitted message (and since all message
chains originate from the same source node, these time-steps will agree).

For both tasks, we wish to minimize the number of time-steps that elapse between the
first node waking up, and all nodes being woken. We are not concerned with the computation
performed by nodes within time-steps.

1.2 Related work
As fundamental communications primitives, the tasks of designing efficient deterministic
algorithms for broadcasting and wake-up have been extensively studied for various network
models for many decades.

1.2.1 Wake-up
The wake-up problem (with only local clocks) has been studied in both multiple access
channels and multi-hop radio networks (often separately, though the results usually transfer
directly from one to the other). It has been commonly assumed in the literature that network
parameters are known, and that IDs are small (L = nO(1)).

The first sub-quadratic deterministic wake-up protocol for radio networks was given
in by Chrobak et al. [8], who introduced the concept of radio synchronizers to abstract
the essence of the problem. They give an O(n5/3 logn)-time protocol for the wake-up
problem. Since then, there have been several improvements in running time, making use of
the radio synchronizer machinery: firstly to O(n3/2 logn) [4], and then to O(n log2 n) [3].
The current fastest protocol is O(n log2 n

log log n) [13]. However, without the assumption of small
labels, all of these running times are increased. The algorithm of [13] as analyzed would give
O(n log L log(n log L)

log log(n log L)) time, and similar time with k replacing n in multiple access channels.
All of these algorithms, like those we present here, are non-explicit.

There has been some work on wake-up in multiple access channels without knowledge
of network parameters: firstly an O(L4 log5 L) algorithm [15], and then an improvement
to O(L3 log3 L) [26]. It was believed that this algorithms in this setting were necessarily
much slower than those for when parameters were known; for example, [26] states “a crucial
assumption is whether the processors using the shared channel are aware of the total number
n of processors sharing the channel, or some polynomially related upper bound to such
number. When such number n is known, much faster algorithms are possible.”

There are no direct results for wake-up in radio networks with unknown parameters, but
the algorithm of [26] can be applied to give O(nL3 log3 L) time.

We note that randomized algorithms for wake-up have also been studied, both with and
without parameter knowledge; see [15, 19].

1.2.2 Broadcasting
Broadcasting is possibly the most studied problem in radio networks, and has a wealth of
literature in various settings. For the model studied in this paper, directed radio networks
with unknown structure and without collision detection, the first sub-quadratic deterministic

DISC 2018

15:4 Deterministic Blind Radio Networks

broadcasting algorithm was proposed by Chlebus et al. [6], who gave an O(n11/6)-time
broadcasting algorithm. After several small improvements (cf. [7, 25]), Chrobak et al. [9]
designed an almost optimal algorithm that ns the task in O(n log2 n) time, the first to
be only a poly-logarithmic factor away from linear dependency. Kowalski and Pelc [21]
improved this bound to obtain an algorithm of complexity O(n logn logD) and Czumaj
and Rytter [14] gave a broadcasting algorithm running in time O(n log2 D). Here D is the
eccentricity of the network, i.e., the distance between the furthest pair of nodes. De Marco
[24] designed an algorithm that completes broadcasting in O(n logn log logn) time steps,
beating [14] for general graphs. Finally, the O(n logD log logD) algorithm of [13] came
within a log-logarithmic factor of the Ω(n logD) lower bound [10]. Again, however, these
results generally assume small node labels (L = O(n), though some of the earlier results only
require L = O(nc) for some constant c), and their running time results do not hold otherwise.
The situation where node labels can be large is less well-studied, though it is easy to see that
the algorithm of [9] still works, requiring O(n log2 L) time. In multiple access channels, a
O(k log L

k) time algorithm exists [10]. Again, all of these algorithms are, like those presented
here, non-explicit.

All of these results also intrinsically require parameter knowledge. Without knowledge of n,
L, k, or D, the fastest algorithm known is the O(L) time algorithm of [15] for multiple access
channels. This algorithm is explicit, but has the strong added restriction that the first node
wakes up at global time-step 0. It also does not transfer to multi-hop radio networks, so the
best running time therein is the O(DL3 log3 L) given by the algorithm of [26]. Concurrently
with this work, randomized algorithms for broadcasting without parameter knowledge are
presented in [12], achieving a nearly optimal running time of O(D log n

D log2 log n
D + log2 n)

in the model we study here (that is, the model without collision detection).

Broadcasting, as a fundamental communication primitive, has been also studied in
various related models, including undirected networks, randomized broadcasting protocols,
models with collision detection, and models in which the entire network structure is known.
For example, if the underlying network is undirected, then an O(n logD)-time algorithm
due to Kowalski [20] exists. If spontaneous transmissions are allowed and a global clock
available, then deterministic broadcast can be performed in O(L) time in undirected networks
[6]. Randomized broadcasting has been also extensively studied, and in a seminal paper,
Bar-Yehuda et al. [2] designed an almost optimal broadcasting algorithm achieving the
running time of O((D + logn) · logn). This bound has been later improved by Czumaj
and Rytter [14], and independently Kowalski and Pelc [22], who gave optimal randomized
broadcasting algorithms that complete the task in O(D log n

D + log2 n) time with high
probability, matching a known lower bound from [23]. Haeupler and Wajc [17] improved
this bound for undirected networks in the model that allows spontaneous transmissions and
designed an algorithm that completes broadcasting in time O

(
D log n log log n

log D + logO(1) n
)

with high probability, improved to O
(

D log n
log D + logO(1) n

)
in [11]. In the model with collision

detection for undirected networks, an O(D + log6 n)-time randomized algorithm due to
Ghaffari et al. [16] is the first to exploit collisions and surpass the algorithms (and lower
bound) for broadcasting without collision detection.

For more details about broadcasting algorithms in various models, see e.g., [11, 14, 16,
20, 27] and the references therein.

A. Czumaj and P. Davies 15:5

1.3 New results
We present algorithms for the fundamental tasks of broadcasting and wake-up in multiple
access channels (single-hop radio networks) and multi-hop radio networks which require no
knowledge of network parameters: nodes need know only their own unique ID.

Our wake-up algorithm takes O(k log L log k
log log k) time in multiple access channels and

O(n log L log n
log log n) time in multi-hop radio networks, improving dramatically over the previous

best O(L3 log3 L) and O(DL3 log3 L) respective running times of [26] (recall that k ≤ n ≤ L).
This is particularly significant in the case of large labels, since dependency on L has been im-
proved from cubic to logarithmic. Furthermore, our running time matches the O(n log L log n

log log n)
time of [13], the fastest algorithm with parameter knowledge and small node labels.

Our broadcasting algorithm takes O(k logL log log k) time in multiple access channels and
O(n logL log logn) time in multi-hop radio networks. This improves over the previous best
O(L) multiple access channel bound [15] in most cases. In radio networks the improvement
is even more pronounced, beating not only the O(DL3 log3 L) result of [26] but also the
O(n log2 L)-time algorithm of [9], which was the fastest result for large labels even when
network parameters are known. When labels are small (i.e., L = nO(1)), our result matches
the best running time for known parameters (O(n logD log logD) from [13]) for networks of
polynomial eccentricity.

We believe the primary value of our work is in challenging the long-standing assumption
that parameter knowledge is necessary for efficient deterministic algorithms in radio networks
and multiple access channels. We show that in fact, deterministic algorithms which do not
assume this knowledge can reach the fastest running times for those that do.

1.4 Previous approaches
Almost all deterministic broadcasting protocols with sub-quadratic complexity (that is, since
[6]) have relied on the concept of selective families (or some similar variant thereof, such
as selectors). These are families of sets for which one can guarantee that any subset of
[k] := {1, 2, . . . , k} below a certain size has an intersection of size exactly 1 with some member
of the family [6]. They are useful in the context of radio networks because if the members
of the family are interpreted to be the set of nodes which are allowed to transmit in a
particular time-step, then after going through each member, any node with a participating
in-neighbor and an in-neighborhood smaller than the size threshold will be informed. Most
of the recent improvements in broadcasting time have been due to a combination of proving
smaller selective families exist, and finding more efficient ways to apply them (i.e., choosing
which size of family to apply at which time) [6, 7, 9, 14].

Applying such constructs requires coordination between nodes, which relies on a global
clock, making them unsuitable for wake-up. To tackle this issue, Chrobak et al. [8] introduced
the concept of radio synchronizers. These are a development of selective families which
allow nodes to begin their behavior at different times. A further extension to universal
synchronizers in [4] allowed effectiveness across all in-neighborhood sizes.

Another similar extension of selective families came in 2010 with a paper by De Marco
[24], which used a transmission matrix to schedule node transmissions for broadcasting.
Like radio synchronizers, the application of this matrix allowed nodes to begin their own
transmission sequence at any time, and still provided a ‘selective’ property that guaranteed
broadcasting progress. The synchronization afforded by the assumption of a global clock
allowed this method to beat the time bounds given by radio synchronizers (and previous
broadcasting algorithms using selective families).

DISC 2018

15:6 Deterministic Blind Radio Networks

The proofs of existence for selective families, synchronizers, and transmission matrices
follow similar lines: a probabilistic candidate object is generated by deciding on each element
independently at random with certain carefully chosen probabilities, and then it is proven
that the candidate satisfies the desired properties with positive probability, and so such an
object must exist. These types of proofs are all non-constructive (and therefore all resulting
algorithms non-explicit; cf. [5, 18] for an explicit construction of selective families with
significantly weaker size bounds).

In contrast, results on multiple access channels without parameter knowledge (notably
[15, 26]) have not used these types of combinatorial objects, and instead rely on some
results from number theory. The algorithm of [26], for instance, is to have nodes transmit
periodically, a node with ID v waiting pv steps between transmissions, where pv is the vth

smallest prime number. A number-theoretic result is then employed to show that eventually
one node will transmit alone. As a result, these algorithms have the advantage of being
explicit, but the disadvantage of slower running times.

1.5 Novel approach

We aim to apply the approach of using combinatorial objects proven by the probabilistic
method to the setting where network parameters are not known. One way to do this would
be to apply selectors (for example) of continually increasing size, until one succeeds. However,
since there are two parameters which must meet the correct values for a successful application
(k and L in the case of medium access channels), running times for this approach are poor.
Instead, we define, and prove the existence of, a single, infinite combinatorial object, which
can accommodate all possible values of parameters at the same time.

Another difference is that for all previous works using selective families or variants thereof,
the candidate object has been generated with the same sequence of probabilities for each node.
Here, however, in order to achieve good running times we need to have these probabilities
depending on the node ID. In essence, this means that nodes effectively use their own ID as
an estimate of the maximum ID in the network.

1.6 A note on non-explicitness

As mentioned, almost all deterministic broadcasting protocols with sub-quadratic complexity
have relied on selective families or variants thereof, and have been non-explicit results. Our
work here is also non-explicit, but while this is standard for deterministic radio network
algorithms, it may present more of an issue here, since our combinatorial structures are
infinite. It is not clear how the protocols we present could be performed by devices with
bounded memory, and as such this work is more of a proof-of-concept than a practical
algorithm. However, it is possible that our method could be adapted so that nodes’ behavior
could be generated by a finite-size (i.e., a function of ID) program; this would be a natural
and interesting extension to our work, and would overcome the problem.

Another issue which would remain is that nodes must perform the protocol indefinitely,
and never become aware that broadcasting has been successfully completed. However, this is
unavoidable in the model: Chlebus et al. [6] prove that acknowledged broadcasting without
parameter knowledge is impossible.

A. Czumaj and P. Davies 15:7

2 Combinatorial objects

In this section we present the two combinatorial objects that we wish to use in our algorithms:
unbounded universal synchronizers and unbounded transmission schedules. After defining
them in Sections 2.1 and 2.2, we present their main properties in Theorems 3 and 12, and
then show how to apply them to obtain new deterministic algorithms for wake-up and
broadcasting in multiple access channels and in radio networks (Theorems 19, 20, 22, 23).

2.1 Unbounded universal synchronizers
For the task of wake-up, i.e., in the absence of a global clock, we will define an object called
an unbounded universal synchronizer for use in our algorithm.

We begin by defining the sets of circumstances our algorithm must account for:

I Definition 1. An (r, k)-instance X is a set K of k nodes with∑
v∈K

log v = r

and wake-up function ω : K → N.

(By using v as an integer here, we are abusing notation to mean the ID of node v.)
Here r is the main parameter we will use to quantify how ‘large’ our input instance is.

By using the sum of logarithms of IDs (which approximates the total number of bits needed
to write all IDs in use), we capture both the number of participating nodes and the length of
IDs in a single parameter. We require r to be an integer, so we round down accordingly, but
we omit floor functions for clarity since they do not affect the asymptotic result.

The wake-up function ω maps each node to the time-step it wakes up (either spontaneously
or by receiving a transmission) when our algorithm is run on this instance. This means
that the wake-up function depends on the algorithm, but there is no circular dependency:
whether nodes wake-up in time-step j only depends on the algorithm’s behavior in previous
time-steps, and the algorithm’s behavior at time-step j only depends on the wake-up function
up to j. We will also extend ω to sets of nodes in the instance by ω(K) := minv∈K ω(v).

We now define the combinatorial object that will be the basis of our algorithm:

I Definition 2. For a function g : N × N → N, an unbounded universal synchronizer
of delay g is a function S : N → {0, 1}N such that for any (r, k)-instance, there is some
time-step j ≤ ω(K) + g(r, k) with

∑
v∈K S(v)j−ω(v) = 1.

The unbounded universal synchronizer S is a function mapping node IDs to a sequence of
0s and 1s, which tell nodes when to listen and transmit respectively. The function g, which
we will call the delay function, tells us how many time-steps we must wait before a successful
transmission is guaranteed, so this is what we want to asymptotically minimize.

We will apply this object to perform wake-up as follows: each node v transmits a message
in time-step j (with its time-step count starting upon waking up) iff S(v)j = 1. Then, the
property guarantees that at some time-step j within g(r, k) time-steps of the first node
waking up, any (r, k)-instance will have a successful transmission. We call this S ‘hitting’ the
(r, k)-instance at time-step j. So, our aim is to show the existence of such an object, with g
growing as slowly as possible.

Our main technical result in this section is the following:

I Theorem 3. There exists an unbounded universal synchronizer of delay g, where
g(r, k) = O

(
r log k

log log k

)
.

DISC 2018

15:8 Deterministic Blind Radio Networks

Our approach to proving Theorem 3 will be to randomly generate a candidate synchronizer,
and then prove that with positive probability it does indeed satisfy the required property.
Then, for this to be the case, at least one such object must exist.

Our candidate S : N→ {0, 1}N will be generated by independently choosing each S(v)j

to be 1 with probability c log v
j+2c log v and 0 otherwise, where c is some sufficiently large constant

to be chosen later.
While S is drawn from an uncountable set, we will only be concerned with events that

depend upon a finite portion of it, and countable unions and intersections thereof. Therefore,
we can use as our underlying σ-algebra that generated by the set of all events Ev,j = {S :
S(v)j = 1}, where v, j ∈ N, with the corresponding probabilities P [Ev,j] = c log v

j+2c log v .
We set delay function g(r, k) = c2r log k

log log k .
To simplify our task, we begin with some useful observations:
First we note that since we only care about the asymptotic behavior of g, we can assume

that r is larger than a sufficiently large constant.
We also note that we need not consider all (r, k)-instances. For a given (r, k)-instance

and time-step j, let Kj be the set of nodes woken up by time j (with kj := |Kj |), and rj

be defined as r but restricted to the nodes in Kj . Let t be the earliest time-step such that
t > g(rt, kt), and curtail the (r, k)-instance to the corresponding (rt, kt)-instance of nodes in
Kt. It is easy to see that if we hit all curtailed (rt, kt)-instances within g(rt, kt) time, we
must hit all (r, k)-instances within g(r, k) time, so henceforth we will only consider curtailed
instances (i.e., we can assume that j ≤ g(rj , kj) for all j < g(r, k)).

Finally, we observe that, since nodes’ behavior is not dependent on the global clock, we
can shift all (r, k)-instances to begin at time-step 0.

To analyze the probability of hitting (r, k)-instances, define the load of a time-step f(j)
to be the expected number of transmissions in that time-step:

I Definition 4. For a fixed (r, k)-instance, the load f(j) of a time-step j is defined as∑
v∈Kj

P [v transmits] =
∑

v∈Kj

c log v
j − ω(v) + 2c log v .

We now seek to bound the load from above and below, since when the load is close to
constant we have a good chance of hitting.

I Lemma 5. All time-steps j ≤ g(r, k) have f(j) ≥ log log k
2c log k .

Proof. Fix a time-step j ≤ g(r, k), let Kj be the set of nodes awake by time-step j, and let
kj = |Kj | and rj =

∑
v∈Kj

log v, analogous to r and k. If kj = k, then

f(j) ≥
∑
v∈K

c log v
j + 2c log v ≥

cr

j + 2cr ≥
cr

2c2r log k
log log k

≥ log log k
2c log k .

If kj < k, then due to our curtailing of instances, we have j ≤ g(rj , kj). So,

f(j) ≥
∑

v∈Kj

c log v
j + 2c log v ≥

crj

j + 2crj
≥ crj

2c2rj log kj

log log kj

≥ log log kj

2c log kj
≥ log log k

2c log k . J

Having bounded load from below, we also seek to bound it from above. Unfortunately,
the load in any particular time-step can be very high, but we can get a good bound on at
least a constant fraction of the columns.

A. Czumaj and P. Davies 15:9

I Lemma 6. Let F denote the set of time-steps j ≤ g(r, k) such that log log k
2c log k ≤ f(j) ≤ log log k

3 .
Then |F | ≥ cr log k

2 log log k .

Proof. The total load over all time-steps can be bounded as follows:∑
j≤g(r,k)

f(j) =
∑

j≤g(r,k)

∑
v∈Kj

c log v
j − ω(v) + 2c log v ≤

∑
v∈K

∑
ω(v)<j≤g(r,k)

c log v
j − ω(v) + 2c log v

≤
∑
v∈K

c log v
∑

j≤g(r,k)

1
j + 2c log v ≤

∑
v∈K

c log v ln 2g(r, k)
4c log v .

Let Ki = {v ∈ K : r
k·2i ≤ log v < r

k·2i−1 }, for i ≥ 1, and K ′ = {v ∈ K : log v ≥ r
k}

If
∑

v∈Ki
log v > r

2i then r < 2i
∑

v∈Ki
log v ≤ 2i

∑
v∈Ki

r
k·2i ≤ r . This gives a contra-

diction, so we must have
∑

v∈Ki
log v ≤ r

2i . Then,∑
j≤g(r,k)

f(j) ≤
∑
v∈K

c log v ln 2g(r, k)
4c log v ≤

∑
i≥1

∑
v∈Ki

c log v ln g(r, k)
2c log v +

∑
v∈K′

c log v ln g(r, k)
2c log v

≤
∑
i≥1

∑
v∈Ki

c log v ln g(r, k)
2c r

k·2i

+
∑

v∈K′

c log v ln g(r, k)
2c r

k

=
∑
i≥1

∑
v∈Ki

c log v ln ck2i−1 log k
log log k +

∑
v∈K′

c log v ln ck log k
2 log log k

≤
∑
i≥1

cr2−i(2 ln k + (i− 1) ln 2) + 2cr ln k ≤ 5cr ln k ≤ 8cr log k .

Therefore, at most 24cr log k
log log k time-steps have load higher than log log k

3 . Since by Lemma 5
all time-steps have load at least log log k

2c log k ,we have |F | ≥ g(r, k)− 24cr log k
log log k ≥

c2r log k
2 log log k (provided

we pick c ≥ 7). J

Now that we have bounded load, we show how it relates to hitting probability. The
following lemma, or variants thereof, has been used in several previous works such as [24],
but we prove it here for completeness.

I Lemma 7. Let xi, i ∈ [n], be independent {0, 1}-valued random variables with P [xi = 1] ≤
1
2 , and let f =

∑
i∈[n] P [xi = 1]. Then P

[∑
i∈[n] xi = 1

]
≥ f4−f .

Proof.

P

∑
i∈[n]

xi = 1

 =
∑

j∈[n]

P [xj = 1 ∧ ∀i6=j xi = 0] ≥
∑

j∈[n]

P [xj = 1] · P [∀i xi = 0]

≥ f · P [∀i xi = 0] = f ·
∏

i∈[n]

(1− P [xi = 1]) ≥ f ·
∏

i∈[n]

4−P[xi=1]

= f · 4−
∑

i∈[n]
P[xi=1] = f4−f . J

We can use Lemma 7 to show that the probability that we hit on our ‘good’ time-steps
(those in F) is high:

I Lemma 8. For any time-step j ∈ F , the probability that j hits is at least log log k
3c log k .

Proof. log log k
2c log k ≤ f(j) ≤ log log k

3 , and so f(j)4−f(j) is minimized at f(j) = log log k
2c log k and is

therefore at least log log k
2c log k 4−

log log k
2c log k ≥ log log k

3c log k . J

DISC 2018

15:10 Deterministic Blind Radio Networks

We now bound the number of possible instances we must hit:

I Lemma 9. For any (sufficiently large) r, the number of unique (r, k)-instances is at most
25r.

Proof. The total number of bits used in all node IDs in the instance is at most r. There
are at most 2r+1 possible bit-strings of length at most r, and at most 2r ways of dividing
each of these into substrings (for individual IDs), giving at most 22r+1 sets of node IDs. The
number of possible wake-up functions ω : K → N is at most g(r, k)k, since all nodes must be
awake by g(r, k) time or the instance would have been curtailed.

g(r, k)k = 2k log g(r,k) ≤ 21.1k log r = 21.1(k log k+k log r
k) ≤ 21.3(k log(k0.9)+r) ≤ 22.9r .

So, the total number of possible (r, k)-instances is at most 22r+1+2.9r ≤ 25r. J

I Lemma 10. For any (sufficiently large) r, the probability that S does not hit all (r, k)-
instances is at most 2−3r

Proof. Fix some (r, k)-instance. The probability that it is not hit within g(k, r) time-steps
is at most∏

j∈F

(1− log log k
3c log k) ≤ e−|F |

log log k
3c log k ≤ e− 2

3 cr = 2− 2cr
3 ln 2 ,

by Lemma 8. Hence, if we set c = 9, by a union bound the probability that any (r, k)-instance
is not hit is at most 25r · 2− 18r

3 ln 2 ≤ 2−3r . J

We can now prove our main theorem on unbounded universal synchronizers (Theorem 3):

Proof. By Lemma 10 and a union bound over r, the probability that S does not hit all
instances is at most

∑
r∈N 2−3r < 1. Therefore S is an unbounded universal synchronizer of

delay g with non-zero probability, so such an object must exist. J

2.2 Unbounded transmission schedules
For the task of broadcasting, i.e., when a global clock is available, we can make use of the
global clock to improve our running time. We again define an infinite combinatorial object,
which we will call an unbounded transmission schedule. We use the same definition of
(r, k)-instances as in the previous section.

I Definition 11. For a function h : N× N→ N, an unbounded transmission schedule
of delay h is a function T : N×N→ {0, 1}N such that T (v, ω(v))j = 0 for any j < ω(v), and
for any (r, k)-instance there is some time-step j ≤ ω(K) +h(r, k) with

∑
v∈K T (v, ω(v))j = 1.

The difference here from an unbounded universal synchronizer is that nodes now know the
global time-step in which they wake up, and so their transmission patterns can depend upon
it. This is the second argument of the function T . The other difference in the meaning of
the definition is that the output of T now corresponds to absolute time-step numbers, rather
than being relative to each node’s wake-up time as for unbounded universal synchronizers.
That is, the jth entry of a node’s output sequence tells it how it should behave in global
time-step j, rather than j time-steps after it wakes up.

Our existence result for unbounded transmission schedules is the following:

A. Czumaj and P. Davies 15:11

I Theorem 12. There exists an unbounded transmission schedule of delay h, where
h(r, k) = O (r log log k).

Our method will again be to randomly generate a candidate unbounded transmission
schedule T , and then prove that it satisfies the required property with positive probability,
so some such object must exist.

Let d be a constant to be chosen later. Our candidate object T will be generated as follows:
for each node v, we generate a transmission sequence sv,j , j ∈ N, with sv,j independently
chosen to be 1 with probability d log v log log j

j+2d log v log log j and 0 otherwise.
However, these will not be our final probabilities for generating T . To make use of

our global clock, we will also divide time into short phases during which transmission
probability will decay exponentially. The lengths of these phases will be based on a function
z(j) := 2d1+log log log je, i.e., log log j rounded up to the next-plus-one power of 2. An
important property to note is that for all i, z(i)|z(i+ 1). We also generate a sequence pv,j ,
j ∈ N of phase values, each chosen independently and uniformly at random from the real
interval [0, 1]. These, combined with the global time-step number and current phase length,
will give us our final generation probabilities.

We set T (v, ω(v))j to equal 1 iff sv,j−ω(v) = 1 and pv,j−ω(v) ≤ 2−j mod z(j−ω(v)).
It can then be seen that

P [T (v, ω(v))j = 1] = d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2j mod z(j−ω(v)) .

The reason we split the process of random generation into two steps (using our phase
values) is that now, if we shift all wake-up times in an (r, k)-instance by the same multiple
of z(x), then node behavior in the first x time-steps after ω(K) does not change. We will
require this property when analyzing T .

Our probabilistic analysis is with respect to the σ-algebra generated by all events
Ev,ω(v),j = {T : T (v, ω(v))j = 1}, with v, ω(v), j ∈ N, and with the corresponding probabilit-
ies given above.

Let load f(j) of a time-step j be again defined as the expected number of transmissions
in that time-step:

f(j) :=
∑

v∈Kj

d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2j mod z(j−ω(v)) .

We will set our delay function h(r, k) = d2r log log k.
Again we make some observations that allow us to narrow the circumstances we must

consider: firstly that we can again assume that r is larger than a sufficiently large constant,
and secondly that we need only look at curtailed instances (i.e., we can assume that
j − ω(K) ≤ h(rj , kj) for all j < h(r, k)). This time, however, we cannot shift instances to
begin at time-step 0, because node behavior is dependent upon global time-step number.

We follow a similar line of proof as before, except with some extra complications in
dealing with phases. We first consider only time-steps at the beginning of each phase, i.e.,
time-steps ω(K) < j ≤ ω(K) + h(r, k) with j mod z(h(r, k)) ≡ 0, and we will call these basic
time-steps. Notice that for basic time-steps,

f(j) =
∑

v∈Kj

d log v log log(j − ω(v))
j − ω(v)2d log v log log(j − ω(v)) .

We bound the load of basic time-steps from below:

DISC 2018

15:12 Deterministic Blind Radio Networks

I Lemma 13. All basic time-steps j have f(j) ≥ 1
2d .

Proof. Fix a basic time-step j, let Kj be the set of nodes awake by time-step j, and let
kj = |Kj | and rj =

∑
v∈Kj

log v, analogous to r and k. If kj = k, then

f(j) ≥
∑
v∈K

d log v log log(j − ω(v))
j − ω(v) + 2d log v log log(j − ω(v)) ≥

∑
v∈K

d log v log log h(r, k)
h(r, k) + 2d log v log log h(r, k)

≥
∑
v∈K

d log v log log k
2d2r log log k ≥

dr

2d2r
= 1

2d .

If kj < k, then due to our curtailing of instances, we have j − ω(K) ≤ h(rj , kj). So,

f(j) ≥
∑

v∈Kj

d log v log log(j − ω(v))
j − ω(v) + 2d log v log log(j − ω(v)) ≥

∑
v∈K

d log v log log h(rj , kj)
h(rj , kj) + 2d log v log log h(r, k)

≥
∑
v∈K

d log v log log kj

2d2rj log log kj
≥ drj

2d2rj
= 1

2d . J

We next examine time-steps at the end of phases, i.e., with ω(K) < j ≤ ω(K) + h(r, k)
and j mod z(h(r, k)) ≡ −1, and call these ending time-steps. Note that for ending time-steps,

f(j) =
∑

v∈Kj

d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2z(j−ω(v))−1 .

We bound the load of (a constant fraction of) ending time-steps from above:

I Lemma 14. Let F denote the set of ending time-steps j such that f(j) ≤ 1. Then
|F| ≥ d2r

2 .

Proof. Let t be the first ending time-step. The total load over all ending time-steps can be
bounded as follows:

∑
ending timestep j

f(j) ≤
h(r,k)/z(h(r,k))∑

i=0
f(t+ iz(h(r, k))) ≤

d2r∑
i=0

f(t+ iz(h(r, k))) .

Applying the definition of f , f(t+ iz(h(r, k))) is equal to:

∑
v∈Kt+iz(h(r))

d log v log log(t+ iz(h(r, k))− ω(v))2−z(t+iz(h(r,k))−ω(v))−1

(t+ iz(h(r, k))− ω(v) + 2d log v log log(t+ iz(h(r, k))− ω(v))) ,

which is bounded from above when t− ω(v) = 0:

f(t+ iz(h(r, k))) ≤
∑

v∈Kt+iz(h(r))

d log v log log(iz(h(r)))
(iz(h(r, k)) + 2d log v log log(iz(h(r, k))))2z(iz(h(r,k)))

≤
∑

v∈Kt+iz(h(r,k))

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k))) .

A. Czumaj and P. Davies 15:13

So,

∑
ending timestep j

f(j) ≤
d2r∑
i=0

∑
v∈Kt+iz(h(r,k))

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k)))

≤
∑
v∈K

d2r∑
i=0

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k)))

≤
∑
v∈K

d2r∑
i=0

2d log v log log(iz(h(r, k)))
iz(h(r, k)) log2(iz(h(r, k)))

≤
∑
v∈K

2d log v
∞∑

i=0

log log(iz(h(r, k)))
iz(h(r, k)) log2(iz(h(r, k)))

≤ 10dr .

Here the last inequality follows since the second sum converges to a constant less than
5, which can be seen by inspection of the first three terms and using the integral bound∫∞

2
log log x
x log2 x

< 2
Therefore, at most 10dr ending time-steps have load higher than 1, and so at least

d2r − 10dr ≥ d2r
2 (provided we set d ≥ 5) ending time-steps have f(j) ≤ 1. J

We can use Lemma 14 to show that we have sufficiently many time-steps with load within
the interval [1

2d , 1]:

I Lemma 15. Let F be the set of time-steps ω(K) < j ≤ ω(K) +h(r, k) with 1
2d ≤ f(j) ≤ 1.

Then |F| ≥ d2r
2 .

Proof. It can be seen that load decreases by at most a multiplicative factor of 3 between
consecutive time-steps (since the contribution of each node decreases by at most a factor
of 3). So, since every base time-step has load at least 1

2d , for every ending timestep j with
f(j) ≤ 1, there is some j′ in the preceding phase with 1

2d ≤ f(j′) ≤ 1. J

Since these time-steps have constant load, they have constant probability of hitting:

I Lemma 16. For any time-step j ∈ F , the probability that j hits is at least 1
3d .

Proof. By Lemma 7, the probability that j hits is at least f(j)4−f(j). This is minimized
over the range [1

2d , 1] at f(j) = 1
2d and is therefore at least 4−

1
2d

2d ≥ 1
3d . J

We now need to know how many unique (r, k)-instances we must hit. Since we are only
concerned with the first h(r, k) time-steps after the first node wakes up, we need only consider
(r, k)-instances which are unique within this time range.

I Lemma 17. For any (sufficiently large) r, the number of unique (up to the first h(r, k)
steps after activation) (r, k)-instances is at most 25r.

Proof. As before (in Lemma 9) there are at most 22r+1 sets of node IDs. The number of
possible wake-up functions ω : K → N for a fixed ω(K) is again at most h(r, k)k, and though
we are using a different delay function to the previous section, the calculations used to prove
Lemma 9 still hold.

h(r, k)k = 2k log h(r,k) ≤ 21.1k log r = 21.1(k log k+k log r
k) ≤ 21.3(k log(k0.9)+r) ≤ 22.9r .

However, now our object does depend on ω(K), though as we noted we can shift all
activation times by a multiple of z(h(r, k)) and behavior during the time-steps we analyze is

DISC 2018

15:14 Deterministic Blind Radio Networks

Algorithm 1 Wake-up at a node v.
for j from 1 to ∞, in time-step ω(v) + j, do

v transmits iff S(v)j = 1
end for

Algorithm 2 Broadcasting at a node v.
for j from 1 to ∞, in time-step j, do

v transmits iff T (v, ω(v))j = 1
end for

unchanged. So our total number of instances to consider is multiplied by z(h(r, k)), and is
upper bounded by 22r+1+2.9rz(h(r, k)) ≤ 25r . J

I Lemma 18. For any (sufficiently large) r, the probability that T does not hit all (r, k)-
instances is at most 2−3r.

Proof. Fix some (r, k)-instance. The probability that it is not hit within h(r, k) time-steps
is at most∏

j∈F
(1− 1

3d) ≤ e−
|F|
3d ≤ e− dr

6 = 2− dr
6 ln 2 .

Hence, if we set d = 34, by a union bound the probability that any (r, k)-instance is not
hit is at most 25r · 2− 34r

6 ln 2 ≤ 2−3r . J

We can now prove our main theorem on unbounded transmission schedules (Theorem 12):

Proof. By Lemma 18 and a union bound over r, the probability that T does not hit all
instances is at most

∑
r∈N 2−3r < 1. Therefore T is an unbounded transmission schedule of

delay h with non-zero probability, so such an object must exist. J

3 Algorithms for multiple access channels

Armed with our combinatorial objects, our algorithms are now extremely simple, and are
the same for multiple access channels as for multi-hop radio networks.

Let S be an unbounded universal synchronizer of delay g, where g(r, k) = O
(

r log k
log log k

)
,

and T be an unbounded transmission schedule of delay h, where h(r, k) = O(r log log k).
Our algorithms are simply applications of these objects.

I Theorem 19. Algorithm 1 performs wake-up in multiple access channels in time
O
(

k log L log k
log log k

)
, without knowledge of k or L.

Proof. By the definition of an unbounded universal synchronizer, there is some time-step
within

g(r, k) = O

(
r log k

log log k

)
= O

(
k logL log k

log log k

)
time-steps of the first activation in which only one node transmits, and this completes
wake-up. J

A. Czumaj and P. Davies 15:15

I Theorem 20. Algorithm 2 performs broadcasting in multiple access channels in time
O(k logL log log k), without knowledge of k or L.

Proof. By the definition of an unbounded transmission schedule, there is some time-step
within h(r, k) = O(r log log k) = O(k logL log log k) time-steps of the first activation in which
only one node transmits, and this completes broadcasting. J

4 Algorithms for radio networks

To see how our results on multiple access channels (Theorems 19 and 20) transfer directly to
multi-hop radio networks, we apply the analysis method of [13] for radio network protocols.
The idea is that we fix a shortest path p = (p0, p1, . . . pd) from some source node to some
target node, and then classify all nodes into layers depending on the furthest node along the
path to which they are an in-neighbor, i.e., layer Li = {v : max j such that (v, pj) ∈ E = i}.
We wish to quantify how long a layer can remain leading, that is, the furthest layer to contain
awake nodes. The key point is that we can regard these layers as multiple access channels:
though they are not necessarily cliques, all we need is for a single node in the layer to transmit
and then the layer ceases to be leading. Once the final layer ceases to be leading, the target
node must be informed, and since this node was chosen arbitrarily we obtain a time-bound
for informing the entire network. Thereby the problem is reduced to a sequence of at most D
single-hop instances, whose sizes sum to at most n. For full details of this analysis method
see [13].

Therefore we can use the following lemma from [13] (paraphrased to fit our notation) to
analyze how our algorithms perform in radio networks.

I Lemma 21 (Lemma 10 of [13]). Let X : [n]→ N be a non-decreasing function, and define
Y (n) to be the supremum of the function

∑n
i=1 X(`i), where non-negative integers `i satisfy

the constraint
∑n

i=1 `i ≤ n. If a broadcast or wake-up protocol ensures that any layer of size
` remains leading for no more than X(`) time-steps, then all nodes wake up within Y (n)
time-steps.

I Theorem 22. Algorithm 1 performs wake-up in radio networks in time O(n log L log n
log log n),

without knowledge of n or L.

Proof. By Theorem 19, any layer of size ` remains leading for no more than X(`) time-steps,
where X(`) = O(` log L log `

log log `). Y (n, h) is then maximized by setting `1 = n and `i = 0 for every
i > 1. So, by Lemma 21, wake-up is performed for the entire radio network in O(n log L log n

log log n)
time. J

I Theorem 23. Algorithm 2 performs broadcasting in radio networks in O(n logL log logn)
time, without knowledge of n or L.

Proof. By Theorem 20, any layer of size ` remains leading for no more than X(`) time-steps,
where X(`) = O(` logL log log `). Y (n, h) is then maximized by setting `1 = n and `i = 0
for i > 1. So, by Lemma 21, broadcasting is performed for the entire radio network in
O(n logL log logn) time. J

DISC 2018

15:16 Deterministic Blind Radio Networks

5 Conclusions

We have shown that deterministic algorithms for communications primitives in multiple
access channels and multi-hop radio networks need not assume parameter knowledge, or
small IDs, to be efficient. One possible next step would be to show a means by which nodes
could generate efficient transmission schedules based on some finite (i.e., with size bounded
by some function of ID) advice string; this would go some way towards making the algorithm
practical.

References

1 N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio broadcast. Journal
of Computer and System Sciences, 43(2):290–298, 1991.

2 R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in multi-
hop radio networks: An exponential gap between determinism and randomization. Journal
of Computer and System Sciences, 45(1):104–126, 1992.

3 B. Chlebus, L. Gasieniec, D. R. Kowalski, and T. Radzik. On the wake-up problem in
radio networks. In Proceedings of the 32nd Annual International Colloquium on Automata,
Languages and Programming (ICALP), pages 347–359, 2005.

4 B. Chlebus and D. R. Kowalski. A better wake-up in radio networks. In Proceedings of
the 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
266–274, 2004.

5 B. Chlebus and D. R. Kowalski. Almost optimal explicit selectors. In Proceedings of the 15th
International Symposium on Fundamentals of Computation Theory (FCT), pages 270–280,
2005.

6 B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic broadcast-
ing in unknown radio networks. Distributed Computing, 15(1):27–38, 2002.

7 B. S. Chlebus, L. Gasieniec, A. Östlin, and J. M. Robson. Deterministic radio broadcasting.
In Proceedings of the 27th Annual International Colloquium on Automata, Languages and
Programming (ICALP), pages 717–728, 2000.

8 M. Chrobak, L. Gasieniec, and D. R. Kowalski. The wake-up problem in multihop radio
networks. SIAM Journal on Computing, 36(5):1453–1471, 2007.

9 M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio net-
works. Journal of Algorithms, 43(2):177–189, 2002.

10 A. E. F. Clementi, A. Monti, and R. Silvestri. Distributed broadcasting in radio networks
of unknown topology. Theoretical Computer Science, 302(1–3):337–364, 2003.

11 A. Czumaj and P. Davies. Exploiting spontaneous transmissions for broadcasting and
leader election in radio networks. In Proceedings of the 36th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 3–12, 2017.

12 A. Czumaj and P. Davies. Brief announcement: Randomized blind radio networks. In
Proceedings of the 32nd International Symposium on Distributed Computing (DISC), pages
44:1–44:3, 2018.

13 A. Czumaj and P. Davies. Deterministic communication in radio networks. SIAM Journal
on Computing, 47(1):218–240, 2018.

14 A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with unknown
topology. In Proceedings of the 44th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 492–501, 2003.

15 L. Gasieniec, A. Pelc, and D. Peleg. The wakeup problem in synchronous broadcast systems.
SIAM Journal on Discrete Mathematics, 14(2):207–222, 2001.

A. Czumaj and P. Davies 15:17

16 M. Ghaffari, B. Haeupler, and M. Khabbazian. Randomized broadcast in radio networks
with collision detection. In Proceedings of the 32nd Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 325–334, 2013.

17 B. Haeupler and D. Wajc. A faster distributed radio broadcast primitive. In Proceedings of
the 35th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
361–370, 2016.

18 P. Indyk. Explicit constructions of selectors and related combinatorial structures, with
applications. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 697–704, 2002.

19 T. Jurdziński and G. Stachowiak. Probabilistic algorithms for the wakeup problem in
single-hop radio networks. Theory of Computing Systems, 38(3):347–367, 2005.

20 D. Kowalski. On selection problem in radio networks. In Proceedings of the 24th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 158–166, 2005.

21 D. Kowalski and A. Pelc. Faster deterministic broadcasting in ad hoc radio networks. SIAM
Journal on Discrete Mathematics, 18(2):332–346, 2004.

22 D. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks. Distributed
Computing, 18(1):43–57, 2005.

23 E. Kushilevitz and Y. Mansour. An Ω(D log(N/D)) lower bound for broadcast in radio
networks. SIAM Journal on Computing, 27(3):702–712, 1998.

24 G. De Marco. Distributed broadcast in unknown radio networks. SIAM Journal on Com-
puting, 39(6):2162–2175, 2010.

25 G. De Marco and A. Pelc. Faster broadcasting in unknown radio networks. Information
Processing Letters, 79(2):53–56, 2001.

26 G. De Marco, M. Pelegrini, and G. Sburlati. Faster deterministic wakeup in multiple access
channels. Discrete Apllied Mathematics, 155(8):898–903, 2007.

27 D. Peleg. Time-efficient broadcasting in radio networks: A review. In Proceedings of the
4th International Conference on Distributed Computing and Internet Technology (ICDCIT),
pages 1–18, 2007.

28 D. E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.
SIAM Journal on Computing, 15(2):468–477, 1986.

DISC 2018

Detecting Cliques in CONGEST Networks
Artur Czumaj1

Department of Computer Science and Centre for Discrete Mathematics and its Applications
(DIMAP), University of Warwick, UK
A.Czumaj@warwick.ac.uk

Christian Konrad2

Department of Computer Science, University of Bristol, UK
christian.konrad@bristol.ac.uk

Abstract
The problem of detecting network structures plays a central role in distributed computing. One
of the fundamental problems studied in this area is to determine whether for a given graph H,
the input network contains a subgraph isomorphic to H or not. We investigate this problem
for H being a clique K` in the classical distributed CONGEST model, where the communication
topology is the same as the topology of the underlying network, and with limited communication
bandwidth on the links.

Our first and main result is a lower bound, showing that detecting K` requires Ω(
√
n/b)

communication rounds, for every 4 ≤ ` ≤
√
n, and Ω(n/(`b)) rounds for every ` ≥

√
n, where

b is the bandwidth of the communication links. This result is obtained by using a reduction
to the set disjointness problem in the framework of two-party communication complexity. We
complement our lower bound with a two-party communication protocol for listing all cliques in
the input graph, which up to constant factors communicates the same number of bits as our lower
bound for K4 detection. This demonstrates that our lower bound cannot be improved using the
two-party communication framework.

2012 ACM Subject Classification Theory of computation → Distributed algorithms, Networks
→ Network algorithms

Keywords and phrases Lower bounds, CONGEST, subgraph detection, two-party communication

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.16

1 Introduction

We study the problem of detecting network structures in a distributed environment, which
is a fundamental problem in modern computing. Our focus is on the subgraph detection
problem, in which for a given graph H, one wants to determine whether the network graph
G contains a subgraph isomorphic to H or not. We investigate this problem for H being a
clique K` for ` ≥ 4.

The nowadays classical distributed CONGEST model (see, e.g., [18]) is a variant of the
classical LOCAL model of distributed computation (where in each round network nodes can
send through all incident links messages of unrestricted size) with limited communication
bandwidth. The distributed system is represented as a network (undirected graph) G = (V,E)

1 Research partially supported by the Centre for Discrete Mathematics and its Applications (DIMAP),
by EPSRC award EP/D063191/1, by EPSRC award EP/N011163/1, and by an IBM Faculty Award.

2 Most of work on this paper has been carried out while the author was at the University of Warwick,
where he was supported by the Centre for Discrete Mathematics and its Applications (DIMAP) and by
EPSRC award EP/N011163/1.

© Artur Czumaj and Christian Konrad;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:A.Czumaj@warwick.ac.uk
mailto:christian.konrad@bristol.ac.uk
https://doi.org/10.4230/LIPIcs.DISC.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Detecting Cliques in CONGEST Networks

with n = |V | nodes, where network nodes execute distributed algorithms in synchronous
rounds, and the nodes collaborate to solve a graph problem with input G. Each node is
assumed to have a unique identifier from {0, . . . ,poly(n)}. In any single round, all nodes can:
(i) perform an unlimited amount of local computation,
(ii) send a possibly different b-bit message to each of their neighbors, and
(iii) receive all messages sent to them.
We measure the complexity of an algorithms by the number of synchronous rounds required.

In accordance with the standard terminology in the literature, we assume b = O(logn);
we note though that our analysis generalizes to other settings of b in a straightforward
manner. (We note that in our lower bound for detecting K4 and K` in Section 2, to ensure
full generality of presentation, we will make the analysis parametrized by the message size
b, in which case we will refer to such model of distributed computation as CONGESTb, the
CONGEST model with messages of size b.)

Our goal is, for a given network G = (V,E) and ` ≥ 4, to solve the subgraph detection
problem for a clique K`, that is, to design an algorithm in the CONGEST model such that
(i) if G contains a copy of K`, then with probability ≥ 2

3 at least one node outputs 1, and
(ii) if G does not contain a copy of K`, then with probability ≥ 2

3 no node outputs 1.

The subgraph detection problem is a local problem: it can be solved efficiently solely on
the basis of local information. In particular, in the CONGEST model, the problem of finding
K` in a graph can be trivially solved in O(n) rounds, or in fact, in O(maxu∈V degG(u))
rounds, where degG(u) denotes the degree of node u in G. Indeed, if each node sends its
entire neighborhood to all its neighbors, then afterwards, each node will be aware of all its
neighbors and of their neighbors. Therefore, in particular, each node will be able to detect
all cliques it belongs to. Since for each node u, the task of sending its entire neighborhood to
all its neighbors can be performed in O(degG(u)) rounds in the CONGEST model, the total
number of rounds for the entire network is O(maxu∈V degG(u)) = O(n) rounds. In view of
this simple observation, the main challenge in the clique K` detection problem is whether
this task can be performed in a sublinear number of rounds.

1.1 Our results
In this paper, we give the first non-trivial lower bound for the complexity of detecting a clique
K` in the CONGESTb model, for ` ≥ 4. In Theorem 5, we prove that every algorithm in the
CONGESTb model that with probability at least 2

3 detects K`, for ` ≥ 4 and ` = O(
√
n),

requires Ω(
√
n/b) rounds. Further, if ` = ω(

√
n), then Ω(n/(` b)) rounds are required. We

are not aware of any other non-trivial (super-constant) lower bound for this problem in the
CONGESTb model.

We complement our lower bound with a two-party communication protocol for listing all
cliques in the input graph (see Theorem 10), which up to constant factors communicates the
same number of bits as our lower bound for K4 detection. This demonstrates that our lower
bound is essentially tight in this framework, and cannot be improved using the two-party
communication approach.

1.2 Techniques: Framework of two-party communication complexity
Our main results, the lower bound of clique detection in Theorem 5 and the upper bound in
Theorem 10, rely on the two-party communication complexity framework and the use of a
tight lower bound for the set disjointness problem in this framework.

A. Czumaj and C. Konrad 16:3

We consider the classical two-party communication complexity setting (cf. [16]) in which
two players, Alice and Bob, each have some private input X and Y . The players’ goal is to
compute a joint function f(X,Y), and the complexity measure used is the number of bits
Alice and Bob must exchange to compute f(X,Y). In the two-party communication problem
of set disjointness, Alice’s input is X ∈ {0, 1}n and Bob holds Y ∈ {0, 1}n, and their goal
is to compute DISJn(X,Y) :=

∨n
i=1Xi ∧ Yi. In a seminal work, Kalyanasundaram and

Schnitger [14] showed that in any randomized communication protocol, the players must
exchange Ω(n) bits to solve the set disjointness problem with constant success probability.

I Theorem 1 ([14]). The randomized two-party communication complexity of set disjoint-
ness is Ω(n). That is, for any constant p > 0, any randomized two-party communication
protocol that computes DISJn(X,Y) with probability at least p, has two-party communication
complexity Ω(n).

Our main result, the lower bound for detecting K` in the CONGEST model, relies on a
reduction from the two-party communication problem of set disjointness. The two-party
communication framework, and, in particular, the two-party set disjointness problem, have
been frequently used in the past to construct lower bounds for the CONGEST model, see, e.g.,
[4, 7, 9, 11, 15]. A typical approach relies on a construction of a special graph G = (V,E) with
some fixed edges and some edges depending on the input of Alice and Bob. One partitions
the nodes of G into two disjoint sets VA and VB. Let C be the (VA, VB)-cut, that is, the
set of edges in G with one endpoint in VA and one endpoint in VB. Let EA be the edge
set of G[VA] (subset of E on vertex set VA) and EB be the edge set of G[VB]. We consider
a scenario where Alice’s input is represented by the subgraph GA = (V,EA ∪ C) ⊆ G and
Bob’s input is represented by GB = (V,EB ∪ C) ⊆ G. (We denote this way of distributing
the vertex and edge sets as the vertex partition model.) In order to learn any information
about the structure of G[A] \ C and G[B] \ C, and hence about the input of the other player,
Alice and Bob must communicate through the edges of the cut C. Therefore, in order to
obtain a lower bound for a problem in the CONGESTb model, one wants to construct G
to ensure that it has some property (in our case, contains a copy of K`) if and only if the
corresponding instance of set disjointness is such that DISJn(X,Y) = 1, and in order to
determine the required property, one has to communicate a large part of (essentially the
entire graph) G[A] through C. With this approach, if the cut C has size |C|, and the private
inputs of Alice and Bob (edges in G[A] \ C or G[B] \ C) are of size s, one can apply Theorem
1 to argue that the round complexity of any distributed algorithm in the CONGESTb model
for a given problem is Ω(s

|C|·b). The central challenge is to ensure that for the encoded set
disjointness instance of size s and the cut of size |C|, the ratio s

|C| is as large as possible.
For example, Drucker et al. [7] incorporated a similar approach to obtain a lower bound

for the subgraph detection problem in a broadcast variant of the CONGESTb model (in fact,
even for a (stronger) broadcast variant of the CONGESTED CLIQUE model), where nodes
are required to send the same message through all their incident edges. The lower bound
construction requires sending Ω(n2) bits through the cut of size O(n2), but the fact that
in the broadcast variant of the CONGESTb model every node is required to send the same
message via all incident edges, at most O(n b) bits can be transmitted through the cut,
yielding a lower bound of Ω(n

b). (In particular, for the broadcast variant of the CONGESTb

model, Drucker et al. [7, Theorem 15] proved that detecting a clique K`, ` ≥ 4, requires Ω(n
b)

rounds.) Note however that in the (non-broadcast) CONGESTb model, this construction
does not give any not-trivial bound, since s

|C| = O(1).
Our main building block for our lower bound is the construction of (Ω(n2),O(n3/2))-

lower-bound graphs (see Section 3.1 for the precise definition) that can be used to encode
a set disjointness instance of size s = Ω(n2) such that the cut is of size |C| = O(n3/2). By

DISC 2018

16:4 Detecting Cliques in CONGEST Networks

incorporating these bounds in the framework described above, this construction leads to the
first non-trivial lower bound of Ω(

√
n
b) for the subgraph detection problem in the CONGESTb

model for the clique K4. This construction can also be extended to detect larger cliques,
yielding the lower bound of Ω(n

(`+
√

n) b) for detecting any K` with ` ≥ 4.
Since these are the first superconstant lower bounds for detecting a clique in the CONGEST

model and since the best upper bound for these problems is still O(n), the next goal is
to understand to what extent these bounds could be improved and whether the existing
approach could be used for that task. Do we need Ω(

√
n
b) communication rounds to detect

any clique K` (with ` ≥ 4, ` = O(
√
n)) in the CONGESTb model, or maybe we need as many

as a linear number of rounds? While we do not know the answer to this question, and in
fact, this question is the main open problem left by this paper, we can prove that any better
lower bound would require a significantly different approach, going beyond the two-party
communication framework in the vertex partition model.

Indeed, let us consider the vertex partition model in the two-party communication
framework, as defined above. The input consists of an undirected G = (V,E) with an
arbitrary vertex partition V = VA ∪̇ VB. We consider a scenario where Alice is given
the subgraph GA = (V,EA ∪ C) ⊆ G and Bob is given GB = (V,EB ∪ C) ⊆ G, where
C is the (VA, VB)-cut in G. The arguments in our construction of lower-bound graphs
in Theorem 9 imply that for some inputs, any two-party communication protocol in the
vertex partition model for the problem of listing all cliques in a given graph with n nodes
requires communication of Ω(

√
n |C|) bits between Alice and Bob. We will prove in Section 4

(Theorem 10) that this lower bound is asymptotically tight in the two-party communication
framework in the vertex partition model. We show that there is a two-party communication
protocol in the vertex partition model for listing all cliques that usesO(

√
n |C|) communication

rounds, where C is the set of shared edges between Alice and Bob. This shows that we cannot
obtain stronger lower bounds for the K`-detection problem, for ` = O(

√
n), in the CONGEST

model using the two-party communication framework in the vertex partition model.

1.3 Related works
As a fundamental primitive, subgraph detection and listing in the CONGEST model has
been recently receiving attention from multiple authors, focusing mainly on randomized
complexity. However, despite major efforts, for the CONGEST model, relatively little is
known about the complexity of the subgraph detection problem.

Prior to our work, no non-trivial results about the complexity of clique K` (` ≥ 4)
detection in the CONGEST model have been known. While there is a trivial lower bound of
a constant number of rounds, and as we mentioned earlier, one can easily solve the problem
in O(n) rounds in the CONGEST model, no sublinear upper bounds nor superconstant lower
bounds have been known.

In a recent breakthrough in this area, Izumi and Le Gall [12] raised some hopes that
maybe these problems could be solved in a sublinear number of rounds in the CONGEST
model. They considered the subgraph detection problem for the smallest interesting subgraph
H, the triangle K3, and presented a very clever algorithm that detects a triangle in Õ(n2/3)
rounds. Further, they also showed that the related problem of finding all triangles (triangle
listing) can be solved in Õ(n3/4) rounds. Very recently, these results were improved by
Chang et al. [5], who showed that both triangle detection and enumeration can be solved in
Õ(
√
n) rounds in the CONGEST model. There is no non-trivial lower bound for the triangle

detection problem, though it is known (cf. [12, 17]) that the more complex triangle listing
problem requires Ω(n1/3/ logn) rounds, even in the CONGESTED CLIQUE model. It can also

A. Czumaj and C. Konrad 16:5

be shown that the problem of listing all triangles such that each node v learns all triangles
that it is part of significantly harder than the general triangle listing problem and requires
Ω(n/ logn) rounds [12, Proposition 4.4]. While rather disappointingly, we do not know how
to extend any of these upper bounds to other cliques K` with ` ≥ 4, the previously mentioned
works for triangle detection raise hope that detecting cliques K` could potentially be solved
in a sublinear number of rounds. In fact, even for K3, we do not even know whether detecting
a triangle K3 can be solved in a polylogarithmic or even a constant number of rounds in the
CONGEST model (the lower bound of Ω(n1/3/ logn) rounds in the CONGESTED CLIQUE
model (cf. [12, 17]) holds only for a more complex problem of detecting all triangles).

Even et al. [8] noted that the problem of detecting trees is significantly simpler and
designed a randomized color-coding algorithm that detects any constant-size tree on ` nodes
in O(``) rounds.

As for lower bounds for the subgraph detection problem in the CONGEST model, until
very recently, the only hardness results known in the literature have been for cycles. For
any fixed ` ≥ 4, there is a polynomial lower bound for detecting the `-cycle C` in the
CONGEST model [7], where it has been shown that detecting C` requires Ω(ex(n,C`)/ logn)
rounds, where ex(n,C`) is the Turán number for cycles, that is, the largest possible number
of edges in a C`-free graph over n vertices. In particular, for odd-length cycles (of length
5 or more), the lower bound of [7] is Ω(n/ logn), and it is Ω(

√
n/ logn) for ` = 4. Very

recently, Korhonen and Rybicki [15] improved the lower bound for all even-length cycles to
Ω(
√
n/ logn). Further, Gonen and Oshman [11] extended these lower bounds for C`-freeness

to some related classes of graphs, though still with some cyclic underlying structure. (As
mentioned above, we note that Drucker et al. [7] presented lower bounds for other graphs,
but this was in a broadcast variant of the CONGESTED CLIQUE model, where nodes are
required to send the same message on all their edges. In particular, for the broadcast variant
of the CONGESTED CLIQUE model, Drucker et al. [7] proved that detecting a clique K`,
` ≥ 4, requires Ω(n/ logn) rounds.)

The only lower bound for the subgraph detection problem for H significantly other than
cycles, is a very recent work of Fischer et al. [9], who demonstrated that the subgraph
detection problem is hard even for some subgraphs H of constant size. In particular, for any
constant ` ≥ 2, there is a graph H with a constant number of vertices and edges such that
the problem of finding H in a network of size n requires time Ω(n2− 1

` /b) in the CONGEST
model, where b is the bandwidth of each communication links.

There has also been some recent research for the deterministic subgraph detection problem
in the CONGEST model. For example, Drucker et al. [7] designed an O(

√
n) round algorithm

for C4 detection, and Even et al. [8] and Korhonen and Rybicki [15] obtained path and tree
detection algorithms requiring only a constant number of rounds. Korhonen and Rybicki [15]
considered also deterministic subgraph detection (for paths, cycles, trees, pseudotrees, and on
d-degenerate graphs) in the weaker broadcast CONGEST model, where nodes send the same
message to all neighbors in each communication round. In the CONGESTED CLIQUE model,
deterministic subgraph detection algorithms were given by Dolev et al. [6] and Censor-Hillel
et al. [3].

We summarize earlier results together with our new results in Table 1.

1.3.1 Property testing of H-freeness
Since there have been so few positive results for the original subgraph detection problem,
recently there have been some advances in a relaxation of this problem, a closely related
(and significantly simpler) problem of testing subgraphs freeness in the framework of property

DISC 2018

16:6 Detecting Cliques in CONGEST Networks

Table 1 Prior (randomized) results for the problem of detecting a given subgraph H, or for listing
all copies of H, in the CONGEST model (less relevant results (upper bounds) for the CONGESTED
CLIQUE model are omitted; note that lower bounds for CONGESTED CLIQUE hold also for CONGEST
and lower bounds for broadcast CONGESTED CLIQUE, abbreviated by br. CONGESTED CLIQUE in
the table, do not imply any bounds for CONGEST).

Paper Time bound Problem Model

[8] O(``) Detecting a tree on ` nodes CONGEST
folklore O(n) Detecting K`, ` ≥ 3 CONGEST

[5] Õ(
√

n) Detecting triangle K3 CONGEST
[5] Õ(

√
n) Triangle listing CONGEST

[9] Ω(n2− 1
` / log n) Detecting some H of size O(`) CONGEST

[7] Ω(n/ log n) Detecting C`, ` ≥ 5, ` odd CONGEST
[7, 15] Ω(

√
n/ log n) Detecting C`, ` ≥ 4, ` even CONGEST

[12, 17] Ω(n1/3/poly-log(n)) Triangle listing CONGESTED CLIQUE
[7] Ω(n/ log n) Detecting K` for ` ≥ 4 br. CONGESTED CLIQUE

Thm. 4 Ω(
√

n/ log n) Detecting K4 CONGEST
Thm. 5 Ω(

√
n/(` log n)) Detecting K` for ` ≥ 4 CONGEST

testing for distributed computations (see, e.g., [1, 8]). In the property testing setting, an
algorithm has to decide, with probability at least 2

3 , if the input graph is (a) H-free (i.e.,
does not contain a subgraph isomorphic to H) or (b) ε-far from being H-free (that is, the
goal is to distinguish whether the input graph G is H-free or one needs to modify more than
ε|E(G)| edges of G to obtain a graph that is H-free); in the intermediate case, the algorithm
can perform arbitrarily (see e.g., [3, 8] for more details). Property testing of H-freeness in
the CONGEST model has received a lot of attention lately (see, e.g., [1, 2, 8, 9, 10]). In
particular, it has been shown [8] that testing H-freeness can be done in O(1/ε) round in
the CONGEST model for any constant-size graph H containing an edge (x, y) such that any
cycle in H contains at least one of x, y. This implies testing in O(1/ε) rounds of any cycle
Ck, and of any subgraph H on five (or less) vertices except K5. Further, for any ` ≥ 5,
K`-freeness can be tested in O((ε · |E(G)|)

1
2−

1
`−2 /ε) rounds [8]. For trees, Even et al. [8] show

that testing if the input graph is T -free for a tree T on ` vertices can be done in O(`1+`2
/ε`)

rounds the CONGEST model.

2 Lower bound results: Detecting a clique requires Ω̃(
√

n) rounds

In this section we prove our hardness results showing that any algorithm in the CONGESTb

model that detects a K` with probability at least 2
3 requires Ω(

√
n/b) rounds, for every

` = O(
√
n) and ` ≥ 4, and requires Ω(n

`b) rounds if ` = ω(
√
n) (Theorems 4 and 5); or in

short, Ω(n
(`+
√

n) b) rounds, for every ` ≥ 4. Our lower bound for the complexity of detecting
K` in the CONGEST model relies on a reduction to the two-party communication complexity
lower bound for the set disjointness problem (cf. Theorem 1 in Section 1.2), which we
implement with the help of lower-bound graphs (cf. Section 2.1).

A. Czumaj and C. Konrad 16:7

HA G HB G′ G′

a1 b1

a2 b2

a3 b3

a4 b4

x1 y1

x4 x2 y2 y4

x3 y3

Figure 1 Left: Example of a (4, 12)-lower-bound graph G = (A, B, E). The dotted edges are the
edges of the associated graphs HA and HB (observe that HA and HB form cycles of length 4, which
are bipartite). For 1 ≤ i ≤ 4, let Ei be the edge set of subgraph G[{ai, a(i mod 4)+1, bi, b(i mod 4)+1}].
Observe that E =

⋃
i≤4 Ei, and, for every i, G[Ei] is isomorphic to K2,2. Observe further that for

i 6= j, G[A(Ei) ∪B(Ej)] is not isomorphic to K2,2. Center: Graph G′ as in the proof of Theorem 3
obtained from the set disjointness instance with X = (1, 0, 0, 1) and Y = (0, 1, 1, 1). Graph G′

contains a K4 if and only if the set disjointness instance evaluates to 1. Right: The highlighted
edges form a K4.

2.1 Lower-bound graphs
Our reduction to the two-party communication complexity lower bound for the set disjointness
problem relies on a notion of a lower-bound graph (cf. Figure 1).

I Definition 2. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n and let k,m be
integers. Then G is called a (k,m)-lower-bound graph if:
1. |E| ≤ m.
2. The edge set E is the union of (not necessarily disjoint) sets E1, E2, . . . , Ek such that, for

every i, 1 ≤ i ≤ k, the edge-induced subgraph G[Ei] is isomorphic to K2,2.
3. For every i, j, 1 ≤ i, j ≤ k, i 6= j, the vertex-induced subgraph G[A(Ei) ∪ B(Ej)] is not

isomorphic to K2,2 (For a set of edges E′ ⊆ E we denote the set of incident A-vertices by
A(E′). The set B(E′) is defined similarly.).

4. Define two graphs associated with G, HA = (A,EA) and HB = (B,EB). HA is the graph
on vertex set A, where a1, a2 ∈ A are adjacent if and only if there exists an index i

with A(Ei) = {a1, a2}. Similarly, HB is the graph on vertex set B, where b1, b2 ∈ B are
adjacent if and only if there exists an index j with B(Ej) = {b1, b2}. Then, we require
that HA and HB are bipartite.

2.2 Using lower-bound graphs and set disjointness to prove the
hardness of clique detection

With the notion of lower-bound graphs at hand, we can formalize our reduction to the
two-party communication complexity lower bound for set disjointness to obtain the following
central theorem.

I Theorem 3. Let G be a (k,m)-lower-bound graph. Then, detecting a K4 in the CONGESTb

model with probability at least 2
3 requires Ω

(
k

mb

)
rounds.

Proof. Let A be an algorithm in the CONGESTb model for K4 detection, that is, such that
with probability at least 2

3 , if G contains a K4 then at least one node outputs 1 and if G

DISC 2018

16:8 Detecting Cliques in CONGEST Networks

contains no copy of K4 then no node outputs 1. We will show that A can be used to solve
the two-party set disjointness problem for instances of size k.

Consider a set disjointness instance (X,Y) of size k. Let G = (A,B,E) be a (k,m)-lower-
bound graph, let E1, E2, . . . , Ek be the edge partition as in Item 2 of Definition 2, and let
HA = (A,EA) and HB = (B,EB) be the graphs associated with G (Item 4 in Definition 2).
Alice constructs the set E′A ⊆ EA such that for every i with Xi = 1, the edge between A(Ei)
is included in E′A. Similarly, Bob constructs the set E′B ⊆ EB such that for every i with
Yi = 1, the edge between B(Ei) is included in E′B .

We first show that the graph G′ := G ∪ (E′A ∪ E′B) contains a K4 if and only if
DISJn(X,Y) = 1. Indeed, since by Item 4 of Definition 2, the graphs HA and HB are
bipartite (and thus the subgraphs G′[A] and G′[B] are bipartite too), any copy of K4 in
G′ must consist of two vertices from A and two vertices from B. Let a1, a2 be any pair
of distinct vertices in A and b1, b2 be any pair of distinct vertices in B. Observe that if
there is no Ei such that {a1, a2} = A(Ei) or there is no Ei such that {b1, b2} = B(Ei) then
it is impossible for the nodes a1, a2, b1, b2 to form a K4, since this would imply that either
a1a2 /∈ E′A or b1b2 /∈ E′B. Assume therefore that {a1, a2} = A(Ei) and {b1, b2} = B(Ej), for
some i, j. Next, suppose that i 6= j. Then G[{a1, a2, b1, b2}] is not isomorphic to K2,2, by
Item 3 of Definition 2. Hence, assume that i = j. Then G[{a1, a2, b1, b2}] forms a K2,2 if and
only if Xi = Yi = 1, which in turn implies DISJn(X,Y) = 1.

The simulation of A on G′ is executed as follows. Suppose that A runs in r rounds. Alice
simulates vertices A and Bob simulates vertices B. In round i, Alice sends all messages from
A with destinations in B to Bob, and Bob sends all messages from B with destinations in A
to Alice. Since the cut between A and B is of size m, Alice and Bob exchange messages with
overall mb bits per round. Thus, overall they communicate rmb bits. Since the algorithm
allows them to solve set disjointness, by Theorem 1, we have rmb = Ω(k). Thus, A requires
Ω(k

mb) rounds. J

In Theorem 9 in Section 3, we prove the existence of a (Ω(n2),O(n3/2))-lower-bound
graph. By combining Theorem 9 with Theorem 3, we obtain the following main result.

I Theorem 4. Every algorithm in the CONGESTb model that detects a K4 with probability
at least 2

3 requires Ω(
√
n/b) rounds.

2.3 Detection of K` for ` ≥ 5

The lower bound construction given in Theorem 3 can be extended to the task of detecting
K`, for ` ≥ 5 (see also Figure 2). To this end, we add a clique on `− 4 new nodes to graph
G′ (from the proof of Theorem 3) and connect each of these nodes to every vertex in A ∪B.
Observe that this increases the cut between A and B by n(` − 4) edges. For ` = O(

√
n),

there are only O(n3/2) additional edges, which implies that the same lower bound as for
K4 holds. If ` = ω(

√
n), then the number of additional edges is significant, since the size

of the cut increases by more than a constant factor. In this case, the round complexity is
Ω(n2

n(`−4) b) = Ω(n
` b). Similarly as before, the encoded set disjointness instance evaluates to 1

if and only if G′ contains a clique of size `. We thus conclude with the following theorem.

I Theorem 5. Every algorithm in the CONGESTb model that detects K`, for ` ≥ 4 and
` = O(

√
n), with probability at least 2

3 requires Ω(
√
n/b) rounds. If ` = ω(

√
n), then

Ω(n/(` b)) rounds are required.

A. Czumaj and C. Konrad 16:9

K`−4

xi yi

HA HB

G′

Figure 2 Extension of our lower bound for K4 detection to K` detection, for ` ≥ 5. We add a
clique K`−4 on `− 4 new vertices to the graph G′ and connect every vertex of the clique to every
other vertex of G′. Then the resulting graph contains a clique on ` vertices if and only if the encoded
set disjointness instance evaluates to 1, i.e., xi = yi = 1, for some i.

3 Lower-bound graph construction

In this section, we prove the existence of a (Ω(n2),O(n3/2))-lower-bound graph (see Definition
2), which is our main technical tool. We will show in Theorem 9 that Algorithm 1 below
constructs a (Ω(n2),O(n3/2))-lower-bound graph with high probability (observe that a
non-zero probability already suffices to prove the existence of such a graph).

3.1 Construction of a (Ω(n2),O(n3/2))-lower-bound graph
We proceed as follows. We start our construction with a bipartite random graph G = (A,B,E)
with |A| = |B| = n, where every potential edge ab between a ∈ A and b ∈ B is included with
probability p = 1√

n
. Observe that for any a1, a2 ∈ A (a1 6= a2) and b1, b2 ∈ B (b1 6= b2), the

probability that G[{a1, a2, b1, b2}] is isomorphic to a K2,2 is p4. We therefore expect G to
contain

(
n
2
)2
p4 copies of K2,2, and we prove in Lemma 6 below that, with high probability,

the actual number of copies of K2,2 does not deviate significantly from its expectation. Let
K denote the set of copies of K2,2 in G.

In the peeling phase, we greedily compute a subset H ⊆ K such that at the end, the
graph induced by the edges of H is a (Ω(n2),O(n3/2))-lower bound graph. When inserting
a set K = {a1, a2, b1, b2} ∈ K into H, we make sure that the following three properties are
fulfilled:
1. We ensure that later on we will never add a K ′ = {a′1, a′2, b′1, b′2} such that either
{a1, a2, b

′
1, b
′
2} or {a′1, a′2, b1, b2} form a K2,2. To this end, when inserting K into H, for

every K ′ ∈ K that contains the same pair of A-vertices (or B-vertices), we add its pair
of B vertices (resp. pair of A vertices) to set FB (resp. FA), indicating that this is a
forbidden pair. Then, when inserting an element of K into H, we make sure that its pairs
of A and B vertices are not forbidden.

2. We make sure that the insertion of K will not prevent too many other sets K ′ from being
inserted into H. To this end, we guarantee that there are at most six other sets in K that
share the same pair of A vertices and at most six other sets that share the same pair of
B vertices. We prove in Lemma 7 that most K ∈ K fulfill this property.

DISC 2018

16:10 Detecting Cliques in CONGEST Networks

Algorithm 1 Construction of a (Ω(n2),O(n3/2))-lower-bound graph:
Input: Integer n, let p = 1√

n
.

1. Random Graph:
Let G = (A,B,E) with |A| = |B| = n be the bipartite random graph where

for every a ∈ A, b ∈ B the edge ab is included in E with probability p.
Let K be the family of sets {a1, a2, b1, b2} with a1, a2 ∈ A, a1 6= a2, b1, b2 ∈ B, b1 6= b2

and G[{a1, a2, b1, b2}] isomorphic to K2,2.
For S ⊆ A ∪B, let K(S) := {K ∈ K : S ⊆ K}.

2. Peeling Process:
Let A′ ⊆ A and B′ ⊆ B be a uniform random sample of A and B, respectively,

where every vertex is included with probability 1
2 .

H ← {}, FA ← {}, FB ← {}.
for every K = {a1, a2, b1, b2} ∈ K do

if |K({a1, a2})| ≤ 6 and |K({b1, b2})| ≤ 6 and |{a1, a2} ∩A′| = |{b1, b2} ∩B′| = 1 and
{a1, a2} /∈ FA and {b1, b2} /∈ FB then

H ← H∪K.
For every {a1, a2, b3, b4} ∈ K({a1, a2}), add {b3, b4} to FB .
For every {a3, a4, b1, b2} ∈ K({b1, b2}), add {a3, a4} to FA.

end if
end for

3. Lower Bound Graph H:
For K = {a1, a2, b1, b2} ∈ H, let EK be the edge set {a1b1, a1b2, a2b1, a2b2}.
return H := (A,B,

⋃
K∈HEK).

3. It is required that the graphs GA and GB as defined in Item 4 of Definition 2 are bipartite.
We therefore partition the sets A and B randomly into subsets A′ and A \ A′, and B′
and B \B′, and only add K to H if exactly one of its A vertices is in A′ and one of its B
vertices is in B′.

In the last step of the algorithm, we assemble graph H as the union of the edges contained
in the copies of K2,2 in H.

3.2 Analysis of Algorithm 1

Our analysis relies on some basic properties of the structure of subgraphs of random graphs
(for a more complete treatment of related problems, see, e.g., [13, Chapter 3]). We prove
three high probability claims about the construction in Algorithm 1: that the random graph
G contains many copies of K2,2 (Lemma 6), that only a small fraction of pairs of A vertices
are contained in more than six copies of K2,2 (Lemma 7), and finally that the resulting
graph H contains Ω(n2) copies of K2,2 (Lemma 8). With these three claims at hand, we
will complete the analysis to prove in Theorem 9 that with high probability, the output of
Algorithm 1 is a (Ω(n2),O(n3/2))-lower-bound graph.

We begin with a proof that in Algorithm 1, the random graph G contains many copies
of K2,2.

A. Czumaj and C. Konrad 16:11

I Lemma 6. Suppose that p ≥ 1
n . Then there is a constant C such that

P

[
|K| ≤ 9

10

(
n

2

)2
p4

]
≤ C · 1

n2p
.

Proof. We will compute the expectation and the variance of |K| and then use Chebyshev’s
inequality to bound the probability that |K| deviates substantially from its expectation.

Let X be the family of all sets {a1, a2, b1, b2} with a1, a2 ∈ A, a1 6= a2, b1, b2 ∈ B, b1 6= b2,
and for X ∈ X let χ(X) be the indicator variable of the event “G[X] is isomorphic to K2,2”.
Then:

E|K| =
∑

X∈X
P [χ(X) = 1] = |X |p4 =

(
n

2

)2
p4 ,

since K2,2 contains 4 edges. To bound the variance V|K|, we use the identity V|K| =
E|K|2 − (E|K|)2:

E|K|2 = E

(∑
X∈X

χ(X)
)2

= E
∑

X,Y ∈X
χ(X) · χ(Y) =

∑
X,Y ∈X

E(χ(X) · χ(Y)) .

We distinguish the following cases:
|X ∩ Y | = 0. Then, E(χ(X) · χ(Y)) = p8. Observe that there are t0 =

(
n
2
)2(n−2

2
)2 such

pairs.
|X ∩ Y | = 1. Then, E(χ(X) · χ(Y)) = p8. There are t1 = 4

(
n
2
)2(n−2

2
)(

n−2
1
)
such pairs.

|X ∩Y | = 2 and the intersection consists of either two A-vertices or two B-vertices. Then,
E(χ(X) · χ(Y)) = p8 and there are t2,1 = 2 ·

(
n
2
)2(n−2

2
)
such pairs.

|X ∩ Y | = 2 and the intersection consists of one A-vertex and one B-vertex. Then,
E(χ(X) · χ(Y)) = p7 and there are t2,2 = 4 ·

(
n
2
)2 · (n− 2)2 such pairs.

|X ∩ Y | = 3. Then, E(χ(X) · χ(Y)) = p6. There are t3 = 4 ·
(

n
2
)2 · (n− 2) such pairs.

|X ∩ Y | = 4. Then, E(χ(X) · χ(Y)) = p4. There are t4 =
(

n
2
)2 such pairs.

A quick sanity check shows that t0 + t1 + t21 + t22 + t3 + t4 =
(

n
2
)4. We thus obtain:

V|K| = E|K|2 − (E|K|)2 = p8(t0 + t1 + t2,1) + p7t2,2 + p6t3 + p4t4 −
(
n

2

)4
p8

≤ p7t2,2 + p6t3 + p4t4 = O(p7n6) ,

where the last equality holds for every p ≥ 1
n . We apply Chebyshev’s inequality and obtain:

P
[∣∣∣|K| − E|K|

∣∣∣ ≥ 1
10E|K|

]
≤ 100V|K|

(E|K|)2 = C · 1
n2p

,

for some constant C. J

Next, we prove that only a small fraction of pairs of A vertices are contained in more
than six copies of K2,2.

I Lemma 7. Let p = 1√
n

. For every constant δ > 0, with high probability, there are at most
(1 + δ)n2/10 pairs of distinct vertices a1, a2 ∈ A with |K({a1, a2})| > 6.

DISC 2018

16:12 Detecting Cliques in CONGEST Networks

Proof. Let a1, a2 ∈ A, a1 6= a2 be arbitrary vertices. Let B({a1, a2}) ⊆ B be the set of
vertices b such that a1b, a2b ∈ E. Observe that |K({a1, a2})| =

(|B({a1,a2})|
2

)
. By linearity of

expectation, E|B({a1, a2})| = np2 = 1.
Let X be the family of all sets of vertices {a1, a2} ⊆ A with a1 6= a2. Partition now X

into disjoint subsets such that X = X1 ∪ X2 ∪ · · · ∪ Xn−1, where |Xi| = n/2 and, for every
1 ≤ i ≤ n − 1, all elements of Xi are pairwise disjoint (such a partitioning corresponds to
partitioning the complete graphKn into n−1 perfect matchings). For a pair of vertices P ∈ X ,
let χ(P) be the indicator variable of the event “|B(P)| ≥ 5”. Recall that E|B(P)| = np2 = 1
(since p = 1/

√
n). Hence, by Markov’s inequality, we have P[χ(P) = 1] ≤ 1

5 .
For every 1 ≤ i ≤ n − 1 we have E

∑
P∈Xi

χ(P) ≤ 1
5

n
2 = n

10 . Observe further that for
every P,Q ∈ Xi, P 6= Q, the random variables B(P) and B(Q) are independent. Thus, by a
Chernoff bound (for µ = n

10):

P

[
|
∑

S∈Xi

χ(S)− µ| ≥ δµ
]
≤ 2 exp

(
−µδ2/3

)
= e−Θ(n) ,

for any constant δ. Thus, applying the union bound for every 1 ≤ i ≤ n − 1, with high
probability, at most (1 + δ) n

10 · (n− 1) ≤ (1 + δ)n2/10 pairs of vertices are both connected to
at least 5 vertices of B. Hence, at most (1 + δ)n2/10 pairs of vertices {a1, a2} are such that
K({a1, a2}) >

(4
2
)

= 6. J

In the next lemma, we show that our resulting graph H contains Ω(n2) copies of K2,2.

I Lemma 8. With high probability, the number of copies of K2,2 in H is |H| = Ω(n2).

Proof. By Lemma 6, we have |K| ≥ 9
40 (n − 1)2 with high probability. Let K′ ⊆ K be the

subset of sets {a1, a2, b1, b2} with K({a1, a2}) ≤ 6 and K({b1, b2}) ≤ 6. By Lemma 7, with
high probability, |K′| ≥ |K| − 2 · (1 + δ)n2/10, for any small constant δ.

Let K′′ ⊆ K′ be the subset of sets {a1, a2, b1, b2} with |{a1, a2}∩A′| = |{b1, b2}∩B′| = 1.
Observe that every set X ∈ K′ is included in K′′ with probability 1

4 . Thus, by a Chernoff
bound, |K′′| ≥ |K′|/8 with high probability.

We argue next that the insertion of any set K ∈ K′ can block at most 2 · 62 = 72 other
sets of K′ from being inserted into H. Consider thus a set K = {a1, a2, b1, b2} ∈ K′ that is
added to H. This inserts at most six pairs {a3, a4} into FA and six pairs {b3, b4} into FB,
since K({a1, a2}) ≤ 6 and K({b1, b2}) ≤ 6. Since each pair in FA or in FB can block at most
another six sets of K′, overall at most 2 · 62 = 72 sets of K′ can be blocked by the insertion
of K into H.

Hence:

|H| ≥ |K
′′|

72 ≥
|K′|

8 · 72 ≥
(|K| − 2 · (1 + δ)n2/10)

8 · 72 ≥
(9

40 (n− 1)2 − (1 + δ)n2/5)
8 · 72 = Ω(n2) ,

for δ < 1
8 . J

With Lemmas 6–8 at hand, we are now ready to complete the analysis and show that the
graph H fulfills Definition 2 of a lower bound graph.

I Theorem 9. With high probability, the output of Algorithm 1 is a (Ω(n2),O(n3/2))-lower-
bound graph. In particular, for every natural n, there exists a (Ω(n2),O(n3/2))-lower-bound
graph.

A. Czumaj and C. Konrad 16:13

Proof. We need to check that all items of Definition 2 are fulfilled with p = 1√
n
. Concerning

Item 1, observe that graph G has O(n2p) = O(n3/2) edges with high probability (by a
Chernoff bound).

For each K ∈ H, let EK denote the edge set added to graph H as in Step 3 of the
algorithm. Item 2 holds, since E(H) =

⋃
K∈HEK , and H[EK] is isomorphic to K2,2, for

every K, and by Lemma 8.
Concerning Item 3, observe that when K = {a1, a2, b1, b2} is inserted into H, then every

{a1, a2, b3, b4} such that G[{a1, a2, b3, b4}] is isomorphic to K2,2 will not be inserted at a
later stage, since {b3, b4} is inserted into FB . For the same reason, every {a3, a4, b1, b2} such
that G[{a3, a4, b1, b2}] is isomorphic to K2,2 will not be inserted into H. This proves Item 3.

Concerning Item 4, observe that for every {a1, a2, b1, b2} that is included in H, we have
|{a1, a2}∩A′| = |{b1, b2}∩B′| = 1. Hence, HA and HB as defined in Item 4 are bipartite. J

4 Two-party communication protocol for listing all cliques

We consider a two-party communication protocol in the vertex partition model for listing all
cliques (of all sizes) in a given graph. The input consists of an undirected graph G = (V,E)
with an arbitrary vertex partition V = VA ∪̇ VB . Let C be the (VA, VB)-cut, EA be the edge
set of G[VA], and EB be the edge set of G[VB]. We consider a scenario where Alice is given
the subgraph GA = (V,EA ∪ C) ⊆ G and Bob is given GB = (V,EB ∪ C) ⊆ G. The objective
is for Alice and Bob to detect all cliques (of all sizes) of G and to minimize the number of
bits communicated.

We show that in such framework, there is a two-party communication protocol for listing
all cliques (of all sizes) that uses O(

√
n |C|) bits of communication, where C are the edges

shared by Alice and Bob. This shows that we cannot improve our lower bounds for the
K`-detection problem, for ` = O(

√
n), in the CONGEST model (cf. Theorem 5) using the

two-party communication framework in the vertex partition model.
Observe that without any communication between the two players, Alice can detect every

clique that contains at most one vertex of VB, and, similarly, Bob can detect every clique
that contains at most one vertex of VA (in particular, listing all triangles does not require
any communication). Our task is hence to detect every clique consisting of at least two VA

vertices and at least two VB vertices. We consider two cases:
1. Suppose that |C| ≥ n3/2. Then Alice sends all edges EA to Bob by encoding all entries in

the adjacency matrix of G[VA], which requires at most n2 ≤
√
n|C| bits. Since Bob then

knows the entire graph G, he can detect all cliques.
2. Suppose that |C| < n3/2. For any vertex v ∈ V , let dv be the number of edges of C

incident to v, let V≤√n ⊆ {v ∈ VA : dv ≤
√
n}, and let V>

√
n = VA \ V≤√n. We first

show how to detect every clique that contains at least one vertex of V≤√n. Then, we
show how to detect every clique that does not contain any vertex of V≤√n.
a. For every v ∈ V≤√n, Bob sends the induced subgraph GB [ΓG(v) ∩ VB] (its adjacency

matrix) to Alice (observe that Bob knows the set V≤√n without communication). This
requires at most

√
n |C| bits, since∑

v∈V≤
√

n

d2
v ≤
√
n
∑

v∈V≤
√

n

dv ≤
√
n |C| .

Alice can thus detect any clique that contains at least one vertex of V≤√n.

DISC 2018

16:14 Detecting Cliques in CONGEST Networks

b. Observe that |V>
√

n| ≤
|C|√

n
. Alice sends the entire subgraph GA[V>

√
n] (again, its

adjacency matrix) to Bob. This requires at most
√
n |C| bits, since

|V>
√

n|2 ≤
(
|C|√
n

)2
≤ |C| · |C|

n
≤
√
n|C| ,

using the assumption |C| ≤ n3/2. Bob can thus detect every clique that does not
contain any vertex of V≤√n.

We thus obtain the following theorem:

I Theorem 10. There is a two-party communication protocol in the vertex partition model
for listing all cliques (of all sizes) that uses O(

√
n |C|) communication rounds, where C is the

set of shared edges between Alice and Bob.

5 Conclusions

In this paper, we give the first non-trivial lower bound for the problem of detecting a clique
K`, for ` ≥ 4, in the classical distributed CONGEST model. We show that detecting K`

requires Ω(n
(`+
√

n) b) communication rounds, for every ` ≥ 4, where b is the bandwidth of
the communication links. Our lower bound is complemented by a matching upper bound
obtained by a two-party communication protocol in the vertex partition model for listing all
cliques of all sizes. This demonstrates that our lower bound cannot be improved using the
two-party communication framework.

We leave as a great open question whether the complexity of clique detection in the
CONGEST model is sublinear, or one needs Θ̃(n) communication rounds to detect even a
copy of K4. Since the two-party communication approach used in our lower bound cannot
be improved further, we do not have any intuition whether the lower bound is tight, or could
be improved significantly. On the other hand, the very recent Õ(

√
n)-communication rounds

algorithm for detecting a triangle [5] raises some hopes that maybe also K4 could be detected
in a sublinear number of rounds.

References
1 Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-cliques. Dis-

tributed Computing, 24(2):79–89, 2011.
2 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast dis-

tributed algorithms for testing graph properties. In Proceedings of the 30th International
Symposium on Distributed Computing (DISC), pages 43–56, 2016.

3 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 35th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 143–152,
2015.

4 Keren Censor-Hillel, Seri Khoury, and Ami Paz. Quadratic and near-quadratic lower
bounds for the CONGEST model. In Proceedings of the 31st International Symposium
on Distributed Computing (DISC), pages 10:1–10:16, 2017.

5 Yi-Jun Chang, Seth Pettie, and Hengjie Zhang. Distributed triangle detection via expander
decomposition. CoRR, abs/1807.06624, 2018. arXiv:1807.06624.

6 Danny Dolev, Christoph Lenzen, and Shir Peled. “Tri, tri again”: Finding triangles and
small subgraphs in a distributed setting. In Proceedings of the 26th International Sympo-
sium on Distributed Computing (DISC), pages 195–209, 2012.

http://arxiv.org/abs/1807.06624

A. Czumaj and C. Konrad 16:15

7 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 33rd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 367–376, 2014.

8 Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three
notes on distributed property testing. In Proceedings of the 31st International Symposium
on Distributed Computing (DISC), pages 15:1–15:30, 2017.

9 Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossi-
bilities for distributed subgraph detection. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures, (SPAA), pages 153–162, New York, NY, USA,
2018. ACM.

10 Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles. In Proceedings of
the 29th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 153–162, 2017.

11 Tzlil Gonen and Rotem Oshman. Lower bounds for subgraph detection in the CONGEST
model. In Proceedings of the 21st International Conference on Principles of Distributed
Systems (OPODIS), pages 6:1–6:16, 2017.

12 Taisuke Izumi and François Le Gall. Triangle finding and listing in CONGEST networks. In
Proceedings of the 37th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 381–389, 2017.

13 Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random Graphs. John Wiley &
Sons, 2011.

14 Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.

15 Janne H. Korhonen and Joel Rybicki. Deterministic subgraph detection in broadcast CON-
GEST. In Proceedings of the 21st International Conference on Principles of Distributed
Systems (OPODIS), pages 4:1–4:16, 2017.

16 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

17 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Tight bounds for distributed
graph computations. CoRR, abs/1602.08481, 2016.

18 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia, PA, 2000.

DISC 2018

A Wealth of Sub-Consensus Deterministic Objects
Eli Daian
School of Computer Science, Tel-Aviv University, Israel
eliyahud@post.tau.ac.il

Giuliano Losa
Computer Science Department, University of California, Los Angeles, CA, USA
giuliano@cs.ucla.edu

Yehuda Afek
School of Computer Science, Tel-Aviv University, Israel
afek@post.tau.ac.il

Eli Gafni
Computer Science Department, University of California, Los Angeles, CA, USA
eli@ucla.edu

Abstract
The consensus hierarchy classifies shared an object according to its consensus number, which
is the maximum number of processes that can solve consensus wait-free using the object. The
question of whether this hierarchy is precise enough to fully characterize the synchronization
power of deterministic shared objects was open until 2016, when Afek et al. showed that there
is an infinite hierarchy of deterministic objects, each weaker than the next, which is strictly
between i and i + 1-processors consensus, for i ≥ 2. For i = 1, the question whether there exist
a deterministic object whose power is strictly between read-write and 2-processors consensus,
remained open.

We resolve the question positively by exhibiting an infinite hierarchy of simple deterministic
objects which are equivalent to set-consensus tasks, and thus are stronger than read-write re-
gisters, but they cannot implement consensus for two processes. Still our paper leaves a gap with
open questions.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases shared memory, distributed algorithms, wait-free, set consensus

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.17

Funding The work of Yehuda Afek and Eli Gafni was partially supported by the United States-
Israel Binational Science Foundation (grant 2014226). This material is based upon work suppor-
ted by the National Science Foundation under Grant No. 1655166.

1 Introduction

Shared memory objects have been classified by Herlihy [19] by their consensus number, where
the consensus number of an object O is the maximum number of processes which can solve
the consensus task in the wait-free model using any number of copies of O 1. Herlihy also

1 Read-write registers are also usually allowed, in addition to copies of O, but this is superfluous since
any non-trivial object can implement bounded-use registers [7], and bounded-use suffices when solving a
task.

© Eli Daian, Giuliano Losa, Yehuda Afek, and Eli Gafni;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eliyahud@post.tau.ac.il
mailto:giuliano@cs.ucla.edu
mailto:afek@post.tau.ac.il
mailto:eli@ucla.edu
https://doi.org/10.4230/LIPIcs.DISC.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 A Wealth of Sub-Consensus Deterministic Objects

showed that n-consensus objects are universal for n processes, meaning that, for n processes,
any other object can be implemented wait-free using n-consensus objects.

Until recently, it was not known whether an object of consensus power n can be imple-
mented wait-free using n-consensus objects (i.e., objects that can be used to solve consensus
among at most n processes) in a system of more than n processes (as a special case, the
Common2 [2, 5] conjecture stipulates that all objects of consensus number 2 can be imple-
mented using consensus for 2 processes). If this were the case, then the consensus hierarchy
would offer a complete characterization of the synchronization power of distributed objects.

Addressing this question, requires first to precisely define the computation model used and
the notion of synchronization power. Several object binding models exists, e.g. with a notion
of ports, such as in the hard-wired and soft-wired binding models [11], or without ports,
such as in the oblivious model [20]. There are also several ways to compare synchronization
power, such as using non-blocking implementations or wait-free implementations, and by
restricting the comparison to the power to implement tasks.

In this paper, we work in the oblivious object model. Moreover, we are just concerned
with the power of objects to wait-free solve task defined over finite number of processors. It
is easy to see that for this if we have an implementation of the object the implementation
does not need to be a wait-free implementation, it is enough that it will be non-blocking, or
as called in other places lock-free.

In 2016, Afek et al. [1] constructed for every n ≥ 2 an infinite sequence of deterministic
objects (in the oblivious model) On,k, k ∈ N, of consensus number n, and such that On,k

cannot be used to obtain a non-blocking implementation of On,k+1 in a system of nk + n + k

processes. Thus, for every n, the On,k objects have strictly increasing synchronization power,
as measured by the non-blocking implementation relation. This shows that consensus number
alone is not sufficient to characterize the synchronization power of deterministic objects at
levels n ≥ 2 of the consensus hierarchy. As a special case, this also refutes the Common2
conjecture.

However, the case for consensus number 1 remained an open question, and it was
conjectured that any deterministic object of consensus number 1 is equivalent to read-write
registers, meaning that the object can solve exactly the same tasks that are solvable with
read-write registers, no more, no less.

Herlihy [18] presented a consensus number 1 object that cannot be implemented wait-free
from read-write register. But nevertheless it was implemented non-blocking (lock-free) from
read-write registers, thus it did not refute the conjecture that every consensus number 1
object can be implemented non-blocking from read-write registers. Chan et al. [12] showed
that for every set-consensus task, there exists an equivalent soft-wired non-deterministic
object.

The main result of this paper refutes the above conjecture by presenting a deterministic
object, Write and Read Next (WRNk), in the oblivious binding model, satisfying:

I Theorem 1. For all integers k ≥ 3, there is a deterministic object, WRNk, whose consensus
number is 1 but which cannot be implemented non-blocking from registers in a system of
n > k processes.

The second result of this paper applies to a one-shot variant, 1sWRNk, of WRNk.
Assuming that the object may be accessed at most once by each process and that no two
processes use the same argument in their invocation, we show the following theorem:

I Theorem 2. 1sWRNk and (k, k − 1)-set consensus have equivalent synchronization power
(i.e., each can implement the other).

E. Daian, G. Losa, Y. Afek, and E. Gafni 17:3

Since (k, k − 1)-set-consensus is strictly weaker than (k + 1, k)-set-consensus, this gives
rise to an infinite hierarchy among the WRNk objects, such that 1sWRNk′ objects are
stronger than (can implement but not be implemented from) 1sWRNk objects if k < k′.
Since 1sWRNk objects have more synchronization power than simple read-write registers,
and cannot solve the consensus task for 2 processes, this shows the existence of an infinite
number of object classes between simple read-write registers and 2-consensus.

The rest of the paper is structured as follows. The model is given in section 2. The
WRNk object and its one-shot variant 1sWRNk are presented in Section 3. We show two set
consensus implementations that use these objects in section 4. A construction of 1sWRNk

from (k, k − 1)-set consensus object is presented in section 5. WRNk is proved to be weaker
than 2-consensus in Section 6. The implied infinite hierarchy is presented in Section 7.
Finally, conclusions and open questions are discussed in section 8.

2 Model

We follow the standard asynchronous shared memory model with oblivious objects, as defined
in [1], in which processes communicate with one another by applying atomic operations,
called steps, to shared objects. Each object has a set of possible values or states. Each
operation (together with its inputs) is a partial mapping, taking each state to a set of states.
A shared object is deterministic if each operation takes each state to a single state and its
associated response is a function of the state to which the operation is applied.

A configuration specifies the state of every process and the value of every shared object.
An execution is an alternating sequence of configurations and steps, starting from an initial
configuration. Processes behave in accordance with the algorithm they are executing. If C is
a configuration and s is a sequence of steps, we denote by Cs the configuration (or in the
case of nondeterministic objects, the set of possible configurations) when the sequence of
steps s is performed starting from configuration C.

An implementation of a sequentially specified object O consists of a representation of O

from a set of shared base objects and algorithms for each process to apply each operation
supported by O. The implementation is deterministic if all its algorithms are deterministic.
The implementation is linearizable if, in every execution, there is a sequential ordering of all
completed operations on O and a (possibly empty) subset of the uncompleted operations on
O such that:

1. If op is completed before op′ begins, then op occurs before op′ in this ordering.
2. The behavior of each operation in the sequence is consistent with its sequential specification

(in terms of its response and its effect on shared objects).

An implementation of an object O is wait-free if, in every execution, each process that takes
sufficiently many steps eventually completes each of its operations on O. The implementation
is non-blocking if, starting from every configuration, if enough steps are taken, then there
exists a process that completes its operation. Note that a wait-free implementation is also a
non-blocking implementation. In the rest of this paper, we discuss only deterministic and
linearizable wait-free implementations.

A task specifies what combinations of output values are allowed to be produced, given
the input value of each process and the set of processes producing output values. A wait-free
or non-blocking solution to a task (both notion are equivalent when consider algorithms
that solve tasks) is an algorithm in which each process that takes sufficiently many steps
eventually produces an output value, and such that the collection of output values satisfies
the specification of the task given the input values of the process.

DISC 2018

17:4 A Wealth of Sub-Consensus Deterministic Objects

A task is solvable wait-free if and only if it is solvable non-blocking. This is because, in a
non-blocking implementation of a bounded problem, at least one processor eventually termin-
ates. A processor that terminates stops participating, and thus, because the implementation
is non-blocking, another process eventually terminates, and so on until all processes that
take sufficiently many steps have terminated, which fulfills the wait-free requirement. More
generally, for any problem in which there is a bound on the number of operations that
processors must complete, there is no difference between non-blocking ind wait-free.

In the consensus task, each process, pi, has an input value xi and must output a value yi

that satisfies the following two properties:

Validity. Every output is the input of some process.
Agreement. All outputs are the same.

We say that an execution of an algorithm solving consensus decides a value if that value
is the output of some process.

The k-set consensus task, introduced by [14, 15], is defined in the same way, except that
agreement is replaced by the following property:

k-agreement. There are at most k different output values.

Note that the 1-set consensus task is the same as the consensus task.
An object has consensus number n if there is a wait-free algorithm that uses only copies of

this object and registers to solve consensus for n processes, but there is no such an algorithm
for n + 1 processes. An object has an infinite consensus number if there is such algorithm for
each positive integer n.

For all positive integers k < n, an (n, k)-set consensus nondeterministic object [10]
supports one operation, propose, which takes a single non-negative integer as input. The
value of an (n, k)-set consensus object is a set of at most k values, which is initially empty, and
a count of the number of propose operations that have been performed on it (to a maximum
of n). The first propose operation adds its input to the set. Any other propose operation
can nondeterministically choose to add its input to the set, provided the set has size less
than k. Each of the first n propose operations performed on the object nondeterministically
returns an element from the set as its output. All subsequent propose operations hang the
system in a manner that cannot be detected by the processes.

A variant of the consensus task is the election task, in which all participating processes
propose their own identifiers (rather than proposing some value). It also has the variable of
k-set election task, that is basically a k-set consensus task, in which the identifiers of the
processes are proposed. It was shown in [3] that the k-set consensus task is computationally
equivalent to the k-set election task.

The k-strong set election task is a k-set election task, with the following self election
property:

Self Election. If some process pi decides on pj , then pj also decides on pj .

It was shown in [9] that the k-strong set election task can be implemented using k-set
election implementations, and thus the k-set election and k-strong set election tasks are
computationally equivalent.

E. Daian, G. Losa, Y. Afek, and E. Gafni 17:5

Algorithm 1 A sequential specification of the atomic WRN operation of a WRNk object.
1: function WRN(i, v) . i ∈ {0, . . . , k − 1}, v 6= ⊥
2: A [i]← v

3: return A [(i + 1) mod k]
4: end function

Algorithm 2 (k − 1)-Set consensus using a WRNk object.
1: function Propose(vi) . For process Pi, 0 ≤ i < k

2: t← WRN(i, vi) . t is a local variable.
3: if t 6= ⊥ then return t

4: else return vi

5: end if
6: end function

3 Write and Read Next Objects

For every k ≥ 2, we introduce the WriteAndReadNextk (or WRNk) object, that has a single
operation – WRN. This operation accepts an index i in the range {0, . . . , k − 1}, and a value
v 6= ⊥. It returns the value v′ that was passed in the previous invocation to WRN with the
index (i + 1) mod k, or ⊥ if there is no such previous invocation.

A possible implementation of WRNk consists of k registers, A [0] , . . . , A [k − 1], initially
initialized to ⊥. A sequential specification of the atomic WRN operation is presented in
Algorithm 1.

The OneShotWRNk (or 1sWRNk) object is similar to WRNk, but any index can be used
at most once. Any attempt to invoke 1sWRN with the same index twice is illegal, and hangs
the system in a manner that cannot be detected by any process.

Note that the requirement that processes do not use the same argument in their invocation
is reminiscent of the soft-wired model, in which there cannot be concurrency on a port. We
could have chosen to specify 1sWRNk in the soft-wired binding model. This would have
avoided ad-hoc assumptions about how processes use of the 1sWRNk object. We opted not
to do so in order to use the oblivious object-binding model exclusively.

For k = 2, WRN2 is simply a SWAP object, whose consensus number is known to be 2
[19]. From now on, we assume k ≥ 3, unless stated otherwise.

4 Solving (k, k − 1)-Set Consensus using WRNk Objects

4.1 Solution in a System of k Processes
For any k ≥ 3, a WRNk object can solve the (k, k − 1)-set consensus task for k processes
with unique ids taken from {0, ..., k − 1}, using the following algorithm (also described in
Algorithm 2): Assume the processes are P0, . . . , Pk−1, and their values are v0, . . . , vk−1.
Process Pi invokes a 1sWRN with index i and value vi. If the output of the operation, t, is ⊥,
Pi decides vi. Otherwise, it decides t.

Since it is illegal for a process to propose multiple values (with the same ID) in the set
consensus task, WRN can be replaced by 1sWRN, that is invoked at most once with each index.

I Claim 3. Algorithm 2 is wait free.

I Claim 4. The first process to perform WRN decides its own proposed value.

DISC 2018

17:6 A Wealth of Sub-Consensus Deterministic Objects

Proof. Since it is the first one to invoke WRN, the output of WRN is ⊥, and hence the process
decides on its own proposed value. J

I Claim 5. Let Pi be the last process to perform 1sWRN. So Pi decides the proposal of
P(i+1) mod k.

Proof. Since Pi is the last one to invoke WRN, P(i+1) mod k has already completed its WRN
invocation. Theretofore, Pi receives v(i+1) mod k as the output from WRN. Hence, Pi decides
the value of P(i+1) mod k. J

I Claim 6 (Validity). A process Pi can decide its proposed value, or the proposed value of
P(i+1) mod k.

I Claim 7. A process Pi decides its own proposed value if P(i+1) mod k have not invoked
WRN yet.

I Corollary 8 ((k − 1)-agreement). Assume the proposals are pairwise different (there are
exactly k different proposals). So at most k − 1 values can be decided.

Proof. Let Pi be the first process to invoke WRN, and Pj be the last process to invoke WRN.
From Claim 4, Pi decides its proposal. From Claim 5, Pj decides the proposal of P(j+1) mod k.
From claim 7, no process decides the proposal of Pj . J

I Corollary 9. Algorithm 2 solves the (k − 1)-set consensus task for k processes.

I Corollary 10. 1sWRNk and WRNk cannot be implemented from atomic read-write registers.
Hence, 1sWRNk and WRNk are stronger than registers.

4.2 Solution in a System with k Participating Processes Out of Many
Assuming that each process has a unique name in {0, . . . , k − 1} might be a strong limitation
in some models. In this section, we assume we have at most k participating processes, whose
names are taken from {0, . . . , M − 1}, where M � k.

In [4, 6], wait-free algorithms have been shown that use registers only to rename k

processes from {0, . . . , M − 1} to k unique names in the range {0, . . . , 2k − 2}. So we
shall relax our assumption, and assume now we have at most k participating processes,
whose names are in {0, . . . , 2k − 2}. Let us consider the set of functions {0, . . . , 2k − 2} →
{0, . . . , k − 1}, call it F . So |F| = (2k − 1)k is finite, and we can fix an arbitrary ordering of
F =

{
f1, . . . , f(2k−1)k

}
.

The (k − 1)-set consensus algorithm for k processes is described in Algorithm 3. It uses
(2k − 1)k instances of WRNk objects, W [1] , . . . , W

[
(2k − 1)k

]
. First, the process name is

renamed to be j ∈ {0, . . . , 2k − 2}. Then, for each ` ∈
{

1, . . . , (2k − 1)k
}

(in this exact
order for all processes), the process invokes W [`] .WRN with the index f` (j), and the proposed
value vj . If the result of such a WRN operation returns a value different than ⊥, the process
immediately decides on this returned value, and returns without continuing to the following
iterations. If the process received ⊥ from all the WRN operations on W [1] , . . . , W

[
(2k − 1)k

]
,

it decides its own proposed value.

I Claim 11 (Validity). Every decided value in Algorithm 3 was proposed by some process.

E. Daian, G. Losa, Y. Afek, and E. Gafni 17:7

Algorithm 3 (k − 1)-Set consensus for k processes out of many using WRNk objects.
1: shared array of WRNk objects W [`], 1 ≤ ` ≤ (2k − 1)k

2: function Propose(v) . For process whose name is in {0, . . . , M − 1}
3: j ← Rename . j ∈ {0, . . . , 2k − 2}
4: for ` = 1, . . . , (2k − 1)k do
5: i← f` (j) . i ∈ {0, . . . , k − 1} is a local variable.
6: t←W [`] .WRN(i, v) . t is a local variable.
7: if t 6= ⊥ then return t

8: end if
9: end for
10: return v . Reaching here means t was ⊥ in all iterations
11: end function

Proof. Each process can only write its proposal to the WRN objects, and hence only proposal
values or ⊥ can be returned from the WRN operations. Therefore, if a WRN operation performed
by the process P does not return ⊥, it returns a proposal of some process Q, and hence P

decides on the proposal of Q. If P gets only ⊥ from all the WRN invocations, it decides on its
own proposal. J

I Claim 12. For every iteration number 1 ≤ ` ≤ (2k − 1)k, there is a process that invokes
W [`] .WRN in Algorithm 3, and the first such process returns ⊥.

Proof. The first process to invoke W [`] .WRN returns ⊥ by the definition of the WRN objects,
and hence it also continues to the next iteration. Using induction, it is clear that a process
gets to the first iteration and continues to the second one, and hence there is a process that
accesses W

[
(2k − 1)k

]
, and the first such process returns ⊥. J

I Corollary 13. There is a process that invokes W
[
(2k − 1)k

]
.WRN in Algorithm 3, and the

first such process decides on its proposed value.

I Claim 14. Assume a process P got the output x 6= ⊥ from its invocation of
W
[
(2k − 1)k

]
.WRN. x is the value of another process Q, that invoked W

[
(2k − 1)k

]
.WRN

before P .

I Corollary 15. Assume exactly k inputs were proposed to Algorithm 3. Also assume the
processes P and Q proposed the values x and y, respectively, and assume P decides on y. Q

does not decide on x.

I Claim 16. Assume all k processes access the construction of algorithm 3, each with a
different input. There is a process P that decides on the value of another process Q.

Proof. Let R be the set of new names of the processes after renaming them in line 3, |R| = k.
Hence there is a mapping f`? ∈ F such that {f`? (i) | i ∈ R} = {0, 1, . . . , k − 1}. Either some
process returns before iteration `?, or all of them reach iteration `?.

In the former case, process P quits in iteration `′ < `?, and P gets a proposal v of another
process from W [`′], and decides v.

In the latter case, let jP be the name of P after the renaming in line 3. Let P be the
last process to invoke W [`?] .WRN. So P invoked it with the index f`? (jP). Let Q be the
process that invoked W [`?] .WRN with the index (f`? (jP) + 1) mod k (there is such process
because of the selection of `?). Q invoked W [`?] .WRN before P , and hence the P ’s invocation
of W [`?] .WRN results in the proposal of Q. Therefore, P decides on the proposal of Q. J

DISC 2018

17:8 A Wealth of Sub-Consensus Deterministic Objects

Algorithm 4 Implementing relaxed WRNk using 1sWRNk and registers.
1: shared 1sWRNk object
2: shared array of registers A [i], 0 ≤ i < k, initialized to 0
3: function RlxWRN(i, v) . 0 ≤ i < k, v 6= ⊥
4: Inc(A [i]) . Increment A [i] by 1.
5: c← Read(A [i]) . c is a local variable.
6: if c = 1 then return 1sWRN(i, v)
7: else return ⊥
8: end if
9: end function

I Corollary 17 ((k − 1)-agreement). Assume exactly k inputs were proposed to Algorithm 3.
So there is a process P whose proposal is not decided by any process.

Proof. Let vi and di be the proposal and decision values of process Pi. Let A be the set of
processes Pi such that xi 6= yi. From Claim 16, A 6= ∅.

Each process Pi ∈ A has an iteration `i in which di was returned from its invocation of
W [`i] .WRN. Let `′ be the minimal such iteration, and let Pi ∈ A be the last process to invoke
W [`′] .WRN.

No value was decided by any process in iteration ` < `′, and hence vi was not decided
by any process in these iterations. The value vi is unknown to W [`′] before Pi invokes
W [`′] .WRN. Therefore, vi cannot be returned by any W [`′] .WRN invocation prior to Pi’s
invocation. In Pi’s invocation the value di 6= vi is returned. From the selection of i, every
W [`′] .WRN invocation after Pi’s invocation returns ⊥, and hence no process returns vi in
iteration `′.

Pi have not participated in any latter iteration, and hence vi was not seen by any WRN
object in such an iteration, so it could not be returned from any WRN invocation. Therefore,
vi is not returned by any process also after iteration `′. J

I Corollary 18. Algorithm 3 solves the (k − 1)-set consensus task for k processes whose
names are taken from {0, . . . , M − 1}.

Algorithm 3 uses WRNk objects that cannot be trivially replaced by 1sWRNk objects,
since after the renaming, processes P and Q get the new names 0 ≤ i < j < 2k − 1, and
there is a mapping f` ∈ F such that f` (i) = f` (j). If both P and Q get to iteration `, both
invoke W [`] .WRN with the index f` (i) = f` (j).

Although this fact might pose a problem, the correctness of the algorithm is based on
the existence of an iteration `? such that f`? maps all the renamed process names onto
{0, 1, . . . , k − 1}. This fact is being used in the proof of Claim 16 in order to show that there
is a process that decides on the proposal of another process, and hence the (k − 1)-agreement
property is achieved.

A relaxed implementation of WRNk using 1sWRNk is enough for implementing Al-
gorithm 3. This relaxed implementation is described in Algorithm 4. The 1sWRNk object
is protected by a counter for every legal index. This counter is a simple atomic register
that can be incremented and read (each operation is a single step). When a process comes
with the index i, it first increments the counter of index i, and then reads the value of that
counter. If the read value is exactly 1, it is safe for the process to invoke 1sWRN (in a similar
manner to the flag principle [21]). Otherwise, the process cannot tell whether it is safe to
invoke 1sWRN or not, so it gives up, and returns ⊥ directly.

E. Daian, G. Losa, Y. Afek, and E. Gafni 17:9

I Claim 19 (Safety). At most one process invokes 1sWRN with an index 0 ≤ i < k in
Algorithm 4.

Proof. 1sWRN is invoked with an index i only by a process that read the value 1 (exactly)
from A [i]. By contradiction, assume both P and Q read 1 from A [i], and without loss of
generality, let Q be the last process to increment A [i]. Since A [i] is initialized to 0 and Q is
not the first process to increment it, Q must have read at least 2. J

I Corollary 20. Algorithm 4 is using the 1sWRNk object legally.

I Claim 21. If exactly k processes arrive with k different indices, 1sWRN is invoked by every
participating process in Algorithm 4.

Proof. Every process that comes with an index i is the only one that increments A [i], so it
is the only one to read the value 1 from A [i], and hence it will invoke 1sWRN. J

Algorithm 4 of a relaxed WRNk object can be used as a substitution for the WRNk

objects in algorithm 3; lines 1 and 6 should be replaced by the following lines:
1: shared array of WRNk objects W [`], 1 ≤ ` ≤ (2k − 1)k

6: t←W [`] .RlxWRN(i, v) . t is a local variable.
If at round ` two different processes access W [`] with the same index i, with the relaxed

WRNk the underlying 1sWRN operation might not even get invoked, in which case both
processes get ⊥ from their RlxWRN invocation, if a process accesses later W [`] .RlxWRN with
the index (i− 1) mod k, this process might get ⊥ and continue to the next iteration, which
is the opposite of the expected behavior with regular WRNk objects.

However, in the proof of Claim 16, iteration `? still exists, in which all k participating
processes invoke W [`] .RlxWRN with a different index, and claim 21 guarantees that in iteration
`?, the underlying 1sWRNk object gets accesses just like the regular WRNk object. Hence
Algorithm 3 solves the (k − 1)-set consensus task for k processes using 1sWRNk objects as
well.

5 Constructing 1sWRNk from (k, k − 1)-Set Consensus
Implementation

In this section we present an implementation of 1sWRNk object that uses (k, k − 1)-strong
set election (i.e., if process Pi decides in the proposal of Pj , then Pj also decides on its own
proposal), which can be implemented using (k, k − 1)-set consensus [9], and registers.

The base of the implementation is an array of registers, in which each process publishes
its value (using the index), and reads the published value of its successor (by the index) if
such a value is published, or ⊥ otherwise. Each process aims to return the read value of
its successor, whether it is ⊥ or not. However, the first linearized operation must return ⊥,
and if the processes return their read value, the following execution has no first linearized
operation: All processes write together their values, and then read together the values of
their successors.

In order to avoid such cases, the implementation uses a doorway register. This doorway
is initially open (i.e., the register value is opened), and once a process enters through the
doorway (i.e., reads the value opened), it closes the doorway (i.e., writes the value closed).
The processes that pass through the doorway use the strong set election implementation,
and return the read published value of their successor only if they do not win the strong set

DISC 2018

17:10 A Wealth of Sub-Consensus Deterministic Objects

Algorithm 5 Implementation of 1sWRNk using (k, k − 1)-Strong Set Election.
1: shared (k, k − 1)-strong set election implementation SSE

2: shared MWMR register Doorway, initially opened
3: shared SWMR register array R [i], 0 ≤ i < k; initially R [i] = ⊥ for every i

4: shared SWMR register array O [i], 0 ≤ i < k; initially O [i] = ⊥ for every i

5: function 1sWRN(i, v) . i ∈ {0, . . . , k − 1} is the index, v /∈ {⊥, ∅} is the value.
6: R [i]← v . v is announced at the index i.
7: if Read(Doorway) = opened then
8: Doorway ← closed

9: if SSE.Invoke(i) = i then
10: return ⊥
11: end if
12: end if
13: SR← Snapshot(R) . SR is a local array.
14: O [i]← SR

15: SO ← Snapshot(O) . SO is a local array.
16: for j = 0, 1, . . . , k − 1 do
17: if SO [j] [i] = v and SO [j] [(i + 1) mod k] = ⊥ then
18: return ⊥
19: end if
20: end for
21: return SR [(i + 1) mod k]
22: end function

election. If a process wins the strong set election, its 1sWRN invocation returns ⊥. Notice
that using the strong set election without the doorway might result in a non-linearizable
implementation: If a process completes its 1sWRN invocation with the index (i + 1) mod k

before another process issues its invocation with the index i, the latter is is expected to
return the value of the former. However, the latter invocation might win in the strong set
election as well, in which case it would return ⊥.

The described solution is not enough, since the result is non-linearizable. Consider the
case in which the doorway has already been closed by an early invocation. Since the read
and write operations are not atomic, the linearization might break between an invocation
announces its value, and reads the value of its successor index.

For example, consider the following execution: (1) an invocation w1 with the index 1
can announce its value. (2) an invocation w2 with the index 2 announces its value. (3) The
invocation w1 encounters a closed doorway, reads the value of w2 and returns it. (4) After
w1 completes, an invocation w3 announces its value. (5) w2 reads the announces value of w3
and returns it. In this described execution, w1 would be linearized after w2, that would be
linearized after w3. But w3 starts only after w1 has completed.

In order to overcome this kind of problem, two snapshots are being taken. The first
snapshot reads the announced values, and the second one is used for announcing the snapshot
every invocation observes, in order to detect scenarios similar to the one described above. If
an invocation wi observes the value of its successor invocation w(i+1) mod k, but it also sees
that there is another invocation wj that saw the value of wi, but did not see the value of
w(i+1) mod k, so wi knows that it has started before w(i+1) mod k finishes, and wi returns ⊥.
A pseudo code of the implementation is presented in algorithm 5.

Let e be a legal execution that contains invocations to 1sWRN, as described in Algorithm 5.
Denote by {wi} the invocations to 1sWRN, such that wi is the invocation with index i and
input value vi. Assume 1sWRN was invoked for every index 0 ≤ i < k (otherwise, append

E. Daian, G. Losa, Y. Afek, and E. Gafni 17:11

the missing invocations at the end of the execution). We will now see that Algorithm 5 is a
linearizable implementation of 1sWRN.

I Claim 22. wi returns v(i+1) mod k or ⊥.

I Claim 23. There is an index 0 ≤ i < k such that wi returns ⊥.

Proof. The first invocation to check the doorway status (in line 7) invokes the strong set
election, so the strong set election is invoked at least once. By definition, there is an
invocation wi that its strong set election invocation returns i, and then wi returns ⊥ from
Algorithm 5. J

I Claim 24. There is an index 0 ≤ i < k such that wi return v(i+1) mod k.

Proof. When some invocation takes a snapshot in line 13, all invocations that enter the
doorway have already registered their values in R: Assume wi does not read vj in R. When
wi takes the snapshot in line 13, the doorway is already closed, and vj is not written in R.
So wj writes vj to R in line 6 after the doorway is closed. So wj does not enter through the
doorway.

At least one invocation reads in line 13, because an invocation reads R if it does not enter
the doorway, or loses in the strong set election. Let wi be the last invocation to write in line
6 that also reads in line 13. Claim by contradiction that wi returns ⊥.

So there is a an index 0 ≤ j < k such that wi sees SO [j] [i] = vi and it also sees
SO [j] [(i + 1) mod k] = ⊥. In this case, when wj takes a snapshot of R in line 13, it sees vi

in R, but not v(i+1) mod k. So vi is written to R before v(i+1) mod k, and after the doorway
is already closed. So w(i+1) mod k writes to R after the doorway is closed, and after wi writes
to R, which is a contradiction to the selection of wi. J

I Lemma 25. If wi returns ⊥, then w(i+1) mod k finishes after wi starts.

Proof. By a contradiction assume w(i+1) mod k finishes before wi starts. In this case, when
wi starts, v(i+1) mod k is already written in R [(i + 1) mod k] and the doorway is closed,
and O [(i + 1) mod k] 6= ⊥.

Since wi returns ⊥, it must be done in line 18 in iteration 0 ≤ j < k, when wj saw vi, but
not v(i+1) mod k. Therefore, w(i+1) mod k starts after wi starts, that is after w(i+1) mod k

finishes, which is a contradiction. J

I Lemma 26. If wi returns v(i+1) mod k, then wi finishes after w(i+1) mod k starts.

Proof. Assume wi finises before w(i+1) mod k starts. In this case, when wi finishes, the value
in R [(i + 1) mod k] is ⊥, so wi returns ⊥ either if it wins the strong set election, or if it
reads it from R [(i + 1) mod k]. J

We now define a directed graph G = (V, E), where V = {wi | 0 ≤ i < k}, and the set of
edges is defined as follows:

If wi returns ⊥, there is an edge from wi to w(i+1) mod k.
If wi returns v(i+1) mod k, there is an edge from w(i+1) mod k to wi.

I Claim 27. There is an edge from wi to w(i+1) mod k if and only if there is no edge from
w(i+1) mod k to wi.

I Corollary 28. There are no directed cycles in G.

DISC 2018

17:12 A Wealth of Sub-Consensus Deterministic Objects

Proof. The degree of each node in the graph is exactly 2, since the edges are between wi

and w(i+1) mod k. Therefore, with the combination of Claim 27, if there is a cycle in G, its
length is k.

Assume there is a cycle of length k in G. Using claim 23, let wi1 be a 1sWRN invocation
using Algorithm 5 that returns ⊥. Since wi1 returns ⊥, the cycle is in increasing order, e.g.,
for every 0 ≤ i < k, there is an edge from wi to w(i+1) mod k.

Using Claim 24, let wi2 be a 1sWRN invocation that returns v(i2+1) mod k. From the
construction of G, there is an edge from w(i2+1) mod k to wi2 , which is a contradiction to
claim 27. J

I Corollary 29. There is a source and a sink in G.

I Corollary 30. The edges of G form a partial order.

I Lemma 31. Let p be an increasing indices directed path from wi to wj. That is:

p =
〈
wi → w(i+1) mod k → w(i+2) mod k → · · · → wj

〉
Then wj finishes after wi starts.

Proof. In this case, every w ∈ p \ {wj} returns ⊥. We use induction on p to show that wj

finishes after every w ∈ P starts. The base case is trivial: wj finishes after it starts.
Inductively assume wj finishes after w(i+x+1) mod k starts. We now show that wj finishes

after w(i+x) mod k starts. If w(i+x) mod k enters through the doorway, it is impossible for
wj to finish before w(i+x) mod k starts. Let us now consider the case in which w(i+x) mod k

encounters a closed doorway.
If w(i+x) mod k reads ⊥ from R [(i + x + 1)] in line 13, then it must have started before

w(i+x+1) mod k starts, which is before wj finishes.
Consider the case in which w(i+x) mod k reads v(i+x+1) mod k from R [(i + x + 1)] in

line 13. Since w(i+x) mod k returns ⊥, it must have been in line 18 in iteration 0 ≤ ` < k

of the for loop of line 16. Therefore, w` sees v(i+x) mod k but not v(i+x+1) mod k. Hence,
w(i+x) mod k writes to R in line 6 before w(i+x+1) mod k does. It follows that w(i+x) mod k

starts before w(i+x+1) mod k starts, that is before wj finishes.
Hence wi ∈ p starts before wj finishes. J

I Lemma 32. Let p be a descending indices directed path from wi to wj. That is:

p =
〈
wi → w(i−1) mod k → w(i−2) mod k → · · · → wj

〉
Then wj finishes after wi starts.

Proof. In this case, every w ∈ p \ {wi} does not return ⊥. We use induction on the length
of p to show that wi starts before wj finishes. The base case is trivial: lemma 26 shows that
wi starts before wj finishes if the length of p is 1.

Assume the length of p is greater than 1. Inductively we assume that any decreasing
indices path shorter than p satisfies the lemma. Also assume by contradiction that wj

finishes before wi starts. Therefore, wj does not read vi from R in line 13. Since wj returns
v(j+1) mod k, it has to read v(j+1) mod k in R after w(j+1) mod k writes it there. So there is
an ` such that w` ∈ p, and wj reads R [`] = v` but R [(` + 1) mod k] = ⊥.

If operation w` reads O [j] 6= ⊥, w` would have to return ⊥ in line 18. Since w` ∈ p, it
returns v(`+1) mod k. Therefore, w` reads O [j] = ⊥ in line 15. So w` reads O before wj

finishes. Reading O in line 15 is the last operation in the shared memory, so w` finishes before
wj does. Since the path

〈
wi → w(i−1) mod k → · · · → w`

〉
is a decreasing path shorter than

p, from the induction assumption, wi starts before w` finishes, that is before wj finishes. J

E. Daian, G. Losa, Y. Afek, and E. Gafni 17:13

I Corollary 33 (Transitivity). Let p be a directed path from wi to wj in G. So wj finishes
after wi starts.

We build a total order of {wi | 0 ≤ i < k} inductively. For the base case, denote: S0 = ∅,
T 0 = {wi | 0 ≤ i < k}.

Given Sj and T j 6= ∅, 0 ≤ j < k, we build Sj+1 and T j+1 using the following construction:
denote by T̃j the set of invocations t ∈ T j , such that t has no incoming edges in G from
another invocation in T j . Since T j 6= ∅ then also T̃ j 6= ∅, because there are no cycles in
G. Let wj be the first invocation in T̃ j to perform the write in line 6 (that is, to starts
running). We define Sj+1 and T j+1 as follows: Sj+1 = Sj ∪ {wj} and T j+1 = T j \ {wj}.
Since

∣∣T j+1
∣∣ =

∣∣T j
∣∣+ 1, this construction is well defined for 0 ≤ j < k.

We define the total order � as follows: wi � wj if i ≤ j.

I Lemma 34. For every 0 ≤ j ≤ k, there are no edges from T j to Sj.

Proof. We use induction on j for the proof. The base case is trivial, since S0 = ∅.
Assume there are no edges from T j to Sj . Since wj ∈ T̃ j , there are no edges to wj from

T j (and there is also no edge from wj to itself). So there are no edges from T j+1 = T j \
{

wj
}

to Sj+1 = Sj ∪
{

wj
}
. J

I Corollary 35. w0 returns ⊥.

Proof. Assume w0 does not return ⊥. Following the construction of G, there is an incoming
edge to w0. From lemma 34, there are no incoming edges to S1 =

{
w0}, in a contradiction. J

I Corollary 36. wi returns ⊥ if and only if wi � w(i+1) mod k.

Proof. Assume wi returns ⊥. Assume wi = wj . So wi ∈ T j , but wi ∈ Sj+1. Since wi returns
⊥, following the construction of G, there is an edge from wi to w(i+1) mod k. Assuming
that w(i+1) mod k ∈ Sj would contradict lemma 34, so w(i+1) mod k ∈ T j , and therefore also
w(i+1) mod k ∈ T j+1. So wi � w(i+1) mod k. J

I Corollary 37. � is a linearization of 1sWRN. Therefore, algorithm 5 is a linearizable
implementation of 1sWRNk.

Corollary 37 shows that 1sWRNk can be implemented using a (k, k − 1)-set consensus
implementation. This implies that 1sWRNk is equivalent to (k, k − 1)-set consensus. In
particular, 1sWRNk cannot solve the 2-process consensus task where k ≥ 3.

6 WRNk is Weaker than 2-Consensus

Section 5 describes a linearizable construction of 1sWRNk using an implementation for
(k, k − 1)-set consensus. In this section we prove that neither WRNk objects can solve the
2-process consensus task for k ≥ 3, using a critical-state argument [17, 19].

We follow the standard definitions of bivalent configuration, v-univalent configuration and
critical configuration, as defined in [17, 19].

I Lemma 38. For each k ≥ 3, there is no wait-free algorithm for solving the consensus task
with 2 processes using only registers and WRNk objects.

Proof. Assume such an algorithm exists. Consider the possible executions of the processes P

and Q of this algorithm, while proposing 0 and 1, respectively. Let C be a critical configuration
of this run. Denote the next steps of P and Q from C as sP and sQ, respectively. Without
loss of generality, we assume that CsP is a 0-univalent configuration, and CsQ is a 1-univalent
configuration.

Following [19], sP and sQ both invoke a WRN operation on the same WRNk.

DISC 2018

17:14 A Wealth of Sub-Consensus Deterministic Objects

Algorithm 6 m-set consensus for n processes using WRNk objects.
1: shared array W [j] of WRNk objects, 0 ≤ j <

⌈
n
k

⌉
2: function Propose(vi) . For process Pi, 0 ≤ i < n

3: t←W
[⌊

i
k

⌋]
.WRN(i mod k, vi) . t is a local variable.

4: if t 6= ⊥ then return t

5: else return vi

6: end if
7: end function

Case 1. Both sP and sQ perform WRN with the same index i.
The configurations CsP and CsQsP are indistinguishable for a solo run of P , but
a solo run of P from CsP decides 0, while an identical solo run of P from CsQsP

decides 1. This is a contradiction.
Case 2. sP and sQ perform WRN with different indices, iP and iQ, respectively.

Since k ≥ 3, either iP 6= iQ + 1 mod k or iQ 6= iP + 1 mod k. Without loss of
generality, assume that iQ 6= iP + 1 mod k. So the configurations CsP sQ and
CsQsP are indistinguishable for a solo run of P . However, the identical solo runs of
P from the configurations CsP sQ and CsQsP decide 0 and 1, respectively, which is
a contradiction.

Both cases resulted in a contradiction, and therefore no such algorithm exists. J

7 Implications

7.1 Set Consensus Ratio
A trivial implication of Section 4 is that WRNk objects can solve the m-set consensus task
for n processes as long as k−1

k ≤ m
n is satisfied. For instance, WRN3 objects can be used for

implementing (12, 8)-set consensus.
Algorithm 6 describes an implementation of the m-set consensus task for n processes

using WRNk objects. It uses an array W of
⌈

n
k

⌉
shared WRNk objects, where the process

named i, 0 ≤ i < n invokes the WRN operation of W
[⌊

i
k

⌋]
with its proposal and the index i

mod k. If ⊥ is returned, the process decides on its own proposal. Otherwise, it decides on
the returned value of the invocation.

Note that Algorithm 6 can be implemented using 1sWRNk objects instead of the WRNk

objects, since every index is accesses at most once.

I Lemma 39. For every 0 ≤ j <
⌈

n
k

⌉
, the set of processes P = {Pi | j · k ≤ i < (j + 1) · k}

solves the (k − 1)-set consensus task using algorithm 6.

Proof. This algorithm is similar to Algorithm 2, and since |P| ≤ k, corollary 9 shows
algorithm 6 solves the (k − 1)-set consensus task for P. J

I Corollary 40. Algorithm 6 solves the m-set consensus task for n processes.

7.2 Infinite Hierarchy
The combination of the results of Sections 4 and 5 imply that 1sWRNk objects have the
same computational power as (k, k − 1)-set consensus objects, e.g. 1sWRNk objects are
computationally equivalent to (k, k − 1)-set consensus objects.

The following relationship among set consensus objects is known [1, 16]:

E. Daian, G. Losa, Y. Afek, and E. Gafni 17:15

I Theorem 41. Let n > k and m > j be positive integers. Then there is a wait-free
implementation of an (n, k)-set consensus object from (m, j)-set consensus objects and
registers in a system of n or more processes if and only if k ≥ j, n

k ≤
m
j , and either

k ≥ j ·
⌈

n
m

⌉
or k ≥ j ·

⌊
n
m

⌋
+ n−m ·

⌊
n
m

⌋
.

I Corollary 42 (Hierarchy of 1sWRN objects). Let k < k′ be two positive integers. So:
1. 1sWRNk cannot be implemented using 1sWRNk′ objects and registers.
2. 1sWRNk′ can be implemented using 1sWRNk objects and registers.

This corollary forms an infinite hierarchy among the 1sWRN objects, such that 1sWRNk′

objects are considered to have more computational power than 1sWRNk objects if k < k′.
Since 1sWRN objects have more computational power than simple read-write registers, and
cannot solve the consensus task for 2 processes, this hierarchy shows the existence of an
infinite number of computational power classes between simple read-write registers and
2-consensus.

8 Conclusion

This paper advances our understanding of classification of deterministic shared objects. It
was an open question whether there are deterministic objects that are stronger than registers,
and yet incapable of solving the consensus task for two processes.

The answer to this question for nondeterministic objects is well known [18]. For the
deterministic case, only recently [1] it has been shown that the consensus task alone is not
enough for classifying the computational power of deterministic objects. It is suggested that
the set consensus task gives a more fine grained granularity for deterministic objects power
classification, however the layer of objects under 2-consensus was not discussed.

Our construction shows that set-consensus gives a more fine grained granularity in
understanding the computational power of objects, even between atomic read/write registers
and 2-consensus. Not only we show the existence of objects between both computational
classes, we also provide an infinite hierarchy of computational classes between the two classes,
defined by the set-consensus task, using the implications of [8, 9].

Even though we have a better understanding of the behavior of deterministic objects
under 2-consensus, our research leaves some open questions. We have shown that for every
k, there is a deterministic object that can solve the (k, k − 1)-set consensus task. This result
is extended to the (n, m)-set consensus task, where m

n ≥
k

k−1 ≥
2
3 . We do not show the

existence of deterministic objects that can solve the (n, m)-set consensus task where n
k < 2

3
without solving the 2-consensus task. More precisely, this paper does not show (or refutes)
the existence of a deterministic object that can solve the 2-set consensus task for any number
of processes, but is unable to solve the 2-consensus task. These questions remain open.

Finally, although the Consensus Hierarchy is not precise enough to characterize the
synchronization power of objects, we may conjecture that a hierarchy based on set-consensus
may be precise enough. Chan et al. [13] give an example in which set-consensus powers is
not enough to characterize the ability of a deterministic object to solve the n-SLC problem.
However, by definition, the n-SLC problem is not a problem in the wait-free model. Thus
the conjecture that set-consensus is enough to characterize the synchronization power of
deterministic shared objects in the wait-free model (in particular, their power to solve tasks
wait-free) is still open.

DISC 2018

17:16 A Wealth of Sub-Consensus Deterministic Objects

References
1 Yehuda Afek, Faith Ellen, and Eli Gafni. Deterministic objects: Life beyond consensus. In

Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
’16, pages 97–106, New York, NY, USA, 2016. ACM. doi:10.1145/2933057.2933116.

2 Yehuda Afek, Eli Gafni, and Adam Morrison. Common2 extended to stacks and un-
bounded concurrency. Distributed Computing, 20(4):239–252, Nov 2007. doi:10.1007/
s00446-007-0023-3.

3 Yehuda Afek, Eli Gafni, Sergio Rajsbaum, Michel Raynal, and Corentin Travers. Simul-
taneous consensus tasks: A tighter characterization of set-consensus. In Soma Chaudhuri,
Samir R. Das, Himadri S. Paul, and Srikanta Tirthapura, editors, Distributed Computing
and Networking, pages 331–341, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

4 Yehuda Afek and Michael Merritt. Fast, wait-free (2k-1)-renaming. In Proceedings of the
Eighteenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’99,
pages 105–112, New York, NY, USA, 1999. ACM. doi:10.1145/301308.301338.

5 Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for a
class of synchronization objects. In Proceedings of the Twelfth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’93, pages 159–170, New York, NY, USA,
1993. ACM. doi:10.1145/164051.164071.

6 Hagit Attiya and Arie Fouren. Adaptive wait-free algorithms for lattice agreement and
renaming (extended abstract). In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’98, pages 277–286, New York, NY, USA,
1998. ACM. doi:10.1145/277697.277749.

7 Rida A. Bazzi, Gil Neiger, and Gary L. Peterson. On the use of registers in achieving
wait-free consensus. Distributed Computing, 10(3):117–127, Mar 1997. doi:10.1007/
s004460050029.

8 Elizabeth Borowsky. Capturing the Power of Resiliency and Set Consensus in Distributed
Systems. PhD thesis, University of California in Los Angeles, Los Angeles, CA, USA, 1995.
UMI Order No. GAX96-10429.

9 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient
asynchronous computations. In Proceedings of the Twenty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM.
doi:10.1145/167088.167119.

10 Elizabeth Borowsky and Eli Gafni. The implication of the Borowsky-Gafni simulation on
the set-consensus hierarchy. UCLA Computer Science Department, 1993.

11 Elizabeth Borowsky, Eli Gafni, and Yehuda Afek. Consensus power makes (some) sense!
(extended abstract). In Proceedings of the Thirteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’94, pages 363–372, New York, NY, USA, 1994.
ACM. doi:10.1145/197917.198126.

12 David Yu Cheng Chan, Vassos Hadzilacos, and Sam Toueg. On the number of objects
with distinct power and the linearizability of set agreement objects. In 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria,
pages 12:1–12:14, 2017. doi:10.4230/LIPIcs.DISC.2017.12.

13 David Yu Cheng Chan, Vassos Hadzilacos, and Sam Toueg. On the classification of determ-
inistic objects via set agreement power. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing, PODC ’18, pages 71–80, New York, NY, USA, 2018.
ACM. doi:10.1145/3212734.3212775.

14 Soma Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally
asynchronous systems. In Proceedings of the Ninth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’90, pages 311–324, New York, NY, USA, 1990. ACM.
doi:10.1145/93385.93431.

http://dx.doi.org/10.1145/2933057.2933116
http://dx.doi.org/10.1007/s00446-007-0023-3
http://dx.doi.org/10.1007/s00446-007-0023-3
http://dx.doi.org/10.1145/301308.301338
http://dx.doi.org/10.1145/164051.164071
http://dx.doi.org/10.1145/277697.277749
http://dx.doi.org/10.1007/s004460050029
http://dx.doi.org/10.1007/s004460050029
http://dx.doi.org/10.1145/167088.167119
http://dx.doi.org/10.1145/197917.198126
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.12
http://dx.doi.org/10.1145/3212734.3212775
http://dx.doi.org/10.1145/93385.93431

E. Daian, G. Losa, Y. Afek, and E. Gafni 17:17

15 Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Information and Computation, 105(1):132–158, 1993.

16 Soma Chaudhuri and Paul Reiners. Understanding the set consensus partial order using
the borowsky-gafni simulation. In Özalp Babaoğlu and Keith Marzullo, editors, Distributed
Algorithms, pages 362–379, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

17 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

18 Maurice Herlihy. Impossibility results for asynchronous pram (extended abstract). In
Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and Architec-
tures, SPAA ’91, pages 327–336, New York, NY, USA, 1991. ACM. doi:10.1145/113379.
113409.

19 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13:124–149, January 1991. doi:10.1145/114005.102808.

20 Prasad Jayanti. Wait-free computing. In Jean-Michel Hélary and Michel Raynal, editors,
Distributed Algorithms, pages 19–50, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

21 Leslie Lamport. Solved problems, unsolved problems and non-problems in concurrency.
SIGOPS Oper. Syst. Rev., 19(4):34–44, 1985. doi:10.1145/858336.858339.

DISC 2018

http://dx.doi.org/10.1145/113379.113409
http://dx.doi.org/10.1145/113379.113409
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/858336.858339

NUMASK: High Performance Scalable Skip List
for NUMA
Henry Daly
Lehigh University, Bethlehem, PA, USA
hwd219@lehigh.edu

Ahmed Hassan
Alexandria University, Alexandria, Egypt
ahmed.hassan@alexu.edu.eg

Michael F. Spear
Lehigh University, Bethlehem, PA, USA
spear@lehigh.edu

Roberto Palmieri
Lehigh University, Bethlehem, PA, USA
palmieri@lehigh.edu

Abstract
This paper presents NUMASK, a skip list data structure specifically designed to exploit the
characteristics of Non-Uniform Memory Access (NUMA) architectures to improve performance.
NUMASK deploys an architecture around a concurrent skip list so that all metadata accesses
(e.g., traversals of the skip list index levels) read and write memory blocks allocated in the NUMA
zone where the thread is executing. To the best of our knowledge, NUMASK is the first NUMA-
aware skip list design that goes beyond merely limiting the performance penalties introduced by
NUMA, and leverages the NUMA architecture to outperform state-of-the-art concurrent high-
performance implementations. We tested NUMASK on a four-socket server. Its performance
scales for both read-intensive and write-intensive workloads (tested up to 160 threads). In write-
intensive workload, NUMASK shows speedups over competitors in the range of 2x to 16x.

2012 ACM Subject Classification Information systems → Data structures

Keywords and phrases Skip list, NUMA, Concurrent Data Structure

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.18

Funding This material is based upon work supported by the Air Force Office of Scientific Re-
search under award number FA9550-17-1-0367 and by the National Science Foundation under
Grant No. CNS-1814974.

Acknowledgements Authors would like to thank anonymous reviewers for the insightful com-
ments, Maged Michael and Dave Dice for the early feedback on the paper, and Vincent Gramoli
for agreeing to integrate NUMASK into Synchrobench.

1 Introduction

Data structures are one of the most fundamental building blocks in modern software. The
creation of performance-optimized data structures is a high-value task, both because of
intellectual contributions related to algorithms’ design and correctness proofs, and because

© Henry Daly and Ahmed Hassan and Michael F. Spear and Roberto Palmieri;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hwd219@lehigh.edu
mailto:ahmed.hassan@alexu.edu.eg
mailto:spear@lehigh.edu
mailto:palmieri@lehigh.edu
https://doi.org/10.4230/LIPIcs.DISC.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 NUMASK: High Performance Scalable Skip List for NUMA

of the impact that even a single data structure can have on the performance of enterprise-
level applications. For example, the use of a high-performance non-blocking skip list is the
fundamental innovation in the MemSQL database [29].

Current and (likely) future generations of enterprise-level computing infrastructures
deploy on a hardware design known as Non-Uniform Memory Access (or NUMA) [22, 24],
which specifies that memory access latency varies depending on the distance between the
processor performing the memory access and the memory chip currently holding the memory
location. With NUMA, the memory hierarchy is more complex than before; if a system
possesses multiple discrete CPU chips (i.e., physical processors installed on different CPU
sockets), each will have faster access to a locally-attached coherent memory and slower (but
still cache-coherent) access to the memories attached to other chips. This is mainly because
the bandwidth of the hardware channel that connects these multiple chips is limited and its
performance is generally poor. As a consequence of these considerations, we can claim that
NUMA prefers locality; therefore, applications or systems should be (re)designed with this
guideline in mind. Such a claim has been confirmed by a number of recent works [27, 4, 6, 10].

The performance penalty of NUMA architectures has been quantified by many recent
efforts [4, 26, 3, 16]. A recurring, although conservative, guideline in those studies is to
avoid (if possible) scheduling cooperative threads on different processors. Although this
guideline is valid in some applications where there is a clear separation in data access pattern
among application threads, it might not be easy to apply in other applications where data is
maintained as a set of connected items in a linked data structure. For example, searching for
an item usually forces a thread to traverse multiple elements of the data structure in order
to reach the target item. Because of this, each operation might produce large traffic on the
NUMA interconnection; this traffic is the main reason for degraded performance [9].

Caching will not completely solve the problem either, because concurrent updates mandate
refreshing cached locations. From our experience, as we show later in the experimental
results in Section 7, the presence of even a few percentage of update operations results in
a significant performance drop on NUMA. We conclude that data structures not designed
for NUMA do not perform well on modern enterprise-level architectures when concurrent
updates mandate refreshing cached locations.

In this paper we present NUMASK, a novel concurrent skip list data structure [20]
tailored to a NUMA organization. Unlike existing NUMA-aware solutions for data structures
(e.g., [6] see Section 2 for details), our design does not limit parallelism to cope with NUMA;
rather, it leverages NUMA characteristics to improve performance. What makes our proposal
unique is that its advantages hold even for high update rates and contention. We adhered to
the following considerations throughout the development of NUMASK:

(a) local memory accesses (i.e. memory close to the executing thread’s processor) are favored;
(b) traffic across NUMA zones, often produced by synchronization primitives, is avoided.

In a nutshell, our design produces redundant metadata to be placed on different NUMA
zones (which meets requirement (a)) and avoids the need of synchronizing this metadata
across NUMA zones (which satisfies requirement (b)). The final design is a data structure
that never limits concurrency and at the same time primarily accesses NUMA local memory
(in our evaluation study, > 80% of memory accesses are local).

The simple observation that motivated our work is that in a skip list, the actual data
resides in the lowest level of the skip list, and the other levels form an index layer whose task
is only to accelerate execution of operations. In NUMASK, we exploit this fact in two ways:

We define independent index layers (one per NUMA zone) for the skip list. Each operation
traverses the index layer that is local to the thread that executes it. This way, operations
do not need to traverse the interconnection between NUMA zones during the index layer

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:3

traversal. Importantly, we do not keep these index layers consistent with each other; we
allow them to be different. In fact, having different index layers in different NUMA zones
does not affect correctness because the actual data (which resides in the lowest level of
the skip list) is still synchronized.
We isolate updates on the index layers in separate (per-NUMA) helper threads instead of
performing those updates in the critical path of the insert/remove operations. Although
this isolation may delay the synchronization of the index layers, the (probabilistic)
logarithmic complexity of the skip list operations can be eventually maintained even with
lazy index layer updates [18].

Former designs [8, 12] proposed the isolation of index layer updates in helper threads,
but none of them defined per-NUMA index layers. That is why in those proposals, the
NUMA overhead is still significant due to traversing a single index layer. NUMASK inherits
the idea of applying replication to data structure in order to improve its performance in
NUMA architectures, as done by [6], but NUMASK targets only metadata and updates such
metadata lazely.

We implement NUMASK in C++ and integrate into Sychrobench [17], a comprehensive
suite of data structures implemented in the same optimized software infrastructure. The
implementation of NUMASK has been enriched with specific optimizations, such as an
efficient NUMA memory allocator, developed on top of libnuma [1], to avoid bottleneck.
We compare the performance of NUMASK with three state-of-the-art concurrent skip lists:
Fraser [15], No Hotspot [8], and Rotating Skip List [12]. Performance shows up to 16x speed
up for write workloads and improvements up to 40% in read-intensive workloads. In summary,
NUMASK hits an important performance goal: in low-contention workloads, NUMASK adds
no overhead to the high-performance concurrent data structures; and in high-contention
workloads, NUMASK outperforms all other competitors and keeps scaling (we tested up to
160 threads) while other competitors stop earlier (at 64 threads in our experiments).

NUMASK is part of the core release of Synchrobench [17] available at https://github.
com/gramoli/synchrobench.

2 Related Work

Many concurrent variants of the original sequential skip list [28] data structure have been
proposed in the last decade. Some of them are blocking [6, 21, 19, 20], and others are
non-blocking [14, 15, 8, 12]. Among the non-blocking designs, which often demonstrate
improved performance over blocking designs [17], Fraser [15] proposed the use of a CAS
primitive to create a non-blocking skip list. Crain et al. [8] proposed a contention friendly
skip list, called No Hotspot, which serves as the foundation of our NUMASK design. The
main innovation in No Hotspot is that it isolates bookkeeping operations (e.g., updating
index levels) in a helper thread. The rotating skip list was proposed by Dick et al . [12] to
further improve No Hotspot’s poor locality of references in order to reduce cache misses.
However, none of the above designs is optimized for NUMA architectures and thus they all
generate significant NUMA interconnect traffic.

Recent uses of skip lists include ordered maps, priority queues, heaps, and database indexes
(e.g., [29]). The NUMASK design can be applied to these data structures, improving their
performance through data and index layer separation when deployed in NUMA architectures.

The impact of NUMA organization on the performance of software components (e.g. data
structures and thread synchronization) is an important topic. Interestingly, the last decade
saw the proposal of many NUMA-aware building blocks to improve application performance.

DISC 2018

https://github.com/gramoli/synchrobench
https://github.com/gramoli/synchrobench

18:4 NUMASK: High Performance Scalable Skip List for NUMA

Examples include NUMA-aware lock implementations [11, 5], thread placement policy [23],
and smart data arrays [27]. Although helpful, the applicability of these components in linked
data structures is limited due to the memory organization required by data structures in
order to implement their operations while preserving the asymptotic complexity.

Few specialized NUMA-aware techniques for data structures have been proposed [6, 4].
The most relevant to NUMASK is the method proposed by Calciu et al. [6], wherein data
structures can be made NUMA aware. Using a technique called NR (Node Replication),
replicas are created across NUMA zones. However, replica synchronization across zones
forces significant NUMA interconnect traffic. In fact, since synchronous updates of the whole
data structure (including the searching layer) are assumed, the authors needed a shared
synchronization log to save and replay update operations on each replica of the data structure.
Moreover, a read operation would wait for the replay of pending updates in order to guarantee
its linearization. On the bright side, this approach is a general technique that applies to
different data structure designs, whereas NUMASK can exploit specific optimizations because
its goal is to provide a high-performance NUMA-aware skip list. In fact, NUMASK relaxes
the need of synchronizing different index layer instances; thus, it does not suffer from the
above overheads which impede scalability.

Brown et al. [4] proposed a simple design, effective in small-scale deployments, that
maintains the entire index layer in a single NUMA zone. This solution’s pitfall is its limited
parallelism. For operations to access NUMA-local memory addresses, either the application
thread’s execution must be migrated to the processor attached to the desired NUMA zone,
or the operation must be delegated to one or more serving threads in the target NUMA zone.
This inherently limits parallelism to a single processor’s maximum computing capability.
Our new design overcomes all the above limitations: all application and background threads
operate primarily on NUMA-local memory and perform a negligible number of NUMA-remote
accesses, eliminating the need for migration or delegation.

Orthogonal to our NUMASK approach, in [27, 25] partitioning techniques have been used
for targeting the hardware organization of NUMA architectures to improve the performance
of array representations [27] and in-memory transaction processing [25].

3 Terminology, NUMA & Linked Data Structures

In NUMA, each (multicore) CPU is physically connected to a partition of the whole memory
available in the system, called a NUMA zone. A hardware interconnection exists between
NUMA zones (the NUMA interconnection). The hardware provides applications (including
the OS) with the abstraction of a single consistent global memory address space; therefore,
threads can access the entire memory range in a manner that is oblivious to the NUMA zone
in which each virtual address resides. However, this transparency comes with performance
costs associated with having an interconnection between NUMA zones.

This interconnection has limited bandwidth, is slow to traverse, and saturates when
many threads attempt to use it. Thus, if a thread executing on one CPU accesses a memory
location stored in a NUMA zone physically connected with another CPU (called a remote
NUMA zone hereafter), it incurs a latency that is significantly higher than the latency needed
to access a memory location in the NUMA zone connected with the CPU where the thread
executes (called local NUMA zone hereafter). In short, we use the term NUMA-local memory
when the memory is in the local NUMA zone and the term NUMA-remote memory otherwise.

Linked data structures are particularly affected by the memory latency variation intro-
duced by NUMA. This is because traversing the data structure through pointers can easily
lead threads to access memory locations physically maintained in remote NUMA zones.

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:5

(a) Skip list. (b) NUMASK.

Figure 1 Separation of layers in base skip list Vs. NUMASK. In 1b, the Intermediate layer has
not been updated with key 7 yet.

NUMA-aware memory allocation (e.g., libnuma [1], which is supported by most Operating
System distributions) cannot eliminate this problem because even if threads allocate memory
in their local NUMA zone, they might still need to traverse many other nodes to accomplish
their operation, and these nodes might be added by threads running on remote NUMA zones.

4 NUMASK: A Concurrent Skip List Designed for NUMA

In this section we illustrate the design of NUMASK. In order to retain decades of high
performance skip list results, NUMASK deploys a modular design that re-uses the fundamental
operations of an existing concurrent skip-list and wraps these operations around a NUMA-
aware architecture. The result is a data structure whose performance improves upon the
selected concurrent skip list implementation when deployed on NUMA architectures. Another
benefit of our modular design is that the correctness of the resulting NUMA-aware skip list
is easy to prove since the wrapping architecture does not modify the core operations of the
selected concurrent skip list implementation, which is assumed to be correct.

In the rest of the paper we will use the term base skip list to indicate an implementation
of a skip list that is wrapped (and improved) by the NUMASK architecture. The base skip
list is a concurrent skip list whose API are insert, remove, and contains operations, with
their default signatures [20]. The only requirement we add to this concurrent skip list is that
bookkeeping operations (e.g., updating the searching layers and physical removal of logically
deleted nodes) are decoupled from the critical path of the data structure operations (i.e.,
insert/remove/contains) and executed lazily by a helper thread. It is worth noting that the
features we require in the base skip list have been successfully deployed in many existing data
structure implementations [18, 7, 12] and do not diminish the applicability of our proposal.

In this paper we use Crain et al.’s No Hotspot skip list [8] as the base skip list because it
defines a helper thread responsible for updating the skip list, and it is one of the state-of-the-
art concurrent skip list implementations (as studied in [17]). For completeness, it is worth
mentioning that No Hotspot, and thus our NUMASK skip list implementation, is lock-free.

All skip list implementations share one key observation that motivates our design: elements
in the data structure, representing the abstract state of the skip list, are reached through an
index layer. This index layer is composed of metadata that does not belong to the abstract
state of the data structure, and which is used to improve performance by minimizing the
number of traversed nodes. Leveraging the above observation, we can split the memory space
used by a skip list into a data layer, which stores the abstract state of the data structure,
and an index layer, which includes the metadata exploited to reach the data layer. Figure 1a
illustrates this separation.

DISC 2018

18:6 NUMASK: High Performance Scalable Skip List for NUMA

Managing the data layer and index layer independently is the crucial intuition behind the
NUMASK design, for it exploits the different consistency requirements they have to improve
performance in NUMA architectures. None of the existing designs of NUMA-aware data
structures, when applied to skip lists (e.g., [6]), accounts for such separation.

In a nutshell, in order to improve performance in NUMA architectures, the primary
design choice of NUMASK is to create as many index layers as the number of NUMA
zones in the system. These index layers are not updated immediately after successful
insert/remove operations. Instead, they will be updated independently to avoid (unnecessary)
synchronization and traffic on the NUMA interconnection. The ultimate goal of having
NUMA-local index layers is to let operations on the data structure only access NUMA-local
memory before reaching the data layer. Once there, the (probabilistic) logarithmic complexity
of the skip list allows for the traversal of only few nodes in the data layer before finalizing
the operation. We empirically demonstrate that traversing these few nodes (possibly NUMA-
remote) does not have a significant impact on performance. NUMASK accomplishes the
above goal by deploying the following design around a base skip list.

4.1 Per-NUMA zone index layers

In skip lists, most of the traversed nodes exist in the index layer; therefore, creating as many
index layers as the number of NUMA zones allows application threads to perform mostly
NUMA-local accesses. Given that the base skip list defers updates to the index layer to a
helper thread, having multiple independent indexing layers entails the need of deploying the
same amount of helper threads (one per NUMA zone) responsible for their management.
Consequently, helper threads will also access NUMA-local memory.

4.2 Per-NUMA zone intermediate layers

Decisions on how to update the index layer usually depend upon the current composition of
the data layer. That is why the aforementioned per-NUMA zone helper threads, responsible
for updating each instance of the index layers, would have to traverse the data layer nodes in
order to decide whether to apply certain modifications (e.g., increasing or lowering a level
of a certain node in the data layer) or to leave the index layer instance unaltered. Since
the traversed data layer nodes are not necessarily NUMA-local, this can produce excessive
NUMA-remote accesses and generate significant traffic on the NUMA interconnection, which
is the main source of performance degradation in NUMA.

Because in NUMASK we aim at eliminating any NUMA-remote accesses while updating
the index layer instances, we create a NUMA-local view of the data layer, which we name
the intermediate layer. Creating multiple intermediate layers, one per index layer instance,
allows helper threads to fully operate on NUMA-local memory. Logically, the intermediate
layer is placed in between the index layer and the data layer. With respect to the index
layer, the intermediate layer has the same goal as the base skip list data layer, meaning it
serves as a knowledge base for the helper thread(s) to update the index layer instance(s).

The peculiarity of the intermediate layer is that it need not be an exact replica of the
data layer (e.g., it is enough to be eventually synchronized with the data layer). In fact, any
inaccuracy in an index layer instance, which could happen due to a temporarily out-dated
intermediate layer, affects only the skip list performance and not its correctness. This is the
same rationale that led previous skip list designs [8, 12, 17] to lazily update the index layer.
Relaxed constraints on the intermediate layer composition enable its NUMA distribution.

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:7

Figure 2 NUMASK deployed on a server with four sockets and four NUMA zones. The four
instances of the index and intermediate layer are independent, and the data layer is scattered across
available memory. The abstract state of the data structure contains the following keys: {0;2;5;7;9}.

In Figure 1b we show a simple example of NUMASK. Here the abstract state of the skip
list is the same as Figure 1a; however, the intermediate layer has not been updated with
the element with key 7. This is a plausible case in our design, meaning that the insert(7)
operation result has not yet been propagated to the intermediate layer. We can easily see
that the index layer remains the same as the skip list in Figure 1a. The modifications made
by insert(7) will eventually be propagated to the intermediate layer using a technique (shown
below) that does not increase the duration of the actual data structure operation.

4.3 Propagation of Data Layer Modifications.
The intermediate layer instances need to be periodically updated to reflect the content of
the data layer. A naïve way to do this follows: at the end of each update operation (i.e.,
insert/delete), necessary information is stored in an intermediary data structure (e.g., a
queue), and each per-NUMA helper thread later loads this information and updates its local
intermediate layer. However, this naïve approach leads to one major drawback: it requires
synchronization and memory allocation overhead on the data structure’s critical path.

To remove this overhead from the application threads, NUMASK assigns a new helper
thread the task of updating the intermediate layer instances. This thread operates at
predefined intervals and iterates over the data layer. Every time it finds a node that has been
modified (i.e., inserted or logically removed), it propagates this modification to all instances.

It is worth noting that this new helper thread does generate traffic on the NUMA-
interconnection. However, the impact of this traffic on the data structure performance is
minimal given that it does not operate frequently. Also, thanks to our optimizations in the
index layers, the number of NUMA-remote accesses is already low (<15% in our experiments).
Thus, the NUMA-interconnection is expected not to be saturated; therefore, this helper
thread will not cause significant delay.

4.4 Example of NUMASK deployment
In Figure 2 we deployed NUMASK on a server with 4 processor sockets and 4 NUMA zones.
In the example, the abstract state of the skip list is {0;2;5;7;9}. By looking at the data layer
we assume that the elements 0 and 2 have been inserted by an application thread executing

DISC 2018

18:8 NUMASK: High Performance Scalable Skip List for NUMA

on CPU1, element 5 by a thread on CPU3, and so on. Each NUMA zone has its own
intermediate and index layer instance. The composition of the different intermediate layer
instances is different because the data layer modifications are not propagated at the same
time to all intermediate later instances. For example, in the figure the element 6 has been
removed, but the intermediate layer of NUMA zone 3 still has not applied this modification.
Also, in the figure the four index layer instances differ from each other since helper threads
work independently and do not proceed synchronously.

4.5 Design Trade-offs

The design of NUMASK presents different trade-offs with respect to the space and time
needed to handle its index and intermediate layers, including tuning the configuration
associated with the deployed helper threads. These trade-offs are briefly discussed below.

NUMASK introduces space overhead due to the presence of multiple instances of both
index layer and intermediate layer. This overhead is proportional to the number of NUMA
zones in the system; however it does not increase with the number of application threads.
Moreover, as we will detail later, the synchronization overhead to maintain (i.e., traverse
and update) this extra space is limited. Finally, it is important to note that, in cases where
space utilization is crucial, some optimization can be added to NUMASK to control such
utilization. For example, a probabilistic policy can be added to the data layer propagation
process. This policy might aim at selecting only some operation made by application threads,
rather than all, to be propagated to the different intermediate layer instances.

Another trade off involves the helper threads frequency of operation. Tuning the backoff
time after each iteration of the helper threads might affect the overall performance of
NUMASK. One viable solution towards a configuration that is effective in multiple scenarios
is to use an adaptive technique, similar to the one adopted in [18], in which the application
workload is monitored and backoff time is adjusted accordingly.

5 NUMASK: Protocol Details

In this section we show the algorithmic details of NUMASK. The pseudo-code describing
NUMASK is reported in Algorithms 2 and 3. To clarify the presentation, we abstract a base
skip list in Algorithm 1. By leveraging this abstraction, we can avoid listing the details of core
operations on the skip list (i.e., traversal, modification to data and index layer, logical and
physical removal of elements) and focus on our NUMA-aware modifications. Algorithms 2
and 3 include calls to procedures defined in Algorithm 1. All the low-level details of our
implementation are public and available in Synchrobench.

Algorithm 1 abstracts the base skip list as two procedures: Base-Operation and
Base-Helper. Base-Operation is the handler for the three different types of data structure
operations, namely insert, remove, and contains. Each of these operations is split into
Base-Traversal and Base-DoOperation sub-procedures. The former traverses the index
layer and returns a pointer to some data layer node where the operation should act. The
latter works entirely on the data layer and applies the invoked operation (e.g., if the operation
is an insert, the node is physically inserted in the data layer). Base-Helper periodically calls
Base-UpdateIndex for updating the skip list index layer and performing physical removals.

As mentioned before, in our experiments we selected No Hotspot as the underlying
base skip list implementation. The details of how No Hotspot implements Base-Traversal,
Base-DoOperation, and Base-UpdateIndex can be found in [8].

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:9

Algorithm 1 Abstract Base Skip List.
1: Global Variable: indexSen . indexSen = sentinel node of index layer
2: procedure Base-Operation(Type t, Element el) . t = Insert/Remove/Contains
3: Node n = Base-Traversal(indexSen,el.key); . n is the node with the closest key value less

than or equal to the desired node
4: boolean res = Base-DoOperation(t,el,n);
5: return res;
6: end procedure

7: procedure Base-Helper(Node s)
8: while true do
9: Base-UpdateIndex(s); . This procedure updates the index layer starting from the

sentinel node s
10: . In the base skip list, s is the sentinel node of the lowest level of the skip list
11: end while
12: end procedure

5.1 NUMASK: Data Structure Operations

NUMASK’s Insert, Remove, and Contains operations (Algorithm 2) can be summarized in
the following steps: i) each operation traverses the local index layer instance until it retrieves
a pointer to a node in the local intermediate layer; ii) this intermediate layer node is used
as an indirection to reach a pointer to a data layer node; iii) this pointer is then used to
perform the actual operation on the data layer. Importantly, the operations terminate right
after updating the data layer, since all further updates in both intermediate and index layers
are delegated to the helper threads (as detailed in the next two subsections).

The details of Algorithm 2 are as follows. In typical skip lists, index layer traversal starts
from a known sentinel node. In NUMASK, each NUMA zone has its own index layer instance
and therefore its own sentinel node as well (Algorithm 2:2). When a NUMASK traversal is
invoked (Algorithm 2:18), the local thread starts from the sentinel node of the local NUMA
zone. From this point, all memory accesses of NUMASK_Traversal will be NUMA-local. The
traversal operates similar to that of the base skip list: it moves to a node on its right in the
same level (using the next field) as long as its key is less than or equal to the target key
(say k), and it moves to the next lower index level (using the down field) otherwise. If there
is no lower index level to traverse, the traversal exits by returning the pointer to the node
in the intermediate layer. Each node in the intermediate layer has a (down) pointer to its
respective data layer node, from which Base-DoOperation can begin.

Base-DoOperation operates similar to the base skip list: The data layer is traversed
from the pointer reached by the intermediate layer node until either a node with a greater
key is found or the list ends. After that, the operation completes based on its type. If it
is a contains operation, it checks whether the node’s key matches k or not. The insert
and remove operations use Compare-And-Swap for non-blocking updates (details of how No
Hotspot, and thus NUMASK, accomplishes that can be found in [8]).

An important task assigned to NUMASK_DoOperation is to update the node’s status
field upon a successful write operation. Setting this field to 1 (respectively 2) indicates to
helper threads that the node is newly inserted (respectively removed), and this insertion
(respectively removal) is not yet propagated to the intermediate and index layers. To simplify
the pseudo-code, we exclude this assignment of the status field, replacing it with a comment
in Algorithm 2:23.

DISC 2018

18:10 NUMASK: High Performance Scalable Skip List for NUMA

Algorithm 2 NUMASK: Skip List Operations.
1: Global Variable:
2: Node indexSents[MaxNumaZones] . Array of index layer sentinel nodes, one per NUMA zone
3: Node interSents[MaxNumaZones] . Array of intermediate layer sentinel nodes, one per NUMA

zone
4: Node dataSent . data layer sentinel node
5: Queue update-queues[MaxNumaZones] . Queue utilized for updating the MaxNumaZones

intermediate layers

6: Node: a struct with fields
7: next . Pointer to next node in the list
8: down . Pointer to the node in the level below
9: status . Up to date = 0, recently added = 1, recently removed = 2
10: level . The height of the tallest tower in the index layer
11: deleted . Indicates if node is logically deleted

12: procedure NUMASK_Operation(Type t, Element el)
13: Node intermediate_node = NUMASK_Traversal(getCurrentNUMAZone(), el.key);
14: Node data_node = intermediate_node.down;
15: boolean result = NUMASK_DoOperation(t, el, data_node);
16: return result;
17: end procedure

18: procedure NUMASK_Traversal(int zone, Key k) . This procedure traverses the index
layer associated with the local NUMA zone and returns a node in the intermediate layer

19: Node n = Base-Traversal(indexSents[zone], k);
20: return n
21: end procedure

22: procedure NUMASK_DoOperation(Type t, Element el, Node n)
23: boolean result = Base-DoOperation(t, el, n); . If successful, DoOperation sets the altered

node’s status
24: return result;
25: end procedure

5.2 Data-Layer-Helper
In NUMASK, we create a single Data-Layer-Helper thread that periodically traverses the
data layer in order to accomplish two objectives: i) it is responsible for feeding the different
intermediate layer instances with the results of successful update operations on the data
layer, and ii) it attempts to physically remove any logically-deleted nodes of the data layer.

In order to accomplish i), the NUMASK design provides each intermediate layer instance
with a single-producer/single-consumer queue (Algorithm 2: 5). As a consequence of this
decision, there are as many queues as NUMA zones in NUMASK. The producer for all the
queues is the same: the Data-Layer-Helper thread; while each queue has a different consumer:
the Per-NUMA-Helper thread running in the queue’s NUMA zone (detailed in the next
subsection). We implemented these queues similar to the Vyukov SPSC queue [30].

The above queues are used to synchronize the data layer with intermediate layers as
follows: when the Data-Layer-Helper thread traverses the data layer, each node’s status field
is checked to see if it is nonzero (which means it was recently inserted/removed); if so, it is
added to the queue of each NUMA zone (Algorithm 3: 6) and its status field is reset to zero
(to indicate that it is now up to date).

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:11

Algorithm 3 NUMASK: Updating Metadata.
1: procedure Data-Layer-Helper . This procedure propagates recently altered nodes to

intermediate layers
2: while true do
3: Node curr = dataSent.next;
4: while curr != NULL do
5: if curr.status != 0 then
6: Add-Job-To-Queues(curr);
7: curr.status = 0;
8: else
9: if curr.level == 0 && curr.deleted then . If curr is logically deleted and there is

no tower above it in any index layer
10: remove(curr);
11: end if
12: end if
13: curr = curr.next;
14: end while
15: end while
16: end procedure

17: procedure Per-NUMA-Helper(int local_zone)
18: while true do
19: Update-Intermediate-Layer(local_zone)
20: Base-UpdateIndex(interSents[local_zone]); . UpdateIndex is assumed to update the level

field of nodes in the data and intermediate layer, when needed
21: end while
22: end procedure

23: procedure Add-Job-To-Queues(Node node)
24: for i = 0 to MaxNumaZones do
25: update-queues[i].push(node);
26: end for
27: end procedure

28: procedure Update-Intermediate-Layer(int z) . This function updates the intermediate
layer of zone z

29: Node sentinel = indexSents[z];
30: while update-queues[z] is not empty do
31: Node updatedNode = update-queue[z].pop();
32: Node intermediate_node = NUMASK_Traversal(sentinel, updatedNode.key);
33: if updatedNode.status == 1 then
34: Node local-node = NUMA_alloc(updatedNode); . NUMA-aware memory allocator
35: NUMASK_Operation(INSERT, local-node, intermediate_node);
36: else
37: NUMASK_Operation(REMOVE, updatedNode, intermediate_node);
38: end if
39: end while
40: end procedure

DISC 2018

18:12 NUMASK: High Performance Scalable Skip List for NUMA

In order to accomplish ii), the algorithm checks each node to see if it is logically deleted.
If so, then it becomes a candidate to be physically removed. As in No Hotspot (as well as
other concurrent skip lists), unlinking a node from the data layer can be done only if no
tower above it is present in the index layer. However, since NUMASK deploys multiple index
layer instances, the condition for physically removing one node is that no tower above it
is present in any index layer instance. Verifying this condition is simple: each node in the
data layer has a field named level. If the traversed node’s level equals zero and it is logically
deleted (Algorithm 3: 9), then the Data-Layer-Helper will proceed with its physical removal.
In the next subsection we discuss how to update this level field.

By offloading the above two operations to a dedicated thread, the critical path of the
application (NUMASK_Operation) is minimized. Note that populating the queues, which
is required to update the intermediate layers (and therefore the index layers), entails an
additional memory allocation overhead. This memory allocation could have been a dominant
cost in the operation’s critical path if we did not offload it to a separate helper thread.

A positive side effect of our dedicated Data-Layer-Helper thread is that while the thread
traverses the data layer, it reloads the cache of the processor on which it is executing, which
increases cache hits for application threads that access the data layer. We exploit this idea
further by rotating iterations of the Data-Layer-Helper thread between different NUMA
zones. This way, caches in different NUMA zones (especially the L3 caches) are evenly
refreshed. This process of refreshing caches is particularly effective when the data structure
is not large; otherwise the number of elements evicted from cache might be large.

5.3 Per-NUMA-Helper
The role of Per-NUMA-Helper is to keep the index and intermediate layer of one NUMA
zone updated. Consequently, NUMASK deploys one Per-NUMA-Helper thread per NUMA
zone. Each iteration of the Per-NUMA-Helper thread performs two steps. First, it updates
the local intermediate layer using the information contained in the queue of its NUMA zone
(Algorithm 3:28). Second, it applies any needed modification to the local index layer.

The Update-Intermediate-Layer procedure (Algorithm 3:28) is responsible for achieving
the first step. In this procedure, the Per-NUMA-Helper thread fetches jobs from the queue in
the local NUMA zone and applies them to the local intermediate layer. To do that, Per-NUMA-
Helper calls NUMASK-Traversal to reach the interested location of the local intermediate layer
in logarithmic time. After that, the intermediate layer instance is updated by simply calling
NUMASK-Operation using the intermediate node pointer returned by NUMASK-Traversal.

A critical low-level operation that happens during the Update-Intermediate-Layer
procedure is the memory allocation of new nodes to be added to the local intermediate
layer (Algorithm 3:34). It is required for all memory allocations by each Per-NUMA-Helper
thread to be NUMA-local. Otherwise subsequent invocations of NUMASK-Traversal are
not guaranteed to access entirely NUMA-local memory. In this regard, we tested multiple
thread-local [2, 13] and NUMA-aware [1] allocators, but their overhead slowed performance.
To deal with this problem, we developed a simple NUMA-aware memory allocator to serve
memory allocation requests from Per-NUMA-Helper (see Section 6 for more details).

Once the local intermediate layer is updated, the procedure Base-UpdateIndex is called
to update the index layer. In our implementation, inspired by No Hotspot, this procedure
handles the raising and lowering of towers based on the composition of the intermediate layer,
and it also handles removing any logically deleted nodes. First, the helper thread iterates
over the intermediate layer, physically removing any nodes marked for deletion without any
towers above (similar to what is done to the data layer nodes in Data-Layer-Helper). After
that and if necessary, towers are raised or lowered to maintain the logarithmic complexity

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:13

of the index layer traversals. When a tower is entirely removed in an index layer instance,
the Per-NUMA-Helper thread accesses the linked node to the data layer and decrements its
level field. Although changing the status field in such cases entails a NUMA-remote access,
it is not a frequent operation, and thus it has a negligible impact on performance.

5.4 Correctness Arguments

One of the advantages of NUMASK’s design is its ability to reuse already-implemented basic
operations to manipulate the data (and not metadata) of the data structure. None of our
modifications needs to address how to insert or remove a node in the skip list data layer.
Even the basic skip list traversal need not be modified.

Such a design makes it possible to integrate the NUMASK approach into other skip list
implementations without affecting the overall correctness. This is noticeable by looking at
how in Algorithms 2 and 3 we invoke procedures from Algorithm 1. In summary, if the base
skip list is correct, then NUMASK will preserve such correctness.

6 NUMASK Optimization

Custom NUMA-aware Memory Allocator. NUMASK requires a mechanism to allocate
memory in a thread’s local NUMA zone. Without this, the proposed architecture would
not be beneficial, as application and helper threads would frequently access NUMA-remote
memory. Existing NUMA-aware memory allocators (e.g., libnuma) repeatedly interact with
the operating system in order to retrieve NUMA-local memory. These interactions introduce
a noticeable latency. After trying other memory allocators (e.g., [2, 13]), we decided to
address our problem by developing a custom linear allocator to support the NUMASK design.
To the best of our knowledge, this is the fastest design for memory allocation that fits our
software architecture; it is simple yet effective.

Our NUMA allocator is used to serve allocation requests produced by Per-NUMA-Helper,
therefore we deploy as many instances of our allocator as the number of Per-NUMA-Helper
threads. Importantly, each of these allocator instances serves only one Per-NUMA-Helper
thread; therefore, each allocator instance can be sequential (not concurrent).

A linear (or monotonic) allocator consists of a fixed-size memory buffer allocated upon
initialization and an internal offset to the beginning of the buffer’s free space. Allocation
requests increment the buffer offset by the size of the request and return the old value; thus
requests are served in constant time without overhead, making the allocator fast.

Our allocator consists of a basic linear allocator plus three additions to fit our needs. The
first addition is to allow the allocator to allocate new buffers (linear allocators usually do
not reallocate memory). The second addition is to allocate the buffer in a specific NUMA
zone, so that all the returned memory addresses reside in the same NUMA zone. With that,
intermediate and index layers are formed of NUMA-local memory.

The final addition to our allocator deals with request alignment. Since the allocator is
only used to create index and intermediate nodes, and their sizes are less than and greater
than a half cache line, respectively, the requests are automatically aligned to either a half or
whole cache line. The allocator keeps track of the previous request’s alignment internally
and aligns the current request based on the previous alignment and the size of the current
request. This internal bookkeeping allows the allocator to fit two index nodes in a cache line,
which in turn results in faster index traversal, for two nodes in the same cache line will likely
be near each other in the index layer, thus reducing necessary memory accesses.

DISC 2018

18:14 NUMASK: High Performance Scalable Skip List for NUMA

(a) Initial allocator layout. (b) Layout after half cache line
requested.

(c) Layout after whole cache line
requested.

Figure 3 Cache alignment scheme of our allocator. Grey blocks are free space; small white blocks
are half cache line; large white blocks are whole cache line.

Figure 3 details how the allocator aligns requests in different scenarios. The example
begins in Figure 3a; the previous two requests resulted in a whole cache-line alignment and
a half cache-line alignment. Depending on the next request, the allocator could result in
two separate layouts. If the next request is an index node (size less than half a cache-line),
the allocator can squeeze it in the half cache-line free space. Figure 3b shows the result in
this case. However, if an intermediate node is the next memory allocation, the allocator will
move the offset to the beginning of the next cache-line to keep the intermediate node from
spilling over two cache lines. Figure 3c depicts this. Note that the free space skipped over in
Figure 3c will not be used.

Avoiding Synchronization When Updating Intermediate Layer. In Section 5.3, we dis-
cussed how each Per-NUMA-Helper thread updates the local intermediate layer. In the
pseudo-code we do that by invoking NUMASK-Operation, which uses synchronization primit-
ives, since it is the same function used by application threads to operate on the data layer.
This task can be changed to let Per-NUMA-Helper modify the intermediate layer without
any atomic operations as follows. In order to make updates on an intermediate layer instance
synchronization-free, we need to disallow NUMASK_Operation from using the intermediate
layer to access the data layer (see Algorithm 2:14). To do so, in our implementation we store
the pointer to the data layer directly in the index nodes so that application threads never
need to access the intermediate layer.

7 Evaluation

We implemented NUMASK in C++, and integrated it into Synchrobench [17], a bench-
mark suite for concurrent data structures. In addition to providing a common software
architecture to configure and test different data structure implementations, Synchrobench
already implements many state-of-the-art high performance solutions that we used to compare
against NUMASK. Specifically, we selected three concurrent skip list implementations: No
Hotspot [8], Fraser [15], and Rotating skip list [12]. We also included a sequential skip list
implementation [17]. As specified earlier in the paper, NUMASK has been built using No
Hotspot as a base skip list implementation for two reasons: it is among the fastest concurrent
skip lists of which we are aware, and it alleviates contention by deferring index layer updates.

Our testbed consists of a server with 4 Intel Xeon Platinum 8160 processors (2.1GHz,
24/48 cores/threads per CPU). The machine provides 192 hardware threads. There are
4 sockets hosting the 4 processors, via 4 NUMA zones (one per socket), and 768 GB of
memory. In our experiments we ran up to 160 application threads (the actual number of
executing threads is higher because of the helper threads used by each competitor) to leave
enough resources to the operating system to execute without creating bottlenecks. In our
experiments we distribute application threads evenly across NUMA zones.

The workloads we use to test competitors perform insert/remove/contains operations.
Note that in order to keep the size of the data structure consistent, during removal the
application attempts to pick elements that have previously been inserted successfully. Each

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:15

Figure 4 Speedup NUMASK over No Hotspot varying data structure size.

test has a warm-up phase where the skip list is populated and the index is built. This phase
is also used to fill out L1/L2/L3 caches. After that, the application runs for 10 seconds while
collecting statistics. In the experiments we use a range of key elements that is twice the data
structure size; and all elements have integer keys. All results are averages of five test runs.

Before showing the throughput of all competitors, we report two plots that summarize the
advantages of NUMASK over the base skip list, which is No Hotspot in our case. Figure 4
demonstrates the speedup of NUMASK over No Hotspot by varying the initial size of the
data structure, in the range 64 to 1M elements. To improve clarity, a line is drawn to show
when speedup equals 1. We test different percentages of update operations and we record
the value for the best performance among all thread ranges. Although for clarity we cannot
include the number of threads corresponding to each data point in the plot, it is worth noting
that, in our evaluation settings, NUMASK is most effective when the number of threads
exceeds 64, as it will be clear analyzing Figure 6. As a result, for all data points in Figure 4,
the number of application threads is always in the range of 64 to 160.

NUMASK’s speedup grows significantly when the data structure size decreases. This
is mostly due to its capability of exploiting NUMA-local accesses and leveraging cache
locality. In fact, with sizes less than 10k elements, most of the data structure will likely
fit in processors’ caches, but the presence of updates forces frequent cache refreshing. This
refreshing requires loading memory locations from main memory. In No Hotspot, this is
likely to be in a remote NUMA zone given that the machine has 4 NUMA zones. However,
NUMASK was designed to keep most of the needed memory locations in the local NUMA
zone. This is also confirmed by the result using 0% updates; here the speed up is significantly
less than in write-intensive workloads because both competitors can benefit from cache
locality. Considering 50% updates and 128 elements NUMASK is 11x faster than No Hotspot;
and at 100K elements NUMASK is 27% faster. Interestingly, the plots in Figures 6g-6i,
meaning when the data structure size is set at 100k, show how NUMASK’s performance does
not degrade with respect to competitors. In these cases, the most dominant cost for all is
poor cache locality, which brings down performance.

Figure 5 shows the key reason for the performance improvement of NUMASK: its NUMA-
local accesses. To collect statistics, we monitored memory accesses performed by application
threads and contrasted the application thread’s local NUMA zone with the NUMA zone in
which the memory location resides. Here the initial size of the data structure is 100K, and
we configured the system to run with 4 and 128 application threads. No Hotspot hovers
around 25%, which is the immediate consequence of having uniform distribution of data
structure accesses and 4 NUMA zones; NUMASK is around 90% because of its NUMA-aware

DISC 2018

18:16 NUMASK: High Performance Scalable Skip List for NUMA

Figure 5 NUMA-local accesses in NUMASK and No Hotspot using {4,128} application threads.

(a) 128;20% (b) 128;50% (c) 128;80%

(d) 1024;20% (e) 1024;50% (f) 1024;80%

(g) 100k;20% (h) 100k;50% (i) 100k;80%

Figure 6 Throughput of NUMASK against other skip list implementations varying data structure
size and the percentage of update operations. Throughput is in Millions operations per second.

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:17

design. An observation that is not shown in the plots is that the percentage of NUMA-local
accesses for the Per-NUMA-Helper threads is consistently slightly lower than 100% (recall
that each Per-NUMA-Helper can occasionally access some NUMA-remote location as detailed
in Section 5.3).

Figure 6 shows the throughput of NUMASK against the Fraser, Rotating, and No Hotspot
skip lists by varying the number of application threads, data structure size, and percentage of
update operations. Throughput is measured in millions of operations successfully completed
per second. A specially relevant case is the one where the data structure is 1K elements.
In the read-intensive scenario, all competitors scale well except for Fraser, with NUMASK
demonstrating the highest performance. With 50% and 80% of updates, all competitors
stop scaling beyond 64 threads while NUMASK continues scaling, hitting the remarkable
performance of 300 million operations per second with 50% updates. In this configuration,
at 160 threads NUMASK outperforms rotating skiplist and No Hotspot by 2x.

Reducing the data structure size improves the gap between NUMASK and the other
competitors. This is reasonable since our NUMA design avoids synchronization across NUMA
zones, which would generate many NUMA-remote accesses.

At 100k element size, the gaps among competitors is reduced. Sill, NUMASK is the
fastest at 50% updates and 160 threads by gaining 10% over Rotating and 27% over No
Hotspot. As mentioned before and confirmed by the analysis of the cache hits/misses, the
dominant cost here is repeatedly loading new elements into the cache. This cost obfuscates
the effort in improving performance made by NUMASK’s design. No Hotspot’s performance
evaluation also discusses similar findings with large data structure sizes.

8 Conclusion

In this paper we presented NUMASK, a high-performance concurrent skip list that uses
a combination of distributed design and eventual synchronization to improve performance
in NUMA architectures. Our evaluation study shows unquestionably high throughput and
remarkable speedups: up to 16x in write-intensive workloads and in the presence of contention.

References
1 numa(3) Linux Programmer’s Manual, second edition, December 2007. URL: https://

linux.die.net/man/3/numa.
2 Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:

A scalable memory allocator for multithreaded applications. In Larry Rudolph and Anoop
Gupta, editors, ASPLOS-IX Proceedings of the 9th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Cambridge, MA,
USA, November 12-15, 2000., pages 117–128. ACM Press, 2000. Source code available
at https://github.com/emeryberger/Hoard. doi:10.1145/356989.357000.

3 Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A case for
numa-aware contention management on multicore systems. In Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques, PACT ’10,
pages 557–558, New York, NY, USA, 2010. ACM. doi:10.1145/1854273.1854350.

4 Trevor Brown, Alex Kogan, Yossi Lev, and Victor Luchangco. Investigating the perform-
ance of hardware transactions on a multi-socket machine. In Christian Scheideler and Seth
Gilbert, editors, Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-
13, 2016, pages 121–132. ACM, 2016. doi:10.1145/2935764.2935796.

5 Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir Shavit.
NUMA-aware Reader-writer Locks. In PPoPP ’13, 2013.

DISC 2018

https://linux.die.net/man/3/numa
https://linux.die.net/man/3/numa
https://github.com/emeryberger/Hoard
http://dx.doi.org/10.1145/356989.357000
http://dx.doi.org/10.1145/1854273.1854350
http://dx.doi.org/10.1145/2935764.2935796

18:18 NUMASK: High Performance Scalable Skip List for NUMA

6 Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera. Black-box
concurrent data structures for NUMA architectures. In Yunji Chen, Olivier Temam, and
John Carter, editors, Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017, pages 207–221. ACM, 2017. doi:10.1145/3037697.3037721.

7 Tyler Crain, Vincent Gramoli, and Michel Raynal. A speculation-friendly binary search
tree. In J. Ramanujam and P. Sadayappan, editors, Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP 2012, New Or-
leans, LA, USA, February 25-29, 2012, pages 161–170. ACM, 2012. doi:10.1145/2145816.
2145837.

8 Tyler Crain, Vincent Gramoli, and Michel Raynal. No hot spot non-blocking skip list. In
IEEE 33rd International Conference on Distributed Computing Systems, ICDCS 2013, 8-
11 July, 2013, Philadelphia, Pennsylvania, USA, pages 196–205. IEEE Computer Society,
2013. doi:10.1109/ICDCS.2013.42.

9 Mohammad Dashti, Alexandra Fedorova, Justin R. Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quéma, and Mark Roth. Traffic management: a hol-
istic approach to memory placement on NUMA systems. In Vivek Sarkar and Rastislav
Bodík, editors, Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013, pages 381–394. ACM, 2013.
doi:10.1145/2451116.2451157.

10 Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concurrency:
The secret to scaling concurrent search data structures. In Özcan Özturk, Kemal Ebcioglu,
and Sandhya Dwarkadas, editors, Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15,
Istanbul, Turkey, March 14-18, 2015, pages 631–644. ACM, 2015. doi:10.1145/2694344.
2694359.

11 David Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting: A General Technique
for Designing NUMA Locks. In PPoPP ’12, 2012.

12 Ian Dick, Alan Fekete, and Vincent Gramoli. A skip list for multicore. Concurrency and
Computation: Practice and Experience, 29(4), 2017. doi:10.1002/cpe.3876.

13 Jason Evans. jemalloc memory allocator. URL: https://github.com/jemalloc/
jemalloc.

14 Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Proceedings of
the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC
’04, pages 50–59, New York, NY, USA, 2004. ACM. doi:10.1145/1011767.1011776.

15 Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, September 2003.
16 Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad Dashti, Alexandra Fedorova,

Vivien Quéma, Renaud Lachaize, and Mark Roth. Challenges of memory management on
modern numa systems. Commun. ACM, 58(12):59–66, 2015. doi:10.1145/2814328.

17 Vincent Gramoli. More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms. In
Albert Cohen and David Grove, editors, Proceedings of the 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco,
CA, USA, February 7-11, 2015, pages 1–10. ACM, 2015. doi:10.1145/2688500.2688501.

18 Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. Transactional interference-less
balanced tree. In Distributed Computing - 29th International Symposium, DISC 2015,
Tokyo, Japan, October 7-9, 2015, Proceedings, pages 325–340, 2015.

19 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the Twenty-second Annual ACM

http://dx.doi.org/10.1145/3037697.3037721
http://dx.doi.org/10.1145/2145816.2145837
http://dx.doi.org/10.1145/2145816.2145837
http://dx.doi.org/10.1109/ICDCS.2013.42
http://dx.doi.org/10.1145/2451116.2451157
http://dx.doi.org/10.1145/2694344.2694359
http://dx.doi.org/10.1145/2694344.2694359
http://dx.doi.org/10.1002/cpe.3876
https://github.com/jemalloc/jemalloc
https://github.com/jemalloc/jemalloc
http://dx.doi.org/10.1145/1011767.1011776
http://dx.doi.org/10.1145/2814328
http://dx.doi.org/10.1145/2688500.2688501

H. Daly, A. Hassan, M. F. Spear, and R. Palmieri 18:19

Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages 355–364, New
York, NY, USA, 2010. ACM. doi:10.1145/1810479.1810540.

20 M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

21 Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple optimistic skiplist
algorithm. In Structural Information and Communication Complexity, 14th International
Colloquium, SIROCCO 2007, Castiglioncello, Italy, June 5-8, 2007, Proceedings, pages
124–138, 2007.

22 Christoph Lameter. Numa (non-uniform memory access): An overview. Queue, 11(7):40:40–
40:51, 2013. doi:10.1145/2508834.2513149.

23 Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. Thread and memory place-
ment on NUMA systems: Asymmetry matters. In Shan Lu and Erik Riedel, editors,
2015 USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10, Santa Clara,
CA, USA, pages 277–289. USENIX Association, 2015. URL: https://www.usenix.org/
conference/atc15/technical-session/presentation/lepers.

24 Zoltan Majo and Thomas R. Gross. Memory management in numa multicore systems:
Trapped between cache contention and interconnect overhead. In Proceedings of the In-
ternational Symposium on Memory Management, ISMM ’11, pages 11–20, New York, NY,
USA, 2011. ACM. doi:10.1145/1993478.1993481.

25 Mohamed Mohamedin, Roberto Palmieri, Sebastiano Peluso, and Binoy Ravindran. On
designing numa-aware concurrency control for scalable transactional memory. In Rafael
Asenjo and Tim Harris, editors, Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain, March
12-16, 2016, pages 45:1–45:2. ACM, 2016. doi:10.1145/2851141.2851189.

26 Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris Grot.
Scale-out NUMA. In Rajeev Balasubramonian, Al Davis, and Sarita V. Adve, editors,
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14,
Salt Lake City, UT, USA, March 1-5, 2014, pages 3–18. ACM, 2014. doi:10.1145/2541940.
2541965.

27 Iraklis Psaroudakis, Stefan Kaestle, Matthias Grimmer, Daniel Goodman, Jean-Pierre Lozi,
and Timothy L. Harris. Analytics with smart arrays: adaptive and efficient language-
independent data. In Rui Oliveira, Pascal Felber, and Y. Charlie Hu, editors, Proceedings
of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018,
pages 17:1–17:15. ACM, 2018. doi:10.1145/3190508.3190514.

28 William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990. doi:10.1145/78973.78977.

29 Nikita Shamgunov. The memsql in-memory database system. In Justin J. Levandoski and
Andrew Pavlo, editors, Proceedings of the 2nd International Workshop on In Memory Data
Management and Analytics, IMDM 2014, Hangzhou, China, September 1, 2014., 2014.

30 Dmitry Vyukov. Unbounded SPSC Queue, 2018. URL: http://www.1024cores.net/home/
lock-free-algorithms/queues/unbounded-spsc-queue.

DISC 2018

http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/2508834.2513149
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
http://dx.doi.org/10.1145/1993478.1993481
http://dx.doi.org/10.1145/2851141.2851189
http://dx.doi.org/10.1145/2541940.2541965
http://dx.doi.org/10.1145/2541940.2541965
http://dx.doi.org/10.1145/3190508.3190514
http://dx.doi.org/10.1145/78973.78977
http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue
http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue

TuringMobile: A Turing Machine of Oblivious
Mobile Robots with Limited Visibility and Its
Applications
Giuseppe A. Di Luna
Aix-Marseille University and LiS Laboratory, Marseille, France
giuseppe.diluna@lif.univ-mrs.fr

Paola Flocchini
University of Ottawa, Ottawa, Canada
paola.flocchini@uottawa.ca

Nicola Santoro
Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

Giovanni Viglietta1

JAIST, Nomi City, Japan
johnny@jaist.ac.jp

Abstract
In this paper we investigate the computational power of a set of mobile robots with limited
visibility. At each iteration, a robot takes a snapshot of its surroundings, uses the snapshot to
compute a destination point, and it moves toward its destination. Each robot is punctiform and
memoryless, it operates in Rm, it has a local reference system independent of the other robots’
ones, and is activated asynchronously by an adversarial scheduler. Moreover, the robots are non-
rigid, in that they may be stopped by the scheduler at each move before reaching their destination
(but are guaranteed to travel at least a fixed unknown distance before being stopped).

We show that despite these strong limitations, it is possible to arrange 3m+ 3k of these weak
entities in Rm to simulate the behavior of a stronger robot that is rigid (i.e., it always reaches
its destination) and is endowed with k registers of persistent memory, each of which can store
a real number. We call this arrangement a TuringMobile. In its simplest form, a TuringMobile
consisting of only three robots can travel in the plane and store and update a single real number.
We also prove that this task is impossible with fewer than three robots.

Among the applications of the TuringMobile, we focused on Near-Gathering (all robots have
to gather in a small-enough disk) and Pattern Formation (of which Gathering is a special case)
with limited visibility. Interestingly, our investigation implies that both problems are solvable in
Euclidean spaces of any dimension, even if the visibility graph of the robots is initially discon-
nected, provided that a small amount of these robots are arranged to form a TuringMobile. In
the special case of the plane, a basic TuringMobile of only three robots is sufficient.

2012 ACM Subject Classification Computing methodologies → Multi-agent planning

Keywords and phrases Mobile Robots, Turing Machine, Real RAM

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.19

Related Version Full Version on ArXiv: [17], https://arxiv.org/pdf/1709.08800.

1 Contact Author. Address: 1-50-D-21 Asahidai, Nomi City, Ishikawa Prefecture 923-1211, Japan. Phone:
+81 80-8691-6839.

© Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, and Giovanni Viglietta;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giuseppe.diluna@lif.univ-mrs.fr
mailto:paola.flocchini@uottawa.ca
mailto:santoro@scs.carleton.ca
mailto:johnny@jaist.ac.jp
https://doi.org/10.4230/LIPIcs.DISC.2018.19
https://arxiv.org/pdf/1709.08800
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 TuringMobile

1 Introduction

1.1 Framework and Background
The investigations of systems of autonomous mobile robots have long moved outside the
boundaries of the engineering, control, and AI communities. Indeed, the computational and
complexity issues arising in such systems are important research topics within theoretical
computer science, especially in distributed computing. In these theoretical investigations, the
robots are usually viewed as punctiform computational entities that live in a metric space,
typically R2 or R3, in which they can move. Each robot operates in “Look-Compute-Move”
(LCM) cycles: it observes its surroundings, it computes a destination within the space based
on what it sees, and it moves toward the destination. The only means of interaction between
robots are observations and movements: that is, communication is stigmergic. The robots,
identical and outwardly indistinguishable, are oblivious: when starting a new cycle, a robot
has no memory of its activities (observations, computations, and moves) from previous cycles
(“every time is the first time”).

There have been intensive research efforts on the computational issues arising with
such robots, and an extensive literature has been produced in particular in regard to
the important class of Pattern Formation problems [8, 19, 21, 22, 27, 28] as well as for
Gathering [1, 2, 4, 7, 9, 10, 12, 11, 14, 20, 24] and Scattering [5, 23]; see also [6, 13, 29]. The
goal of the research has been to understand the minimal assumptions needed for a team
(or swarm) of such robots to solve a given problem, and to identify the impact that specific
factors have on feasibility and hence computability.

The most important factor is the power of the adversarial scheduler that decides when
each activity of each robot starts and when it ends. The main adversaries (or “environments”)
considered in the literature are: synchronous, in which the computation cycles of all active
robots are synchronized, and at each cycle either all (in the fully synchronous case) or a
subset (in the semi-synchronous case) of the robots are activated, and asynchronous, where
computation cycles are not synchronized, each activity can take a different and unpredictable
amount of time, and each robot can be independently activated at each time instant.

An important factor is whether a robot moving toward a computed destination is
guaranteed to reach it (i.e., it is a rigid robot), or it can be stopped on the way (i.e., it is a
non-rigid robot) at a point decided by an adversary. In all the above cases, the power of the
adversaries is limited by some basic fairness assumption. All the existing investigations have
concentrated on the study of (a-)synchrony, several on the impact of rigidity, some on other
relevant factors such as agreement on local coordinate systems or on their orientation, etc.;
for a review, see [18].

From a computational point of view, there is another crucial factor: the visibility range
of the robots, that is, how much of the surrounding space they are able to observe in a Look
operation. In this regard, two basic settings are considered: unlimited visibility, where the
robots can see the entire space (and thus all other robots), and limited visibility, when the
robots have a fixed visibility radius. While the investigations on (a-)synchrony and rigidity
have concentrated on all aspects of those assumptions, this is not the case with respect to
visibility. In fact, almost all research has assumed unlimited visibility; few exceptions are the
algorithms for Convergence [4], Gathering [15, 16, 20], and Near-Gathering [24] when the
visibility range of the robot is limited. The unlimited visibility assumption clearly greatly
simplifies the computational universe under investigation; at the same time, it neglects the
more general and realistic one, which is still largely unknown.

G.A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta 19:3

Let us also stress that, in the existing literature, all results on oblivious robots are for R1

and R2; the only exception is the recent result on plane formation in R3 by semi-synchronous
rigid robots with unlimited visibility [29]. No results exist for robots in higher dimensions.

1.2 Contributions
In this paper we contribute several constructive insights on the computational universe
of oblivious robots with limited visibility, especially asynchronous non-rigid ones, in any
dimension.

TuringMobile

The first and main contribution is the design of a “moving Turing Machine” made solely of
asynchronous oblivious non-rigid robots in Rm with limited visibility, for any m ≥ 2. More
precisely, we show how to arrange 3m+ 3k identical non-rigid oblivious robots in Rm with
a visibility radius of V + ε (for any ε > 0) and how to program them so that they can
collectively behave as a single rigid robot in Rm with k persistent registers and visibility
radius V would. This team of identical robots is informally called a TuringMobile. We obtain
this result by using as fundamental construction a basic component, which is able to move in
R2 while storing and updating a single real number. Interestingly, we show that 3 agents
are necessary and sufficient to build such a machine. The TuringMobile will then be built
by arranging multiple copies of this basic component. Notably, the robots that constitute a
TuringMobile need only be able to compute arithmetic operations and square roots.

A TuringMobile is a powerful construct that, once deployed in a swarm of robots, can act
as a rigid leader with persistent memory, allowing the swarm to overcome many handicaps
imposed by obliviousness, limited visibility, and asynchrony. As examples we present a
variety of applications in Rm, with m ≥ 2.

There is a limitation to the use of a TuringMobile when deployed in a swarm of robots.
Namely, the TuringMobile must be always recognizable (e.g., by its unique shape) so that other
robots cannot interfere by moving too close to the machine, disrupting its structure. This
limitation can be overcome when the robots of the TuringMobile are visibly distinguishable
from the others. However, this requirement is not necessary for all applications, but is only
required when we want to perfectly simulate a rigid robot with memory.

We remark that we do not discuss how robots can self-assemble into a TuringMobile. We
only focus on how the machine can be designed when we can freely arrange some robots. In
the case of robots with unlimited visibility, a TuringMobile can be self-assembled, provided
that the initial configuration of the robots is asymmetric. In the case of limited visibility,
self-assembling a TuringMobile is a more complex and still open problem.

Applications

We propose several applications of our TuringMobile. First of all, the TuringMobile can
explore and search the space. We then show how it can be employed to solve the long-standing
open problem of (Near-)Gathering with limited visibility in spite of an asynchronous non-
rigid scheduler and disagreement on the axes, a problem still open without a TuringMobile.
Interestingly, the presence of the TuringMobile allows Gathering to be done even if the
initial visibility graph is disconnected. Finally we show how the arbitrary Pattern Formation
problem can be solved under the same conditions (asynchrony, limited visibility, possibly
disconnected visibility graph, etc.).

DISC 2018

19:4 TuringMobile

The paper is organized as follows: In Section 2 we give formal definitions, introducing
mobile robots with or without memory as oracle semi-oblivious real RAMs. In Section 3
we illustrate our implementation of the TuringMobile. In Section 4 we show how to apply
the TuringMobile to solve fundamental problems. Due to space constraints, the proof of
correctness of our TuringMobile implementation, several technical parts of the paper, and
additional figures can be found in the full paper [17].

2 Definitions and Preliminaries

2.1 Oracle Semi-Oblivious Real RAMs
Real random-access machines. A real RAM, as defined by Shamos [25, 26], is a random-
access machine [3] that can operate on real numbers. That is, instead of just manipulating
and storing integers, it can handle arbitrary real numbers and do infinite-precision operations
on them. It has a finite set of internal registers and an infinite ordered sequence of memory
cells; each register and each memory cell can hold a single real number, which the machine
can modify by executing its program.2

A real RAM’s instruction set contains at least the four arithmetic operations, but it may
also contain k-th roots, trigonometric functions, exponentials, logarithms, and other analytic
functions, depending on the application. The machine can also compare two real numbers
and branch depending on which one is larger.

The initial contents of the memory cells are the input of the machine (we stipulate that
only finitely many of them contain non-zero values), and their contents when the machine
halts are its output. So, each program of a real RAM can be viewed as a partial function
mapping tuples of reals into tuples of reals.

Oracles and semi-obliviousness. We introduce the oracle semi-oblivious real RAM, which
is a real RAM with an additional “ASK” instruction. Whenever this instruction is executed,
the contents of all the memory cells are replaced with new values, which are a function of
the numbers stored in the registers.

In other words, the machine can query an external oracle by putting a question in its k
registers in the form of k real numbers. The oracle then reads the question and writes the
answer in the machine’s memory cells, erasing all pre-existing data. The term “semi-oblivious”
comes from the fact that, every time the machine invokes the oracle, it “forgets” everything
it knows, except for the contents of the registers, which are preserved.3

I Remark. In spite of their semi-obliviousness, these real RAMs with oracles are at least as
powerful as Turing Machines with oracles.

2.2 Mobile Robots as Real RAMs
Mobile robots. Our oracle semi-oblivious real RAM model can be reinterpreted in the
realm of mobile robots. A mobile robot is a computational entity, modeled as a geometric
point, that lives in a metric space, typically R2 or R3. It can observe its surroundings and

2 Nonetheless, the constant operands in a real RAM’s program cannot be arbitrary real numbers, but
have to be integers.

3 Observe that, in general, the machine cannot salvage its memory by encoding its contents in the registers:
since its instruction set has only analytic functions, it cannot injectively map a tuple of arbitrary real
numbers into a single real number.

G.A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta 19:5

move within the space based on what it sees. The same space may be populated by several
mobile robots, each with its local coordinate system, and static objects.

To compute its next destination point, a mobile robot executes a real RAM program
with input a representation of its local view of the space. After moving, its entire memory
is erased, but the content of its k registers is preserved. Then it makes a new observation;
from the observation data and the contents of the registers, it computes another destination
point, and so on. If k = 0, the mobile robot is said to be oblivious. Note that robots have no
notion of time or absolute positions.

The actual movement of a mobile robot is controlled by an external scheduler. The
scheduler decides how fast the robot moves toward its destination point, and it may even
interrupt its movement before the destination point is reached. If the movement is interrupted
midway, the robot makes the next observation from there and computes a new destination
point as usual. The robot is not notified that an interruption has occurred, but it may
be able to infer it from its next observation and the contents of its registers. For fairness,
the scheduler is only allowed to interrupt a robot after it has covered a distance of at least
δ in the current movement, where δ is a positive constant unknown to the robots. This
guarantees, for example, that if a robot keeps computing the same destination point, it will
reach it in a finite number of iterations. If δ =∞, the robot always reaches its destination,
and is said to be rigid.

Mobile robots, revisited. A mobile robot in Rm with k registers can be modeled as an
oracle semi-oblivious real RAM with 2m+ k + 1 registers, as follows.

m position registers hold the absolute coordinates of the robot in Rm.
m destination registers hold the destination point of the robot, expressed in its local
coordinate system.
1 timestamp register contains the time of the robot’s last observation.
k true registers correspond to the registers of the robot.

As the RAM’s execution starts, it ignores its input, erases all its registers, and executes
an “ASK” instruction. The oracle then fills the RAM’s memory with the robot’s initial
position p, the time t of its first observation, and a representation of the geometric entities
and objects surrounding the robot, as seen from p at time t.

The RAM first copies p and t in its position registers and timestamp register, respectively.
Then it executes the program of the mobile robot, using its true registers as the robot’s
registers and adding m+ 1 to all memory addresses. This effectively makes the RAM ignore
the values of p and t, which indeed are not supposed to be known to the mobile robot.

When the robot’s program terminates, the RAM’s memory contains the output, which is
the next destination point p′, expressed in the robot’s coordinate system. The RAM copies p′
into its destination registers, and the execution jumps back to the initial “ASK” instruction.

Now the oracle reads p, p′, and t from the RAM’s registers (it ignores the true registers),
converts p′ in absolute coordinates (knowing p and the orientation of the local coordinate
system of the robot) and replies with a new position p′′, a timestamp t′ > t, and observation
data representing a snapshot taken from p′′ at time t′. To comply with the mobile robot
model, p′′ must be on the segment pp′, such that either p′′ = p′ or pp′′ ≥ δ. The execution
then proceeds in the same fashion, indefinitely.

Note that in this setting the oracle represents the scheduler. The presence of a timestamp
in the query allows the oracle to model dynamic environments in which several independent
robots may be moving concurrently (without a timestamp, two observations from the same
point of view would always be identical). Also note that in this formulation there are no

DISC 2018

19:6 TuringMobile

actual robots moving through an environment in time, but only RAMs which query an oracle,
which in turn provides a “virtual” environment and timeline by writing information in their
memory.

Snapshots and limited visibility. In the mobile robot model we consider in this paper, an
observation is simply an instantaneous snapshot of the environment taken from the robot’s
position. In turn, each entity and object that the robot can see is modeled as a dimensionless
point in Rm. A mobile robot has a positive visibility radius V : it can see a point in Rm if
and only if it is located at distance at most V from its current position. If V =∞, the robot
is said to have unlimited visibility.

As we hinted at earlier in this section, a mobile robot has its own local reference system
in which all the coordinates of the objects in its snapshots are expressed. The origin of a
robot’s local coordinate system always coincides with the robot’s position (hence it follows
the robot as it moves), and its orientation and handedness are decided by the scheduler
(and remain fixed). Different mobile robots may have coordinate systems with a different
orientation or handedness. (However, when two robots have the same visibility radius, they
also implicitly have the same unit of distance.)

So, a snapshot is just a (finite) list of points, each of which is an m-tuple of real numbers.

Simulating memory and rigidity. The main contribution of this paper, loosely speaking,
is a technique to turn non-rigid oblivious robots into rigid robots with persistent memory,
under certain conditions. More precisely, if 3m+ 3k identical non-rigid oblivious robots in
Rm with a visibility radius of V + ε (for any ε > 0) are arranged in a specific pattern and
execute a specific algorithm, they can collectively act in the same way as a single rigid robot
in Rm with k > 0 persistent registers and visibility radius V would. This team of identical
robots is informally called a TuringMobile.

We stress that the robots of a TuringMobile are asynchronous, that is, the scheduler
makes them move at independent arbitrary speeds, and each robot takes the next snapshot
an arbitrary amount of time after terminating each move. The robots are also anonymous,
in that they are indistinguishable from each other, and they all execute the same program.

Although our technique is fairly general and has a plethora of concrete applications
(some are discussed in Section 4), a “perfect simulation” is achieved only under additional
conditions on the scheduler or on the environment (see Section 3.2).

3 Implementing the TuringMobile

3.1 Basic Implementation
We will first describe how to construct a basic version of the TuringMobile with just three
oblivious non-rigid robots in R2. This TuringMobile can remember a single real number
and rigidly move in the plane by fixed-length steps: its layout is sketched in Figure 1. In
Section 3.2, we will show how to combine several copies of this basic machine to obtain a
full-fledged TuringMobile.

Position at rest. The elements of the basic TuringMobile are three: a Commander robot,
a Number robot, and a Reference robot, located in C, N , and R, respectively. These robots
have the same visibility radius of V + ε, where ε� V , and there is always a disk of radius ε
containing all three of them. When the machine is “at rest”, ∠NRC is a right angle, the
distance between C and R is some fixed value d� ε, and the distance between R and N is
approximately 2d. More precisely, N lies on a segment QQ′ of length λ, where λ� d is some
fixed value, such that Q has distance 2d− λ/2 from R and Q′ has distance 2d+ λ/2 from R.

G.A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta 19:7

120°120°

90° λ

µ

d

d2

C

R N

1D

2D 3D

1
′D

2
′D 3

′D

′d

Q ′Q

Figure 1 Basic TuringMobile at rest, not drawn to scale (µ and λ should be smaller).

Representing numbers. The distance between the Reference robot and the Number robot
when the TuringMobile is at rest is a representation of the real number r that the machine
is currently storing. One possible technique is to encode the number r as RN = 2d +
arctan(r) · λ/π and to decode it as r = tan

(
(RN − 2d) · π/λ

)
. However, there are also more

complicated methods that use only arithmetic functions (see the full paper [17]).

Movement directions. The Commander’s role is to decide in which direction the machine
should move next, and to initiate the movement. When the machine is at rest, the Commander
may choose among three possible final destinations, labeled D1, D2, and D3 in Figure 1.
The segments CD1, CD2, and CD3 all have the same length µ, with λ� µ� d, and form
angles of 120◦ with one another, in such a way that D1 is collinear with R and C.

Around the center of each segment CDi there is a midway triangle τi, drawn in gray in
Figure 1. This is an isosceles triangle of height λ whose base lies on CDi and has length λ
as well. When the Commander decides that its final destination is Di, it moves along the
segment CDi, but it takes a detour in the midway triangle τi, as we will explain shortly.

Structure of the algorithm. Algorithm 1 is the program that each element of the basic
TuringMobile executes every time it computes its next destination point.

Since the robots are anonymous, they first have to determine their roles, i.e., who is the
Commander, etc. (line 1 of the algorithm). We make the assumption that there exists a disk
of radius ε containing only the TuringMobile (close to its center) and no other robot. Using
the fact that the two closest robots must be the Commander and the Reference robot and
that the two farthest robots must be the Commander and the Number robot, it is then easy
to determine who is who (these properties will be preserved throughout the execution, as
proved in the full paper [17]).

Once it has determined its role, each robot executes a different branch of the algorithm
(cf. lines 2, 13, and 23). The general idea is that, when the Commander realizes that the
machine is in its rest position, it decides where to move next, i.e., it chooses a final destination

DISC 2018

19:8 TuringMobile

Algorithm 1 Basic TuringMobile in R2.
1: Identify Commander, Number, Reference (located in C, N , R, respectively)
2: if I am Commander then
3: Compute Virtual Commander C′ (based on R and N) and points Ai, Si, S′i, Bi, Di

4: if I am in C′ then Choose final destination Di and move to Ai

5: else if ∃i ∈ {1, 2, 3} s.t. I am on segment C′Ai but not in Ai then Move to Ai

6: else if ∃i ∈ {1, 2, 3} s.t. I am in Ai then
7: Move to point P on segment SiS

′
i such that PSi = f(NQ)

8: else if ∃i ∈ {1, 2, 3} s.t. I am in triangle AiSiS
′
i but not on segment SiS

′
i then

9: Move to the intersection of segment SiS
′
i with the extension of line AiC

10: else if ∃i ∈ {1, 2, 3} s.t. I am on SiS
′
i and NQ = CSi then Move to Bi

11: else if ∃i ∈ {1, 2, 3} s.t. I am in triangle BiSiS
′
i but not in Bi then Move to Bi

12: else if ∃i ∈ {1, 2, 3} s.t. I am on segment BiDi but not in Di then Move to Di

13: else if I am Number then
14: if CR = d+ µ or CR = d′ then
15: Compute Virtual Commander C′ (based on C and R) and points D′i
16: if CR = d+ µ and I am not in D′1 then Move to D′1
17: else if CR = d′ and ∠NRC > 90◦ and I am not in D′2 then Move to D′2
18: else if CR = d′ and ∠NRC < 90◦ and I am not in D′3 then Move to D′3
19: else
20: Compute Virtual Commander C′ (based on R and N) and points Si, S′i
21: if ∃i ∈ {1, 2, 3} s.t. C is on segment SiS

′
i then

22: Move to point P on segment QQ′ such that PQ = CSi

23: else if I am Reference then
24: if Commander and Number are not tasked with moving (based on the above rules) then
25: γ = circle centered in C with radius d
26: γ′ = circle with diameter CN
27: Move to the intersection of γ and γ′ closest to R

Di. This choice is based on the number r stored in the machine’s “memory” (i.e., the number
encoded by RN), the relative positions of the visible robots external to the machine, and
also on the application, i.e., the specific program that the TuringMobile is executing.

When the Commander has decided its final destination Di, the entire machine moves by
the vector −−→CDi, and the Number robot also updates its distance from the Reference robot to
represent a different real number r′. Again, this number is computed based on the number r
the machine was previously representing, the relative positions of the visible robots external
to the machine, and the specific program: in general, the new distance between N and Q is
a function f of the old distance. When all this is done, the machine is in its rest position
again, so the Commander chooses a new destination, and so on, indefinitely.

Coordinating movements. Note that it is not possible for all three robots to translate by−−→
CDi at the same time, because they are non-rigid and asynchronous. If the scheduler stops
them at arbitrary points during their movement, after the structure of the machine has been
destroyed, they will be incapable of recovering all the information they need to resume their
movement (recall that they are oblivious and they have to compute a destination point from
scratch every time).

To prevent this, the robots employ various coordination techniques. First the Commander
moves to the middle triangle τi, and precisely to its base vertex Ai, as shown in Figure 2(a)
(cf. line 5 of Algorithm 1). Then it positions itself on the altitude SiS

′
i, in such a way as

to indicate the new number r′ that the machine is supposed to represent. That is, the

G.A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta 19:9

C

λ

N

λ

C

λ

N

iS

i
′S

iD
iA iB

iS

i
′S

iD
iA iB

f

N

C

)a()b()c(

iS

i
′S

iD
iA iB′C ′C ′C

Q ′Q Q ′Q Q ′Q

Figure 2 Coordinated movement of the Commander and the Number robot, to cope with their
asynchronous and non-rigid nature. (a) The Commander stops on SiS

′
i, recording the number that

the machine is going to represent next (which is a function f of the number currently represented by
the Number robot). (b) The Number robot moves within QQ′ to match the Commander’s position
in SiS

′
i. (c) Finally, the Commander reaches Di.

Commander picks the point on SiS
′
i at distance f(NQ) from Si (lines 6 and 7). Even if it

is stopped by the scheduler before reaching such a point, it can recover its destination by
drawing a ray from Ai to its current position and intersecting it with SiS

′
i (lines 8 and 9).

When the Commander has reached SiS
′
i, it waits to let the Number robot adjust its

position on the segment QQ′ to match that of the Commander on SiS
′
i, as in Figure 2(b)

(lines 21 and 22). This effectively makes the Number robot represent the new number r′.
Note that the Number robot can do this even if it is stopped by the scheduler several times
during its march, because the Commander keeps reminding it of the correct value of r′: since
r′ depends on the old number r, the Number robot would be unable to re-compute r′ after
it has forgotten r. Once the Number robot has reached the correct position on QQ′, the
Commander starts moving again (line 10) and finally reaches Di while the other robots wait,
as in Figure 2(c) (lines 11 and 12).

When the Commander has reached Di, the Number robot realizes it and makes the
corresponding move (lines 14–18) while the other two robots wait. The destination point of
the Number robot is D′i, as shown in Figure 1. Finally, when the Number robot is in D′i, the
Reference robot realizes it and makes the final move to bring the TuringMobile back into a
rest position (lines 23–27). Note that the number r′ stored in the machine is not erased after
these final movements, because both the Number and Reference robot move by the same
vector.

Computing the Virtual Commander. After the Commander has left its rest position and
is on its way to Di, the TuringMobile loses its initial shape, and identifying the Di’s and the
midway triangles becomes non-trivial. So, the robots try to guess where the Commander’s
original rest position may have been by computing a point called the Virtual Commander C ′.

Assuming that the Reference and Number robots have not moved from their rest positions,
the Virtual Commander is easily computed: draw a line ` through R perpendicular to RN ;
then, C ′ is the point on ` at distance d from R that is closest to C. Once we have C ′, we
can construct the points Di with respect to C ′ (in the same way as we did in Figure 1 with
respect to C). This technique is used by Algorithm 1 at lines 3 and 20.

DISC 2018

19:10 TuringMobile

In the special case where the Commander has reached its final destination Di and the
Reference robot has not moved from its rest position (but perhaps the Number robot has
moved), the Virtual Commander can also be computed. This situation is recognized because
the distance between the Commander and the Reference robot is either maximum (i.e., d+µ)
or minimum (i.e., d′ =

√
d2 + µ2 − dµ), as Figure 1 shows. If the distance is maximum, then

C must coincide with D1; otherwise, C coincides with D2 (if the angle ∠NRC is obtuse) or
D3 (if the angle ∠NRC is acute). Since we know the position of R and one of the Di’s, it is
then easy to determine the other Di’s. This technique is used at line 15.

The Reference robot’s behavior. To know when it has to start moving, the Reference
robot executes Algorithm 1 from the perspective of the Commander and the Number robot:
if neither of them is supposed to move, then the Reference robot starts moving (line 24).

We have seen that the Number robot can determine its destination D′i solely by looking
at the positions of C and R, which remain fixed as it moves. For the Reference robot the
destination point is not as easy to determine, because the distance between C and N varies
depending on what number is stored in the TuringMobile.

However, the Reference robot knows that its move must put the TuringMobile in a rest
position. The condition for this to happen is that its destination point be at distance d from
C (line 25) and form a right angle with C and N (line 26). There are exactly two such
points in the plane, but one of them has distance much greater than µ from R, and hence
the Reference robot will pick the other (line 27).

As the Reference robot moves toward such a point, all the above conditions must be
preserved, due to the asynchronous and non-rigid nature of the robots. This is not a trivial
requirement, and a proof that it is indeed fulfilled is in the full paper [17].

3.2 Complete Implementation
We have shown how to implement a basic component of the TuringMobile in R2 consisting
of three robots: a Commander, a Number, and a Reference. The basic component is able to
rigidly move by a fixed distance µ in three fixed directions, 120◦ apart from one another. It
can also store and update a single real number.

Planar layout. We can obtain a full-fledged TuringMobile in R2 by putting several tiny
copies of the basic component side by side. For the machine to work, we stipulate that there
exists a disk of radius σ that contains all the robots constituting the TuringMobile and no
extraneous robot, where σ � ε. The distance between two consecutive basic components of
the TuringMobile is roughly s, where d� s� σ. This makes it easy for the robots to tell
the basic components apart and determine the role of each robot within its basic component.

Since a basic component of the TuringMobile is a scalene triangle, which is chiral, all its
members implicitly agree on a clockwise direction even if they have different handedness.
Similarly, all robots in the TuringMobile agree on a “leftmost” basic component, whose
Commander is said to be the Leader of the whole machine.

Coordinated movements. All the basic components of the TuringMobile are always sup-
posed to agree on their next move and proceed in a roughly synchronous way. To achieve
this, when all the basic components are in a rest position, the Leader decides the next
direction among the three possible, and executes line 4 of Algorithm 1. Then all the other
Commanders see where the Leader is going, and copy its movement.

G.A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta 19:11

When all the Commanders are in their respective Ai’s, they execute line 7 of the algorithm,
and so on. At any time, each robot executes a line of the algorithm only if all its homologous
robots in the other basic components of the TuringMobile are ready to execute that line or
have already executed it; otherwise, it waits. When the last Reference robot has completed
its movement, the machine is in a rest position again, and the coordinated execution repeats
with the Leader choosing another direction, etc.

Simulating a non-oblivious rigid robot. Let a program for a rigid robot R in R2 with k
persistent registers and visibility radius V be given. We want the TuringMobile described
above to act as R, even though its constituting robots are non-rigid and oblivious.

Our TuringMobile consists of 2 + k basic components, each dedicated to memorizing and
updating one real number. These 2 + k numbers are the x coordinate and the y coordinate
of the destination point of R and the contents of the k registers of R. We will call the first
two numbers the x variable and the y variable, respectively.

When the TuringMobile is in a rest position, its x and y variables represent the co-
ordinates of the destination point of R relative to the Leader of the machine. Whenever
the TuringMobile moves by µ in some direction, these values are updated by subtracting
the components of an appropriate vector of length µ from them. Of course, this update
is computed by the Commanders of the first two basic components of the machine, which
communicate it to their respective Number robots, as explained in Section 3.1.

Let P be the destination point of R. Since the TuringMobile can only move by vectors of
length µ in three possible directions, it may be unable to reach P exactly. So, the Leader
always plans the next move trying to reduce its distance from P until this distance is at
most 2σ (this is possible because µ� d� σ).

When the Leader is close enough to P , it “pretends” to be in P , and the TuringMobile
executes the program of R to compute the next destination point. Recall that the visibility
radius of R is V , and that of the robots of the TuringMobile is V + ε. Since σ � ε, each
member of the TuringMobile can therefore see everything that would be visible to R if it
were in P , and compute the output of the program of R independently of the other members.
The only thing it should do when it executes the program of R is subtract the values of the
x and y variables to everything it sees in its snapshot, discard whatever has distance greater
than V from the center of the snapshot, and of course discard the robots of the TuringMobile
and replace them with a single robot in the center of the snapshot (representing the robot
itself). Then, the robots that are responsible for updating the x and y variables add the
relative coordinates of the new destination point of R to these variables. Similarly, the robots
responsible for updating the k registers of R do so.

Restrictions. The above TuringMobile correctly simulates R under certain conditions.
The first one is that, if all robots are indistinguishable, then no robot extraneous to the
TuringMobile may get too close to it (say, within a distance of σ of any of its members). This
kind of restriction cannot be dispensed with: whatever strategy a team of oblivious robots
employs to simulate a single non-oblivious robot’s behavior is bound to fail if extraneous
robots join the team creating ambiguities between its members. Nevertheless, the restriction
can be removed if the members of a TuringMobile are distinguishable from all other robots.

Another difficulty comes from the fact that, if the TuringMobile is made of more than one
basic component and its Commanders are all in their respective Ai’s and ready to update the
values represented by the machine, they may get their snapshots at different times, due to

DISC 2018

19:12 TuringMobile

asynchrony. If the environment moves in the meantime, the snapshots they get are different,
and this may cause the machine to compute an incorrect destination point or put inconsistent
values in its simulated registers.

There are several possible solutions to this problem: we will only mention two trivial
ones. We could assume the Commanders to be synchronous, that is, make the scheduler
activate them in such a way that all of them take their snapshots at the same time. This
way, all Commanders get compatible snapshots and compute consistent outputs. Another
possible solution is to make the TuringMobile operate in an environment where everything
else is static, i.e., no moving entities are present other than the TuringMobile’s members.

We stress that these restrictions make sense if a perfect simulation of R is saught. As
we will see in Section 4, there are several other applications of the TuringMobile technique
where no such restrictions are required.

Higher dimensions. Let us now generalize the above construction of a planar TuringMobile
to Rm, for any m ≥ 2. We start with the same TuringMobileM with 2 +k basic components
laid out on a plane γ ⊂ Rm. Since M has only two basic components for the x and y

variables, we will add m− 2 basic components to it, positioned as follows.
Let vectors v1 and v2 be two orthonormal generators of γ, and let us complete {v1, v2} to

an orthonormal basis {v1, v2, . . . , vm} of Rm. Now, for all i ∈ {3, 4, . . . ,m}, we make a copy
of the basic component ofM containing the Leader, we translate it by s · vi, and we add it
to the TuringMobile (s is the same value used in the construction of the planar TuringMobile
at the beginning of Section 3.2). Note that the Leader of this new TuringMobileM′ is still
easy to identify, as well as the plane γ whenM′ is at rest.

Clearly, m basic components allow the machine to record a destination point in Rm, as
opposed to R2. Additionally, the positions of the basic components with respect to γ give
the machine an m-dimensional sense of direction (see the full paper [17] for further details).

I Theorem 1. Under the aforementioned restrictions, a rigid robot in Rm with k persistent
registers and visibility radius V can be simulated by a team of 3m+ 3k non-rigid oblivious
robots in Rm with visibility radius V + ε.

4 Applications

In this section we discuss some applications of the TuringMobile. We also prove that the
basic TuringMobile constructed in Section 3.1 is minimal, in the sense that no smaller team
of oblivious robots can accomplish the same tasks.

4.1 Exploring the Plane
The first elementary task a basic TuringMobile in R2 can fulfill is that of exploring the
plane. The task consists in making all the robots in the TuringMobile see every point in
the plane in the course of an infinite execution. We first assume that the three members of
the TuringMobile are the only robots in the plane. Later in this section, we will extend our
technique to other types of scenarios and more complex tasks.

I Theorem 2. A basic TuringMobile consisting of three robots in R2 can explore the plane.

Proof. Recall that a basic TuringMobile can store a single real number r and update it at
every move as a result of executing a real RAM program with input r. In particular, the
TuringMobile can count how many times it has moved by simply starting its execution with
r = 0 and computing r := r + 1 at each move.

G.A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta 19:13

C

µ

R N

Figure 3 Exploration of the plane by a basic TuringMobile.

Moreover, the Commander chooses the direction of the next move (in the form of a point
Di, see Figure 1) by executing another real RAM program with input r. If r is an integer,
the Commander can therefore compute any Turing-computable function on r, and so it can
decide to move to D1 the first time, then to D2 twice, then to D3 three times, to D1 four
times, and so on. This pattern of moves is illustrated in Figure 3, and of course it results in
the exploration of the plane, because the visibility radius of the robots is much greater than
the step µ. J

4.2 Minimality of the Basic TuringMobile
We can use the previous result to prove indirectly that our basic TuringMobile design is
minimal, because no team of fewer than three oblivious robots in R2 can explore the plane.

I Theorem 3. If only one or two oblivious identical robots with limited visibility are present
in R2, they cannot explore the plane, even if the scheduler lets them move synchronously and
rigidly.

Proof. Assume that a single oblivious robot is given in R2 (hence no other entities or
obstacles are present). Since the robot always gets the same snapshot, it always computes
the same destination point in its local coordinate system, and so it always translates by the
same vector. As a consequence, it just moves along a straight ray, and therefore it cannot
explore the plane.

Let two oblivious robots be given, and suppose that their local coordinate systems are
oriented symmetrically. Whether the robots see each other or not, if they take their snapshots
simultaneously, they get identical views, and so they compute destination points that are
symmetric with respect to O. If they keep moving synchronously and rigidly, O remains
their midpoint. So, if the robots have visibility radius V , they see each other if and only if
they are in the circle γ of radius V/2 centered in O.

DISC 2018

19:14 TuringMobile

Let O be the midpoint of the robots’ locations, and consider a Cartesian coordinate
system with origin O. Without loss of generality, when the robots do not see each other,
they move by vectors (1, 0) and (−1, 0), respectively. Let ξ be the half-plane y ≥ V , and
observe that ξ lies completely outside γ.

It is obvious that the robots cannot explore the entire plane if neither of them ever stops
in ξ. The first time one of them stops in ξ, it takes a snapshot from there, and starts moving
parallel to the x axis, thus never seeing the other robot again, and never leaving ξ. Of course,
following a straight line through ξ is not enough to explore all of it. J

4.3 Near-Gathering with Limited Visibility

The exploration technique can be applied to several more complex problems. The first we
describe is the Near-Gathering problem, in which all robots in the plane must get in the
same disk of a given radius ε (without colliding) and remain there forever. It does not matter
if the robots keep moving, as long as there is a disk of radius ε that contains them all.

It is clear that solving this problem from every initial configuration is not possible, and
hence some restrictive assumptions have to be made. The usual assumption is that the initial
visibility graph of the robots be connected [20, 24]. Here we make a different assumption:
there are three robots that form a basic TuringMobile somewhere in the plane, and each robot
not in the TuringMobile has distance at least ε from all other robots. (Actually we could
weaken this assumption much more, but this simple example is good enough to showcase
our technique.) Also, in the existing literature on the Near-Gathering problem it is always
assumed that the robots agree on at least one coordinate axis, but here we do not need this
assumption.

Say that all robots in the plane have a visibility radius of V � ε, and that the TuringMobile
moves by µ� ε at each step. The TuringMobile starts exploring the plane as above, and
it stops in a rest position as soon as it finds a robot whose distance from the Commander
is smaller than V/2 and greater than ε. On the other hand, if a robot is not part of the
TuringMobile, it waits until it sees a TuringMobile in a rest position at distance smaller than
V/2. When it does, it moves to a designated area A in the proximity of the Commander.
Such an area has distance at least 3d from the Commander, so no confusion can arise in
the identification of the members of the TuringMobile. If several robots are eligible to move
to A, only one at a time does so: note that the layout of the TuringMobile itself gives an
implicit total order to the robots around it. Observe that the robots cannot form a second
TuringMobile while they move to A: in order to do so, two of them would have to move to
A at the same time and get close enough to a third robot. Once they enter A, the robots
position themselves on a segment much shorter than d, so they cannot possibly be mistaken
for a TuringMobile.

Once the eligible robots have positioned themselves in A, the TuringMobile resumes its
exploration of the plane, and the robots in A copy all its movements. Of course, at each
step the TuringMobile waits for all the robots in A to catch up before carrying on with the
exploration. Now, if the total number of robots in the plane is known, the TuringMobile can
stop as soon as all of them have joined it. Otherwise, the machine simply keeps exploring the
plane forever, eventually collecting all robots. In both cases, the Near-Gathering problem is
solved.

G.A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta 19:15

4.4 Pattern Formation with Limited Visibility
Suppose n robots are tasked with forming a given pattern consisting of a multiset of n points:
this is the Pattern Formation problem, which becomes the Gathering problem in the special
case in which the points are all coincident. For this problem, it does not matter where the
pattern is formed, nor does its orientation or scale.

Again, the Pattern Formation problem is unsolvable from some initial configurations, so
we make the same assumptions as with the Near-Gathering problem. The algorithm starts
by solving the Near-Gathering problem as before. The only difference is that now there is a
second tiny area B, attached to A (and still far enough from the TuringMobile), which the
robots avoid when they join A. This is because this second area will later be used to form
the pattern.

Since n is known, the TuringMobile knows when it has to interrupt the exploration of the
plane because all robots have already been found. At this point, the robots switch algorithms:
one by one, they move to B and form the pattern. This task is made possible by the presence
of the TuringMobile, which gives an implicit order to all robots, and also unambiguously
defines an embedding of the pattern in B. So, each robot is implicitly assigned one point in
B, and it moves there when its turn comes.

If n = 3 or n = 4, there are uninteresting ad-hoc algorithms to do this: so, let us assume
that n ≥ 5. The first to move are the robots in A: this part is easy, because they all lie on a
small segment, which already gives them a total order, and allows them to move one by one.
The robots only have to be careful enough not to collide with other robots before reaching
their final positions. Again, this is trivial, because only one robot is allowed to move at a
time.

When this part is done, there are at least two robots in B, all of which have distance
much smaller than d from each other. Then the members of the TuringMobile join B as well,
in order from the closest to the farthest. Each of them chooses a position in B based on the
robots already there and the remnants of the TuringMobile. Moreover, the members of the
TuringMobile that have not started moving to B yet cannot be mistaken for robots in B,
because they are at a greater distance from all others (and vice versa).

Note that, when the last robot leaves the TuringMobile and joins B, it is able to find its
final location because there are already at least four robots there, which provide a reference
frame for the pattern to be formed. When this last robot has taken position in B, the pattern
is formed.

4.5 Higher Dimensions
Everything we said in this section pertained to robots in the plane. However, we can
generalize all our results to robots in Rm, for m ≥ 2. Recall that, at the end of Section 3.2,
we have described a TuringMobile for robots in Rm, which can move within a specific plane
γ exactly as a bidimensional TuringMobile, but can also move back and forth by µ in all
other directions orthogonal to γ.

Now, extending our results to Rm actually boils down to exploring the space with a
TuringMobile: once we can do this, we can easily adapt our techniques for the Near-Gathering
and the Pattern Formation problem, with negligible changes.

There are several ways a TuringMobile can explore Rm: we will only give an example.
Consider the exploration of the plane described at the beginning of this section, and let Pi

be the point reached by the Commander after its ith move along the spiral-like path depicted
in Figure 3 (P0 is the initial position of the Commander).

DISC 2018

19:16 TuringMobile

Our m-dimensional TuringMobile starts exploring γ as if it were R2. Whenever it visits
a Pi for the first time, it goes back to P0. From P0, it keeps making moves orthogonal to
γ until it has seen all points in Rm whose projection on γ is P0 and whose distance from
P0 is at most i. Then it goes back to P0, moves to P1, and repeats the same pattern of
moves in the section of Rm whose projection on γ is P1. It then does the same thing with
P2, etc. When it reaches Pi+1 (for the first time), it goes back to P0, and proceeds in the
same fashion. By doing so, it explores the entire space Rm.

Note that this algorithm only requires the TuringMobile to count how many moves it has
made since the beginning of the execution: thus, the machine only has to memorize a single
integer. The direction of the next move according to the above pattern is then obviously
Turing-computable given the move counter.

5 Conclusions

We have introduced the TuringMobile as a special configuration of oblivious non-rigid robots
that can simulate a rigid robot with memory. We have also applied the TuringMobile to
some typical robot problems in the context of limited visibility, showing that the assumption
of connectedness of the initial visibility graph can be dropped if a unique TuringMobile is
present in the system. Our results hold not only in the plane, but also in Euclidean spaces
of higher dimensions.

The simplest version of the TuringMobile (Section 3.1) consists of only three robots,
and is the smallest possible configuration with these characteristics (Theorems 2 and 3).
Our generalized TuringMobile (Section 3.2), which works in Rm and simulates k registers of
memory, consists of 3m+ 3k robots (Theorem 1). We believe we can decrease this number
to m+ k + 3 by putting all the Number robots in the same basic component and adopting a
more complicated technique to move them. However, minimizing the number of robots in a
general TuringMobile is left as an open problem.

Our basic TuringMobile design works if the robots have the same radius of visibility,
because that allows them to implicitly agree on a unit of distance. We could remove this
assumption and let each of them have a different visibility radius, but we would have to add
a fourth robot to the TuringMobile for it to work (as well as keep the TuringMobile small
compared to all these radii).

In order to encode and decode arbitrary real numbers we used a function and its
inverse, which in turn are computed using the arctan and the tan functions. However, using
transcendental functions is not essential: we could achieve a similar result by using only
comparisons and arithmetic operations. The only downside would be that such a real RAM
program would not run in a constant number of machine steps, but in a number of steps
proportional to the value of the number to encode or decode. With this technique, we would
be able to dispense with the trigonometric functions altogether, and have our robots use only
arithmetic operations and square roots to compute their destination points.

References

1 C. Agathangelou, C. Georgiou, and M. Mavronicolas. A distributed algorithm for gathering
many fat mobile robots in the plane. In 32nd ACM Symposium on Principles of Distributed
Computing (PODC), pages 250–259, 2013.

2 N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots.
SIAM Journal on Computing, 36(1):56–82, 2006.

G.A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta 19:17

3 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

4 H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point convergence
algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and
Automation, 15(5):818–838, 1999.

5 Q. Bramas and S. Tixeuil. The random bit complexity of mobile robots scattering. Inter-
national Journal of Foundations of Computer Science, 28(2):111–134, 2017.

6 D. Canepa, X. Défago, T. Izumi, and M. Potop-Butucaru. Flocking with oblivious robots. In
18th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS), pages 94–108, 2016.

7 S. Cicerone, G. Di Stefano, and A. Navarra. Minimum-traveled-distance gathering of ob-
livious robots over given meeting points. In 10th International Symposium on Algorithms
and Experiments for Sensor Systems (Algosensors), pages 57–72, 2014.

8 S. Cicerone, G. Di Stefano, and A. Navarra. Asynchronous pattern formation: The effects
of a rigorous approach. In arXiv:1706.02474, 2017.

9 M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by mobile
robots: Gathering. SIAM Journal on Computing, 41(2):829–879, 2012.

10 R. Cohen and D. Peleg. Convergence properties of the gravitational algorithm in asyn-
chronous robot systems. SIAM Journal on Computing, 36(6):1516–1528, 2005.

11 P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Impossibility of gathering, a certification.
Information Processing Letters, 115(3):447–452, 2015.

12 P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Certified universal gathering in R2 for ob-
livious mobile robots. In 30th International Symposium on Distributed Computing (DISC),
pages 187–200, 2016.

13 S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Forming sequences of geometric
patterns with oblivious mobile robots. Information Processing Letters, 28(2):131–145, 2015.

14 X. Défago, M. Gradinariu, S. Messika, P. Raipin-Parvédy, and S. Dolev. Fault-tolerant and
self-stabilizing mobile robots gathering. In 20th International Symposium on Distributed
Computing (DISC), pages 46–60, 2006.

15 B. Degener, B. Kempkes, P. Kling, and F. Meyer auf der Heide. Linear and competit-
ive strategies for continuous robot formation problems. ACM Transactions on Parallel
Computing, 2(1):2:1–2:8, 2015.

16 B. Degener, B. Kempkes, P. Kling, F. Meyer auf der Heide, P. Pietrzyk, and R. Wattenhofer.
A tight runtime bound for synchronous gathering of autonomous robots with limited vis-
ibility. In 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 139–148, 2011.

17 G. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta. Turingmobile: A turing machine
of oblivious mobile robots with limited visibility and its applications. In arXiv:1709.08800,
2017.

18 P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile
Robots. Morgan & Claypool, 2012.

19 P. Flocchini, G. Prencipe, N. Santoro, and G. Viglietta. Distributed computing by mobile
robots: Uniform circle formation. Distributed Computing, 30(6):413–457, 2017.

20 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots
with limited visibility. Theoretical Computer Science, 337(1–3):147–168, 2005.

21 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by
asynchronous, anonymous, oblivious robots. Theoretical Computer Science, 407(1–3):412–
447, 2008.

22 N. Fujinaga, Y. Yamauchi, S. Kijima, and M. Yamahista. Pattern formation by oblivious
asynchronous mobile robots. SIAM Journal on Computing, 44(3):740–785, 2015.

DISC 2018

19:18 TuringMobile

23 T. Izumi, M. Gradinariu, and S. Tixeuil. Connectivity-preserving scattering of mobile
robots with limited visibility. In 12th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), pages 319–331, 2010.

24 P. Linda, G. Prencipe, and G. Viglietta. Getting close without touching: Near-gathering
for autonomous mobile robots. Distributed Computing, 28(5):333–349, 2015.

25 F.P. Preparata and M.I. Shamos. Computational Geometry. Springer-Verlag, Berlin and
New York, 1985.

26 M.I. Shamos. Computational Geometry. Ph.D. thesis, Department of Computer Science,
Yale University, 1978.

27 I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

28 M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science, 411(26–28):2433–2453, 2010.

29 Y. Yamauchi, T. Uehara, S. Kijima, and M. Yamashita. Plane formation by synchronous
mobile robots in the three-dimensional euclidean space. Journal of the ACM, 64(3):16:1–
16:43, 2017.

Beeping a Deterministic Time-Optimal Leader
Election
Fabien Dufoulon
LRI, Université Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
dufoulon@lri.fr

https://orcid.org/0000-0003-2977-4109

Janna Burman
LRI, Université Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
burman@lri.fr

Joffroy Beauquier
LRI, Université Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
beauquier@lri.fr

Abstract
The beeping model is an extremely restrictive broadcast communication model that relies only
on carrier sensing. In this model, we solve the leader election problem with an asymptotically
optimal round complexity of O(D+logn), for a network of unknown size n and unknown diameter
D (but with unique identifiers). Contrary to the best previously known algorithms in the same
setting, the proposed one is deterministic. The techniques we introduce give a new insight as
to how local constraints on the exchangeable messages can result in efficient algorithms, when
dealing with the beeping model.

Using this deterministic leader election algorithm, we obtain a randomized leader election
algorithm for anonymous networks with an asymptotically optimal round complexity of O(D +
logn) w.h.p. In previous works this complexity was obtained in expectation only.

Moreover, using deterministic leader election, we obtain efficient algorithms for symmetry-
breaking and communication procedures: O(logn) time MIS and 5-coloring for tree networks
(which is time-optimal), as well as k-source multi-broadcast for general graphs in O(min{k, logn}·
D + k log nM

k) rounds (for messages in {1, . . . ,M}). This latter result improves on previous
solutions when the number of sources k is sublogarithmic (k = o(logn)).

2012 ACM Subject Classification Theory of computation → Distributed computing models,
Theory of computation→ Distributed algorithms, Theory of computation→ Design and analysis
of algorithms

Keywords and phrases distributed algorithms, leader election, beeping model, time complexity,
deterministic algorithms, wireless networks

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.20

Related Version A full version is available at https://hal.archives-ouvertes.fr/hal-
01794711.

1 Introduction

The leader election (LE) problem, where a single (leader) node is given a distinguished
role in the network, is a fundamental building block in algorithm design. This is because a
leader can initiate and coordinate behaviors in the network, often making leader election a

© Fabien Dufoulon, Janna Burman, and Joffroy Beauquier;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dufoulon@lri.fr
https://orcid.org/0000-0003-2977-4109
mailto:burman@lri.fr
mailto:beauquier@lri.fr
https://doi.org/10.4230/LIPIcs.DISC.2018.20
https://hal.archives-ouvertes.fr/hal-01794711
https://hal.archives-ouvertes.fr/hal-01794711
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Beeping a Deterministic Time-optimal Leader Election

crucial first step in applications requiring communication and agreement on a global scale.
For example, more advanced communication primitives such as broadcast, gossiping and
multi-broadcast, rely on a leader to coordinate transmissions [10] (see also Sect. 4.3).

Wireless networks with severe restrictions on communication capabilities are an increas-
ingly prevalent subject of study, e.g., [6, 20, 7, 13, 14, 8]. In order to model these networks,
Cornejo and Kuhn [7] introduced a convenient formal framework: the discrete beeping model
(BEEP). In this model, time is divided into synchronous rounds, and in each round, a node
can either listen or transmit a unary signal (beep) to all its neighbors. The possibility to
directly transmit a beep to a node is defined by a static communication graph, and nodes
have no knowledge of this graph. As a beep is merely a detectable burst of energy, a listening
node does not receive the identifiers (ids) of its beeping neighbors. Even more critically, a
beeping node receives no feedback, while a silent (listening) one can only detect that either
at least one of its neighbors beeped or that all of them were silent. Although algorithms can
take advantage of the synchronous nature of the rounds to transmit information using beeps,
doing so impacts the time complexity in a quantifiable manner. This work studies how this
impact can be minimized.
The beeping model has also been justified by its possible applications to biological networks
[19], which are reliant on primitive communications. Fireflies communicate through flashes
of light [2, 15] and cells through the diffusion of specific chemical markers [1, 22].

Beeps are an extremely limited form of communication, making it difficult to coordinate
nodes. Being a fundamental coordination problem, leader election has received a lot of
attention (see Sect. 1.1). Probabilistic and deterministic solutions were proposed for general
graphs, and a time complexity lower bound of Ω(D+logn) was established (D is the diameter
of the network, and n its size). A prime concern is the design of time-efficient uniform
solutions, that is, not requiring any knowledge on the graph topology or on the parameters n
and D (or even on their upper bounds). Indeed, it is unrealistic to assume that upper bounds
on these parameters are always available, especially when considering dynamic networks.
Amongst existing works on LE in BEEP, the more difficult (for design) deterministic case
has received less attention. However, this case is useful whenever random behavior is
inappropriate or deterministic guarantees are required. We show in this work that an
asymptotically time-optimal deterministic algorithm can be designed. This algorithm gives
rise to an anonymous (not using ids) randomized algorithm that also matches the lower
bound.

1.1 Related Work
Leader election (LE), being a fundamental problem in distributed computing, has been
studied in various models. In each newly introduced model, an efficient leader election
algorithm is a foremost concern, since it is frequently used as a building block in more
complex algorithms. In particular, recent models designed for wireless networks assume that
simultaneous communications interfere with each other. Consequently, leader coordination is
even more important in these models, though LE is harder to solve efficiently.
Even though computational complexities (in particular time complexity) for LE are key
aspects in the algorithmic design, additional properties are also of concern: for example,
one might want nodes to detect termination, or to ensure that there is never more than one
leader node during any execution (safety property).

Ghaffari and Haeupler [13] present the first LE algorithm for BEEP, which elects a
leader in O(D + logn) ·O(log2 logn) rounds with high probability (w.h.p.: with probability
1− n−θ(1)). [13] also gives a lower bound of Ω(D + logn) rounds for LE, applicable both to

F. Dufoulon, J. Burman, and J. Beauquier 20:3

Table 1 LE algorithms in the beeping model.

Reference Round complexity Safety Knowledge

[13] O(D + log n log log n) ·min{log log n, log n
D
} w.h.p. w.h.p. N = nc

[12] O(D · log n) deterministic time Deterministic None
[9] O(D + log n) expected time w.h.p. N = nc

Here O(D + log n) deterministic time Deterministic None
Here O(D + log n) w.h.p. w.h.p. N = nc

deterministic and randomized (w.h.p. time) algorithms. This bound can be compared to the
Ω(D) lower bound in the ECONGEST model [16]. ECONGEST differs from BEEP in that
any given node can send (different) messages of O(logn) bits to each of its neighbors during
a round. When nodes receive messages, there are no collisions and they can distinguish from
which edge they received a particular message. Intuitively, since a beep can convey at most
one bit, additional Ω(logn) rounds are necessary [18, 5, 11]. Following the result from [13],
Czumaj and Davies [8, 9] presented a randomized LE algorithm with O(D + logn) expected
time in BEEP . In both randomized algorithms, the safety property is guaranteed w.h.p., but
some upper bound N on the number of nodes n is required. As for deterministic LE, Förster
et al. [12] give the first algorithm in BEEP, with an O(D · logn) round complexity. This
algorithm is uniform in both n and D. The round complexities of different LE algorithms,
including those presented in this work, are compared below (see Table 1).

It is mentioned in [13, 9] that upper bounds in BEEP apply to the well-known radio
networks with collision detection (RN -CD). In RN -CD, nodes can send messages of O(logn)
bits (instead of beeps) and listening nodes receive a “collision” message if more than two
neighbors communicate at the same time. For both models, previous results are not tight,
especially for deterministic leader election.

[13, 8, 9, 12] concentrate on improving the time complexity of LE in general graphs, in BEEP .
A different focus is presented in [14], where the goal is to minimize the size of the state
machine representation of an algorithm solving randomized LE in single-hop networks.

Amongst the extensive leader election literature in other models, Casteigts et al. [5]
is particularly relevant to this work. [5] proposes an O(D + logn) time deterministic LE
algorithm in the constant-size ECONGEST model, where the algorithm is uniform in both
the number of nodes n and the diameter D. This model is much stronger than BEEP, in
that a node can easily learn its local topology and has direct links to communicate with its
neighbors, whereas the absence of such links in the beeping model causes interference and
makes directed messages (with known sender and receiver) unachievable or plainly inefficient.
Notice that by using a 2-hop coloring and by separating in time the transmission of messages,
according to the colors of both the sender and receiver, the constant-size ECONGEST model
can be simulated, but with a prohibitive multiplicative factor of O(∆4) [3] (where ∆ is the
maximum degree).
Nevertheless, one of the main contributions of [5] is a rooted (in the maximum id node)
spanning tree construction and an information diffusion algorithm, designed to spread the
maximum identifier efficiently, in a pipeline-like manner (rather than performing consecutive
local comparisons on complete identifiers). This latter shift is crucial to the time-optimality
of their algorithm, and is used here to improve on the O(D · logn) result from [12].

DISC 2018

20:4 Beeping a Deterministic Time-optimal Leader Election

1.2 Contributions
We propose a deterministic and completely uniform (in n and D) leader election algorithm
with an O(D + logn) asymptotically optimal round complexity. By independently sampling
θ(logn) bits to create unique identifiers w.h.p. and using this algorithm, we obtain a uniform
(in D only) randomized leader election algorithm which takes O(D + logn) rounds w.h.p.
and works in anonymous networks. Both solutions are the first to achieve time-optimality
for these guarantees in both BEEP and RN -CD, outperforming all previous deterministic
and randomized results. This work closes the gap between upper and lower bounds for LE.

Furthermore, using the proposed deterministic LE algorithm, we propose the first asymp-
totically time-optimal (in O(logn) rounds) Maximal Independent Set (MIS) and 5-coloring
algorithms for trees in BEEP (leveraging the fact that given a leader in a tree network, it
is simple to compute a 2-coloring). The MIS and coloring algorithms can be considered as
essential symmetry-breaking procedures, and designing optimal-time solutions (even limited
to tree networks) might be crucial for other applications in BEEP.
Then, we give an O(min{k, logn}·D+k log nM

k) time k-source multi-broadcast (with proven-
ance) algorithm (for messages in {1, . . . ,M}). This latter algorithm improves a previous result
by Czumaj and Davies [8], when the number of sources k is sublogarithmic (k = o(logn)), by
executing k consecutive leader elections. Communication primitives are especially important
in BEEP , as they allow to deal with the interferences caused by simultaneous communications,
and thus to design complex algorithms.

2 Model and Definitions

2.1 Preliminaries
The communication network is represented by a simple connected undirected graph G =
(V,E), where V is the node set and E the edge set. The network size |V | is also denoted by
n, and the diameter by D. Nodes have unique identifiers (ids). This property is essential in
order to break symmetry in deterministic algorithms. The identifier of a node u ∈ V , id(u),
is an integer from {1, . . . , U} where U is some upper bound unknown to nodes. Then, the
maximum length over all identifiers in G is O(logU) (also unknown). For simplicity, we make
the common assumption that identifiers have logarithmic (in n) length, i.e., the id space is
{1, . . . , N} where N = nc for some unknown constant c > 1. In Sect. 3.3, we explain how
the results of the paper apply to an arbitrary id space setting.

Now, we give definitions pertaining to (binary) words. The empty word is denoted by ε.
The operator ‖ is for the word concatenation. The length of a word x is denoted by |x|. For
any word x and integer j ∈ {1, . . . , |x|}, x[j] denotes the jth most significant bit of x. Let x
and y be two words (of possibly different lengths), x is said to be the prefix (resp., proper
prefix) of y if there exists a word (resp., non empty word) z such that x ‖ z = y. Moreover,
x is said to be higher than y, denoted by x � y, if y is a proper prefix of x, or if x[j] > y[j]
for the first differing bit j (even if |x| < |y|).

The α-encoding [5] of an integer i ∈ N>0 is a word obtained from the binary representation
bin of i. By definition, α(i) = 1|bin| ‖ 0 ‖ bin. In the proposed LE algorithm (Sect. 3),
instead of ids, nodes compare their α-encodings (α-ids). Finding the highest α-id is equivalent
to finding the maximum id, and can be performed uniformly (without padding the binary
representations of ids) using bit-wise comparisons. A word x is well-formed if there exists an
integer i such that x = α(i). It is simple to prove that for every word x, there is at most one
such integer i. Thus the α−1 function (α’s “inverse”) is defined on well-formed words.

F. Dufoulon, J. Burman, and J. Beauquier 20:5

2.2 Model Definitions

In the beeping model (BEEP), an execution proceeds in synchronous rounds, i.e., there are
synchronized local clocks and all nodes start at the same time, in a synchronous start. In each
round, nodes synchronously execute the following steps. First, each node beeps (instruction
BEEP in algorithms) or listens (LISTEN in algorithms). Beeps are transmitted to all
neighbors of the beeping node. Then, if a node beeped (in the previous step of the same
round), it learns no information from its neighbors. Otherwise, it knows whether or not at
least one of its neighbors beeped (during the previous step of the same round). Finally, each
node performs local computations. The synchronous start assumption can be replaced by a
slightly weaker variant called wake-on-beep [1], for a constant multiplicative overhead (and
an additive factor of O(D) rounds). In this variant, a node starts spontaneously either at
an arbitrary time, or at one of its neighbors’ beep, whichever happens first. Upon waking
up, a node beeps immediately, to wake up its neighbors. As a result, the local clocks of two
neighboring nodes differ by at most 1. Therefore, nodes can use phases of 3 rounds [1] (in
which the node can beep or listen in the central round, and listens in both other rounds) to
simulate rounds of a synchronous start execution.

We adopt the usual definitions for the system/algorithm: state of a node (values of
its variables), configuration (a vector of all the nodes’ states), execution (a sequence of
configurations at consecutive rounds’ ends), terminal configuration (a configuration repeated
indefinitely), termination (when a terminal configuration has been reached), round complexity
(number of rounds needed until a terminal configuration satisfying the problem conditions is
reached, in the worst case). A variable var of a node v is explicitly associated to v using a
subscript varv. An algorithm is said to be uniform1 in a parameter p if the algorithm is not
given p (and is unable to infer it from the information it receives). For example, in a uniform
(in n) algorithm, nodes do not know the size n of the network, neither can they deduce it
from their identifier. Notice that the variable size of the identifiers gives an unusable upper
bound on the network size, as it leads to an excessive and unrealistic time complexity.

2.3 Leader Election

In the leader election (LE) problem, each node has a boolean variable, indicating a leader or a
non-leader state. During an execution, there is never more than one leader (safety property).
Initially, all nodes are non-leaders. Every execution terminates, and at the termination there
is exactly one leader.
Now we give auxiliary definitions. First, we define eventual leader election, where the
algorithm terminates but no node can detect this. Then, we define terminating leader
election, where the algorithm terminates and all nodes detect when there remains a single
candidate node (the leader). We solve explicit leader election (when nodes have unique
identifiers): a terminating leader election in which all nodes know the elected leader’s identifier
at the termination.

1 It is known that termination detection is easy in a synchronous setting whenever particular parameters
related to the size of the communication graph are known, i.e., non-uniform terminating algorithms are
easier to construct than the uniform ones.

DISC 2018

20:6 Beeping a Deterministic Time-optimal Leader Election

Algorithm 1 Uniform Eventual Leader Election Algorithm.
1: IN: id: identifier ; OUT: leader: boolean, leaderId: identifier
2: candidate := true, prefix := ε, suspicious := false . ε is the empty word
3: leaderId := 0, leader := false . id and leaderId are ids, from {1, . . . , N}
4: for diffusion phase p := 1 ; p++ do
5: // First, a communication phase with c rounds.
6: Communicate (prefix, suspicious) to all neighboring nodes.
7: // Then, apply predicates of rules 1 to 5 on received (prefix, suspicious) pairs.
8: Use received (prefix, suspicious) pairs to update prefix, candidate and suspicious
9: if not candidate then leader := false

10: else if prefix = α(id) then leader := true

11: if prefix is well-formed then leaderId := α−1(prefix)

3 Leader Election Algorithms

Classical approaches used to solve leader election in CONGEST models do not directly apply
to BEEP . Although they can be adapted using a transformer, doing so is too costly in most
communication graph topologies (see discussion in the related work section: Sect. 1.1).
To solve the strongest version of LE, the explicit leader election, we proceed in two main
steps. First, we design a uniform algorithm for eventual leader election, in Sect. 3.1. Then, in
Sect. 3.2, we combine this algorithm with a specially designed uniform termination detection
component to obtain a uniform explicit leader election algorithm. Finally, in Sect. 3.3,
we discuss how the presented algorithm can be applied to other settings (e.g., arbitrary id
range).

3.1 Uniform Eventual Leader Election
The algorithm (Algorithm 1) is described first (Sect. 3.1.1). Then, in Sect. 3.1.2, k-balanced
messages are presented. They are used to allow constant-size communication phases composed
of rounds and dedicated to the communication of (large) messages respecting local constraints.
Using the k-balanced message technique, a detailed description of the communication phases
(appearing in Algorithm 1) is given in Sect. 3.1.3. Finally, in Sect. 3.1.4, we relate the
presented techniques to existing works in CONGEST models.

3.1.1 Description
All nodes aim to spread their α-identifiers (α(id) in Alg. 1) to the whole network (information
diffusion algorithm). They execute loosely synchronized bit-wise comparisons and propagate
the bits of the highest detected prefix (of α-id). All nodes start out as candidates, with two
variables: prefix and suspicious. The binary word prefix is initialized to the empty word
ε and represents the prefix of an α-id. Most of the time, it represents the highest prefix
of which the node is aware. Each node adapts its prefix by adding or removing the less
significant bits, depending on the information gathered. The boolean suspicious is initialized
to false and indicates whether the node removed bits from prefix in the last phase.

Nodes execute diffusion phases (of c rounds each) synchronously. A diffusion phase
consists of one communication phase of c = O(1) rounds (line 6), used to send prefix and
suspicious to all neighbors, followed by a (limited) modification of prefix.

F. Dufoulon, J. Burman, and J. Beauquier 20:7

The communication phase is described in detail in Sect. 3.1.3. In the same phase, each node
receives (prefix, suspicious) pairs from its neighbors, but does not know which node sent
which message, nor how many nodes sent any of these messages (multiplicity).
After the communication phase, any node v checks if prefixv is a locally higher prefix, using
the received pairs (see details below) and the previously gathered information. If this is the
case, it appends a bit from its α-id to prefixv (if prefixv is a proper prefix of α(idv)), or
does nothing (if prefixv = α(idv)). Otherwise, it modifies prefixv depending on the highest
detected prefix value, and becomes a follower. It can no longer become a leader. If that
modification removes bits from prefixv, node v is said to be suspicious for the following
phase, and suspiciousv is assigned to true for one phase.

The five rules below associate conditions (predicates) to actions. A predicate evaluated
to true triggers the associated action. In line 8, these predicates are evaluated (by some
node v) on the set of the received (prefix, suspicious) pairs, in the given order of priority,
and the first triggered action is performed.
1. If there exists a suspicious neighbor u, such that prefixu is a proper prefix of prefixv,

remove min{|prefixv| − |prefixu|, 3} letters from the end of prefixv.
2. If prefixv = (z ‖ 0 ‖ w) with w 6= ε and there exists a neighbor u with prefixu = (z ‖

1 ‖ y), delete |w| letters from the end of prefixv.
3. If prefixv = (z ‖ 0) and there exists a neighbor u with prefixu = (z ‖ 1 ‖ y), then

change prefixv to (z ‖ 1).
4. If there exists a neighbor u with prefixu = (prefixv ‖ 1 ‖ w) then append 1 to prefixv.
5. If there exists a neighbor u with prefixu = (prefixv ‖ 0 ‖ w) then append 0 to prefixv.

If any of the predicates (of the rules 1-5) is true, prefixv is not a locally higher prefix.
Indeed, if a neighbor u (of v) is suspicious and prefixu is a proper prefix of prefixv, then a
neighbor of u has a higher prefix than prefixv, or is changing its prefix according to rule 1
above. By deleting the last bits of prefixv, node v is matching prefixv to an unknown but
higher prefix. In all 4 other cases, prefixu is clearly a higher prefix than prefixv, therefore
prefixv modifies (a limited amount of) its last bits to more closely match prefixu.
Additional local computations in lines 9-11 conclude a diffusion phase. Once a candidate’s
prefix variable is well-formed (i.e., once idv = α−1(prefixv)), this node becomes a leader.
If in later rounds it becomes a follower, then it withdraws from the leader role. Although
this process violates the safety property, it is necessary in order to elect a leader, as the
last remaining candidate cannot detect that it is the last, due to the lack of termination
detection in this preliminary eventual LE version.

The 5 rules described above are an idea adopted from [5]. Thus the described information
diffusion process satisfies Lemma 1 and Theorem 2 below, adopted from the results of [5]
and adapted here to our beeping algorithm (see Sect. 3.1.4 for more details).

I Lemma 1 (Beeping version of Lemma 8 in [5]). Let u and v be two neighboring nodes.
Then, prefixu and prefixv are identical, except in at most 6 (least significant) bits: without
loss of generality, from the |prefixu|th bit (possibly included) to the |prefixv|th bit.
Note that if the |prefixu|th bit differs in prefixu and prefixv, then ||prefixu|−|prefixv|| < 6

I Theorem 2 (Beeping version of Theorem 10 in [5]). Let X be the maximum identifier. After
|α(X)|+ 6r phases of the information diffusion algorithm, all nodes within distance r (for
any r ≥ 0) from the node with id X have prefix = α(X). Thus, after at most |α(X)|+ 6D
phases, for each node v, prefixv = α(X), and there is a unique candidate node.

DISC 2018

20:8 Beeping a Deterministic Time-optimal Leader Election

Proof. Let l be the maximum id node. We prove the theorem by induction on r.
Node l has the maximum identifier X, thus it appends a bit from α(X) in each diffusion
phase. After |α(X)| phases, prefixl = α(X). This concludes the case when r = 0.
For the induction step (r > 0), consider any given node u at distance r + 1 of node l, and
one of its neighbors v at distance r from l. By Lemma 1, prefixu and prefixv differ in less
than 6 bits. After |α(X)|+ 6r phases, since prefixv = α(X) (induction hypothesis), node v
does not modify prefixv and node u necessarily corrects (removes, changes or adds) at least
one of prefixu’s bits in each of the 6 following phases, until prefixu = α(X). J

Recall that a communication phase is composed of c = O(1) rounds (c is defined in Sect.
3.1.3). This implies the following theorem.

I Theorem 3. Uniform Eventual Leader Election is solved by Algorithm 1 in O(D + logn)
rounds (in the beeping model).

Proof. Let v be any given node and X the maximum identifier in the network. From Theorem
2, prefixv = α(X) after O(D + logn) phases. Nodes have the leader’s identifier by applying
the α−1 function. Moreover, the maximum id node is well-formed after |α(X)| = O(logn)
phases, thus after O(logn) rounds. As a result, the maximum id node is, and remains, a
leader henceforth. J

3.1.2 Balanced messages
A basic design technique called multi-slot design pattern [4], allows to communicate constant-
size messages without the sender’s id nor multiplicity, given a synchronous start. It works
in communication phases of M rounds, if at most M different messages (in {1, . . . ,M}) are
allowed. Beeping in the jth round of a phase is equivalent to sending the message j. However,
receivers cannot detect which (and how many) nodes sent that message. Thus, due to the
beeping model’s restrictions, if a node sends a message m, it receives no information about
whether any of its neighbors also did.

Clearly, this design technique cannot be used to directly send prefix values, as these
values are in {1, . . . , N}, and communication phases would be O(N) rounds long. But this
technique can be adapted to send the values of a locally constrained (k-balanced) variable.
A variable var is said to be k-balanced if it satisfies the k-balancing property, that is, if the
difference between neighboring var values is at most k (for every node v and neighboring
node u, |varu − varv| ≤ k).

If one wishes to communicate k-balanced messages, then it is enough to transmit, for a
message m, the remainder r = m mod(1 + 2k), using the previous technique, with phases of
M = 1 + 2k rounds (where k is known a priori to all nodes). Then, the receiver knowing at
the same time its own remainder, the sender’s remainder and the fact that the messages are
k-balanced, can deduce the originally sent message (but does not know if multiple nodes have
sent this message). Specifically, let v be the receiver and u the sender. Node v deduces the
original message mu from the received remainder message ru: mu = mv+ru−rv−b ru−rv

k+1 cM .
Consider the example depicted in Table 2 for k = 4. For a given node v, any message mu

sent by a neighboring node u is in {mv − k, . . . ,mv + k}. By transmitting the remainder
ru = mu mod(1 + 2k), node u indicates whether its message mu is in the next 4 values or in
the previous 4, respectively to mv, and the exact position amongst the 4 possibilities (more
precisely, through ru − rv). The remaining −b ru−rv

k+1 cM factor deals with the fact that some
lower (than mv) messages mu result in a high remainder ru, and some higher messages mu

in a low remainder ru, due to the modulo operation. Node v can deduce the message mu by
using all of this information, along with its own message mv.

F. Dufoulon, J. Burman, and J. Beauquier 20:9

Table 2 Communication of k-balanced messages, where k = 4 and M = 9. The executing node
v, and its message value mv, are highlighted. If v receives a message ru = 3, it is able to deduce
that the corresponding message mu is 21.

Received remainder ru =

mu −mv =
(ru − rv)− b ru−rv

k+1 cM

Decoded message mu =

’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’

-1

18

-4

15

-3

16

-2

17

v

19

+1

20

+2

21

+3

22

+4

23

The k-balanced message technique is of independent interest, and allows efficient algorithm
design when nodes communicate locally-similar values.

3.1.3 Designing constant-size communication phases
In this section, we show that by applying the balanced messages approach, using only O(1)
beeping rounds, a node can deduce its neighbors’ prefix values (and whether some of them
are suspicious), even though there are O(N) different possible values of prefix.

From Lemma 1, we know that |prefix| is a 6-balanced variable. Moreover, two neighboring
nodes have similar prefix values, which differ only in (at most 6 of) the last bits. Therefore,
if a node can learn the last 6 bits of a neighboring prefix, and their exact positions, then
it can fill up the empty bits (in more significant positions) using the bits from its own
prefix. To learn that, one could use two consecutive communication subphases: the first
communicates the position of the last bit (which is |prefix|, a 6-balanced variable) in a
subphase with 13 rounds, and the second communicates an ending message with the last
6 bits (using a message from {1, . . . , 26}, encoding all possible 6 letters combinations), in
a subphase with 64 rounds. However, this does not work in BEEP because one needs to
know, for every different ending message sent by neighbors, the corresponding position of the
last bit (thus the corresponding position message). Although this is trivial in ECONGEST ,
because messages from different neighbors are received on different edge ports, it is too costly
to simulate this functionality in BEEP (see Sect. 1.1). Fortunately, as the message space
is constant-size in both of these communication subphases, the Cartesian product of both
message spaces is also constant-size. This allows to associate position and ending messages,
using O(1) rounds, even in BEEP. Consequently, communication phases with 832 rounds
(for messages in {1, .., 13} × {1, . . . , 26}) are needed to communicate enough information for
a node to deduce all neighboring prefix values.

On top of that, the nodes also need to communicate the boolean suspicious. For this
reason, the message space is adapted to {1, .., 13} × {1, . . . , 26} × {false, true}. This results
in communication phases (introduced in Algorithm 1, Sect. 3.1.1) of length c = 1664 rounds,
which although large, is still O(1) size.

3.1.4 Remarks on the eventual leader election algorithm
As mentioned in the related work (Sect. 1.1), [5] is particularly relevant to our work. In this
section, we discuss this in detail.
The structure of the information diffusion algorithm is essentially the same. The algorithm
progresses in diffusion phases, consisting of a communication phase (corresponding to a single
round in the considered ECONGEST model) where nodes send their (prefix, suspicious)

DISC 2018

20:10 Beeping a Deterministic Time-optimal Leader Election

values, after which nodes change their prefix variable depending on the (prefix, suspicious)
pairs received. Recall the 5 rules presented in Sect. 3.1.1: the set of the different possible
changes for the prefix variable is of a constant size, and these changes are meant to affect at
most a constant number of (the last) bits of prefix. An important point in [5] is the proof
that this set of changes allows the maximum identifier to spread over the network, in an
optimal O(D + logn) number of phases. We use the same constant-size set of changes (for
prefix). That is why Lemma 1 also applies to our algorithm.

However, the other core element of their information diffusion algorithm, the commu-
nication phase, cannot be used in BEEP. In [5], nodes maintain up-to-date copies of the
prefix variables of their neighbors to circumvent the limited message size and can keep
these copies up-to-date in a single communication phase of O(1) rounds. In such a phase,
nodes communicate what change was carried out (and which neighbor sent which message):
sending the type of change is equivalent to sending the complete prefix value in this situation.
In BEEP, nodes are unable to know which neighbor sent which message. Although this
capability can be simulated, it is unlikely that it can be done without increasing the time
complexity of [5]. Current methods result in a O(∆4) multiplicative factor (see discussion in
Sect. 1.1).

One of the main contributions of this work is the introduction of the k-balanced message
method to leverage the local constraints between (unbounded) values, which allows to
communicate in O(1) rounds. With the k-balanced message technique, a node can transmit a
value of prefix to its neighbors in O(1) rounds (of BEEP) only. This communication process
differs greatly from that of [5].

3.2 Uniform Terminating Leader Election (Explicit LE)

Being often used as a primitive, the LE algorithm must be uniform and detect termination
(e.g., so that it can be composed with other algorithms). Since classical approaches are not
suited to BEEP , we propose an explicit leader election algorithm using a different termination
detection approach. Notice that, as mentioned previously, it is simple (in a synchronous
setting) to transform the uniform eventual leader election algorithm, Algorithm 1, into a
non-uniform one using knowledge of D and N , and thus of the time complexity expressed in
terms of these parameters. Then, candidates can wait until the algorithm terminates, by
counting rounds corresponding to the evaluated time complexity. However, this technique
cannot be used here.

Instead, we use a primitive called overlay networks. We briefly describe it in Sect. 3.2.1.
Then, in Sect. 3.2.2, an adapted version of this primitive is used to create a uniform
termination detection component. This component is combined with the previously presented
eventual leader election algorithm to obtain uniform explicit leader election.

3.2.1 Overlay network

The overlay network approach, in the context of leader election, was first used for BEEP in
[12]. Such an overlay has a designated root, and consists of layers centered around the root.
Nodes at a distance d from that root (level d), have up links (resp. down links) towards
all neighboring nodes (of the overlay) at distance d− 1 (resp. at distance d+ 1) from the
root. Using these (virtual) links, the root can gather information about the network and
disseminate it. The default behavior for non-root overlay nodes is to relay any beep received
over an up (resp. down) link in some phase p, to all down (resp. up) links in phase p+ 1.

F. Dufoulon, J. Burman, and J. Beauquier 20:11

Algorithm 2 Uniform Terminating Leader Election Algorithm.
1: IN: id: identifier ; OUT: leader: boolean, leaderId: identifier
2: candidate := true, prefix := ε, suspicious := false . ε is the empty word
3: leaderId := 0, leader := false

4: for diffusion phase p := 1 ; p++ do
5: // First, a communication phase with c = O(1) rounds.
6: Communicate (prefix, suspicious) to all neighboring nodes.
7: // Then, apply predicates of rules 1 to 5 on received (prefix, suspicious) pairs.
8: Use received (prefix, suspicious) values to update prefix, candidate and suspicious.
9: // Finally, termination detection phase with s = O(1) rounds.
10: Execute a termination detection phase.
11: if candidate and prefix = α(id) then
12: If no beep is heard in down links, exit the loop.
13: else
14: If a beep is heard in up links, exit the loop.
15: leaderId := α−1(prefix)
16: if candidate then leader := true . Last candidate becomes the leader

In more detail, overlays work in the following way. Time is divided into overlay phases of
9 rounds, where each phase consists of 3 subphases of 3 rounds each. The first 3 rounds are
called control rounds, the next 3 - up rounds and the last 3 - down rounds. Each set of 3
rounds is numbered from 0 to 2.
When nodes join the overlay, they initialize a depth variable (in {0, 1, 2}), through which
they know some information about their layer (and thus how to communicate with the
other layers). The root node joins the overlay at a given time, and assigns itself depth := 0.
The other nodes willing to join the overlay listen in all control rounds. Since overlay nodes
beep in the control round depth (in all overlay phases), the joining nodes assign themselves
depth = beepHeard+ 1 (mod 3), where beepHeard is the smallest control round in which a
beep was heard.

It is important that the depth variable satisfies some local constraints, to be guaranteed
by the joining process. More specifically, for any distance d and for any given (overlay) node
v in level d, all neighboring (overlay) nodes u in level d− 1 (resp. in level d+ 1) must have
depthu = depthv − 1 (mod 3) (resp. depthu = depthv + 1 (mod 3)), where −1 (mod 3) = 2.
With this property, nodes can listen over an up link (resp. down link) by listening in up
(resp. down) round depth− 1 (mod 3) (resp. depth+ 1 (mod 3)). Moreover, nodes beep over
an up link (resp. down link) by beeping in up (resp. down) round depth (mod 3). In other
words, communication through up and down links is the same as sending, or listening for, a
depth message (using the multi-slot design pattern from [4], described in Sect. 3.1.2) using
the corresponding subphase (a message from Mdepth = {0, 1, 2}).

3.2.2 Termination detection component for explicit leader election
We describe the proposed termination detection component and its interactions with the
eventual leader election algorithm (Algorithm 1). The termination detection component is
meant to gather information from the whole network, on whether there are any candidates
with a higher α-id. If there are none, the last candidate terminates and becomes leader. The
combined final algorithm structure is given in Algorithm 2.

DISC 2018

20:12 Beeping a Deterministic Time-optimal Leader Election

As in Algorithm 1, time is divided into diffusion phases, but these phases now include an
additional termination detection phase. A termination detection phase consists of a border
detection phase followed by an adapted overlay phase. The border detection phase is a
communication phase for messages in Mprefix = {1, .., 13} × {1, . . . , 26}, where nodes can
detect if any of their neighbors has a different prefix value (similar to the communication
in Sect. 3.1.3). If that is the case for an overlay node (even the root) which has been part
of the overlay for more than 6 phases, this node becomes a border node (i.e., there exists a
neighbor with a different prefix value). The adapted overlay phase is a communication phase
with 3 subphases, each for messages in Mdepth ×Mprefix. Each adapted overlay network is
associated to a specific prefix (i.e., that of the overlay’s root, necessarily a candidate node).
This prefix is used (communicated) so that nodes can detect whether the other endpoint of a
down link or up link, is part of the same overlay (i.e., has the same prefix). Consequently,
different overlay networks do not interfere with each other. A border detection phase has
|Mprefix| rounds and an adapted overlay phase has 9|Mprefix| rounds, thus a termination
detection phase has s = 10|Mprefix| rounds.

Upon having a well-formed prefix, each candidate designates itself as root and starts
constructing an overlay network by using the termination detection phase. Nodes which have
just joined the overlay and border nodes beep in their up links (relayed all the way back to
the root) using the adapted overlay phase. As a result, the root hears beeps in its down
links in each (termination detection) phase, until the overlay network covers the whole graph
(Lemma 5). Moreover, the only overlay that can cover the whole graph is the overlay of the
highest α-id node (because this node never changes prefix depending on another node’s
α-id, and consequently never joins another candidate’s overlay). Therefore, when the root
hears no beeps in its down links (and is not a border node), it knows that its overlay covers
the whole graph, and that it is the highest α-id node (thus the maximum id node). All other
roots hear beeps in down links (or become border nodes), until their prefix is changed.

In more detail, the construction of the adapted overlay networks is done as follows. Once
a candidate node has a well-formed prefix (after exactly |α(id)| diffusion phases), it sets
itself up as an overlay’s root (in phase p = |α(id)|), but it stays silent for 6 termination
detection phases (from phase p to phase p+ 5) before beeping in the control rounds of phase
p+ 6 (and only in this phase). On the other hand, follower nodes with a well-formed prefix
attempt to join the overlay corresponding to prefix right away. Once a follower node joins an
overlay (in phase p′), it also stays silent for 6 termination detection phases before beeping in
the control rounds of phase p′ + 6. For any given node v that joins an overlay in termination
detection phase p′, its neighbors know if they join v’s overlay or not, by phase p′ + 6 at the
latest (by Theorem 2). By staying silent for 6 termination detection phases upon joining, v
ensures that all of its neighbors join the overlay at the same time (if they choose to join).
Consequently, two nodes u and v, at the same distance d from an overlay’s root r, never join
r’s overlay in different termination detection phases, and depthu = depthv. Otherwise, we
could have depthu 6= depthv, which means a common neighbor of u and v at distance d− 1
from r would not have properly defined down links.

I Lemma 4. Let r be the root of an overlay network. This overlay is properly constructed,
that is, nodes at level d have the same depth value.

Proof. Let us prove by induction that if a node at distance d from r joins r’s overlay, then
it is in phase |α(idr)|+ 6d. Let us first consider a node v at distance 1 from r. For node
v to join r’s overlay, another overlay node must beep in the control rounds and prefixv
must be equal to α(idr), in the same phase. Notice that for any given two neighbors u
and v, which are in different overlays, both nodes beep in different control rounds, because
prefixu 6= prefixv.

F. Dufoulon, J. Burman, and J. Beauquier 20:13

In phase |α(idr)|+ 6, r beeps in the control rounds, and thus v can join in that phase (if
prefixv = α(idr)). In addition, if prefixv 6= α(idr) in phase |α(idr)|+ 6, then by Theorem
2, node v does not consider α(idr) as the highest prefix value it has encountered. As a
result, it is impossible that prefixv = α(idr) after phase |α(idr)|+ 6, and that v joins r’s
overlay after phase |α(idr)|+ 6. The induction step (d > 1) is similar, starting from a node
v at distance d from r. J

Because the adapted overlay networks are properly constructed, we can prove that as
long as an overlay has not covered the whole network, follower nodes beep in their up links,
stopping the root from becoming a leader. In more detail, after a candidate node beeps in
the control rounds, it listens to its down links in every termination detection phase. As long
as it hears a beep in these links, or is a border node, it does not become leader. Once no
beep is heard, it becomes leader, sends a beep in its down links and terminates. On the other
hand, after a follower node joins the overlay (in phase p), its beeps in its up links in the first
7 termination detection phases (from phase p to phase p+ 6). It also beeps in the up links if
it is a border node (and relays any beep heard through a down link). Finally, when a follower
node hears a beep in its up links, it terminates. Consequently, before an overlay network
covers the whole network, the root receives beeps in every (termination detection) phase.

I Lemma 5. Let r be the root of an overlay network. Then from diffusion phase |α(idr)|+ 6
onwards, node r hears beeps in its down links every phase, until it becomes a border node
itself, or until its overlay covers the whole network.

Proof. Let r be the root of an overlay network. From Lem. 4, r’s overlay network is properly
constructed, therefore the virtual links can be used. We define a (overlay) downwards path
from node v to node u, as a sequence of down links starting in v and ending in u. A node u
is downwards reachable from node v if there is an overlay downwards path from v to u.

Consider a follower node v, having just joined r’s overlay (in phase p). Node v beeps in
its up links for 7 termination detection phases after it joins (from phase p to phase p+ 6).
For each additional level in the overlay with nodes downwards reachable from v, v beeps in
its up links during 7 additional termination detection phases (by relaying beeps heard in its
down links, to its up links). Although the next layer (node u) is one further hop away from
the root, and starts beeping in phase p + 6, v beeps during phase p + 6 (7th termination
detection phase after it joins) and relays u’s first beep in phase p+ 7. Consequently, there
is no interruption in beeps sent through the up links. If an overlay node becomes a border
node (some of its neighbors do not join in phase p+ 6), then it beeps in up links in all phases
p′ > p+ 6. If it exits the overlay, then its neighbors closer to the root become border nodes
and beep in their up links. Therefore, the root keeps hearing beeps in its down links while
levels are added to its overlay, but also if one of its overlay nodes becomes a border node. In
that latter case, the root does not have the maximum id, and hears beeps in its down links
until it becomes a border node itself. J

I Theorem 6. Explicit Leader Election is solved (uniformly) in O(D + logn) rounds in the
beeping model.

Proof. The maximum identifier node v starts to construct its overlay network in phase
|α(idv)|+ 6, which is O(logn). For any given node u 6= v, prefixv never modifies its bits to
match prefixu. Consequently, v never joins u’s overlay and v’s overlay is the only one to
grow until it covers the whole network, at a rate of adding a level every 6 diffusion phases.
Thus, v’s overlay covers the whole network after an additional O(D) diffusion phases. Node
v hears beeps in its down links for another additional O(D) phases, since beeps from the

DISC 2018

20:14 Beeping a Deterministic Time-optimal Leader Election

last nodes to join the overlay take O(D) rounds to reach v. After that, node v no longer
hears beeps in its down links (Lemma 5) and is the only node in the network to terminate as
leader. Then, it beeps in its down links, so that all nodes can terminate. J

3.3 Discussion and Perspectives
The deterministic LE algorithm presented in this section works without any change with an
arbitrary (unbounded) id space {1, . . . , U}. In this case, its time complexity is O(D+ logU).
For an unbounded id space, a known result from distributed bit complexity [11] gives a lower
bound of Ω(logU) for a network with two nodes. This implies a lower bound of Ω(D+ logU)
for multi-hop networks. Consequently, the presented algorithm is asymptotically time-optimal
even with an unbounded id space.

Furthermore, the algorithm can be modified to work if it starts with only a subset of
nodes as candidates, or if the ids are not unique (as long as the highest id-encoding is still
unique). Since a set of (non-unique) ids with a unique maximum can be generated without
knowing n or N [17], this last variant can then be applied to obtain a randomized uniform
(in both n and D) leader election algorithm.

4 Additional Results

LE is an important and often-used primitive when designing distributed algorithms. Thus, it
makes sense that improving the time complexity of LE results in improved time complexities
for other tasks. We propose improved algorithms for leader election in anonymous networks,
MIS and coloring (in trees), and multi-broadcast.

4.1 Randomized Leader Election
When dealing with communication-restrictive models such as BEEP , anonymity is especially
important from an application viewpoint. Indeed, when considering large scale dynamic
wireless networks, it might not be economically feasible to equip all nodes with unique
identifiers. Additionally, nodes might be prevented from revealing their unique ids (explicitly
or through their actions), due to privacy or security concerns [23]. For this case, a deterministic
algorithm assuming unique identifiers can be adapted into a randomized one (w.h.p. time
and safety guarantees) for anonymous networks, as stated in [13]. Indeed, one can generate
a unique id w.h.p. by independently sampling θ(logn) bits. But in return the knowledge of
the network size n or at least some polynomial upper bound N = O(nc), is required.

4.2 MIS and 5-coloring for Trees
Symmetry breaking procedures such as maximal independent set (MIS) and coloring are
important building blocks, especially in the communication-restrictive beeping model. Spe-
cifically, the MIS problem consists of choosing a set of nodes (local leaders) so that there are
no two neighbors in the set (independence), and such that no other node of the network can
be added to the set without causing the loss of the independence property. On the other
hand, the c-coloring problem consists of assigning colors in {1, . . . , c} to the nodes of the
network, such that neighboring nodes have different colors.
It is well-known that given a leader in tree networks (elected using O(D + logn) rounds), it
is simple to 2-color the tree in O(D) supplementary rounds. However, MIS and coloring have
an Ω(logn) lower bound (even in tree networks, as the bound from [21] holds for a graph

F. Dufoulon, J. Burman, and J. Beauquier 20:15

of disconnected pair of nodes), so this O(D + logn) 2-coloring algorithm is non optimal for
most communication graphs. Still, using the proposed uniform leader election algorithm,
we design uniform, asymptotically time-optimal O(logn) MIS and 5-coloring algorithms in
BEEP, for tree networks.

We first give the algorithmic description of the 5-coloring algorithm. Roughly, low degree
nodes are colored first using 3 colors, and the remaining nodes form a subgraph where
the connected components have at most a logarithmic diameter. Using the LE algorithm,
these connected components can be 2-colored in a logarithmic number of rounds. Now, we
give more details as to how these steps are achieved. First, the LimitedDegreeColoring
algorithm from [3] is used to 3-color all nodes v with deg(v) ≤ 2, in O(logn) rounds. Then,
since all remaining nodes have a degree of at least 3, every remaining (non-colored) connected
component (a tree) has a diameter of at most logn. Thus, electing a leader for each such
connected component requires O(logn) rounds. It is well-known that, in trees, coloring nodes
according to their distance to the root can be done using 2 colors. This distance can be learnt
by all nodes in O(logn) rounds. Specifically, nodes are synchronized after the leader election,
and the leader broadcasts a beep, using a beep wave [13, 10] or reusing the overlay network
from the leader election. The phase in which a node receives the broadcasted beep indicates
its distance to the leader. Therefore the remaining non-colored nodes can be colored with
another 2 colors, resulting in a 5-coloring for the communication graph.

From this 5-coloring, it is simple to compute an MIS in 5 additional rounds. Nodes with
the same color form an independent set. Adding iteratively (at each round) nodes from
each such set to a common independent set results in an MIS. Consequently, an MIS on the
communication graph can also be computed in O(logn) rounds.

Notice that since all parts of the uniform 5-coloring algorithm are themselves uniform, it is
a bit tricky to force nodes to resynchronize during the sequential execution. For this purpose,
we use the EBET technique [3], to provide synchronization points in a uniform fashion - that
is possible because, for every component of the proposed algorithm, the terminal state at a
node can be detected locally - and thus solve the issue.

4.3 Multi-Broadcast with Provenance
Efficient communication primitives are fundamental building blocks in distributed computing,
both for obtaining efficient algorithms and providing convenient abstractions of the actual
communication mechanisms. These primitives are of even greater importance in BEEP.
When compared to other message-passing models, it is far more difficult to communicate
messages throughout the network with beeps.

Now, consider the multi-broadcast problem. Multiple sources (k sources) have each a
message they have to broadcast to all other nodes in the network. All messages are in
{1, . . . ,M}. In multi-broadcast with provenance, the k sources need to communicate their
message, associated with their id, to all nodes in the network. In [10], an O(D·logn+k log nM

k)
round algorithm is given and the authors conjecture that the D · logn term might be a lower
bound. By presenting an O(D + logn) deterministic LE algorithm, this work shows that
leader election is not a bottleneck for the multi-broadcast problem (whereas the previous
deterministic LE algorithm required O(D · logn) rounds). This suggests that D · logn might
be reducible to D in both the deterministic and randomized cases.

The multi-broadcast with provenance algorithm in [10] can be divided into three core
components: leader election, communicating the ids of all k sources and finally using the
order of these ids to communicate all messages properly to the leader (which then broadcasts
the information to the network). In [10], the second component relies on the leader and

DISC 2018

20:16 Beeping a Deterministic Time-optimal Leader Election

100100 id5: 100100

100110 id4: 100110

101010 id3: 101010

101100 id2: 101100

101101 id1: 101101

(a) Non-compact representation.

10
01

10 id4: 100110
00

id5: 100100

1
010

id3: 101010

10

1
id1: 101101

0 id2: 101100

(b) Compact representation.

Figure 1 Difference between non-compact and compact representations of k different values (ids),
indicated by the number of bits used as labels.

performs k simultaneous binary searches, in O(D · logn+ k log n
k) rounds. Our contribution

for this problem lies in improving the time complexities of the first and second components.
The previous section (Sect. 3) improves the first component ([10] uses the leader election
from [12]). More precisely, we use the leader election variant mentioned in Sect. 3.3, where
the candidates can be a subset of all nodes. Here, only sources are candidates and the elected
leader is the source with the maximum id. As for the second component, it is improved
(whenever the number of sources k is sublogarithmic) by executing k−1 consecutive (variant)
leader elections, where each leader election selects the source with the maximum id amongst
the remaining non-elected sources. Notice that if nodes use their complete id for all k − 1
consecutive leader elections, the time complexity is O(k · (D+ logn)) rounds. By being more
efficient and leveraging the information communicated through the previous leader elections,
k − 1 consecutive leader elections are executed in O(k ·D + k log n

k) rounds only.
This result hinges on a compact manner of representing k unique values, which compresses

the k logn bits required to communicate k identifiers consecutively, into k log n
k bits. As

shown in Figure 1, after communicating id1 (6 bits), communicating id2 only takes one
bit, and after that communicating id3 takes an additional 3 bits. Thus, with this compact
representation, after the first leader is elected (amongst sources), subsequent leader elections
are more efficient as candidates for subsequent leader elections (non-elected sources) are
not required to communicate their whole id. For this reason, we introduce the β-encoding:
β(i) = 0|bin| ‖ 1 ‖ bin for an integer i and its binary representation bin. Contrary to
α-encodings, the highest β-encoding is produced by integers with the shortest but highest
binary representations.

Assume that all candidates for leader election (sources which have not yet been elec-
ted) are given an identifier greaterID, greater than their own. They compute a reduced
identifier reducedID, consisting of all bits from the first difference with greaterID onwards.
Communicating reducedID to other nodes is, in this setting, the same as communicating id
since these other nodes have knowledge of greaterID and thus deduce id from reducedID.
Now, if candidates use the proposed deterministic LE algorithm with β(reducedID), then
the algorithm elects the node with the next maximum id value. Using this, the ids of all k
sources are communicated to all nodes in O(k ·D + k log n

k) rounds.
Thus, executing both k − 1 consecutive leader elections and k binary searches in parallel,

the k ids (of the sources) are communicated to all nodes in O(min{k, logn} ·D + k log n
k)

rounds. Then, the messages are gathered and broadcast using the leader, in a further
O(D + k logM) rounds, resulting in a O(min{k, logn} ·D + k log nM

k) algorithm for multi-
broadcast with provenance.

F. Dufoulon, J. Burman, and J. Beauquier 20:17

References
1 Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beeping a maximal

independent set. Distributed Computing, 26(4):195–208, Aug 2013.
2 D. Alistarh, A. Cornejo, M. Ghaffari, and N. Lynch. Firefly synchronization with asyn-

chronous wake-up. In Workshop on Biological Distributed Algorithms, 2014.
3 J. Beauquier, J. Burman, F. Dufoulon, and S. Kutten. Fast Beeping Protocols for De-

terministic MIS and (∆+1)-Coloring in Sparse Graphs. In IEEE INFOCOM, 2018, to
appear.

4 A. Casteigts, Y. Métivier, J. M. Robson, and A. Zemmari. Design Patterns in Beeping
Algorithms. In OPODIS, pages 15:1–15:16, 2016.

5 A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari. Deterministic leader election in
O(D + logn) time with messages of size O(1). In DISC, pages 16–28, 2016.

6 I. Chlamtac and S. Kutten. On broadcasting in radio networks - problem analysis and
protocol design. IEEE Transactions on Communications, 33(12):1240–1246, 1985.

7 A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In DISC, pages 148–162,
2010.

8 A. Czumaj and P. Davies. Optimal leader election in multi-hop radio networks. ArXiv
e-prints, 2015. arXiv:1505.06149.

9 A. Czumaj and P. Davies. Brief announcement: Optimal leader election in multi-hop radio
networks. In PODC, pages 47–49, 2016.

10 A. Czumaj and P. Davies. Communicating with Beeps. In OPODIS, pages 1–16, 2016.
11 Y. Dinitz and N. Solomon. Two absolute bounds for distributed bit complexity. In Structural

Information and Communication Complexity, pages 115–126, 2005.
12 K.-T. Förster, J. Seidel, and R. Wattenhofer. Deterministic leader election in multi-hop

beeping networks. In DISC, pages 212–226, 2014.
13 M. Ghaffari and B. Haeupler. Near optimal leader election in multi-hop radio networks. In

SODA, pages 748–766, 2013.
14 S. Gilbert and C. Newport. The computational power of beeps. In DISC, pages 31–46,

2015.
15 R. Guerraoui and A. Maurer. Byzantine fireflies. In DISC, pages 47–59, 2015.
16 S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan. On the complexity of

universal leader election. In PODC, pages 100–109, 2013.
17 Y. Métivier, J.M. Robson, and A. Zemmari. Analysis of fully distributed splitting and

naming probabilistic procedures and applications. Theoretical Computer Science, 584:115–
130, 2015. Special Issue on Structural Information and Communication Complexity.

18 K. Nakano and S. Olariu. Randomized o(log log n)-round leader election protocols in packet
radio networks. In Algorithms and Computation, pages 210–219, 1998.

19 S. Navlakha and Z. Bar-Joseph. Distributed information processing in biological and com-
putational systems. Commun. ACM, 58(1):94–102, 2014.

20 D. Peleg. Time-efficient broadcasting in radio networks: A review. In Distributed Comput-
ing and Internet Technology, pages 1–18, Berlin, Heidelberg, 2007. Springer Berlin Heidel-
berg.

21 J. Schneider and R. Wattenhofer. What is the use of collision detection (in wireless net-
works)? In DISC, pages 133–147, 2010.

22 A. Scott, P. Jeavons, and L. Xu. Feedback from nature: An optimal distributed algorithm
for maximal independent set selection. In PODC, pages 147–156, 2013.

23 J. Seidel. Anonymous distributed computing: computability, randomization and checkab-
ility. PhD thesis, ETH Zurich, Zürich, Switzerland, 2015. URL: http://d-nb.info/
1080812695.

DISC 2018

http://arxiv.org/abs/1505.06149
http://d-nb.info/1080812695
http://d-nb.info/1080812695

An Almost Tight RMR Lower Bound for
Abortable Test-And-Set
Aryaz Eghbali
Department of Computer Science, University of Calgary, Canada
aryaz.eghbali@ucalgary.ca

Philipp Woelfel
Department of Computer Science, University of Calgary, Canada
woelfel@ucalgary.ca

Abstract
We prove a lower bound of Ω(logn/ log logn) for the remote memory reference (RMR) complexity
of abortable test-and-set (leader election) in the cache-coherent (CC) and the distributed shared
memory (DSM) model. This separates the complexities of abortable and non-abortable test-and-
set, as the latter has constant RMR complexity [27].

Golab, Hendler, Hadzilacos and Woelfel [29] showed that compare-and-swap can be imple-
mented from registers and test-and-set objects with constant RMR complexity. We observe that
a small modification to that implementation is abortable, provided that the used test-and-set ob-
jects are atomic (or abortable). As a consequence, using existing efficient randomized wait-free
implementations of test-and-set [23], we obtain randomized abortable compare-and-swap objects
with almost constant (O(log∗ n)) RMR complexity.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases Abortability, Test-And-Set, Leader Election, Compare-and-Swap, RMR
Complexity, Lower Bound

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.21

Related Version A full version of the paper is available at [21], https://arxiv.org/abs/1805.
04840.

Funding This research was undertaken, in part, thanks to funding from the Canada Research
Chairs program and from the Discovery Grants program of the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Acknowledgements We thank the anonymous reviewers for their careful reading and detailed
feedback.

1 Introduction

In this paper, we study the remote memory references (RMR) complexity of abortable
test-and-set. Test-and-set (TAS) is a fundamental shared memory primitive that has been
widely used as a building block for classical problems such as mutual exclusion and renaming,
and for the construction of stronger synchronization primitives [37, 41, 20, 15, 8, 7, 6, 29].

We consider a standard asynchronous shared memory system in which n processes with
unique IDs communicate by reading and writing shared registers. A TAS object stores a
bit that is initially 0, and provides two methods, TAS(), which sets the bit and returns
its previous value, and read(), which returns the current value of the bit. TAS is closely

© Aryaz Eghbali and Philipp Woelfel;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aryaz.eghbali@ucalgary.ca
mailto:woelfel@ucalgary.ca
https://doi.org/10.4230/LIPIcs.DISC.2018.21
https://arxiv.org/abs/1805.04840
https://arxiv.org/abs/1805.04840
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 RMR Lower Bound for Abortable TAS

related to mutual exclusion [18]: a TAS object can be viewed as a one-time mutual exclusion
algorithm, where only one process (the one whose TAS() returned 0) can enter the critical
section [19].

TAS objects have consensus-number two, and therefore they have no wait-free imple-
mentations from atomic registers. In particular, in deterministic TAS implementations,
processes may have to wait indefinitely, by spinning (repeatedly reading) variables. It is
common to predict the performance of such blocking algorithms by bounding remote memory
references (RMRs). These are memory accesses that traverse the processor-to-memory
interconnect. Local-spin algorithms achieve low RMR complexity by spinning on locally
accessible variables. Two models are common: In distributed shared memory (DSM) systems,
each shared variable is permanently locally accessible to a single processor and remote to
all other processors. In cache-coherent (CC) systems, each processor keeps local copies of
shared variables in its cache; the consistency of copies in different caches is maintained by a
coherence protocol. Memory accesses that cannot be resolved locally and have to traverse the
processor-to-memory interconnect are called remote memory references (RMRs).

Golab, Hendler, and Woelfel [27] implemented deadlock-free TAS objects from registers
with O(1) RMR complexity for the DSM and the CC model, which in turn have been
used to construct equally efficient comparison-primitives, such as compare-and-swap (CAS)
objects [29]. These constructions are particularly useful in the study of the complexity of
the mutual exclusion problem, for which the RMR complexity is the standard performance
metric [10, 9, 36, 13, 16, 33, 34, 35, 14, 31, 32, 42, 24, 11, 38, 17, 39, 25].

In the context of mutual exclusion, it has been observed that systems often require locks
to support a “timeout” capability that allows a process waiting too long for the lock, to
abort its attempt [43]. In database systems, such as Oracle’s Parallel Server and IBM’s DB2,
the ability of a thread to abort lock attempts serves the dual purpose of recovering from a
transaction deadlock and tolerating preemption of the thread that holds the lock [43]. In real
time systems, the abort capability can be used to avoid overshooting a deadline. Solutions
to this problem have been proposed in the form of abortable mutual exclusion algorithms
[43, 33, 42, 39, 17, 26]. In such an algorithm, at any point in the entry section a process may
receive an abort signal upon which, within a finite number of its own steps, it must either
enter the critical section or abort its current attempt to do so, by returning to the remainder
section.

The complexity of the mutual exclusion problem in systems providing only registers is not
affected by abortability: The abortable algorithms by Danek and Lee [17] and Lee [40] use only
atomic registers and achieve O(logn) RMR complexity, which asymptotically matches the
known lower bound for non-abortable mutual exclusion [13]. But abortable mutual exclusion
algorithms seem to be much more difficult to obtain than non-abortable ones, and it is not
surprising that all such algorithms preceding [17, 40] used stronger synchronization primitives
(e.g., LL/SC objects in [33]). Moreover, no RMR efficient randomized abortable mutual
exclusion algorithms are known, unless stronger primitives are used [42, 26]; on the other
hand, several non-abortable randomized implementations use only registers [30, 31, 25, 14].

As mentioned earlier, CAS objects with O(1) RMR complexity can be obtained from
registers [29], but they cannot be used in an abortable mutual exclusion algorithm without
sacrificing its abortability: if a process receives the abort signal while being blocked in an
operation on a CAS object, it has no option to finish that operation in a wait-free manner,
and thus may not be able to abort its attempt to enter the critical section. In general,
implemented blocking strong objects, cannot be used to obtain abortable mutual exclusion
objects.

A. Eghbali and P. Woelfel 21:3

One way of dealing with this impasse can be to make implementations of strong prim-
itives also abortable, and to devise mutual exclusion algorithms in such a way that they
accommodate operation aborts. Similarly, other algorithms and data structures that may
require timeout capabilities, can potentially be implemented from abortable objects, but not
from non-abortable ones.

We define abortability in the following, natural way: In a concurrent execution, a process
executing an operation on the object may receive an abort signal at any point in time. When
that happens, the process must finish its method call within a finite number of its own steps,
and as a result the method call may fail to take effect, or it may succeed. The resulting
execution must satisfy the safety conditions of the object (e.g., linearizability), if all failed
operations are removed. Moreover, a process must be able to find out, by looking at the
return value, whether its aborted operation succeeded, and if it did, then the return value
must be consistent with a successful operation.

It may be tempting to define a weaker forms of abortability, e.g., where a return value of
an aborted operation does not indicate whether the operation succeeded or not. As discussed
in Section 1.1, such a weaker notion of abortability has indeed been suggested [4], but in a
different context, where a process can choose for itself to abort its own pending operation
(e.g., if it detects contention). In our scenario, where aborts are determined in an adversarial
manner, the usefulness of such a weaker notion is not clear. For example, abortable TAS
objects (according to our definition) can easily be used to implement an abortable mutual
exclusion algorithm (TAS-lock): One can store a pointer to a “current” TAS object in a
single register R. To get the lock, a process calls TAS() on the TAS object that R points to,
and if the return value is 0, then the process has the lock, and otherwise it keeps reading R
until its value changes. To release the lock, the process simply swings the pointer R so that
it points to a new, fresh TAS object (this technique was proposed in [5], and [1, 2] showed
how to bound the number of involved TAS objects). This also works in the case of aborts,
because a process knows whether its operation took effect, and thus whether it is allowed to
swing the pointer (and in fact must, to avoid dead-locks).

For the weaker definition of abortability mentioned above, a process whose TAS() aborted
may not be able to find out whether it has the lock or not, and then it can also not swing
the pointer to a new TAS object, even though its TAS() may have set the bit from 0 to 1. In
fact, suppose that two processes call TAS(), and both TAS() calls abort without receiving
the information whether the aborted operation took effect. Then the TAS bit may be set,
but none of the processes has received any information regarding who was successful, and
reading the TAS object also provides no information.

Even though our notion of abortability may seem strong, any abortable mutual exclusion
algorithm can be used to obtain any abortable object from its corresponding sequential
implementation, by simply protecting the sequential code in the critical section. An interesting
question is therefore, whether abortable objects can be obtained at a lower RMR cost than
mutual exclusion.

We observe that this is true for implementations of abortable CAS objects from abortable
TAS objects on the CC model: a straightforward modification of the constant RMR imple-
mentation of non-abortable CAS from TAS objects and registers [29], immediately yields an
abortable CAS object, provided that the used TAS objects are atomic or also abortable.

I Observation 1. There is a deadlock-free implementation of abortable CAS from atomic
registers and deadlock-free abortable TAS objects, which has T +O(1) RMR complexity on
the CC model, provided that TAS() operations have RMR complexity T .

DISC 2018

21:4 RMR Lower Bound for Abortable TAS

This theorem immediately implies that we could use atomic TAS objects (which are trivially
abortable) to obtain abortable CAS objects with constant RMR complexity. But obviously,
it does not help constructing deterministic abortable CAS objects from registers. However,
we can use the fact that there are known randomized constructions of TAS objects, which
are not only RMR efficient, but even efficient with respect to step complexity. More precisely,
Giakkoupis and Woelfel [23] presented a randomized TAS implementation from registers,
where the maximum number of steps any process takes in a TAS() operation has expectation
O(log∗ n) against an oblivious adversary. (This means, the order in which processes take
steps must be completely independent of their random decisions.) This construction is
also randomized wait-free, meaning that, for any schedule all TAS() calls terminate with
probability 1. Therefore, TAS() calls are abortable (in a randomized sense), as for any
schedule each method call terminates with probability 1 (whether the process receives an
abort signal or not). In the construction of CAS above, we can therefore use such randomized
TAS implementation in place of abortable TAS.

I Corollary 2. There is a deadlock-free randomized implementation of abortable CAS from
atomic registers, such that on the CC model against an oblivious adversary each abort is
randomized wait-free, and each operation on the object incurs at most O(log∗ n) RMRs.

Recall that there is also a deterministic constant RMR implementation of TAS from
registers [27]. Hence, making this implementation abortable and applying Observation 1
would immediately yield deterministic constant RMR abortable implementations of CAS from
registers. Unfortunately, it turns out that a deterministic constant RMR implementation of
abortable TAS from registers does not exist. In particular, we define the abortable leader
election (LE) problem, which is not harder than abortable TAS (with respect to RMR
complexity). Our main technical result is an RMR lower bound of Ω(logn/ log logn) for that
object.

In a (non-abortable) LE protocol, every process decides for itself whether it becomes the
leader (it returns win) or whether it loses (it returns lose). At most one process can become
the leader, and not all participating processes can lose. I.e., if all participating processes
finish the protocol, then exactly one of them returns win and all others return lose. Note
that then in an abortable LE protocol all participating processes are allowed to return lose,
provided that all of them received the abort signal.

An abortable TAS object immediately yields an abortable LE protocol: Each process
executes a single TAS() operation and returns win if the TAS() call returns 0, and otherwise
lose (i.e., it returns lose also when the TAS() return value indicates a failed abort). Similarly,
it is easy to implement abortable TAS from abortable LE and a single register, preserving
the asymptotic RMR complexity (but care must be taken to obtain linearizability).

Our main result is the following:

I Theorem 3. For both, the DSM and the CC model, any deadlock-free abortable leader
election (and thus any abortable TAS) implemented from registers has an execution in which
at least one process incurs Ω(logn/ log logn) RMRs.

This lower bound is asymptotically tight up to a log logn factor, because one can trivially
obtain a TAS object with O(logn) RMR complexity by protecting a straight forward
sequential TAS() implementation with the abortable mutual exclusions algorithms by Danek
and Lee [17] and Lee [40].

Leader election is one of the seemingly simplest synchronization primitives that have
no wait-free implementation. In particular, as argued above, the lower bound in Theorem
3 immediately also applies to abortable TAS. This is in stark contrast to the O(1) RMRs

A. Eghbali and P. Woelfel 21:5

upper bound for non-abortable TAS and even CAS implementations [27, 29]. It shows that
adding abortability to synchronization primitives is almost as difficult as solving abortable
mutual exclusion, which has an RMR complexity of Θ(logn) [17, 40].

In our lower bound proof we identify the crucial reason for why abortable LE is harder than
its non-abortable variant: According to standard bi-valency arguments, for any deadlock-free
LE algorithm, there is an execution in which some process takes an infinite number of steps.
But it is not hard to see that one can design an (asymmetric) 2-process LE protocol in which
one fixed process is wait-free, because the other one waits for the first one to make a decision
if it detects contention. It turns out that this is not the case for abortable LE: Here, for any
process, there is an execution in which that process takes an infinite number of steps.

1.1 Other Related Work.

Attiya, Guerraoui, Hendler, and Kuznetsov [12] consider augmenting non-wait-free imple-
mentations with a mechanism that allows processes to abort an ongoing operation and
returning a special “failed” return value. Contrary to our model, where aborts are chosen in
an adversarial manner, in the work of Attiay et. al. processes can decide when to abort in
order to achieve termination (e.g., when they detect contention). This makes implemented
objects weaker, while our abortable objects are stronger than non-abortable ones. A similar
notion of abortable objects was suggested by Aguilera, Frølund, Hadzilacos, Horn, and Toueg
[4]. In their work, processes can also decide to abort an ongoing operation, but the caller of
an aborted operation may not find out whether its operation took effect or not. Since this
uncertainty may not be acceptable, they also introduce query-abortable objects, where a
query operation allows a process to determine additional information about its last non-query
operation.

Note that their notion of abortability is quite different from the one used commonly for
mutual exclusion and adopted by us, where the system, and not the implementation, dictates
when a process needs to abort.

2 Abortable Compare-And-Swap in the CC Model

In this section we consider the cache-coherent (CC) model. Each process obtains a cached
copy with each read of a register, and the cached copy only gets invalidated if some process
later writes to the same register. Writes as well as reads of non-cached registers incur RMRs,
while reads of cached registers do not.

A CAS object provides two operations, CAS(cmp, new), and read(). Operation read()
returns the current value of the object. Operation CAS(cmp, new) writes new to the object,
if the current value is cmp, and otherwise does not change the value of the object. In either
case it returns the old value of the object.

Golab et. al. [28] gave an implementation of CAS from TAS objects and registers, which
has constant RMR complexity in the CC model, i.e., each CAS() and each read() operation
incurs only O(1) RMRs. In this section we show how to make that implementation abortable,
provided that the used TAS objects are either atomic or abortable and deadlock-free. The
pseudocode is in Figure 1. The original (non-abortable) version of the code is shown in black
and our additional code to make it abortable in red (lines 6 and 20). it is assumed that the
abort-signal is sent to a process by means of setting the process’ flag abort.

DISC 2018

21:6 RMR Lower Bound for Abortable TAS

Method NameDecide()

1 x := T.TAS()
2 if x = 0 then
3 leader := PID
4 else
5 while leader = ⊥ do
6 if abort then return ⊥

7 return leader

Method CAS(cmp, new)

8 d := D
9 old := d → value

10 if old = cmp ∧ cmp 6= new then
11 winner := d → N.NameDecide()
12 if winner = PID then
13 d′ := getNewPage()
14 d′ → value := new

15 D := d′

16 d → value := new
17 d → flag := True
18 else
19 while d → flag 6= True do
20 if abort then return ⊥
21 old := d → value

22 return old

Figure 1 Implementation of (abortable) NameDecide() and CAS(). Without lines 6 and 20 the
algorithms are equivalent to the non-abortable implementations in [28].

2.1 From TAS to Name Consensus
The implementation in [28] first constructs a name consensus object from a single TAS object
T . This objects supports a method NameDecide(), which each process is allowed to call at
most once. All NameDecide() calls return the same value (agreement), which is the ID of a
process calling NameDecide() (validity).

The non-abortable implementation in [28] uses a TAS object T and a register leader that
is initially ⊥. In a NameDecide() call, a process p first calls T .TAS(). If the TAS() returns
0, then p wins, and writes p to leader. Otherwise, p loses, and so it repeatedly reads leader,
until leader 6= ⊥, upon which p can return the value of leader. It is easy to see (and was
formally proved in [28]) that this is a correct name consensus algorithm.

We now show how this implementation can be made abortable, assuming the TAS object
T is atomic or abortable. We assume that when a process receives the abort signal, a static
process-local variable abort, which is initially false, changes to True.

Recall that abortability requires that the return value of a TAS() operation indicates
whether it failed or succeeded. We assume a failed TAS() simply returns ⊥. In NameDecide(),
processes are only waiting until leader changes. If a process is receiving the abort signal while
waiting for leader to change, then it can also simply return ⊥. The rest of the algorithm is
the same as the original name consensus algorithm.

Clearly, the new code (line 6) does not affect RMR complexity, and following an abort
the code is wait-free. Moreover, correctness (validity and agreement) in case of no failed
NameDecide() operations follow immediately from correctness of the original algorithm. If a
NameDecide() operation fails (i.e., returns ⊥), then it did not change any shared memory
object (its TAS() must have either failed, or returned 1). Hence, removing an aborted and
failed NameDecide() operation from the execution does not affect any other processes, and
therefore the resulting execution must be correct.

2.2 From Name Consensus to Compare-And-Swap
We now show how the abortable name consensus algorithm can be used to obtain abortable
CAS. Consider the implementation of CAS(cmp, new) on the right hand side in Figure 1.
The black code is logically identical to the one in [28]. It uses a register D that points to

A. Eghbali and P. Woelfel 21:7

a page, which stores two registers, value and flag, as well as a name consensus object N .
Register value at the page pointed to by D stores the current value of the object. (Thus,
a read() operation, for which we omit the pseudo code, simply returns D → value.) The
CAS() operation assumes a wait-free method getNewPage(), which returns an unused page
from a pool of pages (for simplicity assume this pool has infinitely many pages, but there are
methods for wait-free memory management that allow using a bounded pool [29, 3]).

For a description of how the algorithm CAS(cmp, new) works, we refer to [28]. We can
prove that the abortable version presented here is correct, provided that the non-abortable
version (with line 20 removed) is: First of all, obviously line 20 does not change the RMR
complexity. Moreover, if a process receives the abort-signal, then its abortable NameDecide()
call terminates within a finite number of steps, and the process also does not wait in the
while-loop, so its CAS() call completes within a finite number of its steps. Finally, notice
that a CAS() call returns ⊥ only if an abort signal was received, and in that case no shared
memory objects are affected (the process cannot have won the NameDecide() call). Hence, all
aborted and failed operations can be removed from the execution without changing anything
for the remaining operations. As a result we obtain Observation 1.

3 RMR Lower Bound for Abortable Leader Election

In this section, we give an overview of the RMR lower bound proof for abortable leader
election (and thus TAS) as stated in Theorem 3. Due to space constraints, the full proof is
omitted, but it is made available in the technical report [21].

First, we define some notation, the system model, RMR complexity, and the abortable
leader election problem.

3.1 Lower Bound Preliminaries
System Model and Notation. For an set Q and any non-negative integer k, let Qk

denote the set of all sequences of length k that contain only the elements in Q. Furthermore,
Q∗ is the set of all sequences over Q.

For the lower bound we assume a set P of n processes, and an arbitrary large but finite
set R of shared registers. In each shared memory step (corresponding to a state transition),
a process either reads or writes a register in R. At an arbitrary point, a process may also
receive an abort signal which does not result in a shared memory access, but in a state
change of that process, provided the process has not received the abort signal earlier. Once
a process has reached a halting state, it remains in that state forever, and does not execute
any further shared memory steps.

For each process p ∈ P , we define a special abort symbol p>, which is used to indicate that
a process receives an abort signal (as defined below). For a set P ⊆ P let P> = {p> | p ∈ P},
and P∆ = P ∪ P>. A schedule is a sequence σ over P∆. Thus, any schedule σ is in (P∆)∗.
The length of a schedule σ is denoted by |σ|. Let Proc(σ) denote the set of processes p ∈ P
that occur in σ at least once, not counting symbols in P>.

A configuration is a sequence that describes the state of each process in P and each register
in R. A configuration C and a schedule σ ∈ P∆ of length one result in a new configuration
Conf(C, σ), obtained from C by process p taking its next step, if σ = p ∈ P, or by process
p receiving the abort signal, if σ = p> ∈ P>. If σ = σ1σ2 . . . σk is a schedule of length
k > 1, then the new configuration is determined inductively as Conf

(
Conf(C, σ1);σ2 . . . σk

)
.

Configuration C and schedule σ = σ1 . . . σk also define an execution Exec(C, σ), which is a
sequence s1s2 . . . sk, where si is the step executed or the abort signal received in the transition

DISC 2018

21:8 RMR Lower Bound for Abortable TAS

from Ci−1 = Conf(C, σ1 . . . σi−1) to Ci = Conf(Ci−1, σi). To specify that an execution
starting in C and running by schedule σ is running algorithm A, we use ExecA(C, σ). The
length of an execution E is denoted by |E|. We call si an abort step by process p, if in si

process p receives the abort signal.
The initial configuration is denoted by Γ. A configuration C is reachable, if there exists a

schedule σ such that Conf(Γ, σ) = C. Since only reachable configurations are important in
our algorithms and proofs, we use configuration instead of reachable configuration from this
point on. For a configuration C we let σ→C denote an arbitrary but unique schedule such
that Conf(Γ, σ→C) = C, and we define E→C = Exec(Γ, σ→C).

The projection of a schedule σ to a set Q ⊆ P∆ is denoted by σ|Q. For an execution E
and a set P of processes, E|P denotes the sub-sequence of E that contains all (abort and
shared memory) steps by processes in P . If Q or P contains only one symbol, s, then we
write σ|s instead of σ|{s}, or E|s instead of E|{s}.

Recall that a configuration C determines the state of each process. I.e., for any two
executions E and E′ resulting in the same configuration C, each process is in the same state
at the end of E as at the end of E′, and in particular E|p = E′|p. Therefore, we associate
the state of a process in configuration C with E→C |p. (But note that if two executions
E and E′ are indistinguishable to each process in Q ⊆ P, then this does not in general
imply that E|Q = E′|Q.) The value of register r in configuration C is denoted by valC(r).
Configurations C and D are indistinguishable to some process p, if E→C |p = E→D|p and
valC(r) = valD(r) for every register r ∈ R. For a set Q ⊆ P, we write C ∼Q D to denote
that configurations C and D are indistinguishable to each process in Q; for a set consisting
of a single process p we write C ∼p D instead of C ∼{p} D.

Finally, for two sequences s1 and s2 let s1σs2 denotes their concatenation. (We use this
for schedules and executions.)

RMR Complexity. Our lower bound applies to both, the standard asynchronous distributed
shared memory (DSM) model and cache-coherent (CC) model. In fact, we use a model that
combines both, caches as well as locally accessible registers for each process.

We assume that the set of registers, R, is partitioned into disjoint memory segments
Rp, for p ∈ P. The registers in Rp are local to process p and remote to each process q 6= p.
We say that at the end of execution E a process p has a valid cached copy of register r,
if in E process p reads or writes r at some point, and no other processes writes r after
that. Note that the configuration obtained at the end of an execution starting in Γ uniquely
determines whether p has a valid cached copy of a register r. The reason is that the state
of p in configuration C determines the value that was written to or read from r when p

accessed r last, and p has a valid cached copy of r if and only if valC(r) equals that value.
Let Cachep(C) denote the union of Rp and the set of registers of which process p has a
valid cached copy in configuration C if p has not terminated in C, and the empty set if p is
terminated in C.

A step in an execution E is either local or remote (we say it incurs an RMR if it is
remote). All abort steps are local. A non-abort step by process p is local, if and only if it
is either a read or a write of a register in Rp, or it is a read of a register of which p has a
local cached copy. (Our definition corresponds to a write-through cache; in a write-back
cache, certain writes may also be local. Even though we believe that our lower bound proof
technique can accommodate write-back caches, this is left for future work.)

For an execution E and a process p, RMRp(E) is the number of RMR steps by process p
in execution E. For Q ⊆ P we define RMRQ(E) =

∑
q∈Q RMRq(E), which is equal to the

total number of RMRs incurred by processes in Q in E. For the sake of conciseness, we use
RMR(E) instead of RMRP(E).

A. Eghbali and P. Woelfel 21:9

Abortable Leader Election. An algorithm solves abortable leader election, if for any schedule
σ, in Exec(Γ, σ) each process that terminates returns win or lose, at most one process returns
win, and if all processes in Proc(σ) return lose, then all processes in Proc(σ) receive the
abort signal.

We usually assume without explicitly saying so that an abortable leader election satisfies
deadlock-freedom and wait-free abort, defined as follows: Wait-free abort means that after a
process received the abort signal it terminates within a finite number of its own steps. An
infinite schedule σ is P -fair for P ⊆ P , if each process in P appears infinitely many times in
σ. An infinite execution E is P -fair, if there exists a configuration C and a P -fair schedule σ
such that E = Exec(C, σ). We use fair schedule and fair execution, instead of P -fair, when
P = P. A method is deadlock-free if for any schedule σ all process’ method calls terminate
in Exec(Γ, σ), provided this execution is P -fair, where P is the set of processes calling the
method.

3.2 Properties of Abortable Leader Election
In this section we derive the critical property that distinguishes non-abortable from abortable
leader election for the purpose of the lower bound. We consider algorithms in which each
process returns either win or lose upon termination. We call such algorithms binary. Note
that any (abortable) leader election algorithm is a binary algorithm. (Recall that in abortable
leader election aborted and failed operations return lose, and not ⊥ as in TAS.)

Several results in this section will concern only two arbitrarily selected processes in the
n-process system for n ≥ 2. For ease of notation, we will call these processes a and b.

For an execution E of a binary algorithm in which a returns x and b returns y, let
(x, y) denote the outcome vector of E. For a binary algorithm A and a configuration C, let
VA(C) denote the set of all outcome vectors of {a, b}-only executions starting in C, in which
processes a and b terminate.

First we observe that the outcome vectors of two indistinguishable configurations are
equal.

IObservation 4. For any binary algorithm A, if configurations C and D are indistinguishable
to processes a and b, then VA(C) = VA(D).

Proof. Since C and D are indistinguishable to processes a and b, E→C |a = E→D|a, E→C |b =
E→D|b, and for any register r, valC(r) = valD(r). Thus, for any x in {a, b}∆, we have

(
E→C ◦

Exec(C, x)
)
|a =

(
E→D ◦Exec(D,x)

)
|a,
(
E→C ◦Exec(C, x)

)
|b =

(
E→D ◦Exec(D,x)

)
|b, and

for any register r, valConf(C,x)(r) = valConf(D,x)(r). So by induction, for any finite {a, b}-only
schedule σ, Conf(C, σ) ∼{a,b} Conf(D,σ). Therefore, if in Exec(C, σ) process p ∈ {a, b}
terminates, it also terminates in Exec(D,σ) and it returns the same value in both executions.
Hence, the outcome vector VA(C) is equal to VA(D). J

For a binary algorithm A, configuration C is bivalent if
{

(win, lose), (lose, win)
}

= VA(C).
This definition of bivalency refers to two fixed but arbitrarily chosen processes, a and b. In
a system with more than two processes, we may write {a, b}-bivalent to indicate the two
processes a and b to which this definition applies. A configuration is strongly bivalent (or
strongly {a, b}-bivalent) if it is bivalent and a solo-run by any process p ∈ {a, b}, starting in
C, results in p winning. (Solo-run by p means an execution in which only process p takes
steps, and none of them is an abort-step.)

A similar argument to the FLP Theorem [22] implies that for any deadlock-free binary
algorithm and for any reachable bivalent configuration, there exists an infinite execution,
where no process terminates.

DISC 2018

21:10 RMR Lower Bound for Abortable TAS

I Lemma 5. Let A be a deadlock-free binary algorithm and C an {a, b}-bivalent configuration.
There exists an infinite schedule σ ∈ {a, b}∗, such that in ExecA(C, σ) none of a and b

terminate.

To prove this lemma we first prove Claim 6 and use the fact that none of a and b can be
terminated in an {a, b}-bivalent configuration.

I Claim 6. In any deadlock-free binary algorithm A, if configuration C is {a, b}-bivalent,
then either one of Conf(C, a) and Conf(C, b) is {a, b}-bivalent, or there exists an infinite
{a, b}-only execution, where none of a and b terminates.

Proof. Since configuration C is {a, b}-bivalent, VA(C) =
{

(win, lose), (lose, win)
}
. Suppose

neither Conf(C, a) nor Conf(C, b) is {a, b}-bivalent. Then there exist distinct x, y ∈
{win, lose} such that

VA

(
Conf(C, a)

)
= {(x, y)} , and (1)

VA

(
Conf(C, b)

)
= {(y, x)}

We now distinguish two cases.

Case 1. In C, processes a and b are poised to access different registers or poised to read the
same register. Thus,

Conf(C, a ◦ b) = Conf(C, b ◦ a). (2)

By (1), (y, x) /∈ VA

(
Conf(C, a)

)
. Since VA

(
Conf(C, a ◦ b)

)
⊆ VA

(
Conf(C, a)

)
), it

holds (y, x) /∈ VA

(
Conf(C, a ◦ b)

)
. Thus, by (2), (y, x) /∈ VA

(
Conf(C, b ◦ a)

)
. Since

VA

(
Conf(C, b◦a)

)
⊆ VA

(
Conf(C, b)

)
= {(y, x)}, this means that VA

(
Conf(C, b◦a)

)
= ∅.

But this contradicts deadlock-freedom, as in a fair schedule starting in Conf(C, b ◦ a)
both processes must terminate and output something.

Case 2. In configuration C, both processes are poised to access the same register r, and
at least one of them is poised to write r. Without loss of generality, assume that a is
poised to write register r. If a takes its write step after b’s step, then a’s state and shared
register values are no different than if only a takes its write step and b does not take its
step. So Conf(C, a) ∼a Conf(C, b ◦ a). If process a does not terminate in a solo-run
starting in Conf(C, a), then the claim is true, because there exists an infinite execution
starting in C that neither a nor b terminates. However, if process a terminates in a
solo-run starting in Conf(C, a), by (1), we can conclude that (x, y) ∈ VA

(
Conf(C, b◦a)

)
.

Since VA

(
Conf(C, b◦a)

)
⊆ VA

(
Conf(C, b)

)
, it holds that (x, y) ∈ VA

(
Conf(C, b)

)
. This

contradicts VA

(
Conf(C, b)

)
= {(y, x)}. J

Any deadlock-free (non-abortable) 2-process leader election algorithm has a bivalent
initial configuration. But in any fair schedule, both processes terminate. Therefore, the
infinite execution that is guaranteed by the above corollary cannot be fair; in particular, it
requires one of the two processes to run solo at some point. However, one can construct a
deadlock-free (non-abortable) leader election algorithm in which one process never takes an
infinite number of steps, no matter what the schedule is. The lemma below shows that this
is not true for abortable two-process leader election algorithm.

I Lemma 7. Let A be a deadlock-free abortable 2-process leader election algorithm with wait-
free aborts. For any process p, there exists an execution starting in the initial configuration,
in which p takes a infinitely many steps.

A. Eghbali and P. Woelfel 21:11

Proof. Let Γ be the initial configuration of A. For the purpose of contradiction, assume
there is a fixed process, a, that terminates within a finite number of its own steps in all
executions. Let b be the other process.

By the semantics of abortable leader election, there is no execution in which both processes
win, i.e.,

(win,win) /∈ VA(Γ). (3)

Let algorithm A′ be the same as A except that during any execution,
(1) if any of the two processes receive the abort signal, the abort signal is ignored; and
(2) if in step s process b reads (a, x), where x 6= ⊥, then b continues its program, as if it had

received the abort signal immediately after step s.1

In any execution of A, processes a and b can only both lose, if they both receive the abort
signal. Since in A′ both processes ignore the abort signals (and only b possibly simulates
having received an abort signal), there is no execution of A′ in which a and b both lose.
Thus, for the initial configuration Γ′ of A′,

(lose, lose) /∈ VA′(Γ′). (4)

Consider any execution E′ = Exec(Γ′, σ′) of algorithm A′ starting in Γ′. We now create
an execution E = Exec(Γ, σ) of A starting in Γ, by scheduling the processes in exactly the
same order as in E′, but removing all abort signals. Moreover, when for the first time b
reads a value of (a, x) in E, where x 6= ⊥ (if that happens), then we send process b the abort
signal. By construction of A′, processes a and b execute exactly the same shared memory
steps in execution E of algorithm A as in execution E′ of algorithm A′. Thus, for every
schedule σ′ there is a schedule σ such that processes a and b execute in ExecA′(Γ′, σ′) the
same shared memory steps as in ExecA(Γ, σ). This implies

VA′(Γ′) ⊆ VA(Γ). (5)

Note that in the construction above, if σ′ is fair, then so is σ. Hence, the fact that A is
deadlock-free implies

A′ is deadlock-free. (6)

In algorithm A, in a sufficiently long solo-run by a starting in Γ, in which a does not
receive the abort-signal, process a terminates (by deadlock-freedom) and returns win (by
the semantics of abortable leader election). Hence, in A′ process a also terminates and
returns win after a sufficiently long solo-run starting from Γ, because it takes exactly the
same steps as in A. Since A′ is deadlock-free by (6), process b terminates after a sufficiently
long solo-run following a’s solo-run, and by (3) process b returns lose. With a symmetric
argument, for algorithm A′, in a sufficiently long solo-run by b starting in Γ, followed by
a sufficiently long solo-run of a, process b returns win and process a returns lose. Hence,
{(win, lose), (lose, win)} ⊆ VA′(Γ′). Using (3) and (4) we conclude

VA′(Γ′) =
{

(win, lose), (lose, win)
}
. (7)

We will now show that A′ is wait-free. This together with (7) contradicts Lemma 5, and
thus proves the lemma.

1 Recall that we assumed that each value that a process p writes is of the form (p, y), where y 6= ⊥.

DISC 2018

21:12 RMR Lower Bound for Abortable TAS

Recall that in every execution of algorithm A process a terminates within a finite number
of its own steps. As a result, the same is true for A′.

Hence, it suffices to show that b terminates within a finite number of its own steps.
Suppose there is an execution E∗ of A′ in which b executes an infinite number of steps. Then
b never reads a value of (a, x), where x 6= ⊥, as otherwise it would simulate having received
the abort-signal in A, and then terminate after a finite number of steps. Since b never reads
a value of (a, x), where x 6= ⊥, it cannot distinguish E∗ from a solo-run starting in Γ′. Hence,
b does not terminate in such an infinite solo-run. This contradicts (6). J

One of the core properties of the abortable leader election problem that allows us to
prove the lower bound is that there are no reachable strongly bivalent configurations in any
execution.

I Lemma 8. Let A be an abortable n-process leader election algorithm with wait-free aborts
for n ≥ 2. Further, let C be a reachable configuration and a, b two distinct processes that do
not receive the abort-signal in E→C , and which both terminate in any {a, b}-fair execution
starting in C. Then C is not strongly {a, b}-bivalent.

Proof. Suppose C is strongly {a, b}-bivalent. Then it is {a, b}-bivalent, so

VA(C) = {(lose, win), (win, lose)}, (8)

and if a or b runs solo starting in C, then that process wins. Because σ ∈ P∗, neither a
nor b receives the abort-signal in Exec(Γ, σ). By the assumption that aborts are wait-free,
processes a and b both terminate in sufficiently long solo runs starting in Conf(C, a>) and
Conf(C, b>), respectively. Let x and y be the return values of a in Exec(C, a> ◦ aka) and of
b in Exec(C, b> ◦ bkb), respectively, for sufficiently large integers ka and kb.

Since Conf(C, a>) ∼a Conf(C, a>b>),

a returns x in Exec(C, a>b> ◦ aka). (9)

Similarly, since Conf(C, b>) ∼b Conf(C, a>b>),

b returns y in Exec(C, a>b> ◦ bkb). (10)

We distinguish the following cases.
Case 1: x = y = win. In a sufficiently long solo-run by b following Exec(C, a>b> ◦ aka),

process b must terminate (by deadlock-freedom). Since a wins in that execution, b must
lose. Thus,

(win, lose) ∈ VA

(
Conf(C, a>b>)

)
. (11)

Applying a symmetric argument to a sufficiently long solo-run by a following
Exec(C, b>a> ◦ bkb), we obtain

(lose, win) ∈ VA

(
Conf(C, a>b>)

)
. (12)

Hence, using (8), we get
{

(win, lose), (lose, win)
}

= VA

(
Conf(C, a>b>)

)
. Then by

Lemma 5, there exists an infinite execution starting in Conf(C, a>b>), such that a and
b do not terminate. This contradicts wait-free aborts.

Case 2: x = y = lose. In a sufficiently long solo-run by b following Exec(C, a>b> ◦ aka),
process b must terminate (by deadlock-freedom). Since a loses in that execution, by
(8), process b must win. Thus, (lose, win) ∈ VA

(
Conf(C, a>b>)

)
, and with a symmetric

argument (win, lose) ∈ VA

(
Conf(C, a>b>)

)
. We get a contradiction for the same reasons

as in Case 1.

A. Eghbali and P. Woelfel 21:13

Case 3: {x, y} = {win, lose}. Without loss of generality, assume x = win. Then in
Exec(C, a>aka) process a wins. On the other hand, since C is strongly bivalent, b wins
in a sufficiently long solo-run starting in C. Since C ∼b Conf(C, a>), process b also wins
in a long enough solo-run starting in Conf(C, a>). Hence, we have shown that any of the
two processes in {a, b} wins in a solo-run starting in Conf(C, a>). By deadlock-freedom
and (8) the other process loses, if it performs a long enough solo-run afterwards. This
shows that Conf(C, a>) is strongly bivalent.
Now let A′ be the 2-process algorithm in which a and b act exactly as in algorithm A,
but the initial configuration is Γ′ = Conf(C, a>). Then A′ is a deadlock-free abortable
2-process leader election algorithm with wait-free aborts: The wait-free abort property is
inherited from A. Deadlock-freedom follows from the assumption that a and b terminate
in any fair execution starting in C. Correctness follows from (8) and the fact that each
process wins in a long enough solo-run starting in the initial configuration Conf(C, a>)
(because that configuration is strongly bivalent).
Moreover, in A′ process a always terminates within a finite number of its own steps. This
follows from the wait-free abort property of A and the fact that both processes simulate
A starting in configuration Conf(C, a>), in which a has already received the abort-signal.
This contradicts Lemma 7. J

3.3 Constructing an Expensive Execution
We now consider an abortable leader election algorithm. We will construct a schedule
such that in an execution starting in the initial configuration at least one process takes
Ω(logn/ log logn) RMR steps, where n is the number of processes.

3.3.1 Additional Assumptions
We make the following assumptions that do not restrict the generality of our results. Recall
that processes are state machines, each using some infinite state space Q. We assume that
during an execution a process never enters the same state twice. Further, we assume that
each register stores a pair in P × (Q∪ {⊥}), where ⊥ /∈ Q. The initial value of each register
in Rp is (p,⊥), and when a process p writes to any register, it writes a pair (p, x), where
x is p’s state before its write operation, and in particular x 6= ⊥. I.e., we are using a full
information model, where processes write all information they have observed in the past. As
a result, no two writes in an execution write the same value. Each process’s first shared
memory step is a read outside of its local shared memory segment, that we call invocation
read, and thus incurs an RMR. Adding such a step to the beginning of each process’s program
does not affect the asymptotic RMR complexity of the algorithm. We will assume that at
the end of its execution, each process p reads all registers in Rp once. Since those reads
do not incur any RMRs, this assumption can be made without loss of generality. We call
p’s last read of register r ∈ Rp the terminating read of r, and we assume that after p’s last
terminating read, p will immediately enter a halting state.

3.3.2 Terminology and Notation
We define some additional terms and notation.

We say process p is visible on register r in configuration C if valC(r) = (p, x), for some
x ∈ Q. Let L(C) be the set of processes that have lost in configuration C.

When we construct our high RMR execution, we need to make sure that whenever a
process gains information about some other process that has not yet lost, someone pays for
that with an RMR. To keep track of who knows who, we define a set K(C) that contains

DISC 2018

21:14 RMR Lower Bound for Abortable TAS

pairs (p, q) of processes. Informally, (p, q) is in K(C) if p has already gained information
about process q in the execution leading to configuration C, or p can gain such information
for “free” (i.e., without an RMR being paid for that). Gaining information does not only
mean that p reads a register that q has written; it means anything that might affect p’s
execution, e.g., p’s cache copies being invalidated. K(C) is the union of three sets K1(C),
K2(C), and K3(C), defined as follows:

K1(C) is the set of all pairs (p, q), p 6= q, such that in E→C process p reads a register
while process q is visible on that register. I.e., p reads a value of (q, x), where x ∈ Q.
Informally: p has learned about q in E→C .
K2(C) is the set of all pairs (p, q), p 6= q, such that in E→C process q takes at least one
shared memory step and process p reads a register in Rq.
Informally: Process p may have a valid cached copy of a register r ∈ Rq, and by writing
to r process q can invalidate that cached copy without incurring an RMR.
K3(C) is the set of all pairs (p, q), p 6= q, such that in E→C process p takes at least one
shared memory step, and q writes to a register r ∈ Rp before p’s terminating read of r.
Informally: p may learn about q without incurring an RMR by scanning all its registers
in Rp.

Let K(C) = K1(C) ∪K2(C) ∪K3(C). We say process p knows process q in configuration C
if (p, q) ∈ K(C).

In our inductive construction of an RMR expensive execution, we will sometimes erase
processes from the constructed execution. For that reason, if p knows about q, i.e., (p, q) ∈
K(C), then we will not remove a process q from the execution E→C . We achieve this by
ensuring that whenever (p, q) ∈ K(C), q ∈ L(C), and as discussed earlier no lost processes
will be erased.

However, we have to be careful about cases in which p does not know directly about q.
For example, suppose process q writes to register r in execution E, and later some process z
overwrites r and finally p becomes poised to read r. In our inductive construction we may
want to remove either z or p from the execution, because we do not want z to be discovered
by p. However, removing z reveals q on register r, and so now p may discover q. To account
for that we introduce the concept of hidden processes.

In particular, for a configuration C and a register r we define a set Hr(C) of processes
hidden on r as follows:
(H1) For r /∈ Rp, p ∈ Hr(C) if and only if either p does not access r in E→C , or p accesses r

in E→C at some point t, and either no process writes r after t, or at least one process
that writes r after t is in L(C);
Idea: If p’s write to r was overwritten by some processes, then at least one of them has
lost and thus will not be erased from the execution. Hence, erasing a process does not
reveal p’s write to any other process.

(H2) For r ∈ Rp, p ∈ Hr(C) if and only if any process other than p that writes to r in E→C

is in L(C).
Idea: If a process q wrote to a register r in p’s local memory segment, then q has lost.
Therefore, q will not be erased from the execution. This is important because p can
read r for free and we have to assume that it does so frequently, so erasing q from the
execution might change what p observes in the execution.

Let H(C) =
⋂

r∈RHr(C). We say process p is hidden in configuration C, if p ∈ H(C).
We finally define the concept of a safe configuration as follows. Configuration C is safe, if

A. Eghbali and P. Woelfel 21:15

(S1) for any pair (p, q) ∈ K(C), q ∈ L(C), and
(S2) if p /∈ H(C), then either p ∈ L(C), or p takes no shared memory step in E→C .
The first property ensures that no process p knows another process q that has not yet lost,
and the second property says that all processes that are not hidden must have lost, or not
even started participation. As a result, in an execution leading to a safe configuration, we
can erase all processes that do not lose, without affecting any other processes. Formally,
we will prove for a schedule σ, a safe configuration C = Conf(Γ, σ) and a set of processes
P ⊇ L(C),

Exec(Γ, σ)|P = Exec(Γ, σ|P∆);
RMRP (Exec(Γ, σ)) = RMRP (Exec(Γ, σ|P∆)); and
Cachep(C) = Cachep(Conf(Γ, σ|P∆)) for all p ∈ P .

Moreover, if C is safe, then Conf(Γ, σ|P∆) is also safe.

3.3.3 Overview of the Construction
Let n ≥ 4, ` = blogn/c log lognc for some sufficiently large constant c. We inductively
construct a schedule σi and a set of processes Pi ⊆ P, for all i ∈ {0, ..., `}. For the sake of
conciseness, let Ei = Exec(Γ, σi), Ci = Conf(Γ, σi), and Li = L(Ci).

The construction will satisfy the following invariants for i ∈ {0, ..., `}:
(I1) Ci is safe.
(I2) |Pi \ Li| ≥ (n− 1)/(logn)ci.
(I3) RMRPi\Li

(Ci) ≥ i |Pi \ Li| − i.
(I4) For each process p ∈ Pi \ Li : RMRp(Ci) ≤ i.
(I5) For each process p ∈ Pi \ Li, p> does not appear in σi.

Invariant (I2) for i = ` implies |P` \ L`| ≥ 2. Hence, by (I3) there are at least two
processes that each incur Ω(`) = Ω(logn/ log logn) RMRs. Theorem 3 follows.

We now sketch how we construct σi and Pi inductively so that the invariants are satisfied.
We start with P0 = P and the initial configuration C0. We then schedule processes in rounds.
In round i, we choose a subset Pi+1 of the processes in Pi \ Li and remove all processes
in P \ (Pi+1 ∪ Li) from the execution constructed so far. This does not affect any of the
remaining processes, because Ci is safe. Then we schedule the processes in Pi+1 in such a
way that each of them incurs an RMR, and only a small fraction of them lose.

To decide which processes to remove and to schedule the remaining processes, we proceed
as follows: First we let each process in Pi \ Li take sufficiently many steps until it is poised
to incur an RMR. It is not hard to see that in an execution in which no process incurs an
RMR, processes do not learn about each other, so the resulting configuration, Di, is again
safe. Moreover, in a safe configuration processes only know about lost processes, so they
cannot lose.

We then distinguish between a high contention write case, where a majority of processes
are poised to write to few registers, and a low contention case, where either many registers
are covered by processes poised to write, or a majority of processes are poised to read. Let
Si be the set of registers processes in Pi \ Li are poised to access in configuration Di. The
high contention write case occurs if there are few such registers and a majority of processes
are poised to write, i.e., |Si| = O(|Pi \ Li|/ logn), and otherwise the low contention write
case occurs.

In the low contention write case, we choose a set Qi of processes, which contains for
each register r ∈ Si at most one process poised to write to r in Di. We consider the step
sp each process p ∈ Qi is poised to take. We then create a directed graph G with processes

DISC 2018

21:16 RMR Lower Bound for Abortable TAS

as vertices, and an edge from p to q if in the resulting configuration (I) due to sp or sq

process p knows q, or (II) due to step sp process q is not hidden. Each application of rule
(I) must be paid for by RMRs in the execution, and for each application of (II) a process p
must overwrite some process q. As a result graph G is sufficiently spares, and by Turán’s
theorem [44] we obtain a large independent set J . We let each process p ∈ J take one step,
sp, and erase all remaining processes that haven’t lost yet from the execution. It is not hard
to see that no process loses in any of the steps added, the resulting configuration is safe
(this follows from how we added edges to G) and, because of the sparsity of the graph, a
sufficiently large number of processes survive. From that we obtain Invariants (I1) and (I2).
Since each process p performs an RMR in step sp and only local steps before that, we get
(I3) and (I4). Moreover, we don’t abort any processes, so (I5) is true.

In the high contention write case, we erase all readers from the execution. For each
register r ∈ Si, let Wr denote the set of processes poised to write to r. Since this is a high
contention case, |Wr| is large for most registers r. For each register r with sufficiently large
|Wr|, we choose two distinct processes a, b ∈Wr.

We then argue that, after erasing some O(logn) processes, we obtain a configuration D′i
and an {a, b}-only schedule σ such that in execution Exec(D′i, σ) processes a and b both lose
and see no process other than those in Li, which have lost already. The argument is based
on Lemma 8, but quite involved. We now let, starting from D′i, all processes in Wr \ {a, b}
execute one step, in which they write to r. After that we schedule a and b as prescribed by σ.
Then a and b will both first write to r, and thus overwrite the writes by all other processes in
Wr, then continue to take steps and lose without seeing any processes that haven’t lost, yet.
As a result, all processes in Wr \ {a, b} have taken a step but are now hidden, two processes
(a and b) have lost, and O(logn) processes have been removed. It is not hard to see that the
resulting configuration is safe again. We repeat this for all registers r for which |Wr| is large
enough. Then, we let Pi+1 denote the set of all surviving processes and Ci+1 the resulting
configuration.

Configuration Ci+1 is safe, and sufficiently few processes are removed or have lost so that
(I1) and (I2) remain true. Moreover, each process that does not lose performs exactly one
RMR, so (I3) and (I4) are true. (I5) is true because all processes that received the abort
signal lost.

References
1 Zahra Aghazadeh, Wojciech Golab, and Philipp Woelfel. Making objects writable. In Pro-

ceedings of the 33rd SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC), pages 385–395, 2014. doi:10.1145/2611462.2611483.

2 Zahra Aghazadeh and Philipp Woelfel. Space- and time-efficient long-lived test-and-set
objects. In Proceedings of 18th International Conference On Principles Of Distributed
Systems (OPODIS), pages 404–419, 2014. doi:10.1007/978-3-319-14472-6_27.

3 Zahra Aghazadeh and Philipp Woelfel. Upper bounds for boundless tagging with bounded
objects. In Proceedings of the 30th International Symposium on Distributed Computing
(DISC), pages 442–457, 2016. doi:10.1007/978-3-662-53426-7_32.

4 Marcos Aguilera, Svend Frølund, Vassos Hadzilacos, Stephanie Lorraine Horn, and Sam
Toueg. Abortable and query-abortable objects and their efficient implementation. In Pro-
ceedings of the 26th SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC), pages 23–32, 2007.

5 Dan Alistarh and James Aspnes. Sub-logarithmic test-and-set against a weak adversary. In
Proceedings of the 25th International Symposium on Distributed Computing (DISC), pages
97–109, 2011.

http://dx.doi.org/10.1145/2611462.2611483
http://dx.doi.org/10.1007/978-3-319-14472-6_27
http://dx.doi.org/10.1007/978-3-662-53426-7_32

A. Eghbali and P. Woelfel 21:17

6 Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Morteza Zadimoghad-
dam. Optimal-time adaptive strong renaming, with applications to counting. In Proceedings
of the 30th SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC),
pages 239–248, 2011.

7 Dan Alistarh, James Aspnes, Seth Gilbert, and Rachid Guerraoui. The complexity of re-
naming. In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 718–727, 2011. doi:10.1109/FOCS.2011.66.

8 Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui. Fast
randomized test-and-set and renaming. In Proceedings of the 24th International Symposium
on Distributed Computing (DISC), pages 94–108, 2010.

9 James H. Anderson and Yong-Jik Kim. Adaptive mutual exclusion with local spinning. In
Proceedings of the 14th International Symposium on Distributed Computing (DISC), pages
29–43, 2000.

10 James H. Anderson and Yong-Jik Kim. An improved lower bound for the time complexity
of mutual exclusion. Distributed Computing, 15:221–253, 2002.

11 T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 1:6–16, 1990.

12 Hagit Attiya, Rachid Guerraoui, Danny Hendler, and Petr Kuznetsov. The complexity
of obstruction-free implementations. Journal of the ACM, 56(4):24:1–24:33, 2009. doi:
10.1145/1538902.1538908.

13 Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR lower bounds for mutual
exclusion and other problems. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC), pages 217–226, 2008.

14 Michael Bender and Seth Gilbert. Mutual exclusion with O(log2 logn) amortized work.
In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 728–737, 2011.

15 Harry Buhrman, Alessandro Panconesi, Riccardo Silvestri, and Paul Vitányi. On the im-
portance of having an identity or, is consensus really universal? Distributed Computing,
18(3):167–176, 2006. doi:10.1007/s00446-005-0121-z.

16 Robert Danek and Wojciech Golab. Closing the complexity gap between FCFS mutual
exclusion and mutual exclusion. Distributed Computing, 23(2):87–111, 2010. doi:10.1007/
s00446-010-0096-2.

17 Robert Danek and Hyonho Lee. Brief announcement: Local-spin algorithms for abort-
able mutual exclusion and related problems. In Proceedings of the 22nd International
Symposium on Distributed Computing (DISC), pages 512–513, 2008. doi:10.1007/
978-3-540-87779-0_41.

18 E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8:569, 1965.

19 Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in shared memory al-
gorithms. Journal of the ACM, 44(6):779–805, 1997. doi:10.1145/268999.269000.

20 Wayne Eberly, Lisa Higham, and Jolanta Warpechowska-Gruca. Long-lived, fast, wait-
free renaming with optimal name space and high throughput. In Proceedings of the 12th
International Symposium on Distributed Computing (DISC), pages 149–160, 1998.

21 Aryaz Eghbali and Philipp Woelfel. An almost tight RMR lower bound for abortable
test-and-set. CoRR, abs/1805.04840, 2018. arXiv:1805.04840.

22 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985. doi:10.
1145/3149.214121.

DISC 2018

http://dx.doi.org/10.1109/FOCS.2011.66
http://dx.doi.org/10.1145/1538902.1538908
http://dx.doi.org/10.1145/1538902.1538908
http://dx.doi.org/10.1007/s00446-005-0121-z
http://dx.doi.org/10.1007/s00446-010-0096-2
http://dx.doi.org/10.1007/s00446-010-0096-2
http://dx.doi.org/10.1007/978-3-540-87779-0_41
http://dx.doi.org/10.1007/978-3-540-87779-0_41
http://dx.doi.org/10.1145/268999.269000
http://arxiv.org/abs/1805.04840
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121

21:18 RMR Lower Bound for Abortable TAS

23 George Giakkoupis and Philipp Woelfel. On the time and space complexity of randomized
test-and-set. In Proceedings of the 31st SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 19–28, 2012. doi:10.1145/2332432.2332436.

24 George Giakkoupis and Philipp Woelfel. A tight RMR lower bound for randomized mutual
exclusion. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC), pages 983–1002, 2012. doi:10.1145/2213977.2214066.

25 George Giakkoupis and PhilippWoelfel. Randomized mutual exclusion with constant amort-
ized RMR complexity on the DSM. In Proceedings of the 55nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2014. To appear.

26 George Giakkoupis and Philipp Woelfel. Randomized abortable mutual exclusion with
constant amortized RMR complexity on the CC model. In Proceedings of the 36th SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC), pages 221–229, 2017.
doi:10.1145/3087801.3087837.

27 Wojciech Golab, Danny Hendler, and Philipp Woelfel. An O(1) RMRs leader election
algorithm. SIAM Journal on Computing, 39(7):2726–2760, 2010.

28 Wojciech M. Golab, Vassos Hadzilacos, Danny Hendler, and Philipp Woelfel. Constant-
RMR implementations of cas and other synchronization primitives using read and write
operations. In Proceedings of the 26th SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 3–12, 2007.

29 Wojciech M. Golab, Vassos Hadzilacos, Danny Hendler, and Philipp Woelfel. RMR-efficient
implementations of comparison primitives using read and write operations. Distributed
Computing, 25(2):109–162, 2012. doi:10.1007/s00446-011-0150-8.

30 Danny Hendler and Philipp Woelfel. Randomized mutual exclusion in O(logN/ log logN)
RMRs. In Proceedings of the 28th SIGACT-SIGOPS Symposium on Principles of Distrib-
uted Computing (PODC), pages 26–35, 2009.

31 Danny Hendler and Philipp Woelfel. Adaptive randomized mutual exclusion in sub-
logarithmic expected time. In Proceedings of the 29th SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), pages 141–150, 2010.

32 Danny Hendler and Philipp Woelfel. Randomized mutual exclusion with sub-
logarithmic RMR-complexity. Distributed Computing, 24(1):3–19, 2011. doi:10.1007/
s00446-011-0128-6.

33 Prasad Jayanti. Adaptive and efficient abortable mutual exclusion. In Proceedings of
the 22nd SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC),
pages 295–304, 2003. doi:10.1145/872035.872079.

34 Prasad Jayanti, Srdjan Petrovic, and Neha Narula. Read/write based fast-path transform-
ation for FCFS mutual exclusion. In 31st Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM), pages 209–218, 2005.

35 Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. In
Proceedings of the 15th International Symposium on Distributed Computing (DISC), pages
1–15, 2001.

36 Yong-Jik Kim and James H. Anderson. Nonatomic mutual exclusion with local spinning.
Distributed Computing, 19(1):19–61, 2006. doi:10.1007/s00446-006-0003-z.

37 Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient synchronization on multipro-
cessors with shared memory. ACM Transactions on Programming Languages and Systems,
10(4):579–601, 1988. doi:10.1145/48022.48024.

38 Hyonho Lee. Transformations of mutual exclusion algorithms from the cache-coherent
model to the distributed shared memory model. In Proceedings of the 25th International
Conference on Distributed Computing Systems (ICDCS), pages 261–270, 2005. doi:10.
1109/ICDCS.2005.83.

http://dx.doi.org/10.1145/2332432.2332436
http://dx.doi.org/10.1145/2213977.2214066
http://dx.doi.org/10.1145/3087801.3087837
http://dx.doi.org/10.1007/s00446-011-0150-8
http://dx.doi.org/10.1007/s00446-011-0128-6
http://dx.doi.org/10.1007/s00446-011-0128-6
http://dx.doi.org/10.1145/872035.872079
http://dx.doi.org/10.1007/s00446-006-0003-z
http://dx.doi.org/10.1145/48022.48024
http://dx.doi.org/10.1109/ICDCS.2005.83
http://dx.doi.org/10.1109/ICDCS.2005.83

A. Eghbali and P. Woelfel 21:19

39 Hyonho Lee. Fast local-spin abortable mutual exclusion with bounded space. In Proceedings
of 14th International Conference On Principles Of Distributed Systems (OPODIS), pages
364–379, 2010. doi:10.1007/978-3-642-17653-1_27.

40 Hyonho Lee. Local-spin Abortable Mutual Exclusion. PhD thesis, University of Toronto,
2011.

41 Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, and Paul M. B. Vitányi.
Randomized naming using wait-free shared variables. Distributed Computing, 11(3):113–
124, 1998.

42 Abhijeet Pareek and Philipp Woelfel. RMR-efficient randomized abortable mutual exclu-
sion. In Proceedings of the 26th International Symposium on Distributed Computing (DISC),
pages 267–281, 2012. doi:10.1007/978-3-642-33651-5_19.

43 Michael L Scott. Non-blocking timeout in scalable queue-based spin locks. In Proceedings
of the twenty-first annual symposium on Principles of distributed computing, pages 31–40.
ACM, 2002.

44 Paul Turán. Eine extremalaufgabe aus der graphentheorie. Mat. Fiz. Lapok, 48(436-452):61,
1941.

DISC 2018

http://dx.doi.org/10.1007/978-3-642-17653-1_27
http://dx.doi.org/10.1007/978-3-642-33651-5_19

Distributed Set Cover Approximation:
Primal-Dual with Optimal Locality
Guy Even
Tel-Aviv University, Israel
guy@eng.tau.ac.il

Mohsen Ghaffari
ETH Zurich, Switzerland
ghaffari@inf.ethz.ch

Moti Medina
Ben-Gurion University, Israel
medinamo@bgu.ac.il

https://orcid.org/0000-0002-5572-3754

Abstract
This paper presents a deterministic distributed algorithm for computing an f(1+ε) approximation
of the well-studied minimum set cover problem, for any constant ε > 0, in O(log(f∆)/ log log(f∆))
rounds. Here, f denotes the maximum element frequency and ∆ denotes the cardinality of the
largest set. This f(1 + ε) approximation almost matches the f -approximation guarantee of
standard centralized primal-dual algorithms, which is known to be essentially the best possible
approximation for polynomial-time computations. The round complexity almost matches the
Ω(log(∆)/ log log(∆)) lower bound of Kuhn, Moscibroda, Wattenhofer [JACM’16], which holds
for even f = 2 and for any poly(log ∆) approximation. Our algorithm also gives an alternative
way to reproduce the time-optimal 2(1+ε)-approximation of vertex cover, with round complexity
O(log ∆/ log log ∆), as presented by Bar-Yehuda, Censor-Hillel, and Schwartzman [PODC’17] for
weighted vertex cover. Our method is quite different and it can be viewed as a locality-optimal
way of performing primal-dual for the more general case of set cover. We note that the vertex
cover algorithm of Bar-Yehuda et al. does not extend to set cover (when f ≥ 3).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis, Math-
ematics of computing → Graph algorithms, Theory of computation → Distributed algorithms

Keywords and phrases Distributed Algorithms, Approximation Algorithms, Set Cover, Vertex
Cover

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.22

Acknowledgements Part of this work was done while the authors were visiting the Max Planck
Institute for Informatics.

1 Introduction and Related Work

The set cover problem is one of the central problems in the study of approximation algorithms.
For instance, the first chapter of the textbook of Williamson and Shomoys [27] is dedicated to
illustrating “several of the central techniques of the book applied to a single problem, the set
cover problem.” In this paper, we present the first time-optimal distributed approximation
algorithm for the set cover problem, with an approximation guarantee that essentially matches
the best known centralized approximation. Let us elaborate on this by first recalling the
problem statement and centralized approximation bounds, as well as the distributed model
of computation in the study of this problem.

© Guy Even, Mohsen Ghaffari, and Moti Medina;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guy@eng.tau.ac.il
mailto:ghaffari@inf.ethz.ch
mailto:medinamo@bgu.ac.il
https://orcid.org/0000-0002-5572-3754
https://doi.org/10.4230/LIPIcs.DISC.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

1.1 Background
Set Cover. We are given a ground set of elements U and some sets S1, S2, . . . , Sk ⊆ U . The
objective is to find a minimum-cardinality collection of the sets that covers all the elements,
i.e., a collection I ⊆ {1, . . . , k} that minimizes |I| subject to ∪i∈ISi = U .

Known Centralized Approximations and Inapproximability Bounds. For each element
u ∈ U , we use fu = |{i | u ∈ Si}| to denote the frequency of this element, i.e., the number of
sets that contain u. We also use f to denote the maximum frequency among all elements,
i.e. f = maxu∈U fu . A standard approximation guarantee for the set cover problem is
an f -approximation, see e.g. [4, Theorem 2] or [27, Theorem 1.6] or [26, Theorem 15.2].
Moreover, this approximation is known to be nearly the best possible for polynomial-time
central algorithms: For the special case f = 2 (when the problem is better known as the vertex
cover problem), Dinur and Safra [9] proved NP-hardness of 1.36 approximation, improving
on a 7/6− ε hardness by Hastad [14]. For general f , the inpaproximately has been improved
in a sequence of papers: Trevisan gave an Ω(f1/19) bound [25]; Holmerin gave an Ω(f1−ε)
bound [15]; Dinur, Guruswami, and Khot improved that to f−3−ε; which was then improved
by Dinur, Guruswami, Khot, and Regev to f − 1− ε [8]. Furthermore, assuming the Unique
Games Conjecture, Khot and Regev proved an inapproximability of f − ε [16]. We remark
that another approximation bound for the set cover is ln |U | – see [27, Theorem 1.11]. This
bound is of interest when the frequency of appearances of the elements in different sets is
large. Moreover, this bound is also known to be the nearly the best possible in the worst-case:
A series of works by Lund and Yannakakis [21], Feige [10], and Moshkovitz [22] showed that
it is NP-hard to always approximate set cover to within (1− ε) ln |U |, for any constant ε > 0.
We note that although the standard way of formulating the upper bound is ln |U |, the actual
bound can be written more precisely as ln ∆ where ∆ denotes the cardinality of the largest
set.

Distributed Computation Model. We consider the CONGEST [23] model, which is the
standard synchronous message passing model in distributed computing. In this model, the
network is abstracted as a simple graph G = (V,E) where n = |V |. There is one processor on
each node of the network, which initially does not know the topology of the network. These
processors can communicate in synchronous rounds where per round each processor/node
can send one O(logn) bit message to each of its neighbors.

Distributed Formulation of Set Cover. The standard distributed formulation of the set
cover problem (see, e.g., [19]) is that we have one processor for each element in the ground
set U , and also one processor for each of the sets S1, S2, . . . , Sk ⊆ U . The network is the
natural corresponding (bipartite) graph where each element-processor is connected to the
set-processors whose set contains this element. Communications on this network follow the
CONGEST model of synchronous message passing, as explained above.

The above is a natural formulation. As prototypical examples, it captures the following
settings: cases where we want to select as few as possible of the servers so that they can
serve all of the clients, when each element can be served only by certain servers; and cases
where we want to select as few as possible of monitoring agents who can control all workers,
where each worker can be controlled only by certain monitoring agents1.

1 Of course, in the practical version of each of these problems, there might be many more constraints or
optimization objectives. However, that goes beyond the objective of our paper, which is to characterize
the complexity of a basic and fundamental problem in distributed approximation algorithms.

G. Even, M. Ghaffari, and M. Medina 22:3

1.2 Our Result
We present a deterministic distributed algorithm that almost matches the f -approximation
mentioned above, up to a (1 + ε) factor for any arbitrary small constant ε > 0, in a
time-complexity that is provably optimal:

I Theorem 1. There is a deterministic distributed algorithm in the CONGEST model that
computes an f(1 + ε) approximation of minimum set-cover, in O

(
log(f∆)

ε log log(f∆)

)
rounds, in

any set-system of frequency f and maximum set size ∆, and for any 0 < ε < 1. Moreover, the
algorithm operates on an anonymous network and uses messages of length O(ε−1 · log(f ·∆)).

The matching lower bound is due to a celebrated work of Kuhn, Moscibroda, and
Wattenhofer [19]: they show that even the simple case of f = 2, where the set cover problem
boils down to vertex cover, has a lower bound of Ω

(
log ∆

log log ∆

)
rounds, for any approximation

up to poly(log ∆). Moreover, for all cases of interest for f -approximation – i.e., when f

is smaller than the other known approximation bound ln ∆ – , the O
(

log(f∆)
log log(f∆)

)
round

complexity of the above algorithm asymptotically matches the Ω
(

log ∆
log log ∆

)
lower bound.

We note that coming up with a deterministic distributed algorithm that achieves poly log ∆
(or even poly logn) approximation for set cover, even with unbounded size messages, with
poly logn number of rounds, where n is the number of processors in the network, would
be a major breakthrough: as shown recently in [12, Theorem 7.5], it would imply that any
randomized distributed algorithm with poly logn number of rounds for any locally checkable
problem can be derandomized and solved in poly logn number of rounds deterministically.
This includes computing a Maximal Independent Set in poly logn number of rounds, which
is an open question by Linial since the 80’s [20].

1.3 The Main Related Work and Comparison of Techniques
Sequential Primal-Dual. A standard centralized approximation algorithm that gives an
f -approximation for set cover is the one based on the primal-dual schema. See, e.g., Bar-
Yehuda and Even [4] or Vazirani’s textbook [26, Section 15.2] for a comprehensive description.
Summarized, this schema works roughly as follows: there is a variable yu ∈ [0, 1] for each
element u ∈ U ; these are known as dual variables. Until all elements are covered, we
iteratively pick an uncovered element, say u, and we raise its variable yu until for one of
the sets containing u, say Si, we have

∑
u′∈Si

yu′ = 1. We call such a set tight (because
its constraint in the primal linear program is tight). Then we add this tight set to the set
cover to be outputted at the end, and we consider all of its elements covered. As shown
in [4, Theorem 2], and [26, Theorem 15.3], this method gives an f -approximation.

Standard Distributed Primal-Dual. The above method is clearly sequential. However, one
can easily adapt it to the distributed setting2, when we relax the approximation factor
to f(1 + ε) for any arbitrarily small constant ε > 0. Initially, set yu = 1/∆ for each
element u ∈ U . Then, in each iteration, we do as follows: (1) for each set Si that has∑
u′∈Si

yu′ ≥ 1 − ε/2, add this set Si to the output set cover (all at the same time) and
consider all of its elements covered. Then, for each uncovered element u, set yu ← yu · 1

1−ε/2 .
The method terminates in O(log ∆/ε) rounds and outputs an f(1 + ε) approximation.

2 In fact, this adaptation is so simple and well-known that we are not sure what is the reference for it (or
its first appearance). The analysis follows directly from [26, Proposition 15.1].

DISC 2018

22:4 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

As a side comment, we add that Kuhn et al. [18,19] give a general algorithm for obtaining
a (1 + ε) approximation of fractional packing linear programs, which can then be turned
into an integral solution for f(1 + ε) approximation of set cover via a simple deterministic
rounding. However, the resulting algorithm would be slower than the above.

Sped-up Distributed Solution, via the Local-Ratio Method. In an elegant recent work,
Bar-Yehuda, Censor-Hillel, and Schwartzman [3] presented an improved algorithm for the
special case of f = 2 (i.e., vertex cover), based on the local-ratio method [5] which itself
is closely related to the primal-dual scheme [6]. Their algorithm improves the round
complexity for f(1 + ε) = 2(1 + ε) approximation of vertex cover to the optimal bound of
O(log ∆/(ε log log ∆)). Their algorithm also works for the weighted variant of the vertex
cover problem. This round complexity matches the lower bound of Kuhn, Moscibroda, and
Wattenhofer [19]. However, the algorithm of [3] seems especially crafted for the case of f = 2
and it does not generalize3 to even f = 3. In a very rough sense, the limitation is as follows:
the method works by dividing the leftover space in dual constraints (i.e., 1 −

∑
u′∈Si

yu′)
into two parts, a vault and a bank. The vault is used to initiate requests for increases in the
dual variables (i.e., yu′) and the bank is used to securely accept these dual variable increases,
while making sure that

∑
u′∈Si

yu′ ≤ 1. When trying to extend this to f = 3 or higher, it
is not clear how to make all the sets containing one element agree consistently with the
amount of the raise in the dual variable, while respecting their own individual

∑
u′∈Si

yu′ ≤ 1
constraints, and without slowing down the process too much.

Our Method, in a Nutshell. We also follow the primal-dual schema. But our method can
be viewed as an improved and more general way of performing primal-dual distributedly,
with optimal locality (i.e., round complexity) for set cover. In a very rough sense, it is based
on a natural dynamic process that, over time, flexibly adjusts the amount of increase per
each dual variable, while (1) not violating any of the constraints, (2) maintaining a large
step of increase for most variables at most times. We are hopeful that dynamics of the same
style may lead to improvements for many other optimization problems.

A conceptual contribution, in the context of randomized Maximal Independent Set
Algorithms [2, 11]. Besides the improvement in the round complexity of the set-cover
problem, we think of our solution as shedding some light on some other known prior work [2,11].
The dynamic process that we use for adjusting the increase steps in dual variables is closely
related to the randomized maximal independent set algorithm of Ghaffari [11]. We note
that a parameter-optimized version of the latter was used by Bar-Yehuda, Censor-Hillel,
Ghaffari, and Schwartzman [2] to obtain a 2(1 + ε) approximation of maximum matching in
O(log ∆/ log log ∆) rounds. However, the place where we use the general dynamic process
appears quite different than those of [2, 11]. While in those previous papers the dynamic
process was set up to adjust the probability of trying to join the MIS (or the nearly maximal
matching), in our current paper, the dynamic process is used in a fully deterministic way and
it governs the adjustments in the increase step of dual variables. In hindsight, this suggests
(in an informal way) that one can view the probabilities in Ghaffari’s MIS algorithm [11]
as fractional solutions to some linear program. The dynamic process tries to adjust these
probabilities towards the “sweet spot” where per round many nodes get hit (by either joining

3 We have also double checked this with Gregory Schwartzman, through personal communication.

G. Even, M. Ghaffari, and M. Medina 22:5

MIS or having a neighbor join MIS). This is reminiscent of the standard randomized rounding
method in design of approximation algorithms, where one first finds a good fractional solution
to a suitable linear program formulation, and then performs a randomized rounding to turn
these fractional solutions to integral; see e.g., [27, Section 1.7]. The difference is that the
algorithm of [11] does not wait for these fractional variables to reach the sweet spot and
only then do the rounding (i.e., deciding probabilistically for various elements). It instead
performs a certain “iterative rounding” where even the interim fractional values are used for
attempts of forming a good integral solution (an independent set that is adjacent to a large
set of vertices).

1.4 Other related work
In this section we survey other related work. We start with results where f = 2, i.e.,
vertex cover. Recently, Ben-Basat, Even, Kawarabayashi, and Schwartzman [7] presented
a 2-approximation algorithm for minimum weighted vertex cover in CONGEST with round
complexity of O

(
logn log ∆
(log log ∆)2

)
. Their approach generalizes the (2+ε)-approximation algorithm

of [3] and improves the dependency on ε−1 to logarithmic. For a detailed overview of work
on vertex cover we refer the reader to [1, 3].

We now turn to results for general f : Koufogiannakis and Young [17] presented a
distributed algorithm for weighted set cover in the LOCAL model. Their algorithm achieves
an approximation ratio of f in O(log2m) rounds w.h.p, where m is the number of elements.
Kuhn et al. [18, 19] studied covering and packing linear programs in the LOCAL model and
obtained a (1 + ε)-approximation algorithm in O(ε−1 logn) rounds w.h.p., where n is the
number of primal and dual variables. Ghaffari, Kuhn, and Maus [13] presented a randomized
distributed approximation scheme (i.e., (1 + ε)-approximation) for arbitrary distributed
covering and packing integer linear programs in the LOCAL model with round complexity
O(poly log(n/ε)) w.h.p., where n is the number of primal and dual variables. For more
results in the LOCAL model we refer the reader to the survey by [24].

2 Problem Definition and Model of Computation

In this section we introduce the problem of vertex cover in hypergraphs (VCH). Designing a
distributed CONGEST algorithm for VCH directly translates to an algorithm for set cover.

2.1 Preliminaries
A hypergraph H is a pair (V,E) where V denotes the set of vertices and E ⊆ 2V . Every
hyperedge e ∈ E is a nonempty subset of vertices. The maximum degree of the graph G is
denoted by ∆, and defined by ∆ , maxv |{e ∈ E | v ∈ E}|. The rank of H is denoted by f ,
and defined by f , maxe∈E |e|.

2.2 Vertex Cover in Hypergraphs (VCH)
A subset C ⊂ V is a vertex cover in H = (V,E) if C ∩ e 6= ∅, for every hyperedge e ∈ E.
The minimum cardinality vertex cover problem in hypergraphs is defined as follows.

Problem: Minimum Cardinality Vertex Cover in Hypergraphs (VCH)
Instance A hypergraph H = (V, E).
Solution: A vertex cover C.
Objective: Minimize the cardinality of the cover C.

DISC 2018

22:6 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

We denote the cardinality of an optimal vertex cover by opt.

Note that the VCH problem translates to set cover as follows:
(i) Each element in the ground set U is an hyperedge in the VCH formulation, and every

set in the set cover problem is a vertex in VCH.
(ii) Indeed, the maximum rank of a hyperedge in VCH translates to the maximum frequency

of an element in set cover and that the maximum degree in VCH translates to the
maximum cardinality of a set in the set cover problem.

Also note that VCH is identical to the hitting set problem in set systems.

2.3 The Network
The network that corresponds to a hypergraphH = (V,E) is a bipartite graph N = (V ∪E,L),
where there is a processor for every vertex v and a processor for every hyperedge e. The set
of links L consists of all the pairs (v, e) ∈ V × E such that v ∈ e. Our algorithm does not
require distinct IDs, namely, the network is anonymous. Moreover, the algorithm does not
even rely on numbering of ports.

3 Algorithm Description

The algorithm is a primal-dual algorithm that updates the primal and dual variables in
iterations. Each hyperedge has two variables: an auxiliary variable x(e) and an edge packing
variable y(e). We denote the value of the variables in iteration t by xt(e) and yt(e).

The dual variable y(e) is a nonnegative edge packing variable. By an edge packing
variable we mean that, for every vertex v and in every iteration t,

∑
e3v yt(e) ≤ 1. The

variable y(e) is monotone non-decreasing over time.
The auxiliary variable x(e) is initialized to x0(t) = 1/K. The dynamics of x(e) allow
to either divide or multiply x(e) by K in each iteration as long as it is bounded by
1/K. Here, K ≥ 2 is a free parameter that is to be fixed later. The role of the auxiliary
variables x(e) is to control the increase of the dual edge packing variables y(e).

I Definition 2. A vertex v is ε-tight if
∑
e3v yt(e) ≥ 1− ε.

Following the primal-dual approximation scheme, a vertex v joins the vertex cover as soon
as it becomes ε-tight. The algorithm terminates when the set of ε-tight vertices covers all
the hyperedges.

The following terminology is used in the algorithm and its analysis.
1. The set of edges that contain a vertex v is denoted by E(v).
2. For a subset of edges A ⊆ E, let xt[A] ,

∑
e∈A xt(e).

3. For a vertex v let yt[v] ,
∑
e3v yt(e).

I Definition 3. The effective degree of an edge e is defined by

dt(e) =
∑
v∈e

xt[E(v)].

Note that dt(e) =
∑
e′:e′∩e 6=∅ |e ∩ e′| · xt(e′). The “natural” definition of effective degree

dt(e) =
∑
e′:e′∩e 6=∅ xt(e′) works as well. However, it is not clear how to implement the natural

definition in CONGEST.

I Definition 4. An edge e is light (in iteration t) if dt(e) < K. If dt(e) ≥ K, we say that
the edge is heavy.

G. Even, M. Ghaffari, and M. Medina 22:7

3.1 The Algorithm (ALG)

Input: Hypergraph H = (V,E) and 0 < ε < 1.
Output: A vertex cover C ⊆ V .
Initialization: For every e ∈ E, x0(e)← 1/K, y0(e)← 0, C ← ∅, E′ ← E.
Invariants: (1) The variables y(e) constitute a feasible edge packing. (2) C equals the set
of ε-tight vertices.
ALG: The algorithm works by iterations until E′ = ∅. Iteration t works as follows:
1. For each light edge e ∈ E′, set yt+1(e)← yt(e) + xt(e) · ε/K.
2. Add all the new ε-tight vertices to C.
3. Remove covered edges: E′ ← E′ \ {e ∈ E : e ∩ C 6= ∅}.
4. Update the auxiliary variables of edge e ∈ E′, as follows:

xt+1(e) =
{
xt(e)/K, if dt(e) ≥ K //heavy edge rule

min{K · xt(e), 1/K}, if dt(e) < K //light edge rule.

The following simple observation bounds dt(e) for every edge e and iteration t.

I Observation 5. For all e ∈ E, and for all iterations t it holds that

dt(e) ≤
f∆
K
, and (1)

dt(e)
K
≤ dt+1(e) ≤ K · dt(e) . (2)

4 Analysis

The analysis consists of two parts. In the first part, we prove that if the algorithm terminates,
then it finds a vertex cover that is a (1 +O(ε)) · f -approximation of a minimum cardinality
vertex cover. In the second part, we prove an upper bound on the number iterations of the
algorithm. Every iteration requires a constant number of communication rounds, and hence
the bound on the number of communication rounds follows.

4.1 Approximation Ratio
I Claim 6. Throughout the algorithm, the variables yt(e) constitute a feasible edge packing.

Proof. Fix a vertex v. The proof is by induction on t. Initially, y0(e) = 0, hence, y0 is clearly
a feasible edge packing. Assume that {yt(e)}e is an edge packing (i.e., yt[v] ≤ 1, for every v),
we now prove that {yt+1(e)}e is an edge packing. If yt+1[v] > yt[v], then v is not ε-tight in
the end of iteration t, and thus yt[v] < 1− ε.

Let e∗ denote an arbitrary edge such that v ∈ e∗ and yt+1(e∗) > yt(e∗). In particular,
this implies that e∗ is light (see Step 1 of the algorithm), i.e., dt(e∗) < K.

We conclude that

yt+1[v]− yt[v] = ε

K
·

∑
e3v,e light

xt(e)

≤ ε

K
· dt(e∗) < ε ,

where the second inequality holds because every light edge e that contains v contributes at
least xt(e) to dt(e∗). Since yt[v] < 1− ε, the claim follows. J

DISC 2018

22:8 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

I Claim 7. At the end of every iteration t of the algorithm, the cardinality of the set of
ε-tight vertices is at most f

1−ε · opt.

Proof.

|{v | yt[v] ≥ 1− ε}| ≤
∑

v|yt[v]≥1−ε

1
1− ε

∑
e3v

yt(e)

≤ 1
1− ε

∑
e∈E

∑
v∈e

yt(e)

≤ f

1− ε
∑
e∈E

yt(e) ≤
f

1− ε · opt ,

where the first inequality follows from the definition of ε-tight vertices, the third inequality
follows from the fact that |e| ≤ f , and the fourth inequality follows from weak. J

Note that throughout the algorithm, C is the set of ε-tight vertices. Upon termination,
E′ = ∅, and thus C is a vertex cover. Hence, by Claim 7, it follows that when the algorithm
terminates, the set C is vertex cover and its cardinality is (1 +O(ε)) · f · opt.

4.2 Bounding the Number of Rounds

In this section we prove the following theorem. Recall that the algorithm terminates when
E′ = ∅.

I Theorem 8. Let K ≥ 2, the algorithm terminates after O
(

log(f∆)
logK + K3

ε

)
iterations.

4.2.1 Golden Iterations

Let Lightt , {e ∈ E | dt(e) < K]}, and Heavyt , {e ∈ E | dt(e) ≥ K]}.

I Definition 9. An iteration t is a Type-1 iteration with respect to hyperedge e if it satisfies:

dt(e) < K and xt(e) = 1/K.

I Definition 10. An iteration t is a Type-2 iteration with respect to hyperedge e if it satisfies:

dt(e) ≥ 1 and
∑
v∈e

xt[E(v) ∩ Lightt] ≥
1

2K2 · dt(e).

An iteration t is a golden iteration with respect to e if it is a Type-1 or Type-2 iteration with
respect to e.

Our goal is to bound the number of iterations until termination. Throughout the analysis,
fix a hyperedge e, and assume that it is not covered after T iterations (i.e., e ∩ C = ∅).

I Definition 11. For a fixed hyperedge e not covered after T iterations, define the following

G. Even, M. Ghaffari, and M. Medina 22:9

subsets of iterations.

G1 ,

{
t ∈ [T] | dt(e) < K and xt(e) = 1

K

}
Type-1

G2 ,

{
t ∈ [T] | dt(e) ≥ 1 and

∑
v∈e

xt[E(v) ∩ Lightt] ≥
1

2K2 · dt(e)
}

Type-2

H , {t ∈ [T] | dt(e) ≥ K} Heavy
L , {t ∈ [T] | dt(e) < K} Light
U , {t ∈ [T] | xt+1(e) = K · xt(e)} Up

S ,

{
t ∈ [T] | xt(e) = 1

K

}
Saturated

4.2.2 Useful Claims
We denote the cardinalities of these subsets using lower case letters, e.g., g1 = |G1|, h = |H|,
etc.

I Claim 12. H = {t ∈ [T] | xt+1(e) = xt(e)/K} and u ≤ h.

Proof. The first part follows from Line 4 of the algorithm. The variable x0(e) is initialized
to 1/K, never exceeds 1/K, is divided by K in iterations in H, and multiplied by K in
iterations in U . Hence, 1/K ≥ xT (e) = x0(e) ·Ku−h, and u ≤ h, as required. J

I Claim 13. T ≤ 3h+ g1.

Proof. Note that ` ≤ u+s. Indeed, If t ∈ L, then either t ∈ U or xt(e) could not be multiplied
by K, hence t ∈ S. Since T = h+ `, by Claim 12 we conclude that T ≤ h+ u+ s ≤ 2h+ s.

To conclude the proof, we show that s ≤ g1+h. This holds simply because, S\G1 ⊆ H. J

I Claim 14. max{g1, g2} ≤ 2K3

ε .

Proof. For each Type-1 iteration t ∈ [T], the update of yt(e) due to Steps 1 and 4 is

yt+1(e) = yt(e) + xt(e) ·
ε

K
= yt(e) + ε

K
· 1
K
.

Hence yT+1(e) ≥ g1 · ε
K2 . Claim 6 implies that the yT+1(e′) variables constitute a feasible

edge packing, i.e., yT+1[v] ≤ 1 for every v, then yT+1(e) ≤ 1, and hence g1 ≤ K2/ε, as
required.

We bound g2 as follows. Consider a Type-2 iteration t ∈ [T]. Then,

∑
v∈e

yt+1[v]− yt[v] =
∑
v∈e

 ∑
e′3v,e′∈Lightt

ε

K
· xt(e′)

= ε

K
·
∑
v∈e

xt[E(v) ∩ Lightt]

≥ ε

K
· 1

2K2 · dt(e) ≥
ε

2K3 ,

where the last two inequalities follow from the definition of a Type-2 golden round (see
Definition 10). This implies that g2(e) ≤ 2K3/ε, as required. J

DISC 2018

22:10 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

I Claim 15. If dt(e) ≥ 1, and t 6∈ G2, then

dt+1(e) < 3
2K · dt(e). (3)

Proof. If dt(e) ≥ 1 and t is a not Type-2 iteration with respect to e, then
∑
v∈e xt[E(v) ∩

Lightt] < 1
2K2 · dt(e). Since xt+1(e) ≤ K · xt(e) if e ∈ Lightt, and xt+1(e) = xt(e)/K if

e ∈ Heavyt, we conclude that

dt+1(e) ≤ 1
K
·
∑
v∈e

xt[E(v) ∩Heavyt] +K ·
∑
v∈e

xt[E(v) ∩ Lightt]

≤ 1
K
· dt(e) +K · 1

2K2 · dt(e).

The claim follows. J

I Claim 16. h ≤ log(f∆/k2)
log(2K

3) + 4g2.

Proof. Partition H into maximally contiguous (disjoint) intervals H = H1∪· · ·∪Hz. Denote
the endpoints of Hi by [ti, bi]. Define

ai ,

{
t1 if i = 1
min{t < ti | ∀r ∈ [t, ti − 1] : 1 ≤ dr(e) < K} if z ≥ i > 1.

Note that, if i > 1, then the set {t < ti | ∀r ∈ [t, ti − 1] : 1 ≤ dr(e) < K} is not empty.
Indeed, ti − 1 belongs to this set as dti(e) ≥ K and 1 ≤ dti−1(e) < K.

Let Ii , [ai, bi]. Note that the intervals {Ii}zi=1 are pairwise disjoint.
Since x0(e) = 1

K for every e ∈ E and since
∑
v∈e |E(v)| ≤ f ·∆ we get that dai

(e) ≤ f∆/K.
Hence, by the definition of ai, we have

dai(e) ≤
{
f∆/K if i = 1
K if i > 1

By the definition of bi we have

dbi
(e) ≥ K.

Now,

dbi(e) ≤ dai(e) ·
(

3
2K

)|Ii∩G2|

·K |Ii∩G2|

≤ dai
(e) ·

(
2K
3

)3·|Ii∩G2|−|Ii∩G2|

.

The first inequality follows from Claims 5 and 15. The second inequality follows from
K < (2K/3)3, as K ≥ 2. Hence,

|Ii ∩G2| ≤ 3 · |Ii ∩G2|+
log
(
dai

(e)
dbi

(e)

)
log(2K/3)

Since

dai
(e)

dbi
(e) ≤

{
f∆/K2 if i = 1
1 if i > 1

,

G. Even, M. Ghaffari, and M. Medina 22:11

by summing up over all the disjoint intervals we obtain
z∑
i=1
|Ii ∩G2| ≤ 3g2 + log(f∆/K2)

log(2K/3) .

Since h ≤ g2 +
∑z
i=1 |Ii ∩G2|, the claim follows. J

4.2.3 Proof of Theorem 8
Proof of Theorem 8. Suppose that the algorithm does not terminate after T rounds because
the edge e remains uncovered. Claims 13, 16, and 14 and the fact that K ≥ 2 and 0 < ε < 1
imply that

T ≤ 3h+ g1

≤ 3
(

log(f∆/K2)
log(2K

3)
+ 4g2

)
+ g1

= 3 · log(f∆/K2)
log(2K

3)
+ 12g2 + g1

≤ 3 · log(f∆/K2)
log(2K

3)
+ 26K3

ε
.

Since log(2K/3) = Ω(logK), the theorem follows. J

5 Distributed Implementation

In this section we present a distributed implementation of the algorithm. To simplify the
presentation, we present the sequence of computations and messages performed by the
vertices and the edges in a combined fashion.

States. Every vertex v has three states: “active” - means that v did not decide yet if it
is in the cover or not, “in cover” - means that v decided to join the cover, “not in cover” -
means that v decided that it will not join the cover. Every edge e has two states: “uncovered”
and “covered”.

Distributed Implementation.
1. Every edge processor e maintains the variables x(e) and y(e). These variables are

initialized as follows: x(e)← 1/K and y(e)← 0. The initial state of e is “uncovered”.
2. Every vertex processor v maintains a variable E′(v) ⊆ E(v), where E′(v) denotes the

subset of edges that are not covered yet. Initialize E′(v)← E(v). The initial state of a
vertex is “active”.

3. Each iteration consists of the following steps:
a. For every uncovered e, send x(e) and y(e) to every v ∈ e.
b. For every active v, if

∑
e3v y(e) ≥ 1− ε, then v changes its state of v to “in cover” and

sends every edge e ∈ E(v) a message “in cover”. 4

c. For every active v, send x[E(v)] =
∑
e∈v x(e) to every edge e′ ∈ E(v).

4 The value used for y(e) is the last value received from e. If e is uncovered, then it sends y(e) in the
previous round. If e is covered, then v remembers the last received value.

DISC 2018

22:12 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

d. For every edge e, if e received an “in cover” message, then e changes its state to
“covered”, and sends a “covered” message to every v ∈ e.

e. For every active vertex v, if v received a “covered” message from e, then deletes e from
E′(v). If E′(v) = ∅, then v changes its state to “not in cover”.5

f. For every uncovered edge e, let d(e) =
∑
v∈e x[E(v)]. Update x(e) as follows:

x(e)←
{
x(e)/K, if d(e) ≥ K
min{Kx(e), 1/K}, if d(e) < K

The algorithm terminates when all the edges are covered and all the vertices are not active.

Bound on Message Length. The messages in the algorithm are x(e), y(e), x[E(v)] and
information about the state. Our goal is to bound the length of these messages.

I Observation 17. For every edge e and iteration t, 1
Kt ≤ xt(e) ≤ 1

K .

I Observation 18. For every vertex v and iteration t, 1
Kt ≤ xt[E(v)] ≤ ∆

K .

I Observation 19. For every edge e and iteration t, if yt(e) > 0, then ε
K ·

1
Kt ≤ yt(e) ≤ ε

K ·
t
K .

The following lemma is implied by the observations above and by the fact that the number
of bits required for encoding the numbers in [a, b] where consecutive numbers differ by 1/K
is log(bK/a).

I Lemma 20. Let T denote the number of rounds of the algorithm until it terminates. Then
the message length of the vertex cover algorithm is O(log ∆ + T · logK).

6 Proof of the Main Result

Proof of Theorem 1. Setting K = 3
√

log(f∆)
log log(f∆) in Theorem 8, implies that the round

complexity of the algorithm is O
(

log(f∆)
ε log log(f∆)

)
.

Claim 7 implies that the set C computed by our algorithm is indeed a vertex cover, and
that this cover is an f(1 +O(ε))-approximate solution.

Lemma 20 implies that the message length of our algorithm is O(ε−1 · log(f∆)), as
required. J

7 Discussion

In this paper we prove that an approximation of the minimum set cover (or the equivalent
vertex cover in hypergraphs) can be computed in CONGEST in a locality-optimal way of
performing the primal-dual scheme. The attained approximation ratio and number of rounds
are f(1 + ε) and O

(
log(f∆)

ε log log(f∆)

)
respectively, where ε is a constant in (0, 1). Hence, for

f ≤ poly(log ∆) the round complexity matches the lower bound of Ω
(

log ∆
log log ∆

)
by Kuhn,

Moscibroda, and Wattenhofer [19].

5 In fact, v only needs to count the number of received “covered” messages. Hence, IDs and port numbers
are not required.

G. Even, M. Ghaffari, and M. Medina 22:13

The updates of the dual set variables are governed by the effective degrees of its elements e,
the natural definition of which is (roughly) the summation over the elements which share a set
with e. Unfortunately, it is not clear how to implement this natural definition in CONGEST.
A nice observation is that the analysis also works with an approximated definition of the
effective degree above (e.g., it allows double counting of elements) which is implementable
in CONGEST. Another outcome of this relaxed definition of the effective degree is that our
algorithm does not require distinct IDs, namely, the network is anonymous. Moreover, the
algorithm does not even rely on numbering of ports. We are hopeful that dynamics of the
same style may lead to improvements for other optimization problems.

References

1 Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In Proceedings of the twenty-second annual
ACM symposium on Parallelism in algorithms and architectures, pages 294–302. ACM,
2010.

2 Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman.
Distributed approximation of maximum independent set and maximum matching. In Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, July 25-27, 2017, pages 165–174, 2017. doi:10.1145/3087801.
3087806.

3 Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A Distributed (2+ε)-
Approximation for Vertex Cover in O(log ∆/ε log log ∆) Rounds. J. ACM, 64(3):23:1–23:11,
2017. doi:10.1145/3060294.

4 Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.

5 Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Technion-Israel Institute of Technology. Department of Computer
Science, 1983.

6 Reuven Bar-Yehuda and Dror Rawitz. On the equivalence between the primal-dual schema
and the local ratio technique. SIAM Journal on Discrete Mathematics, 19(3):762–797, 2005.

7 R. Ben-Basat, G. Even, K. Kawarabayashi, and G. Schwartzman. A Deterministic Dis-
tributed 2-Approximation for Weighted Vertex Cover in O(logn log ∆/ log2 log ∆) Rounds.
ArXiv e-prints (Appeared in SIROCCO 2018), 2018. arXiv:1804.01308.

8 Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered
pcp and the hardness of hypergraph vertex cover. SIAM Journal on Computing, 34(5):1129–
1146, 2005.

9 Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of mathematics, pages 439–485, 2005.

10 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

11 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 270–277, 2016. doi:10.
1137/1.9781611974331.ch20.

12 Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. arXiv preprint arXiv:1711.02194, 2017.

13 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 784–797. ACM, 2017.

DISC 2018

http://dx.doi.org/10.1145/3087801.3087806
http://dx.doi.org/10.1145/3087801.3087806
http://dx.doi.org/10.1145/3060294
http://arxiv.org/abs/1804.01308
http://dx.doi.org/10.1137/1.9781611974331.ch20
http://dx.doi.org/10.1137/1.9781611974331.ch20

22:14 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

14 Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

15 Jonas Holmerin. Improved inapproximability results for vertex cover on k-uniform hyper-
graphs. In International Colloquium on Automata, Languages, and Programming, pages
1005–1016. Springer, 2002.

16 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

17 Christos Koufogiannakis and Neal E Young. Distributed algorithms for covering, packing
and maximum weighted matching. Distributed Computing, 24(1):45–63, 2011.

18 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted.
In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
pages 980–989. Society for Industrial and Applied Mathematics, 2006.

19 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower
and upper bounds. J. ACM, 63(2):17:1–17:44, 2016. doi:10.1145/2742012.

20 Nathan Linial. Distributive graph algorithms global solutions from local data. In Founda-
tions of Computer Science, 1987., 28th Annual Symposium on, pages 331–335. IEEE, 1987.

21 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM (JACM), 41(5):960–981, 1994.

22 Dana Moshkovitz. The projection games conjecture and the np-hardness of lnn-
approximating set-cover. Theory of Computing, 11:221–235, 2015. doi:10.4086/toc.2015.
v011a007.

23 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
24 Jukka Suomela. Survey of local algorithms. ACM Computing Surveys (CSUR), 45(2):24,

2013.
25 Luca Trevisan. Non-approximability results for optimization problems on bounded degree

instances. In Proceedings of the thirty-third annual ACM symposium on Theory of comput-
ing, pages 453–461. ACM, 2001.

26 Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.
27 David P Williamson and David B Shmoys. The design of approximation algorithms. Cam-

bridge university press, 2011.

http://dx.doi.org/10.1145/2742012
http://dx.doi.org/10.4086/toc.2015.v011a007
http://dx.doi.org/10.4086/toc.2015.v011a007

Order out of Chaos: Proving Linearizability Using
Local Views
Yotam M. Y. Feldman
Tel Aviv University, Israel

Constantin Enea
IRIF, Univ. Paris Diderot & CNRS, France

Adam Morrison
Tel Aviv University, Israel

Noam Rinetzky
Tel Aviv University, Israel

Sharon Shoham
Tel Aviv University, Israel

Abstract
Proving the linearizability of highly concurrent data structures, such as those using optimistic
concurrency control, is a challenging task. The main difficulty is in reasoning about the view of
the memory obtained by the threads, because as they execute, threads observe different fragments
of memory from different points in time. Until today, every linearizability proof has tackled this
challenge from scratch.

We present a unifying proof argument for the correctness of unsynchronized traversals, and
apply it to prove the linearizability of several highly concurrent search data structures, including
an optimistic self-balancing binary search tree, the Lazy List and a lock-free skip list. Our
framework harnesses sequential reasoning about the view of a thread, considering the thread as if
it traverses the data structure without interference from other operations. Our key contribution
is showing that properties of reachability along search paths can be deduced for concurrent
traversals from such interference-free traversals, when certain intuitive conditions are met. Basing
the correctness of traversals on such local view arguments greatly simplifies linearizability proofs.
At the heart of our result lies a notion of order on the memory, corresponding to the order
in which locations in memory are read by the threads, which guarantees a certain notion of
consistency between the view of the thread and the actual memory.

To apply our framework, the user proves that the data structure satisfies two conditions: (1)
acyclicity of the order on memory, even when it is considered across intermediate memory states,
and (2) preservation of search paths to locations modified by interfering writes. Establishing the
conditions, as well as the full linearizability proof utilizing our proof argument, reduces to simple
concurrent reasoning. The result is a clear and comprehensible correctness proof, and elucidates
common patterns underlying several existing data structures.

2012 ACM Subject Classification Computing methodologies → Shared memory algorithms,
Theory of computation → Program verification

Keywords and phrases concurrency and synchronization, concurrent data structures, lineariaz-
ability, optimistic concurrency control, verification and formal methods

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.23

Related Version An extended version appears in [20], https://arxiv.org/abs/1805.03992.

© Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon Shoham;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2018.23
https://arxiv.org/abs/1805.03992
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Proving Linearizability Using Local Views

Acknowledgements This publication is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreements No [759102-SVIS] and [678177]). The research was partially
supported by Len Blavatnik and the Blavatnik Family foundation, the Blavatnik Interdisciplinary
Cyber Research Center, Tel Aviv University, the United States-Israel Binational Science Founda-
tion (BSF) grants No. 2016260 and 2012259, and the Israeli Science Foundation (ISF) grant No.
2005/17. We thank the anonymous reviewers whose comments helped improve the paper.

1 Introduction

Concurrent data structures must minimize synchronization to obtain high performance [16, 27].
Many concurrent search data structures therefore use optimistic designs, which search the
data structure without locking or otherwise writing to memory, and write to shared memory
only when modifying the data structure. Thus, in these designs, operations that do not
modify the same nodes do not synchronize with each other; in particular, searches can run in
parallel, allowing for high performance and scalability. Optimistic designs are now common in
concurrent search trees [3, 10, 11, 14, 17, 19, 28, 36, 41], skip lists [13, 21, 26], and lists/hash
tables [22, 23, 35, 45].

A major challenge in developing an optimistic search data structure is proving lineariz-
ability [25], i.e., that every operation appears to take effect atomically at some point in time
during its execution. Usually, the key difficulty is proving properties of unsynchronized
searches [37, 32, 48, 27], as they can observe an inconsistent state of the data structure – for
example, due to observing only some of the writes performed by an update operation, or
only some update operations but not others. Arguing about such searches requires tricky
concurrent reasoning about the possible interleaving of reads and writes of the operations.
Today, every new linearizability proof tackles these problems from scratch, leading to long
and complex proofs.

Our approach: local view arguments. This paper presents a unifying proof argument
for proving linearizability of concurrent data structures with unsynchronized searches that
replaces the difficult concurrent reasoning described above with sequential reasoning about a
search, which does not consider interference from other operations. Our main contribution is
a framework for establishing properties of an unsynchronized search in a concurrent execution
by reasoning only about its local view – the (potentially inconsistent) picture of memory it
observes as it traverses the data structure. We refer to such proofs as local view arguments.
We show that under two (widely-applicable) conditions listed below, the existence of a path
to the searched node in the local view, deduced with sequential reasoning, also holds at
some point during the actual (concurrent) execution of the traversal. (This includes the
case of non-existence of a key indicated by a path to null.) Such reachability properties
are typically key to the linearizability proofs of many prominent concurrent search data
structures with unsynchronized searches [16]. Once these properties are established, the rest
of the linearizability proof requires only simple concurrent reasoning.

Applying a local view argument requires establishing two conditions:
(i) temporal acyclicity, which states that the search follows an order on the memory that

is acyclic across intermediate states throughout the concurrent execution; and
(ii) preservation, which states that whenever a node x is changed, if it was on a search

path for some key k in the past, then it is also on such a search path at the time of the
change.

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:3

Although these conditions refer to concurrent executions, proving them for the data structures
we consider is straightforward.

More generally, these conditions can be established with inductive proofs that are simplified
by relying on the very same traversal properties obtained with the local view argument. This
seemingly circular reasoning holds because our framework is also proven inductively, and so
the case of executions of length N + 1 in both the proof that (1) the data structure satisfies
the conditions and (2) the traversal properties follow from the local view argument can rely
on the correctness of the other proof’s N case.

Simplifying linearizability proofs with local view arguments. To harness local view argu-
ments, our approach uses assertions in the code as a way to divide the proof between (1) the
linearizability proof that relies on the assertions, and (2) the proof of the assertions, where
the challenge of establishing properties of unsynchronized searches in concurrent executions
is overcome by local view arguments.

Overall, our proof argument yields clear and comprehensible linearizability proofs, whose
whole is (in some sense) greater than the sum of the parts, since each of the parts requires a
simpler form of reasoning compared to contemporary linearizability proofs. We use local
view arguments to devise simple linearizability proofs of a variant of the contention-friendly
tree [14] (a self-balancing search tree), lists with lazy [23] or non-blocking [27] synchronization,
and a lock-free skip list.

Our framework’s acyclicity and preservation conditions can provide insight on algorithm
design, in that their proofs can reveal unnecessary protections against interference. Indeed,
our proof attempts exposed (small) parts of the search tree algorithm that were not needed
to guarantee linearizability, leading us to consider a simpler variant of its search operation
(see Remark 1).

Contributions. To summarize, we make the following contributions:
1. We provide a set of conditions under which reachability properties of local views, estab-

lished using sequential reasoning, hold also for concurrent executions,
2. We show that these conditions hold for non-trivial concurrent data structures that use

unsynchronized searches, and
3. We demonstrate that the properties established using local view arguments enable simple

linearizability proofs, alleviating the need to consider interleavings of reads and writes
during searches.

2 Motivating Example

As a motivating example we consider a self-balancing binary search tree with optimistic, read-
only searches. This is an example of a concurrent data structure for which it is challenging to
prove linearizability “from scratch.” The algorithm is based on the contention-friendly (CF)
tree [12, 14]. It is a fine-grained lock-based implementation of a set object with the standard
insert(k), delete(k), and contains(k) operations. The algorithm maintains an internal
binary tree that stores a key in every node. Similarly to the lazy list [23], the algorithm
distinguishes between the logical deletion of a key, which removes it from the set represented
by the tree, and the physical removal that unlinks the node containing the key from the tree.

We use this algorithm as a running example to illustrate how our framework allows to lift
sequential reasoning into assertions about concurrent executions, which are in turn used to
prove linearizability. In this section, we present the algorithm and explain the linearizability
proof based on the assertions, highlighting the significant role of local view arguments in the
proof.

DISC 2018

23:4 Proving Linearizability Using Local Views

1 type N
2 int key
3 N left , right
4 bool del ,rem

6 N root←new N(∞);

8 N×N locate (int k)
9 x,y←root

10 while (y≠null ∧ y.key≠k)
11 x←y
12 if (x.key <k)
13 y←x.right
14 else
15 y←x.left

16
{�(root

k
↝ x) ∧�(root

k
↝ y)

∧ x.key ≠ k ∧ y ≠ null
⟹ y.key = k}

17 return (x,y)

19 bool contains (int k)
20 (_,y)←locate (k)
21 if (y = null)

22 {�(root
k
↝ null)}

23 return false

24 {�(root
k
↝ y)}

25 if (y.del)

26 {�(root
k
↝ y ∧ y.del) ∧ y.key = k}

27 return false

28 {�(root
k
↝ y ∧ ¬y.del) ∧ y.key = k}

29 return true

30 bool delete (int k)
31 (_,y)←locate (k)
32 if (y = null)

33 {�(root
k
↝ null)}

34 return false
35 lock (y)
36 if (y.rem) restart
37 ret ← ¬y.del

38 {root
k
↝ y ∧ y.key = k ∧ ¬y.rem}

39 y.del←true
40 return ret

42 bool insert (int k)
43 (x,y)←locate (k)

44 {�(root
k
↝ x) ∧ x.key ≠ k}

45 if (y≠null)

46 {�(root
k
↝ y) ∧ y.key = k}

47 lock (y)
48 if (y.rem) restart
49 ret ← y.del

50 {root
k
↝ y ∧ y.key = k ∧ ¬y.rem}

51 y.del←false
52 return ret
53 lock (x)
54 if (x.rem) restart
55 if (k < x.key ∧ x.left=null)

56 {root
k
↝ x ∧ ¬x.rem

∧ k < x.key ∧ x.left = null}
57 x.left ← new N(k)
58 else if (x. right=null)

59 {root
k
↝ x ∧ ¬x.rem

∧ k > x.key ∧ x.right = null}
60 x. right ← new N(k)
61 else
62 restart
63 return true

64 removeRight ()
65 (z,_) ← locate (*)
66 lock (z)
67 y ← z. right
68 if(y=null ∨ z.rem)
69 return
70 lock (y)
71 if (y.del)
72 return
73 if (y.left=null)
74 z. right ← y. right
75 else
76 if (y. right=null)
77 z. right ← y.left
78 else return
79 y.rem ← true

81 rotateRightLeft ()
82 (p,_) ← locate (*)
83 lock (p)
84 y ← p.left
85 if(y=null ∨ p.rem)
86 return
87 lock (y)
88 x ← y.left
89 if(x=null)
90 return
91 lock (x)
92 z ← duplicate (y)
93 z.left ← x. right
94 x. right ← z
95 p.left ← x
96 y.rem ← true

Figure 1 Running example. For brevity, unlock operations are omitted; a procedure releases all
the locks it acquired when it terminates or restarts. ∗ denotes an arbitrary key.

Figure 1 shows the code of the algorithm. (The code is annotated with assertions
written inside curly braces, which the reader should ignore for now; we explain them in
Section 2.1.) Nodes contain two boolean fields, del and rem, which indicate whether the
node is logically deleted and physically removed, respectively. Modifications of a node in the
tree are synchronized with the node’s lock. Every operation starts with a call to locate(k),
which performs a standard binary tree search – without acquiring any locks – to locate the
node with the target key k. This method returns the last link it traverses, (x, y). Thus, if k
is found, y.key = k; if k is not found, y = null and x is the node that would be k’s parent if
k were inserted. A delete(k) logically deletes y after verifying that y remained linked to
the tree after its lock was acquired. An insert(k) either revives a logically deleted node or,
if k was not found, links a new node to the tree. A contains(k) returns true if it locates a
node with key k that is not logically deleted, and false otherwise.

Physical removal of nodes and balancing of the tree’s height are performed using auxiliary
methods.1 The algorithm physically removes only nodes with at most one child. The
removeRight method unlinks such a node that is a right child, and sets its rem field to notify

1 The reader should assume that these methods can be invoked at any time; the details of when the
algorithm decides to invoke them are not material for correctness. For example, in [12, 14], these
methods are invoked by a dedicated restructuring thread.

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:5

y

A B

k

C

p

y

x
y

B C

p

x

k

z

A

k
y

y

B C

k

p

y

k

z

A

x
y

B C

x

k

z

A

b
k’

(a) Right rotation of y. (The bold green link is the one written in
each step. The node with a dashed border has its rem bit set.)

y

A B

k

C

p

y

x
y

B C

p

x

k

z

A

k
y

y

B C

k

p

y

k

z

A

x
y

B C

x

k

z

A

b
k’

(b) Node b is added after the
right rotation of y, when y is no
longer in the tree.

Figure 2 A right rotation, and how it can lead a search to observe an inconsistent state of the
tree. If b is added after the rotation, a search for k

′ that starts before the rotation and pauses at x

during the rotation will traverse the path p, y, x, z, . . . , b, although y and b never exist simultaneously
in the tree.

threads that have reached the node of its removal. (We omit the symmetric removeLeft.)
Balancing is done using rotations. Figure 2a depicts the operation of rotateRightLeft,
which needs to rotate node y (with key k) down. (We omit the symmetric operations.) It
creates a new node z with the same key and del bit as y to take y’s place, leaving y unchanged
except for having its rem bit set. A similar technique for rotations is used in lock-free search
trees [10].

▶ Remark 1. The example of Figure 1 differs from the original contention-friendly tree [12, 14]
in a few points. The most notable difference is that our traversals do not consult the rem
flag, and in particular we do not need to distinguish between a left and right rotate, making
the traversals’ logic simpler. Checking the rem flag is in fact unnecessary for obtaining
linearizability, but it allows proving linearizability with a fixed linearization point, whereas
proving the correctness of the algorithm without this check requires an unfixed linearization
point. For our framework, the necessity to use an unfixed linearization point incurs no
additional complexity. In fact, the simplicity of our proof method allowed us to spot this
“optimization.” In addition, the original algorithm performs backtracking by setting pointers
from child to parent when nodes are removed. Instead, we restart the operation; see Section
7 for a discussion of backtracking. Lastly, we fix a minor omission in the description of [14],
where the del field was not copied from a rotated node.

2.1 Proving Linearizability
Proving linearizability of an algorithm like ours is challenging because searches are performed
with no synchronization. This means that, due to interference from concurrent updates,
searches may observe an inconsistent state of the tree that has not existed at any point
in time. (See Figure 2.) In our example, while it is easy to see that locate in Figure 1
constructs a search path to a node in sequential executions, what this implies for concurrent
traversals is not immediately apparent. Proving properties of the traversal – in particular,
that a node reached in the traversal truly lies on a search path for key k – is instrumental
for the linearizability proof [48, 37].

Generally, our linearizability proofs consist of two parts: (1) proving a set of assertions
in the code of the concurrent data structure, and (2) a proof of linearizability based on those
assertions. The most difficult part and the main focus of our paper is proving the assertions

DISC 2018

23:6 Proving Linearizability Using Local Views

using local view arguments, discussed in Section 2.2. In the remaining of this section we
demonstrate that having assertions about the actual state during the concurrent execution
makes it a straightforward exercise to verify that the algorithm in Figure 1 is a linearizable
implementation of a set, assuming these assertions.

Consider the assertions in Figure 1. An assertion {P} means that P holds now (i.e., in any
state in which the next line of code executes). An assertion of the form {�P} means that P
was true at some point between the invocation of the operation and now. The assertions
contain predicates about the state of locked nodes, immutable fields, and predicates of the
form root

k
↝ x, which means that x resides on a valid search path for key k that starts at

root; if x = null this indicates that k is not in the tree (because a valid search path to k does
not continue past a node with key k). Formally, search paths between objects (representing
nodes in the tree) are defined as follows:

or
k
↝ ox

def
= ∃o0, . . . , om. o0 = or ∧ om = ox ∧∀i = 1..m. nextChild(oi−1, k, oi) , and

nextChild(oi−1, k, oi) = (oi−1.key > k ∧ oi−1.left = oi) ∨ (oi−1.key < k ∧ oi−1.right = oi) .

One can prove linearizability from these assertions by, for example, using an abstraction
function A ∶ H → ℘(N) that maps a concrete memory state2 of the tree, H, to the abstract
set represented by this state, and showing that contains, insert, and delete manipulate
this abstraction according to their specification. We define A to map H to the set of keys of
the nodes that are on a valid search path for their key and are not logically deleted in H:
A(H) = {k ∈ N ∣ H ⊧ ∃x. root

k
↝ x ∧ x.key = k ∧ ¬x.del}. (H ⊧ P means that P is true in

H.)
The assertions almost immediately imply that for every operation invocation op, there

exists a state H during op’s execution for which the abstract state A(H) agrees with op’s
return value, and so op can be linearized at H. We provide a more detailed discussion in the
extended version [20].

2.2 Proving the Assertions
To complete the linearizability proof, it remains to prove the validity of the assertions
in concurrent executions. The most challenging assertions to prove are those concerning
properties of unsynchronized traversals, which we target in this paper. In Section 3 we
present our framework, which allows to deduce assertions of the form of �(root

k
↝ x)

at the end of (concurrent) traversals by considering only interference-free executions. We
apply our framework to establish the assertions �(root

k
↝ x) and �(root

k
↝ y) in line 16.

In fact, our framework allows to deduce slightly stronger properties, namely, of the form
�(root

k
↝ x ∧ ϕ(x)), where ϕ(x) is a property of a single field of x (see Remark 2). This

is used to prove the assertions �(root
k
↝ y ∧ y.del) in line 26 and similarly in line 28. For

completeness, we now show how the proof of the remaining assertions in Figure 1 is attained,
when assuming the assertions deduced by the framework. This concludes the linearizablity
proof.

Reachability related assertions. In line 24 the fact that �(root
k
↝ y) is true follows

from line 16.

2 We use standard modeling of the memory state (the heap) as a function H from locations to values; see
Section 3.

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:7

The writes in insert and delete (lines 50, 56, 59 and 38) require that a path exists now.
This follows from the �(root

k
↝ x) (known from the local view argument) and the fact that

¬x.rem, using an invariant similar to preservation (see Example 10): For every location x
and key k, if root

k
↝ x, then every write retains this unless it sets x.rem before releasing

the lock on x (this happens in lines 95, 77 and 74). Thus, when insert and remove lock x
and see that it is not marked as removed, root

k
↝ x follows from �(root

k
↝ x). Note that

the fact that writes other than lines 95, 77 and 74 do not invalidate root
k
↝ x follows easily

from their annotations.

Additional assertions. The invariant that keys are immutable justifies assertions referring
to keys of objects that are read earlier, e.g. in line 50 and the rest of the assertion in line
28 (y.key is read earlier in locate). The rest of the assertions can be attributed to reading
a location under the protection of a lock. An example of this is the assertion that ¬y.rem
in line 38.

3 The Framework: Correctness of Traversals Using Local Views

In this section we present the key technical contribution of our framework, which targets
proving properties of traversals. We address properties of reachability along search paths
(formally defined in Section 3.1). Roughly speaking, our approach considers the traversal
in concurrent executions as operating without interference on a local view: the thread’s
potentially inconsistent picture of memory obtained by performing reads concurrently with
writes by other threads. For a property Sk,x = root

k
↝ x of reachability along a search path,

we introduce conditions under which one can deduce that �Sk,x holds in the actual global
state of the concurrent data structure out of the fact that Sk,x holds in the local view of a
single thread, where the latter is established using sequential reasoning (see Section 3.2).
This alleviates the need to reason about intermediate states of the traversal in the concurrent
proof.

This section is organized as follows: We start with some preliminary definitions. Section
3.1 defines the abstract, general notion of search paths our framework treats. Section 3.2
defines the notion of a local view which is at the basis of local view arguments. Section 3.3
formally defines the conditions under which local view arguments hold, and states our main
technical result. In Section 3.4 we sketch the ideas behind the proof of this result.

Programming model. A global state (state) is a mapping between memory locations (loca-
tions) and values. A value is either a natural number, a location, or null. Without loss of
generality, we assume that threads share access to a global state. Thus, memory locations are
used to store the values of fields of objects. A concurrent execution (execution) is a sequence
of states produced by an interleaving of atomic actions issued by threads. We assume that
each atomic action is either a read or a write operation. (We treat synchronization actions,
e.g., lock and unlock, as writes.) A read r consists of a value v and a location read(r) with
the meaning that r reads v from read(r). Similarly, a write w consists of a value v and a
location mod(w) with the meaning that w sets mod(w) to v. We denote by w(H) the state
resulting from the execution of w on state H.

DISC 2018

23:8 Proving Linearizability Using Local Views

3.1 Reachability Along Search Paths

The properties we consider are given by predicates of the form Sk,x = root
k
↝ x, denoting

reachability of x by a k-search path, where root is the entry point to the data structure.
A k-search path in state H is a sequence of locations that is traversed when searching for
a certain element, parametrized by k, in the data structure. Reachability of an object x
along a k-search path from root is understood as the existence of a k-search path between
designated locations of x, e.g. the key field, and root.

Search paths may be defined differently in different data structures (e.g., list, tree or
array). For example, k-search paths in Figure 1 consist of sequences ⟨x.key, x.left, y.key⟩
where y.key is the address pointed to by x.left (meaning, the location that is the value
stored in x.left) and x.key > k, or ⟨x.key, x.right, y.key⟩ where y.key is the address pointed
to by x.right and x.key < k. This definition of k-search paths reproduces the definition of
reachability along search paths from Section 2.1.

Our framework is oblivious to the specific definition of search paths, and only assumes
the following properties of search paths (which are satisfied, for example, by the definition
above):

If `1, . . . , `m is a k-search path in H and H ′ satisfies H ′(`i) = H(`i) for all 1 ≤ i < m,
then `1, . . . , `m is a k-search path in H

′ as well, i.e., the search path depends on the
values of locations in H only for the locations along the sequence itself (but the last).
If `1, . . . , `m and `m, . . . , `m+r are both k-search paths in H, then `1, . . . , `m, . . . , `m+r is
too, i.e., search paths are closed under concatenation.
If `1, . . . , `m is a k-search path in H then so is `i, . . . , `j for every 1 ≤ i ≤ j ≤ m, i.e.,
search paths are closed under truncation.

▶ Remark 2. It is simple to extend our framework to deduce properties of the form�(root
k
↝

x ∧ ϕ(x)) where ϕ(x) is a property of a single field of x. For example, ϕ(x) = x.del states
that the field del of x is true. As another example, the predicate root

k
↝ x ∧ (x.next = y)

says that the link from x to y is reachable. See the extended version [20] for details.

3.2 Local Views and Their Properties
We now formalize the notion of local view and explain how properties of local views can be
established using sequential reasoning.

Local view. Let r̄ = r1, . . . , rd be a sequence of read actions executed by some thread. As
opposed to the global state, the local view of the reading thread refers to the inconsistent
picture of the memory state that the thread obtains after issuing r̄ (concurrently with writes).
Formally, the sequence of reads r̄ induces a state Hlv, which is constructed by assigning to
every location x which r̄ reads the last value r̄ reads in x. Namely, when r̄ starts, its local
view H

(0)
lv is empty, and, assuming its ith read of value v from location `, the produced local

view is H(i)
lv = H

(i−1)
lv [`↦ v]. We refer to Hlv = H

(d)
lv as the local view produced by r̄ (local

view for short). We emphasize that while technically Hlv is a state, it is not necessarily an
actual intermediate global state, and may have never existed in memory during the execution.

Sequential reasoning for establishing properties of local views. Properties of the local
view Hlv, which are the starting point for applying our framework, are established using
sequential reasoning. Namely, proving that a predicate such as root

k
↝ x holds in the local

view at the end of the traversal amounts to proving that it holds in any sequential execution

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:9

of the traversal, i.e., an execution without interference which starts at an arbitrary program
state. This is because the concurrent traversal constructing the local view can be understood
as a sequential execution that starts with the local view as the program state.

▶ Example 3. In the running example, straightforward sequential reasoning shows that
indeed root

k
↝ x holds at line 16 in sequential executions of locate(k) (i.e., executions

without interference), no matter at which program state the execution starts. This ensures
that it holds, in particular, in the local view.

3.3 Local View Argument: Conditions & Guarantees

The main theorem underlying our framework bridges the discrepancy between the local view
of a thread as it performs a sequence of read actions, and the actual global state during the
traversal.

In the sequel, we fix a sequence of read actions r̄ = r1, . . . , rd executed by some thread,
and denote the sequence of write actions executed concurrently with r̄ by w̄ = w1, . . . , wn.
We denote the global state when r̄ starts its execution by H(0)

c , and the intermediate global
states obtained after each prefix of these writes in w̄ by H(i)

c = w1 . . . wi(H(0)
c).

Using the above terminology, our framework devises conditions for showing for a reacha-
bility property Sk,x that if Sk,x(Hlv) holds, then there exists 0 ≤ i ≤ n such that Sk,x(H(i)

c)
holds, which means that �Sk,x holds in the actual global state reached at the end of the
traversal. We formalize these conditions below.

3.3.1 Condition I: Temporal Acyclicity

The first requirement of our framework concerns the order on the memory locations repre-
senting the data structure, according to which readers perform their traversals. We require
that writers maintain this order acyclic across intermediate states of the execution. For
example, when the order is based on following pointers in the heap, then, if it is possible to
reach location y from location x by following a path in which every pointer was present at
some point in time (not necessarily the same point), then it is not possible to reach x from y

in the same manner. This requirement is needed in order to ensure that the order is robust
even from the perspective of a concurrent reading operation, whose local view is obtained
from a fusion of fractions of states.

We begin formalizing this requirement with the notion of search order on memory.

Search order. The acyclicity requirement is based on a mapping from a state H to a partial
order that H induces on memory locations, denoted ≤H , that captures the order in which
operations read the different memory locations. Formally, ≤H is a search order :

▶ Definition 4 (Search order). ≤H is a search order if it satisfies the following conditions:
(i) It is locally determined: if `2 is an immediate successor of `1 in ≤H , then for every H ′

such that H ′(`1) = H(`1) it holds that `1 ≤H ′ `2.
(ii) Search paths follow the order: if there is a k-search path between `1 and `2 in H, then

`1 ≤H `2.
(iii) Readers follow the order: reads in r̄ always read a location further in the order in the

current global state. Namely, if `′ is the last location read, the next read r reads a
location ` from the state H(m)

c such that `′ ≤
H

(m)
c

`.

DISC 2018

23:10 Proving Linearizability Using Local Views

Note that the locality of the order is helpful for the ability of readers to follow the order:
the next location can be known to come forward in the order solely from the last value the
thread reads.

▶ Example 5. In the example of Figure 1, the order ≤H is defined by following pointers
from parent to children, i.e., all the fields of x.left and x.right are ordered after the fields
of x, and the fields of an object are ordered by x.key < x.del < {x.left, x.right}. It is easy
to see that this is a search order. Locality follows immediately, and so does the property
that search paths follow the order. The fact that the read-in-order property holds for all
the methods in Figure 1 follows from a very simple syntactic analysis, e.g., in the case of
locate(k), children are always read after their parents and the field key is always accessed
before left or right.

▶ Remark 6. Different search orders may be used for different traversals and different k’s
when establishing �(root

k
↝ x) at the end of the traversal. In Definition 4, condition (iii)

considers (just) the reads performed by the traversal of interest, and condition (ii) considers
the possible search paths it constructs in the local view (just) for the k of interest.

Accumulated order and acyclicity. The accumulated order captures the order as it may
be observed by concurrent traversals across different intermediate states. Formally, we define
the accumulated order w.r.t. a sequence of writes ŵ1, . . . , ŵm, denoted ≤∪

ŵ1...ŵm(H(0)
c), as the

transitive closure of ⋃
0≤s≤m

≤
ŵ1...ŵs(H

(0)
c). In our example, the accumulated order consists of

all parent-children links created during an execution. We require:

▶ Definition 7 (Acyclicity). We say that ≤H satisfies acyclicity of accumulated order w.r.t. a
sequence w̄ = w1, . . . , wn of writes if the accumulated order ≤∪

w1...wn(H(0)
c) is a partial order.

▶ Example 8. In our running example, acyclicity holds because insert, remove, and rotate
modify the pointers from a node only to point to new nodes, or to nodes that have already
been reachable from that node. Modifications to other fields have no effect on the order. Note
that rotate does not perform the rotation in place, but allocates a new object. Therefore,
the accumulated order, which consists of all parent-children links created during an execution,
is acyclic, and hence remains a partial order.

3.3.2 Condition II: Preservation of Search Paths
The second requirement of our framework is that for every write action w which happens
concurrently with the sequence of reads r̄ and modifies location mod(w), if mod(w) was
k-reachable (i.e., Sk,mod(w) was true) at some point in time after r̄ started and before w
occurred, then it also holds right before w is performed. We note that this must hold in the
presence of all possible interferences, including writes that operate on behalf of other keys
(e.g. insert(k′)). Formally, we require:

▶ Definition 9 (Preservation). We say that w̄ ensures preservation of k-reachability by
search paths if for every 1 ≤ m ≤ n, if for some 0 ≤ i < m, H(i)

c ⊧ Sk,mod(wm) then
H

(m−1)
c ⊧ Sk,mod(wm).

Note that H(m−1)
c ⊧ Sk,mod(wm) iff H

(m)
c ⊧ Sk,mod(wm) since the search path to mod(wm) is

not affected by wm (by the basic properties of Sk,mod(wm), see Section 3.1).

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:11

▶ Example 10. In our running example, preservation holds because wm either modifies a
location that has never been reachable (such as line 93), in which case preservation holds
vacuously, or holds the lock on x when ¬x.rem (without modifying its predecessor earlier
under this lock).3 In the latter case preservation holds because every previous write w′ retains
root

k
↝ mod(wm) unchanged unless it sets the field rem of x to true before releasing the

lock on x. Therefore, root
k
↝ mod(wm) is retained still when wm is performed. Preservation

follows.

We emphasize that the preservation condition only requires that k-reachability is retained
to modified locations ` and only at the point of time when the write w to ` is performed;
k-reachability may be lost at later points in time. In particular, locations whose reachability
has been reduced may be accessed, as long as they are not modified after the reachability
loss. For example, consider a rotation as in Figure 2a. The rotation breaks the k-reachability
of y: root

k
↝ y holds before the rotation but not afterwards. Indeed, our framework does

not establish root
k
↝ y, but infers �(root

k
↝ y), which does hold. In this example, the

preservation condition requires that the left and right pointers of y are not modified after
this rotation is performed.4 On the other hand, concurrent traversals may access y. In the
example, this happens when (1) the traversal continues beyond y in the search for k′ ≠ k,
and when (2) the traversal searches for k and terminates in y.

3.3.3 Local View Arguments’ Guarantee
We are now ready to formalize our main theorem, relating reachability in the local view
(Section 3.2) to reachability in the global state, provided that the conditions from Definitions 7
and 9 are satisfied.

▶ Theorem 11. If
(i) ≤H is a search order satisfying the accumulated acyclicity property w.r.t. w̄, and
(ii) w̄ ensures preservation of k-reachability by search paths,

then for every k and location x, if Sk,x(Hlv) holds, then there exists 0 ≤ i ≤ n s.t. Sk,x(H(i)
c)

holds.

In the extended version [20] we illustrate how violating these conditions could lead to
incorrectness of traversals. Section 3.4 discusses the main ideas behind the proof.

3.4 Proof Idea
We now sketch the correctness proof of Theorem 11. (The full details appear in the extended
version [20].) The theorem transfers Sk,x from the local view to the global state. Recall that
the local view is a fusion of the fractions of states observed by the thread at different times.
To relate the two, we study the local view from the lens of a fabricated state: a state resulting
from a subsequence of the interfering writes, which includes the observed local view. We
exploit the cooperation between the readers and the writers that is guaranteed by the order
≤H (which readers and writers maintain) to construct a fabricated state which is closely
related to the global state, in the sense that it simulates the global state (Definition 12);

3 In line 94, because x is a child of y which is a child of p and ¬p.rem, it follows that ¬x.rem because a
node marked with rem loses its single parent beforehand.

4 Modification of y.rem is allowed because this field does not affect search paths (see Section 3.1).

DISC 2018

23:12 Proving Linearizability Using Local Views

simulation depends both on the acyclicity requirement and on the preservation requirement
(Lemma 14). Deducing the existence of a search path in an intermediate global state out of
its existence in the local view is a corollary of this connection (Lemma 13).

Fabricated state. The fabricated state provides a means of analyzing the local view and its
relation to the global (true) state. A fabricated state is a state consistent with the local view
(i.e. it agrees with the value of every location present in the local view) that is constructed
by a subsequence w̄f = wi1 , . . . , wik

of the writes w̄. One possible choice for w̄f is the
subsequence of writes whose effect was observed by r̄ (i.e. r̄ read-from). For relating the
local view to the global state, which is constructed from the entire w̄, it is beneficiary to
include in w̄f additional writes except for those directly observed by r̄. In what follows,
we choose the subsequence w̄f so that the fabricated state satisfies a consistency property
of forward-agreement with the global state. This means that although not all writes are
included in w̄f (as the thread misses some), the writes that are included have the same
picture of the “continuation” of the data structure as it really was in the global state.

Construction of fabricated state based on order. Our construction of the fabricated state
includes in w̄f all the writes that occurred backward in time and wrote to locations forward
in the order than the current location read, for every location read. (In particular, it includes
all the writes that r̄ reads from directly). Formally, let mod(w) denote the location modified
by write w. Then for every read r in r̄ that reads location `r from global state H(m)

c , we
include in w̄f all the writes {wj ∣ j ≤ m ∧ `r ≤

∪

w1...wm(H(0)
c) mod(wj)} (ordered as in w̄). We

use the notation H(j)
f = wi1 . . . wij

(H(0)
c) for intermediate fabricated states. This choice of

w̄f ensures forward-agreement between the fabricated state and the global state: every write
wij

in w̄f , the states on which it is applied, H(ij−1)
c and H(j−1)

f agree on all locations ` such
that mod(wij

) ≤
H

(j−1)
f

`.
In what follows, we fix the fabricated state to be the state resulting at the end of this

particular choice of w̄f . It satisfies forward-agreement by construction, and is an extension
of the local view, relying on the acyclicity requirement.

Simulation. As we show next, the construction of w̄f ensures that the effect of every write
in w̄f on Sk,x is guaranteed to concur with its effect on the real state with respect to changing
Sk,x from false to true. We refer to this property as simulation.

▶ Definition 12 (Simulation). For a predicate P, we say that the subsequence of writes
wi1 . . . wik

P-simulates the sequence w1 . . . wn if for every 1 ≤ j ≤ k, if ¬P(H(j−1)
f) but

P(wij
(H(j−1)

f)), then ¬P(H(ij−1)
c) ⟹ P(wij

(H(ij−1)
c)).

Simulation implies that the write wij
in w̄f that changed Sk,x to true on the local view,

would also change it on the corresponding global state H(ij)
c (unless it was already true in

H
(ij−1)
c). This provides us with the desired global state where Sk,x holds. Using also the

fact that Sk,x is upward-absolute [44] (namely, preserved under extensions of the state), we
obtain:

▶ Lemma 13. Let w̄f be the subsequence of w̄ = w1, . . . , wn defined above. If Sk,x(Hlv)
holds and w̄f Sk,x-simulates w̄, then there exists some 0 ≤ i ≤ n s.t. Sk,x(H(i)

c).

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:13

Finally, we show that the fabricated state satisfies the simulation property. Owing to the
specific construction of w̄f , the proof needs to relate the effect of writes on states which have
a rather strong similarity: they agree on the contents of locations which come forward of the
modified location. Preservation complements this by guaranteeing the existence of a path to
the modified location:

▶ Lemma 14. If w̄ satisfies preservation of Sk,mod(w) for all w, then w̄f Sk,x-simulates w̄
for all x.

To prove the lemma, we show that preservation, together with forward agreement, implies the
simulation property, which in turn implies that Sk,x(H

(j−1)
f) ⟹ ∃0 ≤ i ≤ ij−1 Sk,x(H(i)

c)
(see Lemma 13). To show simulation, consider a write wij

that creates a k-search path ζ
to x in H(j)

f . We construct such a path in the corresponding global state. The idea is to
divide ζ to two parts: the prefix until mod(wij

), and the rest of the path. Relying on forward
agreement, the latter is exactly the same in the corresponding global state, and preservation
lets us prove that there is also an appropriate prefix: necessarily there has been a k-search
path to mod(wij

) in the fabricated state before wij
, so by induction, exploiting the fact that

simulation up to j − 1 implies that Sk,x(H
(j−1)
f) ⟹ ∃0 ≤ i ≤ ij−1. Sk,x(H(i)

c), there has
been a k-search path to mod(wij

) in some intermediate global state that occurred earlier
than the time of wij

. Since wij
writes to mod(wij

), the preservation property ensures that
there is a k-search path to mod(wij

) in the global state also at the time of the write wij
,

and the claim follows.

4 Putting It All Together: Proving Linearizability Using Local Views

Recall that our overarching objective in developing the local view argument (Section 3) is to
prove the correctness of assertions used in linearizability proofs (e.g., in Section 2.1). We now
summarize the steps in the proof of the assertions. Overall, it is composed of the following
steps:
1. Establishing properties of traversals on the local view using sequential reasoning,
2. Establishing the acyclicity and preservation conditions by simple concurrent reasoning,

and
3. Proving the assertions when relying on local view arguments, augmented with some

concurrent reasoning.

For the running example, step 1 is presented in Example 3, and step 2 consists of Examples
8 and 10 (see the extended version [20] for a full formal treatment). Step 3 concludes the
proof as discussed in Section 2.2.

▶ Remark 15. While the local view argument, relying in particular on step 2, was developed
to simplify the proofs of the assertions in 3, this goes also in the other direction. Namely, the
concurrent reasoning required for proving the conditions of the framework (e.g., preservation)
can be greatly simplified by relying on the correctness of the assertions (as they constrain
possible interfering writes). Indeed, the proofs may mutually rely on each other. This is
justified by a proof by induction: we prove that the current write satisfies the condition in
the assertion, assuming that all previous writes did. This is also allowed in proofs of the
conditions in Section 3.3, because they refer to the effect of interfering writes, that are known
to conform to their respective assertions from the induction hypothesis. Hence, carrying
these proofs together avoids circular reasoning and ensures validity of the proof.

DISC 2018

23:14 Proving Linearizability Using Local Views

5 Additional Case Studies

5.1 Lazy and Optimistic Lists
We successfully applied our framework to prove the linearizability of sorted-list-based concur-
rent set implementations with unsynchronized reads. Our framework is capable of verifying
various versions of the algorithm in which insert and delete validate that the nodes they
locked are reachable using a boolean field, as done in the lazy list algorithm [23], or by
rescanning the list, as done in the optimistic list algorithm [27, Chap 9.8]. Our framework is
also applicable for verifying implementations of the lazy list algorithm in which the logical
deletion and the physical removal are done by the same operation or by different ones. We
give a taste of these proofs here.

Figure 3 shows an annotated pseudo-code of the lazy list algorithm. Every operation
starts with a call to locate(k), which performs a standard search in a sorted list – without
acquiring any locks – to locate the node with the target key k. This method returns the last
link it traverses, (x, y). Figure 3 includes two variants of contains(k): In one variant, it
returns true only if it finds a node with key k that is not logically deleted (line 139), while
in the second variant it returns true even if that node is logically deleted (the commented
return at line 141). Interestingly, the same annotations allow to verify both variants, and
the proof differs only in the abstraction function mapping states of the list to abstract sets.
Modifications of a node in the list are synchronized with the node’s lock. An insert(k)
operation calls locate, and then links a new node to the list if k was not found. delete(k)
logically deletes y (after validating that y remained linked to the list after its lock was
acquired), and then physically removes it.

As in Section 2, the assertions contain predicates of the form root
k
↝ x, which means

that x resides on a valid search path for key k that starts at root; the formal definition of a
search path in the lazy list appears below. Note that root

k
↝ null indicates that k is not in

the list.

or
k
↝ ox

def
= ∃o0, . . . , om. o0 = or ∧ om = ox ∧∀i = 1..m. oi−1.key < k ∧ oi−1.next = oi

We prove the linearizability of the algorithm using an abstraction function. One abstraction
function we may use maps H to the set of keys of the nodes that are on a valid search path
for their key and are not logically deleted in H:

Alogical(H) = {k ∈ N ∣ H ⊧ ∃x. root
k
↝ x ∧ x.key = k ∧ ¬x.mark} .

Another possibility is to define the abstract set to be the keys of all the reachable nodes:

Aphysical(H) = {k ∈ N ∣ H ⊧ ∃x. root
k
↝ x ∧ x.key = k} .

We note that Alogical(H) can be used to verify the code of contains as written, while
Aphysical(H) allows to change the algorithm to return true in line 141. In both cases, the
proof of linearizability is carried out using the same assertions currently annotating the code.
In the rest of this section, we discuss the verification of the code in Figure 3 as written, and
thus use A(H) = Alogical as the abstraction function. The assertions almost immediately
imply that for every operation invocation op, there exists a state H during op’s execution for
which the abstract state A(H) agrees with op’s return value, and so op can be linearized at
H; we need only make the following observations. First, contains() and a failed delete()
or insert() do not modify the memory, and so can be linearized at the point in time in
which the assertions before their return statements hold. Second, in the state H in which a
successful delete(k) (respectively, insert(k)) performs a write, the assertions on line 156

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:15

97 type N
98 i n t key
99 N next

100 bool mark

102 N root←new N(−∞) ;

104 N×N locate (i n t k)
105 x , y← root
106 whi le (y≠nu l l ∧ y.key<k)
107 x←y
108 y←x.next
109 {�(root

k
↝ x ∧ x.next = y)}

110 {x.key < k ∧ (y ≠ null ⟹ y.key ≥ k)}
111 return (x , y)

113 bool insert (i n t k)
114 (x , y)← locate (k)
115 i f (y≠nu l l ∧ y.key=k)
116 {�(root

k
↝ y) ∧ y.key = k}

117 return f a l s e
118 lock (x)
119 lock (y)
120 i f (x.mark ∨ x.next≠y)
121 restart
122 {¬x.mark ∧ x.next = y}
123 z←new N(k)
124 {y ≠ null ⟹ k > y.key}
125 z.next←y

126
{root

k
↝ x ∧ x.next = y ∧ x.key < k ∧

z.next = y ∧ ¬z.mark ∧
(y ≠ null ⟹ k > y.key)}

127 x.next←z
128 return true

129 bool contains (i n t k)
130 (_, y)← locate (k)
131 i f (y=nu l l)
132 {�(root

k
↝ null)}

133 return f a l s e
134 i f (y . key≠k)
135 {�(root

k
↝ x ∧ x.next = y) ∧ k < x.key ∧ y.key > k}

136 return f a l s e
137 i f (¬y . mark)
138 {root

k
↝ y ∧ y.key = k ∧ ¬y.mark}

139 return true
140 {�(root

k
↝ y) ∧ y.key = k ∧ y.mark}

141 return f a l s e // return true

143 bool delete (i n t k)
144 (x , y)← locate (k)
145 i f (y=nu l l)
146 {�(root

k
↝ null)}

147 return f a l s e
148 i f (y . key≠k)
149 {�(root

k
↝ x ∧ x.next = y) ∧ x.key < k ∧ y.key > k}

150 return f a l s e
151 {y.key = k}
152 lock (x)
153 lock (y)
154 i f (x.mark ∨ y.mark ∨ x.next≠y)
155 restart
156 {root

k
↝ x ∧ x.next = y ∧ y.key = k ∧ ¬x.mark ∧ ¬y.mark}

157 y.mark←true
158 {root

k
↝ x ∧ x.next = y ∧ y.key = k ∧ ¬x.mark ∧ y.mark}

159 x.next←y.next
160 return true

Figure 3 Lazy List [23]. The code is annotated with assertions written inside curly braces.
For brevity, unlock operations are omitted; a procedure releases all the locks it acquired when it
terminates or restarts.

(respectively, line 126) imply that k ∈ A(H) (respectively, k /∈ A(H)). Therefore, these
writes change the abstract set, making it agree with the operation’s return value of true.
Finally, it only remains to verify that the physical removal performed by delete(k) in state
H does not modify A(H). Indeed, as an operation modifies a field of node v only when it
has v locked, it is easy to see that for any node x and key k, if root

k
↝ x held before the

write, then it also holds afterwards with the exception of the removed node y. However,
delete(k) removes a deleted node, and thus does not change A(H).

The proof of the assertions in Figuire 3 utilizes a local view argument for the � assertion
in line 109 for the predicate root

k
↝ x ∧ x.next = y, using the extension with a single field

discussed in Remark 2. The conditions of the local view argument are easy to prove: The
acyclicity requirement is evident, as writes modify the pointers from a node only to point to
new nodes, or to nodes that have already been reachable from that node. Preservation holds
because a write either (i) marks a node, which does not affect the search paths; (ii) modifies
a location that has never been reachable (such as line 125), in which case preservation holds
vacuously; (iii) removes a marked node y (line 159) which removes all the search paths that
go through it. However, as y is marked, its fields are not going to be modified later on, and
thus y cannot be the cause of violating preservation. Furthermore, all search paths that reach
y’s successor before the removal are retained and merely get shorter; or (iv) adds a reachable
node z in between two reachable nodes x and y (line 127). However, as z’s key is smaller
than y’s, the insertion preserves any search paths which goes through y’s next pointer.

DISC 2018

23:16 Proving Linearizability Using Local Views

As for the rest of the assertions, when insert and delete lock x and see that it is not
marked, the root

k
↝ x property follows from the �(root

k
↝ x) deduced above by a local

view argument using the same invariant in preservation above.5 The remainder assertions
are attributed to reading a location under the protection of a lock, e.g. ¬x.mark in line 122.

5.2 Lock-free List and Skip-List
We used our framework to prove the linearizability a sorted lock-free list-based concurrent
set algorithm [27, Chapter 9.8] and of a lock-free skip-list-based concurrent set algorithm [27,
Chapter 14.4]. In these proofs we use local view arguments to prove the concurrent traversals
of the contains method, which is the most difficult part of the proofs: add and remove use
the internal find which traverses the list and also prunes out marked nodes, and thus their
correctness follows easily from an invariant ensuring the reachability of unmarked nodes.
The proofs appear in [20].

6 Related Work

Verifying linearizability of concurrent data structures has been studied extensively. Some
techniques, e.g., [1, 2, 18, 51, 49], apply to a restricted set of algorithms where the linearization
point of every invocation is fixed to a particular statement in the code. While these works
provide more automation, they are not able to deal with the algorithms considered in our
paper where for instance, the linearization point of contains(k) invocations is not fixed.
Generic reductions of verifying linearizability to checking a set of assertions in the code have
been defined in [5, 6, 7, 34, 24, 50, 53]. These works apply to algorithms with non-fixed
linearization points, but they do not provide a systematic methodology for proving the
assertions, which is the main focus of our paper.

Verifying linearizability has also been addressed in the context of defining program
logics for compositional reasoning about concurrent programs. In this context, the goal
is to define a proof methodology that allows composing proofs of program’s components
to get a proof for the entire program, which can also be reused in every valid context of
using that program. Improving on the classical Owicki-Gries [39] and Rely-Guarantee [29]
logics, various extensions of Concurrent Separation Logic [4, 9, 38, 40] have been proposed
in order to reason compositionally about different instances of fine-grained concurrency,
e.g. [30, 33, 15, 42, 46, 47]. However, they focus on the reusability of a proof of a component
in a larger context (when composed with other components) while our work focuses on
simplifying the proof goals that guarantee linearizability. The concurrent reasoning needed
for our framework could be carried out using one of these logics.

The proof of linearizability of the lazy-list algorithm given in [37] is based on establishing
the conditions required by the hindsight lemma [37, Lemma 5.2]. The lemma states that every
link traversed during an unsynchronized traversal was indeed reachable at some point in time
between the beginning of the traversal and the moment the link was crossed. This enables
verifying the correctness of the contains method using, effectively, sequential reasoning.
The hindsight lemma is a specific instance of the extension discussed in Remark 2, and its

5 As in Section 5.2, these assertions could also be deduced directly from a slightly stronger invariant that
unmarked nodes are reachable and that the list is sorted. This is not the case in the optimistic list
of [27, Chap 9.8] which rescans instead of using a marked bit. In both cases contains requires a local
view argument.

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:17

assumptions narrows its application to concurrent set algorithms implemented using sorted
singly-linked lists. In contrast, we present a fundamental technique which is based on far
more generic properties which is applicable to list and tree-based data structures alike.

The proof methodology for proving linearizability of [32] relies on properties of the data
structure in sequential executions. The methodology assumes the existence of base points,
which are points in time during the concurrent execution of a search in which some predicate
holds over the shared state. For instance, when applying the methodology to the lazy list,
they prove the existence of base points using prior techniques [37, 52] that employ tricky
concurrent reasoning. Our work is thus complementary to theirs: our proof argument is
meant to replace the latter kind of reasoning, and can thus simplify proofs of the existence
of base points.

The Edgeset framework of Shasha and Goodman [43], which has recently been formalized
using concurrent separation logic [31], provides conditions for the linearizability of concurrent
search data structures. It relies on a precondition that for any operation on key k, root

k
↝ x

holds when the operation looks for, inserts, or deletes k at x. However, the optimistic
data structures that we consider often do not satisfy this precondition, making the Edgeset
framework inapplicable. (Example 10 describes how this precondition does not hold in
our search tree example, and a similar issue exists in the lazy-list.) Moreover, the Edgeset
precondition implies that the linearization point of an operation occurs at one of its own
atomic steps. Our framework does not have this requirement. Shasha and Goodman
also describe three algorithm templates and prove, using concurrent reasoning, that these
templates satisfy the preconditions of the Edgeset framework. In contrast, our argument
uses sequential reasoning for traversals, and our concurrent proofs consider only the effects
of interleaving writes – not both reads and writes.

7 Conclusions and Future Work

This paper presents a novel approach for constructing linearizability proofs of concurrent
search data structures. We present a general proof argument that is applicable to many
existing algorithms, uncovering fundamental structure – the acyclicity and preservation
conditions – shared by them. We have instantiated our framework for a self-balancing binary
search tree, lists with lazy [23] or non-blocking [27] synchronization, and a lock-free skip list.
To the best of our knowledge, our work is the first to prove linearizability of a self-balancing
binary search tree using a unified proof argument.

An important direction for future work is the mechanism of backtracking. Some algorithms,
including the original CF tree [12, 14], backtrack instead of restarting when their optimistic
validation fails. In the CF tree, backtracking is implemented by directing pointers from child
to parent, breaking our acyclicity requirement. A similar situation arises in the in-place
rotation of [8]. Handling these scenarios in our proof argument is an interesting direction for
future work.

An additional direction to explore is validations performed during traversals. For example,
the SnapTree algorithm [8] performs in-place rotations which violate preservation. The
algorithm overcomes this by performing hand-over-hand validation during a lock-free traversal.
This validation, consisting of re-reading previous locations and ensuring version numbers
have not changed, does not fit our approach of sequential reasoning on traversals.

The preservation of reachability to location of modification arises naturally out of the
correctness of traversals in modifying operations, ensuring that the conclusion of the traversal
– the existence of a path – holds not only in some point in the past, but also holds at the

DISC 2018

23:18 Proving Linearizability Using Local Views

time of the modification. We show that, surprisingly, preservation, when it is combined
with the order, suffices to reason about the traversal by a local view argument. We base
the correctness of read-only operations on the same predicates, and so rely on the same
property. It would be interesting to explore different criteria which ensure the simulation of
the fabricated state constructed based on the accumulated order.

Finding ways to extend the framework in these directions is an interesting open problem.
This notwithstanding, we believe that our framework captures important principles underlying
modern highly concurrent data structures that could prove useful both for structuring
linearizability proofs and elucidating the correctness principles behind new concurrent data
structures.

References
1 Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed Rezine.

An integrated specification and verification technique for highly concurrent data structures.
In TACAS, pages 324–338, 2013. doi:10.1007/978-3-642-36742-7_23.

2 Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav. Com-
parison under abstraction for verifying linearizability. In CAV ’07, volume 4590 of LNCS,
pages 477–490, 2007. doi:10.1007/978-3-540-73368-3_49.

3 Maya Arbel and Hagit Attiya. Concurrent Updates with RCU: Search Tree As an Example.
In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC
’14, pages 196–205, New York, NY, USA, 2014. ACM. doi:10.1145/2611462.2611471.

4 Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. Per-
mission accounting in separation logic. In Jens Palsberg and Martín Abadi, editors, Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages 259–
270. ACM, 2005. doi:10.1145/1040305.1040327.

5 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. Verifying concurrent
programs against sequential specifications. In ESOP ’13, volume 7792 of LNCS, pages
290–309. Springer, 2013.

6 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. On reducing lin-
earizability to state reachability. In Automata, Languages, and Programming - 42nd In-
ternational Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II,
pages 95–107, 2015.

7 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. Proving
linearizability using forward simulations. In Rupak Majumdar and Viktor Kuncak, editors,
Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Ger-
many, July 24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer
Science, pages 542–563. Springer, 2017. doi:10.1007/978-3-319-63390-9_28.

8 Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical
concurrent binary search tree. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 2010, Bangalore, India, January
9-14, 2010, pages 257–268, 2010.

9 Stephen D. Brookes. A semantics for concurrent separation logic. In CONCUR 2004 -
Concurrency Theory, 15th International Conference, London, UK, August 31 - September
3, 2004, Proceedings, pages 16–34, 2004. doi:10.1007/978-3-540-28644-8_2.

10 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.
In PPoPP, 2014.

11 Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. Scalable address spaces
using RCU balanced trees. In ASPLOS, 2012.

http://dx.doi.org/10.1007/978-3-642-36742-7_23
http://dx.doi.org/10.1007/978-3-540-73368-3_49
http://dx.doi.org/10.1145/2611462.2611471
http://dx.doi.org/10.1145/1040305.1040327
http://dx.doi.org/10.1007/978-3-319-63390-9_28
http://dx.doi.org/10.1007/978-3-540-28644-8_2

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:19

12 Tyler Crain, Vincent Gramoli, and Michel Raynal. A contention-friendly binary search tree.
In Felix Wolf, Bernd Mohr, and Dieter an Mey, editors, Euro-Par 2013 Parallel Processing,
pages 229–240, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

13 Tyler Crain, Vincent Gramoli, and Michel Raynal. No Hot Spot Non-blocking Skip List.
In ICDCS, 2013.

14 Tyler Crain, Vincent Gramoli, and Michel Raynal. A fast contention-friendly binary search
tree. Parallel Processing Letters, 26(03):1650015, 2016. doi:10.1142/S0129626416500158.

15 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada: A logic for
time and data abstraction. In Richard E. Jones, editor, ECOOP 2014 - Object-Oriented
Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings, volume 8586 of Lecture Notes in Computer Science, pages 207–231. Springer,
2014. doi:10.1007/978-3-662-44202-9_9.

16 Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized Concurrency:
The Secret to Scaling Concurrent Search Data Structures. In ASPLOS, 2015.

17 Dana Drachsler, Martin Vechev, and Eran Yahav. Practical Concurrent Binary Search
Trees via Logical Ordering. In PPoPP, 2014.

18 Cezara Dragoi, Ashutosh Gupta, and Thomas A. Henzinger. Automatic linearizability
proofs of concurrent objects with cooperating updates. In CAV ’13, volume 8044 of LNCS,
pages 174–190. Springer, 2013. doi:10.1007/978-3-642-39799-8_11.

19 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
Binary Search Trees. In PODC, 2010.

20 Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon
Shoham. Order out of chaos: Proving linearizability using local views. CoRR,
abs/1805.03992, 2018. arXiv:1805.03992.

21 Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, Computer Lab-
oratory, University of Cambridge, Computer Laboratory, February 2004.

22 Timothy L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. In DISC,
2001.

23 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, Bill Scherer, and Nir Shavit.
A lazy concurrent list-based set algorithm. In OPODIS, 2005.

24 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented linearizability
proofs. In CONCUR, pages 242–256, 2013. doi:10.1007/978-3-642-40184-8_18.

25 M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. TOPLAS, 12(3), 1990.

26 Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A Simple Optimistic Skiplist
Algorithm. In SIROCCO, 2007.

27 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2008.

28 Shane V. Howley and Jeremy Jones. A Non-blocking Internal Binary Search Tree. In SPAA,
2012.

29 Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress, pages
321–332, 1983.

30 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015, pages 637–650. ACM, 2015. doi:10.
1145/2676726.2676980.

DISC 2018

http://dx.doi.org/10.1142/S0129626416500158
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-642-39799-8_11
http://arxiv.org/abs/1805.03992
http://dx.doi.org/10.1007/978-3-642-40184-8_18
http://dx.doi.org/10.1145/2676726.2676980
http://dx.doi.org/10.1145/2676726.2676980

23:20 Proving Linearizability Using Local Views

31 Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. Go with the flow: compositional
abstractions for concurrent data structures. PACMPL, 2(POPL):37:1–37:31, 2018. doi:
10.1145/3158125.

32 Kfir Lev-Ari, Gregory V. Chockler, and Idit Keidar. A constructive approach for prov-
ing data structures’ linearizability. In Yoram Moses, editor, Distributed Computing -
29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceed-
ings, volume 9363 of Lecture Notes in Computer Science, pages 356–370. Springer, 2015.
doi:10.1007/978-3-662-48653-5_24.

33 Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary state for coarse-grained con-
currency. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13,
Rome, Italy - January 23 - 25, 2013, pages 561–574. ACM, 2013. doi:10.1145/2429069.
2429134.

34 Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-fixed lin-
earization points. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 459–470, 2013.

35 Maged M. Michael. High Performance Dynamic Lock-free Hash Tables and List-based Sets.
In SPAA, 2002.

36 Aravind Natarajan and Neeraj Mittal. Fast Concurrent Lock-free Binary Search Trees. In
PPoPP, 2014.

37 P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying lineariz-
ability with hindsight. In 29th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC), pages 85–94, 2010.

38 Peter W. O’Hearn. Resources, concurrency and local reasoning. In CONCUR 2004 -
Concurrency Theory, 15th International Conference, London, UK, August 31 - September
3, 2004, Proceedings, pages 49–67, 2004. doi:10.1007/978-3-540-28644-8_4.

39 Susan S. Owicki and David Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–285, 1976. doi:10.1145/360051.360224.

40 Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular verification of
a non-blocking stack. In Martin Hofmann and Matthias Felleisen, editors, Proceedings of
the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2007, Nice, France, January 17-19, 2007, pages 297–302. ACM, 2007. doi:10.1145/
1190216.1190261.

41 Arunmoezhi Ramachandran and Neeraj Mittal. A Fast Lock-Free Internal Binary Search
Tree. In ICDCN, 2015.

42 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Specifying and verifying concur-
rent algorithms with histories and subjectivity. In Jan Vitek, editor, Programming Lan-
guages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in Computer
Science, pages 333–358. Springer, 2015. doi:10.1007/978-3-662-46669-8_14.

43 Dennis E. Shasha and Nathan Goodman. Concurrent search structure algorithms. ACM
Trans. Database Syst., 13(1):53–90, 1988. doi:10.1145/42201.42204.

44 Joseph R Shoenfield. The problem of predicativity. In Mathematical Logic In The 20th
Century, pages 427–434. World Scientific, 2003.

45 Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, Scalable, Concurrent
Hash Tables via Relativistic Programming. In USENIX ATC, 2011.

46 Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and hoare-style reason-
ing in a logic for higher-order concurrency. In Greg Morrisett and Tarmo Uustalu, editors,
ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston,

http://dx.doi.org/10.1145/3158125
http://dx.doi.org/10.1145/3158125
http://dx.doi.org/10.1007/978-3-662-48653-5_24
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1007/978-3-540-28644-8_4
http://dx.doi.org/10.1145/360051.360224
http://dx.doi.org/10.1145/1190216.1190261
http://dx.doi.org/10.1145/1190216.1190261
http://dx.doi.org/10.1007/978-3-662-46669-8_14
http://dx.doi.org/10.1145/42201.42204

Y.M.Y. Feldman, A. Morrison, N. Rinetzky, and S. Shoham 23:21

MA, USA - September 25 - 27, 2013, pages 377–390. ACM, 2013. doi:10.1145/2500365.
2500600.

47 V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge, 2008.

48 V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-
concurrent linearisable objects. In PPoPP, 2006.

49 Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In VMCAI ’09: Proc.
10th Intl. Conf. on Verification, Model Checking, and Abstract Interpretation, volume 5403
of LNCS, pages 335–348. Springer, 2009. doi:10.1007/978-3-540-93900-9_27.

50 Viktor Vafeiadis. Automatically proving linearizability. In CAV ’10, volume 6174 of LNCS,
pages 450–464, 2010. doi:10.1007/978-3-642-14295-6_40.

51 Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving correctness of
highly-concurrent linearisable objects. In PPOPP ’06, pages 129–136. ACM, 2006. doi:
10.1145/1122971.1122992.

52 Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. A safety proof of a lazy
concurrent list-based set implementation. Technical Report UCAM-CL-TR-659, University
of Cambridge, Computer Laboratory, 2006.

53 He Zhu, Gustavo Petri, and Suresh Jagannathan. Poling: SMT aided linearizability proofs.
In Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part II, pages 3–19, 2015.

DISC 2018

http://dx.doi.org/10.1145/2500365.2500600
http://dx.doi.org/10.1145/2500365.2500600
http://dx.doi.org/10.1007/978-3-540-93900-9_27
http://dx.doi.org/10.1007/978-3-642-14295-6_40
http://dx.doi.org/10.1145/1122971.1122992
http://dx.doi.org/10.1145/1122971.1122992

Redundancy in Distributed Proofs
Laurent Feuilloley
IRIF, CNRS and University Paris Diderot, France
feuilloley@irif.fr

Pierre Fraigniaud
IRIF, CNRS and University Paris Diderot, France
pierref@irif.fr

Juho Hirvonen
University of Freiburg, Germany
juho.hirvonen@cs.uni-freiburg.de

Ami Paz
IRIF, CNRS and University Paris Diderot, France
amipaz@irif.fr

Mor Perry
School of Electrical Engineering, Tel-Aviv University, Israel
mor@eng.tau.ac.il

Abstract
Distributed proofs are mechanisms enabling the nodes of a network to collectively and efficiently
check the correctness of Boolean predicates on the structure of the network (e.g. having a specific
diameter), or on data structures distributed over the nodes (e.g. a spanning tree). We consider
well known mechanisms consisting of two components: a prover that assigns a certificate to each
node, and a distributed algorithm called verifier that is in charge of verifying the distributed
proof formed by the collection of all certificates. We show that many network predicates have
distributed proofs offering a high level of redundancy, explicitly or implicitly. We use this remark-
able property of distributed proofs to establish perfect tradeoffs between the size of the certificate
stored at every node, and the number of rounds of the verification protocol.

2012 ACM Subject Classification Networks → Error detection and error correction, Theory of
computation → Distributed computing models, Computer systems organization → Redundancy

Keywords and phrases Distributed verification, Distributed graph algorithms, Proof-labeling
schemes, Space-time tradeoffs, Non-determinism

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.24

Related Version A full version of the paper is available at https://arxiv.org/abs/1803.
03031.

Funding Research supported by the French-Israeli Laboratory on Foundations of Computer Sci-
ence (FILOFOCS). The first four authors supported by the ANR project DESCARTES. The first
two authors receive additional support from INRIA project GANG. Third author supported by
the Ulla Tuominen Foundation. Fourth author supported by the Fondation Sciences Mathéma-
tiques de Paris (FSMP).

Acknowledgements We thank Seri Khoury and Boaz Patt-Shamir for valuable discussions, and
the anonymous reviewers of DISC 2018.

© Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:feuilloley@irif.fr
mailto:pierref@irif.fr
mailto:juho.hirvonen@cs.uni-freiburg.de
mailto:amipaz@irif.fr
mailto:mor@eng.tau.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2018.24
https://arxiv.org/abs/1803.03031
https://arxiv.org/abs/1803.03031
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Redundancy in Distributed Proofs

1 Introduction

1.1 Context and Objective
In the context of distributed fault-tolerant computing in large scale networks, it is of the
utmost importance that the computing nodes can perpetually check the correctness of
distributed data structures (e.g., spanning trees) encoded distributedly over the network.
Indeed, such data structures can be the outcome of an algorithm that might be subject
to failures, or be a-priori correctly given data structures but subject to later corruption.
Several mechanisms exist enabling checking the correctness of distributed data structures
(see, e.g., [2, 3, 6, 10–12]). For its simplicity and versatility, we shall focus on one classical
mechanism known as proof-labeling schemes [31], a.k.a. locally checkable proofs [25]1.

Roughly, a proof-labeling scheme assigns certificates to each node of the network. These
certificates can be viewed as forming a distributed proof of the actual data structure (e.g., for
a spanning tree, the identity of a root, and the distance to this root in the tree). The nodes
are then in charge of collectively verifying the correctness of this proof. The requirements
are in a way similar to those imposed on non-deterministic algorithms (e.g., the class NP),
namely: (1) on correct structures, the assigned certificates must be accepted, in the sense
that every node must accept its given certificate; (2) on corrupted structures, whatever
certificates are given to the nodes, they must be rejected, in the sense that at least one
node must reject its given certificate. (The rejecting node(s) can raise an alarm, or launch a
recovery procedure). Proof-labeling schemes and locally checkable proofs can be viewed as a
form of non-deterministic distributed computing (see also [19]).

The main measure of quality for a proof-labeling scheme is the size of the certificates
assigned to correct (a.k.a. legal) data structures. Indeed, these certificates are verified using
protocols that exchange them between neighboring nodes. Thus using large certificates may
result in significant overheads in term of communication. Also, proof-labeling schemes might
be combined with other mechanisms enforcing fault-tolerance, including replication. Large
certificates may prevent replication, or at the least result in significant overheads in term of
space complexity if using replication.

Proof-labeling schemes are extremely versatile, in the sense that they can be used to
certify any distributed data structure or graph property. For instance, to certify a spanning
tree, there are several proof-labeling schemes, each using certificates of logarithmic size [26,31].
Similarly, certifying a minimum-weight spanning tree (MST) can be achieved with certificates
of size Θ(log2 n) bits in n-node networks [29, 31]. Moreover, proof-labeling schemes are very
local, in the sense that the verification procedure performs in just one round of communication,
each node accepting or rejecting based solely on its certificate and the certificates of its
neighbors. However, this versatility and locality comes with a cost. For instance, certifying
rather simple graph property, such as certifying that each node holds the value of the diameter
of the network, requires certificates of Ω̃(n) bits [13]2. There are properties that require even
larger certificates. For instance, certifying that the network is non 3-colorable, or certifying
that the network has a non-trivial automorphism both require certificates of Ω̃(n2) bits [25].
The good news though is that all distributed data structures (and graph properties) can
be certified using certificates of O(n2 + kn) bits, where k is the size of the part of the data
structure stored at each node – see [25,31].

1 These two mechanisms slightly differ: the latter assumes that every node can have access to the whole
state of each of its neighbors, while the former assumes that only part of this state is visible from
neighboring nodes; nevertheless, the two mechanisms share the same essential features.

2 The tilde-notation is similar to the big-O notation, but also ignores poly-logarithmic factors.

L. Feuilloley, P. Fraigniaud, J. Hirvonen, A. Paz, and M. Perry 24:3

Several attempts have been made to make proof-labeling schemes more efficient. For
instance, it was shown in [9] that randomization helps a lot in terms of communication
costs, typically by hashing the certificates, but this might actually come at the price of
dramatically increasing the certificate size. Sophisticated deterministic and efficient solutions
have also been provided for reducing the size of the certificates, but they are targeting
specific structures only, such as MST [30]. Another direction for reducing the size of the
certificates consists of relaxing the decision mechanism, by allowing each node to output
more than just a single bit (accept or reject) [4, 5]. For instance, certifying cycle-freeness
simply requires certificates of O(1) bits with just 2-bit output, while certifying cycle-freeness
requires certificates of Ω(logn) bits with 1-bit output [31]. However, this relaxation assumes
the existence of a centralized entity gathering the outputs from the nodes, and there are still
network predicates that require certificates of Ω̃(n2) bits even under this relaxation. Another
notable approach is using approximation [13], which reduces, e.g., the certificate size for
certifying the diameter of the graph from Ω(n) down to O(logn), but at the cost of only
determining if the given value is up to two times the real diameter.

In this paper, we aim at designing deterministic and generic ways for reducing the
certificate size of proof-labeling schemes. This is achieved by following the guidelines of [33],
that is, trading time for space by exploiting the inherent redundancy in distributed proofs.

1.2 Our Results
As mentioned above, proof-labeling schemes include a verification procedure consisting
of a single round of communication. In a nutshell, we prove that using more rounds of
communication for verifying the certificates enables to reduce significantly the size of these
certificates, often by a factor super-linear in the number of rounds, and sometimes even
exponential.

More specifically, a proof-labeling scheme of radius t (where t can depend on the size
of the input graph) is a proof-labeling scheme where the verification procedure performs
t rounds, instead of just one round as in classical proof-labeling schemes. We may expect
that proof-labeling schemes of radius t should help reduce the size of the certificates. This
expectation is based on the intuition that the verification of classical (radius-1) proof-labeling
schemes is done by comparing certificates of neighboring nodes or computing some function
of them, and accept only if they are consistent with one another (in a sense that depends
on the scheme). If the certificates are poorly correlated, then allowing more rounds for the
verification should not be of much help as, with a k-bit certificate per node, the global proof
has kn bits in total in n-node graphs, leaving little freedom for reorganizing the assignment
of these kn bits to the n nodes. Perhaps surprisingly, we show that distributed proofs do
not only involve partially redundant certificates, but inherently highly redundant certificates,
which enables reducing their size a lot when more rounds are allowed. To capture this
phenomenon, we say that a proof-labeling scheme scales with scaling factor f(t) if its size
can be reduced by a factor Ω(f(t)) when using a t-round verification procedure; we say
that the scheme weakly scales with scaling factor f(t) if the scaling factor is Ω̃(f(t)), i.e.,
Ω(f(t)/polylogn) in n-node networks.

We prove that, in trees and other graph classes including e.g. grids, all proof-labeling
schemes scale, with scaling factor t for t-round verification procedures. In other words, for
every boolean predicate P on labeled trees (that is, trees whose every node is assigned a
label, i.e., a binary string), if P has a proof-labeling scheme with certificates of k bits, for
some k ≥ 0, then P has a proof-labeling scheme of radius t with certificates of O(k/t) bits,
for all t ≥ 1.

DISC 2018

24:4 Redundancy in Distributed Proofs

In addition, we prove that, in any graph, uniform parts of proof-labeling schemes weakly
scale optimally. That is, for every boolean predicate P on labeled graphs, if P has a proof-
labeling scheme such that k bits are identical in all certificates, then the part with these k
bits weakly scales in an optimal manner: it can be reduced into Õ(k/b(t)) bits by using a
proof-labeling scheme of radius t, where b(t) denotes the size of the smallest ball of radius t
in the actual graph. Therefore, in graphs whose neighborhoods increase polynomially, or
even exponentially with their radius, the benefit in terms of space-complexity of using a
proof-labeling scheme with radius t can be enormous. This result is of particular interest for
the so-called universal proof-labeling scheme, in which every node is given the full n2-bit
adjacency matrix of the graph as part of its certificate, along with the O(logn)-bit index of
that node in the matrix.

We complement these general results by a collection of concrete results, regarding scaling
classical boolean predicates on labeled graphs, including spanning tree, minimum-weight
spanning tree, diameter, and additive spanners. For each of these predicates we prove tight
upper and lower bounds on the certificate size of proof-labeling schemes of radius t on general
graphs.

1.3 Our Techniques
Our proof-labeling schemes demonstrate that if we allow t rounds of verification, it is enough
to keep only a small portion of the certificates, while all the rest are redundant. In a path, it
is enough to keep only two consecutive certificates out of every t: two nodes with t−2 missing
certificates between them can try all the possible assignments for the missing certificates,
and accept only if such an assignment exists. This reduces the average certificate size; to
reduce the maximal size, we split the remaining certificates equally among the certificate-less
nodes. This idea is extended to trees and grids, and is at the heart of the proof-labeling
schemes presented in Section 3.

On general graphs, we cannot omit certificates from some nodes and let the others check
all the options for missing certificates in a similar manner. This is because, for our approach
to apply, the parts of missing certificates must be isolated by nodes with certificates. However,
if all the certificates are essentially the same, as in the case of the universal scheme, we
can simply keep each part of the certificate at some random node3, making sure that each
node has all parts in its t-radius neighborhood. A similar, yet more involved idea, applies
when the certificates are distances, e.g., when the predicate to check is the diameter, and the
(optimal) certificate of a node contains in a distance-1 proof-labeling scheme its distances to
all other nodes. While the certificates are not universal in this latter case, we show that it
still suffices to randomly keep parts of the distances, such that on each path between two
nodes, the distance between two certificates kept is at most t. These ideas are applied in
Sections 4 and 5.

In order to prove lower bounds on the certificate size of proof-labeling schemes and
on their scaling, we combine several known techniques in an innovative way. A classic
lower bound technique for proof-labeling schemes is called crossing, but this cannot be
used for lower bounds higher than logarithmic, and is not suitable for our model. A more
powerful technique is the use of nondeterministic communication complexity [13, 25], which
extends the technique used for the congest model [1, 23]. In these bounds, the nodes are

3 All our proof-labeling schemes are deterministic, but we use the probabilistic method for proving the
existence of some of them.

L. Feuilloley, P. Fraigniaud, J. Hirvonen, A. Paz, and M. Perry 24:5

partitioned between two players, who simulate the verification procedure in order to solve
a communication complexity problem, and communicate whenever a message is sent over
the edges of the cut between their nodes. When proving lower bounds for proof-labeling
schemes, the nondeterminism is used to define the certificates: a nondeterministic string
for a communication complexity problem can be understood as a certificate, and, when the
players simulate verification on a graph, they interpret their nondeterministic strings as node
certificates. However, this technique does not seem to be powerful enough to prove lower
bounds for our model of multiple rounds verification. When splitting the nodes between
the two players, the first round of verification only depends on the certificates of the nodes
touching the cut, but arguing about the other verification rounds seems much harder. To
overcome this problem, we use a different style of simulation argument, where the node
partition is not fixed but evolves over time [14, 36]. More specifically, while there are sets
of nodes which are simulated explicitly by either of the two players during the t rounds,
the nodes in the paths connecting these sets are simulated in a decremental manner: both
players start by simulating all these nodes, and then simulate less and less nodes as time
passes. After the players communicate the certificates of the nodes along the paths at the
beginning, they can simulate the verification process without any further communication. In
this way, we are able to adapt some techniques used for the congest model to our model,
even though proof-labeling schemes are a computing model that is much more similar to the
local model [35].

1.4 Previous Work
The mechanism considered in this paper for certifying distributed data structures and
predicates on labeled graphs has at least three variants. The original proof-labeling schemes,
as defined in [31], assume that nodes exchange solely their certificates between neighbors
during the verification procedure. Instead, the variant called locally checkable proofs [25]
imposes no restrictions on the type of information that can be exchanged between neighbors
during the verification procedure. In fact, they can exchange their full individual states,
which makes the design of lower bounds far more complex. This latter model is the one
actually considered in this paper. There is a third variant, called non-deterministic local
decision [19], which prevents using the actual identities of the nodes in the certificates. That
is, the certificate must be oblivious to the actual identity assignment to the nodes. This
latter mechanism is weaker than proof-labeling schemes and locally checkable proofs, as
there are graph predicates that cannot be certified in this manner. However, all predicates
on labeled graphs can be certified by allowing randomization [19], or by allowing just one
alternation of quantifiers (the analog of Π2 in the polynomial hierarchy) [7]. A distributed
variant of the centralized interactive proofs was recently introduced by Kol et al. [27].

Our work was inspired by [33], which aims at reducing the size of the certificates by trading
time for space, i.e., allowing the verification procedure to take t rounds, for a non-constant
t, in order to reduce the certificate size. They show a trade-off of this kind for example
for proving the acyclicity of the input graph. The results in [30] were another source of
inspiration, as it is shown that, by allowing O(log2 n) rounds of communication, one can
verify MST using certificates of O(logn) bits. In fact, [30] even describe an entire (non-silent)
self-stabilizing algorithm for MST construction based on this mechanism for verifying MST.

In [17], the authors generalized the study of the class log-LCP introduced in [25], consisting
of network properties verifiable with certificates of O(logn) bits, to a whole local hierarchy
inspired by the polynomial hierarchy. For instance, it is shown that MST is at the second level
of that hierarchy, and that there are network properties outside the hierarchy. In [34], the

DISC 2018

24:6 Redundancy in Distributed Proofs

effect of sending different messages to different neighbors on the communication complexity
of verification is analyzed. The impact of the number of errors on the ability to detect
the illegality of a data structure w.r.t. a given predicate is studied in [16]. The notion of
approximate proof-labeling schemes was investigated in [13], and the impact of randomization
on communication complexity of verification has been studied in [9].

Finally, verification mechanisms a la proof-labeling schemes were used in other contexts,
including the congested clique [28], wait-free computing [21], failure detectors [22], anonymous
networks [18], and mobile computing [8,20]. For more references to work related to distributed
verification, or distributed decision in general, see the survey [15]. To our knowledge, in
addition to the aforementioned works [30, 33], there is no prior work where verification time
and certificate size are traded.

2 Model and Notations

A labeled graph is a pair (G, x) where G = (V,E) is a connected simple graph, and
x : V → {0, 1}∗ is a function assigning a bit-string, called label, to every node of G. When
discussing a weighted n-nodes graph G, we assume G = (V,E,w), where w : E → [1, nc] for
a fixed c ≥ 1, and so w(e) can be encoded on O(logn) bits. An identity-assignment to a
graph G is an assignment ID : V → [1, nc], for some fixed c ≥ 1, of distinct identities to the
nodes.

A distributed decision algorithm is an algorithm in which every node outputs accept or
reject. We say that such an algorithm accepts if and only if every node outputs accept.

Given a finite collection G of labeled graphs, we consider a boolean predicate P on every
labeled graph in G (which may even depend on the identities assigned to the nodes). For
instance, aut is the predicate on graphs stating that there exists a non-trivial automorphism
in the graph. Similarly, for any weighted graph with identity-assignment ID, the predicate
mst on (G, x, ID) states whether x(v) = ID(v′) for some v′ ∈ N [v]4 for every v ∈ V (G), and
whether the collection of edges {{v, x(v)}, v ∈ V (G)} forms a minimum-weight spanning tree
of G. A proof-labeling scheme for a predicate P is a pair (p,v), where

p, called prover, is an oracle that assigns a bit-string called certificate to every node of
every labeled graph (G, x) ∈ G, potentially using the identities assigned to the nodes, and
v, called verifier, is a distributed decision algorithm such that, for every (G, x) ∈ G, and
for every identity assignment ID to the nodes of G,{

(G, x, ID) satisfies P =⇒ v ◦ p(G, x, ID) = accept;
(G, x, ID) does not satisfy P =⇒ for every prover p′, v ◦ p′(G, x, ID) = reject;

here, v ◦p is the output of the verifier v on the certificates assigned to the nodes by p. That
is, if (G, x, ID) satisfies P, then, with the certificates assigned to the nodes by the prover p,
the verifier accepts at all nodes. Instead, if (G, x, ID) does not satisfy P, then, whatever
certificates are assigned to the nodes, the verifier rejects in at least one node.

The radius of a proof-labeling scheme (p,v) is defined as the maximum number of rounds
of the verifier v in the local model [35], over all identity-assignments to all the instances in
G, and all arbitrary certificates. It is denoted by radius(p,v). Often in this paper, the phrase
proof-labeling scheme is abbreviated into PLS, while a proof-labeling scheme of radius t ≥ 1 is
abbreviated into t-PLS. Note that, in a t-PLS, one can assume, w.l.o.g., that the verification
procedure, which is given t as input to every node, proceeds at each node in two phases:

4 In a graph, N(v) denotes the set of neighbors of node v, and N [v] = N(v) ∪ {v}.

L. Feuilloley, P. Fraigniaud, J. Hirvonen, A. Paz, and M. Perry 24:7

(1) collecting all the data (i.e., labels and certificates) from nodes at distance at most t,
including the structure of the ball of radius t around that node, and (2) processing all the
information for producing a verdict, either accept, or reject. Note that, while the examples
in this paper are of highly uniform graphs, and thus the structure of the t-balls might be
known to the nodes in advance, our scaling mechanisms work for arbitrary graphs.

Given an instance (G, x, ID) satisfying P, we denote by p(G, x, ID, v) the certificate
assigned by the prover p to node v ∈ V , and by |p(G, x, ID, v)| its size. We also let
|p(G, x, ID)| = maxv∈V (G) |p(G, x, ID, v)|. The certificate-size of a proof-labeling scheme
(p,v) for P in G, denoted size(p,v), is defined as the maximum of |p(G, x, ID)|, taken over
all instances (G, x, ID) satisfying P, where (G, x) ∈ G. In the following, we focus on the
graph families Gn of connected simple graphs with n nodes, n ≥ 1. That is, the size of a
proof-labeling scheme is systematically expressed as a function of the number n of nodes. For
the sake of simplifying the presentation, the graph family Gn is omitted from the notations.

The minimum certificate size of a t-PLS for the predicate P on n-node labeled graphs is
denoted by size-pls(P, t), that is,

size-pls(P, t) = min
radius(p,v)≤t

size(p,v).

We also denote by size-pls(P) the size of a standard (radius-1) proof-labeling scheme for P,
that is, size-pls(P) = size-pls(P, 1). For instance, it is known that size-pls(mst) = Θ(log2 n)
bits [29, 31], and that size-pls(aut) = Ω̃(n2) bits [25]. More generally, for every decidable
predicate P, we have size-pls(P) = O(n2 + nk) bits [25] whenever the labels produced by x
are of k bits, and size-pls(P, D) = 0 for graphs of diameter D because the verifier can gather
all labels, and all edges at every node in D + 1 rounds.

I Definition 1. Let I ⊆ N+, and let f : I → N+. Let P be a boolean predicate on labeled
graphs. A set (pt,vt)t∈I of proof-labeling schemes for P , with respective radius t ≥ 1, scales
with scaling factor f on I if size(pt,vt) = O

(1
f(t) · size-pls(P)

)
bits for every t ∈ I. Also,

(pt,vt)t∈I weakly scales with scaling factor f on I if size(pt,vt) = Õ
(1
f(t) · size-pls(P)

)
bits

for every t ∈ I.

In the following, somewhat abusing terminology, we shall say that a proof-labeling scheme
(weakly) scales while, formally, it should be a set of proof-labeling schemes that scales.
I Remark. At first glance, it may seem that no proof-labeling schemes can scale more than
linearly, i.e., one may be tempted to claim that for every predicate P we have size-pls(P, t) =
Ω
(1
t · size-pls(P)

)
. The rationale for such a claim is that, given a proof-labeling scheme

(pt,vt) for P , with radius t and size-pls(P, t), one can construct a proof-labeling scheme (p,v)
for P with radius 1 as follows: the certificate of every node v is the collection of certificates
assigned by pt to the nodes in the ball of radius t centered at v; the verifier v then simulates
the execution of vt on these certificates. In paths or cycles, the certificates resulting from
this construction are of size O(t · size-pls(P, t)), from which it follows that no proof-labeling
scheme can scale more than linearly. There are several flaws in this reasoning, which make it
actually erroneous. First, it might be the case that degree-2 graphs are not the worst case
graphs for the predicate P ; that is, the fact that (p,v) induces certificates of size O(t) times
the certificate size of (pt,vt) in such graphs may be uncorrelated to the size of the certificates
of these proof-labeling schemes in worst case instances. Second, in t rounds of verification
every node learns not only the certificates of its t-neighborhood, but also its structure, which
may contain valuable information for the verification; this idea stands out when the lower
bounds for size-pls(P) are established using labeled graphs of constant diameter, in which

DISC 2018

24:8 Redundancy in Distributed Proofs

case there is no room for studying how proof-labeling schemes can scale. The take away
message is that establishing lower bounds of the type size-pls(P, t) = Ω(1

t · size-pls(P)) for t
within some non-trivial interval requires specific proofs, which often depend on the given
predicate P.

Communication Complexity. In the set-disjointness (disj) problem on k bits, each of the
two players Alice and Bob is given a k-bit string, denoted SA and SB respectively. They aim
at deciding whether SA ∩ SB = ∅, i.e. whether there does not exist i ∈ {1, . . . , k} such that
SA[i] = SB[i] = 1. We consider nondeterministic protocols for the problem, i.e. protocols
where the players also get an auxiliary string from an oracle that knows both inputs, and they
may use it in order to verify that their inputs are disjoint. The communication complexity of
a nondeterministic protocol for disj is the number of bits the players exchange on two input
strings that are disjoint, in the worst case, when they are given optimal nondeterministic
strings. The nondeterministic communication complexity of disj is the minimum, among
all nondeterministic protocols for disj, of the communication complexity of that protocol.
The nondeterministic communication complexity of disj is Ω(k) (e.g., as a consequence of
Example 1.23 and Definition 2.3 in [32]).

3 All Proof-Labeling Schemes Scale Linearly in Trees

This section is entirely dedicated to the proof of one of our main results, stating that every
predicate on labeled trees has a proof that scales linearly. Further in the section, we also show
how to extend this result to cycles and to grids, and, more generally, to multi-dimensional
grids and toruses.

I Theorem 2. Let P be a predicate on labeled trees, and let us assume that there exists
a (distance-1) proof-labeling scheme (p,v) for P, with size(p,v) = k. Then there exists a
proof-labeling scheme for P that scales linearly, that is, size-pls(P, t) = O

(
k
t

)
.

The rest of this subsection is dedicated to the proof of Theorem 2. So, let P be a predicate
on labeled trees, and let (p,v) be a proof-labeling scheme for P with size(p,v) = k. First,
note that we can restrict attention to trees with diameter > t. Indeed, predicates on labeled
trees with diameter ≤ t are easy to verify since every node can gather the input of the entire
tree in t rounds. More precisely, if we have a scheme that works for trees with diameter > t,
then we can trivially design a scheme that applies to all trees, by adding a single bit to the
certificates, indicating whether the tree is of diameter at most t or not.

The setting of the certificates in our scaling scheme is based on a specific decomposition
of the given tree T . Let T be a tree of diameter > t, and let h = bt/2c. For assigning the
certificates, the tree T is rooted at some node r. A node u such that distT (r, u) ≡ 0 (mod h),
and u possesses a subtree of depth at least h− 1 is called a border node. Similarly, a node
u such that distT (r, u) ≡ −1 (mod h), and u possesses a subtree of depth at least h− 1 is
called an extra-border node. A node that is a border or an extra-border node is called a
special node. All other nodes are standard nodes. For every border node v, we define the
domain of v as the set of nodes in the subtree rooted at v but not in subtrees rooted at
border nodes that are descendants of v. The proof of the following lemma is omitted from
this extended abstract.

I Lemma 3. The domains form a partition of the nodes in the tree T , every domain forms
a tree rooted at a border node, with depth in the range [h− 1, 2h− 1], and two adjacent nodes
of T are in different domains if and only if they are both special.

L. Feuilloley, P. Fraigniaud, J. Hirvonen, A. Paz, and M. Perry 24:9

The certificates of the distance-t proof-labeling scheme contain a 2-bit field indicating to
each node whether it is a root, border, extra-border, or standard node. Let us show that
this part of the certificate can be verified in t rounds. The prover orients the edges of the
tree towards the root r. It is well-known that such an orientation can be given to the edges
of a tree by assigning to each node its distance to the root, modulo 3. These distances can
obviously be checked locally, in just one round. So, in the remaining of the proof, we assume
that the nodes are given this orientation upward the tree. The following lemma (whose proof
is omitted) shows that the decomposition into border, extra-border, and standard nodes can
be checked in t rounds.

I Lemma 4. Given a set of nodes marked as border, extra-border, or standard in an oriented
tree, there is a verification protocol that checks whether that marking corresponds to a tree
decomposition such as the one described above, in 2h < t rounds.

We are now ready to describe the distance-t proof-labeling scheme. From the previous
discussions, we can assume that the nodes are correctly marked as root, border, extra-border,
and standard, with a consistent orientation of the edges towards the root. We are considering
the given predicate P on labeled trees, with its proof-labeling scheme (p,v) using certificates
of size k bits. Before reducing the size of the certificates to O(k/t) by communicating at
distance t, we describe a proof-labeling scheme at distance t which still uses large certificates,
of size O(k), but stored at a few nodes only, with all other nodes storing no certificates.

I Lemma 5. There exists a distance-t proof-labeling scheme for P, in which the prover
assigns certificates to special nodes only, and these certificates have size O(k).

Sketch of proof. On legally labeled trees, the prover provides every special node (i.e., every
border or extra-border node) with the same certificate as the one provided by p. All other
nodes are provided with no certificates. On arbitrary labeled trees, the verifier is active at
border nodes only, and all non-border nodes systematically accept (in zero rounds). At a
border node v, the verifier first gathers all information at distance 2h. This includes all the
labels of the nodes in its domain, and of the nodes that are neighbors of some node in its
domain. Then v checks whether there exists an assignment of k-bit certificates to the standard
nodes in its domain that results in v accepting at every node in its domain. If this is the
case, then v accepts, else it rejects. Since the standard nodes form non-overlapping regions
well separated by the border and extra-border nodes, this results in a correct distance-t
proof-labeling scheme. J

We now show how to spread out the certificates of the border and extra-border nodes
to obtain smaller certificates. The following lemma is the main tool for doing so. As this
lemma is also used further in the paper, we provide a generalized version of its statement,
and we later show how to adapt it to the setting of the current proof.

We say that a local algorithm A recovers an assignment of certificates provided by some
prover q from an assignment of certificates provided by another prover q′ if, given the
certificates assigned by q′ as input to the nodes, A allows every node to reconstruct the
certificate that would have been assigned to it by q. We define a special prover as a prover
that assigns certificates only to the special nodes, while all other nodes are given empty
certificates.

I Lemma 6. There is a local algorithm A satisfying the following. For every s ≥ 1, for
every oriented marked tree T of depth at least s, and for every assignment of b-bit certificates
provided by some special prover q to the nodes of T , there exists an assignment of O(b/s)-bit
certificates provided by a prover q′ to the nodes of T such that A recovers q from q′ in s

rounds.

DISC 2018

24:10 Redundancy in Distributed Proofs

Sketch of proof. The prover q′ spreads the certificate assigned to each border node v along
a path starting from v, of length s− 1, going downward the tree. The algorithm A gathers
the certificates spread along these paths. J

Proof of Theorem 2. In the distance-t proof-labeling scheme, the prover chooses a root
and an orientation of the tree T , and provides every node with a counter modulo 3 in its
certificate allowing the nodes to check the consistency of the orientation. Then the prover
constructs a tree decomposition of the rooted tree, and provides every node with its type
(root, border, extra-border, or standard) in its certificates. Applying Lemmas 5 and 6, the
prover spreads the certificates assigned to the special nodes by p. Every node will get at
most two parts, because only the paths associated to a border node and to its parent (an
extra-border node) can intersect. Overall, the certificates have size O(k/h) = O(k/t). The
verifier checks the orientation and the marking, then recovers the certificates of the special
nodes, as in Lemma 6, and performs the simulation as in Lemma 5. This verification can be
done with radius t ≤ 2h, yielding the desired distance-t proof labeling scheme. J

Linear scaling in cycles and grids. For the proof techniques of Theorem 2 to apply to
other graphs, we need to compute a partition of the nodes into the two categories, special
and standard, satisfying three main properties. First, the partition should split the graph
into regions formed by standard nodes, separated by special nodes. Second, each region
should have a diameter small enough for allowing special nodes at the border of the region to
simulate the standard nodes in that region, as in Lemma 5. Third, the regions should have a
diameter large enough to allow efficient spreading of certificates assigned to special nodes
over the standard nodes, as in Lemma 6. For any graph family in which one can define such
a decomposition, an analogue of Theorem 2 holds. We show that this is the case for cycles
and grids (the proof is omitted).

I Corollary 7. Let P be a predicate on labeled cycles, and let us assume that there exists
a (distance-1) proof-labeling scheme (p,v) for P with size(p,v) = k. Then there exists a
proof-labeling scheme for P that scales linearly, that is, size-pls(P, t) = O

(
k
t

)
. The same

holds for predicates on 2-dimensional labeled grids.

By the same techniques, Corollary 7 can be generalized to toroidal 2-dimensional labeled
grids, as well as to d-dimensional labeled grids and toruses, for every d ≥ 2.

4 Universal Scaling of Uniform Proof-Labeling Schemes

It is known [33] that, for every predicate P on labeled graphs with size-pls(P) = Ω̃(n2), there
is a proof-labeling scheme that scales linearly on the interval [1, D] in graphs of diameter D.
We show that, in fact, the scaling factor can be much larger. We say that a graph G = (V,E)
has growth b = b(t) if, for every v ∈ V and t ∈ [1, D], we have that |BG(v, t)| ≥ b(t). We say
that a proof-labeling scheme is uniform if the same certificate is assigned to all nodes by the
prover.

I Theorem 8. Let P be a predicate on labeled graphs, fix a uniform 1-PLS (p,v) for P
and denote k = size(p,v). Then there is a proof-labeling scheme for P that weakly scales
with scaling factor b(t) on graphs of growth b(t). More specifically, let G be a graph, let
t0 = min{t | b(t) ≥ logn}, and t1 = max{t | k ≥ b(t)}. Then, in G, for every t ∈ [t0, t1],
size-pls(P, t) = Õ

(
k
b(t)

)
.

L. Feuilloley, P. Fraigniaud, J. Hirvonen, A. Paz, and M. Perry 24:11

Proof. Let s = (s1, . . . , sk), where si ∈ {0, 1} for every i = 1, . . . , k, be the k-bit certificate
assigned to every node of G. Let t ≥ 1 be such that k ≥ b(t) ≥ c logn for a constant c
large enough. For every node v ∈ V , set the certificate of v, denoted s(v), as follows: for
every i = 1, . . . , k, v stores the pair (i, si) in s(v) with probability c logn

b(t) . Recall the following
Chernoff bounds: Suppose Z1, . . . , Zm are independent random variables taking values in
{0, 1}, and let Z =

∑m
i=1 Zi. For every 0 ≤ δ ≤ 1, we have Pr[Z ≤ (1 − δ)EZ] ≤ e−

1
2 δ

2EZ ,
and Pr[Z ≥ (1 + δ)EZ] ≤ e− 1

3 δ
2EZ .

On the one hand, for every v ∈ V , let Xv be the random variable equal to the number of
pairs stored in s(v). By a Chernoff bound, we have Pr[Xv ≥ 2c k logn

b(t)] ≤ e
c k log n

3 b(t) = n−
c k

3 b(t) .
Therefore, by union bound, the probability that a node v stores more than 2c k logn

b(t) pairs

(i, si) is at most n1− c k
3 b(t) , which is less than 1

2 for c large enough.
On the other hand, for every v ∈ V , and every i = 1, . . . , k, let Yv,i be the number
of occurrences of the pair (i, si) in the ball of radius t centered at v. By a Chernoff
bound, we have Pr[Yv,i ≤ 1

2c logn] ≤ e−
c log n

8 = n−c/8. Therefore, by union bound, the
probability that there exists a node v ∈ V , and an index i ∈ {1, . . . , k} such that none of
the nodes in the ball of radius t centered at v store the pair (i, si) is at most kn1−c/8,
which is less than 1

2 for c large enough.

It follows that, for c large enough, the probability that no node stores more than Õ(k/b(t))
pairs (i, si), and every pair (i, si) is stored in at least one node of each ball of radius t, is
positive. Therefore, there is a way for a prover to distribute the pairs (i, si), i = 1, . . . , k, to
the nodes such that (1) no node stores more than Õ(k/b(t)) bits, and (2) every pair (i, si)
appears at least once in every t-neighborhood of each node. At each node v, the verification
procedure first collects all pairs (i, si) in the t-neighborhood of v, in order to recover s, and
then runs the verifier of the original (distance-1) proof-labeling scheme.

Finally, we emphasize that we only use probabilistic arguments as a way to prove the
existence of certificate assignment, but the resulting proof-labeling scheme is deterministic
and its correctness is not probabilistic. J

Theorem 8 finds direct application to the universal proof-labeling scheme [25,31], which
uses O(n2 + kn) bits in n-node graphs labeled with k-bit labels. The certificate of each node
consists of the n × n adjacency matrix of the graph, an array of n entries each equals to
the k-bit label at the corresponding node, and an array of n entries listing the identities of
the n nodes. It was proved in [33] that the universal proof-labeling scheme can be scaled
by a factor t. Theorem 8 significantly improves that result, by showing that the universal
proof-labeling scheme can actually be scaled by a factor b(t), which can be exponential in t.

I Corollary 9. For every predicate P on labeled graphs, there is a proof-labeling scheme for
P as follows. For every graph G with growth b(t), let t0 = min{t | b(t) ≥ logn}. Then, for
every t ≥ t0 we have size-pls(P, t) = Õ

(
n2+kn
b(t)

)
.

Theorem 8 is also applicable to proof-labeling scheme where the certificates have the
same sub-certificate assigned to all nodes; in this case, the size of this common sub-certificate
can be drastically reduced by using a t-round verification procedure. This is particularly
interesting when the size of the common sub-certificate is large compared to the size of
the rest of the certificates. An example of such a scheme is in essence the one described
in [31, Corollary 2.4] for isok. Given a parameter k ∈ Ω(logn), let isok be the predicate on
graph stating that there exist two vertex-disjoint isomorphic induced subgraphs of size k in
the given graph. The proof of the next corollary appears in the full version of our paper.

DISC 2018

24:12 Redundancy in Distributed Proofs

rk+1

ℓ0

ℓ1

ℓ2

ℓk−1ℓ′
k−1

ℓk ℓk+1

f0
t0

r′
k−1

r0

rk

r1

r2

rk−1

r′
0

r′
1

r′
2

t′
0

f ′
0

ℓ′
2

ℓ′
1

ℓ′
0

f1

flog k−1 t′
log k−1

t′
1

tlog k−1

t1

f ′
log k−1

f ′
1

Figure 1 The lower bound graph construction. Thin lines represent P -paths, thick lines represent
(2t + 1)-paths, and the dashed lines represent edges who’s existence depend on the input. The paths
connecting `i and ri to their binary representations are omitted, except for those of `0 and r0.

I Corollary 10. For every k ∈
[
1, n2

]
, we have size-pls(isok) = Θ(k2) bits, and, for every

t > 1, size-pls(isok, t) = Õ
(
k2

b(t)

)
.

5 Certifying Distance-Related Predicates

For any labeled (weighted) graph (G, x), the predicate diam on (G, x) states whether, for
every v ∈ V (G), x(v) is equal to the (weighted) diameter of G.

I Theorem 11. There is a proof-labeling scheme for diam that scales linearly between
[c logn, n/ logn], for some constant c. More specifically, there exists c > 0, such that, for
every t ∈ [c logn, n/ logn], size-pls(diam, t) = Õ

(
n
t

)
. Moreover, no proof-labeling schemes

for diam can scale more than linearly on the interval [1, n/ logn], that is, for every t ∈
[1, n/ logn], size-pls(diam, t) = Ω̃

(
n
t

)
.

The upper bound proof follows similar lines to those of Theorem 8: each node keeps only
a partial list of distances to other nodes. In the verification process, a node u computes its
distance to a node v as follows: first, u finds a node v′ in its t-neighborhood that has the
distance to v in its certificate; then, u computes its distance to v′, which is possible since u
knowns all its t-neighborhood; and finally, u deduces its own distance from v. A suitable
choice of parameter guarantees the existence of a “good” v′, that will indeed allow u to
compute the correct distance. The full proof appears in the full version of our paper.

We now describe the construction of the lower bound graph (see Figure 1). Let k = Θ(n)
be a parameter whose exact value will follow from the graph construction. Alice and Bob
use the graph in order to decide disj on k-bit strings. Let P ≥ 1 be a constant, and let t
be the parameter of the t-PLS, which may or may not be constant. The graph consists of
the following sets of nodes: L = {`0, . . . , `k−1}, L′ =

{
`′0, . . . , `

′
k−1
}
, T = {t0, . . . , tlog k−1},

F = {f0, . . . , flog k−1}, and `k and `k+1, which will be simulated by Alice, and similarly
R = {r0, . . . , rk−1}, R′ =

{
r′0, . . . , r

′
k−1
}
, T ′ =

{
t′0, . . . , t

′
log k−1

}
, F ′ =

{
f ′0, . . . , f

′
log k−1

}
,

and rk and rk+1, which will be simulated by Bob.
The nodes are connected by paths, where the paths consist of additional, distinct nodes.

For each 0 ≤ i ≤ k−1, connect with P -paths (i.e., paths of P edges and P −1 new nodes) the
following pairs of nodes: (`i, `′i), (`i, `k), (`k, `k+1), (ri, r′i), (ri, rk), and (rk, rk+1). Add such

L. Feuilloley, P. Fraigniaud, J. Hirvonen, A. Paz, and M. Perry 24:13

rk+1

ℓ0

ℓ1

ℓ2

ℓk−1ℓ′
k−1

ℓk ℓk+1

f0
t0

r′
k−1

r0

rk

r1

r2

rk−1

r′
0

r′
1

r′
2

t′
0

f ′
0

ℓ′
2

ℓ′
1

ℓ′
0

f1

flog k−1 t′
log k−1

t′
1

Figure 2 The lower bound graph construction for t = 3, and the sets of nodes simulated by Alice
in the three rounds of verification (from dark gray to lighter gray). Alice eventually knows the
outputs of all the nodes in the light-most gray shaded set.

paths also between `k+1 and all th ∈ T and fh ∈ F , and between rk+1 and all t′h ∈ T ′ and
f ′h ∈ F ′. Connect by a P -path each `i ∈ L with the nodes representing its binary encoding,
that is, connect `i to each th that satisfies i[h] = 1, and to each fh that satisfies i[h] = 0,
where i[h] is bit h of the binary encoding of i. Add similar paths between each ri ∈ R and
its encoding by nodes t′h and f ′h. In addition, for each 0 ≤ h ≤ log k − 1, add a (2t+ 1)-path
from th to f ′h and from fh to t′h, and a similar path from `k+1 to rk+1.

Assume Alice and Bob want to solve the disj problem for two k-bit strings SA and SB
using a non-deterministic protocol. They build the graph described above, and add the
following edges: (`i, `k+1) whenever SA[i] = 0, and (ri, rk+1) whenever SB [i] = 0. The next
claim is at the heart of our proof.

I Claim 12. If SA and SB are disjoint then D = 4P +2t+2, and otherwise D ≥ 6P +2t+1.

The proof of this claim follows similar lines of the proof of [1, Lemma 2], and appears in
the full version of our paper. We can now prove the lower bound from Theorem 11.

Proof of lower bound from Theorem 11. Fix t ∈ [1, n/ logn], and let SA and SB be two
input strings for the disj problem on k bits. We show how Alice and Bob can solve disj on
SA and SB in a nondeterministic manner, using the graph described above and a t-PLS for
diam = 4P + 2t+ 2.

Alice and Bob simulate the verifier on the labeled graph (see Figure 2). The nodes
simulated by Alice, denoted A, are L ∪ L′ ∪ T ∪ F ∪ {`k, `k+1} and all the paths between
them, and by Bob, denoted B, are R∪R′ ∪T ′ ∪F ′ ∪{rk, rk+1} and the paths between them.
For each pair of nodes (a, b) ∈ A×B that are connected by a (2t+ 1)-path, let Pab be this
path, and {Pab(i)}, i = 0, . . . , 2t+ 1 be its nodes in consecutive order, where Pab(0) = a and
Pab(2t+ 1) = b. Let C be the set of all (2t+ 1)-path nodes, i.e. C = V \ (A∪B). The nodes
in C are simulated by both players, in a decremental way described below.

Alice interprets her nondeterministic string as the certificates given to the nodes in A∪C,
and she sends the certificates of C to Bob. Bob interprets his nondeterministic string as
the certificates of B, and gets the certificates of C from Alice. They simulate the verifier
execution for t rounds, where, in round r = 1, . . . , t, Alice simulates the nodes of A and all
nodes Pab(i) with (a, b) ∈ A×B and i ≤ 2t+ 1− r, while Bob simulates the nodes of B and
all nodes Pab(i) with i ≥ r.

DISC 2018

24:14 Redundancy in Distributed Proofs

Note that this simulation is possible without further communication. The initial state of
nodes in A is determined by SA, the initial state of the nodes Pab(i) with i ≤ 2t is independent
of the inputs, and the certificates of both node sets are encoded in the nondeterministic
string of Alice. In each round of verification, all nodes whose states may depend on the input
of Bob or on his nondeterministic string are omitted from Alice’s simulation, and so she can
continue the simulation without communication with Bob. Similar arguments apply to the
nodes simulated by Bob. Finally, each node is simulated for t rounds by at least one of the
players. Thus, if the verifier rejects, that is, at least one node rejects, then at least one of
the players knows about this rejection.

Using this simulation, Alice and Bob can determine whether disj on (SA, SB) is true as,
from Claim 12, we know that if it is true then diam = 4P +2t+2, and the verifier of the PLS
accepts, while otherwise it rejects. The nondeterministic communication complexity of the
true case of disj on k-bit strings is Ω(k) = Ω(n), so Alice and Bob must communicate this
amount of bits. From the graph definition, |C| = Θ(t logn) which implies size-pls(diam, t) =
Ω
(

n
t logn

)
, as desired. J

Let k be a non-negative integer. For any labeled graph (G, x), k-spanner is the predicate
on (G, x) that states whether the collection of edges EH = {{v, w}, v ∈ V (G), w ∈ x(v)}
forms a k-additive spanner of G, i.e., a subgraph H of G such that, for every two nodes s, t,
we have distH(s, t) ≤ distG(s, t) + k. There is a proof-labeling scheme for additive-spanner
that weakly scales linearly, or more precisely, size-pls(k-spanner, t) = Θ̃(nt) for any constant
k and t ∈ [1, n/ logn]. In the full version of our paper we prove this result, its optimality, as
well as slightly weaker results for general spanners.

6 Distributed Proofs for Spanning Trees

In this section, we study two specific problems which are classical in the domain of proof-
labeling schemes: the verification of a spanning tree, and of a minimum-weight spanning
tree. The predicates st and mst are the sets of labeled graphs where some edges are marked
and these edges form a spanning tree, and a minimum spanning tree, respectively. For these
predicates, we present proof-labeling schemes that scale linearly in t. Note that st and mst
are problems on general labeled graphs and not on trees, i.e., the results in this section
improve upon Section 4 (for these specific problems), and are incomparable with the results
of Section 3.

Formally, let F be the family of all connected undirected, weighted, labeled graphs (G, x).
Each label x(v) contains a (possibly empty) subset of edges adjacent to v, which is consistent
with the neighbors of v, and we denote the collection of edges represented in x by Tx. In
the st (respectively, mst) problem, the goal is to decide for every labeled graph (G, x) ∈ F
whether Tx is a spanning tree of G (respectively, whether Tx is a spanning tree of G with
the sum of all its edge-weights minimal among all spanning trees of G). For these problems
we have the following results.

I Theorem 13. For every t ∈ O(logn), we have that size-pls(st, t) = O
(

logn
t

)
.

Proof sketch. To prove that a marked subgraph Tx is a spanning tree, we verify it has the
following properties: (1) spanning the graph, (2) acyclic, (3) connected. The first property
is local – every node verifies that it has at least one incident marked edge. For the second
property, we use the t-distance proof-labeling scheme for acyclicity designed by Ostrovsky et
al. [33, Theorem 8], where oriented trees are verified and every root knows that it is a root,
using O(logn/t)-bit certificates. Finally, we use Theorem 2 within the tree in order to split
the root ID; the nodes then verify they all agree on the root, which implies connectivity. J

L. Feuilloley, P. Fraigniaud, J. Hirvonen, A. Paz, and M. Perry 24:15

I Theorem 14. For every t ∈ O(logn), we have that size-pls(mst, t) = O
(

log2 n
t

)
.

Our theorem only applies for t ∈ O(logn), meaning that we can get from proofs of size
O(log2 n) to proofs of size O(logn), but not to a constant. For the specific case t = Θ(logn),
our upper bound matches the lower bound of Korman et al. [30, Corollary 3]. In the same
paper, the authors also present an O(log2 n)-round verification scheme for mst using O(logn)
bits of memory at each node (both for certificates and for local computation). Removing
the restriction of O(logn)-bit memory for local computation, one may derive an O(logn)-
round verification scheme with O(logn) proof size out of the aforementioned O(log2 n)-round
scheme, which matches our result for t = Θ(logn). The improvement we present is two-folded:
our scheme is scalable for different values of t (as opposed to schemes for only t = 1 and
t = Θ(logn)), and our construction is much simpler, as described next.

Our upper bound is based on a famous 1-round PLS for MST [29, 30], which in turn
builds upon the algorithm of Gallager, Humblet, and Spira (GHS) [24] for a distributed
construction of an MST. The idea behind this scheme is, given a labeled graph (G, x), to
verify that Tx is consistent with an execution of the GHS algorithm in G.

The GHS algorithm maintains a spanning forest that is a subgraph of the minimum
spanning tree, i.e., the trees of the forest are fragments of the desired minimum spanning tree.
The algorithm starts with a spanning forest consisting of all nodes and no edges. At each
phase each of the fragments adds the minimum-weight edge going out of it, thus merging
several fragments into one. After O(logn) iterations, all the fragments are merged into a
single component, which is the desired minimum-weight spanning tree. We show that each
phase can be verified with O(logn/t) bits, giving a total complexity of O(log2 n/t) bits.

The GHS algorithm assumes distinct edge weights, which implies a unique minimum-
weight spanning tree and a unique (synchronous) execution of the algorithm. The case of
non-unique edge weights is easily resolved in the algorithm by any consistent tie-breaking
(e.g., using node IDs); handling non-unique edge weights in verification is not as easy, since
the tie-breaking mechanism must result in the specified spanning tree. Theorem 14 is
true without the assumption of distinct edge weights, but we prove it here only under this
assumption, and leave the proof of the general case to the full version of our paper.

Proof of Theorem 14. Let (G, x) be a labeled graph such that Tx is a minimum-weight
spanning tree. If t is greater than the diameter D of G, every node can see the entire
labeled graph in the verification process, and we are done; we henceforth assume t ≤ D. The
certificates consist of four parts.

First, we choose a root and orient the edges of Tx towards it. We give each node its
distance from the root modulo 3, which allows it to obtain the ID of its parent and the
edge pointing to it in one round. Second, we assign the certificate described above for st
(Theorem 13), which certifies that Tx is indeed a spanning tree. This uses O(logn/t) bits.

The third part of the certificate tells each node the phase in which the edge connecting it
to its parent is added to the tree in the GHS algorithm, and which of the edge’s endpoints
added it to the tree. Note that after one round of verification, each node knows for every
incident edge, at which phase it is added to the spanning tree, and by which of its endpoints.
This part uses O(log logn) bits.

The fourth part of the certificate consists of O(log2 n/t) bits, O(logn/t) for each of the
O(logn) phases of the GHS algorithm. To define the part of a certificate of every phase, fix a
phase, a fragment F in the beginning of this phase, and let e = (u, v) be the minimum-weight
edge going out of F , where u ∈ F and v /∈ F . Our goal is that the nodes of F verify together
that e is the minimum-weight outgoing edge of F , and that no other edge was added by F in

DISC 2018

24:16 Redundancy in Distributed Proofs

this phase. To this end, we first orient the edges of F towards u, i.e. set u as the root of F .
If the depth of F is less than t, then in t− 1 rounds the root u can see all of F and check
that (u, v) is the lightest outgoing edge. All other nodes just have to verify that no other
edge is added by the nodes of F in this phase. Otherwise, if the depth of F is at least t, by
Theorem 2, the information about ID(u) and w(e) can be spread on F such that in t rounds
it can be collected by all nodes of F . With this information known to all the nodes of F , the
root can locally verify that it is named as the node that adds the edge and that it has the
named edge with the right weight. The other nodes of F can locally verify that they do not
have incident outgoing edges with smaller weights, and that no other edge is added by F .

Overall, our scheme verifies that Tx is a spanning tree, and that it is consistent with
every phase of the GHS algorithm. Therefore, the scheme accepts (G, x) if and only if Tx is
a minimum spanning tree. J

7 Conclusion

We have proved that, for many classical boolean predicates on labeled graphs (including
MST), there are proof-labeling schemes that linearly scale with the radius of the scheme, i.e.,
the number of rounds of the verification procedure. More generally, we have shown that for
every boolean predicate on labeled trees, cycles and grids, there is a proof-labeling scheme
that scales linearly with the radius of the scheme. This yields the following question:

I Open Problem 1. Prove or disprove that, for every predicate P on labeled graphs, there
is a proof-labeling scheme for P that (weakly) scales linearly.

In fact, the scaling factor might even be larger than t, and be as large as b(t) in graphs
with ball growth b. We have proved that the uniform part of any proof-labeling scheme can
be scaled by such a factor b(t) for t-PLS. This yields the following stronger open problem:

I Open Problem 2. Prove or disprove that, for every predicate P on labeled graphs, there
is a proof-labeling scheme for P that scales with factor Ω̃(b) in graphs with ball growth b.

We are tempted to conjecture that the answer to the first problem is positive (as it holds
for trees and cycles). However, we believe that the answer to the second problem might well
be negative. In particular, it seems challenging to design a proof-labeling scheme for diam
that would scale with the size of the balls. Indeed, checking diameter is strongly related to
checking shortest paths in the graph, and this restricts significantly the way the certificates
can be redistributed among nodes in a ball of radius t. Yet, there might be some other way
to certify diam, so we let the following as an open problem:

I Open Problem 3. Is there a proof-labeling scheme for diam that scales by a factor greater
than t in all graphs where b(t)� t?

References
1 Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower bounds for dis-

tributed distance computations, even in sparse networks. In 30th Int. Symposium on Dis-
tributed Computing (DISC), pages 29–42, 2016. Full version at arXiv:1605.05109.

2 Yehuda Afek and Shlomi Dolev. Local stabilizer. J. Parallel Distrib. Comput., 62(5):745–
765, 2002. doi:10.1006/jpdc.2001.1823.

3 Yehuda Afek, Shay Kutten, and Moti Yung. The local detection paradigm and its
applications to self-stabilization. Theoretical Computer Science, 186(1):199–229, 1997.
doi:10.1016/S0304-3975(96)00286-1.

http://dx.doi.org/10.1006/jpdc.2001.1823
http://dx.doi.org/10.1016/S0304-3975(96)00286-1

L. Feuilloley, P. Fraigniaud, J. Hirvonen, A. Paz, and M. Perry 24:17

4 Heger Arfaoui, Pierre Fraigniaud, David Ilcinkas, and Fabien Mathieu. Distributedly test-
ing cycle-freeness. In 40th Int. Workshop on Graph-Theoretic Concepts in Computer Science
(WG), volume 8747 of LNCS, pages 15–28. Springer, 2014.

5 Heger Arfaoui, Pierre Fraigniaud, and Andrzej Pelc. Local decision and verification with
bounded-size outputs. In 15th Symp. on Stabilization, Safety, and Security of Distributed
Systems (SSS), volume 8255 of LNCS, pages 133–147. Springer, 2013.

6 Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by local
checking and correction. In 32nd Symposium on Foundations of Computer Science (FOCS),
pages 268–277. IEEE, 1991.

7 Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti. What can be
verified locally? In 34th Symposium on Theoretical Aspects of Computer Science (STACS),
volume 66 of LIPIcs, pages 8:1–8:13, 2017. doi:10.4230/LIPIcs.STACS.2017.8.

8 Evangelos Bampas and David Ilcinkas. On mobile agent verifiable problems. In 12th Latin
American Symposium on Theoretical Informatics (LATIN), LNCS 9644, pages 123–137.
Springer, 2016. doi:10.1007/978-3-662-49529-2_10.

9 Mor Baruch, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling schemes.
In 24th Symposium on Principles of Distributed Computing (PODC), pages 315–324. ACM,
2015. doi:10.1145/2767386.2767421.

10 Joffroy Beauquier, Sylvie Delaët, Shlomi Dolev, and Sébastien Tixeuil. Transient fault
detectors. Distributed Computing, 20(1):39–51, 2007. doi:10.1007/s00446-007-0029-x.

11 Lélia Blin and Pierre Fraigniaud. Space-optimal time-efficient silent self-stabilizing con-
structions of constrained spanning trees. In 35th Int. Conference on Distributed Computing
Systems (ICDCS), pages 589–598. IEEE, 2015. doi:10.1109/ICDCS.2015.66.

12 Lélia Blin, Pierre Fraigniaud, and Boaz Patt-Shamir. On proof-labeling schemes versus
silent self-stabilizing algorithms. In 16th Int. Symp. on Stabilization, Safety, and Security
of Distributed Systems (SSS), LNCS, pages 18–32. Springer, 2014.

13 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof labeling schemes. In 24th
Int. Colloquium on Structural Information and Communication Complexity (SIROCCO),
2017.

14 A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg,
and R. Wattenhofer. Distributed verification and hardness of distributed approximation.
SIAM J. Comput., 41(5):1235–1265, 2012.

15 Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bulletin of
the EATCS, 119, 2016. URL: http://bulletin.eatcs.org/index.php/beatcs/article/
view/411/391.

16 Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes. In 31st
International Symposium on Distributed Computing (DISC), pages 16:1–16:15, 2017. doi:
10.4230/LIPIcs.DISC.2017.16.

17 Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A Hierarchy of Local Decision. In
43rd Int. Colloquium on Automata, Languages, and Programming (ICALP), LIPIcs, pages
118:1–118:15, 2016. doi:10.4230/LIPIcs.ICALP.2016.118.

18 Klaus-Tycho Foerster, Thomas Luedi, Jochen Seidel, and Roger Wattenhofer. Local check-
ability, no strings attached: (a)cyclicity, reachability, loop free updates in sdns. Theor.
Comput. Sci., 709:48–63, 2018. doi:10.1016/j.tcs.2016.11.018.

19 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35, 2013.

20 Pierre Fraigniaud and Andrzej Pelc. Decidability classes for mobile agents computing. J.
Parallel Distrib. Comput., 109:117–128, 2017. doi:10.1016/j.jpdc.2017.04.003.

21 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Minimizing the number of
opinions for fault-tolerant distributed decision using well-quasi orderings. In 12th Latin

DISC 2018

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.8
http://dx.doi.org/10.1007/978-3-662-49529-2_10
http://dx.doi.org/10.1145/2767386.2767421
http://dx.doi.org/10.1007/s00446-007-0029-x
http://dx.doi.org/10.1109/ICDCS.2015.66
http://bulletin.eatcs.org/index.php/beatcs/article/view/411/391
http://bulletin.eatcs.org/index.php/beatcs/article/view/411/391
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.16
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.16
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.118
http://dx.doi.org/10.1016/j.tcs.2016.11.018
http://dx.doi.org/10.1016/j.jpdc.2017.04.003

24:18 Redundancy in Distributed Proofs

American Symposium on Theoretical Informatics (LATIN), pages 497–508. Springer, 2016.
doi:10.1007/978-3-662-49529-2_37.

22 Pierre Fraigniaud, Sergio Rajsbaum, Corentin Travers, Petr Kuznetsov, and Thibault Rieu-
tord. Perfect failure detection with very few bits. In 18th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), LNCS 10083, pages 154–169.
Springer, 2016. doi:10.1007/978-3-319-49259-9_13.

23 Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute
their diameter in sublinear time. In 23rd Symposium on Discrete Algorithms (SODA), pages
1150–1162. ACM-SIAM, 2012.

24 R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and Systems
(TOPLAS), 5(1):66–77, 1983. doi:10.1145/357195.357200.

25 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
of Computing, 12(1):1–33, 2016. doi:10.4086/toc.2016.v012a019.

26 Gene Itkis and Leonid A. Levin. Fast and lean self-stabilizing asynchronous protocols. In
35th Symposium on Foundations of Computer Science (FOCS), pages 226–239. IEEE, 1994.
doi:10.1109/SFCS.1994.365691.

27 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In
37th ACM Symposium on Principles of Distributed Computing (PODC 2018), to appear.

28 Janne H. Korhonen and Jukka Suomela. Brief announcement: Towards a complexity the-
ory for the congested clique. In 31st International Symposium on Distributed Computing
(DISC), pages 55:1–55:3, 2017. doi:10.4230/LIPIcs.DISC.2017.55.

29 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Dis-
tributed Computing, 20:253–266, 2007.

30 Amos Korman, Shay Kutten, and Toshimitsu Masuzawa. Fast and compact self-stabilizing
verification, computation, and fault detection of an MST. Distributed Computing,
28(4):253–295, 2015. doi:10.1007/s00446-015-0242-y.

31 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Com-
puting, 22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

32 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, New York, 1997.

33 Rafail Ostrovsky, Mor Perry, and Will Rosenbaum. Space-time tradeoffs for distributed ver-
ification. In 24th International Colloquium on Structural Information and Communication
Complexity (SIROCCO), pages 53–70, 2017. doi:10.1007/978-3-319-72050-0_4.

34 Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: Broadcast, unicast and in be-
tween. In 19th Int. Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS), LNCS 10616, pages 1–17. Springer, 2017. doi:10.1007/978-3-319-69084-1_1.

35 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Discrete Mathematics
and Applications. SIAM, Philadelphia, 2000.

36 David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed MST construction. In 40th Symp. on Foundations of Computer Science (FOCS),
pages 253–261. IEEE, 1999. doi:10.1109/SFFCS.1999.814597.

http://dx.doi.org/10.1007/978-3-662-49529-2_37
http://dx.doi.org/10.1007/978-3-319-49259-9_13
http://dx.doi.org/10.1145/357195.357200
http://dx.doi.org/10.4086/toc.2016.v012a019
http://dx.doi.org/10.1109/SFCS.1994.365691
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.55
http://dx.doi.org/10.1007/s00446-015-0242-y
http://dx.doi.org/10.1007/s00446-010-0095-3
http://dx.doi.org/10.1007/978-3-319-72050-0_4
http://dx.doi.org/10.1007/978-3-319-69084-1_1
http://dx.doi.org/10.1109/SFFCS.1999.814597

Local Verification of Global Proofs
Laurent Feuilloley1

University Paris Diderot, France
feuilloley@irif.fr

https://orcid.org/0000-0002-3994-0898

Juho Hirvonen2

University of Freiburg, Germany
juho.hirvonen@cs.uni-freiburg.de

Abstract
In this work we study the cost of local and global proofs on distributed verification. In this setting
the nodes of a distributed system are provided with a nondeterministic proof for the correctness
of the state of the system, and the nodes need to verify this proof by looking at only their local
neighborhood in the system.

Previous works have studied the model where each node is given its own, possibly unique,
part of the proof as input. The cost of a proof is the maximum size of an individual label. We
compare this model to a model where each node has access to the same global proof, and the
cost is the size of this global proof.

It is easy to see that a global proof can always include all of the local proofs, and every
local proof can be a copy of the global proof. We show that there exists properties that exhibit
these relative proof sizes, and also properties that are somewhere in between. In addition, we
introduce a new lower bound technique and use it to prove a tight lower bound on the complexity
of reversing distributed decision and establish a link between communication complexity and
distributed proof complexity.

2012 ACM Subject Classification Theory of computation → Distributed computing models,
Theory of computation → Proof complexity

Keywords and phrases Proof-labeling schemes, distributed verification, non-determinism, local
proofs

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.25

Acknowledgements The authors would like to thank Jukka Suomela for mentioning that Amos
could be an interesting problem in this context, and the anonymous reviewers for their feedback.

1 Introduction

In distributed decision a distributed system must decide if its own state satisfies a given
property. When compared to classical decision problems, the crucial difference is that each
node of the distributed system must make its own local decision based only on information
available in its local neighborhood. We say that the system accepts if all nodes accept, and
otherwise the system rejects.

A distributed system is modeled as a communication graph where edges denote nodes
that can directly communicate with each other. The setting where each node only gets to
see its constant-radius neighborhood in the graph is called local decision [8]. It is possible to

1 Additional support from ANR project DESCARTES and INRIA project GANG.
2 Supported by Ulla Tuominen Foundation.

© Laurent Feuilloley and Juho Hirvonen;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:feuilloley@irif.fr
https://orcid.org/0000-0002-3994-0898
mailto:juho.hirvonen@cs.uni-freiburg.de
https://doi.org/10.4230/LIPIcs.DISC.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Local Verification of Global Proofs

decide local properties of the system in this manner, for example whether a given coloring is
correct. On the other hand, it is impossible to decide global properties like whether a given
set of edges forms a spanning tree.

To decide global properties, nodes can be provided with a nondeterministic proof, called
a proof-labeling scheme [14] or a locally checkable proof [11]. Each node gets its own proof
string as an additional input. Nodes can gather all the information in their constant-radius
neighborhood, including these local proof strings, and decide to accept or reject. We say
that such a scheme decides a property if there exists an assignment of local proofs to make
all nodes accept if and only if the system satisfies the required property.

For example, to prove that a given set of edges forms a spanning tree, each node can
be provided with the name of a designated root of the tree, and its distance to the root.
Nodes can check that they agree on the identity of the root, and that they have exactly one
neighbor with smaller distance to the root along the edges of the spanning tree.

We are interested in minimizing the size of the proof. In particular, we want to minimize
the size of the largest label given to a single node. The local proofs often contain redundant
information between the different local proof strings. For example, in the previous case each
node must know the name of the root. The distances to the root are also highly correlated
between neighbors. We approach this question by comparing the size of local proofs to global
proofs. In this setting each node has access to the same universal proof string. The decision
mechanism remains otherwise the same.

It is easy to see that minimum sizes of global and local proofs bound each other. A global
proof can simply be a list of the local proof strings. Conversely, a local proof can copy the
same global proof for each node. In this work, we study how these two proof sizes relate to
each other for different properties.

Unlike in the centralized setting, distributed decision cannot be reversed trivially. This is
due to the fact that the distributed decision mechanism is asymmetric: all nodes must accept
a correct input, but a failure might only be detectable locally. Decision can be reversed using
a logarithmic number of additional nondeterminism [11, 7]: when deciding a language L̄,
a spanning tree rooted at a rejecting node for L is constructed to convince the remaining
nodes that such a node exists. This is an even more general primitive in distributed proofs:
the proof must convince the nodes that a local defect exists somewhere in the graph, and
only the nodes that are located close to this defect can verify it’s existence. We show that
the existing upper bounds are asymptotically tight: reversing decision requires a local proof
of logarithmic size, and global proofs do not help.

Since the distributed verification of a proof happens locally, a distributed proof of a
global property must carry information between distant parts of the input graph. This has
led to the use of lower bound techniques from communication complexity for distributed
decision. On the other hand proving lower bounds inside the nondeterministic hierarchy of
local decision [7] with multiple levels of nondeterminism seems to be hard. This is partially
due to the fact that current lower bound techniques from communication complexity cease to
work. We formalize this intuition by establishing a connection between the nondeterministic
local decision hierarchy and the nondeterministic communication complexity hierarchy [1].
This connection exists for local proofs but is even stronger when considering global proofs.

Motivation. The first proof-labeling schemes were designed in the context of self-stabilizing
algorithms, where a distributed algorithm would, in addition to the output, keep some
information to verify that the state of the network is not corrupted. Similar scenarios exist
for global proofs. For example, one may consider a network where the machines compute in

L. Feuilloley and J. Hirvonen 25:3

a distributed fashion, but an external operator with a view of the whole network can once in
a while broadcast a piece of information, such as the name of a leader. As one expects this
type of update to be costly, the focus is on minimizing the size of such broadcast information.

Our research belongs to a recent line of work that establishes the foundations of a theory
of complexity for distributed network computation. In this context, the certificate comes
from a prover, and one studies the impact of non-determinism on computation and the
minimal amount of information needed from the prover to decide a task. Global proofs are
a natural alternative form of non-determinism. Moreover, in proof-labeling schemes a part
of the certificate is often global. For example, the name of a leader is given to all nodes.
Global proofs can be used to study how much of such redundant information a local proof
must have. Finally, one may consider that global proofs are the most natural equivalent of
classical non-determinism: only the algorithm is distributed and we ask what is the cost if
distributing the proof.

Related work. Proof-labeling schemes have been defined in [14, 15]. An important result
in the area is the tight bound on the size of the proofs certifying minimum spanning tree
[13]. Recently, several variations have been defined, for verifying approximation [3], with
non-constant verification radius [20], with a dependency between the number of errors and the
distance to the language [6], and variations on the communication model [22]. An analogue
of the polynomial hierarchy for distributed decision has been defined [7].

Another line of work uses a slightly different notion of non-determinism. Fraigniaud et al.
[8] consider a similar kind of scheme with a prover and local verifier, but with the constraint
that the certificates should not depend on the identifiers of the network. For these works, and
more generally the complexity theory of distributed decision, we refer to a recent survey [5].

The idea of a prover for computation in a network, or in a system with several compu-
tational units, appears outside of distributed computing, and usually with a global proof.
In property testing, models where a prover provides a certificate to the machine that
queries the graph have been considered [19, 12]. In two-party communication complexity,
non-determinism comes as a global proof that both players can access. Along with non-
determinism the authors of [1] define a hierarchy. Separating the levels of this hierarchy is
still a major open problem [10].

Our contributions. We formalize the notion of global proofs for nondeterministic local
verification. We study them, in particular comparing the global and local proof complexities
of distributed verification.

One main goal of this line of research is to understand the price of locality in nondeter-
ministic distributed verification – that is, how much information must be repeated in the
local proofs of the nodes in order to allow local decision of global problems.
1. We show that the price of locality can exhibit the extreme possible values. An example

of a maximally global property for distributed verification is the language where at most
one node is selected. This is one of the core primitives in distributed verification: proving
that at most one event of a given type happens in the whole graph. On the other hand,
we show that when verifying that at least one node is selected, a global proof must use
enough bits to essentially copy every local proof label.

2. We introduce a new proof technique for proving lower bounds for local verification. This
proof technique is based on analyzing the neighborhood graph labeled with the local
proofs. We use it to show that reversing decision requires Ω(logn)-bit local proof and a
Ω(n logn)-bit global proof. Our proof technique is somewhat similar to the one used by

DISC 2018

25:4 Local Verification of Global Proofs

Göös and Suomela to prove their Ω(logn) lower bounds for local proofs [11]. Their proof
technique relies on combining several fragments of yes-instances to produce an accepting
no-instance. This is not sufficient for our results, since we want to prove lower bounds for
languages for which several fragments of yes-instances joined together might still produce
a yes-instance.

3. We establish a connection between nondeterministic verification and nondeterministic
communication complexity. Proving separations for the hierarchy of nondeterministic
communication complexity has been an open question since its introduction over 30 years
ago [1]. We show that proving similar separations for the hierarchy of nondeterministic
local decision is connected to this question: for every boolean function f we construct a
distributed language such that it can be decided on the kth level if f can be decided on the
kth level of the communication complexity hierarchy. Considering global proofs instead of
local proofs allows to strengthen this result as in this new setting one can also show that
verification schemes imply communication protocols. This formalizes the previous intuition
that proving lower bounds for nondeterministic local verification is potentially hard as it
would imply proving lower bounds for nondeterministic communication complexity.

2 Model and definitions

The network is modeled by a simple graph G = (V,E). The size of the graph |V | is denoted
by n. The nodes are given unique identifiers from a range that is polynomial in n and
therefore can be encoded with O(logn) bits.

Distributed decision. A distributed language is a set of labeled graphs (G, x), where x is
a function that assigns input labels to nodes and edges of G. Distributed languages are
often assumed to be computable (from the centralized computing perspective), but this is
irrelevant for the current paper. An example is the language spanning tree, which is the
set of graphs whose edges are labeled with 1 or 0 such that edges labeled with 1 form a
spanning tree of the graph.

A distributed proof ` : V (G) → {0, 1}k is a function that assigns a string of bits (also
called a certificate) to each node of the graph. Each node gets its own string as a part of its
input. The size of a proof the length of the proof strings k.

A local decision algorithm (also called a verifier) with radius t is a distributed algorithm
A, in the synchronous message passing model, in which every node v first gathers all the
information about its t-radius neighborhood (the structure of the graph, the identifiers of
the nodes, the local inputs), and possibly some proofs given by one or several provers, and
outputs a decision, accept or reject, based on this information. The distance t is constant
independent of n, the size of the network, and therefore the algorithm can be seen as a
function A(v, x, `) on the local graph topology, the inputs labels, and the possible proof. The
verifier is assumed to be uniform, that is, it does not know the size of the graph.

A local decision scheme is simply a local decision algorithm, and we say that it decides
a language L if, for every labeled graph, all nodes accept if and only if the labeled graph
belongs to L:

∀(G, x) : (G, x) ∈ L ⇐⇒ ∀v ∈ V (G), A(v, x) = accept.

A nondeterministic decision scheme consists of a local decision algorithm and a prover that
assigns a distributed proof to each node. A nondeterministic scheme exists for a language L

L. Feuilloley and J. Hirvonen 25:5

if there is an algorithm A such that for every labelled graph (G, x) there exists a proof that
makes every node accept if and only if (G, x) belongs to the language:

∀(G, x) : (G, x) ∈ L ⇐⇒ ∃`∀v ∈ V (G), A(v, x, s) = accept.

In particular, if (G, x) /∈ L, then there must not exist a proof that makes all nodes of G
accept.

Different types of proofs. We study three different variants of distributed proofs. In a
(purely) local proof, the prover provides every node with its own label. The local proofs have
the same size which depends only on the language and on the size of the network n. For a
given language, the minimum, over all proofs, of the maximum proof size at a single node
is denoted by s`(n). This is the classic framework of proof-labeling schemes. We introduce
(purely) global proofs, where the prover provides a single certificate, and every node can
access it. This can also be seen as a local proof that must assign the same string to every
node. Its minimum size is denoted by sg(n). Finally, in mixed proofs, the prover provides
a global proof and local proofs. The size considered, denoted by sm(n), is the sum of the
size of the global proof, and the size of the concatenation of the local proofs in an optimal
scheme.

3 The price of locality

In this section, we study the size of local, mixed and global proofs for different problems,
and the price of locality that follows.

3.1 Proof sizes

In this subsection some general inequalities between the sizes of the different proof sizes are
proven. We then discuss the definition of the price of locality.

I Theorem 1. For any language, the optimal proof sizes respect the following inequalities.

s`(n) ≤ sm(n) ≤ sg(n) (1)
sm(n) ≤ n · s`(n) (2)
sg(n) ≤ n · s`(n) +O(n logn). (3)

Proof. The first line of inequalities mainly follows from the definitions. Suppose one is given
a mixed certificate for a language, with local certificates of size f(n) each, and a global
certificate of size g(n). The size of this mixed certificate is sm(n) = n · f(n) + g(n). Then one
can create a local proof of size f(n)+g(n), by giving to every node its local part concatenated
with the global part. Thus s`(n) ≤ sm(n). The inequality sm(n) ≤ sg(n) holds because the
mixed proof is a generalization of the global proof. Similarly, if there exists local certificates
of size s`(n), then one can use them in the mixed model. The size measured in the mixed
model will then be n · s`(n). Finally, given local certificates, one can craft a global certificate.
The global certificate consists of a list of pairs, each pair consisting of an ID and the local
certificate of the node with this ID. The size is in n · s`(n) +O(n logn) because identifiers
are on O(logn) bits. J

DISC 2018

25:6 Local Verification of Global Proofs

3.2 Price of locality
We define the Price of Locality for distributed proofs, by analogy with the Price of Anarchy
in algorithmic game theory [16, 21]. Note that this is not the same as the price of locality
that appears in the title of [17]. The price of locality (PoL) of a language is defined as the
ratio between the size of the concatenation of the purely local certificates, divided by the
size of the mixed certificate. That is:

PoL(n) = n · s`(n)
sm(n) .

It may come as a surprise that we use mixed proofs instead of global proofs for this
definition. There are several reasons for this. First, the inequalities above insure that with
this definition the ratio is between 1 and n, whereas with global proofs the price could
be smaller than 1, thus not a price per se. We study this possibility in Section 5. More
fundamentally, mixed proofs are a better way to measure how much it costs to fully distribute
a proof, as they are a proper generalization of the local proofs, which is not the case of global
proofs. Second, our upper bounds use purely global proofs, and our lower bounds (except in
Section 5) consider mixed proofs, thus we get the strongest results on both sides.
I Remark. Note that we assume that the local proofs given to the nodes are of the same size,
and thus the concatenation is exactly n times larger then the size of one local certificate.
The interesting question of whether the average proof size could be asymptotically better, if
proofs of different sizes were allowed, is outside of the scope of this paper.

3.3 High price of locality
In this section, we prove that it can be very costly to distribute the proof. This is easy and
is a warm-up for the rest of the paper. A scheme uses uniform local proofs, if the local proofs
given to the nodes of the network are all equal. It is simple to change such proof system into
a global proof: just take the uniform local proof and make it global. The verifier has the
same behaviour and the scheme is correct. This implies the following theorem.

I Theorem 2. For languages where an optimal proof-labeling scheme uses uniform local
proofs, the price of locality is Θ(n).

This theorem applies to the language Symmetry, the set of graphs that do not admit a
non-trivial automorphism, which has an optimal scheme with O(n2) uniform local proofs [11].
We now consider the language At-most-one-selected (Amos), that has been defined and
used in [9]. In this problem, the nodes are given binary inputs, and the yes-instances are
the ones such that at most one node has input 1. We prove that this language meets the
hypothesis of the previous theorem.

I Theorem 3. The language Amos has an optimal proof-labeling scheme with uniform proofs
of size O(logn).

Proof. We describe the scheme. The prover’s strategy on yes-instances is the following.
If there is exactly one selected node, the prover provides the ID of the node as uniform
certificate, otherwise it provides an empty label. The verification algorithm is, for every node
v: if v is selected and the certificate is not its ID, then reject, otherwise accept. It is easy
to check that this scheme is correct. First, if no node is selected, all nodes accept, for all
certificate. Second, if one nodes is selected, then the prover provides its ID as a certificate,
and thus the selected node accepts, and all the other nodes too. Finally, if two or more nodes
are selected, at most one of them has its ID written in the global certificate, because the IDs
are distinct and thus at least one node is rejecting. J

L. Feuilloley and J. Hirvonen 25:7

In [11], the authors prove that the language Leader Election, where exactly one node
is labelled 1 and the remaining nodes are labelled 0, requires Ω(logn) local certificate. The
proof basically shows that without this amount of proof, an instance with two leaders would
be accepted. This reasoning holds for Amos, and we can derive a Ω(logn) lower bound for
local certificates as well.

I Corollary 4. The price of locality for Amos is in Θ(n).

3.4 Intermediate price of locality
In this subsection, we show that the language Minimum Spanning Tree (MST) has price
of locality Θ(logn). It is an intermediate price, between n (the previous subsection), and
constant (the next section). The language MST is the set of weighted graphs in which
the subset of the edges labelled with 1 form a minimum spanning tree of the graph. The
edge weights are assumed to be polynomial in n and for simplicity we assume that the edge
weights are distinct.

In [13], the authors show that there exist local proofs of size O(log2 n) for Mst, and that
this bound is tight. We show a simple global proof that has size O(n logn). As a mixed proof
for the simpler language Spanning Tree requires Ω(n logn) (see Section 4), this bound is
also tight.

I Theorem 5. The global proof size for Minimum Spanning Tree is in O(n logn).

Proof. We describe the scheme. On a yes-instance the prover provides a list of the selected
edges with their weights. This global certificate has size O(n logn), because the edge weights
and the identifiers can be written on O(logn) bits. Then every node first checks that the
certificate is correct regardless of the graph. That is, every node checks that:

The certificate is a well-formed edge list. Let L be this list.
The list L describes an acyclic graph. That is that there is no set of nodes w1, w2, ..., wk
such that (w1, w2), (w2, w3), ..., (wk−1, wk), and (wk, w1) appear in the list.
The list L describes a connected graph. That is for any pair of nodes present in the list,
there exists a path in the list that connects them.

Then every node v of the graph checks locally that:
The L is consistent with the selected edges that are adjacent to it.
It has an adjacent selected edge.
For every e = (v, w) in the graph but not in the list, and every edge e′ on the path from
v to w in L, the weight of e′ is smaller than the weight of e.

We now prove the correctness of the scheme. The first part of the verification insures
that the set of edges described by L form an acyclic connected graph. The two first checks of
the second part insure that it contains the selected edges and that it is spanning the graph.
As it is a spanning tree, it must then be exactly the set of selected edges. Finally, remember
that the so-called cycle property states that a spanning tree verifying the last item of the
previous algorithm is a minimum spanning tree [4]. J

4 Locality for free and reversing decision

In this section, we show that for some languages there exists local proofs of size O(logn) and
that any mixed proof has size O(n logn). It follows that in this case, the price of locality is
constant, that is the locality of the proofs comes for free.

DISC 2018

25:8 Local Verification of Global Proofs

The language we consider, called At least one selected (Alos), consists of all labeled
graphs such that at least one node has a non-zero input label. We say that a node with a
non-zero input label is selected. Proving that at least one node has some special property
(being the root, having some input, being part of some special subgraph) is an important
subroutine in many schemes.

On a more fundamental perspective, reversing decision basically deals with proving that
some node is rejecting, which falls into the scope of the Alos. It has long been known that
O(logn) local proof is sufficient for reversing decision, and the current section shows that
not only is this optimal, but also one cannot gain by using global proofs.

I Theorem 6. A mixed proof for the language Alos requires Ω(n logn) bits.

The theorem is equivalent to stating that the language requires either Ω(logn) bits per
local proof or an Ω(n logn) bit global proof.

Proof of Theorem 6. The proof is essentially a counting argument that shows that for any
proof scheme that uses small certificates we can find a graph in which no nodes are selected,
but there is a proof that makes the verifier accept the input. This is done by analyzing the
structure of the graph where nodes are all possible accepting labelled cycle fragments, and
two nodes are adjacent if the verifier accepts locally when they are placed one after the other
on a cycle. Finally we show that this graph contains an accepting cycle that has no selected
nodes.

Consider a mixed scheme with local certificates of size f(n) and a global certificate of
size g(n). Let r be the verification radius of the scheme.

Blocks. The lower bound instances are consistently oriented cycles of length at most
n = (b+ 1)(2r + 1), for some integer b. Cycles are constructed from blocks of 2r + 1 nodes:
the ith block is a path Bi = (vj , vj+1, . . . , vj+2r), where j = i(2r+1)+1, oriented consistently
from vj to vj+2r. Each node vj is labeled with the unique identifier j.

Constructing instances from blocks. Let π : [b]→ [b] be a permutation on the set of the
first b blocks. Each permutation defines a cycle Cπ where we take the blocks in the order
given by π, and finally take the (b + 1)th block. Each pair of consecutive blocks in π is
connected by an edge, and Bb+1 is connected to Bπ−1(1).

Finally, the center node vb(2r+1)+r+1 of Bb+1 is labeled with a non-zero label, making the
instance a yes-instance. All other nodes are labeled with the zero-label. Denote this family
of permuted yes-instances by C = {Cπ}π.

Labeled blocks. The prover assigns a local proof of f(n) bits to each node. Thus, there
are 2f(n)(2r+1) different possible labeled versions of each block. We call these labeled blocks.
Denote by Bi,` the block Bi labeled according to `. We call Bi the type of Bi,`

Consider two labeled blocks, Bi,` and Bj,`′ , in this order, linked by an edge. We say that
labeled blocks are accepting from Bi,` to Bj,`′ with global certificate L if, when we run the
verifier on the nodes that are at distance at most r from an endpoint of the connecting edge,
all these nodes accept. We denote this by Bi,` →L Bj,`′ .

For each choice L of the global certificate, this edge relation defines a graph GB,L on the
set of labeled blocks. A path in GB,L corresponds to a labeled path fragment in which all
nodes at least r steps away from the path’s endpoints accept. Finally, an accepting cycle is a
cycle in GB,L such that all nodes accept.

L. Feuilloley and J. Hirvonen 25:9

Bounding the overlap of certificates. For each Cπ ∈ C, there must exist an accepting
assignment of certificates to the nodes. Let L denote the global part of this accepting
certificate. Such a Cπ corresponds to a directed cycle in GB,L. Note that in this cycle the
last edge can be omitted as it would always link the last block to the first block. Then Cπ
corresponds to a directed path P (Cπ, L) of length b in GB,L. Denote the set of labeled blocks
on this path by S(Cπ, L).

Let CL denote the set of instances such that there exists an accepting local certification
given the global certificate L. Every yes-instance has an accepting certification, so there
must exist L∗ with

|CL∗ | ≥ |C|/2g(n).

Now consider any two instances Cπ and Cπ′ in CL∗ . We drop the specification of the
global certificate from the notation. We have the following lemma.

I Lemma 7. For all pairs of instances Cπ, Cπ′ with the same accepting global certificate L,
we have that S(Cπ, L) 6= S(Cπ′ , L).

Proof. Assume that Cπ and Cπ′ use the same set of blocks, that is S(Cπ, L∗) = S(Cπ′ , L∗).
Also assume without loss of generality, that π is the identity permutation. Now in P (Cπ′)
there must exist a back edge with respect to π, that is, an edge between labeled blocks
B and B′, of types Bπ′−1(i) and Bπ′−1(i+1) respectively, such that π′−1(i) > π′−1(i + 1).
This is because we assumed that the instances consist of the same blocks, but are different.
Therefore at some point an edge of Cπ′ must go backwards in the order of π. We also have
that B,B′ 6= Bb+1 as if there is no back edge before reaching Bb+1, we must have Cπ = Cπ′ .

This implies that there is an accepting cycle formed by taking first the path from B to
B′ along P (Cπ) and then an edge from B′ to B. This cycle does not contain a selected node.
It follows that there is a no-instance of size at least 2(2r + 1) and a certification that causes
the verifier to accept the instance, a contradiction. J

I Remark. Note that the contradicting instances can be of size 2(2r + 1) but the identifiers
can be of size n and the certificates of size f(n). Therefore the lower bound only holds for
uniform verifiers that do not get any guarantees except that 1) the identifiers come from the
set [n+ c], for some constant c, and 2) the certificates are of size at least f(n).

Alternatively it is possible to consider Alos on possibly disconnected instances so that
every connected component must have at least one node selected. In this case the proof will
fool even a non-uniform scheme (that is, one that has information about the real size of the
instance).

Counting argument. By Lemma 7, each pair of permutations π, π′ in CL∗ must induce a
different set of labeled blocks that form the accepting certifications of instances Cπ and Cπ′ .
The number of different permutations in CL∗ is at least b!/2g(n). On the other hand, the
number of different sets of labeled blocks, selecting a block of each type, is 2f(n)(2r+1)b. As
shown in Lemma 7, to have a legal certification, we must have that 2f(n)(2r+1)b+g(n) ≥ b!.

Using Stirling’s approximation we get that f(n)(2r + 1)b+ g(n) ≥ b log2 b− (log2 e)b+
O(ln b). Since b = Θ(n) and r = O(1), this implies that either f(n) = Ω(logn) or g(n) =
Ω(n logn). Thus the mixed proof has size Ω(n logn). J

Theorem 6 implies that reversing decision requires Ω(logn) bit certificates in the following
sense.

DISC 2018

25:10 Local Verification of Global Proofs

I Corollary 8. There exists a language, None selected, that can be decided locally without
nondeterministic proofs and its complement is Alos, which requires local certificates of size
Ω(logn) or global certificates of size Ω(n logn).

Proof. Consider the language None selected, that is, the language of labeled graphs such
that all nodes have the zero label. This language is locally decidable without nondeterminism,
that is, None selected ∈ LD [8] or Λ0 in the notation of Section 6. The language Alos
is its complement. Finally, by Theorem 6, deciding Alos, that is, reversing the decision
of None selected requires local certificates with Ω(logn) bits or global certificates with
Ω(n logn) bits. J

The proof can be adapted to several other problems, namely leader election, spanning
tree and the set of odd cycles, giving a lower bound for mixed proof systems.

I Corollary 9. Any mixed proof system for Leader election requires local certificates of
size Ω(logn) or global certificates of size Ω(n logn).

Proof of Corollary 9. Consider the proof of Theorem 6. The family C of yes-instances for
Alos is also a family of yes-instances for Leader election. Since Leader election (
Alos, the proof of Theorem 6 produces no-instances of Leader election that the verifier
accepts. J

I Corollary 10. Any mixed proof system for spanning tree requires local certificates of
size Ω(logn) or global certificates of size Ω(n logn).

Proof sketch. Consider two types of instances: the cycles where all the edges are selected,
and the the cycles where all edges but one are selected. The first instances are not in the
language, the second are. We can rephrase this restricted problem as: there is at least one
non-selected edge. Then the same type of proof works. J

I Corollary 11. Any mixed proof system for odd-cycle requires local certificates of size
Ω(logn) or global certificates of size Ω(n logn).

Proof sketch. The proof of Corollary 11 consists in a refinement of the proof for Alos. We
can build on an odd number of blocks, each block being of odd length itself. Then we can give
a colour to each block so that half of the blocks are black and half are white. Finally we can
force the paths to alternate between white and black blocks. The cycles obtained will then
be of even length, and thus be no-instances. The number of possible paths is reduced, but
only by term of the form 2b, which is negligible compared with the b! term. The calculation
then still gives the Ω(n logn) lower bound. J

A consequence of these corollaries is that all the Ω(logn) lower bounds obtained in [11]
for local certificates can be lifted to Ω(n logn) mixed proofs with our technique. However for
the problem Amos we studied in the previous section, our technique does not work, which is
consistent with the fact that an Ω(n logn) lower bound would contradict the O(logn) upper
bound we show. As already said, the technique of [11] works for Amos, and provides the
Ω(logn) bound for local proofs. The reason our technique fails is because we show that if
the certificates are too short then one can shorten the cycles that are yes-instances, which is
not useful for Amos, as a ‘subinstance’ of this problem is still in the language: one can only
remove selected nodes. The authors of [11] show that one can glue different yes-instances
together and get a configuration that is still accepted by the nodes, and for Amos this means
one can glue different instances with one node selected, and then get an instance with more

L. Feuilloley and J. Hirvonen 25:11

than one node selected, and this instance is still accepted, which raises a contradiction. Note
that because of this duality, the proof technique of [11] does not give a lower bound for Alos,
even for the case of local proofs.

It is also worth noting that the intersection of the languages Amos and Alos is Leader
Election. It is known that Leader Election has a proof-labeling scheme of size Θ(logn),
constructed with a spanning tree, along with the ID of the leader given to all the nodes. The
results of the current and previous sections show that this decomposition is mandatory: one
needs a global part of size Θ(logn), and a local part of size Θ(logn).

5 Beyond free locality

The language Bipartite is the set of bipartite graphs. Local proofs of constant size exist for
this language: the prover can just describe a 2-coloring of the graph by giving a bit to each
node, and every node can check that its neighbors are given a color different from its own.
We conjecture that for this language, even when restricting the topology to cycles, optimal
purely global proofs are larger than the sum of the optimal local proof sizes. More precisely
this sum is Θ(n), and we conjecture that purely global proofs take Θ(n logn) bits.

I Conjecture 12. For Bipartite, purely global proofs have size Θ(n logn).

We are not able to prove the lower bound of the conjecture, but we can prove weaker
inequalities. For this problem, the range of the identifiers is important, and that is why we
consider the maximum identifier to be a parameter M , that we do not bound by a polynomial
any more.

I Theorem 13. For Bipartite, there exist two constants α and β such that, for identifiers
bounded by M :

αmax{n, log logM} ≤ sg(n) ≤ βmin{M,n logM}.

Note that if M = n then we get a tight Θ(n) bound. The Ω(n) lower bound holds for
any ID range, but the log logM bound shows that this cannot be tight for every ID range:
we can get an arbitrarily large lower bound if we allow arbitrarily large identifiers.

Proof. We start with the upper bounds. The O(n logM) upper bound comes from the
certificate made by concatenating the couples (ID, local proof) for every node, as in Theorem 1.
For the O(M) upper bound, the prover strategy is to provide a vector with M cells, where
cell i will contain a bit indicating the color of the node with ID i. In both cases the nodes
will get their own colors and the colors of their neighbors from the certificate, and they can
check locally the consistency of the coloring.

We now prove the lower bounds for the restricted case of cycles. Note that bipartiteness
on cycles boils down to distinguishing between odd and even length cycles. A priori, in a
scheme for this language, the prover is not forced to explicitly provide a coloring to the nodes.
We show that a proof always implies a coloring. More precisely, a node can always extract
from the proof its color and the colors of its neighbors, and then check the consistency of the
coloring. As in Section 4, we will use blocks of nodes to build a large a number of instances.
The blocks are paths of 2r + 1 nodes. The i-th block, noted bi has consecutive IDs from
i(2r + 1) + 1 up to (i+ 1)(2r + 1). Every block is oriented in the direction of increasing IDs.
A block-based cycle is a cycle made by concatenating blocks, with a consistent orientation.

DISC 2018

25:12 Local Verification of Global Proofs

I Lemma 14. For every global proof c, there exists a coloring function fc : [M] 7→ {0, 1},
such that for every block-based cycle H that is accepting with certificate c, fc defines a proper
coloring of H.

Proof of Lemma 14. First, note that as the blocks have odd length, a block-based cycle has
even length if and only if it is composed of an even number of blocks. Then, for block-based
cycles, replacing virtually each block by a vertex, and trying to 2-color the resulting cycle is
equivalent to 2-color the nodes of the original instance.

Fix a certificate c. Consider the directed graph Gc, whose nodes are the blocks (bi)i.
There is an oriented edge (bi, bj) if and only if there exists a block-based cycle for which c is
an accepting certificate, and where the block bi is followed by the block bj .

I Claim 15. The graph Gc contains no directed odd cycle.

Proof of Claim 15. Suppose the graph Gc contains a directed odd cycle. Consider the
corresponding block-based cycle C. Because it has odd length, it is a no-instance. Consider a
node v of this instance that is rejecting with certificate c. Without loss of generality, assume
it is in the first half of its block bi (that is, its ID is between i(2r+1)+1 and i(2r+1)+r+1).
Let bh be the block preceding bi in C. The node v can only see (parts of) of bh and bi,
because its radius is r. As (bh, bi) belongs to Gc, there exists a yes-instance C ′, in which
every node accepts with proof c, and in which bi follows bh. This is a contradiction, because
with certificate c, v is accepting in C ′, and rejecting in C, although it has the exact same
view in both instances. Thus the graph Gc contains no directed odd cycle. J

I Claim 16. Every connected component of the graph Gc is strongly connected.

Proof of Claim 16. Consider the following way of building Gc: take an arbitrary ordering
of the cycles that accept with c, and add them (i.e. add their edges) to Gc, one by one. We
show the strong connectivity of the connected components by induction. The property holds
for the empty graph. Suppose every connected component is strongly connected until some
step, and that we add a new cycle. As a directed cycle is strongly connected, merging it with
one or several strongly connected components, keeps the strong connectivity. J

It is known that a strongly connected digraph with no odd length directed cycles can be
2-colored (see e.g. Theorem 1.8.1 in [2]). Thus, from Claim 15 and Claim 16, we get that Gc
has a 2-coloring. This 2-coloring induces a 2-coloring on all the block-based cycles accepting
with c, thus it defines the function fc of the lemma. J

Now fix a size n, for an even n, and consider the following table. The columns are indexed
by the blocks, thus there are M/(2r + 1) of them. The rows are indexed by all the possible
certificates, that is all the strings on sg(n) bits. The cell that corresponds to block b and
certificate c contains the color given by fc to the center node of b. We will now give two
simple properties of this table that will imply the two lower bounds.

Let a balanced binary vector be a vector of bits with the same number of zeros and ones.
Let the complement of a binary vector be the same binary vector where ones and zeros have
been complemented.

I Lemma 17. For every balanced binary vector p of length n, there exists a row of the table
such that the vector made by the n first cells is equal to either p or its complement.

L. Feuilloley and J. Hirvonen 25:13

Proof of Lemma 17. Consider a balanced binary vector p. Consider a cycle H made by
concatenating the n first blocks, in an ordering such that coloring block i with the ith bit of
p, defines a proper coloring of the cycle. Note that, as p is balanced, such a cycle must exist.
This cycle H has even length, thus it belongs to the language and there exists an accepting
certificate c. The first n cells of the row of c must describe a proper coloring of H, and there
are only two such colorings: p and its complement. J

For every balanced vector of length n there exists a row that it matches (or its complement
matches) on the n first cells. A row can only correspond to one such vector (up to complement),
and since there are at least 2n/2/2 balanced binary vectors (first n/2 bits can be chosen
freely) the table must have at least 2n/2 rows. This means that there are at least 2n/2
different certificates, thus the certificate size is lower bounded by n, up to multiplicative
constants.

I Lemma 18. Two columns of the table cannot be equal.

Proof of Lemma 18. Suppose columns i and j are equal. Consider an even-length block-
based cycle C, where the block i is linked to the block j. Such a cycle always exists. For
every certificate c, the same color is given to both blocks i and j in fc, because the columns
are equal. Thus no certificate provides a proper coloring of C, which is a contradiction
because C belongs to the language. J

As there are M different columns, there is at least order of log(M) certificates. Then the
length of a certificate is in Ω(log log(M)). This finishes the proof of Theorem 13. J

6 Local decision and communication complexity

In this section we present the nondeterministic hierarchies for local decision and communica-
tion complexity.

Nondeterministic hierarchy of local decision. Feuilloley et al. [7] introduced a nondeter-
ministic hierarchy of local decision. It is the distributed computing analogue of the classical
polynomial hierarchy. A prover and a disprover take turns, providing each node with proofs
of size O(logn). Once the proof labels have been assigned, the nodes look at their constant-
radius neighborhood, including the nondeterministic proofs, and decide whether they accept
or not.

The classes Σk and Πk correspond to the languages that can be decided using k levels
of nondeterminism – in Σk the prover goes first, and in Πk the disprover. Let `1, `2, . . . , `k
denote the k levels of nondeterministic labels provided to the nodes. A language L ∈ Σk if
and only if there exists a verifier A such that

(G, x) ∈ L ⇐⇒ ∃`1,∀`2, . . . ,Q `k,∀v ∈ V (G), A accepts.

Here Q denotes the existential quantifier if k is odd and the universal quantifier otherwise.
The classes Πk are defined similarly, but with the disprover (i.e. universal quantifier) going
first.

The classes that corresponds to the disprover talking last collapse to the previous level,
and the only interesting levels are Σ1,Π2,Σ3, . . . , which are denoted by (Λk)k∈N. The
complements of these classes are denoted by co -Λi and we have that co -Λk ⊆ Λk+1 [7], i.e.,
decision can always be reversed using an extra quantifier with O(logn) bits. As shown in
Theorem 6, in general, Ω(logn) bits are also required for reversing decision.

DISC 2018

25:14 Local Verification of Global Proofs

The main open question of Feuilloley et al. [7] was whether Λ2 and Λ3 were different or
not. As in the polynomial hierarchy, the equality Λk = Λk+1 of two levels would imply a
collapse of the local hierarchy down to the kth level. We show that this question is related
to long-standing open questions nondeterministic communication complexity [1].

A hierarchy for global certificates. Similar to the hierarchy of local certificates, we can
define a hierarchy for the global certificates. Define ΣGk , ΠG

k , and ΛGk as previously, except
that the labels `1, `2, . . . , `k are global certificates seen by all nodes.

Communication complexity. We will compare the hierarchies of nondeterministic local
decision to the hierarchy of nondeterministic communication complexity defined by Babai et
al. [1].

In the communication complexity setting we are given a boolean function f on 2n bits.
Two entities, Alice and Bob, are each given n-bit vectors x and y, and have to decide
if f(x ∪ y) = 1. They can communicate through a reliable channel and have unlimited
computational resources. The measure of complexity is the number of bits Alice and Bob
need to communicate in order to decide f . For more details, see for example the book [18].

In nondeterministic communication complexity Alice and Bob have access to nondeter-
ministic advice (we will say that it is given by a prover). The cost of a protocol is the sum
of the number of bits communicated by Alice and Bob and the number of advice bits given
by the prover. This means that messages of Alice and Bob can equivalently be encoded in
the advice.

Babai et al. defined a hierarchy of nondeterministic communication complexity [1]. In
addition to Alice and Bob we have two players, whom we will call prover and disprover
for consistency, giving nondeterministic advice to Alice and Bob. Prover and disprover will
alternate k times and each time give an advice string of g(n) bits. Now we define the class
Σcc
k (g(n)) of boolean functions as the set of functions such that there exists an algorithm A

for Alice, and an algorithm B for Bob such that if f ∈ Σcc
k (g(n)), then

∀x, y,∃`1,∀`2, . . . ,Q `kA(`1, `2, ..., `k, x) = B(`1, `2, ..., `k, y) = 1 ⇐⇒ f(x, y) = 1.

Again Q denotes the existential quantifier if k is odd and the universal quantifier otherwise.
The classes Πcc

k (g(n)) are defined similarly, but with the disprover going first. We are
particularly interested in this hierarchy when g(n) = O(logn). Note that in their work,
Babai et al. consider the hierarchy for g(n) = O(poly(logn)) [1].

6.1 Connecting local decision and communication complexity
In this section we partially formalize the intuition that complexity of local verification is
connected to communication complexity. We show that general lower bound proof techniques
for nondeterministic local verification will also apply to communication complexity. We then
show that if one considers global proofs instead of local ones, the result can be strengthened.

I Theorem 19. For every boolean function f , there exists a distributed language Lf such
that if f ∈ Σcck (g(n)) for odd k or f ∈ Πcc

k (g(n)) for even k ≥ 2, then Lf ∈ Λk(g(n)).

The proof is by showing that there exists a family of languages such that a nondeterministic
verification scheme can simulate a nondeterministic communication protocol. The theorem
partially explains why it is difficult to separate the different levels of the local decision
hierarchy – the question is inherently tied to long-standing open questions in communication
complexity [1].

L. Feuilloley and J. Hirvonen 25:15

Proof of Theorem 19. Let f be a boolean function on 2n variables. We will construct an
infinite family of graphs Gn =

(
G(n, t, x, y)

)
t,x,y

and a related language Lf .
The graph G(n, t, x, y) consists of a path P2t+1 = (v1, v2, . . . , v2t+1) of length 2t+ 1, and

two sets of nodes, VA and VB of size n. Let us denote vA = v1 and vB = v2t+1. We add an
edge between each v ∈ VA and vA, and an edge between each u ∈ VB and vB . The nodes vA
and vB are labelled with their respective identities.

Parameters x and y are bit vectors of length n, corresponding to the inputs of players A
and B in the communication complexity setting. To encode the input vectors, we use graphs
on VA and VB, respectively. There are 2n possible input vectors. We’ll define a function φ
that maps each graph on n nodes to an n-bit vector. Since the encoding of the input cannot
depend on the unique identifiers, φ must map all graphs of the same isomorphism class to
the same vector. Finally, since there are at least 2(n

2)/n! = Ω(2n2) such graph isomorphism
classes, we can find a φ such that for all x 6= y, we have that φ−1(x) ∩ φ−1(y) = ∅.

Given φ, x, and y, we can choose two graphs GA ∈ φ−1(x) and GB ∈ φ−1(y), identify
the node sets VA and VB with V (GA) and V (GB), respectively, and add the corresponding
edges to the graph G(n, t, x, y). We will use GA and GB , respectively, to denote these graphs
on node sets VA and VB . Nodes vA and vB are labelled as special nodes so that the structure
of GA and GB can be detected. We denote this graph construction by G(n, t, x, y).

Local verification of Gf . A single O(logn)-bit certificate is enough to verify the structure
of G(n, t, x, y). It first consists of a spanning tree of P2t+1: node vA is marked as root, and
each node vi has a pointer to vi−1 and a counter i, its distance to the root. It also contains
the value n. The nodes vA and vB can check that the sizes of the graph GA and GB are
consistent with this value. They also check that there are no other outgoing edges from GA
and GB . Nodes vA and vB can see all nodes of GA and GB , and determine their isomorphism
classes, and compute x = φ(GA) and y = φ(GB), respectively.

Deciding Lf . We say that G ∈ Lf if and only if
1. the structure of G is that of G(n, t, x, y) for some setting of the parameters, and
2. the function f evaluates to 1 on φ(GA) ∪ φ(GB).

Now assume that f is on the kth level of the communication complexity hierarchy with
s = Ω(logn) bits of nondeterminism. We can use this implied protocol P to solve Lf on the
kth level. If the graph structure is correct, the prover and disprover essentially simulate their
counterparts from the communication complexity setting, and label all nodes on P2t+1 as if
in P . Then vA can simulate A and vB can simulate B, accepting if and only if f(x, y) = 1. If
the prover tries to deviate from this strategy, nodes can see that its labelling of P2t+1 is not
constant, and reject. If the disprover tries to deviate, the prover can construct a certificate
pointing to this error, and all nodes will accept. J

Global proofs and communication complexity. In the setting of global proofs we can show
a slightly stronger theorem.

I Theorem 20. For every boolean function f and every g(n) = Ω(logn) there exists a
distributed language Lf such that Lf ∈ ΛGk (g(n)), for k ≥ 1 if and only if f is in the kth
level of the communication complexity hierarchy with O(g(n)) bits of nondeterminism, in
particular f ∈ Σcc

k for k odd or f ∈ Πcc
k for k even.

In particular, this theorem implies that any collapse in the hierarchy for global certificates
implies a collapse in the corresponding communication complexity hierarchy.

DISC 2018

25:16 Local Verification of Global Proofs

Proof of Theorem 20. We show that with respect to the language Lf defined in the proof
of Theorem 19, the communication complexity model and the global verification model can
simulate each other.

1. Communication protocol implies a global verification protocol. The proof proceeds essen-
tially as in the proof of Theorem 19. Using O(t logn) bits the global certificate can give
the list of nodes on the path between vA and vB . If a node has degree 2, it must see its
own name on this list. Nodes vA and vB can again locally verify the structure of GA
and GB and recover x and y. Finally the prover and disprover follow the communication
protocol P on instance (x, y), allowing nodes vA and vB to simulate Alice and Bob.

2. Global verification scheme implies a communication protocol. Assume there is a kth level
global verification scheme with g(n)-bit certificates for Lf .
Alice and Bob will simulate this scheme as follows. Construct a virtual graph G(x, y)
consisting of three parts: the nodes vA and vB, a path P2t+1 of length 2t+ 1 between
them, and graphs H(x) and H(y) that are the first elements (in some order) of φ−1(x)
and φ−1(y), respectively. Finally, all nodes of H(x) are connected to vA and all nodes of
H(y) to vB . Only Alice will know H(x) and only Bob H(y).
This graph is in Lf if and only if f(x, y) = 1: the structure is exactly as in the definition
of Lf .
Now the nondeterministic prover and disprover can simulate their counterparts in the
global verification scheme. Alice and Bob accept if and only if the prover can force all
nodes they control to accept. Thus the complexity is bounded by the complexity g(n) of
the global verification scheme. J

References
1 Lazslo Babai, Peter Frankl, and Janos Simon. Complexity classes in communication com-

plexity theory. In Proc. 27th Annual Symposium on Foundations of Computer Science
(FOCS 1986), pages 337–347, 1986. doi:10.1109/SFCS.1986.15.

2 Jørgen Bang-Jensen and Gregory Gutin. Digraphs - theory, algorithms and applications.
Springer, 2002.

3 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. In
Structural Information and Communication Complexity - 24th International Colloquium,
SIROCCO 2017, Porquerolles, France, June 19-22, 2017, Revised Selected Papers, pages
71–89, 2017. doi:10.1007/978-3-319-72050-0_5.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

5 Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bulletin of the
EATCS, 119, 2016. URL: http://bulletin.eatcs.org/index.php/beatcs/article/view/411/391.

6 Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes. In 31st
International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vi-
enna, Austria, pages 16:1–16:15, 2017. doi:10.4230/LIPIcs.DISC.2017.16.

7 Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A Hierarchy of Local Decision. In
Proc. 43rd International Colloquium on Automata, Languages, and Programming (ICALP
2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 118:1–
118:15, 2016. doi:10.4230/LIPIcs.ICALP.2016.118.

8 Pierre Fraigniaud, Amos Korman, and David Peleg. Local distributed decision. In IEEE
52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs,
CA, USA, October 22-25, 2011, pages 708–717, 2011. doi:10.1109/FOCS.2011.17.

http://dx.doi.org/10.1109/SFCS.1986.15
http://dx.doi.org/10.1007/978-3-319-72050-0_5
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://bulletin.eatcs.org/index.php/beatcs/article/view/411/391
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.16
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.118
http://dx.doi.org/10.1109/FOCS.2011.17

L. Feuilloley and J. Hirvonen 25:17

9 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35, 2013. doi:10.1145/2499228.

10 Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication
complexity classes. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 86:1–86:15, 2016. doi:
10.4230/LIPIcs.ICALP.2016.86.

11 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
of Computing, 12(1):1–33, 2016. doi:10.4086/toc.2016.v012a019.

12 Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot,
Israel, January 11-13, 2015, pages 133–142, 2015. doi:10.1145/2688073.2688079.

13 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Dis-
tributed Computing, 20(4):253–266, 2007. doi:10.1007/s00446-007-0025-1.

14 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. In Proceedings
of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2005, Las Vegas, NV, USA, July 17-20, 2005, pages 9–18, 2005. doi:10.1145/
1073814.1073817.

15 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Com-
puting, 22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

16 Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65–69, 2009. doi:10.1016/j.cosrev.2009.04.003.

17 Fabian Kuhn. The price of locality: exploring the complexity of distributed coordination
primitives. PhD thesis, ETH Zurich, 2005. URL: http://d-nb.info/977273725.

18 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

19 László Lovász and Katalin Vesztergombi. Non-deterministic graph property test-
ing. Combinatorics, Probability & Computing, 22(5):749–762, 2013. doi:10.1017/
S0963548313000205.

20 Rafail Ostrovsky, Mor Perry, and Will Rosenbaum. Space-time tradeoffs for distributed
verification. In Structural Information and Communication Complexity - 24th International
Colloquium, SIROCCO 2017, Porquerolles, France, June 19-22, 2017, Revised Selected
Papers, pages 53–70, 2017. doi:10.1007/978-3-319-72050-0_4.

21 Christos H. Papadimitriou. Algorithms, games, and the internet. In Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 749–753, 2001. doi:10.1145/380752.380883.

22 Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: Broadcast, unicast and in
between. In Stabilization, Safety, and Security of Distributed Systems - 19th International
Symposium, SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings, pages 1–17,
2017. doi:10.1007/978-3-319-69084-1_1.

DISC 2018

http://dx.doi.org/10.1145/2499228
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
http://dx.doi.org/10.4086/toc.2016.v012a019
http://dx.doi.org/10.1145/2688073.2688079
http://dx.doi.org/10.1007/s00446-007-0025-1
http://dx.doi.org/10.1145/1073814.1073817
http://dx.doi.org/10.1145/1073814.1073817
http://dx.doi.org/10.1007/s00446-010-0095-3
http://dx.doi.org/10.1016/j.cosrev.2009.04.003
http://d-nb.info/977273725
http://dx.doi.org/10.1017/S0963548313000205
http://dx.doi.org/10.1017/S0963548313000205
http://dx.doi.org/10.1007/978-3-319-72050-0_4
http://dx.doi.org/10.1145/380752.380883
http://dx.doi.org/10.1007/978-3-319-69084-1_1

A Simple Parallel and Distributed Sampling
Technique: Local Glauber Dynamics
Manuela Fischer
ETH Zurich, Switzerland
manuela.fischer@inf.ethz.ch

Mohsen Ghaffari
ETH Zurich, Switzerland
ghaffari@inf.ethz.ch

Abstract
Sampling constitutes an important tool in a variety of areas: from machine learning and combina-
torial optimization to computational physics and biology. A central class of sampling algorithms
is the Markov Chain Monte Carlo method, based on the construction of a Markov chain with
the desired sampling distribution as its stationary distribution. Many of the traditional Markov
chains, such as the Glauber dynamics, do not scale well with increasing dimension. To address
this shortcoming, we propose a simple local update rule based on the Glauber dynamics that
leads to efficient parallel and distributed algorithms for sampling from Gibbs distributions.

Concretely, we present a Markov chain that mixes in O(logn) rounds when Dobrushin’s con-
dition for the Gibbs distribution is satisfied. This improves over the LubyGlauber algorithm by
Feng, Sun, and Yin [PODC’17], which needs O(∆ logn) rounds, and their LocalMetropolis algo-
rithm, which converges in O(logn) rounds but requires a considerably stronger mixing condition.
Here, n denotes the number of nodes in the graphical model inducing the Gibbs distribution, and
∆ its maximum degree. In particular, our method can sample a uniform proper coloring with α∆
colors in O(logn) rounds for any α > 2, which almost matches the threshold of the sequential
Glauber dynamics and improves on the α > 2 +

√
2 threshold of Feng et al.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Graph Algorithms, Parallel Algorithms, Local Algorithms,
Locality, Sampling, Glauber Dynamics, Coloring

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.26

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
06676.

1 Introduction

Locally Checkable Labeling (LCL) [17] problems have been studied extensively for more
than three decades [14]. Sampling from the solution space of such LCLs, however, has not
attracted a lot of attention and has been investigated only by a recent work [7], despite its
numerous motivations, which we will outline in the following.

Markov Chain Monte Carlo Method. The Markov Chain Monte Carlo (MCMC) method
is a central class of algorithms for sampling, that is, for randomly drawing an element from
a ground set according to a certain probability distribution. It works by constructing a
Markov chain with the targeted sampling distribution as its stationary distribution. Within
a number of steps, known as the mixing time, the Markov chain converges; its state then

© Manuela Fischer and Mohsen Ghaffari;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 26; pp. 26:1–26:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuela.fischer@inf.ethz.ch
mailto:ghaffari@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.DISC.2018.26
https://arxiv.org/abs/1802.06676
https://arxiv.org/abs/1802.06676
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Local Glauber Dynamics

(approximately) follows this distribution. Besides the intrinsic interest of such a general
sampling method, in particular for complex distributions where simple sampling techniques
fail, the MCMC method gives rise to efficient approximation algorithms in a variety of
areas: enumerative combinatorics (due to the fundamental connection between sampling
and counting established by Jerrum, Valiant, and Vazirani [13]), simulated annealing [16] in
combinatorial optimization, Monte Carlo simulations [15] in statistical physics, computation
of intractable integrals for, among many others, Bayesian inference [1] in machine learning.

Parallel and Distributed Sampling. The employment of MCMC methods is particularly
important when confronted with high-dimensional data, where traditional (exact) approaches
quickly become intractable. Such data sets are not only increasingly frequent, but also critical
for the success of many applications. For instance in machine learning, higher-dimensional
models help expressibility and hence predictability. It is thus central that MCMC algorithms
scale well with increasing dimensions. This is not the case, however, for most sequential
methods, as they process and update the variables one by one, that is, a single site per step.
To speed up the sampling process, Markov chain updates can be parallelized by spreading the
variables across several processors. In other settings, such as distributed machine learning,
the (data associated to) variables might already be naturally distributed among several
machines, and the overhead of aggregating them into one machine, if they fit there in the
first place, would be untenable.

Local Sampling. In either case, to avoid overhead in communication and coordination,
local update rules for Markov chains are needed: a machine must be able to change the value
of its variables without knowing all the values of the variables on other machines. Yet, the
joint distribution, over all variables in the system, must converge to a certain distribution.
This local sampling problem was introduced in a recent work by Feng, Sun, and Yin [7],
whose title asks “What can be sampled locally?”. We address this question by providing a
simple and generic sampling technique – the Local Glauber Dynamics, informally introduced
in Section 1.2 and formally described in Section 2 – which is applicable for a wide range
of distributions, as stated in Section 1.1. This moves us a step closer towards an answer
of this question, thus towards the goal of generally understanding what can be sampled
locally. Besides its many practical ramifications, especially on the area of distributed machine
learning, this gives us a theoretical insight about the locality of problems, whose systematic
study has been initiated by the seminal works of Linial [14] and Naor and Stockmeyer [17]
with the pithy title “What can be computed locally?”.

1.1 Our Result, and Related Work.

For the sake of succinctness and comprehensibility of the presentation, we state and prove
our main result in terms of the special case that gets most attention for sequential sampling:
sampling proper colorings of a graph. We refer to [8] for a survey on sequential sampling
of proper colorings. Our result applies to a more general set of distributions, however, as
explained in the remark at the end of this section. Note that independently and simultaneously,
Feng, Hayes, and Yin [6] arrived at the same result.

I Theorem 1. A uniform proper q-coloring of an n-node graph with maximum degree ∆ can
be sampled within total variation distance ε > 0 in O

(
log
(
n
ε

))
rounds, where q = α∆ for

any α > 2.

M. Fischer and M. Ghaffari 26:3

Our parallel and distributed sampling algorithm improves over the LubyGlauber algorithm
by Feng, Sun, and Yin [7], which needs O

(
∆ log

(
n
ε

))
rounds, and their LocalMetropolis

algorithm, which converges in O
(
log
(
n
ε

))
rounds but requires a considerably stronger mixing

condition of α > 2 +
√

2. They state that “We also believe that the 2 +
√

2 threshold is
of certain significance to this [LocalMetropolis] chain as the Dobrushin’s condition to the
Glauber dynamics.”, thus implying that this value is a barrier for their approach. This is also
justified by the supposedly easiest special case of a tree that leads to the same threshold for
their algorithm. Our result gets rid of the additional

√
2 while not incurring any loss in the

round complexity, with a considerably easier and more natural update rule. Not only is our
proof simpler and shorter, our algorithm is also asymptotically best possible, as there is an
Ω
(
log
(
n
ε

))
lower bound [10, 7] due to the exponential correlation between variables.

The threshold of α > 2 corresponds to Dobrushin’s condition, thus almost matches the
threshold of the sequential Glauber dynamics [12, 19] at 2∆ + 1. In other words, we present
a technique that fully parallelizes the Glauber dynamics, speeding up the mixing time from
polyn steps to O(logn) rounds1. In terms of number of colors needed, Dobrushin’s condition
can be undercut: Vigoda [20] and two very recent works [3, 4] showed that, when resorting
to a different highly non-local Markov chain, α = 11

6 is enough. This gives rise to the
question whether efficient distributed algorithms intrinsically need to be stuck at Dobrushin’s
condition, which would imply that this bound is inherent to the locality of the sampling
process, or whether our threshold is an artifact of our possibly suboptimal dynamics.

I Remark. In fact, our technique directly applies for sampling from the Gibbs distribution
induced by a Markov random field2 if Dobrushin’s condition [5] is satisfied. More generally, it
can used for sampling from any local (that is, constant-radius) constraint satisfaction problems,
which is universal for conditional independent joint distributions, due to Hammersley-
Clifford’s fundamental theorem [11]. Moreover, our proof presented here captures all the
difficulties that arise in these more general cases, thus can be adapted in a straight-forward
manner. We defer this generalization to the full version of the paper.

1.2 Our Sampling Technique, and Related Approaches
Over the past few years, several methods to parallelize sequential Markov chains have been
proposed. Most of them rely on heavy coordination machinery, are special purpose, and/or
do not provide any theoretical guarantees. In the following, we briefly outline two of the
most promising and more generic parallel and distributed sampling techniques, in the context
of colorings.

The most natural one follows a standard decentralization approach, also implemented
in the LubyGlauber algorithm by [7]: an independent set of nodes (e.g., a color class of a
proper coloring) simultaneously updates their color [7], ensuring that no two neighboring
nodes change their color at the same time. This approach mainly suffers from the limitation
that the number of independent sets needed to cover all nodes might be large, which slows
down mixing. In particular, a multiplicative ∆-term in the mixing time seems inevitable
[9, 7]. In the worst case of a clique, this approach falls back to sequential sampling, updating
one node after the other. Moreover, this method requires an independent set to be computed,
which incurs a significant amount of additional communication and coordination.

1 Note that our parallel and distributed algorithm directly gives rise to a centralized algorithm with
running time O(n logn). The number of colors, however, is slightly larger than what state-of-the-art
centralized algorithms require.

2 This captures many graph problems – such as independent set, vertex cover, graph homomorphism –
and physical models – such as Ising model, Potts model, general spin systems, and hardcore gas model.

DISC 2018

26:4 Local Glauber Dynamics

An orthogonal direction was pursued by [18, 21, 7], where methods are introduced to
update the colors of all nodes simultaneously. One example is the LocalMetropolis algorithm
by [7]. This extreme parallelism, however, comes at a cost of either introducing a bias in the
stationary distribution, resulting in a non-uniform coloring [18, 21], or having to demand
stronger mixing conditions [7].

Our Local Sampling Technique. We aim for the middle ground between these two ap-
proaches, motivated by the following observation: we do not need to prevent simultaneous
updates of adjacent nodes, only simultaneous conflicting updates of adjacent nodes. Prevent-
ing two adjacent nodes in the first place from picking a new color in the same round seems
to be way too restrictive, in particular because it is unlikely that both nodes aim for the
same new color. On the other hand, if all nodes update their colors simultaneously, a node is
expected to have a conflict with at least one of its neighbors, which prevents progress.

We interpolate between the two extreme cases by introducing a marking probability, so
that only a small fraction of a node’s neighbors is expected to update the color, and hence
also, in worst case, only these can conflict with its update. Concretely, we propose the
following generic sampling method, which we call Local Glauber Dynamics: In every step,
every variable independently marks itself at random with a certain (low) probability. If it is
marked, it samples a proposal at random and checks with its neighbors whether the proposal
leads to a conflict with their current state or their new proposals (if any). If there is a conflict,
the variable rolls back and stays with its current state, otherwise the state is updated. As
opposed to sequential sampling, where only one variable per step updates its value, here the
expected number of variables simultaneously updating their value is Ω(n), resulting in the
desired speed-up from O(n logn), say, to O(logn). Of course, the main technical aspect lies
in showing that this simple update rule converges to the uniform distribution in O(logn)
rounds, which we prove in Section 2.

1.3 Notation and Preliminaries
Model. We work with the standard distributed message-passing model for the study of
locality: the LOCAL model introduced by Linial [14], defined as follows. Given a graph
G = (V,E) on n nodes with maximum degree ∆, the computation proceeds in rounds. In
every round, every node can send a message to each of its neighbors. We do not limit the
message sizes, but for the algorithm that we present, O(logn)-bit messages suffice. In the
end of the computation, every node v outputs a color. The quantity of main interest is the
round complexity, i.e., the number of rounds until the joint output of all nodes satisfies a
certain condition.

Markov Chain. We consider a Markov chain X =
(
X(t))

t≥0, where X
(t) =

(
X

(t)
v

)
v∈V
∈

[q]V is the coloring of the graph in round t. We will omit the round index, and use
X = (Xv)v∈V ∈ [q]V for the coloring at time t and X ′ = (X ′v)v∈V ∈ [q]V for the coloring at
time t+ 1, for a t ≥ 0, instead.

Mixing Time. For a Markov chain
(
X(t))

t≥0 with stationary distribution µ, let π(t)
σ denote

the distribution of the random coloring X(t) of the chain at time t ≥ 0, conditioned on
X(0) = σ. The mixing time τmix(ε) = maxσ∈Ω min

{
t ≥ 0: dTV

(
π

(t)
σ , µ

)
≤ ε
}

is defined
to be the minimum number of rounds needed so that the Markov chain is ε-close (in

M. Fischer and M. Ghaffari 26:5

terms of total variation distance) to its stationary distribution µ, regardless of X(0). The
total variation distance between two distributions µ, ν over Ω is defined as dTV(µ, ν) =∑
σ∈Ω

1
2 |µ(σ)− ν(σ)|.

Path Coupling. The Path Coupling Lemma by Bubley and Dyer [2, Theorem 1] (also see
[7, Lemma 4.3]) gives rise to a particularly easy way of designing couplings. In a simplified
version, it says that it is enough to define the coupling of a Markov chain only for pairs of
colorings that are adjacent, that is, differ at exactly one node. The expected number of
differing nodes after one coupling step then can be used to bound the mixing time of the
Markov chain.

I Lemma 2 (Path Coupling [2], simplified). For σ, σ′ ∈ [q]V , let φ(σ, σ′) := |{v ∈ V : σv 6=
σ′v}|. If there is a coupling (X,Y)→ (X ′, Y ′) of the Markov chain, defined only for (X,Y)
with φ(X,Y) = 1, that satisfies E[φ(X ′, Y ′) | X,Y] ≤ 1 − δ for some 0 < δ < 1, then
τmix(ε) = O

(1
δ · log

(
n
ε

))
.

2 Local Glauber Dynamics

Local Glauber Dynamics. We define a transition from X = (Xv)v∈V to X ′ = (X ′v)v∈V in
one round as follows. Every node v ∈ V marks itself independently with probability 0 < γ < 1.
If it is marked, it proposes a new color cv ∈ [q] uniformly at random, independently from
all the other nodes. If this proposed color does not lead to a conflict with the current and
the proposed colors of any neighbor, that is, cv /∈

⋃
u∈N(v){Xu, cu} and cu /∈ {Xv, cv} for

any u ∈ N(v)3, then v accepts color cv, thus sets X ′v = cv. Otherwise, v keeps its current
color, that is, sets X ′v = Xv. Note that the condition cv /∈

⋃
u∈N(v){Xu, cu} is necessary to

guarantee reversibility of the Markov chain.

Stationary Distribution. The local Glauber dynamics is ergodic: it is aperiodic, as there is
always a positive probability of not changing any of the colors, and irreducible, since any
(proper) coloring can be reached from any coloring. Moreover, the chain might possibly start
from an improper coloring, but it will never move from a proper to an improper coloring,
that is, it is absorbing to proper colorings. It is easy to verify that this local Glauber
dynamics, due to its symmetric update rule, satisfies the detailed balance equation for the
uniform distribution, meaning that the transition from X to X ′ has the same probability
as a transition from X ′ to X for proper colorings. The chain thus is reversible and has the
uniform distribution over all proper colorings as unique stationary distribution.

Mixing Time. Informally speaking, the Path Coupling Lemma says that if for all X and Y
which differ in one node, we can define a coupling (X,Y)→ (X ′, Y ′) in such a way that the
expected number of nodes at which X ′ and Y ′ differ is bounded away from 1 from above,
then the chain converges quickly. In Section 2.1, we formally describe such a path coupling,
in Section 2.2, we list necessary (but not necessarily sufficient) conditions for a node to have
two different colors after one coupling step, which is then used in Section 2.3 to bound the
expected number of differing nodes by 1− δ for some constant 0 < δ < 1, depending on α.
Application of Lemma 2 then concludes the proof of Theorem 1.

3 To simplify notation, we assume that cu = Xu in case u is not marked.

DISC 2018

26:6 Local Glauber Dynamics

2.1 Description of Path Coupling.

We look at two colorings X and Y that differ at a node v0 ∈ V only. That is, r = Xv0 6=
Yv0 = b, for some r 6= b ∈ [q], which we will naturally refer to as red and blue, respectively,
and Xv = Yv for all v 6= v0 ∈ V . In the following, we explain how every node v ∈ V comes
up with a pair (cXv , cYv) of new proposals, which then will be accepted or rejected based on
the local Glauber dynamics rules.

Marking. In both chains, every node v ∈ V is marked independently with probability γ,
using the same randomness in both chains. In the following, we restrict our attention to
marked nodes only; non-marked nodes are thought of proposing their current color as new
color, i.e., cXv = Xv and cYv = Yv.

Consistent, Mirrored, and Flipped Proposals. We introduce two possible ways of how
proposals for a node v can be sampled: consistently and mirroredly. For the consistent
proposals, both chains propose the same randomly chosen color, that is, cXv = cYv = c for a
u.a.r. c ∈ [q]. For the mirrored proposals, both chains assign the same random proposal if it
is neither red nor blue, and a flipped proposal (i.e., red to one and blue to the other chain)
otherwise. More formally, cXv = c and cYv = c if c ∈ {r, b} and c the element in {r, b} \ {c},
and cXv = cYv = c if c /∈ {r, b}, for a u.a.r. c ∈ [q]. We say that v has flipped proposals if
cXv 6= cYv . Note that we say mirrored proposal to refer to the process of sampling mirroredly,
and we say flipped if, as a result of sampling mirroredly, a node proposes different colors in
the two chains.

Breadth-First Assignment of Proposals. Let B = {v ∈ V \ {v0} : Xv ∈ {r, b}} ⊆ V \ {v0}
be the set of nodes v 6= v0 with current color red or blue, as well as K =

(⋃
v∈B N

+(v)
)
\{v0}

its inclusive neighborhood, without v0, where N+(v) := N(v) ∪ {v}. We ignore this set K
for the moment, and focus on the set S ⊆ V \K of marked nodes that are not adjacent to a
node with color red or blue (except for possibly v0). Informally speaking, we will go through
these nodes in a breadth-first manner, with increasing distance d ≥ 0 to node v0, and fix
their proposals layer by layer, but defer the assignment of nodes not (yet) adjacent to a node
with flipped proposals, as follows. We repeatedly add all (still remaining) nodes that have
a node in the last layer with flipped proposals to a new layer, and sample their proposals
mirroredly, thus perform a breadth-first assignment on nodes with flipped proposals only. All
remaining nodes sample their proposals consistently. Note that this in particular guarantees
that a node is sampled consistently only if it not adjacent to a node with flipped proposals.

More formally, this can be described as follows. We define M0 = F 0 = {v0}, even if v0 is
not marked, and M1 = N (v0). For the subsequent layer, we restrict the attention to (new)
neighbors of nodes inMd with flipped proposals only, i.e., considerMd+1 = N

(
F d
)
\
⋃d
i=0M

d

for F d = {v ∈Md : cXv 6= cYv }. For node v0, if marked, the proposals are sampled consistently.
For d ≥ 1 and v ∈ Md, the proposals are sampled mirroredly. For all remaining (marked)
nodes, that is, nodes in S \M and nodes in K, proposals are sampled consistently. See
Figure 1 for an illustration of this breadth-first-based approach.

Accept Proposals. The proposals (cXv)v∈V and (cYv)v∈V in the chains X and Y are accepted
or rejected based on the local Glauber dynamics rules, leading to colorings X ′, Y ′ ∈ [q]V .

M. Fischer and M. Ghaffari 26:7

M
0

M
2

M
4

M
1

M
3

M
0

M
2

M
4

M
1

M
3

v

v0 v0

u

w

v

u

w

Figure 1 The breadth-first layers Md for d ≥ 0 of two chains that differ at v0 ∈M0. The disk
color corresponds to the node’s current color, where black means any color except red and blue. The
color of the box around a node shows this node’s proposed color, where white stands for any color
(possibly also red or blue, but consistent). Dashed boxes indicate the sets F d of nodes with flipped
proposals. Note that node v appears in layer 4 even though it has distance 3 to v0. This is because
we perform the breadth-first assignment only on nodes with flipped proposals. v’s neighbor u does
not have flipped proposals, thus is in M2 \ F 2, which means that u’s neighbors are not added to the
next layer. Only v’s neighbor w ∈ F 3 leads to v being added to M4.

2.2 Properties of the Coupling
The main observation is the following. If we ignore nodes with current colors red and blue
for the moment, one can argue that X ′ and Y ′ can only differ at a node different from v0 if
its proposals are flipped. Flipped proposals, however, can only arise when the proposals are
sampled mirroredly, which happens only if there is a node in the preceding layer with flipped
proposals (due to the breadth-first order in which we assign the proposals). A node thus can
lead to an inconsistency only if there is path in G from v0 to this node consisting of nodes
with flipped proposals, called a flip path.

We will next make this intuition with the flip paths more precise, in two parts: for nodes
in S (that sample their proposals mirroredly if adjacent to a node with flipped proposals) in
Lemma 3 and for nodes in K (that always sample their proposals consistently) in Lemma 4.
See Figure 2 for an illustration of these two cases.

I Lemma 3. If X ′ and Y ′ differ at v 6= v0 ∈ S, there is a flip path (v0, . . . , v` = v) ∈
F 0 × · · · × F ` of length ` ≥ 1 in G, with the additional property that the proposal of v is
the opposite of the last color (red or blue) seen on this path, in both chains. More formally,
cY = cXv 6= cYv = cX , where cX = cXv`−1

and cY = cYv`−1
if ` > 1, and cX = Xv0 and cY = Yv0

if ` = 1.

Proof. We first argue that v’s proposals must be flipped and accepted in both chains.
Trivially, acceptance of a consistent proposal in both chains or rejection in both chains leads
to X ′v = Y ′v . Moreover, observe that flipped proposals are, by construction, either accepted
in both or rejected in both chains, as flipping changes the role of red and blue, but not the
overall behavior. Indeed, suppose, without loss of generality, that cXv = c ∈ {r, b} is rejected
by X. Thus, in particular, v has a neighbor u with current color or proposal c in X. As
we are restricting our attention to the set S which does not have any adjacent node with
current color red or blue, except for v0, either u = v0 or u proposes c. So u either must have
different current colors (if u = v0) or have mirrored proposals (if v ∈ F d, then u ∈Md′ for

DISC 2018

26:8 Local Glauber Dynamics

some d′ ≤ d + 1, because at the latest v’s flipped proposal leads to u being added to the
subsequent layer, by how we assign the proposals in breadth-first manner) and hence flipped
proposals. Thus, v’s proposal c in Y will be rejected by Y , since either u = v0 ∈ N(v) has
color c or u ∈ N(v) proposes c.

It thus remains to rule out the case of consistent proposals that are accepted in one and
rejected in the other chain. Towards a contradiction, suppose that v proposes the same color
cv in both chains, and that it is accepted in one and rejected in the other. Since Xv = Yv and
cXv = cYv , this can happen only if v is adjacent either to v0 or to at least one node with flipped
proposals, as otherwise all proposals and all current colors in v’s inclusive neighborhood
would be the same, leading to the same behavior in both chains. In both cases, v ∈ Md

for some d ≥ 1, which means that its proposals are sampled mirroredly. Hence, cv /∈ {r, b},
as otherwise the proposals would be flipped. Now, since neither v’s current color nor v’s
proposals is red or blue, and neighbors of v can differ in their colors or proposals only if red
or blue is involved, the proposals are either accepted or rejected in both chains. It follows
that indeed only nodes in S with flipped proposals that are accepted in both chains can have
different colors in X ′ and Y ′.

By construction of the layers, and since v ∈ F ` for some ` ≥ 1, there must exist a sequence
of nodes v1 ∈ F 1, . . . , v`−1 ∈ F `−1 connecting v0 to v in G: a flip path of length `. Moreover,
the proposal is accepted in a chain only if the proposed color is the opposite of the color
(red or blue) that is seen on the path (either as proposal if ` > 1, or as current color of v0 if
` = 1). J

I Lemma 4. If X ′ and Y ′ differ at v 6= v0 ∈ K, there is a path (v0, . . . , v` = v) ∈
F 0 × · · · × F `−1 ×K of length ` ≥ 1 in G, called an almost flip path, with the additional
property that the proposal of v is either red or blue, that is, cv = cXv = cYv ∈ {r, b}.

Proof. Since, by definition of the coupling, v ∈ K samples its proposals consistently, X ′ and
Y ′ can only differ at v 6= v0 if the proposal is accepted in one and rejected in the other chain.
This can happen only if v is adjacent to either v0 or to at least one node with flipped proposals.
Otherwise, all proposals and all current colors in v’s inclusive neighborhood would be the
same, leading to the same behavior. Hence, v is adjacent to some u ∈ F d for some d ≥ 0. By
construction of the layers, there must exist a sequence of nodes v1 ∈ F 1, . . . , v`−1 = u ∈ F `−1

connecting v0 to v in G: an almost flip path of length ` = d+ 1. Note that, in particular,
because neighbors of nodes in B are by definition sampled consistently (as they are in K),
and a node at the end of an almost flip path has a neighbor with flipped proposals, this last
node on an almost flip path must be in K \B.

The proposal cv is accepted in one and rejected in the other chain only if cv ∈ {r, b}. In
that case, the chain with the same color on the end of the path will reject, the other will
(possibly) accept. J

2.3 Bounding the Expected Number of Differing Nodes

We show that E[φ(X ′, Y ′) | X,Y] ≤ 1− δ for some 0 < δ < 1, by bounding the expectations
E[
∑
v 6=v0∈V 1 (X ′v 6= Y ′v) | X,Y] and E[1

(
X ′v0
6= Y ′v0

)
| X,Y] separately. We will see that, as

δ → 0, both terms can be bounded by ≈ 1
α , leading to an expected number of roughly 2

α ,
which is strictly less than 1 for α > 2.

M. Fischer and M. Ghaffari 26:9

X Y
YX

v0 v0F
0

F
0

F
1

F
2

F
3

F
4 vv

F
1

F
2

F
3

F
4

v0 v0F
0

F
1

F
2

F
0

F
1

F
2

vv K nB K nB

BB

Figure 2 A flip path on the left: v’s flipped proposals are accepted in both chains, yielding
X ′v = r and Y ′v = b.
An almost flip path on the right: v ∈ K \ B samples its proposals consistently. In chain X, the
proposal r will be accepted, in chain Y , it will be rejected, leading to X ′v = r 6= Y ′v = Yv. The disk
color corresponds to the node’s current color, where black means any color except red and blue. The
color of the box around a node indicates this node’s proposed color, where white means any color (
also red and blue, but consistent).

Nodes v 6= v0. Section 2.2, or more precisely, Lemmas 3 and 4, show that the number
of nodes (different from v0) that have different colors in X ′ and Y ′ can be bounded by the
number of (almost) flip paths with an additional property. We will next see that the expected
number of such (almost) flip paths can be expressed as a geometric series summing over the
depths of the layers.

There are at most ∆` paths (v0, . . . , v`) of length ` in G. Moreover, each such path has
probability (2γ/q)`−1

γ/q of being a flip or almost flip path with the mentioned additional
property, since all intermediate nodes v1, . . . , v`−1 need to mark themselves and to propose
one arbitrary color in {r, b}, and v` needs to mark itself and to propose the one color in
{r, b} as specified in Lemmas 3 and 4, respectively. Note that a path in G can either be a
flip path or an almost flip path, but never both. Moreover, observe that node v0 does not
need to be marked. We get

E

 ∑
v 6=v0∈V

1(X ′v 6= Y ′v)

∣∣∣∣∣∣ X,Y
 ≤ ∞∑

`=1
∆` ·

(
2γ
q

)`−1
· γ
q

= 1
2

∞∑
`=1

(
2γ∆
q

)`
≤

γ∆
q

1− 2γ∆
q

. (1)

Node v0. Chains X ′ and Y ′ can agree at node v0 only if at least one the proposals is
accepted. For that, v0 needs to be marked and its proposal cv0 = cXv0

= cYv0
needs to be

different from all the at most ∆ current colors of its neighbors, that is, cv /∈
⋃
v∈N(v0){Xv},

which happens with probability at least γ (1−∆/q). Moreover, the proposals of v0’s neighbors
(if marked) need to avoid at most three colors in {cv0 , r, b}, possibly less, which happens with
probability at least 1− 3γ/q. We thus get

E
[
1
(
X ′v0
6= Y ′v0

)]
≤ 1− γ

(
1− ∆

q

)(
1− 3γ

q

)∆
. (2)

DISC 2018

26:10 Local Glauber Dynamics

Wrap-Up. Overall, combining Equations (1) and (2), we get

E[φ(X ′, Y ′) | X,Y] ≤ 1− γ
(

1− 1
α

)
e−

6γ
α +

γ
α

1− 2γ
α

= 1− γe−
6γ
α

(
1− 1

α

(
1 + e

6γ
α

1− 2γ
α

))
.

For α > 2 and γ := γ(α) small enough, this is strictly bounded away from 1 from above,
where the hidden constant depends on α (but not on ∆ or n).

References
1 Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I. Jordan. An Intro-

duction to MCMC for Machine Learning. Machine Learning, 50(1-2):5–43, 2003.
2 Russ Bubley and Martin Dyer. Path Coupling: A Technique for Proving Rapid Mixing in

Markov Chains. In the Proceedings of the Symposium on Foundations of Computer Science
(FOCS), pages 223–231, 1997.

3 Sitan Chen and Ankur Moitra. Linear Programming Bounds for Randomly Sampling
Colorings. arXiv preprint arXiv:1804.03156, 2018.

4 Michelle Delcourt, Guillem Perarnau, and Luke Postle. Rapid Mixing of Glauber Dynamics
for Colorings Below Vigoda’s 11/6 Threshold. arXiv preprint arXiv:1804.04025, 2018.

5 Roland L. Dobruschin. The Description of a Random Field by Means of Conditional
Probabilities and Conditions of its Regularity. Theory of Probability & Its Applications,
13(2):197–224, 1968.

6 Weiming Feng, Thomas P. Hayes, and Yitong Yin. Distributed Symmetry Breaking in
Sampling (Optimal Distributed Randomly Coloring with Fewer Colors). arXiv preprint
arXiv:1802.06953, 2018.

7 Weiming Feng, Yuxin Sun, and Yitong Yin. What Can Be Sampled Locally? In Proceedings
of the International Symposium on Principles of Distributed Computing (PODC), pages
121–130, 2017.

8 Alan Frieze and Eric Vigoda. A Survey on the Use of Markov Chains to Randomly Sample
Colourings. Oxford Lecture Series in Mathematics and its Applications, 34:53, 2007.

9 Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. Parallel Gibbs Sam-
pling: From Colored Fields to Thin Junction Trees. In the Proceedings of the International
Conference on Artificial Intelligence and Statistics, pages 324–332, 2011.

10 Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform Sampling Through the Lovász Local
Lemma. Proceedings of the Symposium on Theory of Computing (STOC), pages 342–355,
2017.

11 J. M. Hammersley and P. Clifford. Markov Fields on Finite Graphs and Lattices.
Unpublished, available at http://www.statslab.cam.ac.uk/~grg/books/hammfest/
hamm-cliff.pdf, 1971.

12 Mark Jerrum. A Very Simple Algorithm for Estimating the Number of k-Colorings of a
Low-Degree Graph. Random Structures & Algorithms, 7(2):157–165, 1995.

13 Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random Generation of Combina-
torial Structures from a Uniform Distribution. Theoretical Computer Science, 43:169–188,
1986.

14 Nathan Linial. Distributive Graph Algorithms - Global Solutions From Local Data. In
the Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
331–335. IEEE, 1987.

15 Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,
and Edward Teller. Equation of State Calculations by Fast Computing Machines. The
Journal of Chemical Physics, 21(6):1087–1092, 1953.

http:// www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf
http:// www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf

M. Fischer and M. Ghaffari 26:11

16 Surendra Nahar, Sartaj Sahni, and Eugene Shragowitz. Simulated Annealing and Combina-
torial Optimization. In Proceedings of the Design Automation Conference, pages 293–299.
IEEE Press, 1986.

17 Moni Naor and Larry Stockmeyer. What Can Be Computed Locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

18 David Newman, Padhraic Smyth, Max Welling, and Arthur U. Asuncion. Distributed
Inference for Latent Dirichlet Allocation. In Advances in Neural Information Processing
Systems, pages 1081–1088, 2008.

19 Jesús Salas and Alan D. Sokal. Absence of Phase Transition for Antiferromagnetic Potts
Models via the Dobrushin Uniqueness Theorem. Journal of Statistical Physics, 86(3-4):551–
579, 1997.

20 Eric Vigoda. Improved Bounds for Sampling Colorings. Journal of Mathematical Physics,
41(3):1555–1569, 2000.

21 Feng Yan, Ningyi Xu, and Yuan Qi. Parallel Inference for Latent Dirichlet Allocation on
Graphics Processing Units. In Advances in Neural Information Processing Systems, pages
2134–2142, 2009.

DISC 2018

Fast Multidimensional Asymptotic and
Approximate Consensus
Matthias Függer
CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay, and Inria, France
mfuegger@lsv.fr

Thomas Nowak
Université Paris-Sud, France
thomas.nowak@lri.fr

Abstract
We study the problems of asymptotic and approximate consensus in which agents have to get
their values arbitrarily close to each others’ inside the convex hull of initial values, either without
or with an explicit decision by the agents. In particular, we are concerned with the case of
multidimensional data, i.e., the agents’ values are d-dimensional vectors. We introduce two new
algorithms for dynamic networks, subsuming classical failure models like asynchronous message
passing systems with Byzantine agents. The algorithms are the first to have a contraction
rate and time complexity independent of the dimension d. In particular, we improve the time
complexity from the previously fastest approximate consensus algorithm in asynchronous message
passing systems with Byzantine faults by Mendes et al. [Distrib. Comput. 28] from Ω

(
d log d∆

ε

)
to O

(
log ∆

ε

)
, where ∆ is the initial and ε is the terminal diameter of the set of vectors of correct

agents.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases asymptotic consensus, approximate consensus, multidimensional data,
dynamic networks, Byzantine processes

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.27

Funding This research was partially supported by the CNRS project PEPS DEMO and the
Institut Farman.

1 Introduction

The problem of one-dimensional asymptotic consensus requires a system of agents, starting
from potentially different initial real values, to repeatedly set their local output variables such
that all outputs converge to a common value within the convex hull of the inputs. This problem
has been studied in distributed control theory both from a theoretical perspective [10, 19, 5, 2]
and in the context of robot gathering on a line [3] and clock synchronization [20, 16].
Extensions of the problem to multidimensional values naturally arise in the context of robot
gathering on a plane or three-dimensional space [11], as subroutines in formation forming [10],
and distributed optimization [4], among others.

The related problem of approximate consensus, also called approximate agreement, re-
quires the agents to eventually decide, i.e., to only set their output variables once. Additionally
all output variables must be within a predefined ε > 0 distance of each other and lie within
the convex hull of the inputs. There is a large body of work on approximate consensus in
distributed computing devoted to solvability and optimality of time complexity [13, 14] and
applications in clock synchronization; see e.g. [24, 23].

© Matthias Függer and Thomas Nowak;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mfuegger@lsv.fr
mailto:thomas.nowak@lri.fr
https://doi.org/10.4230/LIPIcs.DISC.2018.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Fast Multidimensional Asymptotic and Approximate Consensus

Both problems were studied under different assumptions on the underlying communication
between agents and their computational strength, including fully connected asynchronous
message passing with Byzantine agents [24, 13] and communication in rounds by message
passing in dynamic communication networks [19, 10]. In [6, 7] Charron-Bost et al. analyzed
solvability of asymptotic consensus and approximate consensus in dynamic networks with
round-wise message passing defined by network models: a network model is a set of directed
communication graphs, each of which specifies successful reception of broadcast messages; see
Section 2.1 for a formal definition. Solving asymptotic consensus in such a model requires to
fulfill the specification of asymptotic consensus in any sequence of communication graphs from
the model. Charron-Bost et al. showed that in these highly dynamic networks, asymptotic
consensus and approximate consensus are solvable in a network model if and only if each of
its graphs contains a spanning rooted tree. An interesting class of network models are those
that contain only non-split communication graphs, i.e., communication graphs where each
pair of nodes has a common incoming neighbor. Several classical fault-models were shown
to be instances of non-split models [6], among them asynchronous message passing systems
with omissions.

Recently the multidimensional version of approximate consensus received attention.
Mendes et al. [18] were the first to present algorithms that solve approximate consensus
in Byzantine message passing systems for d-dimensional real vectors. Their algorithms,
Mendes–Herlihy and Vaidya–Garg, are based on the repeated construction of so called safe
areas of received vectors to constraint influence of values sent by Byzantine agents, followed
by an update step, ensuring that the new output values are in the safe area. They showed
that the diameter of output values contracts by at least 1/2 in each dimension every d rounds
in the Mendes–Herlihy algorithm, and the diameter of the output values contracts by at
least 1− 1/n every round in the Vaidya–Garg algorithm, where n is the number of agents.
The latter bound assumes f = 0 Byzantine failures and slightly worsens for f > 0. In
terms of contraction rates as introduced in [15] (see Section 2.3 for a definition) of the
respective non-terminating algorithms for asymptotic consensus, they thus obtain upper
bounds of d

√
1/2 and 1−1/n. Note that the Mendes–Herlihy algorithm has a contraction rate

depending only on d but requires an a priori common coordinate system, and the algorithm’s
outcome depends on the choice of this coordinate system. By contrast the Vaidya–Garg
algorithm is coordinate-free, i.e., its outcome is invariant under coordinate transformations
such as translation and rotation, but it has a contraction rate depending on n.

Charron-Bost et al. [8] analyzed convergence of the Centroid algorithm where agents
repeatedly update their position to the centroid of the convex hull of received vectors. The
algorithm is coordinate-free and has a contraction rate of d/(d + 1), independent of n.
Local time complexity of determining the centroid was shown to be #P-complete [21] while
polynomial in n for fixed d.

The contraction rate of the Centroid algorithm is always smaller or equal to that of the
Mendes–Herlihy algorithm, though both contraction rates converge to 1 at the same speed
with the dimension d going to infinity. More precisely,

lim
d→∞

∣∣∣1− d

√
1
2

∣∣∣∣∣∣1− d
d+1

∣∣∣ = log 2 ,

which implies
∣∣∣1− d

√
1
2

∣∣∣ = Θ
(∣∣∣1− d

d+1

∣∣∣).

M. Függer and T. Nowak 27:3

Table 1 Comparison of local time complexity and contraction rates in non-split network models.
Entries marked with an * are new results in this paper.

MidExtremes ApproachExtreme Centroid MH VG

contraction rate
√

7
8

*
√

31
32

* d
d+1

d
√

1
2 1 − 1

n

local TIME O(n2d) O(nd) #P-hard O(nd) O(nd)

coordinate-free yes yes yes no yes

1.1 Contribution

In this work we present two new algorithms that are coordinate-free: the MidExtremes and the
ApproachExtreme algorithm, and study their behavior in dynamic networks. Both algorithms
are coordinate-free, operate in rounds, and are shown to solve asymptotic agreement in
non-split network models. Terminating variants of them are shown to solve approximate
agreement in non-split network models.

As a main result we prove that their contraction rate is independent of network size n
and dimension d of the initial values. For MidExtremes we obtain an upper bound on the
contraction rate of

√
7/8 and for ApproachExtreme of

√
31/32.

Due to the fact that classical failure models like asynchronous message passing with
Byzantine agents possess corresponding network models, our results directly yield improved
algorithms for the latter failure models: In particular, we improve the time complexity from
the previously fastest approximate consensus algorithm in asynchronous message passing
systems with Byzantine faults, the Mendes–Herlihy algorithm, from Ω

(
d log d∆

ε

)
to O

(
log ∆

ε

)
,

where ∆ is the initial and ε is the terminal diameter of the set of vectors of correct agents.
Note that our algorithms share the benefit of being coordinate-free with the Vaidya–Garg
algorithm presented in the same work.

Table 1 summarizes our results and the algorithms discussed above for asymptotic
and approximate consensus. The table compares the new algorithms MidExtremes and
ApproachExtreme to the Centroid, Mendes–Herlihy (MH), and Vaidya–Garg (VG) algorithms
with respect to their local time complexity per agent and round and an upper bound on
their contraction rate in non-split network models. A lower bound of 1/2 on the contraction
rate is due to Függer et al. [15].

The Mendes–Herlihy algorithm has a smaller contraction rate than the MidExtremes
algorithm whenever d 6 10; the Centroid algorithm whenever d 6 14. The Centroid algorithm
is hence the currently fastest known algorithm for dimensions 3 6 d 6 14. For dimensions
d = 1 and d = 2, the componentwise MidPoint algorithm has an optimal contraction rate
of 1/2 [8]. Note that the MidExtremes algorithm is equivalent to the componentwise MidPoint
algorithm for dimension d = 1. For d > 15, the MidExtremes algorithm is the currently
fastest known algorithm.

We finally note that all our results hold for the class of inner product spaces and are
not restricted to the finite-dimensional Euclidean spaces Rd, in contrast to previous work.
For example, this includes the set of square-integrable functions on a real interval. However,
finite value representation and means to calculate the norm have to be guaranteed. Further,
local TIME becomes n2, respectively, n norm calculations.

DISC 2018

27:4 Fast Multidimensional Asymptotic and Approximate Consensus

2 Model and Problem

We fix some vector space V with an inner product 〈·, ·〉 : V × V → R and the norm
‖x‖ =

√
〈x, x〉. The prototypical finite-dimensional example is V = Rd with the usual

inner product and the Euclidean norm. The diameter of set A ⊆ V is denoted by
diam(A) = sup

x,y∈A
‖x− y‖. For an n-tuple x = (x1, . . . , xn) ∈ V n of vectors in V , we write

diam(x) by slight abuse of notation to denote diam
(
{x1, . . . , xn}

)
.

2.1 Dynamic Network Model

We consider a distributed system of n agents that communicate in rounds via message passing,
like in the Heard-Of model [9]. In each round, each agent i, broadcasts a message based on
its local state, receives some messages, and then updates its local state based on the received
messages and its local state. Rounds are communication closed: agents only receive messages
sent in the same round.

In each round t > 0, messages are delivered according to the directed communication
graph Gt for round t: the message broadcast by i in round t is received by j if and only if
the directed edge (i, j) is in Gt. Agents always receive their own messages, i.e., (i, i) ∈ Gt.
A communication pattern is an infinite sequence G1, G2, . . . of communication graphs. A
(deterministic) algorithm specifies, for each agent i, the local state space of i, the set of
initial states of i, the sending function for which message to broadcast, and the state
transition function. For asymptotic consensus, each agent i’s local state necessarily contains
a variable yi ∈ V , which initially holds i’s input value and is then used as its output
variable. We require that there is an initial state with initial value v for all vectors v ∈ V . A
configuration is an n-tuple of local states. It is called initial if all local states are initial. The
execution of an algorithm from initial configuration C0 induced by communication pattern
G1, G2, . . . is the unique sequence C0, G1, C1, G2, C2, . . . alternating between configurations
and communication graphs where Ct is the configuration obtained by delivering messages in
round t according to communication graph Gt, and applying the sending and local transition
functions to the local states in Ct−1 according to the algorithm. For a fixed execution
and a local variable z of the algorithm, we denote by zi(t) its value at i at the end of
round t, i.e., in configuration Ct. In particular, yi(t) is the value of yi in Ct. We write
y(t) =

(
y1(t), . . . , yn(t)

)
for the collection of the yi(t).

A specific class of algorithms for asymptotic consensus are the so-called convex combination,
or averaging, algorithm, which only ever update the value of yi inside the convex hull of yj it
received from other agents j in the current round. Many algorithms in the literature belong
to this class, as do ours.

Following [6], we study the behavior of algorithms for communication patterns from a
network model, i.e., a non-empty set of communication patterns: a communication pattern is
from network model N if all its communication graphs are in N . We will later on show that
such an analysis also allows to prove new performance bounds for more classical fault-models
like asynchronous message passing systems with Byzantine agents.

An interesting class of network models are so called non-split models, i.e., those that
contain only non-split communication graphs: a communication graph is non-split if every
pair of nodes has a common in-neighbor. Charron-Bost et al. [6] showed that asymptotic
and approximate consensus is solvable efficiently in these network models in the case of one
dimensional values. They further showed that: (i) In the weakest (i.e., largest) network
model in which asymptotic and approximate consensus are solvable, the network model of

M. Függer and T. Nowak 27:5

all communication graphs that contain a rooted spanning tree, one can simulate non-split
communication graphs. (ii) Classical failure models like link failures as considered in [22]
and asynchronous message passing systems with crash failures have non-split interpretations.
Indeed we will make use of such a reduction from non-split network models to asynchronous
message passing systems with Byzantine failures in Section 3.2.

2.2 Problem Formulation
An algorithm solves the asymptotic consensus problem in a network model N if the following
holds for every execution with a communication pattern from N :

Convergence. For every agent i, the sequence
(
yi(t)

)
t>0 converges.

Agreement. If yi(t) and yj(t) converge, then they have a common limit.
Validity. If yi(t) converges, then its limit is in the convex hull of the initial values
y1(0), . . . , yn(0).

For the deciding version, the approximate consensus problem (see, e.g., [17]), we augment
the local state of i with a variable di initialized to ⊥. Agent i is allowed to set di to some
value v 6= ⊥ only once, in which case we say that i decides v. In addition to the initial
values yi(0), agents initially receive the error tolerance ε and an upper bound ∆ on the
maximum distance of initial values. An algorithm solves approximate consensus in N if for
all ε > 0 and all ∆, each execution with a communication pattern in N with initial diameter
at most ∆ satisfies:

Termination. Each agent eventually decides.
ε-Agreement. If agents i and j decide di and dj , respectively, then ‖di − dj‖6 ε.
Validity. If agent i decides di, then di is in the convex hull of initial values y1(0), . . . , yn(0).

2.3 Performance Metrics
A direct natural performance metric to assess the speed of convergence of agent outputs y
along an execution is the round-by-round convergence rate

c(t) =
diam

(
y(t)

)
diam

(
y(t− 1)

)
for a given round t > 1 in the respective execution. The round-by-round convergence rate is
the supremum over all executions and rounds. While a uniform upper bound of β < 1 on
the round-by-round convergence rate establishes convergence of the outputs, this measure
fails in establishing convergence and comparing speeds of convergence for several algorithms
considered in literature that set their output values every k > 1 rounds, or that do not
converge during an initial phase.

The convergence rate, defined by

lim sup
t→∞

t

√
diam

(
y(t)

)
,

allows a comparison in this case by measuring eventual amortized convergence speed. For
example, an algorithm that eventually contracts by a factor β < 1 every k > 1 rounds has a
convergence rate of k

√
β.

As a performance measure for general asymptotic consensus algorithms, where agents
do not necessarily set their outputs y to within the convex hull of previously received vales,
[15] considered the contraction rate, measuring contraction of reachable output limits rather

DISC 2018

27:6 Fast Multidimensional Asymptotic and Approximate Consensus

than output values: Following [15], the valency of a configuration C, denoted by Y ∗(C), is
defined as the set of limits of the values yi in executions that include configuration C. If the
execution is clear from the context, we abbreviate Y ∗(t) = Y ∗(Ct). The contraction rate of
an execution is then defined as

lim sup
t→∞

t

√
diam

(
Y ∗(t)

)
.

The contraction rate of an algorithm in a network model is the supremum of the contraction
rates of its executions. For convex combination algorithms, the contraction rate is always
upper-bounded by its convergence rate, that is,

lim sup
t→∞

t

√
diam

(
Y ∗(t)

)
6 lim sup

t→∞

t

√
diam

(
y(t)

)
,

since the set of reachable limits Y ∗(t) at round t is contained in the set of output values
{y1(t), . . . , yn(t)} at round t for these algorithms.

Clearly, an algorithm that guarantees a round-by-round convergence rate of c(t) 6 β

also guarantees a convergence rate of at most β. Since both of our algorithms are convex
combination algorithms, all our upper bounds on the round-by-round convergence rates are
also upper bounds for the contraction rates.

The convergence time of a given execution measures the time from which on all values
are guaranteed to be in an ε of each other. Formally, it is the function defined as

T (ε) = min
{
t > 0 | ∀τ > t : diam

(
y(τ)

)
6 ε
}
.

In an execution that satisfies c(t) 6 β for all t > 1, we have the bound T (ε) 6
⌈
log1/β

∆
ε

⌉
on

the convergence time, where ∆ = diam
(
y(0)

)
is the diameter of the set of initial values.

3 Algorithms

In this section, we introduce two new algorithms for solving asymptotic and approximate
consensus in arbitrary inner product spaces with constant contraction rates. We present
our algorithms and prove their correctness and bounds on their performance in non-split
networks models. While we believe that this framework is the one in which our arguments
are clearest, our results can be extended to a number of other models whose underlying
communication graphs turn out to be, in fact, non-split. The following is a selection of these
models:

Rooted network models: This is the largest class of network models in which asymptotic
and approximate consensus are solvable [6]. A network model is rooted if all its com-
munication graphs include a directed rooted spanning tree, though not necessarily the
same in all graphs. Although not every such communication graph is non-split, Charron-
Bost et al. [6] showed that the cumulative communication graph over n− 1 rounds in a
rooted network model is always non-split. In such network models, one can use amortized
versions [7] of the algorithms, which operate in macro-rounds of n− 1 rounds each. If
an algorithm has a contraction rate β in non-split network models, then its amortized
version has contraction rate n−1

√
β in rooted network models. The amortized versions of

our algorithms thus have contraction rates independent of the dimension of the data.
Omission faults: In the omission fault model studied by Santoro and Widmayer [22], the
adversary can delete up to t messages from a fully connected communication graph each
round. If t 6 n− 1, then all communication graphs are non-split. If t 6 2n− 3, then all
communication graphs are rooted [6]. Our algorithms are hence applicable in both these
cases and have contraction rates independent of the dimension.

M. Függer and T. Nowak 27:7

Algorithm 1 Asymptotic consensus algorithm MidExtremes for agent i.
Initialization:

1: yi is the initial value in V
In round t > 1 do:

2: broadcast yi
3: Rcvi ← set of received values
4: (a, b)← arg max

(a,b)∈Rcv2
i

‖a− b‖

5: yi ←
a+ b

2

Asynchronous message passing with crash faults: Building asynchronous rounds atop of
asynchronous message passing by waiting for n− f messages in each round, the resulting
communication graphs are non-split as long as the number f of possible crashes is strictly
smaller than n/2. We hence get a constant contraction rate using our algorithms also
in this model. For f > n/2, a partition argument shows that neither asymptotic nor
approximate consensus are solvable.
Asynchronous message passing with Byzantine faults: Mendes et al. [18] showed that
approximate consensus is solvable in asynchronous message passing systems with f Byzan-
tine faults if and only if n > (d+2)f where d is the dimension of the data. The algorithms
they presented construct a round structure whose communication graphs turn out to be
non-split. Since the construction is not straightforward, we postpone the discussion of
our algorithms in this model to Section 3.2.

3.1 Non-split Network Models

We now present our two new algorithms, MidExtremes and ApproachExtreme. Both operate
in the following simple round structure: broadcast the current value yi and then update it to
a new value depending on the set Rcvi of values yj received from agents j in the current
round. Both of them only need to calculate distances between values and form the midpoint
between two values. In particular, we do not need to make any assumption on the dimension
of the space of possible values for implementing the algorithms. We only need a distance
and an affine structure, for calculating the midpoint. Our correctness proofs, however, rely
on the fact that the distance function is a norm induced by an inner product.

Note that, although we present algorithms for asymptotic consensus, combined with
our upper bounds on the convergence time, one can easily deduce versions for approximate
consensus by having the agents decide after the upper bound. Our upper bounds only depend
on the precision parameter ε and (an upper bound on) the initial diameter ∆. While upper
bounds on the initial diameter cannot be deduced during execution in general non-split
network models, it can be done in specific models, like asynchronous message passing with
Byzantine faults [18]. Otherwise, we need to assume an a priori known bound on the initial
diameter to solve approximate consensus.

The algorithm MidExtremes, which is shown in Algorithm 1, updates its value yi to the
midpoint of a pair of extremal points of Rcvi that realizes its diameter. In the worst case, it
thus has to compare the distances of Θ(n2) pairs of values. For the specific case of Euclidean
spaces V = Rd stored in a component-wise representation, this amounts to O(n2d) local
scalar operations for each agent in each round.

It turns out that we can show a round-by-round convergence rate of the MidExtremes
algorithm independent of the dimension or the number of agents, namely

√
7/8. For the

DISC 2018

27:8 Fast Multidimensional Asymptotic and Approximate Consensus

Algorithm 2 Asymptotic consensus algorithm ApproachExtreme for agent i.
Initialization:

1: yi is the initial value in V
In round t > 1 do:

2: broadcast yi
3: Rcvi ← set of received values
4: b← arg max

b∈Rcvi

‖yi − b‖

5: yi ←
yi + b

2

specific case of values from the real line V = R, it reduces to the MidPoint algorithm [7],
whose contraction rate of 1/2 is known to be optimal [15].

I Theorem 1. In any non-split network model with values from any inner product space,
the MidExtremes algorithm guarantees a round-by-round convergence rate of c(t) 6

√
7/8

for all rounds t > 1. Its convergence time is at most T (ε) =
⌈
log√8/7

∆
ε

⌉
where ∆ is the

diameter of the set of initial values.
In the particular case of values from the real line, it guarantees a round-by-round conver-

gence rate of c(t) 6 1/2 and a convergence time of T (ε) =
⌈
log2

∆
ε

⌉
.

The second algorithm we present is called ApproachExtreme and shown in Algorithm 2.
It updates its value yi to the midpoint of the current value of yi and the value in Rcvi that
is the farthest from it. While having the benefit of only having to compare O(n) distances,
and hence doing O(nd) local scalar operations for each agent in each round in the case of
V = Rd with component-wise representation, the ApproachExtreme algorithm also only has
to measure distances from its current value to other agents’ values; never the distance of
two other agents’ values. This can be helpful for agents embedded into the vector space V
that can measure the distance from itself to another agent, but not necessarily the distance
between two other agents.

The ApproachExtreme algorithm admits an upper bound of
√

31/32 on its round-by-
round convergence rate, which is worse than the

√
7/8 of the MidExtremes algorithm. For

the case of the real line V = R, we can show a round-by-round convergence rate of 3/4,
however.

I Theorem 2. In any non-split network model with values from any inner product space,
the ApproachExtreme algorithm guarantees a round-by-round convergence rate of c(t) 6

√
31
32

for all rounds t > 1. Its convergence time is at most T (ε) =
⌈
log√32/31

∆
ε

⌉
where ∆ is the

diameter of the set of initial values.
In the particular case of values from the real line, it guarantees a round-by-round conver-

gence rate of c(t) 6 3/4 and a convergence time of T (ε) =
⌈
log4/3

∆
ε

⌉
.

3.2 Asynchronous Byzantine Message Passing
We now show how to adapt algorithm MidExtremes to the case of asynchronous message
passing systems with at most f Byzantine agents. The algorithm proceeds in the same
asynchronous round structure and safe area calculation used by Mendes et al. [18] whenever
approximate consensus is solvable, i.e., when n > (d+ 2)f . Plugging in the MidExtremes

M. Függer and T. Nowak 27:9

algorithm, we achieve a round-by-round convergence rate and round complexity independent
of the dimension d.

More specifically, our algorithm has a round complexity of O
(
log ∆

ε

)
, which leads to a

message complexity of O
(
n2 log ∆

ε

)
where ∆ is the maximum Euclidean distance of initial

vectors of correct agents. In contrast, the Mendes–Herlihy algorithm has a worst-case round
complexity of Ω

(
d log d∆

ε

)
and a worst-case message complexity of Ω

(
n2d log d∆

ε

)
. We are

thus able to get rid of all terms depending on the dimension d.
After an initial round estimating the initial diameter of the system, the Mendes–Herlihy

algorithm has each agent i repeat the following steps in each coordinate k ∈ {1, 2, . . . , d} for
Θ
(
log d∆

ε

)
rounds:

1. Collect a multiset Vi of agents’ vectors such that every intersection Vi ∩ Vj has at least
n− f elements via reliable broadcast and the witness technique [1].

2. Calculate the safe area Si as the intersection of the convex hulls of all sub-multisets of Vi
of size |Vi| − f . The safe area is guaranteed to be a subset of the convex hull of vectors of
correct agents. Helly’s theorem [12] can be used to show that every intersection Si ∩ Sj
of safe areas is nonempty.

3. Update the vector yi to be in the safe area Si and have its kth coordinate equal to the
midpoint of the set of kth coordinates in Si.

The fact that safe areas have nonempty pairwise intersections guarantees that the diameter
in the kth coordinate

δk(t) = max
i,j correct

∣∣∣y(k)
i (t)− y(k)

j (t)
∣∣∣

at the end of round t fulfills δk(t) 6 δk(t− 1)/2 if round t considers coordinate k. The choice
of the number of rounds for each coordinate guarantees that we have δk(t) 6 ε/

√
d after the

last round for coordinate k. This in turn makes sure that the Euclidean diameter of the set
of vectors of correct agents after all of the Θ

(
d log d∆

ε

)
rounds is at most ε.

The article of Mendes et al. [18] describes a second algorithm, the Vaidya–Garg algorithm,
which replaces steps 2 and 3 by updating yi to the non-weighted average of arbitrarily
chosen points in the safe areas of all sub-multisets of Vi of size n − f . Another difference
to the Mendes–Herlihy algorithm is that it repeats the steps not several times for every
dimension, but for Θ

(
nf+1 log d∆

ε

)
rounds in total. The Vaidya–Garg algorithm comes with

the advantage of not having to do the calculations to find a midpoint for the kth coordinate
while remaining inside the safe area, but also comes with the cost of a convergence rate and
a round complexity that depends on the number of agents.

The algorithm we propose has the same structure as the Mendes–Herlihy algorithm, with
the following differences: (i) like the Vaidya–Garg algorithm it is missing the loop over all
coordinates one-by-one, and (ii) we replace step 3 by updating vector yi to the midpoint of
two points that realize the Euclidean diameter of the safe area Si. According to our results
in Section 4.1, the Euclidean diameter

δ(t) = max
i,j correct

∥∥yi(t)− yj(t)∥∥
of the set of vectors of correct agents at the end of round t satisfies

δ(t) 6
√

7
8δ(t− 1) .

This means that we have δ(T) 6 ε after

T (ε) =
⌈

log√8/7
∆
ε

⌉
rounds.

DISC 2018

27:10 Fast Multidimensional Asymptotic and Approximate Consensus

a

b

m

a′

b′

m′d′

Figure 1 Tetrahedron formed by extreme points a and b of agent i and extreme points a′ and b′

of agent j. The distance between the new agent positions m and m′ is d′.

4 Performance Bounds

We next show upper bounds on the round-by-round convergence rate for algorithms MidEx-
tremes (Theorem 1) and ApproachExtreme (Theorem 2) in non-split network models.

4.1 Bounds for MidExtremes
For dimension 1, MidExtremes is equivalent to the MidPoint Algorithm. We hence already
know that c(t) 6 1

2 from [7], proving the case of the real line in Theorem 1.
For the case of higher dimensions we will show that c(t) 6

√
7
8 holds. The proof

idea is as follows: For a round t > 1, we consider two agents i, j whose distance realizes
diam(y(t)). By the algorithm we know that both agents set their yi(t) and yj(t) according
to yi(t) = m = (a + b)/2 and yj(t) = m′ = (a′ + b′)/2, where a, b are the extreme points
received by agents i in round t and a′, b′ are the extreme points received by agents j in the
same round. All four points must lie within a common subspace of dimension 3, and form
the vertices of a tetrahedron as depicted in Figure 1.

Further, any three points among a, b, a′, b′ must lie within a 2 dimensional subspace,
forming a triangle. Lemma 3 states the distance from the midpoint of two of its vertices to
the opposite vertex, say c, and an upper bound in case the two edges incident to c are upper
bounded in length.

I Lemma 3. Let γ > 0 and a, b, c ∈ V . Setting m = (a+ b)/2, we have

‖m− c‖2 = 1
2‖a− c‖

2 + 1
2‖b− c‖

2 − 1
4‖a− b‖

2 .

In particular, if ‖a− c‖ 6 γ and ‖b− c‖ 6 γ, then

‖m− c‖2 6 γ2 − 1
4‖a− b‖

2 .

Proof. We begin by calculating

‖a− c‖2 =
∥∥(a−m) + (m− c)

∥∥2 = ‖a−m‖2 + ‖m− c‖2 + 2〈a−m,m− c〉 (1)

and

‖b− c‖2 =
∥∥(b−m) + (m− c)

∥∥2 = ‖b−m‖2 + ‖m− c‖2 + 2〈b−m,m− c〉 . (2)

M. Függer and T. Nowak 27:11

Adding (1) and (2), while noting ‖a−m‖2 = ‖b−m‖2 = 1
4‖a− b‖

2 and a−m = (a− b)/2 =
−(b−m), gives

‖a− c‖2 + ‖b− c‖2 = 1
2‖a− b‖

2 + 2‖m− c‖2 .

Rearranging the terms in the last equation concludes the proof. J

We are now in the position to prove Lemma 4 that is central for Theorem 1. The lemma
provides an upper bound on the distance d′ between m and m′ for the tetrahedron in Figure 1
given that all its sides are upper bounded by some γ > 0 and the sum of the lengths of edge
a, b and a′, b′, i.e., ‖a− b‖+ ‖a′ − b′‖, is lower bounded by γ. At the heart of the proof of
Lemma 4 is an application of Lemma 3 for the three hatched triangles in Figure 1.

I Lemma 4. Let a, b, a′, b′ ∈ V and γ > 0 such that

diam
(
{a, b, a′, b′}

)
6 γ 6 ‖a− b‖+ ‖a′ − b′‖ . (3)

Then, setting m = (a+ b)/2 and m′ = (a′ + b′)/2, we have

‖m−m′‖ 6
√

7
8γ .

Proof. Applying Lemma 3 with the points a, b, a′ yields

‖m− a′‖2 6 γ2 − 1
4‖a− b‖

2 . (4)

Another invocation with the points a, b, b′ gives

‖m− b′‖2 6 γ2 − 1
4‖a− b‖

2 . (5)

Now, again using Lemma 3 with the points a′, b′,m and the bounds of (4) and (5), we get

‖m−m′‖2 6 γ2 − 1
4
(
‖a− b‖2 + ‖a′ − b′‖2

)
.

Using the second inequality in (3) then shows

‖m−m′‖2 6 γ2 − 1
4

(
‖a− b‖2 +

(
γ − ‖a− b‖

)2)
. (6)

Setting ξ = ‖a− b‖, we get

‖m−m′‖2 6 max
06ξ6γ

γ2 − 1
4
(
ξ2 + (γ − ξ)2) .

Differentiating the function f(ξ) = γ2− 1
4
(
ξ2 +(γ−ξ)2) reveals that its maximum is attained

for −(2ξ − γ) = 0, i.e., ξ = γ/2, which gives

‖m−m′‖2 6 γ2 − γ2

8 = 7
8γ

2 .

Taking the square root now concludes the proof. J

DISC 2018

27:12 Fast Multidimensional Asymptotic and Approximate Consensus

We can now prove Theorem 1. For the proof we consider the tetrahedron with vertices
a, b, a′, b′ as discussed before; see Figure 1. Recalling that the vertices a, b are vectors received
by an agent i and a′, b′ vectors received by an agent j in the same round, we may infer from
the non-split property that all communication graphs must fulfill that both i and j must
have received a common vector from an agent. Together with the algorithm’s rule of picking
a, b and a′, b′ as extreme points, we obtain the constraints required by Lemma 4. Invoking
this lemma we finally obtain an upper bound on the distance d′ between m and m′, and by
this an upper bound on the round-by-round convergence rate of the MidExtremes algorithm.

Proof of Theorem 1. Let i and j be two agents. Let a, b ∈ Rcvi(t) such that yi(t) = (a+b)/2
and a′, b′ ∈ Rcvj(t) such that yj(t) = (a′ + b′)/2. Define γij = diam

(
{a, b, a′, b′}

)
. Since

a, b, a′, b′ are the vectors of some agents in round t− 1, we have γij 6 diam
(
y(t− 1)

)
.

Further, from the non-split property, there is an agent k whose vector c = yk(t− 1) has
been received by both i and j, i.e., c ∈ Rcvi(t)∩Rcvj(t). By the choice of the extreme points
a, b by agent i, we must have ‖a− c‖ 6 ‖a− b‖; otherwise a, b would not realize the diameter
of Rcvi(t). Analogously, by the choice of the extreme points a′, b′ by agent j, it must hold
that ‖a′ − c‖ 6 ‖a′ − b′‖.

From the triangular inequality, we then obtain

‖a− a′‖ 6 ‖a− c‖+ ‖c− a′‖ 6 ‖a− b‖+ ‖a′ − b′‖ .

Analogous arguments for the other pairs of points in {a, b, a′, b′} yield

diam
(
{a, b, a′, b′}

)
= γij 6 ‖a− b‖+ ‖a′ − b′‖ .

We can hence apply Lemma 4 to obtain

‖yi(t)− yj(t)‖ 6
√

7
8γij 6

√
7
8 diam

(
y(t− 1)

)
.

Taking the maximum over all pairs of agents i and j now shows

diam
(
y(t)

)
6
√

7/8 · diam
(
y(t− 1)

)
,

which concludes the proof. J

4.2 Bounds for ApproachExtreme
We start by showing the one-dimensional case of Theorem 2, i.e., V = R, in Section 4.2.1.
Section 4.2.2 then covers the multidimensional case.

4.2.1 One-dimensional Case
For the proof we use the notion of %-safety as introduced by Charron-Bost et al. [7]. A convex
combination algorithm is %-safe if

%Mi(t) + (1− %)mi(t) 6 yi(t) 6 (1− %)Mi(t) + %mi(t) (7)

where Mi(t) = max
(
Rcvi(t)

)
and mi(t) = min

(
Rcvi(t)

)
.

It was shown [7, Theorem 4] that any %-safe convex combination algorithm guarantees
a round-by-round convergence rate of c(t) 6 1− % in any non-split network model. In the
sequel, we will show that ApproachExtreme is 1

4 -safe when applied in V = R.

M. Függer and T. Nowak 27:13

Proof of Theorem 2, one-dimensional case. Let i be an agent and t > 1 a round in some
execution of ApproachExtreme in V = R. We distinguish the two cases yi(t) 6 yi(t− 1) and
yi(t) > yi(t− 1).

In the first case, we have b 6 yi(t − 1) for the vector b that agent i calculates in code
line 4 in round t. But then necessarily b = yi(t) since this is the most distant point to
yi(t−1) in Rcvi(t) to the left of yi(t−1). Also, yi(t−1) >

(
Mi(t) +mi(t)

)
/2 since otherwise

Mi(t) would be farther from yi(t− 1) than mi(t). But this means that

yi(t) = yi(t− 1) +mi(t)
2 >

1
4Mi(t) + 1

4mi(t) + 1
2mi(t) = 1

4Mi(t) + 3
4mi(t) ,

which shows the first inequality of %-safety (7) with % = 1
4 . The second inequality of (7)

follows from yi(t− 1) 6Mi(t) since

yi(t) = yi(t− 1) +mi(t)
2 6

1
2Mi(t) + 1

2mi(t) 6
3
4Mi(t) + 1

4mi(t) .

In the second case, (7) is proved analogously to the first case. J

4.2.2 Multidimensional Case
For the proof of Theorem 2 with higher dimensional values, we consider two agents i, j whose
distance realizes diam(y(t)). From the ApproachExtreme yi(t) = m = (a + yi(t − 1))/2
and yj(t) = m′ = (a′ + yj(t− 1))/2 where a and a′ maximize the distance to yi(t− 1) and
yj(t− 1), respectively, among the received values.

To show an upper bound on the distance d′ between the new agent positions m and m′
in the multidimensional case, we need the following variant of Lemma 4 in which we relax
the upper bound on γ by a factor of two, but thereby weaken the bound on d′.

Analogous to the proof of Theorem 1, the proof is by applying Lemma 5 to the three
hatched triangles in Figure 1.

I Lemma 5. Let a, b, a′, b′ ∈ V and γ > 0 such that

diam
(
{a, b, a′, b′}

)
6 γ 6 2‖a− b‖+ 2‖a′ − b′‖ .

Then, setting m = (a+ b)/2 and m′ = (a′ + b′)/2, we have

‖m−m′‖ 6
√

31
32γ .

Proof. The proof of the lemma is essentially the same as that of Lemma 4, with the following
differences: Equation (6) is replaced by

‖m−m′‖2 6 γ2 − 1
4

(
‖a− b‖2 +

(γ
2 − ‖a− b‖

)2
)

,

which changes the function f to f(ξ) = γ2 − 1
4
(
ξ2 + (γ2 − ξ)2). The maximum of this

function f is achieved for ξ = γ/4, which means that

‖m−m′‖2 6 f(γ/4) = γ2 − γ2

32 = 31
32γ

2 . J

We are now in the position to prove Theorem 2.

DISC 2018

27:14 Fast Multidimensional Asymptotic and Approximate Consensus

Proof of Theorem 2, multidimensional case. Let i and j be two agents. Let a = yi(t− 1)
and a′ = yj(t− 1). Further, let b ∈ Rcvi(t) such that yi(t) = (a+ b)/2 and b′ ∈ Rcvj(t) such
that yj(t) = (a′ + b′)/2. Define γij = diam

(
{a, b, a′, b′}

)
. Since a, b, a′, b′ are the vectors of

some agents in round t− 1, we have γij 6 diam
(
y(t− 1)

)
.

From the non-split property, there is an agent k whose vector c = yk(t − 1) has been
received by both i and j, i.e., c ∈ Rcvi(t) ∩ Rcvj(t). By the choice of the extreme point b
by agent i, we must have ‖a− c‖ 6 ‖a− b‖; otherwise b would not maximize the distance
to a. Analogously, by the choice of the extreme points b′ by agent j, it must hold that
‖a′ − c‖ 6 ‖a′ − b′‖. Note, however, that the roles of a and b are not symmetric and that,
contrary to the proof of Theorem 1, we can have ‖b− c‖ > ‖a− b‖ or ‖b′ − c‖ > ‖a′ − b′‖.

From the triangular inequality and the two established inequalities, we then obtain

‖a− a′‖ 6 ‖a− c‖+ ‖a′ − c‖ 6 ‖a− b‖+ ‖a′ − b′‖ ,

‖a− b′‖ 6 ‖a− c‖+ ‖c− a′‖+ ‖a′ − b′‖ 6 ‖a− b‖+ 2‖a′ − b′‖ ,
and

‖b− b′‖ 6 ‖b− a‖+ ‖a− c‖+ ‖c− a′‖+ ‖a′ − b′‖ 6 2‖a− b‖+ 2‖a′ − b′‖ .

Analogously, ‖a′ − b‖ 6 2‖a− b‖+ ‖a′ − b′‖. Together this implies

diam
(
{a, b, a′, b′}

)
= γij 6 2‖a− b‖+ 2‖a′ − b′‖ .

We can hence apply Lemma 5 to obtain

‖yi(t)− yj(t)‖ 6
√

31
32γij 6

√
31
32 diam

(
y(t− 1)

)
.

Taking the maximum over all pairs of agents i and j now shows diam
(
y(t)

)
6
√

31/32 ·
diam

(
y(t− 1)

)
, which concludes the proof. J

5 Conclusion

We presented two new algorithms for asymptotic and approximate consensus with values in
arbitrary inner product spaces. This includes not only the Euclidean spaces Rd, but also
spaces of infinite dimension. Our algorithms are the first to have constant contraction rates,
independent of the dimension and the number of agents.

We have presented our algorithms in the framework of non-split network models and have
then shown how to apply them in several other distributed computing models. In particular,
we improved the round complexity of the algorithms by Mendes et al. [18] for asynchronous
message passing with Byzantine faults from Ω

(
d log d∆

ε

)
to O

(
log ∆

ε

)
, eliminating all terms

that depend on the dimension d.
The exact value of the optimal contraction rate for asymptotic and approximate consensus

is known to be 1/2 in dimensions one and two [15, 8], but the question is still open for higher
dimensions. Our results are a step towards the solution of the problem as they show the
optimum in all dimensions to lie between 1/2 and

√
7/8 ≈ 0.9354 . . .

References
1 Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approxi-

mate agreement. In Teruo Higashino, editor, 8th International Conference on Principles of
Distributed Systems (OPODIS 2004), volume 3544 of Lecture Notes in Computer Science,
pages 229–239. Springer, Heidelberg, 2005.

M. Függer and T. Nowak 27:15

2 David Angeli and Pierre-Alexandre Bliman. Stability of leaderless discrete-time multi-agent
systems. MCSS, 18(4):293–322, 2006.

3 Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Optimal
Byzantine-resilient convergence in uni-dimensional robot networks. Theoretical Computer
Science, 411(34-36):3154–3168, 2010.

4 Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University
Press, 2004.

5 Ming Cao, A. Stephen Morse, and Brian D. O. Anderson. Reaching a consensus in a dynam-
ically changing environment: convergence rates, measurement delays, and asynchronous
events. SIAM J. Control Optim., 47(2):601–623, 2008.

6 Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate consensus
in highly dynamic networks: The role of averaging algorithms. In Proceedings of the 42nd
International Colloquium on Automata, Languages, and Programming, ICALP15, pages
528–539, 2015.

7 Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Fast, robust, quantizable
approximate consensus. In Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming, ICALP16, pages 137:1–137:14, 2016.

8 Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Multidimensional asymp-
totic consensus in dynamic networks. CoRR, abs/1611.02496, 2016. URL: http://arxiv.
org/abs/1611.02496.

9 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in dis-
tributed systems with benign faults. Distrib. Comput., 22(1):49–71, 2009.

10 Bernard Chazelle. The total s-energy of a multiagent system. SIAM Journal on Control
and Optimization, 49(4):1680–1706, 2011.

11 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Solving the
robots gathering problem. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 1181–1196. Springer, 2003.

12 Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly’s theorem and its relatives. In
Victor Klee, editor, Convexity, volume 7 of Proceedings of Symposia in Pure Mathematics,
pages 101–180. AMS, Providence, 1963.

13 Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. jacm, 33(2):499–516, 1986.

14 Alan D. Fekete. Asymptotically optimal algorithms for approximate agreement. Distrib.
Comput., 4(1):9–29, 1990.

15 Matthias Függer, Thomas Nowak, and Manfred Schwarz. Tight bounds for asymptotic
and approximate consensus. In Proceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, PODC ’18, pages 325–334, 2018.

16 Qun Li and Daniela Rus. Global clock synchronization in sensor networks. IEEE Transac-
tions on Computers, 55(2):214–226, 2006.

17 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, CA, 1996.
18 Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K. Garg. Multidimensional

agreement in Byzantine systems. Distributed Computing, 28:423–441, 2015.
19 Luc Moreau. Stability of multiagent systems with time-dependent communication links.

IEEE Transactions on Automatic Control, 50(2):169–182, 2005.
20 Reza Olfati-Saber and Richard M Murray. Consensus problems in networks of agents with

switching topology and time-delays. IEEE Transactions on automatic control, 49(9):1520–
1533, 2004.

21 Luis A. Rademacher. Approximating the centroid is hard. In Proceedings of the Twenty-
third Annual Symposium on Computational Geometry, pages 302–305. ACM, 2007.

DISC 2018

http://arxiv.org/abs/1611.02496
http://arxiv.org/abs/1611.02496

27:16 Fast Multidimensional Asymptotic and Approximate Consensus

22 Nicola Santoro and Peter Widmayer. Time is not a healer. In B. Monien and R. Cori,
editors, 6th Symposium on Theoretical Aspects of Computer Science, volume 349 of LNCS,
pages 304–313. Springer, Heidelberg, 1989.

23 Fred B Schneider. Understanding protocols for Byzantine clock synchronization. Technical
report, Cornell University, 1987.

24 Jennifer Lundelius Welch and Nancy Lynch. A new fault-tolerant algorithm for clock
synchronization. Information and computation, 77(1):1–36, 1988.

Local Queuing Under Contention
Paweł Garncarek
Institute of Computer Science, University of Wroclaw, Poland
pgarn@cs.uni.wroc.pl

Tomasz Jurdziński
Institute of Computer Science, University of Wroclaw, Poland
tju@cs.uni.wroc.pl

Dariusz R. Kowalski
Computer Science Department, University of Liverpool, Liverpool, UK
D.Kowalski@liverpool.ac.uk

Abstract
We study stability of local packet scheduling policies in a distributed system of n nodes. The
local policies at nodes may only access their local queues, and have no other feedback from
the underlying distributed system. The packets arrive at queues according to arrival patterns
controlled by an adversary restricted only by injection rate ρ and burstiness b. In this work, we
assume that the underlying distributed system is a shared channel, in which in order to get rid of
a packet from the queue, a node needs to schedule it for transmission on the channel and no other
packet is scheduled for transmission at the same time. We show that there is a local adaptive
scheduling policy with relatively small memory, which is universally stable on a shared channel,
that is, it has bounded queues for any ρ < 1 and b ≥ 0. On the other hand, without memory
the maximal stable injection rate is O(1/ logn). We show a local memoryless (non-adaptive)
scheduling policy based on novel idea of ultra strong selectors which is stable for slightly smaller
injection c/ log2 n, for some constant c > 0.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed algorithms, local queuing, shared channel, multiple-access
channel, adversarial packet arrivals, stability, deterministic algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.28

Funding Supported by Polish National Science Center grant 2017/25/B/ST6/02010.

1 Introduction

Queuing processes have been in the heart of computing and communication for decades.
Queues are governed by scheduling algorithms, and the desired property is stability – meaning
that there is an upper bound on the numbers of packets queued at devices at any time.
Recently, due to rapidly growing number of devices and popularity of distributed protocols,
the impact of congestion on stability of queuing processes has become a vibrant research
topic. In this work, we study stability of local packet scheduling policies in the process of
dynamic broadcasting on a shared channel. A shared channel, also called a multiple access
channel, is a broadcast network with instantaneous delivery of transmitted messages to every
device (also called a node or a station) in the system and a possibility of conflict for access to
the transmitting medium. A message sent via a channel by a station is received successfully
by all the stations when its transmission has not overlapped with transmissions by other
stations.

© Paweł Garncarek, Tomasz Jurdziński, and Dariusz R. Kowalski;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pgarn@cs.uni.wroc.pl
mailto:tju@cs.uni.wroc.pl
mailto:D.Kowalski@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.DISC.2018.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Local Queuing Under Contention

The traditional approach to modeling dynamic broadcasting and the corresponding
queuing process on a shared channel has assumed continuous packet injection subject to
stochastic constraints (typically, Poisson arrival rates). Recent papers, inspired by adversarial
queuing theory for store-and-forward packet networks, studied stability of deterministic
broadcasting on a shared channel in adversarial settings. An adversary is determined by two
parameters: injection rate ρ, which is the average number of injected packets, and burstiness
b, which is the maximum number of packets that may be injected in a round. To the best of
our knowledge, all previous work assumed that scheduling policies receive some feedback from
the channel that help them in achieving stability. Our approach is the first that considers
local schedulers without any feedback from the channel.

1.1 Our results
This paper investigates stability and other properties of deterministic local packet schedulers
which are used for distributed broadcasting on a shared channel. The stability is studied in
adversarial setting, defined in terms of global injection rate ρ and burstiness b. We consider
two classes of local schedulers: adaptive and non adaptive. The former allows stations to
monitor and store some digest of the local queue history, especially its size, while the latter
allows the policy only to check whether the current local queue is empty or not. We show that
there is a local adaptive scheduling policy with relatively small memory, which is universally
stable on a shared channel, that is, it has bounded queues for any ρ < 1 and b ≥ 0. On the
other hand, we prove that without memory the maximal stable injection rate is O(1/ logn),
more precisely, than any local non-adaptive scheduler can be stable only for injection rates
O(1/ logn). We also show a local non-adaptive policy based on novel idea of ultra strong
selectors, which is stable for slightly smaller injection rate c/ log2 n, for some constant c > 0.

1.2 Previous and related work
There is a rich history of research on broadcasting dynamically generated packets on multiple
access channels. Early work in this direction included developing and studying properties of
protocols like Aloha [1] and binary exponential backoff [23]. Most prior research on this topic
has concentrated on scenarios when packets were injected subject to statistical constraints.
Stability has been the basic quality criterion to achieve, understood in the sense that the
input and output rates were equal. See the paper by Gallager [12] for an overview of early
research; recent work includes the papers of Goldberg et al. [14], Goldberg et al. [15], Håstad
et al. [17], and Raghavan and Upfal [24].

Adversarial queuing was introduced by Borodin et al. [8] as a framework to study stability
of routing protocols in (point-to-point connected) networks under worst-case traffic scenarios
modeled by adversaries. Andrews et al. [5] defined a greedy protocol to be universally stable
when it was stable in all networks for any injection rate ρ < 1.

Bender et al. [6] studied stability of randomized backoff on a shared channel in adversarial
settings in the queue-free model in which each packet is handled independently as if by a
dedicated station. Stability was defined to mean that output rate was as large as injection
rate. Some aspects of dynamic selection on multiple access channels by deterministic protocols
were considered by Kowalski [21]. Both above approaches differ from the one in this paper,
as they did not consider individual local queues.

Chlebus at al. [10] were the first who studied adversarial queuing on a shared channel.
They however, similarly to all the follow up work (cf., [4, 3, 9]), assumed that schedulers
are embedded into the channel, in the sense that they can receive channel feedback or

P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:3

even attach and read additional information bits. Two of their results, however, could be
transferred to the model of local scheduler assumed in this paper. Mainly, they showed
that no acknowledgment-based protocol can be stable for injection rates larger than 3

1+lgn ,
and that there is a stable acknowledgment-based protocol for rates at most 1

cn lg2 n
, for a

sufficiently large c > 0. This class of acknowledgment-based protocols is however different
from the classes considered in this work, in the sense that the non-adaptive protocol restarts
each time a new packet is considered by a scheduler – as such, it is difficult to compare
their results with the ones in our work, and the only note we could make here is the huge
exponential gap between the lower and upper bounds on stability rates.

Broadcasting on a shared channel with static input (i.e., when some k stations hold
packets at the beginning of an execution) was also widely studied. The goal is to transmit
either at least one of them, which is the selection problem, or all of them in the k-broadcast
problem, in both cases as quickly as possible. Kushilevitz and Mansour [22] proved the lower
bound Ω(logn) for the selection problem on the channel with n stations if collision detection
was not available. Willard [25] developed protocols solving the selection problem in the
expected time O(log logn) in the channel with collision detection. This demonstrates that
there is an exponential gap between models with collision detection and without it, with
respect to the selection problem. The k-broadcast problem was studied by Greenberg and
Winograd [16], Komlós and Greenberg [20], and Kowalski [21]. A related leader election
problem was studied by Jurdziński et al. [18] for channels without collision detection. The
related problem of wake-up, where stations become activated at possibly different times
and have to transmit or exchange information, was also considered in the literature. It was
introduced by Gąsieniec et al. [13]. They showed that if stations had access to a global clock
then wakeup could be completed in the expected time O(logn) by a randomized protocol; this
was later strengthened by Jurdziński and Stachowiak [19] who showed that the assumption
about the global clock could be omitted. Czyżowicz et al. [11] studied deterministic solutions
for the mutual exclusion and consensus problems on multiple-access channels when the
adversary wakes up stations in arbitrary rounds. They considered various model settings,
determined by the availability of three independent features: collision detection, global clock
and knowledge of the number n of stations. In particular, they showed that if none of the
three features is available then the problems are not solvable, while even a single of these
features makes these problems feasible, with complexity of solutions depending on which
combination of features is available. Bieńkowski et al. [7] analyzed randomized protocols for
mutual exclusion under the model settings of [11].

2 Model

There are n stations attached to a shared channel. The stations have distinct names in the
interval [0, n− 1]. Each station v knows its name v and also the number of all the stations n,
in the sense that these parameters can be used in code of protocols.

2.1 Shared channel
Shared channel, also called a multiple access channel, is a communication medium with
some special properties. We assume that the channel operates synchronously. Every device
connected to it, called a node or a station, has its clock and the clock cycles are all of exactly
the same length and synchronized. An execution of a protocol is partitioned into rounds – it
takes precisely one round to transmit a message. We assume that stations have access to a
global clock, meaning that all the local clocks at stations give the same round numbers.

DISC 2018

28:4 Local Queuing Under Contention

Every station occasionally receives packets to broadcast. Packets are stored in a local
queue. Stations use local scheduling algorithms to decide whether to schedule a packet
from the queue for transmission in the current round or not. When exactly one station
schedules a packet for transmission in a round, then the message containing this packet is
successfully delivered and the packet disappears from the queue. Unlike in the previous
work, we assume that local schedulers do not receive any feedback from the channel – they
could only make their decisions based on examining local queue. When at least two stations
transmit simultaneously in a round then conflict for access or collision occurs in the round
and none of the transmitted packet is successful (i.e., all remain in their local queues).

2.2 Adversaries injecting packets

Packets are injected into stations in a dynamic fashion in the course of an execution of a
broadcasting protocol. Packet injection is modeled by an adversary. Adversaries are specified
by constraints on the maximum rate of injection ρ and by the burstiness of traffic b. An
adversary generates a number of packets in each round and for each packet assigns a station
to inject the packet in this round. The number of packets an adversary can inject into
stations in one round is called the burstiness of the adversary. The adversary of type (ρ, b)
can inject at most ρt+ b packets to stations, in total, during any time interval of t rounds.
This type of adversary is typically called leaky bucket.

2.3 Local schedulers

A broadcast algorithm is determined by the work of local scheduling algorithms at each
station. A local scheduler is a deterministic and distributed algorithm, which has only access
to the current local queue, global clock, and potentially some additional internal memory
(different from the local queue), but does not receive any feedback from the channel. It
decides whether to schedule a packet for transmission in the current round or not. A packet
scheduled for transmission is removed from the queue automatically if the transmission was
successful (i.e., no other packet was scheduled for transmission in the same round), and the
scheduler is aware of it.

W.l.o.g. we assume that the queue at a station operates in the first-in-first-out (FIFO)
fashion, as we are only interested in stability (i.e., bounded queue sizes).

We focus on two classes of local schedulers. First class, adaptive schedulers, allows the
algorithm to access the current queue (in particular, knows its size) and can use additional
local memory (different from the local queue) to store some digest of queue history. The
second class, non-adaptive schedulers, requires that the scheduler knows only if the current
queue is empty or not and does not use local memory to record any digest of the history of
local computation.

2.4 Quality of service

We say that a local scheduler is stable for injection rate ρ if in any execution of the scheduler
against a (ρ, b)-adversary, for any b, queues are bounded at all times. Universal stability
means stability for any injection rate ρ < 1.

P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:5

3 Universally stable algorithm with (small) memory

In this section we build a universally stable algorithm under the assumption that nodes can
collect information about history of an execution in their local memory.

We construct the algorithm gradually: first, we describe the basic window-base brute-force
idea for known injection rate 0 < ρ < 1 and burstiness b ≥ 0 and under assumption that a
node has an additional feedback from the channel; second, we modify it to get rid of the
above mentioned assumptions.

3.1 Window-based algorithm under additional assumptions
As mentioned earlier, the first algorithm will be designed for known injection rate ρ and
burstiness b. Additionally, in this part we only consider the beeping channel feedback model,
where a node can distinguish between no transmitting nodes and at least one transmitting
node on the channel; in other words, a node can use so called “beeps” (i.e., at least one
transmission on the channel) to encode some control information to other nodes.

The algorithm partitions time into windows of length L. Each window consists of a gossip
stage and a transmission stage. In the gossip stage, the nodes learn the queue sizes of other
nodes. Then they use this knowledge to compute locally an optimal schedule – as we will
argue later, it will be the same at each node. In the transmission phase, the nodes use the
schedule they computed in the preceding gossip phase to transmit all packets that were
injected in the previous window. Below we specify the two stages in details.

Gossip phase

Let f(L) = logL denote the maximal number of bits that any node must exchange in a
gossiping algorithm in order to share its queue size taken from the beginning of the window
(i.e., the size just at the beginning of the window); if the queue size is greater than L, the
node only announces it has L packets. A node may require f(L) packets just to transmit the
information in the gossip phase. Therefore each node actively participates in communication
within a window only if it has at least f(L) packets at the beginning of the window. Round
robin algorithm is used for this purpose, repeated f(L) times – a node transmits a packet only
if it actively participates in the current window and it is its turn on the list of stations used
by the round robin algorithm and it has 1 on the i-th position of the binary representation of
its queue size from the beginning of the window, where i is the current number of iterations
of round robin. In order to perform this algorithm, memory size f(L) is required at each
node.

Transmission phase

Each node has full knowledge about the queue states of all active nodes in the system (subject
to restrictions that for queues larger than L the value L is known) at the beginning of the
transmission phase. Note that memory size n · f(L) is needed for it. Therefore all active
nodes can compute the same transmission schedule to be used in the remainder of the window.
The nodes use a brute force algorithm to find the shortest schedule that transmits all packets
injected before the end of the previous window and not yet transmitted, and then follow this
schedule. There are at most ρL+ b packets injected into the system in the previous window,
therefore a window of length T (ρ, b) +G(n,L) is long enough, where T (ρ, b) = ρL+ b is the
length of the transmission phase, while G(n,L) is the length of the gossiping phase (in the
gossiping phase the propagated queue sizes are capped by L, hence logL bits are enough in

DISC 2018

28:6 Local Queuing Under Contention

Algorithm 1 Local Scheduling with Memory for a station v.
1: Lv ← min_length
2: loop
3: oldv ← number of packets in the queue
4: qv ← number of packets injected in the previous window
5: if oldv > f(n,Lv) then
6: (schedule, increase?)← Gossip(Lv)
7: if increase? then
8: Lv ← 2Lv
9: Idle until round t such that t is divisible by the new Lv

10: else
11: Transmit(schedule)

each such transmission). Therefore, if we use window length L ≥ (b+G(n,L))/(1− ρ), there
is enough time to transmit all packets from the previous window. Indeed, for such values of
L we have the desired property L ≥ T (ρ, b) +G(n,L).

Since we iterate round robin algorithm f(L) times for gossiping, we get G(n,L) = n logL.
Therefore, there exists a sufficiently large window length L such that L ≥ (b+n logL)/(1−ρ)
and consequently the above algorithm transmits all packets injected in a window during the
next window from all active nodes. This proves (recursively) that all packets in queues at
the beginning of a window have been injected during the previous window (except for at
most f(n,L) packets in each station, which could be injected earlier without activating the
station), automatically implying stability.

3.2 Modified algorithm

The above brute-force window-based algorithm has a number of weaknesses:
1. ρ and b are known
2. users need to listen to the channel feedback (as opposed to only detecting own collisions)

Next we modify the above algorithm to get rid of these weaknesses. A high-level description
of algorithm executed by a node is presented below, as Algorithm 1., with subprocedures
Gossip (Procedure 2), Exchange (Procedure 3) and Transmit (described only in words).

Each node v knows its previous window size Lv (different nodes may have different
window lengths). At the start of the algorithm, each node starts with a window of length
min_length = n(n− 1) · 8. To minimize desynchronization that occurs, a node v only starts
a window of length Lv if the current round t is divisible by Lv.

Only nodes that started their window with at least n(n − 1) · logLv packets in their
queues participate in the window – these are called active nodes. Each inactive node u idles
until it gets enough packets to become active (and then it idles until such a round t that is
divisible by Lu).

In a window all active nodes learn eachother’s fresh packets – packets injected in the
previous window – and decide on a common transmission schedule that transmits all fresh
packets. If the computed schedule is too long to fit by the end of their window, each active
node v doubles its window size (and idles until the next window starts). Otherwise they
transmit according to this schedule. If an active node v learns that some other active node u
uses a shorter window than Lv, then v informs u about this and u doubles its window length
(and idles until the next window starts).

P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:7

Algorithm 2 Procedure Gossip(Lv).

1: ignore← Exchange(~1)
2: ignore← Exchange(~1)
3: ~die?← Exchange(~0)
4: if ~die? 6= ~0 then
5: Idle for 3(dlogWve+ 1) phases
6: return (null, true)
7: q1, q2, . . . , qdlogWve ← bits of min(qv, 2dlogWve)
8: for i← 1; i ≤ dlogWve; + + i do
9: if qi = 1 then

10: ~x← Exchange(~1)
11: ~y ← Exchange(~0)
12: else
13: ~x← Exchange(~0)
14: ~y ← Exchange(~1)
15: for j ← 1; j ≤ n; + + j do
16: if xj = yj then
17: zj ← 1
18: else
19: zj ← 0
20: ~die?← Exchange(~z)
21: if ~die? 6= ~0 then
22: Idle for 3(dlogWve+ 1− j) phases
23: return (null, true)
24: ignore← Exchange(~0)
25: ignore← Exchange(~0)
26: ~die?← Exchange(~0)
27: if ~die? 6= ~0 then
28: return (null, true)
29: schedule← compute(exchange_results)
30: return (schedule, false)

Exchange subprocedure. Exchange subprocedure’s goal is to transmit a single bit of
information to and from each active node (it can transfer different bits to each node) and
therefore implements beeps from the previous section.

It takes n(n− 1) rounds. This timeframe is divided into n intervals of n− 1 rounds each.
In the i-th interval a i-th node has a chance to transmit a bit to each of the n−1 other nodes.
i-th node transmitting a packet in j-th round of i-th interval means that i-th node rties to
transmit a binary signal 1 to the j-th node (to the j + 1-th node if j ≥ i). No transmission
in j-th round of interval i from node i means that either i-th node transmits a binary 0 to
the j-th node (or j + 1-th node) or it is inactive.

Furthermore, the active nodes need to be able to receive these bits of information. Each
active node j transmits a packet in j-th round of every interval i for i < j and of every
interval i + 1 for i ≥ j. If a collision occured in j-th round of interval i, then either (for
j < i) j-th node interprets this as i-th node transmitting a bit 1 or (for j ≥ i) j-th node
interprets this as i+ 1-th node transmitting a bit 1.

DISC 2018

28:8 Local Queuing Under Contention

Algorithm 3 Procedure Exchange(~x) for a node v.
1: for block ← 1; block ≤ n; + + block do
2: if block = v then
3: for j ← 1; j ≤ n− 1; + + j do
4: if xj = 1 then
5: Send a packet
6: else
7: Idle for 1 round
8: else
9: for j ← 1; j ≤ n− 1; + + j do

10: if (v < block and v = j) or (v > block and v = j + 1) then
11: Send a packet
12: else
13: Idle for 1 round

Note that the exchange procedure has no guarantees about successful transmissions. It
is used solely for communication.

Gossip stage. Gossip stage is used to share queue sizes of al active nodes, so that they can
agree on a common schedule. Furthermore it is used to find out whether some nodes should
increase their window sizes.

Gossip stage is divided into logLv + 2 phases. Each phase consists of 3 exchange routines.
The first phase and the last phase are used to inform other gossiping nodes about v’s start
and end of gossiping stage. The middle logLv phases are used to transmit v’s queue size,
each phase for one bit.

The first phase of gossip of node v is always exchanging 110 to each other node. The
last phase of gossip is always exchanging 000 to each other node. In the middle phases, a
transmission of a bit 1 is encoded as exchanging 10? to each other node, while a transmission
of a bit 0 is encoded as exchanging 01? to each other node, where the third exchange of these
phases will be described later.

This kind of coding is used to ensure that nodes with different window lengths, and
therefore desynchronized gossiping phases, find out about eachother and learn which one
has shorter window length. Indeed, if another node u with a shorter window length starts
a gossip stage at the same time as v, v learns that u has a shorter gossip (and therefore a
shorter window Lu) after 2 exchanges of the last u’s phase (00 are enough to identify the
finishing phase). If u starts a gossip during v’s gossip stage, within 2 exchanges (11 at the
start of u’s gossip) v learns about it.

For every node u that starts of finishes a gossip during v’s gossip, v exchanges kill to node
u – a bit 1 on the third exchange of the phase when v found out that u is desynchronized
(this was denoted earlier by a ‘?’. A node that hears a kill from any other node immediately
stops its transmissions, doubles its window size and waits until the next start of a window.

If the nodes after a gossiping phase find out that they are not able to transmit all packets
from the previous window (i.e., the computed schedule would be too long for the allocated
length of transmitting stage), then they double their window lengths.

P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:9

Transmission stage. Transmission stage is used to transmit all fresh packets, according to
a schedule found during a gossip stage. Note that gossip stage may successfuly transmit
some fresh packets or packets injected in earlier windows. Therefore a node may have not
enough fresh packets to use the schedule, but that means that in this window it successfuly
transmitted all fresh packets.

Note that the schedule guarantees no collisions between nodes that started their windows
at the same time. However, a collision may occur with a node which started its window at
a different time, so with a different window length. If a node v detects a collision during
its transmission stage, it stops following its schedule, and instead transmits kill messages
to all other nodes until it runs out of packets or the window ends. These kill messages are
transmitted in all rounds during intervals I = [t + 2n(n − 1), t + 3n(n − 1)), for every t
divisible by 3n(n− 1) (these are the rounds reserved for kill messages in gossiping nodes).

These transmissions will cause collisions with other active nodes u in their transmission
stage or in their gossip stage. So u will either start transmitting kill messages (in case it
happened during the transmission stage), or it will interpret this collision as a kill message
(if it happened during the gossip stage).

3.3 Analysis of the modified algorithm

I Theorem 1. There exists an adaptive scheduler against any adversary with injection rate
ρ < 1 and burstiness b.

We show that the algorithm described above is a scheduler satisfying requirements of the
theorem. We need to prove 2 lemmas:

I Lemma 2. For any ρ and b there exists a window length Lmax, such that it is never
exceeded.

I Lemma 3. In every window of length Lmax either all nodes transmit all packets injected
in the previous window of length Lmax or some node decides to increase its window length.

If both lemmas hold, then there is a finite number of windows where packets are processed
slower than they are injected. Therefore the queues are bounded and the algorithm is
universally stable. It remains to show that both above lemmas hold.

Proof of Lemma 2. For every n, ρ, b there exists a window length L such that if every node
achieves it, all the nodes transmit all the packets injected in the previous window, without
collisions during transmission stages (see the explanation in the base algorithm, Section 3).
Observe that a node v increases its window length in two cases:

Case 1: During Gossip stage it heard a kill message from another node u.
Case 2: During Gossip phase it found out that it has too many packets to transmit in a
window of current length.

Note that the 1st case can only occur if u has a longer window than v, therefore Lv < L,
so 2Lv ≤ L.

The 2nd case allows a node with the longest window in the entire network to increase its
window length. This however happens only if the current window length is insufficient and
therefore shorter than L.

Therefore the lemma holds for Lmax = L. J

DISC 2018

28:10 Local Queuing Under Contention

Proof of Lemma 3. If a node is unable to transmit all fresh packets, then in the gossip
phase it doubles its window length. If a node v was unable to successfully transmit all fresh
packets due to collisions during v’s transmissions stage with a node u that has a different
window length, one of the cases below occured:
1. Lu < Lv and u started its window before (or in the same phase) v finished its gossip

stage – u receives a kill from v at the start of u’s gossip.
2. Lu < Lv and u started its window after v finished its gossip stage – v detects a collision

during its transmission stage and starts transmitting kill messages instead of following its
schedule. Either u heard a kill message from v or v ran out of packets (transmitted all
fresh packets).

3. Lu > Lv and u started its window at the same time that v – v receives a kill at the end
of its gossip stage.

4. Lu > Lv and u started its window before v and u finished its gossip stage after (or in the
same phase) v started its gossip stage – v receives a kill at the start of its gossip

5. Lu > Lv and u started its window before v and u finished its gossip stage before v started
its gossip stage – u detects a collision during its transmission stage and starts transmitting
kill messages instead of following its schedule. Either v heard a kill message from u or u
ran out of packets (transmitted all fresh packets).

Therefore any active node v during its window either:
transmits all its fresh packets,
finds out its window length is too short to transmit its packets,
receives a kill message,
transmits a kill message that is received by another node.

So either all active nodes transmit all their fresh packets in their every window during interval
of length Lmax or there exists a node that increased its window length. J

Memory usage. Note that a node remembers queue sizes of all other nodes, where queue
sizes are bounded by Lmax (a value dependent on b, ρ and n). So each node uses at most
n · logLmax bits of memory.

4 Unknown queue size

In this section we consider a class of protocols where stations do not know how many packets
they have themselves. Each station decides whether to send a packet or not based only on
the current round number. If such station has no packets to send, it simply fails.

4.1 Impossibility result
In this subsection we will show that no oblivious algorithm can be stable against an adversary
with injection rate ρ = ω(1/ logn). Firstly, we introduce some auxiliary terminology and
provide a high level description of the proof of the result. Then the formal proof follows.

4.1.1 Auxiliary terminology and high level description of the
impossibility result

For a given set X, let 2X denote the set of all subsets of X.

I Definition 4. A scenario is a class of packet arrival patterns where only a specific subset
of stations have packets injected into them.

P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:11

According to the above definition, each scenario can be identified with a subset of [n]
corresponding to nodes to which packets can be injected. And therefore, there are 2n possible
scenarios.

Consider a fixed oblivious algorithm A for a system which consists of n > 0 nodes. Then,
for a fixed set of scenarios S ⊂ 2[n] (i.e., subsets of U = [n]), let us build a bipartite graph
G(U ∪ S,E), where (u, s) ∈ E iff u ∈ s. That is, (u, s) denotes the fact that an adversary
can inject packets to the node u in the scenario s. [Observe that each bipartite graphs with
partition of nodes U ∪ S and U = [n] uniquely describes a set of scenarios and each set of
scenarios S uniquely determines the graph G(U ∪ S,E).]

We say that an execution of a system is saturated with respect to a scenario s ⊆ [n] in
some period of time when each queue i ∈ s is nonempty at each round of the given period.

For a given schedule A, let us restrict to its saturated executions on some set of scenarios.
Then, one can characterize succesful rounds of schedule A (i.e., such that a packet is
transmitted) in saturated executions for various scenarios, using the following terminology.

We say that a set H ⊆ [n] hits a scenario s ⊆ [n] iff |H ∩ s| = 1. Now, for a given
round t, let At ⊆ [n] be the set of nodes which transmit a message in round t according to
the schedule A (provided their queues are not empty). We also say that the scenario s is
successful in round t of A if a packet is successfully transmitted in round t of a saturated
execution of A in the scenario s. One can easily observe that s is successful in round t of A
iff At hits s, i.e., |At ∩ s| = 1. Thus, the number of (saturated) executions from a given set
S in which a packet is successfully transmitted in round t is equal to the number of elements
of S which are hit by At.

Interestingly, the above characterization of successful transmissions in saturated executions
in the scenarios from the set S is closely related to broadcasting in radio networks. Let us
consider a restricted broadcasting problem, where all nodes from U know a messageM and
the goal is to deliverM to all nodes from S in a radio network described by G(U ∪ S,E).
The radio network [2] is the model of distributed networks, where node u of a graph G

receives a message from v in a round t iff v is the only (in)neighbor of u in G transmitting a
message in r. One can observe that, for the set of transmitters At,

the number of successful scenarios from S in round t,
the number of elements of S which receive a message (from nodes in U) in the radio
network G(U ∪ S,E) in a round in which the set of transmitters is equal to At, and
the number of elements of S hit by At

coincide. Using this relationship, we will be able to use the lower bound for broadcasting in
radio networks from [2], which in particular implies that the above restricted broadcasting
problem requires Ω(log2 n) rounds.

In the nutshell, the proof of our impossibility goes as follows. Firstly, we focus merely
on saturated executions. For a given set of scenarios S, we say that a round t is c-sparse
if the number of successful scenarios from S in t wrt saturated executions is at most
O(|S|/(c log |S|)). (Recall that the set of successful scenarios from S in round t is equal to
the set of those elements of S which are hit by the set of transmitters At.) A set of scenarios
S is universally c-sparse if it is c-sparse for each possible round of each schedule (i.e., for
each possible set of nodes transmitting in a round).

The main technical step towards our result is phrased in the lemma (Lemma 8) which
says that, for some constant c2 ≥ 1 and for some arbitrarily large n, there exists a universally
c2-sparse set of scenarios of size polynomial wrt n. Intuitively, this technical claim says that
only a fraction of 1

c2 log |S| scenarios from S are successful in each round of each oblivious
schedule A. We prove this particular lemma by contradiction: assuming that it is false, we
build a schedule for the restricted broadcasting problem in radio networks of length O(log2 n),
which contradicts the lower bound for this problem from [2].

DISC 2018

28:12 Local Queuing Under Contention

The above described technical result implies that, on average, a scenario from a certain
set S is successful once in each c2 log |S| rounds. This in turn implies that, for each oblivious
algorithm A and each round t, there exists a scenario v ∈ S and time period [t, t+ s) (s ≥ n)
such that at most sρ′ packets are successfully transmitted during a saturated execution of A
in the period [t, t+ s) for the scenario v and some ρ′ = 1

c2 log |S| = O(1/ logn).
However, the above reasoning holds only for saturated executions. In order to generalize

this idea for arbitrary executions, we need to show that an adversary is able to inject packets
in such a way that an actual executions worsk as an suturated one, for arbitrary long period
of time. We deal with this challenge in Lemma 6, proved by contradiction.

4.1.2 Formal proof of the impossibility result
Let n be the number of stations, ρ = δ/logn for some constant δ be the injection rate of an
adversary ADV and b > n be the burstiness of the adversary ADV . Let us fix an algorithm
ALG. Let f(x) be an arbitrary function such that f(x)→∞ if x→∞ and f(x) = o(x).

I Theorem 5. There exist arbitrarily large numbers of stations n such that no non-adaptive
scheduler can have bounded queues against an adversary with injection rate ρ = 1/ logn and
burstiness b > n.

To prove Theorem 5, we will need additional definitions and Lemma 6.
Let Alg(v, I) for some scenario v and time interval I be the number of packets successfuly

transmitted by ALG during interval I under a saturated execution.
An interval I = [tb, te] is a ρ-bounded interval if there exists a scenario v ∈ S and a

constant s∗ = b− n ≥ 1 such that for every time t ∈ I:

Alg(v, [tb, t))− ρ′ · (t− tb) < s∗.

I Lemma 6. Consider ρ′ = c/ logn < ρ. There exist arbitrarily large numbers of stations
n and an infinite sequence of time prefixes Ti such that for each prefix Ti there exists a
ρ′-bounded interval I ⊆ Ti of length f(τi), where τi = |Ti|.

Proof of Theorem 5. Consider an adversary ADV ′ with injection rate ρ′ = O(1/ logn) and
burstiness b = n + s∗. Let T be one of the prefixes Ti whose existence is postulated in
Lemma 6 and τ = |T |. Let v be the scenario and I = [tb; te) – the interval of length f(τ) that
correspond to T . ADV ′ will wait without injecting any packets until tb. Then in one round
it will inject 1 packet to each station in scenario v (using at most n from its burstiness).
After that (until te), whenever ALG successfuly transmits a packet in the scenario v, ADV ′
injects a new packet to the station that just transmitted. According to Lemma 6 ADV ′ can
do this using at most additional s∗ of its burstiness.

Therefore an adversary ADV with injection rate ρ = ω(1/ logn) and burstiness b = n+s∗
can inject an additional (ρ−ρ′) · f(τ) packets into the system that will not be transmitted by
time te. So as we pick longer prefixes T (that exist according to Lemma 6), we get f(τ)→∞
and thus (ρ− ρ′) · f(τ)→∞. So the queues are not bounded. J

Before we prove Lemma 6, we introduce a new structure and more auxiliary lemmas.

I Definition 7. A connected graph G is (n, c2)-good if:
1. G is bipartite, with partition U and S,
2. |U | = n,
3. |S| = s = poly(n) ≤ nc2 ,
4. |S| ≥ |U |,
5. each node in S has at least one neighbour in U .

P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:13

The set U represents original stations. Each element a ∈ S represents a scenario, where
only the nodes adjacent to a in graph G receive packets.

I Lemma 8. There exist arbitrarily large numbers n, such that there exists a (n, c2)-good
graph G = (U ∪ S,E) such that in one round U can transmit a packet to at most s

c2 log s
nodes in S, where s = |S| and c2 ≥ 1 is some constant.

We will prove the above lemma later (but we use it now).

Proof of Lemma 6. Proof by contradiction.
Consider an adversary ADV ′ with injection rate ρ′ < ρ. According to Lemma 8 there

exists arbitrarily large n and a (n, c2)-good graph G such that in one round U can transmit
a packet to at most s

c2 log s nodes in S.

Contrary, assume that for all scenarios v ∈ S, all intervals I = [tb, te] ⊆ T such that
te − tb = f(τ), there exists t ∈ I such that

Alg (v, [tb, t))− ρ′ · (t− tb) ≥ s∗.

Then we can split almost entire prefix T ′ = T \ (τ −f(τ), τ] into small intervals J1, J2, . . . , Jk
for some k, where Ji = [ti−1, ti) ends at time ti for which the above inequality holds, where
t0 = 0 is the beginning of prefix T and tk ∈ [τ − f(τ), τ] ⊆ T . So for all i we have |Ji| ≤ f(τ)
and Alg(v, Ji)− ρ′ · (|Ji|) ≥ s∗. For each Ji we have Alg(v, Ji) ≥ ρ′ · |Ji|. We can sum this
over all Ji to get

Alg(v, T ′) ≥
∑
i

ρ′ · |Ji| ≥ ρ′ · (τ − f(τ) + 1).

Let B be the sum of all succesful transmissions by the algorithm ALG across all considered
scenarios S. So

B ≥
∑
v∈S

ALG(v, T ′) ≥ s · ρ′ · (τ − f(τ) + 1)

On the other hand, since the set of scenarios S is represented by a (n, c2)-good graph G, in
at most s

c2 log s scenarios a packet can be sent in one round of the algorithm (we picked our n
and G according to Lemma 8). Therefore in τ rounds there are at most τ · s

c2 log s packets
sent across all scenarios. So

B ≤ τ · s

c2 log s

Then we must have τ · s
c2 log s ≥ s · ρ

′ · (τ − f(τ) + 1), and thus ρ′ ≤ τ
(τ−f(τ)+1)·c2 log s . Since

f(τ) = o(τ), for large enough τ we have τ
(τ−f(τ)+1) < 2 and so

ρ′ ≤ 1
c2 log s = 1

c2 lognc2
= 1
c2c2 logn

However ρ′ = c/ logn and for c > 1/(c2)2 we have a contradiction! J

Proof of Lemma 8. Proof by contradiction.
Suppose that for all s, for all (n, c2)-good graphs G = (U ∪ S,E) where |S| = nc2 = s,

there exists a subset of transmitters U that in one round can transmit a packet to more
than s

h(n) log s receivers in S, where h(n) = ω(1) and h(n) = o(logn). We will build a

DISC 2018

28:14 Local Queuing Under Contention

broadcasting algorithm for a graph H = (V, F) with source a, where V = U ∪ S ∪ {a} and
F = E ∪ {(a, v)|v ∈ U} that requires o(log2 n) rounds, which contradicts the result of Alon
et al. [2].

The broadcasting algorithm. According to our assumption we can inform in one
round s

h(n) log s nodes in S. Let us define new sets S′ and U ′:

set S′ consists of all uninformed nodes from S (so |S′| ≤ s− s

h(n) log s),

each node in S′ has at least one neighbour in |U ′| (for each node v ∈ S′ we take v’s
arbitrary neighbour and add it to U ′; so far |U ′| ≤ |S′|),
if |U ′| ≤ |S′|1/c2 then we take arbitrary nodes v ∈ U and add them to U ′ until |U ′| =
|S′|1/c2 (note that |S′|1/c2 ≤ |S′|).

Let G′ be a subgraph of G induced by nodes U ′ ∪ S′. Let s′ = |S′| and n′ = |U ′|. Then the
graph G′ is a (n′, c2)-good graph.

We repeat our algorithm recursively until the size of set S is constant. Let T (s) be the
number of iterations required. T (s) = 1+T (s− s

h(n) log s). The value of s will be halved after

every s/2 · log(s/2)
h(s/2) iterations. So T (s) ≤ s/2 · log(s/2)

h(s/2) + T (s/2). Thus T (s) = o(log2 s).

Each iteration takes only 1 round, so we only used o(log2 s) = o(log2 n) rounds. J

4.2 Algorithm

In this section we show that there exists an oblivious algorithm which is stable for injection
rates ρ = O(1

log2 n
). Recall that we consider such protocols that the transmission pattern of

each node is determined by ID of the node and the number of nodes n. That is, the pattern
for a node is a 0-1 sequence.

I Theorem 9. There exists a stable algorithm for injection rates ρ = O(1
log2 n

), such that
transmission pattern of each node is determined by its ID.

We describe the proof of Theorem 9 in the remaining part of this section. More precisely,
we show that a stable algorithm exists for each n. In the proof, we use Probabilistic Method.

The schedule for each ID i ∈ [n] will be just a 0-1 sequence of length W = O(n2) repeated
infinite number of times. (The exact value of W will be determined later.)

Let l = logn (more precisely, l = blognc). For a given W ∈ N, we build a 0-1 sequence Xi

of length W for each ID i ∈ [n] such that Prob(Xi[t] = 1) = 1
21+i mod l for each i ∈ [W] and

all probabilistic choices are independent. Moreover, we split W into consecutive phases of
length l. That is, the first l elements ofW form the first phase, the next l elements ofW form
the second phase, and so on. And, the number of phases is equal to F = W/l = W/ logn.
Consider an execution of a schedule of lenght W determined by the above defined random
sequences under the assumption that the number of injected packets during an execution of
a schedule is at most ρW , where ρ = O(1/ log2 n). (The actual value of the constant hidden
in the big-O notation will be determined later.) Thus, an adversary can inject packets in at
most ρW = O

(
1

log2 n
F logn

)
= O(F/ logn) phases. Thus, no packet is injected in at least

F (1− 1
logn) ≥ 1

2F phases. A phase in which
no packet is injected, AND
no queue becomes empty

is called a clear phase.

P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:15

Now, let us consider a clear phase. Let m be the number of nodes with non-empty queues
at the beginning of such a phase. Moreover, let k ≤ l = blognc be such that 2k < m ≤ 2k+1.
Consider two cases:
(i) no packets are successfully transmitted in the first k − 1 rounds of the phase,
(ii) at least one packet is transmitted in the first k − 1 rounds of the phase.
For (i), the probability that a packet is successfully transmitted in the kth round of the
phase is m · 1

2k+1 ·
(
1− 1

2k+1

)m−1 ≥ 1
4e = c, where e is the base for natural logarithms. In

the case (ii) we are guaranteed that at least one packet is transmitted in a phase. Thus, the
probability that (at least one) packet is transmitted in a clear phase is at least c, where c is
a constant.

As the number of clear phases is at least 1
2F and the probability of a successful transmission

in a clear phase is ≥ c, the expected number of successful transmissions in W rounds (i.e., F
phases) is ≥ F

2c = W
2c logn ≥ 4ρW , provided ρ = O(1/ logn) is sufficiently small. Significantly,

as all the random choices are independent, we can use Chernoff bounds to estimate the
probability that the actual number of transmitted packets is close to its expectation. More
precisely, let X denote the number of transmitted packets in the considered W rounds. As
we have shown, X is bounded from below be the sum X of F/c independent 0-1 random
variables such that E[X] ≥ F

2c , where c is a fixed constant. Thus,

Prob(X < 4ρW) < Prob
(
X <

F

4c

)
< Prob

(
X < (1− 1

2)E[X]
)
< e−E[X]/8 = e−

W
16c log n .

(1)

Derandomization. Now, our goal is to show that, with non-zero probability, a randomly
chosen oblivious schedule of length W (i.e., n random 0-1 sequences of length W) guarantees
≥ 4ρW successful transmissions irrespective of the injection pattern, provided the number of
packets in queues at the beginning of an execution of this schedule is at least ≥ F/(4c) ≥ 4ρW
and the number of injected packets is at most ρW . By Probabilistic Method, this fact will
imply that there exists an oblivious schedule which guarantees 4ρW successful transmissions
in W rounds, provided there are at least 4ρW packets at the beginning and at most ρW
packets are injected during the considered period of W rounds.

Let a injection event denote the event that a packet is injected in some round to some
node. Moreover, let a deletion event denote the fact that the queue of a particular node
becomes empty at particular round. Observe that the actual behaviour of a fixed schedule in
a particular period T of W rounds can be determined by the following factors:

the set of nodes with non-empty queues at the beginning of T ,
injections events during T , where each injection event is described by: the ID v of the
node, the number of the round in which a packet is injected to v,
deletion events during T , where each deletion event is described by: the ID v of the node
and the number of the round in which the queue of v becomes empty.

According to our assumptions, the number of injection events is at most ρW . Each deletion
event corresponds to a unique successful transmission of a packet. Thus, if the number of
deletion events is larger than 4ρW , then the number of transmitted packets is also ≥ 4ρW.
Therefore, it is sufficient to consider the case that the number of deletion events is ≤ 4ρW
and therefore the number of all events is at most 5ρW .

According to the above description of events, each event can be described in

dlogne+ dlogW e+ 1 < 2(logW + logn) ≤ 6 logn

DISC 2018

28:16 Local Queuing Under Contention

bits. This bound follows from the fact that dlogne bits are sufficient to encode ID, dlogW e
bits are sufficient to encode the round number in the schedule of length W and one bit can
encode the type of the event, either an injection event or a deletion event. (Let us stress
here that we do not need the actual information about the sizes of queues at the beginning,
since we assume that deletion events can be determined by an adversary. This assumption
generalizes the scenario, where the queue becomes empty only after transmitting all packets
in it.) Thus, finally, the size of the set of all possible scenarios is at most

2n · 25ρW ·6 logn < 231ρW logn,

for large enough n, where
2n is the number of possible sets of non-empty queues at the beginning;
25ρW ·6 logn is the upper bound on the size of the set of possible events,
the inequality follows from the fact that W = n2 and ρ = Θ(1/ log2 n).

As the probability that the number of transmitted packets is smaller than 4ρW is at most
e−

W
16c log n for a fixed scenario (see (1)), the probability that a random schedule does not

guarantee at least F
4c successful transmissions is at most

231ρW logn · e−
W

16c log n < 231ρW logn− W
16c log n < 1,

provided ρ = O(1/ log2 n) is small enough. Thus, by Probabilistic Method, there exists a
schedule S of lengthW which guarantees that at least ρW packets are successfully transmitted
provided that the number of packets at the beginning is at least ρW and the number of
injected packets is at most ρW .

In the above reasoning we assumed that at most ρW packets can be injected in W rounds.
This is very restrictive, since the adversary can actually inject ρW + b packets in W rounds,
where b is the burstiness. Significantly, b is unknown and therefore a schedule is independent
of b. In order to take this circumstance into account, let us consider any fixed b ∈ N. Let S
be a schedule of length W which guarantees that 4ρW packets are transmitted during S,
provided there are at least 4ρW packets in queues at the beginning. We will analyze the
schedule S in consecutive stages of length T = 2bW . Thus, the schedule S is repeated 2b
times in a stage. We will show that the number of packets in queues is smaller than 2T at
the beginning of each stage which in turn implies that the number of packets in queues is
smaller than 3T in each round. Consider two cases:
(a) The number of packets in queues at the beginning of a stage is at least T and at most

2T .
(b) The number of packets in queues at the beginning of a stage is smaller than T .
For (b) observe that the adversary can inject at most ρT + b < T packets in a stage and
therefore the number of packets at the beginning of the next stage is at most 2T . Thus, it
remains to consider (a). We say that an execution of S is safe if the number of injected packets
during that execution is at most ρW . As an adversary can inject at most ρT +b = 2b ·ρW +b

packets in the stage, at least b out of 2b executions of S are safe. As shown above, at least
4ρW packets are transmitted during a safe execution of S. Eventually, the number of packets
transmitted in a stage of length T is at least b · 4ρW ≥ 2ρT > ρT + b. Thus, the number of
successfully transmitted packets is the stage is larger than the number of injected packets
and therefore the number of packets in all queues at the beginning of the next stage is at
most 2T .

P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:17

5 Conclusions

In this work we investigated how stability of local schedulers run on a shared channel depends
on their adaptivity. A natural research direction includes studying of other types of schedulers,
as well as delivering more quantitative measurements of schedulers’ quality (such as latency,
queue sizes, local memory size, etc.). Schedulers could also be studied in the context of other
related models with contention, such as SINR or dependency-graph models.

References

1 Norman M. Abramson. Development of the ALOHANET. IEEE Transactions on Inform-
ation Theory, 31(2):119–123, 1985.

2 Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. A lower bound for radio
broadcast. Journal of Computer and System Sciences, 43(2):290–298, 1991. doi:10.1016/
0022-0000(91)90015-W.

3 L. Anantharamu, Bogdan S. Chlebus, and Mariusz A. Rokicki. Adversarial multiple access
channel with individual injection rates. In Proceedings of the 13th International Conference
on Principles of Distributed Systems (OPODIS), LNCS 5923, pages 174–188. Springer-
Verlag, 2009.

4 Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki.
Deterministic broadcast on multiple access channels. In Proceedings of the 29th IEEE
International Conference on Computer Communications (INFOCOM), pages 1–5, 2010.

5 Matthew Andrews, Baruch Awerbuch, Antonio Fernández, Frank Thomson Leighton, Zhiy-
ong Liu, and Jon M. Kleinberg. Universal-stability results and performance bounds for
greedy contention-resolution protocols. Journal of the ACM, 48(1):39–69, 2001.

6 Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E.
Leiserson. Adversarial contention resolution for simple channels. In Proceedings of the 17th
Annual ACM Symposium on Parallel Algorithms (SPAA), pages 325–332, 2005.

7 Marcin Bieńkowski, Marek Klonowski, Mirosław Korzeniowski, and Dariusz R. Kowalski.
Dynamic sharing of a multiple access channel. In Proceedings of the 27th International
Symposium on Theoretical Aspects of Computer Science (STACS), pages 83–94, 2010.

8 Allan Borodin, Jon M. Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P. Wil-
liamson. Adversarial queuing theory. Journal of the ACM, 48(1):13–38, 2001.

9 Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. Maximum throughput of
multiple access channels in adversarial environments. Distributed Computing, 22(2):93–116,
2009.

10 Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. Adversarial queuing on
the multiple access channel. ACM Transactions on Algorithms, 8(1):5:1–5:31, 2012.

11 Jurek Czyżowicz, Leszek Gąsieniec, Dariusz R. Kowalski, and Andrzej Pelc. Consensus
and mutual exclusion in a multiple access channel. In Proceedings of the 23rd International
Symposium on Distributed Computing (DISC), LNCS 5805, pages 512–526. Springer-Verlag,
2009.

12 Robert G. Gallager. A perspective on multiaccess channels. IEEE Transactions on Inform-
ation Theory, 31(2):124–142, 1985.

13 Leszek Gąsieniec, Andrzej Pelc, and David Peleg. The wakeup problem in synchronous
broadcast systems. SIAM Journal on Discrete Mathematics, 14(2):207–222, 2001.

14 Leslie Ann Goldberg, Mark Jerrum, Sampath Kannan, and Mike Paterson. A bound on
the capacity of backoff and acknowledgment-based protocols. SIAM Journal on Computing,
33(2):313–331, 2004.

DISC 2018

http://dx.doi.org/10.1016/0022-0000(91)90015-W
http://dx.doi.org/10.1016/0022-0000(91)90015-W

28:18 Local Queuing Under Contention

15 Leslie Ann Goldberg, Philip D. MacKenzie, Mike Paterson, and Aravind Srinivasan. Con-
tention resolution with constant expected delay. Journal of the ACM, 47(6):1048–1096,
2000.

16 Albert G. Greenberg and Shmuel Winograd. A lower bound on the time needed in the
worst case to resolve conflicts deterministically in multiple access channels. Journal of the
ACM, 32(3):589–596, 1985.

17 J. Håstad, F. T. Leighton, and B. Rogoff. Analysis of backoff protocols for multiple access
channels. SIAM Journal on Computing, 25(4):740–774, 1996.

18 Tomasz Jurdziński, Miroslaw Kutyłowski, and Jan Zatopiański. Efficient algorithms for
leader election in radio networks. In Proceedings of the 21st ACM Symposium on Principles
of Distributed Computing (PODC), pages 51–57, 2002.

19 Tomasz Jurdziński and Grzegorz Stachowiak. Probabilistic algorithms for the wakeup
problem in single-hop radio networks. In Proceedings of the 13th International Symposium
on Algorithms and Computation (ISAAC), LNCS 2518, pages 535–549. Springer-Verlag,
2002.

20 János Komlós and Albert G. Greenberg. An asymptotically fast nonadaptive algorithm for
conflict resolution in multiple-access channels. IEEE Transactions on Information Theory,
31(2):302–306, 1985.

21 Dariusz R. Kowalski. On selection problem in radio networks. In Proceedings of the 24th
ACM Symposium on Principles of Distributed Computing (PODC), pages 158–166, 2005.

22 Eyal Kushilevitz and Yishay Mansour. An Ω(D log(N/D)) lower bound for broadcast in
radio networks. SIAM Journal on Computing, 27(3):702–712, 1998.

23 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM, 19(7):395–404, 1976.

24 Prabhakar Raghavan and Eli Upfal. Stochastic contention resolution with short delays.
SIAM Journal on Computing, 28(2):709–719, 1998.

25 Dan E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.
SIAM Journal on Computing, 15(2):468–477, 1986.

Derandomizing Distributed Algorithms with Small
Messages: Spanners and Dominating Set

Mohsen Ghaffari
ETH Zurich, Switzerland
ghaffari@inf.ethz.ch

Fabian Kuhn
University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Abstract
This paper presents improved deterministic distributed algorithms, with O(logn)-bit messages,
for some basic graph problems. The common ingredient in our results is a deterministic dis-
tributed algorithm for computing a certain hitting set, which can replace the random part of a
number of standard randomized distributed algorithms. This deterministic hitting set algorithm
itself is derived using a simple method of conditional expectations. As one main end-result of this
derandomized hitting set, we get a deterministic distributed algorithm with round complexity
2O(
√

log n·log log n) for computing a (2k − 1)-spanner of size Õ(n1+1/k). This improves consid-
erably on a recent algorithm of Grossman and Parter [DISC’17] which needs O(n1/2−1/k · 2k)
rounds. We also get a 2O(

√
log n·log log n)-round deterministic distributed algorithm for computing

an O(log2 n)-approximation of minimum dominating set; all prior algorithms for this problem
were either randomized or required large messages.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Algorithms, Derandomization, Spanners, Dominating Set

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.29

Related Version A full version of the paper is available at [15], http://tr.informatik.uni-
freiburg.de/reports/report285/report00285.pdf.

1 Introduction and Related Work

We present improved deterministic distributed algorithms in the CONGEST model for graph
problems including spanners and dominating set. Let us first recall the model definition.

The CONGEST model [28] of distributed computing. The network is abstracted as a
simple n-node undirected graph G = (V,E). There is one processor on each graph node
v ∈ V , with a unique Θ(logn)-bit identifier ID(v), who initially knows only its neighbors
in G. Communication happens in synchronous rounds. Per round, each node can send one,
possibly different, O(logn)-bit message to each of its neighbors. At the end, each node should
know its own part of the output. For instance, when computing spanners, each node should
know whether each of its edges is in the computed spanner (a computed subgraph of G, to
be defined later) or not. We note that the variant of the model where we allow unbounded
size messages is known as the LOCAL model [24,28].

© Mohsen Ghaffari and Fabian Kuhn;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ghaffari@inf.ethz.ch
mailto:kuhn@cs.uni-freiburg.de
https://doi.org/10.4230/LIPIcs.DISC.2018.29
http://tr.informatik.uni-freiburg.de/reports/report285/report00285.pdf
http://tr.informatik.uni-freiburg.de/reports/report285/report00285.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Derandomizing Distributed Algorithms with Small Messages

1.1 Our Contributions

1.1.1 Spanners

Graph spanners are a fundamental graph concept with a wide range of applications in
distributed computing [4, 29]. For a graph G = (V,E), a subgraph H = (V,E′) is an
α-stretch spanner if each pairwise distance in H is at most an α factor larger than the same
distance in G. Ideally, we want spanners with small stretch and small number of edges. It is
known that any n-node graph admits a (2k− 1)-stretch spanner with O(n1+1/k) edges [4,29],
and this tradeoff is optimal conditioned on a widely-believed girth conjecture of Erdős [14].

Baswana and Sen [8] gave a randomized algorithm in the CONGEST model for computing
a (2k− 1)-stretch spanner with O(kn1+1/k) edges in O(k2) rounds. Notice that k ∈ [1, logn].
Hence, this is a poly(logn) round randomized algorithm with spanner size within a logarithmic
factor of the optimal. There was a series of works that eventually led to a poly(logn) or even
just O(k) round deterministic algorithm with a similar spanner size [10–12] but all these
algorithms use large messages. Currently, there are only three deterministic algorithms that
work in the CONGEST model. One is the work of Barenboim, Elkin, and Gavoille [7], which
runs in poly(logn) rounds, but has a considerably weaker stretch-size tradeoff: it computes a
spanner with stretch O(logk−1 n) and size O(n1+1/k) in O(logk−1 n) rounds. The other two
results obtain a near-optimal stretch-size tradeoff but their round complexity is considerably
higher. Derbel, Mosbah, and Zemmari [13] gave an algorithm with round complexity
O(n1−1/k) for computing a (2k − 1)-stretch spanner with size O(kn1+1/k). Finally, very
recently, Grossman and Parter [18] gave an algorithm with round complexity O(2kn1/2−1/k)
for computing a (2k − 1)-stretch spanner with size O(kn1+1/k).

Our first result considerably improves on this line of work, leading to a sub-polynomial
round complexity for a nearly optimal stretch-size tradeoff:

I Theorem 1. There is a distributed deterministic algorithm in the CONGEST model that
computes a (2k − 1)-stretch spanner with size O(kn1+1/k logn) in 2O(

√
log n log log n) rounds.

1.1.2 Minimum Dominating Set

Minimum Dominating Set is another problem that has been central in the study of distributed
algorithms for local problems, see e.g. [22]. Given a graph G = (V,E), a set S ⊆ V is a
dominating set of G iff each node v ∈ V is either in S or has a neighbor in S. Jia et
al. [19] gave a randomized O(log ∆)-approximation in O(logn log ∆) rounds of CONGEST
model. Kuhn and Wattenhofer [22] gave a randomized distributed algorithm that computes
an O(

√
k∆1/

√
k log ∆)-approximation in O(k) rounds, e.g., an O(log2 ∆) approximation in

O(log2 ∆) randomized rounds of CONGEST model. Later, Kuhn et al. [21] gave an O(log ∆)
randomized approximation in O(logn) rounds. Lenzen and Wattenhofer [23] pointed out
that obtaining efficient deterministic algorithms for approximating minimum dominating set
remains open. The only known result afterward is an algorithm of Barenboim et al. [7], which
computes an O(n1/k)-approximation in O(logk−1 n) rounds; however this algorithm uses large
messages. The complexity of deterministic CONGEST-model algorithms for approximating
minimum dominating set remains open.

Our second result provides the first answer to this question, by providing a sub-polynomial
round complexity for poly-logarithmic approximation.

M. Ghaffari and F. Kuhn 29:3

I Theorem 2. There exists a distributed deterministic algorithm in the CONGEST model
that computes an O(log2 n) approximation of minimum dominating set in 2O(

√
log n log log n)

rounds.

We remark that while it might be possible to improve this round complexity to 2O(
√

log n),
improving it further and especially to poly(logn) would imply a major breakthrough in
distributed graph algorithms: A result of Ghaffari, Harris, and Kuhn [17, Theorem 7.6] shows
that obtaining a poly(logn) approximation of minimum dominating set within poly(logn)
rounds is conditionally hard (even if we allow unbounded messages), because it would lead
to a poly(logn)-round deterministic algorithm for all locally checkable problems that admit
poly(logn) round randomized algorithms. This includes problems such as Maximal Indepen-
dent Set (MIS) and (O(logn), O(logn))-network decomposition. Getting a poly(logn)-round
deterministic algorithm for these would resolve several well-known open question of distributed
graph algorithms including that of Linial from 1987 about polylogarithmic deterministic
MIS [24], and many of the open problems in the book of Barenboim and Elkin [6].

1.1.3 Network Decompositions and Neighborhood Covers
Network decompositions, first introduced by Awerbuch et al. [3], have been a key tool
in developing efficient (deterministic) distributed algorithms for a variety of distributed
algorithms. Given an n-node graph G = (V,E), a (d(n), c(n))-network decomposition of G
partitions it into a c(n) vertex-disjoint subgraphs, known as blocks of the decomposition (and
indicated via different colors), such that in the subgraph induced by each block, each connected
component (which is known as a cluster of this block) has a diameter at most d(n). See Section
2 for the more formal definition. Awerbuch et al. [3] gave a deterministic algorithm with
round complexity 2O(

√
log n log log n) for computing a (d(n), c(n))-network decomposition with

d(n) = c(n) = 2O(
√

log n log log n). This was later improved by Panconesi and Srinivasan [27]
to a 2O(

√
log n)-round LOCAL algorithm for decomposition with d(n) = c(n) = 2O(

√
log n).

While the algorithm of [3] works in the CONGEST model, that of [27] requires large messages.
See also the work of Barenboim et al. [7, Corollary 5.4], where a generalized tradeoff of
network decomposition in the CONGEST model is presented.

All of these decomposition algorithms [3,7,27] fail to work in the CONGEST model when
we need a larger separation between the clusters of the same block, i.e., when their distance
should be two or more hops. This is actually something that significantly limits the power of
these network decompositions for CONGEST model algorithms (e.g., for the applications in
spanners and dominating sets).

As our third contribution, we present a CONGEST model network decomposition algorithm
that can be used to compute a decomposition such that clusters of the same block are at
least k hops apart. The statement of the result is presented below as Theorem 3, the proof
of which is deferred to the full version [15], due to space limitations.

I Theorem 3. Let G = (V,E) be an n-node graph and let k ≥ 1 be an integer. There
is a deterministic CONGEST-model algorithm that computes a strong diameter k-hop (k ·
f(n), f(n))-decomposition of G in k · f(n) rounds, where f(n) = 2O(

√
log n·log log n).

In the above theorem, k-hop indicates that the clusters of the same block are at least k hops
apart. See Section 2 for the more formal definition. The above theorem leads to the first
efficient deterministic CONGEST model algorithm for neighborhood covers, another basic
and central graph structure, which was introduced by Awerbuch and Peleg [5]. We refer to
Section 2 for the related technical definition.

DISC 2018

29:4 Derandomizing Distributed Algorithms with Small Messages

I Corollary 4. Assume that we are given a strong diameter 2k-hop (d, c)-decomposition
of a graph G. One can compute a c-sparse k-neighborhood cover of diameter d + k in
O(c(d + k)) rounds in the CONGEST model on G. Consequently, for every k ≥ 1, one
can deterministically compute a 2O(

√
log n·log log n)-sparse k-neighborhood cover of diameter

k · 2O(
√

log n·log log n) of an n-node graph G in k · 2O(
√

log n·log log n) rounds of CONGEST.

1.2 Our Method in a Nutshell, and Comparison with Prior Methods

Our spanner and minimum dominating set algorithms are developed also via network
decompositions. We depart from the standard methodology in two parts. To outline
these changes, we first review the standard methodology of algorithms that use network
decompositions. We then comment on its shortcomings and outline how we go around each
issue.

The standard method for (deterministic) algorithms via Network Decomposition. A
standard technique in developing (deterministic) distributed algorithms for local graph
problems (formally including Locally Checkable Labelings [26] and any other problem that
can be formulated similarly using local constraints) is via the concept of (d(n), c(n))-network
decompositions. The generic way to use them is to process the blocks sequentially in c(n)
phases. In the ith phase, for each connected component of the ith block, one gathers the whole
topology of the that component (and perhaps some extra information about neighboring
nodes) in an elected center of the component, make that node decide about all (local)
decisions of the nodes of the component, and deliver this information back to the nodes.
Since different components are disconnected from each other, their decisions do not influence
each other and thus can be performed in parallel.

Shortcomings of the Generic Method via Network Decompositions for CONGEST. The
method is perfect for the LOCAL model with large messages. However, when it comes to
using small messages – i.e., in the CONGEST model – the method has two shortcomings:

Issue 1 – decompositions on power graphs. For many local problems, the constraints are
not only about the direct neighbors of a node but a small neighborhood of a distance r ≥ 2.
For instance, as we will see, in the case of spanner computations this radius r can be as large
as O(logn). In such cases, we need to ensure that connected components of each block are r
hops away from each other, instead of just not being adjacent. This is (almost) the same as
computing a network decomposition of Gr, which denotes the graph with an edge between
two vertices if their distance is at most r hops1. The algorithm provided by Awerbuch
et al. [3] for computing network decompositions does not seem to extend to computing a
decomposition for Gr, because of the congestion that the algorithm creates2. We present
a CONGEST-model algorithm for network decompositions of power graphs Gr; the formal
statement is Theorem 3.

1 Almost! Technically, we need that the components of each block are also connected in the base graph G
so that we can run CONGEST model algorithms in each component independently, i.e., each edge of G
has to pass messages for one component.

2 We note that this is not a small technicality: The CONGEST model complexity of problems can be
significantly different between G and even G2. For instance, the problem of each node knowing the its
degree in G and G2 are very different. The former has a single-round CONGEST-algorithm, while there
is no known o(n)-round algorithm for the latter.

M. Ghaffari and F. Kuhn 29:5

Issue 2 – gathering topology in each component. The generic method of using network
decompositions, each component is solved by gathering the whole topology of the component
(and some neighborhood outside) and then solving the problem in a brute-force centralized
manner. One can argue that this brute-force centralized computation is quite a stretch for
the notion of having a distributed method of solving the problem.

The method we use to go around this issue is a derandomization of randomized distributed
algorithms, which can typically solve the local problems that we are considering in poly(logn)
rounds. We outline the method here. Most parts are generic and applicable to various
problems, except the last part, which is specific to the constraints of each problem. We
observe that for many problems, including spanners and dominating set, the corresponding
efficient randomized algorithm can be made to work with only poly(logn) bits of randomness,
using concepts such as k-wise independence. We refer to these bits as the seed of randomness.
Then, derandomization is just a matter of determining a deterministic assignment to these
poly(logn) bits while preserving certain properties of the output of the randomized algorithm.
For that purpose, following an approach of Luby [25], we use the method of conditional
expectations to fix the bits one by one. The only remaining piece of the algorithm is to check
whether a bit should be 0 or 1. This requires us to be able to learn, or estimate, the expected
number of unsatisfied local constraints. This last part will be done using a method specific
for each problem, depending on its constraints.

Comparison with the methods of Censor-Hillel, Parter, and
Schwartzman [9] and Grossman and Parter [18]

We note that this second part of our contribution as described in issue 2 above – namely, the
method of conditional expectation applied on a random algorithm that uses only poly(logn)
bits of randomness overall – is inspired by the work of Luby [25] in parallel algorithms and
the recent work of Censor-Hillel, Parter, and Schwartzman [9] in distributed CONGEST and
CONGESTED-CLIQUE model algorithms. Let us explain how our approach differs from that
of [9], thus allowing us to improve on the bounds of [18].

Censor-Hillel et al. [9] give an O(D log2 n)-round CONGEST algorithm for maximal
independent set (MIS), by derandomizing the randomized MIS algorithm of [16], using a
method of conditional expectation close to Luby [25]. The key difference there is that (1)
the complexity depends on the global diameter D, (2) for MIS, each of the constraints in
the method of conditional expectation spans only the neighbors of one node and therefore,
computing an upper bound on the score/cost function is much easier. In our case, we
want a complexity that is considerably sublinear in the diameter, which calls for network
decompositions. Moreover, for spanner and dominating set (and presumably many other
local problems), the constraints span k-hop neighborhoods for some k ≥ 2, instead of direct
neighborhood. This causes two challenges: (A) we need a network decomposition of the
power graphs, which prior to our work was not known in the CONGEST model, as explained
above in issue 1. (B) Even computing each part of the cost function now spans k-hop
neighborhood for some k ≥ 2, and evaluating it with CONGEST-model messages requires a
different method.

Censor-Hillel et al. [9] also give a derandomzied spanner algorithm in the CONGESTED-
CLIQUE model, where all node-pairs can communicate with each other, exchanging O(logn)
bits per round. This also follows a derandomization method inspired by that of Luby [25].
However, again there two differences, which limit that result from extending to our setting: (A)

DISC 2018

29:6 Derandomizing Distributed Algorithms with Small Messages

this derandomization does not need to work with network decompositions and especially power-
graph network decompositions, because everything is within one hop in the CONGESTED-
CLIQUE and one can share the seed of randomness to all nodes, (B) computing the score/cost
function, which spans k-hop neighborhoods, is much easier in the CONGESTED-CLIQUE,
because this model does not suffer from the locality constraint.

In both cases above, both of the issues appear quite non-trivial to us. Indeed, Censor-Hillel
et al. [9] comment that the best deterministic CONGEST algorithm for spanners takes barely
sublinear time, O(n1−1/k) rounds to be precise. That is much higher than the sub-polynomial
time that we achieve. This O(n1−1/k) bound was improved to nearly O(

√
n) – O(n1/2−1/k ·2k)

rounds to be precise – in the simultaneous work of Grossman and Parter [18], using a special
and well-crafted deterministic method for constructing spanners, and particularly without
attempting a derandomization. We now show that the derandomization techniques can be
extended and improved, along with the strengthened power-graph network decomposition,
to achieve a round complexity 2O(

√
log n·log log n) rounds.

Some Other Related Work. Ghaffari, Harris, and Kuhn [17] also use some variant of
a method of conditional expectation to obtain derandomized distributed algorithms, but
for all of their results, locality is the main topic, and their algorithms use large messages.
Kawarabayashi and Schwartzman [20] present distributed derandomizations for some other
problems, including max cut and max k-cut. These work by turning a sequential process to a
distributed process by going through the colors of a certain (defective) graph coloring one by
one. However, those methods cannot extend to the problems that we consider as there the
score/cost functions are very local (spanning single neighborhoods), whereas in our case, the
constraints span up to logn-neighborhood, which means a suitable coloring would require
even up to polynomial many colors.

2 Model and Definitions

Mathematical Notation. For a graph G = (V,E) and two nodes u, v ∈ V , we define dG(u, v)
to be the hop distance between u and v. For an integer k ≥ 1, we define Gk = (V,E′) to
be the graph with an edge {u, v} ∈ E′ whenever dG(u, v) ≤ k. Given a node v ∈ V , we
use NG,k(v) := {u ∈ V : dG(u, v) ≤ k} to denote the set of nodes within distance k of v in
G. For a node set S ⊆ V , we use the shorthand notation NG,k(S) :=

⋃
v∈S NG,k(v) and

we drop the subscript G if it is clear from the context. Throughout, we use ln(·) to refer
to natural logarithm and log(·) to refer to logarithms to base 2. Moreover, for a graph
G = (V,E), integers a ≥ 1 and b ≥ 0 and a node set V ′ ⊆ V , a set of nodes S ⊆ V ′ is called
a (a, b)-ruling set of G w.r.t. V ′ [3] if (A) for any two nodes u, v ∈ S, we have dG(u, v) ≥ a,
and (B) ∀u ∈ V ′ \ S, there is a node v ∈ S such that dG(u, v) ≤ b. If V ′ = V , S is simply
called an (a, b)-ruling set of G.

Network Decomposition. A network decomposition of a graph G is given by a clustering
of G and a coloring of the graph induced by contracting each cluster. We therefore first
define the notion of a cluster graph.

I Definition 5 (Cluster Graph). Given a graph G = (V,E) and an integer parameter d ≥ 1,
an (N, d)-cluster graph G = (V, E) of G is a graph that is given by a set of N ≥ 1 clusters
V := {C1, . . . , CN} ∈ 2V such that (a) the clusters C1, . . . , CN form a partition of V , (b)

M. Ghaffari and F. Kuhn 29:7

each cluster Ci induces a connected subgraph G[Ci] of G, (c) each cluster Ci has a leader
node `(Ci) that is known by all nodes of Ci, and (d) inside each cluster, there is a rooted
spanning tree T (Ci) of G[Ci] that is rooted at `(Ci) and has diameter at most d. There is
an edge {Ci, Cj} between two clusters Ci, Cj ∈ V if there is edge in G connecting a node in
Ci to a node in Cj . The identifier ID(Ci) of a cluster Ci is its leader’s ID.

Given a cluster graph G = (V, E) of G and an integer k ≥ 1, we say that two clusters
C,C ′ ∈ V are k-separated if for any two nodes u and v of G such that u ∈ C and v ∈ C ′,
we have dG(u, v) > k. A strong-diameter k-hop network decomposition of a graph G is then
defined as follows.

I Definition 6 (Network Decomposition). Let G = (V,E) be a graph and let k ≥ 1, d ≥ 0,
and c ≥ 1 be integer parameters. A strong diameter k-hop (d, c)-decomposition of G is a
(N, d)-cluster graph G of G for some integer N ≥ 1 together with a coloring of the clusters of
G with colors {1, . . . , c} such that any two clusters with the same color are k-separated.

Sparse Neighborhood Covers. The notion of sparse neighborhood covers as introduced by
Awerbuch and Peleg [5] is closely related to network decompositions.

I Definition 7 (Sparse Neighborhood Cover). Let G = (V,E) be a graph and let k ≥ 1, d ≥ 1,
and s ≥ 1 be three integer parameters. A s-sparse k-neighborhood cover of diameter d is a
collection of clusters C ⊆ V such that (a) for each cluster C, we have a rooted spanning
tree of G[C] of diameter at most d, (b) each k-neighborhood of G is completely contained in
some cluster, and (c) each node of G is in at most s clusters.

As we explain in the proof of Corollary 4, any 2k-hop (d, c)-decomposition leads to a
c-sparse k neighborhood cover of diameter d+ k.

3 Hitting Set

In this section, we define an abstract problem, which we call the hitting set problem. This
problem, which can be solved easily using randomized algorithms, captures a variety of the
usual applications of randomness in distributed algorithms. In this section we provide a
deterministic algorithm for solving this hitting set problem. In the later sections, we see how
to use this deterministic subroutine to develop deterministic algorithms for other problems
such as spanners and minimum dominating set, primarily by replacing their randomized
parts with this deterministic hitting set subroutine.

Our main formulation of the hitting set problem (which is presented below in Definition
8 and solved in Lemma 9) is tailored to its usage in our spanner result. At the end of
this section, in Lemma 10, we provide an alternative formulation and the corresponding
deterministic algorithm, which are more suitable for our minimum dominating set result.
The proofs are quite similar.

I Definition 8 (The Hitting Set Problem). Consider a graph G = (V,E) with two special
sets of nodes L ⊆ V and R ⊆ V with the following properties: each node ` ∈ L knows a set
of vertices R(`) ⊆ R, where |R(`)| = Θ(p logn), such that distG(`, r) ≤ T for every r ∈ R(`).
Here, p and T are two given integer parameters in the problem. Moreover, there is a T -round
CONGEST algorithm that can deliver one message from each node r ∈ R to all nodes ` ∈ L
for which r ∈ R(`). We emphasize that the same message is delivered to all nodes ` ∈ L.

DISC 2018

29:8 Derandomizing Distributed Algorithms with Small Messages

Given this setting, the objective in the hitting set problem is to select a subset R∗ ⊆ R
such that (I) R∗ dominates L – i.e., each node ` ∈ L has at least one node r∗ ∈ R∗ such that
` ∈ R(r∗) – and (II) we have |R∗| ≤ |R|/p.

I Lemma 9. Given a 2T-hop (d, c)-decomposition of the graph G of the hitting set problem,
there is a deterministic distributed algorithm that in Õ(c(d+ T)) rounds solves the hitting
set problem.

Proof. The trivial randomized algorithm includes each node of R in R∗ with probability
1/(2p). It is easy to verify that this satisfies the requirements (I) and (II), with high
probability. In this proof, we develop a deterministic algorithm for solving the hitting set
problem, effectively by derandomizing this randomized process. This derandomization has
four aspects, which we discuss one by one.

Point 1 – Transforming the Requirements to One Cost Function. We try to capture the
requirements (I) and (II) with one cost function. In particular, we define a cost function for
any fixed set R∗ ⊆ R as follows. Consider the following indicator (random) variables: for
each node ` ∈ L, define x` = 1 iff R(`) ∩ R∗ = ∅. Moreover, for each node r ∈ R, define
yr = 1 iff r ∈ R∗. Define the cost function as Z =

∑
`∈L x` +

∑
r∈R yr. Notice the value is

clearly a function of the choice of R∗ ⊆ R. Furthermore, it is easy to see that in the natural
randomized algorithm that includes each node of R in R∗ with probability 1/(2p), we have
E[Z] ≤ |R|/(2p)+1/n2. This is because E[

∑
r∈R yr] =

∑
r∈R E[yr] =

∑
r∈R 1/(2p) = R/(2p).

Moreover, for each ` ∈ L, we have E[x`] = Pr[x` = 1] = (1− 1/(2p))Θ(p log n) ≤ 1/n3, which
implies E[

∑
`∈L x`] ≤ 1/n2.

During the next three points presented below, we will describe a deterministic process
for selecting R∗ such that the related cost is at most |R|/(2p) + 1/n. Notice that this still
does not mean that R∗ satisfies (I). To take care of that issue, we perform the following
clean up step, which has round complexity T , at the end: Suppose we have already chosen
a subset R∗ ⊆ R such that the cost Z =

∑
`∈L x` +

∑
r∈R yr of this selected set R∗ is at

most |R|/(2p) + 1/n. The number of nodes ` ∈ L for which R(`) ∩R∗ = ∅ is
∑

`∈L x`. By
definition, these are exactly the vertices for which requirement (I) is not satisfied. For each
such node `, we mark one node r ∈ R(`) arbitrarily and add the marked nodes to R∗. This
can be done in T rounds by reversing the communication from R to L, now delivering one
bit to each node r ∈ R of whether any of the nodes ` ∈ L for which r ∈ R(`) marked r or not.
These marked nodes, which are added to R∗, increase the size of R∗ by at most

∑
`∈L x`.

Thus, the total new size of R∗ is at most
∑

r∈R yr +
∑

`∈L x` ≤ |R|/(2p)+1/n ≤ R/p. Hence,
now we have a set R∗ that satisfies all the requirements (I) and (II).

Point 2 – Limited Independence Suffices. Next, we describe how we deterministically
select a set R∗ with cost at most Z ≤ |R|/(2p) + 1/n. To be able to pick such a set R∗
deterministically, it is helpful to have a randomized process that uses only a small number
of random bits. For this reason, we first explain how to replace the fully random process
of selecting R∗ nodes with another random process that uses less randomness, in a certain
sense to be formalized, but still provides the same guarantee on the expected cost. We will
then derandomize this randomness-efficient random process.

Let us think of the decisions of whether a node r ∈ R is included in R∗ or not as
a function f : R → {0, 1, 2, . . . , 2p − 1} where f(r) = 0 means r ∈ R∗ and all other
values mean r /∈ R∗. Notice that if for each r ∈ R, f(r) is chosen uniformly at random

M. Ghaffari and F. Kuhn 29:9

from {0, . . . , 2p − 1}, then we have Pr[r ∈ R∗] = 1/(2p), as desired. Following standard
terminology, we say that a family F of functions f : R → {0, 1, 2, . . . , 2p − 1} is k-wise
independent if for any set S = {s1, s2, . . . , sk} ⊂ R with |S| = k and any choice of values
b1, b2, . . . , bk ∈ {0, 1, 2, . . . , 2p− 1}, we have that

Pr
f∈UF

[f(s1) = b1& . . . f(sk) = bk] = (1/(2p))k.

That is, upon selecting a function f uniformly at random from F , the probability of the
values of f over set S is exactly the same as in the fully random function. The advantage of
k-wise independent functions is that the corresponding family is quite small and thus, we
can choose one function in the family using considerably less randomness. This is made more
clear in the next point. Moreover, they still provide many of the nice behaviors expected
from truly random functions. In particular, using the extensions of standard Chernoff bound
to functions with limited independence [30], we can see that if the selection function for
choosing R∗ out of R is k = Θ(logn)-wise independent (i.e., if it is chosen randomly from
a k-wise independent family), then we still have a concentration within a constant factor
what would be implied by the standard Chernoff bound. More concretely, we still have
Pr[x` = 1] ≤ 1/n3 for each ` ∈ L. Hence, even with a k-wise independent selection function
f , we have that the expected cost is small as desired, i.e., E[Z] ≤ |R|/(2p) + 1/n2.

Point 3 – Defining a k-wise Independent Selection Process. To define a k-wise indepen-
dent selection function in a manner that is suitable for our network decomposition, we use
an independent function for the vertices of each cluster C of the decomposition. Hence, we
have full independence among different colors and even among clusters of the same color.
However, inside each cluster C, the selections are made using one k-wise independent function
g(C) : R ∩ C → {1, 2, . . . , 2p}. One can easily see that such a combination of independent
random functions, each of which is k-wise independent, is also a k-wise independent function.

To select a k-wise independent selection function for cluster C, we rely on classic con-
structions of k-wise independent functions. It is known [1] that there is a family G of nO(k)

deterministic functions such that if we pick one function from G uniformly at random, we
have a k-wise independent random function. This family can be known to all nodes of the
cluster; they can all construct it by following the deterministic sequential construction of [1].
To randomly and uniformly sample one member of this family G, which has nO(k) members,
merely O(k logn) bits of randomness suffice. Hence, by using a random function defined via
O(k logn) = O(log2 n) bits of randomness for each cluster, we can define a random selection
function for vertices of R which ensures that E[Z] ≤ |R|/(2p) + 1/n2.

Point 4 – Fixing the Bits of Randomness. We now fix the bits of randomness in the above
random selection of R∗, in c phases. In the ith phase, we decide about the vertices of R that
are in the ith color of network decomposition, whether to include each of them in R∗ or not.
This gradual process will be such that, at each point of time, the conditional expectation of
the cost function, conditioned on the already decided vertices, is at most |R|/(2p) + 1/n2.
Hence, once we finish the process, a set R∗ is selected with cost at most |R|/(2p) + 1/n2.

Fix a color i. We fix the bits of randomness in each cluster of color i. Since clusters
of this color are at least 2T hops apart in G, each variable x` or yv in the cost function
Z =

∑
`∈L x` +

∑
r∈R yr is influenced by the randomness fixing of at most one cluster. Hence,

each cluster C can fix its own randomness independent of the other clusters.

DISC 2018

29:10 Derandomizing Distributed Algorithms with Small Messages

Let us focus on one cluster C in color i. We have a family of G of nO(k) deterministic
functions for the selection of the R∗-nodes among R ∩ C. We pick one function from G by
fixing the corresponding bits of randomness one by one, in a manner that does not increase
the conditional expectation of Z, given prior assignments. Imagine that all the functions
in the family G are indexed with numbers from 1 to nO(k), and suppose that these indices
are written as binary numbers with O(k logn) bits. Consider the process of fixing the first
bit; the next bits are similar. Break the family G of nO(k) assignment functions into two
subfamilies, G0 which are those that their function index starts with bit 0, and G1 which
are those that their function index starts with bit 0. For each subfamily, we compute the
conditional expectation of Z over the variables in NT (C) – i.e., the T -hop neighborhood of
cluster C – when the assignment function is chosen uniformly at random from this subfamily.
We then fix the first bit of randomness according to whichever leads to a smaller expectation,
i.e., that is, we zoom in to one of subfamilies G0 and G1, in our search for a deterministic
assignment function. We next explain why the expectation of Z over the variables in NT (C)
can be computed in O(d+ T) time.

We first spend T rounds to deliver one message from each node r ∈ R to all nodes ` ∈ L
for which r ∈ R(`). In this message, node r reports its color and cluster center ID, and
whether node r has been put in R∗ or not if the color of r was some j < i. Thus, each node
` in NT (C) ∩ L can learn whether it is already hit or not, i.e., whether any of the nodes in
R(`) in the previous color clusters has been fixed to be in R∗ or not. If there is already some
such node r ∈ R(`)∩R∗, then x` = 0 and it will not change. If not, the expectation of x` can
change by the assignments in C. In this case, node ` can exactly compute E[x`] = Pr[x` = 1]
because it knows all the nodes in R(`), those of colors less than i that their decisions have
been made in the previous phases, the identifiers of those that are being decided in this
phase, the colors and cluster identifiers of those with colors greater than i which will be
decided in the next phases, and also the subfamily G0 or G1 in consideration. Similarly, each
node r ∈ R ∩ C can compute E[yr] because that only depends on the identifier of the node
r and the subfamily G0 or G1 in consideration. Then, we can spend d rounds to perform
a convergecast on the tree of cluster C to gather the summation of these expectations at
the root3.

Once these two expectations are gathered at the root of the cluster C, we go with the
smaller one and zoom into the corresponding subfamily, among G0 or G1. This fixes the first
bit of randomness in C but does not increase the conditional expectation of the cost function
compared to when the assignment function was chosen from G. We then proceed to the next
bit. After going through all the O(k logn) = O(log2 n) bits, which takes O(d log2 n) rounds,
we have fixed all the bits and thus we have chosen a deterministic assignment for the R
vertices of cluster C in a manner that did not increase the conditional expectation of the
cost function. This finishes the process for one color. We then proceed to the next color and
perform a similar process. After going through all colors, which takes Õ(c(d+ T)) rounds,
we have found a set R∗ ⊆ R such that the cost Z =

∑
`∈L x` +

∑
r∈R yr of this selected set

R∗ is at most |R|/(2p) + 1/n. As described in point 1 above, this set R∗ can be augmented
to satisfy all the requirements of the hitting set problem, in T additional rounds. J

3 We note that in the CONGEST model, we may not be able to convergecast the full precision of
the expectation, but may need to truncate it to Θ(log n) bits of precision. This would increase the
expectation by at most 1/ poly(n). This is negligible even over all the at most n iterations that we
perform such a convergecast and subfamily selection.

M. Ghaffari and F. Kuhn 29:11

A Modified Variant of Hitting Set. We can use a similar method to solve a slightly
modified variant of the hitting set problem, as stated in the following lemma. The proof is
deferred to the full version. We use this variant in our dominating set algorithm.

I Lemma 10 (An Alternative Hitting Set Lemma). Let H = (L∪R,E) be a bipartite graph and
let p ≥ 1 be an integer parameter. Further assume that there is a spanning tree of diameter
D that spans all nodes of H and that we can use the edges in E and the spanning tree edges
for communication. There is a deterministic Õ(D)-time CONGEST-model algorithm that
selects a subset R∗ ⊆ R of the nodes in R such that the following conditions hold:
(a) For all nodes u ∈ L, the number of neighbors in R∗ is at most O(deg(u)/p+ logn).
(b) For all nodes in u ∈ L with deg(u) ≥ cp logn for a sufficiently large constant c > 0, at

least one neighbor of u is in R∗.

4 Spanners

Here, we present the proof of Theorem 1, i.e., we develop a deterministic distributed algorithm
for computing spanners by derandomizing the algorithm of Baswana and Sen [8], using our
hitting set. We first briefly recall the algorithm of Baswana and Sen.

Baswana-Sen’s Spanner Algorithm. The algorithm has k levels, where we gradually build,
and sometimes dissolve clusters. At level i, each cluster induces a tree of depth at most i− 1
rooted at the corresponding cluster center. Initially, each node is one cluster. In the ith level
for i ∈ {1, 2, . . . , k− 1}, each cluster of the previous level is active with probability n−1/k and
inactive otherwise. This randomized decision is made by the corresponding cluster center.
Then, inactive clusters get dissolved and their nodes either join other clusters or get dropped
from the algorithm permanently. For each node v in an inactive cluster, if it has a neighbor
in an active cluster, then v joins the cluster of one such neighbor u, and adds the edge {v, u}
to the tree of that cluster. If v has no neighbor in an active cluster, then v gets dropped
from the rest of the algorithm. But just before that, for each inactive cluster C that contains
a neighbor of v, node v adds to the spanner one edge to some neighbor in C. Moreover, for
each cluster of this level, we add the corresponding tree rooted in the cluster center to the
spanner. This finishes level i, and we then proceed to the next level. In the very last level,
all clusters are considered inactive and we act accordingly.

Properties of the Spanner algorithm of Baswana and Sen.
(1) Round Complexity: Clearly, the ith level can be implemented in O(i) rounds of the

CONGEST model and thus the whole algorithm takes O(k2) rounds.
(2) Stretch: Eventually, all clusters are dissolved. For each edge {v, u} in the graph, suppose

without loss of generality that v gets dropped from the clustering no later than u. Then,
an edge is added to the spanner from v to some node w in the cluster of u. If w = u,
edge {v, u} is in the spanner. Otherwise, there is a alternate route to go from v to u in
the spanner by going to w and then using the cluster tree of u at that level; potentially
going from w to its cluster center and then coming back to u. Since the tree has depth
at most i− 1 ≤ k − 1, the whole path has length at most 2k − 1. That is, edge {v, u}
has stretch at most 2k − 1.

(3) Spanner Size: The total number of cluster tree edges, over all levels, is O(nk). Each node
gets dropped in some level, when it has no active neighboring cluster, and then adds one
edge connecting it to each (inactive) neighboring cluster to the spanner. If the node has

DISC 2018

29:12 Derandomizing Distributed Algorithms with Small Messages

more than Θ(n1/k logn) neighboring clusters, w.h.p., it will have an active neighboring
cluster. So the number of added edges per node is with high probability no more than
Θ(n1/k logn). This is also true for the last level as there the total number of clusters
is Θ(n1/k), w.h.p. Hence, the total number of edges in the spanner is O(kn1+1/k logn),
w.h.p.4.

Derandomization – Abstracting the Properties of the Random Selection. The only part
of this algorithm that relies on randomness is the step of selecting active clusters. As
can be seen in the analysis, it suffices that this (random) selection satisfies the following
two properties, per level: (1) nodes that have more than d = Θ(n1/k logn) neighboring
clusters will have at least one active cluster, (2) if the number of clusters in this level is
R ≥ Θ(n1/k logn), the number of active clusters is at most R ·n−1/k. The former ensures that
the number of edges added per node in a level i ∈ {1, 2, . . . , k − 1} is at most Θ(n1/k logn).
The latter follows from Chernoff bound. Because of having this property in all levels, it
follows that the total number of clusters at the last level is O(n1/k logn). Hence, the number
of added edges per node in that level is O(n1/k logn).

Derandomization via Deterministic Hitting Set Computations. We can formulate the
above two properties as a direct instance of the hitting set problem discussed in Definition 8,
as follows: We set p = n1/k and T = i+ 1 ≤ O(logn). Moreover, we make each node that
has at least d = Θ(n1/k logn) neighboring clusters be one node in L and each cluster center
one node in R. Clearly, each node ` ∈ L can know Θ(p logn) nodes of R that are within its
i+ 1 ≤ k+ 1 ≤ O(logn) hops, these are the vertices in R(`). We can also deliver one message
from each r ∈ R to all vertices ` ∈ L for which r ∈ R(`) in T rounds. For that, we simply
do a broadcast in the cluster centered at r and then pass it on to all neighboring nodes
including `. These provide all that we need to set up the hitting set problem. Moreover,
we also use a 2T -hop (d, c)-decomposition of graph G, for d = c = 2O(

√
log n·log log n), which

can be computing using Theorem 3 in 2O(
√

log n·log log n) rounds. We can now invoke the
deterministic hitting set algorithm of Lemma 9, which runs in 2O(

√
log n·log log n) rounds. That

provides a subset R∗ ⊆ R with size at most R/p = R · n−1/k such that each node ` ∈ L
has at least one node in R∗ ∩ R(`). That is, each node that has more than Θ(n1/k logn)
neighboring clusters will have at least one active cluster. These satisfy the two properties
abstracted above, thus providing us with a deterministic selection of active clusters in each
iteration of Baswana-Sen, hence completing the proof of Theorem 1.

5 Minimum Set Cover and Dominating Set

Consider a set cover instance (X,S) consisting of a set X of elements and a set S ⊆ 2X of
subsets of X such that

⋃
A∈S A = X. The objective of the minimum set cover problem is to

select a subset C ⊆ S of the sets in S such that
⋃

A∈C A = X and such that the cardinality
of C is minimized. As standard (see e.g., [2]), we model the set cover instance (X,S) as
a distributed graph problem by defining a bipartite network graph that has a node ux for
each element x ∈ X and a node vA for each set A ∈ S and that contains an edge {ux, vA}
whenever x ∈ A. We also note that one can solve the distributed minimum dominating set

4 With slightly more care, one can show that this number is actually O(kn1+1/k), with high probability.

M. Ghaffari and F. Kuhn 29:13

Algorithm 1: Distributed Set Cover Algorithm.
C := ∅ // start with an empty set cover ;
for stage i := 1, 2 . . . , dlogne do

for phase j := 1, 2, . . . , dlogne do
for step c := 1, 2, . . . , c(n) do
Si,c :=

{
A ∈ S : δ(A) ≥ n/2i and A is in cluster of color c

}
;

Xi,j,c :=
{
x ∈ X : s(x, c, n/2i) ≥ n/2j

}
;

Select S ′ ⊆ Si,c such that;
a) ∀x ∈ Xi,j,c : ∃A ∈ S ′ : x ∈ A;
b) ∀x ∈ X : x uncovered =⇒ |{A ∈ S ′ : x ∈ A} | = O(logn);

C := C ∪ S ′ // add S ′ to the set cover

problem on a graph G = (V,E) by using a distributed set cover algorithm and applying it
to the corresponding set cover instance (where each node v ∈ V represents an element and
a set and where the set corresponding to a node u contains u, as well as all neighbors of u
in G). The network graph of the set cover instance for the dominating set problem on G is
given by the bipartite cover of G and a CONGEST-model algorithm on the bipartite cover of
G can be run on the CONGEST model on G in the same time.

In the following, we assume that we are given a set cover instance (X,S) and that
G = (VX ∪ VS , E) is the bipartite n-node graph corresponding to the given set cover
instance. We further assume that for some d(n) ≥ 1 and c(n) ≥ 1, a strong diameter 2-hop
(d(n), c(n))-decomposition of G is given. Recall that for d(n) = c(n) = 2O(

√
log n log log n),

such a decomposition can be computed in 2O(
√

log n log log n) rounds on G (cf. Theorem 3).
We first describe the algorithm to compute a small set cover of (X,S). The algorithm

can be seen as a distributed variant of the well-known sequential greedy algorithm. The
algorithm starts with an empty set cover and it consists of a sequence of steps in which
several sets of S are added to the set cover in parallel. Throughout the algorithm, we trace
some properties of the subproblem that still has to be solved. For every set A ∈ S, we use
δ(A) to denote the number of uncovered elements of A (i.e., at the beginning of the algorithm,
we have δ(A) = |A| and at the end, we need to have δ(A) = 0). Further, for every element
x ∈ X, for each of the colors c ∈ {1, . . . , c(n)} of the given 2-hop decomposition of G, and for
some parameter d ≥ 1, we define the degree-d, color-c support s(x, c, d) of x as follows. If x is
already covered, we have s(x, c, d) = 0, otherwise, s(x, c, d) is defined to be the number of sets
A ∈ S such that x ∈ A, A is in a cluster of color c, and δ(A) ≥ d. The algorithm consists of
dlogne stages i = 1, 2 . . . , dlogne and each stage consists of dlogne phases j = 1, . . . , dlogne.
The algorithm guarantees that throughout stage i ∈ {1, . . . , dlogne}, for all sets A ∈ S, it
holds that δ(A) < n/2i−1, i.e., in each stage, the upper bound on the maximum remaining set
size is halved. Further, for each stage i ∈ {1, . . . , dlogne} and each phase j ∈ {1, . . . , dlogne},
it holds that s(x, c, n/2i) < n/2j−1 for all x ∈ X and all c ∈ {1, . . . , c(n)}. Further, each
phase consists of c(n) steps. The pseudocode of the whole set cover algorithm is given by
Algorithm 1.

I Lemma 11. For all i, j ∈ {1, . . . , dlogne} and all cluster colors c ∈ {1, . . . , c(n)}, through-
out stage i and phase j of Algorithm 1, it holds that
(a) for every A ∈ S, we have δ(A) < n/2i−1,
(b) for every x ∈ X, we have s(x, c, n/2i) < n/2j−1,
(c) at the end of step c, for every x ∈ X, we have s(x, c, n/2i) < n/2j.

DISC 2018

29:14 Derandomizing Distributed Algorithms with Small Messages

Proof. We prove (a)–(c) by induction on i, j, and c. First, note that (a) holds for i = 1
because the bipartite graph G representing the set cover instance has n nodes. Because there
needs to be at least one set and at least one element in every set cover instance, we thus
have |S| < n and |X| < n. Further note that if (a) is true for some stage i, then (b) holds
for the given stage i and j = 1 for the same reason. Also note that (b) and (c) always hold
for all covered elements x because in this case we defined s(x, c, n/2i) to be 0.

We next prove that (b) implies (c). Step c of stage i and phase j guarantees that for
each element x ∈ Xi,j,c (i.e., for each element for which s(x, c, n/2i) ≥ n/2j), there is a set
A ∈ S ′ such that x ∈ A. Consequently x is covered after the step and thus s(x, c, n/2i) = 0.
By condition (c), after all the c(n) steps of stage i and phase j, we have s(x, c, n/2i) < n/2j

and thus if j < dlogne, condition (b) also holds for stage i and phase j + 1. To also prove
the induction step for condition (a), consider the end of phase j = dlogne of stage i. By
(c), we have s(x, c, n/2i) < n/2dlog ne ≤ 1 and thus s(x, c, n/2i) = 0 for all x ∈ X and all
c ∈ {1, . . . , c(n)}. This implies that there is no set A ∈ S left with δ(A) ≥ n/2i. J

I Lemma 12. Given a strong diameter 2-hop (d(n), c(n))-decomposition of G, Algorithm 1
can be implemented deterministically in Õ(d(n) · c(n)) rounds in the CONGEST model on G.

Proof. The algorithm consists of O(logn) stages, O(logn) phases per stage, and c(n) steps
per phase. The total number of steps is therefore O(c(n) log2 n) = Õ(c(n)). To prove the
claim of the lemma, we thus need to show that each step can be implemented in Õ(d(n))
rounds in the CONGEST model on G. Consider some stage i, some phase j, and some step
c in stage i and phase j. Recall that Si,c ⊆ S contains all sets A ∈ S that are in clusters
of color c of the given network decomposition and for which δ(A) ≥ n/2i at the beginning
of step c of phase j of stage i. Let Xi,c be the set of uncovered elements of the sets in Si,c.
Consider the subgraph Gi,c of the set cover graph G that is induced by nodes corresponding
to the elements in Xi,c and the sets in Si,c. Note that for some element x ∈ Xi,c, s(x, c, n/2i)
is the degree of the corresponding node in Gi,c. The algorithm needs to select a subset S ′
of the sets in Si,c such that for each x ∈ Xi,c, the number of selected sets containing x is
at most O(logn) and for each x ∈ Xi,j,c, there is at least 1 set containing x selected. On
the graph Gi,c, this translates into selecting a subset of the nodes vA corresponding to the
sets A ∈ Si,c such that for each x ∈ Xi,c, the corresponding node ux has at most O(logn)
neighbors selected and if ux has degree at least n/2j , it has at least 1 neighbor selected.
From Lemma 11, we further know that all nodes ux in Gi,c have degree at most n/2j−1 and
all nodes vA have degree at most n/2i−1. Selecting the subset of sets S ′ therefore exactly
corresponds to the solving the problem given by Lemma 10 on graph Gi,c with parameter
p = n/(γ2j logn) for an appropriate constant γ > 0. Further note that because we are given
a 2-hop (d(n), c(n))-decomposition, the parts of the graph Gi,c corresponding to different
clusters of color c are disjoint. We can therefore solve the problem of selecting nodes in
Si,c separately for each cluster of color c. Because each such cluster has a spanning tree of
diameter d(n), Lemma 10 implies that each step can be implemented in Õ(d(n)) rounds. J

I Lemma 13. Algorithm 1 computes a solution for a given set cover instance that is with
an O(log2 n)-factor of an optimal solution.

Proof. The algorithm always computes a valid solution (i.e., a solution that covers all the
elements): For i = j = dlogne, condition (c) of Lemma 11 implies that s(x, c, 1) = 0 for all
x ∈ X and all c ∈ {1, . . . , c(n)}. This can only be true if all elements x ∈ X are covered.

M. Ghaffari and F. Kuhn 29:15

To prove the bound on the approximation ratio, we use a standard dual fitting argument
(see e.g. [31, Chapter 13]). In the step that covers an element x ∈ X, we assign a dual
variable yx > 0 to x such that at the end of the algorithm

∑
x∈X yx = |C|. Consider some

step c of stage i and phase j and assume that the sets in S ′ are added to the set cover
C. Let X ′ ⊆ X be the set of elements that were uncovered before step c of stage i and
phase j and which are covered by the sets in S ′. For all x ∈ X ′, we set the dual variable
yx to yx := |S ′|/|X ′|. This clearly implies that at the end

∑
x∈X′ yx = |S ′| and thus at the

end
∑

x∈X yx = |C|. Note that for all sets A ∈ S ′, we have δ(A) ≥ n/2i. Because for each
uncovered element x ∈ X, there are at most O(logn) sets A ∈ S ′ for which x ∈ A, we have
|X| = Ω(|S ′| · n/(2i logn)). Because by condition (a) of Lemma 11 for all A ∈ S, we have
δ(A) ≤ n/2i−1, for all x ∈ X ′ ∩A, we have yx = O(logn)/δ(A). At the end of the algorithm,
we thus get that for every set A ∈ S,

∑
x∈A

yx = O(logn) ·
|A|∑
`=1

1
`

= O(log2 n).

Dividing all yx-variables by O(log2 n) gives a feasible solution to the dual LP of the standard
set cover LP relaxation. By LP duality, the obtained set cover is within an O(log2 n) factor
of the optimal solution. J

I Theorem 14. A O(log2 n)-approximation for the distributed set cover problem can be
computed deterministically in 2O(

√
log n·log log n) rounds in the CONGEST model.

Proof. We can compute a 2-hop (2O(
√

log n·log log n), 2O(
√

log n·log log n))-decomposition deter-
ministically in 2O(

√
log n·log log n) rounds in the CONGEST model, using Theorem 3. Having

this, the theorem then directly follows from Lemmas 13 and 12. J

References
1 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.
2 Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms for vertex

cover and set cover in anonymous networks. In Proceedings of the twenty-second annual
ACM symposium on Parallelism in algorithms and architectures, pages 294–302. ACM,
2010.

3 B. Awerbuch, AV Goldberg, M. Luby, and S. Plotkin. Network decomposition and locality
in distributed computation. In FOCS, pages 364–369, 1989.

4 Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM (JACM),
32(4):804–823, 1985.

5 Baruch Awerbuch and David Peleg. Sparse partitions. In Proc. IEEE Symp. on Foundations
of Computer Science (FOCS), pages 503–513, 1990.

6 Leonid Barenboim and Michael Elkin. Distributed graph coloring: Fundamentals and recent
developments. Synthesis Lectures on Distributed Computing Theory, 4(1):1–171, 2013.

7 Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A fast network-decomposition algo-
rithm and its applications to constant-time distributed computation. Theoretical Computer
Science, 2016.

8 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm
for computing sparse spanners in weighted graphs. Random Structures & Algorithms,
30(4):532–563, 2007.

DISC 2018

29:16 Derandomizing Distributed Algorithms with Small Messages

9 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local dis-
tributed algorithms under bandwidth restrictions. In 31 International Symposium on Dis-
tributed Computing, 2017.

10 Bilel Derbel and Cyril Gavoille. Fast deterministic distributed algorithms for sparse span-
ners. In International Colloquium on Structural Information and Communication Complex-
ity, pages 100–114. Springer, 2006.

11 Bilel Derbel, Cyril Gavoille, and David Peleg. Deterministic distributed construction of
linear stretch spanners in polylogarithmic time. In International Symposium on Distributed
Computing, pages 179–192. Springer, 2007.

12 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of dis-
tributed sparse spanner construction. In Proceedings of the twenty-seventh ACM symposium
on Principles of distributed computing, pages 273–282. ACM, 2008.

13 Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Sublinear fully distributed partition
with applications. Theory of Computing Systems, 47(2):368–404, 2010.

14 Paul Erdős. Some problems in graph theory. In STUDIA SIC MATH. HUNGAR. Citeseer,
1966.

15 M. Ghaffari and F. Kuhn. Derandomizing distributed algorithms with small messages:
Spanners and dominating set. Technical Report 285, U. of Freiburg, Dept. of Computer
Science, 2018. URL: http://tr.informatik.uni-freiburg.de/reports/report285/
report00285.pdf.

16 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In Pro.
ACM-SIAM Symp. on Discrete Algorithms (SODA), 2016.

17 Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. arXiv preprint arXiv:1711.02194, 2017.

18 Ofer Grossman and Merav Parter. Improved deterministic distributed construction of
spanners. In 31 International Symposium on Distributed Computing, 2017.

19 Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algorithm for
constructing small dominating sets. Distributed Computing, 15(4):193–205, 2002.

20 Ken-Ichi Kawarabayashi and Gregory Schwartzman. Adapting local sequential algorithms
to the distributed setting. arXiv preprint arXiv:1711.10155, 2017.

21 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower
and upper bounds. J. ACM, 63(2):17:1–17:44, mar 2016.

22 Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set approx-
imation. In Proc. ACM Symp. on Principles of Distributed Computing (PODC), pages
25–32, 2003.

23 Christoph Lenzen and Roger Wattenhofer. Minimum dominating set approximation in
graphs of bounded arboricity. In International Symposium on Distributed Computing, pages
510–524. Springer, 2010.

24 Nathan Linial. Distributive graph algorithms global solutions from local data. In Proc.
IEEE Symp. on Foundations of Computer Science (FOCS), pages 331–335. IEEE, 1987.

25 Michael Luby. Removing randomness in parallel computation without a processor penalty.
Journal of Computer and System Sciences, 47(2):250–286, 1993.

26 Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

27 Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for coloring
and network decomposition problems. In Proc. ACM Symp. on Theory of Computing
(STOC), pages 581–592. ACM, 1992.

28 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

http://tr.informatik.uni-freiburg.de/reports/report285/report00285.pdf
http://tr.informatik.uni-freiburg.de/reports/report285/report00285.pdf

M. Ghaffari and F. Kuhn 29:17

29 David Peleg and Jeffrey D Ullman. An optimal synchronizer for the hypercube. SIAM
Journal on computing, 18(4):740–747, 1989.

30 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for
applications with limited independence. SIAM J. on Discrete Math., 8(2):223–250, 1995.

31 Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

DISC 2018

Distributed MST and Broadcast with Fewer
Messages, and Faster Gossiping

Mohsen Ghaffari
ETH Zurich, Switzerland
ghaffari@inf.ethz.ch

Fabian Kuhn
University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Abstract
We present a distributed minimum spanning tree algorithm with near-optimal round complexity
of Õ(D +

√
n) and message complexity Õ(min{n3/2,m}). This is the first algorithm with sub-

linear message complexity and near-optimal round complexity and it improves over the recent
algorithms of Elkin [PODC’17] and Pandurangan et al. [STOC’17], which have the same round
complexity but message complexity Õ(m). Our method also gives the first broadcast algorithm
with o(n) time complexity – when that is possible at all, i.e., when D = o(n) – and o(m) mes-
sages. Moreover, our method leads to an Õ(

√
nD)-round GOSSIP algorithm with bounded-size

messages. This is the first such algorithm with a sublinear round complexity.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Algorithms, Minimum Spanning Tree, Round Complexity,
Message Complexity, Gossiping, Broadcast

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.30

Acknowledgements We are grateful to Merav Parter for helpful discussions.

1 Introduction

This paper presents a distributed algorithm for computing a Minimum Spanning Tree (MST)
with a nearly optimal round complexity and an improved message complexity. Our method
also leads to improvements for two other basic problems, namely broadcast and gossiping.
Let us start with briefly recalling the CONGEST model, which is the standard synchronous
message-passing model of distributed computing with small messages:

The CONGEST Model [37]. The network is abstracted as a weighted graph G = (V,E,w)
where n = |V |, m = |E|. Moreover, we use D to denote the diameter of the graph. Initially,
each node has a unique Θ(logn)-bit identifier and knows its own edges – i.e., the identifier
of the other endpoint of the edges – as well as the weight of these edges. At the end, each
node should know its own part of the output, e.g., which of its edges are in the computed
minimum spanning tree. Per round, each node can send one O(logn)-bit message to each of
its neighbors. The round complexity of an algorithm is the number of rounds until all nodes
are done with their computation, and the message complexity of the algorithm is the total
number of messages sent throughout the algorithm.

© Mohsen Ghaffari and Fabian Kuhn;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 30; pp. 30:1–30:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ghaffari@inf.ethz.ch
mailto:kuhn@cs.uni-freiburg.de
https://doi.org/10.4230/LIPIcs.DISC.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Distributed MST and Broadcast with Fewer Messages, and Faster Gossiping

History and Significance of MST in Distributed Algorithms. Minimum Spanning Tree
(MST) is one of the central problems in the study of distributed graph algorithms, and it has
been studied extensively since 1980s [12, 6, 11, 2, 13, 30, 39, 38, 8, 10, 26, 7, 28, 27, 16, 18, 36,
9, 32]. One can argue that much of the developments in the CONGEST model of distributed
computing have been centered around (MST); the algorithmic or impossibility techniques
developed for MST led to important results for other fundamental graph problems.

The work on distributed MST started with the algorithm of Gallager, Humblet, and
Spira [12], which has time complexity O(n logn), and can be seen as a variant of the 1926
algorithm of Boruvka [35]. The time complexity was gradually improved [6, 11], eventually
leading to the “optimal” O(n)-round algorithm of Awerbuch [2]. At the time, a round
complexity of O(n) was regarded as being optimal, because there are graphs of diameter
D = Ω(n) on which one cannot do better (e.g., the n-node cycle).

A pioneering work of Garay, Kutten and Peleg [30, 13] shifted the are toward sublinear
time algorithms in graphs of sublinear diameter, i.e., where this excuse of graphs with
D = Ω(n) is ruled out. In particular, Garay et al. [13] presented an O(D+n0.61)-round MST
algorithm, which was subsequently improved by Kutten and Peleg [30] to O(D +

√
n log∗ n).

Shortly after, Rubinovich and Peleg [38] proved a lower bound of Ω̃(D +
√
n) for the round

complexity of any distributed MST algorithm. By now, we understand that a wide range
of other fundamental graph problems can be solved or approximated in time (close to)
Õ(D+

√
n): the list includes minimum cut [14, 34], single-source shortest path [31, 33, 24, 4],

tree embedding [19], maximum s-t flow [17], and minimum connected dominating set [15].
Moreover, this time complexity is optimal for essentially all of these problems [7]. Many of
these results build on the methods and results developed initially for MST.

Message Complexity Comes Back. In the above line of work, the primary focus has been
the round complexity. However, now that we understand the round complexity aspect of
MST rather well, there has been a revived interest in getting algorithms with improved
message complexity. The time-optimal Õ(D+

√
n)-round algorithm of Kutten and Peleg has

message complexity Õ(m+n3/2). In a recent work, Pandurangan et al. [36] provided the first
(randomized) MST algorithm with round complexity Õ(D +

√
n) and message complexity

Õ(m). Shortly after, Elkin [9] presented a simpler deterministic algorithm with similar time
and message complexities (in fact with improvements in the logarithmic factors).

By a result of Awerbuch et al. [3], this Õ(m) message complexity is known to be optimal
for deterministic algorithms. Moreover, it is the best possible if either we restrict ourselves
to randomized comparison-based algorithms [3] or to the variant of the distributed model
where at the beginning, each node does not know its neighbors [3, 29] (this is sometimes
called the KT0 variant of the model, as opposed to the KT1 version where at the beginning
nodes know their neighbors). However, if at the beginning, each node knows all its neighbors
and we are allowed to use general randomized algorithms, this Ω̃(m) message complexity
lower bound does not apply. In fact, a beautiful result of King, Kutten, and Thorup [27]
presents an algorithm with message complexity Õ(n), however at the expense of having time
complexity Õ(n).

Open Question. This state of the art exhibits one clear open question:

Can we find a time-optimal MST algorithm with message complexity o(m)?

M. Ghaffari and F. Kuhn 30:3

1.1 Our Results
MST. Our primary result in this paper is to provide a positive answer to the above open
question. In particular, we prove that

I Theorem 1. There is a distributed randomized MST algorithm with round complexity
Õ(D +

√
n) and message complexity Õ(min{n3/2,m}).

Broadcast. Along the way to this MST algorithm, we find a single-message broadcast
algorithm – which can deliver a message from any source to all nodes – with an improved
message complexity. We find this to be important on its own, given the centrality of the
broadcast problem throughout distributed computing.

I Theorem 2. There is a distributed randomized algorithm that broadcasts one message to
all nodes in Õ(D +

√
n) using Õ(min{n3/2,m}) messages.

We note that prior to this result, all known broadcast algorithms needed to use at least
Ω(m) messages (in which case a simple flooding delivers the message to all in O(D) rounds),
with only one exception: the only known broadcast algorithm with message complexity o(m)
would need to use Ω(n) rounds [27].

Gossiping. The method that we develop for a message-efficient MST algorithm has one
more significant consequence: it leads to the first sublinear-time GOSSIP algorithm in general
graphs with bounded size messages [21, 5, 22]. In this problem, initially one node knows an
O(logn)-bit message, which should be delivered to all nodes. Per round each node can either
PUSH an O(logn)-bit message to an arbitrary neighbor or PULL an O(logn)-bit message
from an arbitrary neighbor.

I Theorem 3. There is a distributed randomized algorithm that broadcasts one message to
all nodes in Õ(

√
nD) rounds of the GOSSIP model.

2 Preliminaries

In this section, we introduce two tools that will be used throughout our algorithms: one
is an adaptation of the well-known 1926 algorithm of Boruvka for computing a minimum
spanning tree [35], and the other is a randomized linear sketching tool.

Boruvka’s algorithm. The algorithm is made of Θ(logn) phases, where we gradually merge
fragments (i.e., subtrees) of the MST with each other until we have exactly one fragment,
i.e., the MST. Initially, each node is its own fragment. Per phase, we do as follows: Each
fragment C picks the lightest edge that connects C to nodes outside C. It is well-known and
easy to see that all these lighest edges, one per fragment, belong to the MST. We will add
only some of these edges to the MST, in a way that ensures that the corresponding fragment
merges have a small depth (in a sense that will become clear soon); this allows us to perform
these merges efficiently. In particular, each fragment throws a Head/Tails fair coin. Then,
for each edge e = (v, u) which is the lightest edge of the fragment C 3 v who connects to
fragment C ′ 3 u, we accept edge e for a merge if and only if C has a Tail coin toss and C ′
has a Head coin toss. The accepted merge edges get added to the output MST. As a result,
we perform a merge along each accepted merge edge by unifying the fragments connected
via accepted merge edges, all at the same time. Notice that each new fragment is formed by
merging a number of previous fragments in a star shape. That is, the new fragment is made

DISC 2018

30:4 Distributed MST and Broadcast with Fewer Messages, and Faster Gossiping

of a number Tail old fragments which merge with one central Head old fragment. Then, we
proceed to the next phase. It is known that after Θ(logn) phases, with high probability, we
have exactly one fragment which is the final MST. See e.g. [16] for the correctness proof of
this method.

We also note that the algorithm can be extended directly to disconnected graphs, in which
case it computes a minimum spanning tree in each connected component. Thus, overall, it
provides a maximal forest with minimum weight.

Linear Sketching. The linear sketching tool that we will use was first used by Ahn et
al. [1] in streaming algorithms. By now, variants of it have been used in various distributed
algorithms [23, 27, 20, 25]. In a rough sense, this tool creates a “sketch” of a large set of
elements (particularly, edges in our applications) which has only a few bits, and such that
out of these few bits, we can still decode one element of the set. Since the sketch is linear
(concretely, a bit-wise XOR), adding the sketches of two sets gives a linear sketch of their
symmetric set difference. This last property will be important for our application. We can
abstract this sketching as the following lemma.

I Lemma 4 (Linear Sketching). Consider a set E of elements, each with a unique Θ(logn)
bit identifier. There is a family F of encoder-decoder function pairs, where |F | = 2Θ(log3 n),
with the following properties: Here, in each pair in F , the encoder is a function ENC : E →
{0, 1}Θ(log3 n) and the decoder is a function DEC : {0, 1}Θ(log3 n) → E. The family F is such
that if we pick one pair of encoder function ENC and the corresponding decoder function
DEC at random from F , then for each set S ∈ E, we have DEC(⊕e∈SENC(e)) ∈ S, with
probability at least 1− 1/n5.

3 Minimum Spanning Tree

In this section, we prove the following result, which is a more detailed version of Theorem 1
and provides a time-optimal MST algorithm, up to logarithmic factors, with an improved
message complexity.

I Theorem 5 (Sublinear Messages & Near-Optimal Time). There is a randomized distributed
algorithm that in any n-node m-edge weighted graph G = (V,E,w) with diameter D computes
an MST with round complexity Õ(D +

√
n) and message complexity Õ(min{n3/2,m}), with

high probability.

Roadmap. The algorithm for computing this MST is made of two parts. We first compute
a sparser subgraph which has at most Õ(n3/2) edges and still the diameter of it does not
exceed Õ(D +

√
n). Moreover, this subgraph is such that we are able to compute it in

Õ(D+
√
n) rounds and using Õ(n3/2) messages. Then, we can easily compute a breadth first

tree T of this sparse subgraph, which has depth at most Õ(D +
√
n), in Õ(D +

√
n) rounds

and using Õ(min{n3/2,m}) messages. This part is captured by Lemma 6. This lemma itself
has the direct corollary for the boardcast problem, it proves Theorem 2, showing that we can
perform a global broadcast in Õ(D +

√
n) rounds and using Õ(n3/2) messages. To finish the

proof of Theorem 5, we then explain how to use the low-depth tree T constructed by Lemma
6 to compute the MST, in Õ(D +

√
n) rounds and using Õ(n) messages. This second part is

captured by Lemma 7. Putting Lemma 6 and Lemma 7 together proves Theorem 5.
Finally, we comment that one can generalize Lemma 7 and prove that for every ε ∈ [0, 1/2],

there exists a randomized algorithm for constructing MST using Õ(D + n1−ε) rounds and
Õ(min{n1+ε,m}) messages.

M. Ghaffari and F. Kuhn 30:5

I Lemma 6 (Sparsification Lemma). There is a distributed algorithm that in any n-node
m-edge weighted graph G = (V,E,w) with diameter D, computes a spanning subgraph that has
diameter Õ(D +

√
n) and Õ(n3/2) edges, in Õ(D +

√
n) rounds and using Õ(min{n3/2,m})

messages. Then, we can also compute a spanning tree of diameter Õ(D+
√
n), in Õ(D+

√
n)

rounds and using Õ(min{n3/2,m}) messages.

Proof. Before describing the algorithm, we comment that the algorithm is described with
focus on graphs that have Ω(n3/2) edges; for these, we show that our algorithm will use
Õ(n3/2) messages. The algorithm is such that it passes at most poly(logn) messages through
each edge and therefore, it automatically has message complexity at most Õ(m). Hence, we
can write the message complexity as Õ(min{n3/2,m}).

Heavy and Light Nodes and the Heavy Subgraph G′. Call a node heavy if its degree
exceeds

√
n and light otherwise. Let G′ be the subgraph of G induced by heavy vertices,

i.e., the subgraph made of all edges that both of their endpoints are heavy. We call this the
Heavy Subgraph. Notice that (G \G′) has at most n3/2 edges.

Step 1 – Forming Stars. Define S to be a random subset of all vertices where each node
is included in S with probability 10 logn√

n
. We add all these vertices and their edges to the

so-called heavy subgraph G′. It is easy to see that, w.h.p., |S| = O(
√
n logn) and moreover,

each heavy node has at least one neighbor in S. Make each node in S send a message to
each of its neighbors. This uses O(n3/2 logn) messages overall. Then, make each heavy node
v /∈ S that receives a message from a neighbor in S pick one such neighbor as its center. For
each node s ∈ S, this defines a star subgraph centered at s along with some of its neighbors.
These stars are disjoint for different centers and they satisfy the following guarantees: We
have O(n3/2 logn) stars and each heavy node is in exactly one star.

Step 2 – Boruvka on the Heavy Subgraph, and Starting From the Stars. Now, we run
Boruvka’s algorithm – as explained in Section 2 – for computing a certain maximal spanning
forest F of G′, with the initial configuration that each star is one fragment of F . We remark
that here we can ignore the edge weights as we are interested in simply one maximal spanning
forest, with no regard for the weights. Hence, per phase, for each component, it suffices to
find one outgoing edge for each fragment C of F . Notice that the naive way for detecting
whether an edge e = u, v incident on a node v ∈ C is outgoing or not, i.e., whether u ∈ C
or not, would require communicating through this edge e, which overall can lead to O(m)
message complexity. To circumvent that, we follow a linear sketching method of King, Kutten,
and Thorup [27]. The key aspect of this linear sketching is abstracted by Lemma 4.

We make the center of fragment C pick one sketch (i.e., a pair of encoder and decoder
functions) from the family F of Lemma 4 at random and we deliver the Θ(log3 n) bits of
the description of F to all nodes of C, via a simple broadcast along the tree of fragment C.
Then, each node v computes ENC(e) for each edge e incident on v. Then, we aggregate a
bit-wise XOR of these values END(e), through a convergecast, at the root of the fragment.
Notice that for each internal edge e = u, v which has both u and v in fragment C, the related
encoding ENC(e) gets added to the computed bit-wise XOR twice, once from each endpoint.
Hence, it gets canceled out. On the other hand, ENC(e) for each outgoing edge e is added
exactly once to the bit-wise XOR and therefore, it does not get canceled out. By Lemma 4,
once the fragment center receives this bit-wise XOR, that is ⊕e∈OENC(e) where O denotes
the set of edges going out of fragment C, it can decode it using the function DEC(). Thus,

DISC 2018

30:6 Distributed MST and Broadcast with Fewer Messages, and Faster Gossiping

the fragment center then obtains one outgoing edge e ∈ O. We then broadcast this outgoing
edge to all vertices of the fragment. In particular the endpoint of e in C knows that its edge
e is chosen as a potential edge for a merge.

The above process explains how we compute one outgoing edge for each fragment (unless
the fragment already fully spans its component and no edge can be added to it, in which
case the sketch shows an empty set of outgoing edges). Moreover, it uses Õ(n) messages
overall because we are simply performing O(1) convergecasts and broadcasts in the tree of
each fragment, each of them carrying poly(logn) bit messages, and all the trees together
have at most n− 1 edges. Furthermore, this procedure has round complexity equal to the
maximum fragment diameter, up to logarithmic factors. Since we have Õ(n1/2) stars and
each edge of G′ is incident on one of the stars, and because in each fragment all nodes of
each star also have all of their star edges as a part of the fragment, the maximum fragment
diameter is Õ(n1/2). This completes the process of selecting outgoing edges.

Then, selecting the accepted outgoing edges for merge, using the related Head/Tail coins
of the fragments, and performing the corresponding merges can be done similarly with simple
broadcasts and convergecasts, same as described in the description of Boruvka’s algorithm
in Section 2. This again takes Õ(n1/2) rounds and Õ(n) messages. After going through all
the Θ(logn) phases of Boruvka, we get a maximal spanning forest F of G′. throughout step
2, we have used Õ(n) messages and Õ(n1/2) rounds.

Arguing that (G \ G′) ∪ F is our desired sparse low-diameter spanning subgraph. Con-
sider the spanning subgraph H with all edges of (G \ G′) ∪ F . This subgraph clearly has
at most Õ(n3/2) edges. We next argue that it has diameter at most Õ(D +

√
n). Consider

two arbitrary nodes v, u ∈ G. We prove that there is a path of length at most Õ(D +
√
n)

in H between u and v. Suppose that in G, we contract each connected component of F
into a single node, and call the resulting graph H ′. There must still be a path of length at
most D between u and v in this contracted graph H ′. Let Pu,v be the shortest path in H ′
between u and v. Now we can transform Pu,v to a path of length D +O(

√
n logn) in H as

follows: any contracted part of the path Pu,v can be “un-contracted” – essentially undoing
the process of contraction – and replaced with the portion of the maximal forest F that
spans that component of F . This step increases the length of the path by at most a constant
factor of the number of stars in that connected component of F . Since the total number of
stars is O(

√
n logn), over all the components, this “un-contracting” process increase the

path length from D to at most D +O(
√
n logn). This path now exists in H = (G \G′) ∪ F .

Since this argument holds for any two arbitrary nodes v, u ∈ G, we get that the spanning
subgraph H has diameter at most Õ(D +

√
n).

Computing a Low-Diameter Spanning Tree. Once we have H, we can also perform a
breadth first search (BFS) in H, which finds a spanning tree (of G) that has diameter
Õ(D +

√
n). Since H has at most Õ(min{n3/2,m}) edges, the construction of this BFS tree

uses at most Õ(min{n3/2,m}) edges, thus proving the second part of the lemma. J

We next describe our MST computation method which we shall use with the help of the
computed low-diameter spanning tree provided by Lemma 6.

I Lemma 7 (MST Computation). Suppose that we are given a spanning tree with depth
d = Õ(D +

√
n) of the graph. Then, we can compute the MST in Õ(D +

√
n) rounds and

using Õ(n) messages.

M. Ghaffari and F. Kuhn 30:7

Proof Sketch. We will use Boruvka’s MST algorithm, combined with the linear sketching
method of King et al. [27] for finding the lightest outgoing edge of each fragment, as well
as an idea of Elkin [9]. Roughly speaking, the latter will allow us to primarily work on
low-depth fragments, except for switching to computation on the global spanning tree, at
the end. The algorithm is made of two parts, which we explain next.

Part 1 – MST Growth With Low-Diameter Fragments. During the first part, we grow a
partial forest T of the MST. This will be done such that at the end, each fragment of T has
diameter in [d, 5d]. We always make sure not to have any fragment of diameter exceeding 5d.
Initially, T is the trivial forest made of each node as its own fragment. Then, throughout
Θ(logn) phases, we merge some fragments with each other similar to Boruvka’s algorithm
explained in Section 2, but with some modification: In each phase, we do as follows. Any
fragment C of diameter at most d is called active and each other fragment is called inactive.
Each inactive fragment C will not initiate a merge, that is, it will not compute its lightest
outgoing edge to propose it to be added to MST. But C is still receptive to merges, i.e., if an
active fragment C ′ proposes a merge with C (and C has a Head coin toss and C ′ has a Tail
coin toss), we accept this merge.

Let us discuss how we compute the lightest outgoing edge for each active component.
This is done via a binary search through the range of the weights. Each time if the active
search range for fragment C is [L,U], we sketch all edges incident on C with weight in
[L, L+U

2] and deliver this sketch to the root of fragment C using a convergecast of the XOR
of sketches (similar to proof of Lemma 6). If this sketch indicates an empty edge-set, then
the binary search zooms into search range [L+U

2 , U]. Otherwise, it zooms into [L, L+U
2] as

the search range. In either case, the upper and lower bound of the search range are then
broadcast to all nodes of the fragment C. After O(logn) steps of the binary search, each of
which takes Õ(d) rounds, we find the lightest outgoing edge of C and this edge is known
to all nodes of C. Then, the merge operations are similar to Section 2, along edges that go
from Tail coin active fragments to Head coin fragments.

Once these merges happen, the diameter of the resulting fragment might exceed 5d.
However, it still will be at most 7d+ 2 = O(d). This is because the new fragment is made
of a star merge centered at one fragment of diameter at most 5d with a number of side
fragments, each of diameter at most d. We then spend Θ(d) rounds to truncated the fragment
to diameter at most 5d. In particular, for each fragment that has diameter exceeding 5d,
we select some edges of it to be discarded from the current forest such that each remaining
fragment has diameter in [d, 5d]. This can be done in O(d) rounds as the next paragraph
explains.

To cut this component tree into fragments with diameter in [d, 5d], we do as follows: first,
perform a broadcast on the fragment tree so that each node knows its distance from the
root of the fragment. Then, for each node v with distance an integer multiple of (d + 1),
the edge of that node to its parent will be discarded from the forest. This ensures that
each fragment of the remaining forest has diameter at most 2d. However, an unfortunate
side-effect is that there might be some nodes v whose edge to its parent gets discarded and
such that the subtree rooted at v has a height smaller than d. We can detect such nodes
using a simple convergecast from the leaves toward the root. For every such node v, we undo
the step of discarding the edge connecting v to its parent and thus effectively we merge back
its subtree with its parent fragment. This might increase the depth of its parent fragment
but the corresponding diameter cannot exceed 4d.

DISC 2018

30:8 Distributed MST and Broadcast with Fewer Messages, and Faster Gossiping

Now that the fragments are truncated to have diameter in [d, 5d], we proceed to the next
phase. After Θ(logn) phases, the first part of the algorithm is done. At that point, we have
reached a setting where we have a forest F made of O(n/d) fragments, each with diameter
in [d, 5d]. Moreover, all edges of this forest belong to the minimum spanning tree. Overall,
this first part uses Õ(d) rounds and Õ(n) messages.

Part 2 – MST Growth Beyond Low-Diameter Fragments. Now, the second part of the
algorithm starts. Here, we grow the eventual MST T , but using a different method. Initially,
we set T = F . The forest T will grow over time while F is maintained as is, permanently.
We again will have Θ(logn) Boruvka-style phases of growing the fragments of T . At each
time, each fragment of T is made of a number of fragments of F .

To compute the lightest outgoing edge of each fragment t of T , we do the corresponding
binary search differently. Suppose the current weight range of binary search for t is some
range [L,U], which is known to all nodes of t. We then make each of the fragments f ∈ F
which are a part of t compute its own sketch of edges incident on f with weight in [L, L+U

2]
using a convegecast inside f . This results in one Θ(log3 n)-bit sketch for the whole fragment
f . Then, we broadcast all these sketch, one for each fragment of F , to the root of the
whole graph using the given spanning tree of depth d. Since each fragment of F sends one
Θ(log3 n)-bit message, F has O(n/d) fragments, and each message travels d hops to reach
the root of the spanning tree, the overall message complexity is Õ(n/d · d) = Õ(n). Once the
root receives all these sketches, it can compute one outgoing edge for each fragment t of T
(if there was some edge in the corresponding search range and the sketch was not empty).
Then, the root can broadcast these edges back to the nodes of t by simply putting the
identifier and weight of that found edge in the message that arrived from each subfragment
f ∈ F of t and reversing the schedule of the convergecast, now delivering messages from
the root to all nodes. This completes one step of the binary search. After O(logn) such
steps of the binary search, the root knows the lightest outgoing edge of each fragment t of
T . Thus, the root can perform one phase of Boruvka-style merges on T . It then updates
T accordingly, by merging the related fragments, and reports the new fragment IDs to all
nodes. This is again done by putting this T -fragment ID back in the message that came from
the corresponding subfragment f ∈ F of t and reversing the schedule of the convergecast,
after which a broadcast inside fragment f ∈ F delivers it to all nodes of that fragment. This
finishes the description for one phase of Boruvka.

Repeating a similar process for Θ(logn) phases finishes the computation of the MST.
The round complexity of the process is Õ(d), since each phase is made of poly(logn) many
broadcasts and convergecasts, each it trees of diameter d. Moreover, the message complexity
is Õ(n), again because the convergecasts and broadcasts inside fragments of F clearly use at
most Õ(n) messages, and the broadcast and converecasts in the overall spanning tree use
Õ(n/d · d) = Õ(n) messages. J

4 Fast Gossiping with Bounded-Size Messages

In this section, we prove the following results, which is a more detailed version of Theorem 3.

I Theorem 8. There is a distributed algorithm that spreads a rumor from one node to all
in Õ(

√
nD) rounds of the GOSSIP model, where per round each node initiates one PUSH or

PULL contact with one of its neighbors, communicating an O(logn) bit message.

M. Ghaffari and F. Kuhn 30:9

Proof. We first find a sparse spanning subgraph and then perform a gossiping broadcast
on this subgraph. The sparsity of the subgraph allows us to have a fast algorithm in the
GOSSIP model, as it enables each node to contact only a few other nodes. To build the sparse
subgraph, the general method is mostly similar to the one used in Lemma 6. However, we
now need to adapt the construction method to the GOSSIP model and analyze the resulting
round complexity. Here, we explain the changes.

Step 1 – Forming Stars. Now, we call a node heavy if its degree exceeds
√
n/D and

light otherwise. The subgraph G′ made of all edges induced by heavy vertices is called the
heavy subgraph. We pick 10

√
nD logn nodes at random in expectation to be the set S of

centers of the stars – i.e., we include each node of the graph in S randomly with probability
10

√
D/n logn. To form the stars, each (heavy) node goes through its neighbors and pulls

from them, one by one, until finding the first node who is chosen to be a star. Notice that
each heavy node will find a star within O(

√
n/D) pulls, with high probability. Moreover,

each contacted node can always respond whether it is star center or not.

Step 2 – Boruvka on the Heavy Subgraph, and Starting From the Stars. Having formed
these stars, the algorithm continues essentially the same as in Lemma 6 to build a maximal
forest F of the graph G′ made of all edges with at least one heavy endpoint (and the
corresponding nodes). There is only one comment in order: We should explain that we
can perform the convergecast and broadcasts of Boruvka’s algorithm in the GOSSIP model,
because these trees do not necessarily have small degrees. Suppose that we have a rooted tree
of depth d for each fragment of the forest and each node knows its depth in this tree. Then,
we can perform a broadcast (sending a single-message from the root to all) or convergecast
(e.g., computing one aggregate function such as sum by sending messages from the leaves
up towards the root) in this tree in time O(d) also in the GOSSIP model. In the case of
broadcast, in the ith round, each node v at depth i makes a PULL contact to its parent.
A simple induction shows that each node at depth i receives the message in round i. A
convergecast is similar; in the ith round each node v at depth d− i makes a PUSH contact
to its parent, sending the message of the convergecast to its parent. Again, via a simple
induction, we can prove that after d rounds the root receives the result of the convegecast.
Having this broadcast and convergecast, we can build the maximal forest F of the subgraph
G′ similar to Lemma 6. At the end, each component of this maximal forest F is rooted in
one of its nodes and each node of that component knows its deoth in the rooted tree of that
component. Since we now have O(

√
nD logn) stars, the diameter of each fragment is at most

O(
√
nD logn). Therefore, also the construction of F finishes in O(

√
nD logn) rounds of the

GOSSIP model.

Gossiping on the Sparse Subgraph. Now, we use the spanning subgraph defined by (G \
G′) ∪ F to perform the gossiping of one message to all nodes. For that, we divide time into
phases, each made of two rounds. In odd rounds, each informed node – who already has
the gossiping message – picks one of its edges at random – if it has any – and pushes the
message through that edge and each uninformed node pulls from one of its neighbors chosen
at random. In even rounds, each uninformed node pulls from its parent in the forest F and
each informed node pushes to its parent.

We now argue that the message reaches all nodes in O(
√
nD logn) rounds, with high

probability. Let v be the source of the gossiping, i.e., the node that initially holds the
gossip message. As in the proof of Lemma 6, we can see that for every vertex u, there is a

DISC 2018

30:10 Distributed MST and Broadcast with Fewer Messages, and Faster Gossiping

path Pv,u of length D +O(
√
nD logn) in (G \G′) ∪ F connecting v to u. Let us say edge

{w1, w2} ∈ Pv,u is in the waiting mode during all the rounds that w1 is the closest informed
node on Pv,u to u. In articular, during these times w1 is informed and w2 is not informed.
We analyze the time that the edges of Pv,u spend in the waiting mode, in two parts, one for
(G \G′) and one for F . We show that the summation of the time that different edges of Pu,v
spend in the waiting mode is at most O(

√
nD logn) rounds. Hence, the message reaches

from v to u in O(
√
nD logn) rounds. Notice that by definition, per round at most one edge

of Pv,u is in the waiting mode.
Similar to the proof of the last part of Lemma 6, we can see that at most D hops of the

path Pv,u are edges of (G \G′) and the rest are edges of F . Now, because of the odd rounds,
whenever a low-degree node w1 gets informed, each of its neighbors w2 in the subgraph
G \G′ gets informed with high probability in O(

√
n/D) rounds. Hence, the message travels

one hop through G \ G′ per O(
√
n/D) rounds. Let us say edge {w1, w2} ∈ (G \ G′) is in

the waiting mode during all the rounds that w1 is informed but w2 is not informed (or vice
verse). Thus, each edge is in the waiting mode at most O(

√
n/D) rounds, w.h.p. Overall,

the time that the message spends waiting to travel through the edges of Pv,u ∩ (G \G′) is at
most D ·O(

√
n/D). Now, we focus on the waiting time of edges of F .

Because of the even rounds, when the message reaches some node of a fragment of F , it
gets pushed to the root and then pulled to all the nodes of the fragment, in a number of
phases asymptotically equal to the depth of that forest fragment. Notice that this depth
is upper bounded asymptotically by the number of stars in that fragment. Hence, the
total waiting time of the edges of Pv,u in that fragment is upper bounded asymptotically
by the number of stars in that fragment. Since overall the number of stars is at most
O(
√
nD logn), the message spends at most O(

√
nD logn) rounds going through the edges

of Pu,v ∩ F . Hence, overall the time the message takes to reach from v to u is at most
D ·O(

√
n/D) +O(

√
nD logn) = O(

√
nD logn). J

References

1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification,
spanners, and subgraphs. In Proceedings of the 31st symposium on Principles of Database
Systems, pages 5–14. ACM, 2012.

2 Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election, and related problems. In Proc. of the Symp. on Theory of Comp.
(STOC), pages 230–240. ACM, 1987.

3 Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between
information and communication in broadcast protocols. Journal of the ACM (JACM),
37(2):238–256, 1990.

4 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 91. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

5 Keren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and Petar Maymounkov. Global
computation in a poorly connected world: fast rumor spreading with no dependence on
conductance. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pages 961–970. ACM, 2012.

6 F Chin and HF Ting. An almost linear time and O(nlogn+ e) messages distributed algo-
rithm for minimum-weight spanning trees. In Proc. of the Symp. on Found. of Comp. Sci.
(FOCS), pages 257–266. IEEE, 1985.

M. Ghaffari and F. Kuhn 30:11

7 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. In Proc. of the Symp. on Theory of Comp. (STOC), pages
363–372, 2011.

8 Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the
distributed minimum spanning tree problem. In Proc. of the Symp. on Theory of Comp.
(STOC), pages 331–340, 2004.

9 Michael Elkin. A simple deterministic distributed mst algorithm, with near-optimal time
and message complexities. In Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing, pages 157–163. ACM, 2017.

10 Michalis Faloutsos and Mart Molle. A linear-time optimal-message distributed algorithm
for minimum spanning trees. Distributed Computing, 17(2):151–170, 2004.

11 Eli Gafni. Improvements in the time complexity of two message-optimal election algorithms.
In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages 175–185. ACM,
1985.

12 Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming Languages and
systems (TOPLAS), 5(1):66–77, 1983.

13 J.A. Garay, S. Kutten, and D. Peleg. A sub-linear time distributed algorithm for minimum-
weight spanning trees. In Proc. of the Symp. on Found. of Comp. Sci. (FOCS), 1993.

14 M. Ghaffari and F. Kuhn. Distributed minimum cut approximation. In Proc. of the Int’l
Symp. on Dist. Comp. (DISC), pages 1–15, 2013.

15 Mohsen Ghaffari. Near-optimal distributed approximation of minimum-weight connected
dominating set. In International Colloquium on Automata, Languages, and Programming,
pages 483–494. Springer, 2014.

16 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii:
Low-congestion shortcuts, mst, and min-cut. In Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete algorithms, pages 202–219. SIAM, 2016.

17 Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow. In Proceedings of the 2015 ACM Sym-
posium on Principles of Distributed Computing, pages 81–90. ACM, 2015.

18 Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed mst and routing in almost
mixing time. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages
131–140. ACM, 2017.

19 Mohsen Ghaffari and Christoph Lenzen. Near-optimal distributed tree embedding. In
International Symposium on Distributed Computing, pages 197–211. Springer, 2014.

20 Mohsen Ghaffari and Merav Parter. Mst in log-star rounds of congested clique. In Proceed-
ings of the 2016 ACM Symposium on Principles of Distributed Computing, pages 19–28.
ACM, 2016.

21 George Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance.
In Symposium on Theoretical Aspects of Computer Science (STACS2011), volume 9, pages
57–68, 2011.

22 Bernhard Haeupler. Simple, fast and deterministic gossip and rumor spreading. Journal
of the ACM (JACM), 62(6):47, 2015.

23 James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh,
and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connec-
tivity and MST. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages
91–100. ACM, 2015.

24 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-
tight distributed algorithm for approximating single-source shortest paths. In Proceedings

DISC 2018

30:12 Distributed MST and Broadcast with Fewer Messages, and Faster Gossiping

of the forty-eighth annual ACM symposium on Theory of Computing, pages 489–498. ACM,
2016.

25 Tomasz Jurdziński and Krzysztof Nowicki. Mst in o (1) rounds of congested clique. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2620–2632. SIAM, 2018.

26 Maleq Khan and Gopal Pandurangan. A fast distributed approximation algorithm for
minimum spanning trees. Distributed Computing, 20(6):391–402, 2008.

27 Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of an
mst in a distributed network with o (m) communication. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, pages 71–80. ACM, 2015.

28 Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed mst verification.
In Symposium on Theoretical Aspects of Computer Science (STACS2011), volume 9, pages
57–68, 2011.

29 Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. On
the complexity of universal leader election. Journal of the ACM (JACM), 62(1):7, 2015.

30 Shay Kutten and David Peleg. Fast distributed construction of k-dominating sets and
applications. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages
238–251, 1995.

31 Christoph Lenzen and Boaz Patt-Shamir. Fast routing table construction using small
messages: Extended abstract. In Proc. of the Symp. on Theory of Comp. (STOC), pages
381–390, 2013.

32 Ali Mashreghi and Valerie King. Time-communication trade-offs for minimum spanning tree
construction. In Proceedings of the 18th International Conference on Distributed Computing
and Networking, page 8. ACM, 2017.

33 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In Proc. of the Symp. on Theory of Comp. (STOC), 2014.

34 Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In International Symposium on Distributed Computing, pages 439–453. Springer, 2014.

35 Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar boruvka on minimum
spanning tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics, 233(1):3–36, 2001.

36 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time-and message-optimal
distributed algorithm for minimum spanning trees. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 743–756. ACM, 2017.

37 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

38 David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed MST construction. In Proc. of the Symp. on Found. of Comp. Sci. (FOCS),
pages 253–, 1999.

39 Gurdip Singh and Arthur J Bernstein. A highly asynchronous minimum spanning tree
protocol. Distributed Computing, 8(3):151–161, 1995.

New Distributed Algorithms in Almost Mixing
Time via Transformations from Parallel Algorithms
Mohsen Ghaffari
ETH Zurich, Switzerland
ghaffari@inf.ethz.ch

Jason Li
Carnegie Mellon University, USA
http://cs.cmu.edu/~jmli

Abstract
We show that many classical optimization problems – such as (1 ± ε)-approximate maximum
flow, shortest path, and transshipment – can be computed in τmix(G) ·no(1) rounds of distributed
message passing, where τmix(G) is the mixing time of the network graph G. This extends the
result of Ghaffari et al. [PODC’17], whose main result is a distributed MST algorithm in τmix(G)·
2O(
√

logn log logn) rounds in the CONGEST model, to a much wider class of optimization problems.
For many practical networks of interest, e.g., peer-to-peer or overlay network structures, the
mixing time τmix(G) is small, e.g., polylogarithmic. On these networks, our algorithms bypass
the Ω̃(

√
n+D) lower bound of Das Sarma et al. [STOC’11], which applies for worst-case graphs

and applies to all of the above optimization problems. For all of the problems except MST, this
is the first distributed algorithm which takes o(

√
n) rounds on a (nontrivial) restricted class of

network graphs.
Towards deriving these improved distributed algorithms, our main contribution is a general

transformation that simulates any work-efficient PRAM algorithm running in T parallel rounds
via a distributed algorithm running in T · τmix(G) · 2O(

√
logn) rounds. Work- and time-efficient

parallel algorithms for all of the aforementioned problems follow by combining the work of Sher-
man [FOCS’13, SODA’17] and Peng and Spielman [STOC’14]. Thus, simulating these parallel
algorithms using our transformation framework produces the desired distributed algorithms.

The core technical component of our transformation is the algorithmic problem of solving
multi-commodity routing – that is, roughly, routing n packets each from a given source to a
given destination – in random graphs. For this problem, we obtain a new algorithm running in
2O(
√

logn) rounds, improving on the 2O(
√

logn log logn) round algorithm of Ghaffari, Kuhn, and
Su [PODC’17]. As a consequence, for the MST problem in particular, we obtain an improved
distributed algorithm running in τmix(G) · 2O(

√
logn) rounds.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Graph Algorithms, Mixing Time, Random Graphs, Multi-
Commodity Routing

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.31

1 Introduction and Related Work

This paper presents a general method that allows us to transform work-efficient parallel
algorithms – formally in the PRAM model – into efficient distributed message-passing
algorithms – formally in the CONGEST model – for a wide range of network graphs of
practical interest. We believe that this method can be of significance for the following reasons:
(1) parallel algorithms have been studied extensively since the late 1970s [11, 14, 30] and

© Mohsen Ghaffari and Jason Li;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ghaffari@inf.ethz.ch
http://cs.cmu.edu/~jmli
https://doi.org/10.4230/LIPIcs.DISC.2018.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Distributed Algorithms via Transformations from Parallel Algorithms

there is a vast collection of known parallel algorithms for a variety of problems, and (2)
there is a rather active community of research on developing new parallel algorithms. Our
transformation opens the road for exporting these algorithms to the distributed setting and
bridging the research in these two subareas in a concrete and formal manner. As immediate
corollaries, by translating the recent work-efficient parallel algorithms for flow-type problems,
we obtain new distributed algorithms for approximate maximum flow, shortest path, and
transshipment.

Of course, such a transformation is bound to have some limitations. Due to the reasons
that shall be explained soon, such a general transformation would be inefficient in worst-case
network graphs. But we show that there are efficient transformations for many graph families
of practical interest, and we also exhibit that these transformations entail interesting and
non-trivial theoretical aspects.

To explain our transformations, we first recall (informal) descriptions of the two compu-
tational models that we discuss, the distributed model and the parallel model. The more
detailed model definitions are presented later in Section 3.

The Distributed Computing Model – CONGEST [27]. The network is abstracted as an
n-node undirected graph G = (V,E). There is one processor on each node of the network. At
the risk of a slight informality, we use the words processor and node interchangeably. Each
node has a unique Θ(logn)-bit identifier. Communication happens in synchronous rounds
where per round, each node can send one B-bit message to each of its neighboring nodes in
the network graph G, where typically one assumes B = O(logn). During each round, each
processor can perform unbounded computation with the information that it has at the time.
The graph is known in a distributed fashion: each processor knows the edges incident on
its own node. In case that the edges are weighted, the weight is known to both endpoints.
At the end of the computation, each node should know its own part of the output: e.g., in
computing a coloring, each node should know its own color. One can measure the efficiency
of an algorithm in the CONGEST model in different ways, such as number of rounds taken,
or total number of messages sent among all nodes. In this paper, we only focus on minimizing
the number of rounds that an algorithm takes.

The Parallel Model – PRAM [15, 18]. The system is composed of p processors, each
with a unique ID in {1, 2, . . . , p}, and a shared memory block of M entries, including an
output tape. In every round, each processor can read from or write to any memory entry
(Concurrent Read and Concurrent Write, aka, CRCW); if multiple processors write to the
same entry, an arbitrary one takes effect.1 The input is provided in the shared memory cells
in a manner that can be addressed easily, e.g., in the case of a graph, the input can be given
as an adjacency list where there is one memory cell for the jth neighbor of the ith node.

Limitations to General Transformations? Notice that the two models are intrinsically
focused on different issues. The PRAM model is about speeding up computations, via using
more processors, and tries to understand how much parallelism can help in reducing time.
On the other hand, the distributed model is relevant where the system is by nature made of

1 We can also support parallel algorithms that work under a more powerful model: if multiple processors
write to the same memory, then we can take any associative function (min, max, sum) on the words
written, and write that result into memory. However, for simplicity, we will work under the arbitrary
CRCW model.

M. Ghaffari and J. Li 31:3

autonomous entities, each of which knows a part of the problem. For instance, in computer
networks, which were historically the primary motivation for distributed models such as
CONGEST, the computers in the network each know a part of the network graph and they
cooperate to compute something about it, e.g., variants of shortest paths or routing tables.
Here, locality of the data and limited communication bandwidth are the main challenges. As
such, it is arguably unreasonable to seek a general efficient transformation of any parallel
algorithm to a distributed one in any arbitrary network graph. Let us elaborate on this. (1)
The PRAM model is not limited by any locality – each processor can asses any single register
– while this is an intrinsic limitation in distributed systems – it can take time proportional to
the diameter of the network graph for a processor to be informed of some bit residing in a
far away corner of the network graph 2. (2) Similarly, the network graph may have a small
cut, which means transferring information across this cut, i.e., from the processors on one
side of the cut to the other size, may take a long time, while this can be done much faster in
the PRAM model.

So What Can We Hope For? The above discussions and the two concrete points on locality
and congestion (or in other words communication bandwidth) suggest that there may be
some hope left: at least in network graphs that satisfy some mild conditions on diameter
and cut sizes (or alternatively expansion, conductance, or other forms of formalizing lack
of “communication bottlenecks”), we might be able to find some general transformation.
Arguably, these actually capture a range of network graphs of practical interest. For instance,
overlay and peer-to-peer networks are designed and dynamically maintained over time in a
fashion that ensures these good properties.

One way of classifying some such nice graph families is by selecting all graphs whose
mixing time for a random walk is relatively small. We define mixing time in Section 1.1.2,
but informally, the mixing time of a graph is the number of steps a lazy random walk needs
to take so that the distribution of the last vertex of the walk is roughly uniform over all n
vertices. A wide range of the (overlay) networks used in practical distributed applications
exhibit a good (e.g. polylogarithmic in n) mixing time. This holds for example for the
networks in consideration in [2, 3, 23, 25, 20, 24, 26, 33].

A canonical reason for this good mixing time is because many of these overlay networks
are formed in a way where each node is connected to Θ(logn) randomly chosen nodes. Indeed,
we present our general transformation primarily for such random graphs. We then also
explain how to emulate the communication on random graphs atop arbitrary networks with
a round-complexity overhead related to the mixing time of the graph, thus enabling us to
extend the transformation to general graphs, with a round complexity overhead proportional
to the mixing time.

1.1 Our Results
Our results build off of those in [13], whose main result is a distributed MST problem running
in nearly mixing time. We improve upon their results in two dimensions, one technical
and one primarily conceptual. The technical contribution is an improved algorithm for the
multicommodity routing problem in random graphs, which is equivalent to the permutation
routing problem in [13] up to Õ(1) factors. We solve this problem in 2O(

√
logn) rounds,

2 And that bit may be relevant, as is in global problems such as minimum spanning tree, shortest path,
etc.

DISC 2018

31:4 Distributed Algorithms via Transformations from Parallel Algorithms

improving upon the 2O(
√

logn log logn) round algorithm in [13]. Together with the ideas in [13],
this immediately improves the distributed MST algorithm from τmix(G) · 2O(

√
logn log logn)

to τmix(G) · 2O(
√

logn).
Our second, more conceptual contribution is in applying the multicommodity routing

problem in a more general way. In particular, we use it to develop a framework that
transforms work-efficient algorithms in the PRAM model to distributed algorithms. This
transformation allows us to port the recent work-efficient parallel algorithms [28, 31, 32, 4]
for approximate maximum flow, shortest path, and transshipment to run in the CONGEST
model, taking τmix(G) · no(1) rounds for all three problems.

We first describe our multi-commodity routing result for random graphs, our main
technical result and a key component in our transformations. We believe that this multi-
commodity routing scheme and the hierarchical graph partitioning underlying it may be of
independent interest. We then state our transformation results and overview some of their
applications in deriving efficient distributed algorithms for some central graph problems.

1.1.1 Multicommodity Routing on Random Graphs
Random Graph Model. We work with the following random (multi-)graph model G(n, d)
is as follows: each node v ∈ V picks d = Ω(logn) random nodes in V independently with
replacement, called the outgoing neighbors of v. The network graph consists of all edges
(u, v) where u is an outgoing neighbor of v or vice versa. For d = Ω(logn), this model behaves
very similarly to the Erdös-Rényi model G(n, d/n) [9]; we use our variant for convenience. 3

Multicommodity Routing. Consider a random graph G(n, p) for p = O(logn), and suppose
that we have pairs of nodes (si, ti) ∈ V × V . Suppose each node si wants to communicate
with its respective node ti; we assume that node ti does not know si beforehand. Our
goal is to identify a path Pi in G between each pair si and ti. We refer to this problem as
multicommodity routing, to be formally defined in Section 2. In addition, if every node
v ∈ V appears at most W times as si or ti, then we say that this multicommodity routing
instance has width W .

Our main technical contribution is an improved multi-commodity routing algorithm on
random graphs with round complexity 2O(

√
logn). This improves on a solution of Ghaffari et

al. [13] which has round complexity 2O(
√

logn log logn). In its simplest form, the theorem can
be stated as follows.

I Theorem 1. Consider a multicommodity routing instance of width Õ(1). There is a
multicommodity routing algorithm on G(n,Ω(logn)) that runs in time 2O(

√
logn).

General Graphs and Mixing Time. In fact, our result generalizes to more than random
graphs in the same way as [13]. As shown by [13], random graphs can be “embedded” into
any network graph with an overhead proportional to the mixing time τmix of the network
graph, which we define below. Thus, we can generalize the multicommodity routing algorithm
to work on any graph.

3 Moreover, for many other models of random graphs, we can embed one round of this model (i.e.,
connecting each node to O(logn) randomly selected nodes) with a small, typically poly(logn) round,
overhead. This would be by using O(n logn) random walks, O(logn) starting from each node, and
walking them until the mixing time, which is like selected a random connection endpoint. This is similar
to [13]. In many random graph families, these walks would mix in poly(logn) rounds [6].

M. Ghaffari and J. Li 31:5

Identically to [13], we define (lazy) random walks as follows: in every step, the walk
remains at the current node with probability 1/2, and otherwise, it transitions to a uniformly
random neighbor. We formally define the mixing time of a graph as follows:

I Definition 2. For a node u ∈ V , let {P tu(v)}v∈V be the probability distribution on the nodes
v ∈ V after t steps of a (lazy) random walk starting at u. The mixing time of the graph,
denoted τmix, is the minimum integer t such that for all u, v ∈ V ,

∣∣∣P tu(v)− deg(v)
2m

∣∣∣ ≤ deg(v)
2mn .

Our multicommodity routing algorithm for general graphs is therefore as follows:

I Theorem 3. There is a distributed algorithm solving multicommodity routing in τmix ·
2O(
√

logn) rounds.

Finally, by substituting our multicommodity routing algorithm into the one in [13], we
get an improvement on distributed MST in mixing time.

I Theorem 4. There is a distributed MST algorithm running in τmix · 2O(
√

logn) rounds.

We remark that, by a standard doubling trick, we can assume that the algorithm does
not even know the mixing time τmix beforehand.4

1.1.2 Transformation
Our second, more conceptual contribution is a transformation from parallel algorithms to
distributed algorithms on random graphs. In particular, we show that any work-efficient
parallel algorithm running in T rounds can be simulated on a distributed random graph
network in T · τmix · 2O(

√
logn) rounds. The actual theorem statement, Theorem 14, requires

formalizing the parallel and distributed models, so we do not state it here.

Applications. For applications of this transformation, we look at a recent line of work
on near-linear time algorithms for flow-type problems. In particular, we investigate the
approximate versions of shortest path, maximum flow, and transshipment (also known
as uncapacitated minimum cost flow). Parallel (1± ε)-approximation algorithms for these
problems running in O(m1+o(1)) work and O(mo(1)) time result from gradient descent methods
combined with a parallel solver for symmetric diagonally dominant systems [28, 31, 32, 4].
Therefore, by combining these parallel algorithms with our distributed transformation, we
obtain the following corollaries:

I Corollary 5. There are distributed algorithms running in time

τmix · 2O(
√

logn)

for (1 + ε)-approximate single-source shortest path and transshipment, and running time

τmix · 2O(
√

logn log logn)

for (1− ε)-approximate maximum flow.

4 Indeed, begin with a guess τ = 1 for the value of τmix and run the algorithm, assuming that τmix = τ .
If the algorithm takes more than τ · 2O(

√
log n) rounds, then every node in the distributed network

immediately terminates the algorithm early and restarts with τ multiplied by 2.

DISC 2018

31:6 Distributed Algorithms via Transformations from Parallel Algorithms

Finally, in the case of random graphs, another classical problem is the computation of a
Hamiltonian cycle. Since an Õ(n)-work, Õ(1)-time parallel algorithm is known [7], we have
an efficient distributed algorithm to compute Hamiltonian cycles.

I Corollary 6. For large enough constant C, we can find a Hamilton cycle on G(n, d) with
d = C logn in 2O(

√
logn) rounds, w.h.p.

This problem has attracted recent attention in the distributed setting. The main result
of [5] is a distributed Hamiltonian cycle algorithm that runs in Ω(nδ) rounds for graphs
G(n, d) with d = Ω(logn/nδ) for any constant 0 < δ ≤ 1. Thus, our algorithm greatly
improves upon their result, both in number of rounds and in the parameter d.

1.2 Some Other Related Work
There has been a long history [34, 8, 16, 29, 10] in translating the ideal PRAM model
into more practical parallel models, such as the celebrated BSP model of Valiant [34].
These transformations typically track many more parameters, such as communication and
computation, than our transformation from PRAM to CONGEST, which only concerns the
round complexity of the CONGEST algorithm.

There has also been work in the intersection of distributed computing and algorithms on
random graphs. The task of computing a Hamiltonian cycle on a random graph was initiated
by Levy et al. [22] and improved recently in [5]. Computation of other graph-theoretic
properties on random graphs, such as approximate minimum dominating set and maximum
matching, has been studied in a distributed setting in [17].

2 Multicommodity Routing

We formally define the multicommodity routing problem below, along with the congestion
and dilation of a solution to this problem.

I Definition 7. A multicommodity routing instance consists of pairs of nodes (si, ti) ∈ V ×V ,
such that each ti is known to node si. A solution consists of a (not necessarily simple) path
Pi connecting nodes si and ti for every i, such that every node on Pi knows its two neighbors
on Pi.

The input has width W if every node v ∈ V appears at most W times as si or ti.
For a given solution of paths, the dilation is the maximum length of a path, and the

congestion is the maximum number of times an edge appears in total over all paths. More
precisely, if ci(e) is the number of occurrences of edge e ∈ E(G) in path Pi, then the
congestion is maxe∈E(G)

∑
i ci(e).

The significance of the congestion and dilation parameters lies in the following lemma
from [12], whose proof uses the standard trick of random delays from packet routing [21]. In
particular, if a multicommodity routing algorithm runs efficiently and outputs a solution of
low congestion and dilation, then each node si can efficiently route messages to node ti.

I Theorem 8 ([12]). Suppose we solve a multicommodity routing instance {(si, ti)}i and
achieve congestion c and dilation d. Then, in Õ(c+ d) rounds, every node si can send one
O(logn)-bit message to every node ti, and vice versa.

We now provide our algorithm for multicommodity routing, improving the congestion
and dilation factors from 2O(

√
logn log logn) in [13] to 2O(

√
logn). Like [13], our algorithm uses

the concept of embedding a graph, defined below.

M. Ghaffari and J. Li 31:7

I Definition 9. Let H and G be two graphs on the same node set. We say that an algorithm
embeds H into G with congestion c and dilation d if the algorithm solves the following
multicommodity routing instance on G: the (si, ti) pairs are precisely the edges of H, the
congestion is c, and the dilation is d. For each (s, t) ∈ E(H), the path Ps,t (in G from s to t)
is called the embedded path for edge (s, t).

Our multicommodity routing algorithm will recursively embed graphs. We use the
following helper lemma.

I Lemma 10. Suppose there is a distributed algorithm A1 embedding graph G1 into network
G0 with congestion c1 and dilation d1 in T1 rounds, and another distributed algorithm A2
embedding graph G2 into network G1 with congestion c2 and dilation d2 in T2 rounds. Then,
there is a distributed algorithm embedding G2 into network G0 with congestion c1c2 and
dilation d1d2 in T1 + T2 · Õ(c1 + d1) rounds.

Proof. First, we provide the embedding without the algorithm. For each pair (s, t) ∈ E(G1),
let P 1

s,t be the embedded path in G0, and for each pair (s, t) ∈ E(G2), let P 2
s,t be the

embedded path in G1. To embed edge (s, t) ∈ E(G2) into E0, consider the path P 2
s,t := (s =

v0, v1, v2, . . . , v` = t); the embedded path for (s, t) in G0 is precisely the concatenation of the
paths P 1

vi−1,vi
for i ∈ [`] in increasing order. Since ` ≤ d2 and each path P 1

vi−1,vi
has length

at most d1, the total length of the embedded path for (s, t) in G0 is at most d1d2, achieving
the promised dilation.

For congestion, let c1s,t(e) denote the number of occurrences of edge e ∈ E(G0) in P 1
s,t.

Since each edge (s, t) ∈ E(G1) shows up at most c2 times among all P 2
s′,t′ , the number of

times the path P 1
s,t is concatenated in the embedding is at most c1s,t(e) · c2. Therefore, edge

e ∈ E(G0) occurs at most
∑
s,t c

1
s,t(e) · c2 ≤ c1c2 times among all the concatenated paths

embedding G2 into G0.
Finally, we describe the embedding algorithm. First, the algorithm on G0 runs A1,

obtaining the embedding of G1 into G0 in T1 rounds. We now show how to emulate a single
round of A2 running on network G1 using Õ(c1 + d1) rounds on network G0. Suppose that,
on a particular round, A2 has each node s send a message x to node t for every (s, t) ∈ E(G1).
Since the embedding of G1 into G0 is a multicommodity routing instance, we use Theorem 8,
where each node s tries to route that same message x to node t. This runs in Õ(c1 + d1)
rounds for a given round of A2. Altogether, we spend T1 + T2 · Õ(c1 + d1) rounds to emulate
the entire A2. J

We now prove our main result, Theorem 1. We actually prove a stronger version of it,
stated below.

I Theorem 11. Consider a multicommodity routing instance of width Õ(1). There is a
multicommodity routing algorithm on G(n,Ω(logn)) that achieves congestion and dilation
2O(
√

logn), and runs in time 2O(
√

logn).

Proof. Following [13], our strategy is to construct graph embeddings recursively, forming a
hierarchical decomposition. We start off by embedding a graph of sufficiently high degree in
G, similar to the “Level Zero Random Graph” embedding of [13]. Essentially, the embedded
paths are random walks in G of length τmix; we refer the reader to [13] for details. Note that,
like in [13], we are embedding the graph G(m, d), not the graph G(n, d).

I Lemma 12 ([13], Section 3.1.1). On any graph G with n nodes and m edges, we can embed
a random graph G(m, d) with d ≥ 200 logn into G with congestion Õ(τmix · d) and dilation
τmix in time Õ(τmix · d).

DISC 2018

31:8 Distributed Algorithms via Transformations from Parallel Algorithms

For our instance, τmix = O(logn) since G ∼ G(n,Ω(logn)). Let d := 210
√

logn. For this
value of d in the lemma, we obtain an embedding G0 ∼ G(m, d) into G in time Õ(210

√
logn).

Similarly to [13], our first goal is to obtain graphs G1, G2, . . . , GK which form some
hierarchical structure, such that each graph Gi embeds into Gi−1 with small congestion and
dilation. Later on, we will exploit the hierarchical structure of the graphs G0, G1, G2, . . . , GK
in order to route each (si, ti) pair.

To begin, we first describe the embedding of G1 into G0. Like [13], we first randomly
partition the nodes of G0 into β sets A1, . . . , Aβ so that |Ai| = Θ(m/β). Our goal is to
construct and embed G1 into G0 with congestion 1 and dilation 2, where G1 has the following
structure: it is a disjoint union, over all i ∈ [β], of a random graph G(i)

1 ∼ G(|Ai|, d/4) on
the set Ai. By definition, G0 and G1 share the same node set. Note that [13] does a similar
graph embedding, except with congestion and dilation O(logn); improving the factors to
O(1) is what constitutes our improvement.

Fix a set Ai; we proceed to construct the random graph in Ai. For a fixed node u ∈ V (G0),
consider the list of outgoing neighbors of u in Ai. Note that since G0 can have multi-edges, a
node in Ai may appear multiple times in the list. Now, inside the local computation of node
u, randomly group the nodes in the list into ordered pairs, leaving one element out if the list
size is odd. For each ordered pair (v1, v2) ∈ Ai×Ai, add v2 into v1’s list of outgoing edges in
G

(i)
1 , and embed this edge along the path (v1, u, v2) of length 2. In this case, since the paths

are short, node u can inform each pair (v1, v2) the entire path (v1, u, v2) in O(1) rounds.
Since node u has d outgoing neighbors, the expected number of outgoing neighbors of u

in Ai is d/β. By Chernoff bound, the actual number is at least 0.9d/β w.h.p., so there are at
least 0.4d/β ordered pairs w.h.p. Over all nodes u, there are at least 0.4md/β pairs total.

We now argue that, over the randomness of the construction of G0, the pairs are uniformly
and independently distributed in Ai × Ai. We show this by revealing the randomness of
G0 in two steps. If, for each node u, we first reveal which set Aj each outgoing neighbor
of u belongs to, and then group the outgoing neighbors in Ai into pairs, and finally reveal
the actual outgoing neighbors, then each of the at least 0.4md/β pairs is uniformly and
independently distributed in Ai × Ai. Therefore, each node v ∈ Ai is expected to receive
at least 0.4md/β

m/β
= 0.4d outgoing neighbors, or at least 0.25d outgoing neighbors w.h.p. by

Chernoff bound. Finally, we have each node in Ai randomly discard outgoing neighbors until
it has d/4 remaining. The edges remaining in Ai form the graph G(i)

1 , which has distribution
G(|Ai|, d/4). Thus, we have embedded a graph G1 consisting of β disjoint random graphs
G(Θ(m/β), d/4) into G0, where every embedded path is edge-disjoint in G0 and has length
2. In other words, the embedding has congestion 1 and dilation 2.

We apply recursion in the same manner as in [13]: recurse on each G(i)
1 (in parallel) by

partitioning its vertices into another β sets A1, . . . , Aβ , building a random graph on each set,
and taking their disjoint union. More precisely, suppose the algorithm begins with a graph
H0 ∼ G(|V (G′)|, d/4t−1) on depth k of the recursion tree (where the initial embedding of G1
into G0 has depth 1). The algorithm randomly partitions the nodes of H into A1, . . . , Aβ
and defines a graph H1 similar to G1 from before: it is a disjoint union, over all i ∈ [β], of a
random graph H(i)

1 ∼ G(|Ai|, d/4t) on the set Ai. Finally, the algorithm recurses on each
H

(i)
1 . This recursion stops when the graphs have size at most 25

√
logn; in other words, if

|V (H0)| ≤ 25
√

logn, then the recursive algorithm exits immediately instead of performing
the above routine.

Once the recursive algorithm finishes, we let Gk be the disjoint union of all graphs H(i)
1

constructed on a recursive call of depth k. Observe that Gk has the same node set as
G0. Moreover, since, on each recursive step the sizes of the Ai drop by a factor of 1/β in

M. Ghaffari and J. Li 31:9

expectation, or at most 2/β w.h.p., the recursion goes for at most logβ/2 n ≤ 2
√

logn levels.
Therefore, for each disjoint random graph in each Gk, the number of outgoing neighbors is
always at least d/42

√
logn ≥ 26

√
logn. In addition, since every embedding of Gk into Gk−1

has congestion 1 and dilation 2, by applying Lemma 10 repeatedly, GK embeds into G0

with congestion 1 and dilation 22
√

logn, and into G with congestion and dilation 2O(
√

logn).
Moreover, on each recursion level k, the embedding algorithm takes a constant number of
rounds on the graph Gk−1, which can be simulated on G in 2O(

√
logn) rounds by Lemma 10.

Now we discuss how to route each (si, ti) pair. Fix a pair (s, t); at a high level, we will
iterate over the graphs G0, G1, G2, . . . while maintaining the invariant that s and t belong to
the same connected component in Gk. Initially, this holds for G0; if it becomes false when
transitioning from Gk−1 to Gk, then we replace s with a node s′ in the connected component
of t in Gk. We claim that in fact, w.h.p., there is such a node s′ that is adjacent to s in Gk−1;
hence, s can send its message to s′ along the network Gk−1, and the algorithm proceeds to
Gk pretending that s is now s′. This process is similar to that in [13], except we make do
without their notion of “portals” because of the large degree of G0 – 2Θ(

√
logn) compared to

Θ(logn) in [13].
We now make the routing procedure precise. For a given Gk with k < K, if s and t

belong to the same connected component of Gk, then we do nothing. Otherwise, since s
has at least 26

√
logn = ω(β logn) neighbors, w.h.p., node s has an outgoing neighbor s′ in

the connected component of Gk containing t; if there are multiple neighbors, one is chosen
at random. Node s relays the message along this edge to s′, and the pair (s, t) is replaced
with (s′, t) upon applying recursion to the next level. 5 Therefore, we always maintain the
invariant that in each current (s, t) pair, both s and t belong in the same random graph.

We now argue that w.h.p., each vertex s′ has Õ(1) messages after this routing step. By
assumption, every node v ∈ V appears Õ(1) times as tj , so there are |Ai| · Õ(1) many nodes
tj that are inside Ai. For each such tj with sj /∈ Ai, over the randomness of Gk−1, the
neighbor s′j of sj inside Ai chosen to relay the message from sj is uniformly distributed
in Ai. By Chernoff bound, each node in Ai is chosen to relay a message Õ(1) times when
transitioning from Gk−1 to Gk. In total, each node v ∈ V appears Õ(1) times as si in the
beginning, and receives Õ(1) messages to relay for each of O(

√
logn) iterations. It follows

that every node always has Õ(1) messages throughout the algorithm.
Finally, in the graph GK , we know that each (sj , tj) pair is in the same connected

component of GK . Recall that each connected component in GK has at most 25
√

logn nodes,
each with degree at least 26

√
logn (possibly with self-loops and parallel edges). It follows

that w.h.p., each connected component is a “complete” graph, in the sense that every two
nodes in the component are connected by at least one edge. Therefore, we can route each
(sj , tj) pair trivially along an edge connecting them.

As for running time, since each graph G0, G1, . . . , GK embeds into G with congestion
and dilation 2O(

√
logn) by Lemma 10, iterating on each graph Gk takes 2O(

√
logn) rounds.

Therefore, the total running time is 2O(
√

logn), concluding Theorem 11. J

5 In reality, node s does not know which set Ai contains node t. Like [13], we resolve this issue using
Õ(1)-wise independence, which does not affect the algorithm’s performance. Since Θ(W logn) bits of
randomness suffice for W -wise independence [1], we can have one node draw Θ(W logn) = Õ(1) random
bits at the beginning of the iteration and broadcast them to all the nodes in Õ(1) time. Then, every
node can locally compute the set Ai that contains any given node t; see [13] for details.

DISC 2018

31:10 Distributed Algorithms via Transformations from Parallel Algorithms

For general graphs, we can repeat the same algorithm, except we embed G0 with congestion
and dilation Õ(τmix · 210

√
logn)) instead of Õ(210

√
logn), obtaining the following:

I Corollary 13. Consider a multicommodity routing algorithm where every node v ∈ V

appears Õ(1) times as si or ti. There is a multicommodity routing algorithm that achieves
congestion and dilation τmix · 2O(

√
logn), and runs in time τmix · 2O(

√
logn).

Combining Theorem 8 and Corollary 13 proves Theorem 3.

3 Parallel to Distributed

In this section, we present our procedure to simulate parallel algorithms on distributed graph
networks.

Parallel Model Assumptions. To formalize our transformation, we make some standard
input assumptions to work-efficient parallel algorithms:

1. The input graph is represented in adjacency list form. There is a pointer array of size n,
whose i’th element points to an array of neighbors of vertex vi. The i’th array of input
begins with deg(vi), followed by the deg(vi) neighbors of vertex vi.

2. There are exactly 2m processors.6 Each processor knows its ID, a unique number in [2m],
and has unlimited local computation and memory.

3. There is a shared memory block of Õ(mT) entries, including the output tape, where T is
the running time of the parallel algorithm.7 In every round, each processor can read or
write from any entry in unit time (CRCW model). If multiple processors write to the
same entry on the same round, then an arbitrary write is selected for that round.

4. If the output is a subgraph, then the output tape is an array of the subgraph edges.

Distributed Model Assumptions. Similarly, we make the following assumptions on the
distributed model.
1. Each node knows its neighbors in the input graph, as well as its ID, a unique number of

Θ(logn) bits. Each node has unlimited local computation and memory.
2. If the output is a subgraph, each node should know its incident edges in the subgraph.

I Theorem 14. Under the above parallel and distributed model assumptions, a parallel graph
algorithm running in T rounds can be simulated by a distributed algorithm in T ·τmix ·2O(

√
logn)

rounds.

Proof. Our goal is to simulate one round of the parallel algorithm in τmix · 2O(
√

logn) rounds
in the distributed model, from which the theorem follows. To do so, we need to simulate the
processors, input data, shared memory, and output.

6 If the algorithm uses m1+o(1) processors, then we can have each of the 2m processors simulate mo(1) of
them.

7 If the algorithm uses much more than mT memory addresses, then we can hash the memory addresses
down to a hash table of Õ(mT) entries.

M. Ghaffari and J. Li 31:11

Processors. Embed a random graph G0 = G(2m,Θ(logn)/m) into the network graph, as
in [13]. Every node in G0 simulates one processor so that all 2m processors are simulated;
this means that every node v ∈ V in the original network simulates deg(v) processors.
Let the nodes of G0 and the processors be named (v, j), where v ∈ V and j ∈ [deg(v)].
Node/processor (v, j) knows the j’th neighbor of v, and say, (v, 1) also knows the value of
deg(v). Therefore, all input data to the parallel algorithm is spread over the processors (v, j).
From now on, we treat graph G0 as the new network graph in the distributed setting.

Shared memory. Shared memory is spread over all 2m processors. Let the shared memory
be split into 2m blocks of size B each, where B := Õ(1). Processor (vi, j) is in charge of
block

∑
i′<i deg(vi′) + j, so that each block is maintained by one processor. To look up block

k in the shared memory array, a processor needs to write k as
∑
i′<i deg(vi′) + j for some

(vi, j). Suppose for now that each processor knows the map φ : [2m]→ V × N from index k
to tuple (vi, j); later on, we remove this assumption.

On a given parallel round, if a processor wants to read or write to block k of shared
memory, it sends a request to node φ(k). One issue is the possibility that many nodes all
want to communicate with processor φ(k), and in the multicommodity routing problem, we
only allow each target node to appear Õ(1) times in the (si, ti) pairs. We solve this issue
below, whose proof is deferred to Appendix A.

I Lemma 15. Consider the following setting: there is a node v0, called the root, in possession
of a memory block, and nodes v1, . . . , vk, called leaves, that request this memory block. The
root node does not know the identities of the leaf nodes, but the leaf nodes know the identity
v0 of the root node. Then, in Õ(1) multicommodity routing calls of width Õ(1), the nodes
v1, . . . , vk can receive the memory block of node v0.

Now consider multiple such settings in parallel, where every node in the graph is a
root node in at most one setting, and a leaf node in at most one setting. Then, in Õ(1)
multicommodity routing calls of width Õ(1), every leaf node can receive the memory block of
its corresponding root node.

Combining Lemma 15 and the multicommodity algorithm of Corollary 13 gives the desired
distributed running time of τmix · 2O(

√
logn) per parallel round, modulo the assumption that

each processor knows the map φ.
To remove the above assumption, we do the following as a precomputation step. We

allocate an auxiliary array of size n, and our goal is to fill entry i with
∑
i′<i deg(vi′) + j. Let

processor (vi, 1) be in charge of entry i. Initially, processor (vi, 1) fills entry i with deg(vi),
which it knows. Then, getting the array we desire amounts to computing prefix sums, and
we can make the parallel prefix sum algorithm work here [19], since any processor looking
for entry i knows to query (vi, 1) for it. Finally, for a node to determine the entry φ(k), it
can binary search on this auxiliary array to find the largest i with

∑
i′<i deg(vi′) < k, and

set j := k −
∑
i′<i deg(vi′), which is the correct (vi, j).

Input data. If a processor in the parallel algorithm requests the value of deg(v) or the i’th
neighbor of vertex v, we have the corresponding processor send a request to processor (v, i)
for this neighbor. The routing details are the same as above.

Output. If the output is a subgraph of the original network graph G, then the distributed
model requires each original node to know its incident edges in the subgraph. One way to do
this is as follows: at the end of simulating the parallel algorithm, we can first sort the edges

DISC 2018

31:12 Distributed Algorithms via Transformations from Parallel Algorithms

lexicographically using the distributed translation of a parallel sorting algorithm. Then, each
node (vi, i) binary searches the output to determine if the edge of v to its i’th neighbor u is
in the output (either as (u, v) or as (v, u)). Since each original node v ∈ V simulates each
node/processor (vi, i), node v knows all edges incident to it in the output subgraph. J

3.1 Applications to Parallel Algorithms
The task of approximately solving symmetric diagonally dominant (SDD) systems Mx = b

appears in many fast algorithms for `p minimization problems, such as maximum flow and
transshipment. Peng and Spielman [28] obtained the first polylogarithmic time parallel SDD
solver, stated below. For precise definitions of SDD, ε-approximate solution, and condition
number, we refer the reader to [28].

I Theorem 16 (Peng and Spielman [28]). The SDD system Mx = b, where M is an n× n
matrix with m nonzero entries, can be ε-approximately solved in parallel in Õ(m log3 κ) work
and Õ(log κ) time, where κ is the condition number of matrix M .

Using our framework, we can translate this algorithm to a distributed setting, assuming
that the input and output are distributed proportionally among the nodes.

I Corollary 17. Let G be a network matrix. Consider a SDD matrix M with condition
number κ, whose rows and columns indexed by V , and with nonzero entries only at entries
Mu,v with (u, v) ∈ E. Moreover, assume that each nonzero entry Mu,v is known to both
nodes u and v, and that each entry bv is known to node v. In Õ(τmix · log4 κ) distributed
rounds, we can compute an ε-approximate solution x, such that each node v knows entry xv.

By combining parallel SDD solvers with gradient descent, we can compute approximate
solutions maximum flow and minimum transshipment in parallel based on the recent work
of Sherman and Becker et al. [31, 32, 4]. An added corollary is approximate shortest path,
which can be reduced from transshipment [4].

I Theorem 18 (Sherman, Becker et al. [31, 32, 4]). The (1 + ε)-approximate single-source
shortest path and minimum transshipment problems can be solved in parallel in m · 2O(

√
logn)

work and 2O(
√

logn) time. The (1− ε)-approximate maximum flow problem can be solved in
parallel in m · 2O(

√
logn log logn) work and 2O(

√
logn log logn) time.

I Corollary 5. There are distributed algorithms running in time

τmix · 2O(
√

logn)

for (1 + ε)-approximate single-source shortest path and transshipment, and running time

τmix · 2O(
√

logn log logn)

for (1− ε)-approximate maximum flow.

Lastly, we consider the task of computing a Hamiltonian cycle on random graphs. This
problem can be solved efficiently in parallel on random graphs G(n, d), with d = C logn for
large enough constant C, by a result of Coppersmith et al. [7]. We remark that [7] only
states that their algorithm runs in O(log2 n) time in expectation, but their proof is easily
modified so that it holds w.h.p., at the cost of a larger constant C.

I Theorem 19 (Coppersmith et al. [7]). For large enough constant C, there is a parallel
algorithm that finds a Hamiltonian cycle in G(n,C logn) in O(log2 n) time, w.h.p.

M. Ghaffari and J. Li 31:13

This immediately implies our fast distributed algorithm for Hamiltonian cycle; the result
is restated below.

I Corollary 6. For large enough constant C, we can find a Hamilton cycle on G(n, d) with
d = C logn in 2O(

√
logn) rounds, w.h.p.

4 Conclusion and Open Problems

In this paper, we bridge the gap between work-efficient parallel algorithms and distributed
algorithms in the CONGEST model. Our main technical contribution lies in a distributed
algorithm for multicommodity routing on random graphs.

The most obvious open problem is to improve the 2O(
√

logn) bound in Theorem 1. Inter-
estingly, finding a multicommodity routing solution with congestion and dilation O(logn)
is fairly easy if we are allowed poly(n) time. In other words, while there exist good mul-
ticommodity routing solutions, we do not know how to find them efficiently in a distributed
fashion. Hence, finding an algorithm that both runs in Õ(1) rounds and computes a solution
of congestion and dilation Õ(1) is an intriguing open problem, and would serve as evidence
that distributed computation on well-mixing network graphs is as easy as work-efficient
parallel computation, up to Õ(1) factors.

References
1 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.
2 John Augustine, Gopal Pandurangan, Peter Robinson, Scott Roche, and Eli Upfal. En-

abling robust and efficient distributed computation in dynamic peer-to-peer networks. In
Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
350–369. IEEE, 2015.

3 Baruch Awerbuch and Christian Scheideler. The hyperring: a low-congestion deterministic
data structure for distributed environments. In Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 318–327. Society for Industrial and Applied
Mathematics, 2004.

4 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
arXiv preprint arXiv:1607.05127, 2016.

5 Soumyottam Chatterjee, Reza Fathi, Gopal Pandurangan, and Nguyen Dinh Pham. Fast
and efficient distributed computation of hamiltonian cycles in random graphs. arXiv pre-
print arXiv:1804.08819, 2018.

6 Colin Cooper and Alan Frieze. Random walks on random graphs. In International Confer-
ence on Nano-Networks, pages 95–106. Springer, 2008.

7 Don Coppersmith, Prabhakar Raghavan, and Martin Tompa. Parallel graph algorithms
that are efficient on average. In Foundations of Computer Science, 1987., 28th Annual
Symposium on, pages 260–269. IEEE, 1987.

8 David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten Von Eicken. Logp: Towards a realistic model
of parallel computation. ACM Sigplan Notices, 28(7):1–12, 1993.

9 Paul Erdös and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae (Debrecen),
6:290–297, 1959.

10 Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. A general pram simulation
scheme for clustered machines. International Journal of Foundations of Computer Science,
14(06):1147–1164, 2003.

DISC 2018

31:14 Distributed Algorithms via Transformations from Parallel Algorithms

11 Steven Fortune and James Wyllie. Parallelism in random access machines. In Proc. of the
Symp. on Theory of Comp. (STOC), pages 114–118. ACM, 1978.

12 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii:
Low-congestion shortcuts, mst, and min-cut. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 202–219. Society for Industrial and
Applied Mathematics, 2016.

13 Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed mst and routing in almost
mixing time. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
pages 131–140. ACM, 2017.

14 Leslie M Goldschlager. A unified approach to models of synchronous parallel machines. In
Proc. of the Symp. on Theory of Comp. (STOC), pages 89–94. ACM, 1978.

15 Richard M Karp. A survey of parallel algorithms for shared-memory machines. Technical
report, University of California at Berkeley, 1988.

16 Richard M Karp, Michael Luby, and F Meyer auf der Heide. Efficient pram simulation on
a distributed memory machine. Algorithmica, 16(4-5):517–542, 1996.

17 K Krzywdziński and Katarzyna Rybarczyk. Distributed algorithms for random graphs.
Theoretical Computer Science, 605:95–105, 2015.

18 Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to parallel
computing: design and analysis of algorithms, volume 400. Benjamin/Cummings Redwood
City, 1994.

19 Richard E Ladner and Michael J Fischer. Parallel prefix computation. Journal of the ACM
(JACM), 27(4):831–838, 1980.

20 Ching Law and Kai-Yeung Siu. Distributed construction of random expander networks.
In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, volume 3, pages 2133–2143. IEEE, 2003.

21 Tom Leighton, Bruce Maggs, and Satish Rao. Universal packet routing algorithms. In
Foundations of Computer Science, 1988., 29th Annual Symposium on, pages 256–269. IEEE,
1988.

22 Eythan Levy, Guy Louchard, and Jordi Petit. A distributed algorithm to find hamiltonian
cycles in g(n,p) random graphs. In Workshop on Combinatorial and Algorithmic aspects of
networking, pages 63–74. Springer, 2004.

23 Peter Mahlmann and Christian Schindelhauer. Peer-to-peer networks based on random
transformations of connected regular undirected graphs. In Proceedings of the seventeenth
annual ACM symposium on Parallelism in algorithms and architectures, pages 155–164.
ACM, 2005.

24 Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-diameter peer-
to-peer networks. Selected Areas in Communications, IEEE Journal on, 21(6):995–1002,
2003.

25 Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. Dex: self-healing expanders.
In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pages
702–711. IEEE, 2014.

26 Gopal Pandurangan and Amitabh Trehan. Xheal: localized self-healing using expanders.
In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pages 301–310. ACM, 2011.

27 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

28 Richard Peng and Daniel A Spielman. An efficient parallel solver for sdd linear systems.
In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages
333–342. ACM, 2014.

M. Ghaffari and J. Li 31:15

29 Andrea Pietracaprina and Geppino Pucci. The complexity of deterministic pram simulation
on distributed memory machines. Theory of Computing Systems, 30(3):231–247, 1997.

30 Walter J Savitch and Michael J Stimson. Time bounded random access machines with
parallel processing. Journal of the ACM (JACM), 26(1):103–118, 1979.

31 Jonah Sherman. Nearly maximum flows in nearly linear time. In Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 263–269. IEEE, 2013.

32 Jonah Sherman. Generalized preconditioning and undirected minimum-cost flow. In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 772–780. SIAM, 2017.

33 Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review, 31(4):149–160, 2001.

34 Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

A High Degree Communication

I Lemma 15. Consider the following setting: there is a node v0, called the root, in possession
of a memory block, and nodes v1, . . . , vk, called leaves, that request this memory block. The
root node does not know the identities of the leaf nodes, but the leaf nodes know the identity
v0 of the root node. Then, in Õ(1) multicommodity routing calls of width Õ(1), the nodes
v1, . . . , vk can receive the memory block of node v0.

Now consider multiple such settings in parallel, where every node in the graph is a
root node in at most one setting, and a leaf node in at most one setting. Then, in Õ(1)
multicommodity routing calls of width Õ(1), every leaf node can receive the memory block of
its corresponding root node.

Proof (Lemma 15). We assume that every node has a unique ID in the range {1, 2, . . . , n}.
The reduction from Θ(logn)-bit identifiers is standard: construct a BFS tree of depthD, where
D is the diameter of the network graph, root the tree arbitrarily, and run prefix/infix/postfix
ordering on the tree in O(D) time. Since τmix ≥ D, this takes O(τmix) time, which is
negligible.

For now, consider the first setting of the lemma, with only one root node. Our goal is to
establish a low-degree and low-depth (rooted) tree of communication, which contains the leaf
nodes and possibly other nodes. Then, through calls of multicommodity routing, the root
node sends the memory block to one of the nodes in this tree, which then gets propagated to
all other nodes on the tree, including the leaf nodes. The key idea is that a random low-depth
tree of communication, chosen from a certain distribution, will turn out to be low-degree as
well. We now state the precise construction of this random tree.

LetK be a parameter that starts at n/2 and decreases by a factor of 2 for T := dlog2(n/2)e
rounds. The node with ID 1 picks a hash function f : V × [K]→ V for this iteration, and
broadcasts it to all other nodes in D rounds. At the end, we will address the problem of
encoding hash functions, but for now, assume that the hash function has mutual independence.

On iteration i, each leaf node computes a private random number k ∈ [K] and computes
f(v0, k) ∈ V , called the connection point for leaf node vi. We will later show that, w.h.p.,
each node in V is the connection point of Õ(1) leaf nodes. Assuming this, we form the
multicommodity routing instance where each leaf node requests a routing to its connection
point, so that afterwards, each connection point vj learns its set Sj of corresponding leaf
nodes. Each connection point elects a random node v∗j ∈ Sj as the leader, and routes the

DISC 2018

31:16 Distributed Algorithms via Transformations from Parallel Algorithms

entire set Sj to node v∗j in another multicommodity routing instance. All nodes in Sj\v∗j ,
which did not receive the set Sj , drop out of the algorithm, leaving the leader v∗j to route
to other nodes in later iterations. At the end of the algorithm, there is only one leader left,
and that leader routes directly to the root node v0, receiving the memory block. Finally,
the memory block gets propagated from the leaders v∗j to the other nodes in Sj in reverse
iteration order.

We now show that, w.h.p., each node in V is a connection point to Õ(1) leaf nodes; this
would bound the width of the multicommodity instances by Õ(1). Initially, there are at most
n leaf nodes and n/2 possible connection points, so each connection point has at most 2
leaf nodes in expectation, or O(logn) w.h.p. On iteration t > 1, there are at most n/2t−1

leaf nodes left, since each of the n/2t−1 connection point elected one leader in the previous
iteration and those are the only leaf nodes remaining. So each of the n/2t connection points
has at most 2 leaf nodes in expectation, or O(logn) w.h.p.

Now consider the general setting, where we do the same thing in parallel over all groups
of leaf nodes. On iteration t, let the set of remaining leaf nodes in each setting be L1, . . . , Lr.
For each set of leaf nodes Li, a given node vj has probability 1/2t of being selected as a
connection point for Li, and if so, it is expected to have at most |Li|

n/2t many leaf nodes in Li,
or O(|Li|

n/2t logn) = O(logn) w.h.p., using that |Li| ≤ n/2t−1. Therefore, if Xi
j is the random

variable of the number of leaf nodes in Li assigned to node vj , then E[Xi
j] ≤ |Li|/n, and

Xi
j = O(logn) w.h.p. Conditioned on the w.h.p. statement, we use the following variant of

Chernoff bound:

I Theorem 20 (Chernoff bound). If X1, . . . , Xn are independent random variables in the
range [0, C] and µ := E[X1 + · · ·+Xn], then

Pr[X1 + · · ·+Xn ≥ (1 + δ)µ] ≤ exp
(
−2δ2µ2

nC2

)
.

Taking the independent variables X1
j , . . . , X

r
j and setting δ := Θ(log2 n

µ) and C := O(logn),
we get that µ =

∑
i |Li|/n ≤ 1 and

Pr[X1
j + · · ·+Xr

j ≥ Θ(log2 n)] ≤ exp(−O(log2 n)).

Therefore, w.h.p., every node has O(log2 n) neighbors at any given round.
Lastly, we address the issue of encoding hash functions, which we solve using W -wise

independent hash families for a small value W . Since the algorithm runs in Õ(1) rounds,
W = Õ(1) suffices. It turns out that deterministic families of 2O(W logn) hash functions
exist [1], so the node with ID 1 can simply pick a random O(W logn) = Õ(1)-bit string and
broadcast it to all other nodes in D + Õ(1) = Õ(τmix) rounds. J

Time-Message Trade-Offs in Distributed
Algorithms
Robert Gmyr
Department of Computer Science, University of Houston, USA
rgmyr@uh.edu

Gopal Pandurangan
Department of Computer Science, University of Houston, USA
gopalpandurangan@gmail.com

Abstract
This paper focuses on showing time-message trade-offs in distributed algorithms for fundamental
problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST),
minimum cut, and many graph verification problems. We consider the synchronous CONGEST
distributed computing model and assume that each node has initial knowledge of itself and the
identifiers of its neighbors – the so-called KT1 model – a well-studied model that also naturally
arises in many applications. Recently, it has been established that one can obtain (almost)
singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message
complexity (up to polylogarithmic factors), for many fundamental problems in the standard KT0
model (where nodes have only local knowledge of themselves and not their neighbors). The
situation is less clear in the KT1 model. In this paper, we present several new distributed
algorithms in the KT1 model that trade off between time and message complexity.

Our distributed algorithms are based on a uniform and general approach which involves
constructing a sparsified spanning subgraph of the original graph – called a danner – that trades
off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of
our approach is a distributed randomized algorithm that, given a graph G and any δ ∈ [0, 1],
with high probability1 constructs a danner that has diameter Õ(D+n1−δ) and Õ(min{m,n1+δ})
edges in Õ(n1−δ) rounds while using Õ(min{m,n1+δ}) messages, where n, m, and D are the
number of nodes, edges, and the diameter of G, respectively.2 Using our danner construction,
we present a family of distributed randomized algorithms for various fundamental problems that
exhibit a trade-off between message and time complexity and that improve over previous results.
Specifically, we show the following results (all hold with high probability) in the KT1 model,
which subsume and improve over prior bounds in the KT1 model (King et al., PODC 2014 and
Awerbuch et al., JACM 1990) and the KT0 model (Kutten et al., JACM 2015, Pandurangan et
al., STOC 2017 and Elkin, PODC 2017):
1. Leader Election, Broadcast, and ST. These problems can be solved in Õ(D + n1−δ)

rounds using Õ(min{m,n1+δ}) messages for any δ ∈ [0, 1].
2. MST and Connectivity. These problems can be solved in Õ(D + n1−δ) rounds using

Õ(min{m,n1+δ}) messages for any δ ∈ [0, 0.5]. In particular, for δ = 0.5 we obtain a dis-
tributed MST algorithm that runs in optimal Õ(D +

√
n) rounds and uses Õ(min{m,n3/2})

messages. We note that this improves over the singularly optimal algorithm in the KT0 model
that uses Õ(D +

√
n) rounds and Õ(m) messages.

3. Minimum Cut. O(logn)-approximate minimum cut can be solved in Õ(D+ n1−δ) rounds
using Õ(min{m,n1+δ}) messages for any δ ∈ [0, 0.5].

4. Graph Verification Problems such as Bipartiteness, Spanning Subgraph etc. These
can be solved in Õ(D + n1−δ) rounds using Õ(min{m,n1+δ}) messages for any δ ∈ [0, 0.5].

1 Throughout, by “with high probability (w.h.p.)” we mean with probability at least 1 − 1/nc where n is
the network size and c is some constant.

2 The notation Õ hides a polylog(n) factor.

© Robert Gmyr and Gopal Pandurangan;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rgmyr@uh.edu
mailto:gopalpandurangan@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Time-Message Trade-Offs in Distributed Algorithms

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Randomized Algorithm, KT1 Model, Sparsifier, MST, Singular Optimal-
ity

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.32

Funding Supported, in part, by NSF awards CCF-1527867, CCF-1540512, IIS-1633720, CCF-
1717075, and BSF award 2016419.

1 Introduction

This paper focuses on a fundamental aspect of distributed algorithms: trade-offs for the two
basic complexity measures of time and messages. The efficiency of distributed algorithms
is traditionally measured by their time and message (or communication) complexities.
Both complexity measures crucially influence the performance of a distributed algorithm.
Time complexity measures the number of distributed “rounds” taken by the algorithm
and determines the running time of the algorithm. Obviously, it is of interest to keep the
running time as small as possible. Message complexity, on the other hand, measures the
total amount of messages sent and received by all the processors during the course of the
algorithm. In many applications, this is the dominant cost that also plays a major role in
determining the running time and additional costs (e.g., energy) expended by the algorithm.
For example, communication cost is one of the dominant costs in the distributed computation
of large-scale data [17]. In another example, in certain types of communication networks,
such as ad-hoc wireless networks, energy is a critical factor for measuring the efficiency
of a distributed algorithm [15, 4]. Transmitting a message between two nodes in such a
network has an associated energy cost and hence the total message complexity plays an
important role in determining the energy cost of an algorithm. At the same time, keeping the
number of rounds small also helps in reducing the energy cost. Thus, in various modern and
emerging applications such as resource-constrained communication networks and distributed
computation on large-scale data, it is crucial to design distributed algorithms that optimize
both measures simultaneously [13, 17, 24, 26].

Unfortunately, designing algorithms that are simultaneously time- and message-efficient
has proven to be a challenging task, which (for some problems) stubbornly defied all prior
attempts of attack. Consequently, research in the last three decades in the area of distributed
algorithms has focused mainly on optimizing either one of the two measures separately,
typically at the cost of neglecting the other. In this paper, we focus on studying the two cost
measures of time and messages jointly, and exploring ways to design distributed algorithms
that work well under both measures (to the extent possible). Towards this goal, it is important
to understand the relationship between these two measures. In particular, as defined in
[25], we should be able to determine, for specific problems, whether it is possible to devise a
distributed algorithm that is either singularly optimal or exhibits a time-message trade-off :

Singularly optimal: A distributed algorithm that is optimal with respect to both mea-
sures simultaneously – in which case we say that the problem enjoys singular optimality.
Time-message trade-off: Whether the problem inherently fails to admit a singularly
optimal solution, namely, algorithms of better time complexity for it will necessarily
incur higher message complexity and vice versa – in which case we say that the problem
exhibits a time-message trade-off.

https://doi.org/10.4230/LIPIcs.DISC.2018.32

R. Gmyr and G. Pandurangan 32:3

We note that, more generally, finding a simultaneously optimal (or almost optimal) solution
may sometimes be difficult even for “singular optimality” problems and hence it might be
useful to first design algorithms that have trade-offs.

This paper focuses on showing time-message trade-offs in distributed algorithms for
fundamental problems such as leader election, broadcast, spanning tree (ST), minimum
spanning tree (MST), minimum cut, and many graph verification problems. Throughout, we
consider the synchronous CONGEST model (see Section 2.2 for details), a standard model
in distributed computing where computation proceeds in discrete (synchronous) rounds
and in each round only O(logn) bits are allowed to be exchanged per edge (CONGEST)
where n is the number of nodes in the network. It turns out that message complexity of a
distributed algorithm depends crucially (as explained below) on the initial knowledge of the
nodes; in this respect, there are two well-studied models – the KT0 and the KT1 model.3
In the KT0 model (i.e., Knowledge Till radius 0), also called the clean network model
[27], where nodes have initial local knowledge of only themselves (and not their neighbors),
it has (only) been recently established that one can obtain (almost) singularly optimal
algorithms, i.e., algorithms that have simultaneously optimal time and message complexity
(up to polylogarithmic factors), for many fundamental problems such as leader election,
broadcast, ST, MST, minimum cut, and approximate shortest paths (under some conditions)
[18, 25, 7, 12]. More precisely, for problems such as leader election, broadcast, and ST, it
has been shown [18] that one can design a singularly optimal algorithm in the KT0 model,
that takes Õ(m) messages and O(D) rounds – both are tight (up to a polylog(n) factor);
this is because Ω(m) and Ω(D) are, respectively, lower bounds on the message and time
complexity for these problems in the KT0 model [18] – note that these lower bounds hold
even for randomized Monte Carlo algorithms. The work of [25] (also see [7]) showed that
MST is also (almost) singularly optimal, by giving a (randomized Las Vegas) algorithm that
takes Õ(m) messages and Õ(D +

√
n) rounds (both bounds are tight up to polylogarithmic

factors). It can be shown that the singular optimality of MST in the KT0 model also implies
the singular optimality of many other problems such as approximate minimum cut and graph
verification problems (see Section 1.2). Recently, it was shown that approximate shortest
paths and several other problems also admit singular optimality in the KT0 model [12].

On the other hand, in the KT1 model (i.e., Knowledge Till radius 1), in which each node
has initial knowledge of itself and the identifiers4 of its neighbors, the situation is less clear.
The KT1 model arises naturally in many settings, e.g., in networks where nodes know the
identifiers of their neighbors (as well as other nodes), e.g., in the Internet where a node knows
the IP addresses of other nodes [23]. Similarly in models such as the k-machine model (as well
as the congested clique), it is natural to assume that each processor knows the identifiers of
all other processors [17, 13, 24, 26]. For the KT1 model, King et al. [16] showed a surprising
and elegant result: There is a randomized Monte Carlo algorithm to construct an MST in
Õ(n) messages (Ω(n) is a message lower bound) and in Õ(n) time (see Section 2.3). Thus it
is also possible to construct an ST, do leader election, and broadcast within these bounds.

3 On the other hand, for time complexity it does not really matter whether nodes have initial knowledge
of just themselves (KT0) or also of their neighbors (KT1); this is because this information (i.e., the
identifiers of the neighbors) can be exchanged in one round in the CONGEST model. Hence, when
focusing solely on optimizing time complexity, which is the typically the case in the literature, the
distinction between KT0 and KT1 is not important and the actual model is not even explicitly specified.

4 Note that only knowledge of the identifiers of neighbors is assumed, not other information such as the
degree of the neighbors.

DISC 2018

32:4 Time-Message Trade-Offs in Distributed Algorithms

This algorithm is randomized and not comparison-based.5 While this algorithm shows that
one can achieve o(m) message complexity (when m = ω(n polylogn)), it is not time-optimal
– it can take significantly more than Θ̃(D +

√
n) rounds, which is a time lower bound even

for Monte-Carlo randomized algorithms [5]. In subsequent work, Mashreghi and King [19]
presented a trade-off between messages and time for MST: a Monte-Carlo algorithm that
takes Õ(n1+εε) messages and runs in O(n/ε) time for any 1 > ε ≥ log logn/ logn. We note
that this algorithm takes at least O(n) time.

A central motivating theme underlying this work is understanding the status of various
fundamental problems in the KT1 model – whether they are singularly optimal or exhibit
trade-offs (and, if so, to quantify the trade-offs). In particular, it is an open question whether
one can design a randomized (non-comparison based) MST algorithm that takes Õ(D +

√
n)

time and Õ(n) messages in the KT1 model – this would show that MST is (almost) singularly
optimal in the KT1 model as well. In fact, King et al [16] ask whether it is possible to
construct (even) an ST in o(n) rounds with o(m) messages. Moreover, can we take advantage
of the KT1 model to get improved message bounds (while keeping time as small as possible)
in comparison to the KT0 model?

1.1 Our Contributions and Comparison with Related Work
In this paper, we present several results that show trade-offs between time and messages in
the KT1 model with respect to various problems. As a byproduct, we improve and subsume
the results of [16] (as well as of Awerbuch et al. [2]) and answer the question raised by King
et al. on ST/MST construction at the end of the previous paragraph in the affirmative. We
also show that our results give improved bounds compared to the results in the KT0 model,
including for the fundamental distributed MST problem.

Our time-message trade-off results are based on a uniform and general approach which
involves constructing a sparsified spanning subgraph of the original graph – called a danner
(i.e., “diameter-preserving spanner”) – that trades off the number of edges with the diameter
of the sparsifier (we refer to Section 2.1 for a precise definition). In particular, a key
ingredient of our approach is a distributed randomized algorithm that, given a graph G and
any δ ∈ [0, 1], with high probability6 constructs a danner that has diameter Õ(D + n1−δ) and
Õ(min{m,n1+δ}) edges in Õ(n1−δ) rounds while using Õ(min{m,n1+δ}) messages, where n,
m, and D are the number of nodes, edges, and the diameter of G, respectively.7 Using our
danner construction, we present a family of distributed randomized algorithms for various
fundamental problems that exhibit a trade-off between message and time complexity and
that improve over previous results. Specifically, we show the following results (all hold with
high probability) in the KT1 model (cf. Section 4):
1. Leader Election, Broadcast, and ST. These problems can be solved in Õ(D+ n1−δ)

rounds using Õ(min{m,n1+δ}) messages for any δ ∈ [0, 1]. These results improve over
prior bounds in the KT1 model [16, 19, 2] as well the KT0 model [18] – discussed earlier

5 Awerbuch et al. [2] show that Ω(m) is a message lower bound for MST even in the KT1 model, if one
allows only (possibly randomized Monte Carlo) comparison-based algorithms, i.e., algorithms that can
operate on identifiers only by comparing them. The result of King et al. [16] breaches the Ω(m) lower
bound by using non-comparison-based technique by using the identifiers as input to hash functions.
Our results also breach the Ω(m) lower bound, since we use the results of King et al. as subroutines in
our algorithms.

6 Throughout, by “with high probability (w.h.p.)” we mean with probability at least 1 − 1/nc where n is
the network size and c is some constant.

7 The notation Õ hides a polylog(n) factor.

R. Gmyr and G. Pandurangan 32:5

in Section 1. In particular, while the time bounds in [16, 19] are always at least linear,
our bounds can be sublinear and the desired time-message trade-off can be obtained by
choosing an appropriate δ. It is worth noting that the early work of Awerbuch et al. [2]
showed that broadcast can be solved by a deterministic algorithm in the KTρ model using
O(min{m,n1+c/ρ}) messages for some fixed constant c > 0 in a model where each node
has knowledge of the topology (not just identifiers) up to radius ρ. Clearly, our results
improve over this (for the KT1 model), since δ can be made arbitrarily small.

2. MST and Connectivity. These problems can be solved in Õ(D + n1−δ) rounds using
Õ(min{m,n1+δ}) messages for any δ ∈ [0, 0.5]. In addition to getting any desired trade-off
(by plugging in an appropriate δ), we can get a time optimal algorithm by choosing
δ = 0.5, which results in a distributed MST algorithm that runs in Õ(D +

√
n) rounds

and uses Õ(min{m,n3/2}) messages. We note that when m = ω̃(n3/2), this improves
over the recently proposed singularly optimal algorithms of [25, 7] in the KT0 model that
use Õ(m) messages and Õ(D +

√
n) rounds. It also subsumes and improves over the

prior results of [19, 16] in the KT1 model that take (essentially) Õ(n) messages and Õ(n)
time.8

3. Minimum Cut. An O(logn)-approximation to the minimum cut value (i.e., edge
connectivity of the graph) can be obtained in Õ(D+n1−δ) rounds using Õ(min{m,n1+δ})
messages for any δ ∈ [0, 0.5]. Our result improves over the works of [11, 21] that are
(almost) time-optimal (i.e., take Õ(D +

√
n) rounds), but not message optimal. In

addition to getting any desired trade-off (by plugging in an appropriate δ), in particular,
if δ = 0.5, we obtain a Õ(min{m,n3/2}) messages approximate minimum cut algorithm
that runs in (near) optimal Õ(D +

√
n) rounds. This improves the best possible bounds

(for m = ω̃(n3/2)) that can be obtained in the KT0 model (cf. Section 1.2).
4. Graph Verification Problems such as Bipartiteness, s − t Cut, Spanning Sub-

graph. These can be solved in Õ(D + n1−δ) rounds using Õ(min{m,n1+δ}) messages
for any δ ∈ [0, 0.5].

1.2 High-Level Overview of Approach
Danner. A main technical contribution of this work is the notion of a danner and its
efficient distributed construction that jointly focuses on both time and messages. As defined
in Section 2.1, a danner of a graph G is a spanning subgraph H of G whose diameter, i.e.,
diam(H), is at most α(diam(G)) + β, where α ≥ 1 and β ≥ 0 are some parameters. The
goal is to construct a danner H with as few edges as possible and with α and β as small as
possible. It is clear that very sparse danners exist: the BFS (breadth-first spanning) tree has
only n− 1 edges and its diameter is at most twice the diameter of the graph. However, it
is not clear how to construct such a danner in a way that is efficient with respect to both
messages and time, in particular in Õ(n) messages and Õ(D) time, or even o(m) messages
and O(D) time, where D = diam(G). Note that in the KT0 model, there is a tight lower
bound (with almost matching upper bound) for constructing a danner: any distributed
danner construction algorithm needs Ω(m) messages and Ω(D) time (this follows by reduction
from leader election which has these lower bounds [18] – see Section 1). However, in the KT1
model, the status for danner construction is not known. We give (a family of) distributed
algorithms for constructing a danner that trade off messages for time (Section 3).

8 Mashreghi and King [19] also give an algorithm with round complexity Õ(diam(MST)) and with message
complexity Õ(n), where diam(MST) is the diameter of the output MST which can be as large as Θ(n).

DISC 2018

32:6 Time-Message Trade-Offs in Distributed Algorithms

Danner Construction. We present an algorithm (see Algorithm 1) that, given a graph G
and any δ ∈ [0, 1], constructs a danner H of G that has Õ(min{m,n1+δ}) edges and diameter
Õ(D + n1−δ) (i.e., an Õ(n1−δ) additive danner) using Õ(min{m,n1+δ}) messages and in
Õ(n1−δ) time (note that the time does not depend on D). The main idea behind the algorithm
is as follows. While vertices with low degree (i.e., less than nδ) and their incident edges can
be included in the danner H, to handle high-degree vertices we construct a dominating set
that dominates the high-degree nodes by sampling roughly n1−δ nodes (among all nodes);
these are called “center” nodes.9 Each node v adds the edges leading to its min{deg(v), nδ}
neighbors with the lowest identifiers (required for maintaining independence from random
sampling) to H. It is not difficult to argue that each high-degree node is connected to a
center in H and we use a relationship between the number of nodes in any dominating set
and the diameter (cf. Lemma 5) to argue that the diameter of each connected component (or
fragment) of H is at most Õ(n1−δ). We then use the FindAny algorithm of King et al. [16]
to efficiently implement a distributed Boruvka-style merging (which is essentially the GHS
algorithm [9]) of fragments in the subgraph induced by the high-degree nodes and the centers.
The FindAny algorithm does not rely on identifier comparisons but instead uses random
hash-functions to find an edge leaving a set of nodes very efficiently, which is crucial for our
algorithm. In each merging phase, each fragment uses FindAny to efficiently find an outgoing
edge; discovered outgoing edges are added to H. Only O(logn) iterations are needed to
merge all fragments into a connected graph and only Õ(min{m,n1+δ}) messages are needed
overall for merging. At any time the set of centers in a fragment forms a dominating set
of that fragment. Thereby, the above-mentioned relationship between dominating sets and
diameters guarantees that the diameters of the fragments stay within Õ(n1−δ). We argue
(Lemma 12) that the constructed subgraph H is an additive Õ(n1−δ)-danner of G.

Danner Applications. What is the motivation for defining a danner and why is it useful?
The answer to both of these questions is that a danner gives a uniform way to design
distributed algorithms that are both time and message efficient for various applications as
demonstrated in Section 4. Results for leader election, broadcast, and ST construction follow
quite directly (cf. Section 4.1): Simply construct a danner and run the singularly optimal
algorithm of [18] for the KT0 model on the danner subgraph. Since the danner has Õ(n1+δ)
edges and has diameter Õ(D + n1−δ), this gives the required bounds.

A danner can be used to construct a MST of a graph G (which also gives checking
connectivity of a subgraph H of G) using Õ(min{m,n1+δ}) messages in Õ(D + n1−δ) time,
for any δ ∈ [0, 0.5]. Note that this subsumes the bounds of the singularly optimal algorithms
in the KT0 model [25, 7]. The distributed MST construction (cf. Section 4.2) proceeds in
three steps; two of these crucially use the danner. In the first step, we construct a danner and
use it as a communication backbone to aggregate the degrees of all nodes and thus determine
m, the number of edges. If m ≤ n1+δ, then we simply proceed to use the singularly optimal
algorithm of [25]. Otherwise, we proceed to Step 2, where we do Controlled-GHS which
is a well-known ingredient in prior MST algorithms [22, 10, 25]. Controlled-GHS is simply
Boruvka-style MST algorithm, where the diameter of all the fragments grow at a controlled
rate. We use the graph sketches technique of King et al. (in particular the FindMin algorithm
– cf. Section 2.3) for finding outgoing edges to keep the message complexity to Õ(n). Crucially
we run Controlled-GHS to only d(1− δ) logne iterations so that the number of fragments

9 The idea of establishing a set of nodes that dominates all high-degree nodes has also been used by
Aingworth et al. [1] and Dor et al. [6].

R. Gmyr and G. Pandurangan 32:7

remaining at the end of Controlled-GHS is O(nδ) with each having diameter Õ(n1−δ); all
these take only Õ(n1−δ) time, since the running time of Controlled-GHS is asymptotically
bounded (up to a logn factor) by the (largest) diameter of any fragment. In Step 3, we merge
the remaining O(nδ) fragments; this is done in a way that is somewhat different to prior
MST algorithms, especially those of [25, 10]. We simply continue the Boruvka-merging (not
necessarily in a controlled way), but instead of using each fragment as the communication
backbone, we do the merging “globally” using a BFS tree of the danner subgraph. The
BFS tree of the danner has O(n) edges and has diameter Õ(D + n1−δ). In each merging
phase, each node forwards at most O(nδ) messages (sketches corresponding to so many
distinct fragments) to the root of the BFS tree which finds the outgoing edge corresponding
to each fragment (and broadcasts it to all the nodes). The total message cost is Õ(n1+δ)
and, since the messages are pipelined, the total time is Õ(D + n1−δ + nδ) = Õ(D + n1−δ)
(for δ = [0, 0.5]). Building upon this algorithm, we give time and message efficient algorithms
for O(logn)-approximate minimum cut and graph connectivity problems (cf. Section 4.3).

1.3 Other Related Work

There has been extensive research on the distributed MST problem in the KT0 model,
culminating in the singularly optimal (randomized) algorithm of [25] (see also [7]); see [25]
for a survey of results in this area. The work of [25] also defined the notions of singular
optimality versus time-message trade-offs. Kutten et al. [18] show the singular optimality of
leader election (which implies the same for broadcast and ST) by giving tight lower bounds
for both messages and time as well as giving algorithms that simultaneously achieve the tight
bounds (see Section 1).

Compared to the KT0 model, results in the KT1 are somewhat less studied. The early
work of Awerbuch et al. [2] studied time-message trade-offs for broadcast in the KT1 model.
In 2015, King et al. [16] showed surprisingly that the basic Ω(m) message lower bound
that holds in the KT0 model for various problems such as leader election, broadcast, MST,
etc. [18] can be breached in the KT1 model by giving a randomized Monte Carlo algorithm
to construct an MST in Õ(n) messages and in Õ(n) time. The algorithm of King et al. uses
a powerful randomized technique of graph sketches which helps in identifying edges going out
of a cut efficiently without probing all the edges in the cut; this crucially helps in reducing
the message complexity. We heavily use this technique (as a black box) in our algorithms
as well. However, note that we could have also used other types of graph sketches (see e.g.,
[24]) which will yield similar results.

The KT1 model has been assumed in other distributed computing models such as the
k-machine model [17, 24, 26] and the congested clique [13]. In [13] it was shown that the
MST problem has a message lower bound of Ω(n2) which can be breached in the KT1 model
by using graph sketches.

Distributed minimum cut has been studied by [11, 21], and the graph verification problems
considered in this paper have been studied in [5]. However, the focus of these results has
been on the time complexity (where KT0 or KT1 does not matter). We study these problems
in the KT1 model focusing on both time and messages and present trade-off algorithms that
also improve over the KT0 algorithms (in terms of messages) – cf. Section 1.1. We note that
Ω̃(D +

√
n) is a time lower bound for minimum cut (for any non-trivial approximation) and

for the considered graph verification problems [5]. It can be also shown (by using techniques
from [18]) that Ω(m) is a message lower bound in the KT0 model for minimum cut.

DISC 2018

32:8 Time-Message Trade-Offs in Distributed Algorithms

2 Preliminaries

Before we come to the main technical part of the paper, we introduce some notation and
basic definitions, present our network model, and give an overview of some of the algorithms
from the literature that we use for our results.

2.1 Notation and Definitions
For a graph G we denote its node set as V (G) and its edge set as E(G). For a node u ∈ V (G)
the set NG(u) = {v ∈ V (G) | {u, v} ∈ E(G)} is the open neighborhood of u in G and
ΓG(u) = NG(u) ∪ {u} is its closed neighborhood. For a set of nodes S ⊆ V (G) we define
ΓG(S) =

⋃
u∈S ΓG(u). The degree of a node u in G is degG(u) = |NG(u)|. For a path

P = (u0, . . . , u`) we define V (P) to be the set of nodes in P and we define |P | = ` to be the
length of P . A set S ⊆ V (G) is a dominating set of G if ΓG(S) = V (G). The domination
number γ(G) of a graph G is the size of a smallest dominating set of G. The distance dG(u, v)
between two nodes u, v ∈ V (G) is the length of a shortest path between u and v in G. We
define the diameter (or the hop diameter) of G as diam(G) = maxu,v∈V (G) d(u, v), where
the distances are taken in the graph by ignoring edge weights (i.e., each edge has weight 1).
For all of this notation, we omit G when it is apparent from context. For S ⊆ V (G) the
induced subgraph G[S] is defined by V (G[S]) = S and E(G[S]) = {{u, v} ∈ E(G) | u, v ∈ S}.
A subgraph H ⊆ G is an (α, β)-spanner of G if V (H) = V (G) and dH(u, v) ≤ α ·dG(u, v)+β

for all u, v ∈ V (G). In this work we make use of the weaker concept of a diameter-preserving
spanner, or in short, danner : A subgraph H ⊆ G is a (α, β)-danner of G if V (H) = V (G)
and diam(H) ≤ α · diam(G) + β. We say H is an additive β-danner if it is a (1, β)-danner.
An (α, β)-spanner is also an (α, β)-danner but the reverse is not generally true. Hence, the
notion of a danner is weaker than that of a spanner.

2.2 Model
We briefly describe the distributed computing model used. This is the synchronous CONGEST
model (see, e.g., [22, 27]), which is now standard in the distributed computing literature.

A point-to-point communication network is modeled as an undirected weighted graph
G = (V,E,w), where the vertices of V represent the processors, the edges of E represent the
communication links between them, and w(e) is the weight of edge e ∈ E. Let n = |V (G)|
and m = |E(G)|. Without loss of generality, we assume that G is connected. D denotes
the hop-diameter (that is, the unweighted diameter) of G, and, in this paper, by diameter
we always mean hop-diameter. Each node hosts a processor with limited initial knowledge.
Specifically, we make the common assumption that each node has a unique identifier (from
{1, . . . ,poly(n)}), and at the beginning of computation each vertex v accepts as input its own
identifier and the weights (if any) of the edges incident to it as well as the identifiers of all its
neighbors. Thus, a node has local knowledge of only itself and its neighbor’s identifiers; this
is called the KT1 model. Since each node knows the identifier of the node on the other side
of an incident edge, both endpoints can define a common edge identifier as the concatenation
of identifiers of its endpoints, lowest identifier first.

The vertices are allowed to communicate through the edges of the graph G. It is assumed
that communication is synchronous and occurs in discrete rounds (time steps). In each
time step, each node v can send an arbitrary message of O(logn) bits through each edge
e = {v, u} incident to v, and each message arrives at u by the end of this time step. The
weights of the edges are at most polynomial in the number of vertices n, and therefore the

R. Gmyr and G. Pandurangan 32:9

weight of a single edge can be communicated in one time step. This model of distributed
computation is called the CONGEST(logn) model or simply the CONGEST model [22, 27].
We also assume that each vertex has access to the outcome of unbiased private coin flips.
We assume that all nodes know n.

2.3 Underlying Algorithms
We use an algorithm called TestOut that was introduced by King et al. [16] in the context of
computing MSTs in the KT1 model. Consider a tree T that is a subgraph of a graph G. The
algorithm TestOut allows the nodes in T to determine whether there exists an outgoing edge,
i.e., an edge that connects a node in V (T) with a node in V (G) \ V (T). We also refer to
an outgoing edge as an edge leaving T . Let u be a node in T that initiates an execution of
TestOut. On a high level, TestOut simply performs a single broadcast-and-echo operation:
First, the node u broadcasts a random hash function along T . Each node in T computes a
single bit of information based on the hash function and the identifiers of the incident edges.
The parity of these bits is then aggregated using an echo (or convergecast) along T . The
parity is 1 with constant probability if there is an edge in G leaving T , and it is 0 otherwise.
The algorithm is always correct if the parity is 1. The running time of the algorithm is
O(diam(T)) and it uses O(|V (T)|) messages.

The correctness probability of TestOut can be amplified to high probability by executing
the algorithm O(logn) times. Furthermore, TestOut can be combined with a binary search
on the edge identifiers to find the identifier of an outgoing edge if it exists, which adds
another multiplicative factor of O(logn) to the running time and the number of messages
used by the algorithm. Finally, the procedure can also be used to find the identifier of an
outgoing edge with minimum weight in a weighted graph by again using binary search on the
edge weights at the cost of another multiplicative O(logn) factor. All of these algorithms
can be generalized to work on a connected subgraph H that is not necessarily a tree: A node
u ∈ V (H) first constructs a breadth-first search tree T in H and then executes one of the
algorithms described above on T . We have the following theorems.

I Theorem 1. Consider a connected subgraph H of a graph G. There is an algorithm
FindAny that outputs the identifier of an arbitrary edge in G leaving H if there is such an
edge and that outputs ∅ otherwise, w.h.p. The running time of the algorithm is Õ(diam(H))
and it uses Õ(|E(H)|) messages.

I Theorem 2. Consider a connected subgraph H of a weighted graph G with edge weights
from {1, . . . ,poly(n)}. There is an algorithm FindMin that outputs the identifier of a lightest
edge in G leaving H if there is such an edge and that outputs ∅ otherwise, w.h.p. The running
time of the algorithm is Õ(diam(H)) and it uses Õ(|E(H)|) messages.

We also require an efficient leader election algorithm. The following theorem is a
reformulation of Corollary 4.2 in [18].

I Theorem 3. There is an algorithm that for any graph G elects a leader in O(diam(G))
rounds while using Õ(|E(G)|) messages, w.h.p.

3 Distributed Danner Construction

The distributed danner construction presented in Algorithm 1 uses a parameter δ that
controls a trade-off between the time and message complexity of the algorithm. At the same
time the parameter controls a trade-off between the diameter and the size (i.e., the number of

DISC 2018

32:10 Time-Message Trade-Offs in Distributed Algorithms

Algorithm 1 Distributed Danner Construction.
The algorithm constructs a danner H. Initially, we set V (H)← V (G) and E(H)← ∅.
1. Each node becomes a center with probability p = min{(c logn)/nδ, 1}, where c ≥ 1 is a

constant determined in the analysis. Let C be the set of centers.
2. Each node v adds the edges leading to its min{deg(v), nδ} neighbors with the lowest

identifiers to H.
3. Each low-degree node sends a message to all its neighbors to inform them about its low

degree and whether it is a center. The remaining steps operate on the induced subgraphs
Ĝ← G[Vhigh ∪ C] and Ĥ ← H[Vhigh ∪ C]. Note that every node can deduce which of its
neighbors lie in Vhigh ∪ C from the messages sent by the low-degree nodes.

4. For i = 1 to logn do the following in parallel in each connected component K of Ĥ.
a. Elect a leader using the algorithm from Theorem 3.
b. Use the algorithm FindAny from Theorem 1 to find an edge in Ĝ leaving K. If such

an edge exists, add it to H and Ĥ.
c. Wait until T rounds have passed in this iteration before starting the next iteration in

order to synchronize the execution between the connected components. The value of
T is determined in the analysis.

edges) of the resulting danner. For Algorithm 1 we assume that δ ∈ [0, 1). We explicitly treat
the case δ = 1 later on. We say a node u has high degree if deg(u) ≥ nδ. Otherwise, it has
low degree. Let Vhigh and Vlow be the set of high-degree and low-degree nodes, respectively.

We now turn to the analysis of Algorithm 1. We assume that the probability p defined in
Step 1 is such that p < 1 since for p = 1 the analysis becomes trivial. Our first goal is to
bound the diameter of any connected component K of Ĥ (defined in Step 3 of Algorithm 1)
during any iteration of the loop in Step 4. To achieve this goal, we first show two fundamental
lemmas that allow us to bound the diameter of K in terms of its domination number γ(K)
(see Section 2.1). The main observation behind Lemma 4 was also used by Feige et al. in [8].

I Lemma 4. Let P be a shortest path in a graph G. For each node v ∈ V (G) it holds
|Γ(v) ∩ V (P)| ≤ 3.

Proof. We show the lemma by contradiction. Let P = (u0, . . . , u`) be a shortest path in
G. Suppose there is a node v ∈ V (G) such that |Γ(v) ∩ V (P)| ≥ 4. Let ui be the node
in Γ(v) ∩ V (P) with the lowest index in P and let uj be the node in Γ(v) ∩ V (P) with
the highest index in P . Since |Γ(v) ∩ V (P)| ≥ 4 at least two nodes lie between ui and
uj in P . We distinguish two cases. If ui = v or uj = v then P ′ = (u0, . . . , ui, uj , . . . , u`)
is a path in G such that |P ′| ≤ |P | − 2, which is a contradiction. Otherwise, the path
P ′ = (u0, . . . , ui, v, uj . . . , u`) is a path in G such that |P ′| ≤ |P | − 1, which is again a
contradiction. J

I Lemma 5. For a connected graph G it holds diam(G) < 3γ(G).

Proof. We show the lemma by contradiction. Suppose there is a shortest path P in G such
that |P | ≥ 3γ(G). Let S be a dominating set in G with |S| = γ(G). By definition, for each
node u ∈ V (P) there is a node v ∈ S such that u ∈ Γ(v). Since |V (P)| = |P |+ 1 > 3|S|, the
pigeonhole principle implies that there must be a node v ∈ S such that |Γ(v) ∩ V (P)| > 3.
By Lemma 4, this implies that P is not a shortest path, which is a contradiction. J

With these lemmas in place, we can now turn to the problem of bounding the diameter of
a connected component K of Ĥ. We first bound the number of centers established in Step 1.

R. Gmyr and G. Pandurangan 32:11

I Lemma 6. It holds |C| = Õ(n1−δ), w.h.p.

Proof. Let Xu be a binary random variable such that Xu = 1 if and only if u ∈ C.
We have E[Xu] = (c logn)/nδ. By definition it holds |C| =

∑
u∈V Xu. The linearity of

expectation implies E[|C|] =
∑
u∈V E[Xu] = cn1−δ logn. Since |C| is a sum of independent

binary random variables we can apply Chernoff bounds (see, e.g., [20]) to get Pr[|C| ≥
2cn1−δ logn] ≤ exp(−cn1−δ logn/3). The lemma follows by choosing c sufficiently large. J

The next two lemmas show that the set of centers in K forms a dominating set of K.

I Lemma 7. After Step 2 each high-degree node is adjacent to a center in Ĥ, w.h.p.

Proof. Consider a node u ∈ Vhigh. Let S be the set of the nδ neighbors of u with lowest
identifier. Each node in S is a center with probability p. Hence, the probability that no node
in S is a center is (1− p)|S| =

(
1− (c logn)/nδ

)nδ

≤ exp(−c logn). The lemma follows by
applying the union bound over all nodes and choosing the constant c sufficiently large. J

I Lemma 8. Let K be a connected component of Ĥ before any iteration of the loop in Step 4
or after the final iteration. The set of centers in K is a dominating set of K, w.h.p.

Proof. Recall that V (K) ⊆ Vhigh ∪ C by definition. Hence, each node u ∈ V (K) is a center
or has high degree. If u is a center, there is nothing to show. If u is not a center, it must be
of high degree. According to Lemma 7, u is connected to a center v in Ĥ. This implies that
v ∈ V (K) and {u, v} ∈ E(K). J

By combining the statements of Lemmas 5, 6 and 8, we get the following lemma.

I Lemma 9. Let K1, . . . ,Kr be the connected components of Ĥ before any iteration of the
loop in Step 4 or after the final iteration. It holds

∑r
i=1 diam(Ki) = Õ(n1−δ), w.h.p.

Proof. Let C(Ki) be the set of centers in Ki. According to Lemma 8, C(Ki) is a dominating
set of Ki. Therefore, Lemma 5 implies diam(Ki) < 3|C(Ki)|. This implies

∑r
i=1 diam(Ki) <

3
∑r
i=1 |C(Ki)| = 3|C| = Õ(n1−δ), where the last equality holds according to Lemma 6. J

The following simple corollary gives us the desired bound on the diameter of a connected
component K of Ĥ.

I Corollary 10. Let K be a connected component of Ĥ before any iteration of the loop in
Step 4 or after the final iteration. It holds diam(K) = Õ(n1−δ), w.h.p.

On the basis of Corollary 10, we can bound the value of T , the waiting time used in
Step 4c: Consider an iteration of the loop in Step 4. For each connected component K the
leader election in Step 4a can be achieved in Õ(n1−δ) rounds according to Theorem 3. The
algorithm FindAny in Step 4b requires Õ(n1−δ) rounds according to Theorem 1. Therefore,
we can choose T such that T = Õ(n1−δ).

Our next objective is to show that the computed subgraph H is an additive Õ(n1−δ)-
danner. To this end, we first take a closer look at the connected components of Ĥ after the
algorithm terminates.

I Lemma 11. After Algorithm 1 terminates, the set of connected components of Ĥ equals
the set of connected components of Ĝ.

DISC 2018

32:12 Time-Message Trade-Offs in Distributed Algorithms

Proof. Consider a connected component KĜ of Ĝ. We show by induction that after it-
eration i of the loop in Step 4, each connected component of Ĥ[V (KĜ)] has size at least
min{2i, |V (KĜ)|}. Since |V (KĜ)| ≤ n and the loop runs for logn iterations, this implies
that after the algorithm terminates, only one connected components remains in Ĥ[V (KĜ)].

The statement clearly holds before the first iteration of the loop, i.e., for i = 0. Suppose
that the statement holds for iteration i ≥ 0. We show that it also holds for iteration i+ 1. If
there is only one connected component at the beginning of iteration i+ 1 then that connected
component must equal KĜ so the statement holds. If there is more than one connected
component at the beginning of iteration i+1 then by the induction hypothesis each connected
component has size at least 2i. Each connected component finds an edge leading to another
connected component in Step 4b and thereby merges with at least one other connected
component. The size of the newly formed component is at least min{2i+1, |KĜ|}. J

We are now ready to show that H is an additive Õ(n1−δ)-danner.

I Lemma 12. Algorithm 1 computes an additive Õ(n1−δ)-danner H of G, w.h.p.

Proof. Let PG = (u0, . . . , u`) be a shortest path in G. We construct a path PH from u0
to u` in H such that |PH | ≤ |PG| + Õ(n1−δ). Some of the edges in PG might be missing
in H. Let {ui, ui+1} be such an edge. Observe that if ui or ui+1 has low degree then the
edge {ui, ui+1} is contained in H since a low degree node adds all of its incident edges to H
in Step 2. Hence, ui and ui+1 must have high degree. Since the nodes share an edge in G,
they lie in the same connected component of Ĝ. According to Lemma 11 this means that
the nodes also lie in the same connected component of Ĥ. Therefore, there is a path in Ĥ
between ui and ui+1. We construct PH from PG by replacing each edge {ui, ui+1} that is
missing in H by a shortest path from ui to ui+1 in Ĥ.

While PH is a valid path from u0 to u` in H, its length does not necessarily adhere to
the required bound. To decrease the length of PH , we do the following for each connected
component K of Ĥ: If PH contains at most one node from K, we proceed to the next
connected component. Otherwise, let v be the first node in PH that lies in K and let w be
the last node in PH that lies in K. We replace the subpath from v to w in PH by a shortest
path from v to w in Ĥ. After iteratively applying this modification for each connected
component, the path PH enters and leaves each connected component of Ĥ at most once
and within each connected component PH only follows shortest paths. Hence, according
to Lemma 9, the number of edges in PH passing through Ĥ is bounded by Õ(n1−δ). The
remaining edges in PH stem from PG, so their number is bounded by |PG|. In summary, we
have |PH | ≤ |PG|+ Õ(n1−δ). J

To complete our investigation we analyze the time and message complexity of Algorithm 1
and bound the number of edges in the resulting danner H.

I Lemma 13. The running time of Algorithm 1 is Õ(n1−δ) and the number of messages
sent by the algorithm is Õ(min{m,n1+δ}). After the algorithm terminates it holds |E(H)| =
Õ(min{m,n1+δ}).

Proof. We begin with the running time. The first three steps of the algorithm can be
executed in a single round. The loop in Step 4 runs for logn iterations, each of which takes
T = Õ(n1−δ) rounds.

Next we bound the number of edges in the danner. Steps 1 and 3 do not add any edges
to H. Step 2 adds Õ(min{m,n1+δ}) edges to H. The loop in Step 4 runs for logn iterations,
and in every iteration each connected component of Ĥ adds at most one edge to H. Since
the number of connected components is at most n at all times, the total number of edges
added in Step 4 is Õ(n).

R. Gmyr and G. Pandurangan 32:13

Finally, we turn to the message complexity of the algorithm. In Step 1 the nodes send
no messages. The number of messages sent in Step 2 is Õ(min{m,n1+δ}). In Step 3 each
low-degree node sends a message to each of its neighbors. By definition a low-degree node
has at most nδ neighbors and there are at most n low-degree nodes. Therefore, at most
Õ(min{m,n1+δ}) messages are sent in this step. Each iteration of the loop in Step 4 operates
on a subgraph Ĥ of the final danner H. Consider a connected component K of Ĥ. Both the
leader election in Step 4a and the algorithm FindAny in Step 4b use Õ(|E(K)|) messages
according to Theorems 3 and 1, respectively. Hence, the overall number of messages used in
any iteration is Õ(|E(Ĥ)|) which is bounded by Õ(|E(H)|) = Õ(min{m,n1+δ}). J

Finally, we treat the special case δ = 1. In this case we do not use Algorithm 1 but
instead let each node add all its incident edges to H such that H = G. Combining the
statements of the previous two lemmas together with the special case of δ = 1 yields the
following theorem.

I Theorem 14. There is an algorithm that for a connected graph G and any δ ∈ [0, 1]
computes an additive Õ(n1−δ)-danner H consisting of Õ(min{m,n1+δ}) edges, w.h.p. The
algorithm takes Õ(n1−δ) rounds and requires Õ(min{m,n1+δ}) messages.

4 Applications

In this section we demonstrate that the danner construction presented in Section 3 can be
used to establish trade-off results for many fundamental problems in distributed computing.

4.1 Broadcast, Leader Election, and Spanning Tree
On the basis of the danner construction presented in Section 3 it is easy to obtain a set of
trade-off results for broadcast, leader election, and spanning tree construction. The number
of messages required for a broadcast can be limited by first computing a danner and then
broadcasting along the danner. For leader election we can run the algorithm of Kutten
et al. [18] mentioned in Theorem 3 on the computed danner. Finally, for spanning tree
construction we can elect a leader which then performs a distributed breadth-first search on
the danner to construct the spanning tree. We have the following theorem.

I Theorem 15. There are algorithms that for any connected graph G and any δ ∈ [0, 1]
solve the following problems in Õ(D + n1−δ) rounds while using Õ(min{m,n1+δ}) messages,
w.h.p.: broadcast, leader election, and spanning tree.

4.2 Minimum Spanning Tree and Connectivity
In this section we assume that we are given a weighted connected graph G with edge weights
from {1, . . . ,poly(n)}. Without loss of generality we assume that the edge weights are distinct
such that the MST is unique. We present a three step algorithm for computing the MST.

Step 1. We compute a spanning tree of G using the algorithm described in Section 4.1
while ignoring the edge weights. Recall that the algorithm computes the spanning tree by
having a leader node initiate a distributed breadth-first search along a danner of diameter
Õ(D + n1−δ). Therefore, the algorithm supplies us with a rooted spanning tree T of depth
Õ(D + n1−δ). We aggregate the number of edges m in G using a convergecast along T . If
m ≤ n1+δ, we execute the singularly optimal algorithm of Pandurangan et al. [25] on the
original graph G to compute the MST, which takes Õ(D +

√
n) rounds and requires Õ(m)

messages. Otherwise, we proceed with the following steps.

DISC 2018

32:14 Time-Message Trade-Offs in Distributed Algorithms

Step 2. We execute the so-called Controlled-GHS procedure on G as described in [25]. This
procedure is a modified version of the classical Gallager-Humblet-Spira (GHS) algorithm for
distributed MST [9]. It constructs a set of MST fragments (i.e., connected subgraphs of the
MST). However, in contrast to the original GHS, Controlled-GHS limits the diameter of the
fragments by controlling the way in which fragments are merged. By running Controlled-GHS
for d(1− δ) logne iterations we get a spanning forest consisting of at most nδ MST-fragments,
each having diameter O(n1−δ) in Õ(n1−δ) rounds. The Controlled-GHS described in [25]
requires Õ(m) messages. However, we can reduce the number of messages to Õ(n) without
increasing the running time by modifying the Controlled-GHS procedure to use the algorithm
FindMin described in Theorem 2 to find the lightest outgoing edge of a fragment.

Step 3. Our goal in the final step of the algorithm is to merge the remaining nδ MST
fragments quickly. This step executes the same procedure for logn iterations. Each iteration
reduces the number of fragments by at least a factor of two so that in the end only a single
fragment remains, which is the MST.

We use a modified version of the algorithm TestOut that only communicates along the
spanning tree T computed in Step 1 (i.e., it ignores the structure of the fragments) and that
operates on all remaining fragments in parallel. Recall that the original TestOut algorithm for
a single connected component consists of a broadcast-and-echo in which a leader broadcasts
a random hash function and the nodes use an echo (or convergecast) to aggregate the parity
of a set of bits. We can parallelize this behavior over all fragments as follows: Let vT be the
root of T . First, vT broadcasts a random hash function through T . The same hash function
is used for all fragments. Each node u uses the hash function to compute its individual bit as
before and prepares a message consisting of the identifier of the fragment containing u and
the bit of u. These messages are then aggregated up the tree in a pipelined fashion: In each
round, a node sends the message with the lowest fragment identifier to its parent. Whenever
a node holds multiple messages with the same fragment identifier, it combines them into a
single message consisting of the same fragment identifier and the combined parity of the bits
of the respective messages. Since T has depth Õ(D+n1−δ) and there are at most nδ different
fragment identifiers, vT learns the aggregated parity of the bits in each individual fragment
after Õ(D + n1−δ + nδ) rounds, which completes the parallelized execution of TestOut.

As explained in Section 2.3, a polylogarithmic number of executions of TestOut in
combination with binary search can be used to identify the lightest outgoing edge of a
fragment. The ranges for the binary search for each fragment can be broadcast by vT in a
pipelined fashion and the TestOut procedure can be executed in parallel for all fragments as
described above. Thereby, vT can learn the identifier of a lightest outgoing edge for each
fragment in parallel. To merge the fragments, vT does the following: First, it learns the
fragment identifiers of the nodes at the end of each outgoing edge. It then locally computes
the changes in the fragment identifiers that follow from the merges. Finally, it broadcasts
these changes along with the identifiers of the leaving edges to merge the fragments. This
completes one iteration of the procedure.

Overall, the operations of the final step can be achieved a using polylogarithmic number
of pipelined broadcast-and-echo operations. Therefore, the running time of this step is
Õ(D + n1−δ + nδ) rounds. In each pipelined broadcast-and-echo each node sends at most nδ
messages, so the overall number of messages is Õ(n1+δ). This gives us the following theorem.

I Theorem 16. There is an algorithm that for any connected graph G with edge weights
from {1, . . . ,poly(n)} and any δ ∈ [0, 0.5] computes an MST of G in Õ(D + n1−δ) rounds
while using Õ(min{m,n1+δ}) messages, w.h.p.

R. Gmyr and G. Pandurangan 32:15

For δ = 0.5 we get an algorithm with optimal running time up to polylogarithmic factors.

I Corollary 17. There is an algorithm that for any connected graph G with edge weights from
{1, . . . ,poly(n)} computes an MST of G in Õ(D+

√
n) rounds while using Õ(min{m,n3/2})

messages, w.h.p.

Using this result on MST, it is not hard to devise an algorithm that computes the
connected components of a subgraph H of G (and thus also test connectivity): We assign the
weight 0 to each edge in E(H) and the weight 1 to each edge in E(G) \E(H). We then run a
modified version of the above MST algorithm in which a fragment stops participating as soon
as it discovers that its lightest outgoing edge has weight 1. Thereby, fragments only merge
along edges in H. Once the algorithm terminates, any two nodes in the same connected
component of H have the same fragment identifier while any two nodes in distinct connected
components have distinct fragment identifiers.

I Corollary 18. There is an algorithm that for any graph G, any subgraph H of G, and any
δ ∈ [0, 0.5] identifies the connected components of H in Õ(D + n1−δ) rounds while using
Õ(min{m,n1+δ}) messages, w.h.p.

4.3 O(log n)-Approximate Minimum Cut
We describe an algorithm that finds an O(logn)-approximation to the edge connectivity of
the graph (i.e., the minimum cut value).

I Theorem 19. There is a distributed algorithm for finding an O(logn)-approximation to
the edge connectivity of the graph (i.e., the minimum cut value) that uses Õ(min{m,n1+δ})
messages and runs in Õ(D + n1−δ) rounds for any δ ∈ [0, 0.5], w.h.p.

The main idea behind the algorithm is based on the following sampling theorem.

I Theorem 20 ([14, 11]). Consider an arbitrary unweighted multigraph10 G = (V,E) with
edge connectivity λ and choose subset S ⊆ E by including each edge e ∈ E in set S
independently with probability p. If p ≥ c logn/λ, for a sufficiently large (but fixed) constant
c, then the sampled subgraph G′ = (V, S) is connected, w.h.p.

We next sketch the distributed algorithm that is claimed in Theorem 19. The distributed
algorithm implements the above sampling theorem which provides a simple approach for
finding an O(logn)-approximation of the edge connectivity of G by sampling subgraphs with
exponentially growing sampling probabilities (e.g., start with an estimate of λ = m, the total
number of (multi-)edges, and keep decreasing the estimate by a factor of 2) and checking the
connectivity of each sampled subgraph. We take the first value of the estimate where the
sampled graph is connected as the O(logn)-approximate value. This algorithm can be easily
implemented in the KT0 distributed model using Õ(m) messages and Õ(D +

√
n) rounds

by using the singularly optimal MST algorithm of [25] or [7] (which can be directly used to
test connectivity – cf. Section 4.2). However, implementing the algorithm in the KT1 model
in the prescribed time and message bounds of Theorem 19 requires some care, because of
implementing the sampling step; each endpoint has to agree on the sampled edge without
actually communicating through that edge.

10Note that a weighted graph with polynomially large edge weights can be represented as an unweighted
graph with polynomial number of multiedges.

DISC 2018

32:16 Time-Message Trade-Offs in Distributed Algorithms

The sampling step can be accomplished by sampling with a strongly O(logn)-universal
hash function. Such a hash function can be created by using only O(logn) independent
shared random bits (see, e.g., [3]). The main insight is that a danner allows sharing of random
bits efficiently. This can be done by constructing a danner11 and letting the leader (which
can be elected using the danner – cf. Section 4.1) generate O(logn) independent random
bits and broadcast them to all the nodes via the danner. The nodes can then construct
and use the hash function to sample the edges. However, since the hash function is only
O(logn)-universal it is only O(logn)-wise independent. But still one can show that the
guarantees of Theorem 20 hold if the edges are sampled by a O(logn)-wise independent hash
function. This can be seen by using Karger’s proof [14] and checking that Chernoff bounds
for O(logn)-wise independent random variables (as used in [28]) are (almost) as good as that
as (fully) independent random variables. Hence edge sampling can be accomplished using
time Õ(D + n1−δ) (the diameter of the danner) and messages Õ(min{m,n1+δ) (number of
edges of the danner). Once the sampling step is done, checking connectivity can be done by
using the algorithm of Section 4.2.

4.4 Algorithms for Graph Verification Problems

It is well known that graph connectivity is an important building block for several graph
verification problems (see, e.g., [5]). Thus, using the connectivity algorithm of Section 4.2 as
a subroutine, we can show that the problems stated in the theorem below (these are formally
defined, e.g., in Section 2.4 of [5]) can be solved in the KT1 model (see, e.g., [5, 24]).

I Theorem 21. There exist distributed algorithms in the KT1 model that solve the following
verification problems in Õ(min{m,n1+δ}) messages and Õ(D + n1−δ) rounds, w.h.p, for any
δ ∈ [0, 0.5] : spanning connected subgraph, cycle containment, e-cycle containment, cut, s-t
connectivity, edge on all paths, s-t cut, bipartiteness.

5 Conclusion

This work is a step towards understanding time-message trade-offs for distributed algorithms
in the KT1 model. Using our danner construction, we obtained algorithms that exhibit time-
message trade-offs across the spectrum by choosing the parameter δ as desired. There are
many key open questions raised by our work. First, it is not clear whether one can do better
than the algorithms we obtained here for various fundamental problems in the KT1 model.
In particular, it would be interesting to know whether there are singularly optimal algorithms
in the KT1 model – e.g., for leader election, can we show an Õ(n) messages algorithm
that runs in Õ(D) (these are respective lower bounds for messages and time in KT1); and,
for MST, can we show an Õ(n) messages algorithm that runs in Õ(D +

√
n). A related

question is whether one can construct an (α, β)-danner with Õ(n) edges and α, β = Õ(1) in
a distributed manner using Õ(n) messages and in Õ(D) time. Such a construction could
be used to obtain singularly optimal algorithms for other problems. Finally, our danner
construction is randomized; a deterministic construction with similar guarantees will yield
deterministic algorithms.

11Note that the danner of a multigraph is constructed by treating multi-edges as a single edge.

R. Gmyr and G. Pandurangan 32:17

References
1 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estima-

tion of diameter and shortest paths (without matrix multiplication). SIAM J. Comput.,
28(4):1167–1181, 1999. doi:10.1137/S0097539796303421.

2 Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. A trade-off between
information and communication in broadcast protocols. J. ACM, 37(2):238–256, 1990.

3 Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst.
Sci., 18(2):143–154, 1979.

4 Yongwook Choi, Gopal Pandurangan, Maleq Khan, and V. S. Anil Kumar. Energy-optimal
distributed algorithms for minimum spanning trees. IEEE Journal on Selected Areas in
Communications, 27(7):1297–1304, 2009.

5 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012.

6 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM J. Com-
put., 29(5):1740–1759, 2000. doi:10.1137/S0097539797327908.

7 Michael Elkin. A simple deterministic distributed MST algorithm, with near-optimal time
and message complexities. In Proceedings of the 2017 ACM Symposium on Principles of
Distributed Computing (PODC), pages 157–163, 2017.

8 Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast in
networks. Random Struct. Algorithms, 1(4):447–460, 1990. doi:10.1002/rsa.3240010406.

9 Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.
doi:10.1145/357195.357200.

10 J. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm for minimum-
weight spanning trees. SIAM Journal on Computing, 27(1):302–316, February 1998.

11 Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In Dis-
tributed Computing - 27th International Symposium, DISC 2013, Jerusalem, Israel, Octo-
ber 14-18, 2013. Proceedings, pages 1–15, 2013.

12 Bernhard Haeupler, D. Ellis Hershkowitz, and David Wajc. Round- and message-optimal
distributed graph algorithms. In PODC, 2018.

13 James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh,
and Michele Scquizzato. Toward optimal bounds in the congested clique: graph connec-
tivity and MST. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing (PODC), pages 91–100, 2015.

14 David R. Karger. Random sampling in cut, flow, and network design problems. Math.
Oper. Res., 24(2):383–413, 1999.

15 Maleq Khan, Gopal Pandurangan, and V. S. Anil Kumar. Distributed algorithms for
constructing approximate minimum spanning trees in wireless sensor networks. IEEE Trans.
Parallel Distrib. Syst., 20(1):124–139, 2009.

16 Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of an
MST in a distributed network with o(m) communication. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 71–80, 2015. doi:10.1145/2767386.2767405.

17 Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Dis-
tributed computation of large-scale graph problems. In Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 391–410, 2015.

18 Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. On
the complexity of universal leader election. J. ACM, 62(1), 2015.

DISC 2018

http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1137/S0097539797327908
http://dx.doi.org/10.1002/rsa.3240010406
http://dx.doi.org/10.1145/357195.357200
http://dx.doi.org/10.1145/2767386.2767405

32:18 Time-Message Trade-Offs in Distributed Algorithms

19 Ali Mashreghi and Valerie King. Time-communication trade-offs for minimum spanning tree
construction. In Proceedings of the 18th International Conference on Distributed Computing
and Networking, Hyderabad, India, January 5-7, 2017, page 8, 2017. URL: http://dl.acm.
org/citation.cfm?id=3007775.

20 Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms
and probabilistic analysis. Cambridge University Press, 2005.

21 Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA,
October 12-15, 2014. Proceedings, pages 439–453, 2014.

22 Gopal Pandurangan. Distributed network algorithms. Draft, 2018. URL: https://sites.
google.com/site/gopalpandurangan/dna.

23 Gopal Pandurangan and Maleq Khan. Theory of communication networks. In Algorithms
and Theory of Computation Handbook. CRC Press, 2009.

24 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast distributed algorithms
for connectivity and MST in large graphs. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific
Grove, CA, USA, July 11-13, 2016, pages 429–438, 2016.

25 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and message-optimal
distributed algorithm for minimum spanning trees. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 743–756, 2017. doi:10.1145/3055399.3055449.

26 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. On the distributed com-
plexity of large-scale graph computations. In Proceedings of the 30th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA, 2018.

27 D. Peleg. Distributed Computing: A Locality Sensitive Approach. SIAM, 2000.
28 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for

applications with limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.

http://dl.acm.org/citation.cfm?id=3007775
http://dl.acm.org/citation.cfm?id=3007775
https://sites.google.com/site/gopalpandurangan/dna
https://sites.google.com/site/gopalpandurangan/dna
http://dx.doi.org/10.1145/3055399.3055449

Faster Distributed Shortest Path Approximations
via Shortcuts
Bernhard Haeupler1

Carnegie Mellon University, USA
http://cs.cmu.edu/~haeupler

Jason Li
Carnegie Mellon University, USA
http://cs.cmu.edu/~jmli

Abstract
A long series of recent results and breakthroughs have led to faster and better distributed ap-
proximation algorithms for single source shortest paths (SSSP) and related problems in the
CONGEST model. The runtime of all these algorithms, however, is Ω̃(

√
n), regardless of the

network topology2, even on nice networks with a (poly)logarithmic network diameter D. While
this is known to be necessary for some pathological networks, most topologies of interest are
arguably not of this type.

We give the first distributed approximation algorithms for shortest paths problems that ad-
just to the topology they are run on, thus achieving significantly faster running times on many
topologies of interest. The running time of our algorithms depends on and is close to Q, where Q
is the quality of the best shortcut that exists for the given topology. While Q = Θ̃(

√
n+D) for

pathological worst-case topologies, many topologies of interest3 have Q = Θ̃(D), which results
in near instance optimal running times for our algorithm, given the trivial Ω(D) lower bound.

The problems we consider are as follows:
an approximate shortest path tree and SSSP distances,
a polylogarithmic size distance label for every node such that from the labels of any two nodes
alone one can determine their distance (approximately), and
an (approximately) optimal flow for the transshipment problem.

Our algorithms have a tunable tradeoff between running time and approximation ratio. Our
fastest algorithms have an arbitrarily good polynomial approximation guarantee and an essen-
tially optimal Õ(Q) running time. On the other end of the spectrum, we achieve polylogarithmic
approximations in Õ(Q ·nε) rounds for any ε > 0. It seems likely that eventually, our non-trivial
approximation algorithms for the SSSP tree and transshipment problem can be bootstrapped to
give fast Q · 2O(

√
logn log logn) round (1 + ε)-approximation algorithms using a recent result by

Becker et al.

2012 ACM Subject Classification Theory of computation → Shortest paths, Theory of compu-
tation → Distributed algorithms, Theory of computation → Approximation algorithms analysis

Keywords and phrases Distributed Graph Algorithms, Shortest Path, Shortcuts

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.33

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
03671.

1 Supported in part by NSF grants CCF-1527110, CCF-1618280 and NSF CAREER award CCF-1750808.
2 We use -̃notation to hide polylogarithmic factors in n, e.g., Õ(f(n)) = O(f(n) logO(1) n).
3 For example, [8] and [10] show that large classes of interesting network topologies, including planar

networks, bounded genus topologies, and networks with polylogarithmic treewidth have shortcuts of
quality Q = Õ(D). A similar statment is likely to hold for any minor closed graph family [11].

© Bernhard Haeupler and Jason Li;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://cs.cmu.edu/~haeupler
http://cs.cmu.edu/~jmli
https://doi.org/10.4230/LIPIcs.DISC.2018.33
https://arxiv.org/abs/1802.03671
https://arxiv.org/abs/1802.03671
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Faster Distributed Shortest Path Approximations via Shortcuts

1 Introduction

This paper gives new distributed approximation algorithms for computing single source
shortest path (SSSP) distances and various generalizations, such as computing a SSSP tree,
distance labels, and a min-cost uncapacitated flow.

In the last few years, CONGEST algorithms for shortest path problems have seen a
tremendous amount of interest and progress [5,12,17]. The main difference of the algorithms
developed here, compared to those works, is that our algorithms achieve significantly faster
running times for non-pathological network topologies by building on the recently developed [8,
9] low-congestion shortcut framework; for a detailed overview, see Appendix A of the full
version on arXiv.

The low-congestion shortcut framework leads to faster algorithms for optimization prob-
lems with simple parallel divide and conquer style algorithms, such as the minimum spanning
tree problem. However it initially seemed less applicable to shortest path problems, par-
ticularly because all previous approaches for CONGEST algorithms for these problems
led to Ω(

√
n) running times, for reasons that are independent of issues where shortcuts

can help. Indeed, our approach for achieving non-trivial approximation ratios for shortest
path problems deviates notably from these approaches, and uses different tools to obtain
non-trivial approximation guarantees.

This paper is organized as follows: We briefly summarizes the key technical concepts of
the shortcut framework in Section 1.1; a more detailed treatment of the framework is given
in Appendix A in the full version. In Section 1.2, we define the different problems we treat in
this paper, and explain the difficulties in beating the Ω̃(

√
n+D) barrier for approximating

shortest path distances. We state our results in Section 1.3, compare it to related works in
Section 1.4, and devote the remaining paper to describing our algorithms and proving them
correct.

1.1 The Low-Congestion Shortcut Framework: A Brief Summary
This section provides the key technical definitions and facts about the low-congestion shortcut
framework. However, it does not attempt to explain the reasons, generality or importance
behind the definitions given here. Appendix A of the full version gives a more detailed
treatment, and we highly recommend to readers not familiar with the low-congestion shortcut
framework to read Appendix A first.

The shortcut framework is built around a simple and basic communication problem, given
in the next two definitions:

I Definition 1 (Valid Partitioning and Parts). For a graph G = (V,E), we say that a collection
of parts S1, S2, . . . ⊂ V is a valid partition if the parts are vertex disjoint and each induces
a connected graph.

I Definition 2 (The Part-wise Communication Problem). Let G be a network with a valid
partitioning S1, S2, . . . and a value xv for every node v ∈ V . Suppose ⊕ is an associative
and commutative function. The partwise communication problem asks for every Si and
every u ∈ Si to compute the value

⊕
v∈Si

xv.

We remark that for convenience, the parts of a valid partition do not necessarily need
to contain every vertex in V . Alternatively, it can be convenient to think of each node

B. Haeupler and J. Li 33:3

in V \
⋃
i Si as forming its own single-vertex part, thus making any valid partitioning a

partitioning in the usual sense.
The key findings of the shortcut framework can now be summarized as follows:

The shortcut framework allows us to characterize how hard it is to solve the part-wise
communication problem described in Definition 2 in the CONGEST model for any given
topology G. For any network with topology G this is captured by the quantity QG. In
the worst-case, the value of QG is Θ̃(

√
n+D) for a network with n nodes and diameter

D, such as the pathological network that shows a Ω̃(
√
n+D) lower bound for MST and

related problems [19]. In many other networks of interest, including planar networks,
networks which embed into a surface with bounded or polylogarithmic genus, networks
with bounded or polylogarithmic tree-width or networks with small separators, the
hardness QG is much lower and in fact only Õ(D). Most importantly, whatever the
hardness QG of a given topology is, there is a simple distributed algorithm which solves
the part-wise communication problem in Õ(QG) rounds for any valid partitioning in G.
Thus, Õ(QG) round shortcut-based algorithms necessarily have a worst-case running
time of Õ(

√
n+D) when expressed in terms of n and D; however, they are essentially

running as fast as the given topology (and to some extent even the given input) allows
it, which in many cases of interest is significantly faster, e.g., Õ(D) rounds.

1.2 CONGEST model and Shortest Path Problems
1.2.1 CONGEST Model
We consider the classical CONGEST model of distributed computing where a network is
given by a connected graph G = (V,E) with n nodes and (hop-)diameter D. Communication
proceeds in synchronous rounds. In each round, each node can send a different O(logn) bit
message to each of its neighbors. Local computations are free and require no time. Nodes
have no initial knowledge of the topology G, except that we assume that they know n and D
up to constants (because these parameters can be computed in O(D) time, which is negligible
in our context). All of our algorithms are randomized and succeed with high probability4. In
particular, we assume that each node has access to a private string of randomness, which it
can also use to create an O(logn) bit ID that is unique w.h.p.

In all problems considered here, we assume that every edge e of the network G has a
length or cost w(e) associated with it. We assume that all lengths lie in the range [1, nC] for
some constant C, and are initially only known to nodes adjacent to an edge. Interestingly,
our algorithms also easily handle edges of length zero, but for sake of simplicity, we do not
consider such edges in this paper. Any such length or cost function w produces a weighted
graph which we call G(w), and induces a distance between any two nodes u, v ∈ V , which
we denote with dG(w)(u, v), or simply d(u, v) when the weighted graph G(w) is clear. We
denote the weighted diameter of a network with L = maxu,v dG(u, v).

1.2.2 Shortest Path Problems
The most important and most basic problem we are studying in this paper is the single
source shortest path problem:

4 Throughout this work, “with high probability” or w.h.p. means with probability at least 1− n−C for
any desired constant C.

DISC 2018

33:4 Faster Distributed Shortest Path Approximations via Shortcuts

I Definition 3. The α-approximate SSSP distance problem assumes as input a
weighted graph and a designated source node s ∈ V , and asks for every node v ∈ V

to compute an approximate distance dv which satisfies d(s, v) ≤ dv ≤ α · d(s, v).

We furthermore consider the following generalizations of the SSSP distance problem:

I Definition 4. The α-approximate SSSP tree problem assumes that a weighted graph
with a designated source node s ∈ V is given and asks to compute a subtree T ⊆ G such
that for every node v ∈ V distance dT (s, v) ≤ α · d(s, v). Each node should know which of
its adjacent edges belong to T .

I Definition 5 (Approximate distance labeling scheme). An (l(n), α)-approximate dis-
tance labeling scheme is a function that labels the vertices of an input graph with distinct
labels up to l(n) bits, such that there exists a polynomial time algorithm that, given the
labels of vertices x and y, provides an estimate d̃(x, y) for the distance between these vertices
such that

d̃(x, y) ≤ d(x, y) ≤ α · d̃(x, y).

I Definition 6 (Transshipment Problem). The transshipment problem is the problem of
uncapacitated min-cost flow. In it every node in a weighted graph G has some real demand
dv such that

∑
v dv = 0. The cost of routing x amount of flow over an edge e of weight w(e)

is xw(e). The problem is to compute a flow satisfying all demands of approximate minimum
cost. Each node should know the flow an all edges incident to it.

1.3 Our Results
1.3.1 SSSP
Our first result is on computing an approximate, single source shortest path tree in a
distributed setting. Note that due to communication limits in the CONGEST model, it is
infeasible for each vertex to know the entire shortest path tree. However, it is sufficient that
each vertex computes the local structure of the tree, which is made specific below.

I Theorem 7. Let G be a network graph with edge weights in [1,poly(n)], with a specified
source vertex, and let β := (logn)−Ω(1). There is a distributed algorithm that, w.h.p., runs
for Õ(1

βQG) rounds and outputs a spanning tree that approximates distances to the source to
factor O(LO(log logn)/ log(1/β)).5 By output, we mean that at the end of the algorithm, every
vertex knows its set of incident edges in the spanning tree.

By setting β := n−ε, β := 2−Θ(
√

logn), and β := log−Θ(1/ε) n for constant ε, respectively,
we obtain the following three corollaries:

I Corollary 8. Let G be a network graph with edge weights in [1, poly(n)], with a specified
source vertex. For any constant ε > 0, there is a distributed algorithm that, w.h.p., runs for
Õ(QGnε) rounds and outputs a spanning tree that approximates distances to the source to
factor polylog(n).

I Corollary 9. Let G be a network graph with edge weights in [1, poly(n)], with a specified
source vertex. There is a distributed algorithm that, w.h.p., runs for Õ(QG2O(

√
logn)) rounds

and outputs a spanning tree that approximates distances to the source to factor 2O(
√

logn).

5 Recall that L = maxu,v dG(u, v).

B. Haeupler and J. Li 33:5

I Corollary 10. Let G be a network graph with edge weights in [1,poly(n)], with a specified
source vertex. For any constant ε > 0, there is a distributed algorithm that, w.h.p., runs
for Õ(QG) rounds and outputs a spanning tree that approximates distances to the source to
factor O(Lε).

1.3.2 Distance labeling schemes
For distance labeling schemes, we have the following result.

I Theorem 11. Let G be a network graph with edge weights in [1,poly(n)]. There exists a
(polylog(n), nO(log logn)/log(1/β)) approximate distance labeling scheme that runs in Õ(1

βQG)
rounds.

Setting β := nε gives the following corollary:

I Corollary 12. Let G be a network graph with edge weights in [1, poly(n)], There exists a
(polylog(n), polylog(n)) approximate distance labeling scheme that runs in Õ(QGnε) rounds.

1.3.3 Transshipment problem
We also provide a distributed algorithm to compute an approximate flow for the transshipment
problem.

I Theorem 13. Let G be a network graph with edge weights in [1, poly(n)] and demands that
sum to zero, and let β := (logn)−Ω(1). There is an algorithm that, w.h.p., runs for Õ(1

βQG)
rounds and computes a Õ(1

βn
O(log logn)/ log(1/β))-approximate flow.

1.4 Related Work
The complexity theoretic issues in the design of distributed graph algorithms for the CON-
GEST model have received much attention in the last decade, and extensive progress has been
made for many problems: Minimum-Spanning Tree [13], Minimum Cut [18], Diameter [14],
Shortest Path [5], and so on. Most of those problems have Θ̃(

√
n + D)-round upper and

lower bounds for some sort of approximation guarantee [19]. The notion of low-congestion
shortcuts was invented as a framework of circumventing these lower bounds [8]. Specifically,
the ideas present in [8] can be turned into very short and clean Õ(D+

√
n) round algorithms

for general graphs, and near-optimal Õ(D) round algorithms for special classes of graphs, for
problems such as MST and Min-Cut.

However, the shortcut framework cannot be applied directly to the SSSP problem, since,
unlike MST and Min-Cut, shortest path problems are not inherently parallelizable. For SSSP,
a new technique based on multiplicative weights results in a (1 + ε)-approximation to SSSP
in Õ(D +

√
n) time on general graphs [5]. However, until this paper, not much work has

been done on circumventing the Ω̃(D +
√
n) lower bound on restricted classes of graphs or

otherwise.
As a subroutine to computing shortest paths, we will be running low-diameter graph

decompositions. Low diameter decompositions have a long history in the centralized [4, 15]
and parallel [3, 6, 16] settings, and have been applied in the distributed setting to compute a
network decomposition with low “chromatic number” [7].

2 Distance-Preserving Tree

Let G be a weighted graph with QG-quality shortcuts. For a reader not familiar with
shortcuts or the material in Appendix A of the full version, the parameter QG intuitively

DISC 2018

33:6 Faster Distributed Shortest Path Approximations via Shortcuts

measures how easy it is for connected components of G to communicate within each other.
As a general rule, the “nicer” the graph G is, the smaller the quantity QG and the closer it
gets to the optimal D. For example, if G is a planar graph, then QG = Õ(D).

We first consider the problem of finding a tree such that, for every pair of vertices x, y ∈ V ,
their distance is well-approximated with constant probability. Our algorithm is an adaptation
of the algorithm of Section 5.4 from [2].

To motivate the ideas behind the algorithm, we describe it in a parallel framework with
graph contraction support. In each iteration, the algorithm runs a low diameter decomposition
(defined below; see Appendix B of the full version for details) on the graph and contracts
each component into a single vertex. To compute the tree as described above, take the set
of edges inside the BFS trees formed by each LDD, and map them back to the original
graph. The resulting tree is simply the (disjoint) union of these edges over all iterations. Of
course, in a distributed framework, we cannot maintain contracted graphs, so we substitute
each contracted vertex with a part of the original graph with zero-weight edges inside. To
communicate efficiently between the parts, we establish shortcuts within each part.

I Definition 14. For a weighted graph G = (V,E), a low-diameter decomposition (LDD) of
G is a probabilistic distribution over partitions of V into connected components S1, . . . , Sk,
such that
1. W.h.p., every induced graph G[Si] has low weighted diameter.
2. For every two vertices x, y ∈ V , the probability that they belong to the same component

is bounded from below by some function depending on dG(x, y).

We now describe the algorithm in detail. For a weight function w : E → R, denote G(w)
to be the graph G whose edges are reweighted according to w. The algorithm maintains a
weight function w : E → {0} ∪ [R,poly(n)] on the set of edges, for a given value R. The
zero-weight edges connect vertices within each component, while the threshold R increases
geometrically over time. With a larger threshold R, we can compute the LDD on G(1

Rw),
allowing the LDD to travel farther in the same amount of time. If R is large enough, this
graph still has edge weights at least 1 in between components, so computing the LDD is
feasible in a distributed manner.

In addition to w, the algorithm also maintains a forest T , which gets new edges every
iteration until it results in the approximate shortest path tree. Consider the following
LDDSubroutine, which we apply iteratively to w and T .

Algorithm (w′, T ′) = LDDSubroutine(w, T, β,R)
Algorithm:

1. Initially, set w′ := w and T ′ := T .
2. Consider G0(w), the subgraph of G with only the edges e with w(e) = 0.
3. Let H be the (multi-)graph with every connected component of G0(w) contracted

to a single vertex. Denote wH as the function w restricted to the edges in H.
4. Simulate a LDD on H(1

RwH) with parameter 1
β (see Appendix C of the full version).

The specifics are deferred to the next section.
5. For every edge in H that is part of a BFS tree in the LDD, add that edge to T ′.
6. For every edge e in H completely inside a LDD component, set w′(e) := 0.
7. For every other edge e in H, set w′(e) := w(e) + c1

β logn (for large enough constant
c1).

8. Output (w′, T ′).

B. Haeupler and J. Li 33:7

2.1 Correctness
The following two lemmas bound the maximum weighted diameter of a component, and
therefore also the running time of the subroutine, as well as the probability that two vertices
close together belong to the same component. Their proofs are natural generalizations of
those in [16] and appear in Appendix C of the full version.

I Lemma 15. W.h.p., each component in LowDiameterDecomposition has weighted dia-
meter O(1

β logn).

I Lemma 16. For vertices u, v ∈ V of (weighted) distance d, the probability that u and v
belong to the same component is e−O(dβ).

We now describe in more detail how to simulate the LDD in H(1
RwH) in the desired

running time. Observe that we cannot directly compute the LDD on the contracted graph,
since the contracted vertices are actually entire parts with limited communication between
them. However, we can apply shortcuts to communicate quickly within the parts, up to the
quality of the shortcut.

I Lemma 17. The LDD on the contracted graph (step 4 of LDDSubroutine) can be simulated
with a Õ(QG) multiplicative overhead in running time. In other words, if the LDD takes d
rounds, then it can be simulated in Õ(QGd) rounds in the network G.

Proof. Define the parts of V to be the connected components of G, and compute a set of
Õ(QG)-quality shortcuts, one for each part. In every round of the LDD on H(1

RwH), we
perform two steps sequentially: one to traverse nonzero weight edges between parts, and one
to flood through the zero weight edges within each part. To take care of the edges between
parts, note that every such edge has weight at least 1, so we can send them directly through
the network G. To flood through the zero edges within each part, it suffices to compute the
minimum time t that is received by any vertex, and then broadcast the message “t” to the
entire part. By routing through shortcuts, this can be done in Õ(QG) time per partition.
Overall, every round of the LDD is replaced by Õ(QG) rounds in the network G, hence the
multiplicative overhead. J

Together with Lemma 15, we get a running time of Õ(1
βQG).

I Definition 18. Let w : E → R be a weight function, and T ⊆ G a forest. Define G0(w)
to be the subgraph of G with only the edges e with w(e) = 0. Let C1, C2, . . . of G be the
connected components of G0(w). We say that (w, T) satisfies the subroutine invariant
with parameter R if the following conditions hold:
1. The weighted diameter of each part Ci using edge weights in G is at most R.
2. Every edge within a part Ci has weight 0 in w.
3. Every edge between two parts Ci, Cj has weight at least R in w.
4. For all x, y belonging to the same part Ci, dT (x, y) ≤ R.
5. T has a spanning tree within each part Ci, and no edges in between parts.

I Lemma 19. Fix parameter β. Suppose that the input (w, T) to LDDSubroutine satisfies
the subroutine invariant with parameter R. Then, w.h.p., for large enough constants c1 and
c2,

The output (w′, T ′) satisfies the subroutine invariant with parameter (c1
β logn)R.

For all x, y ∈ V , E[dG(w′)(x, y)] ≤ (c2 logn)dG(w)(x, y).

DISC 2018

33:8 Faster Distributed Shortest Path Approximations via Shortcuts

Proof. Note that the following properties of the invariant follow immediately:
2. Every edge within a part C ′i has weight 0 in w′.
3. Every edge between two parts C ′i, C ′j has weight at least (c1

β logn)R in w′.
5. T ′ has a spanning tree within each part C ′i, and no edges in between parts.

To prove invariant (4), suppose that x, y ∈ V are in the same C ′i. If they are also in
the same Ci, then the property holds by the input guarantee. Otherwise, by Lemma 15,
w.h.p. the parts containing x and y have distance O(1

β logn) in the BFS tree on H(1
RwH),

which means that there is a path in the BFS tree that travels through O(1
β logn) vertices

in H(1
RwH). We consider the distance through edges in H(1

RwH) and through vertices in
H(1

RwH) (which are actually parts in G) separately. For the edges, the distance is at most
O(1

β logn)R in H, and each of these edges has weight at least that in G, giving O(1
β logn)R

total distance. For the vertices, traversing through T inside the O(1
β logn) parts takes O(R)

distance each, by the input guarantee, and O(1
β logn)R distance overall. Combining the two

arguments proves (4) dT ′(x, y) ≤ (c1
β logn)R. Note that (4) immediately implies that (1) the

weighted diameter of each part C ′i using edge weights in G is at most (c1
β logn)R.

Finally, we prove that E[dG(w′)(x, y)] ≤ (c2 logn)dG(w)(x, y). If x, y ∈ V are in the same
C ′i, then their distance in G(w′) is zero and the claim follows. Otherwise, consider the
shortest path in H, which is also the shortest path in H(1

RwH). By Lemma 16, every edge
e on this path has probability at most 1− e−O(weβ) = O(w(e)β) of being cut between two
components, so the expected length is at most O(w(e)β) · c1

β logn = O(w(e) logn). By
linearity of expectation, the expected multiplicative increase of the path in H(1

RwH), and
also in G(w′), is O(logn). J

2.2 Algorithm Main Loop
In this section, we apply LDDSubroutine recursively with geometrically increasing values of
R. We show that the resulting forest approximates distances in expectation.

Algorithm T = ExpectedSPForest(G, β,R0)
Input:

G = (V,E), the network graph with edge weights in [1, poly(n)].
β = (logn)−Ω(1), freely chosen.
R0 ∈ [c2β

c1
, 1]

Algorithm:
1. Initially, set R(0) := R0, T (0) := ∅, and w(0) to have the same edge weights as G.
2. For t = 1, 2, . . ., while R < nc for large enough c:

a. (w(t), T (t)) := LDDSubroutine(w(t−1), T (t−1), β, R(t−1)).
b. Set R(t) := (c1

β logn)R(t−1).
3. Output the forest obtained on the last iteration.

Note that T is not guaranteed to be a tree at the end of the algorithm, so distances
within T can be infinite. However, a simple induction with linearity of expectation shows
that the expected increase in length behaves in a controlled way:

I Lemma 20. Let G be a network graph with edge weights in [1, poly(n)], and let β :=
(logn)−Ω(1). On the tth iteration of ExpectedSPForest, for any two vertices x, y ∈ V ,
E[dG(w(t))(x, y)] ≤ (c2 logn)tdG(x, y).

B. Haeupler and J. Li 33:9

We now show that we get approximate shortest paths with constant probability.

I Lemma 21. Let G be a network graph with edge weights in [1, poly(n)], and let β :=
(logn)−Ω(1). The algorithm ExpectedSPForest runs in Õ(1

βQG) rounds. Consider the
output forest T , and fix any two vertices x, y ∈ V . Then, dT (x, y) ≥ dG(x, y) always6, and
with constant probability, dT (x, y) ≤ O(1

β logn · dG(x, y)O(log logn)/ log(1/β)) · dG(x, y).

Proof. For the running time, there are O(logn
log(1/β)) iterations of the LDD, each of which takes

Õ(QG) time.
For simpler notation, define L := dG(x, y). Since every edge added to T has weight at

least the weight of that same edge in G, we clearly have dT (x, y) ≥ L. We now prove the
other bound on dT (x, y).

Consider any iteration t such that R(t) ≥ 2(c2 logn)tL. (We later argue that such an
iteration t must exist.) By Lemma 20 and Markov’s inequality, dG̃(t)(x, y) < R(t) with
probability at least 1

2 . If this occurs, then x and y cannot belong to different parts at
iteration t, since the distance between parts is at least R(t). By the subroutine guarantee,
dT (t)(x, y) = O(1

β logn)R(t−1) = O(R(t)), and since the edges of T (t) are preserved for the rest
of the algorithm, dT (x, y) = O(R(t)) as well. Therefore, for this value of t, the approximation
factor is 2(c2 logn)t with probability at least 1

2 .
It remains to find the smallest satisfying t. The condition on t is equivalent to

(c1
β logn)tR0 ≥ 2(c2 logn)tL, or t ≥ d log(2L)−log(R0)

log(c1/(c2β)) e. For t achieving equality, we get

R(t) = O

(
c1
β

logn
)t
R0 ≤

(
c1
β

logn
) log(2L)−log(R0)

log(c1/(c2β)) +1
= c1

β
logn ·

(
c1
β

logn
) log(2L)−log(R0)

log(c1/(c2β))

.

First, consider the case when L ≤ c1/(c2β). Since R0 ≥ (c2β)/c1, we have log(2L) −
log(R0) ≤ log 2, so

R(t) ≤ c1
β

logn ·
(
c1
β

logn
) log 2

log(c1/(c2β))

≤ c1
β

logn ·O(1) ≤ O
(
c1
β

logn
)
· L,

where the second-to-last inequality uses that β = (logn)Ω(1).
Now consider the case when L ≥ c1/(c2β). Since R0 ≥ (c2β)/c1, we have log(2L) −

log(R0) ≤ log(2L2), so

R(t) ≤
(
c1
β

logn
) log(2L2)

log(c1/(c2β)) +1
= c1

β
logn ·

(
c1
β

logn
) log(2L2)

log(c1/(c2β))

= c1
β

logn · (2L2)
log(c1/β·logn)
log(c1/(c2β)) = O

(
1
β

logn · (2L2)
O(log logn)

log(1/β)

)
,

as desired.
Lastly, we show that such an iteration t must exist. In particular, we show that the value

of t chosen above satisfies R(t) ≤ nc for some large enough constant c in the algorithm. Since
L = poly(n) and R = 1/poly(n), we have

t =
⌈

log(2L)− log(R0)
log(c1/(c2β))

⌉
= O

(
logn

log(1/β)

)
.

6 In particular, dT (x, y) =∞ if x and y are not in the same connected component in T

DISC 2018

33:10 Faster Distributed Shortest Path Approximations via Shortcuts

Therefore,

R(t) =
(
c1
β

logn
)t
R0 =

(
logn
β

)O(logn
log(1/β)

)
=
(

1
β

)O(logn
log(1/β)

)
· (logn)O

(
logn

log(1/β)

)
= nO(1) · nO(1),

where the last equality uses the fact that β = (logn)−Ω(1) =⇒ log(1/β) = Ω(log logn).
Therefore, R(t) ≤ nc for large enough c. J

From the shortest path forest, we can also derive the distances to each vertex v from a
specified source s. Below is the algorithm, which runs in Õ(1

βQG) rounds.

Algorithm ExpectedSPDistance(G, β, s)

1. Run ExpectedSPForest(G, β) to obtain forest T . Set T̃ to be the connected com-
ponent of T that contains the source s.

2. For all vertices v /∈ T̃ , set d(s, v) :=∞.
3. Run AggregatePathToRoot (see Appendix B of the full version) with xv = 1 for all

v ∈ T̃ to determine the depth of each vertex in the tree T̃ rooted at s.
4. Every vertex v ∈ T̃\{s} computes its parent in the rooted tree, which it can determine

by finding the one neighbor with smaller depth.
5. For each v ∈ T̃\{s}, set xv to be the weight of the edge to its parent, and set xs := 0.

Run AggregatePathToRoot on these values to determine d(s, v) for v ∈ T .

3 Solving SSSP and Related Problems

3.1 SSSP Trees
In this section, we describe an algorithm that outputs an approximate single source shortest
path tree with source s. At a high level, to boost the probability that distances are well-
approximated, we construct many randomized trees and take a collective “best” tree.

Algorithm SSSPTree(G, β, s)
1. Repeat ExpectedSPDistance(G, β, s) Θ(logn) times to obtain distances dTi(v) :=

dTi(s, v).
2. For each vertex v, set dmin(v) := mini dTi(v).
3. For each vertex v except the source, connect an edge to some neighbor u that satisfies

dmin(u) + w(u,v) ≤ dmin(v). Return the tree T ∗ of all such edges.

I Lemma 22. Let G be a network graph with edge weights in [1, poly(n)], and let β :=
(logn)−Ω(1). W.h.p., SSSPTree runs for Õ(1

βQG) rounds and outputs a shortest path tree

that O(1
βdG(v)

O(log logn)
log(1/β) logn)-approximates distances from the source to each v.

Proof. Observe that in step 3 of SSSPTree, such a neighbor always exists, since in the tree Ti
that achieves distance dmin(v) to v, the parent u of v in Ti satisfies dmin(u)+w(u,v) = dmin(v).
To show that dT∗(v) ≤ d(v) for each v, consider the path s = v0, v1, v2, . . . , v` = v in T ∗. We
have w(vi, vi−1) ≤ dmin(vi)− dmin(vi−1) for each i, and summing up the inequalities gives
the result.

B. Haeupler and J. Li 33:11

From Lemma 21, each vertex v achieves the desired approximation with constant prob-
ability. By taking the minimum dTi(v) over Θ(logn) trees, this approximation is satisfied
w.h.p. for every v, giving dT∗(v) ≤ dmin(v) = O(1

βdG(v)1+O(log logn)
log(1/β) logn) · dG(v). J

By repeating SSSPTree multiple times with differing R0, we can shave off the 1
β logn in

the approximation as follows, giving our main result for SSSP.

I Theorem 7. Let G be a network graph with edge weights in [1, poly(n)], with a specified
source vertex, and let β := (logn)−Ω(1). There is a distributed algorithm that, w.h.p., runs
for Õ(1

βQG) rounds and outputs a spanning tree that approximates distances to the source to
factor O(LO(log logn)/ log(1/β)).7 By output, we mean that at the end of the algorithm, every
vertex knows its set of incident edges in the spanning tree.

Proof. We first handle the pairs u, v ∈ V with d(u, v) ≥ c1/(c2β).
Run SSSPTree dlog(c1/(c2β))e = O(logn) many times, setting R0 := 2−t on the tth

iteration. The total number of rounds is Õ(1
βQG). Consider the case L ≥ c1/(c2β) in the

proof of 21. Observe that the factor 1
β comes from the +1 in the ceiling computation in

the expression d log(2L)−log(R0)
log(c1/(c2β)) e. However, with the differing values of R0, there exists one

such R0 such that taking the ceiling increases the value by at most 1
log(c1/(c2β)) . This factor

gets absorbed in the exponent O(log logn)
log(1/β) . Therefore, for each v, there exists a tree with this

approximation factor, and running steps 2 and 3 from SSSPTree on these trees gives the
result.

Now we handle the pairs u, v ∈ V with d(u, v) ≤ c1/(c2β). Intuitively, this should not
be a problem: if we run an LDD with β ∈ [1/L, 2/L], then by Lemma 16, with constant
probability, u and v are in a common component of diameter O(L logn), stretching the
distance by a factor O(logn).

Let us define wG to be the weights of the input graph G. Then the algorithm runs
LDDSubroutine(wG, ∅, β′, 1) times for each β′ ∈ [1, c1/(c2β)] satisfying β′ = 2−i for some
positive integer i, and repeats this loop O(logn) times. In total, this takes Õ(1

βQG). W.h.p.,
for each pair u, v ∈ V with d(u, v) ≤ c1/(c2β), there is a forest T returned by one of the
LDDSubroutines for which dT (u, v) ≤ O(logn)dG(u, v). Finally, running steps 2 and 3 from
SSSPTree on these forests, along with the tree obtained from the case L ≥ c1/(c2β), gives
the desired SSSP tree. J

3.2 Distance Labeling Schemes
We restate our main result on approximate distance labeling schemes.

I Theorem 11. Let G be a network graph with edge weights in [1,poly(n)]. There exists a
(polylog(n), nO(log logn)/log(1/β)) approximate distance labeling scheme that runs in Õ(1

βQG)
rounds.

Proof. For each t from 1 to dlog(c1/(c2β))e, run ExpectedSPForest Θ(logn) times with
R0 := 2−t. By analysis from Lemma 21 and Theorem 7, w.h.p., for every x, y ∈ V , there
is an iteration of ExpectedSPForest with R = O(dG(v)1+O(log logn)

log(1/β)) that outputs a cluster
containing both x and y. The total number of rounds is Õ(1

βQG).

7 Recall that L = maxu,v dG(u, v).

DISC 2018

33:12 Faster Distributed Shortest Path Approximations via Shortcuts

In each of the O(log2 n) iterations of ExpectedSPForest, consider all of the clusters
formed throughout the algorithm, and give each one a unique ID. For every iteration with
parameter R and a cluster formed in that iteration, assign to every vertex within the cluster
the label (ID, R). Each vertex is assigned to O(logn

log(1/β)) clusters per ExpectedSPForest, so
the label size is polylog(n).

To compute distances given two vertices x, y ∈ V , simply output the minimum possible
R over all clusters that contain both x and y, which is easily computed with the labels of
x and y. By the analysis above, the minimum possible R gives the desired approximation
factor O(dG(v)O(log logn)/log(1/β)) = O(nO(log logn)/log(1/β)). J

3.3 Transshipment Problem
Let G be a transshipment network with demand dv at each node v. The following algorithm
computes an approximate transshipment flow in expectation.

Algorithm ExpectedTS
1. Run ExpectedSPForest and root the tree T arbitrarily.
2. Using AggregateSubtree (see Appendix B) compute F (v) :=

∑
u∈Sv

dv for all v, where

Sv is the subtree rooted at v.
3. For each edge (v, p) ∈ T with p the parent of v in the rooted tree, direct F (v) flow

from v to p. (If F (v) is negative, then direct the flow the other way.)

I Lemma 23. Let G be a network graph with edge weights in [1,poly(n)] and demands that
sum to zero, and let β := (logn)−Ω(1). The expected total cost of ExpectedTS is within
Õ(1

βn
O(log logn)/ log(1/β)) of optimum.

Proof. Decompose the optimal solution into a set of (shortest) paths. For a path from s

to t, we have E[dT (s, t)] = Õ(1
βn

O(log logn)/ log(1/β)) · dG(s, t) by Lemma 21, and by linearity
of expectation, the cost C of routing each of these paths through T gives an expected
Õ(1

βn
O(log logn)/ log(1/β)) approximation. It remains to show that the total cost of ExpectedTS

is at most C. If ExpectedTS places F (e) flow along an edge e, then the total demand difference
between the two halves of the tree split at e is |2F |. Therefore, any sequence of paths along
T that satisfies all demands must route at least |F | flow along edge e. It follows that C must
be at least the cost of ExpectedTS. J

By running ExpectedTS repeatedly and taking the overall best flow, we obtain our main
result for transshipment.

I Theorem 13. Let G be a network graph with edge weights in [1, poly(n)] and demands that
sum to zero, and let β := (logn)−Ω(1). There is an algorithm that, w.h.p., runs for Õ(1

βQG)
rounds and computes a Õ(1

βn
O(log logn)/ log(1/β))-approximate flow.

Proof. Run ExpectedTS Θ(logn) many times and output the minimum total cost. By
Markov’s inequality and Lemma 23, w.h.p., some iteration achieves within twice the expected
approximation of Õ(1

βn
O(log logn)/ log(1/β)). J

4 Conclusion and Future Work

Using the shortcuts framework from [8, 9], we give the first nontrivial approximation al-
gorithms for shortest path problems which run in o(

√
n + D) time on non-pathological

B. Haeupler and J. Li 33:13

network topologies. Our algorithms feature a tuneable parameter β that represents the
balance between approximation ratio and running time. For certain values of β, we obtain
polylogarithmic-approximate solutions in Õ(nε ·QG) rounds for the shortest path and distance
labeling problems. While sublogarithmic approximation ratios are known to be impossible
(even existentially) for labeling schemes with polylogarithmic labels we believe that our
approximation guarantees can likely be improved for nice family of graphs, and, in the case
of the SSSP-tree and transshipment problems, even generally.

In particular, for the quite general set of minor closed families of graphs one might be
able to use more sophisticated low-diameter decompositions, such as [1], which would directly
lead to O(1)-approximation guarantees for such networks in our framework. However, [1] is
written for the sequential setting and making the algorithms in [1] distributed and compatible
with the shortcut framework is a nontrivial extension, which we plan to explore for the
journal version of this work.

More importantly, it seems possible that our non-trivial approximation ratios for the
SSSP-tree and transshipment problem can be improved all the way to (1 + ε)-approximations
using tools from continuous optimization, such as, gradient descent or the multiplicative
weights method. As one example, the recent and brilliant work of Becker et al. [5] shows how
to obtain a (1 + ε)-approximation for the SSSP-tree problem and the transshipment problem
by computing Õ(α2) many α-approximations to the transshipment problem. This work also
demonstrates that the required updates to weight and demand vectors can be performed in
various non-centralized models, including CONGEST. If this method could be applied to our
transshipment algorithm, we could choose β = 2−O(

√
logn log logn) to get a 2O(

√
logn log logn)-

approximate solution to the transshipment problem in QG · 2O(
√

logn log logn) rounds, which
could then be transformed into a (1 + ε) approximation with the exact same running time
(up to the constant hidden by the O-notation). This extension is highly nontrivial as well
and left for future work.

References

1 Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops,
robbers, and threatening skeletons: Padded decomposition for minor-free graphs. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 79–88. ACM,
2014.

2 Noga Alon, Richard M Karp, David Peleg, and Douglas West. A graph-theoretic game and
its application to the k-server problem. SIAM Journal on Computing, 24(1):78–100, 1995.

3 Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Low-diameter graph
decomposition is in nc. In Scandinavian Workshop on Algorithm Theory, pages 83–93.
Springer, 1992.

4 Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages
184–193. IEEE, 1996.

5 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In International Symposium on Distributed Computing, 2017.

6 Guy E Blelloch, Anupam Gupta, Ioannis Koutis, Gary L Miller, Richard Peng, and Kanat
Tangwongsan. Nearly-linear work parallel sdd solvers, low-diameter decomposition, and
low-stretch subgraphs. Theory of Computing Systems, 55(3):521–554, 2014.

DISC 2018

33:14 Faster Distributed Shortest Path Approximations via Shortcuts

7 Michael Elkin and Ofer Neiman. Distributed strong diameter network decomposition. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages
211–216. ACM, 2016.

8 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii:
Low-congestion shortcuts, mst, and min-cut. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 202–219. Society for Industrial and
Applied Mathematics, 2016.

9 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without
embedding. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, pages 451–460. ACM, 2016.

10 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-congestion short-
cuts on bounded parameter graphs. In International Symposium on Distributed Computing,
pages 158–172. Springer, 2016.

11 Bernhard Haeupler, Goran Zuzic, and Jason Li. Low-congestion shortcuts for any minor
closed family. In personal communications, 2017.

12 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. An almost-tight dis-
tributed algorithm for computing single-source shortest paths. In Proceedings of the ACM
Symposium on Theory of Computing, 2016.

13 Shay Kutten and David Peleg. Fast distributed construction of k-dominating sets and
applications. In Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 238–251. ACM, 1995.

14 Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and applications.
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, pages
153–162. ACM, 2015.

15 Nathan Linial and Michael E Saks. Decomposing graphs into regions of small diameter. In
SODA, volume 91, pages 320–330, 1991.

16 Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism
in algorithms and architectures, pages 196–203. ACM, 2013.

17 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In Proceedings of the ACM Symposium on Theory of Computing, pages 565–573, 2014.

18 Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In International Symposium on Distributed Computing, pages 439–453. Springer, 2014.

19 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

A Lower Bound for Adaptively-Secure Collective
Coin-Flipping Protocols
Yael Tauman Kalai
Microsoft Research, 1 Memorial Dr, Cambridge, MA 02142, USA
yael@microsoft.com

Ilan Komargodski1

Cornell Tech, 2 W Loop Rd, New York, NY 10044, USA
komargodski@cornell.edu

Ran Raz2

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
ran.raz.mail@gmail.com

Abstract
In 1985, Ben-Or and Linial (Advances in Computing Research ’89) introduced the collective
coin-flipping problem, where n parties communicate via a single broadcast channel and wish to
generate a common random bit in the presence of adaptive Byzantine corruptions. In this model,
the adversary can decide to corrupt a party in the course of the protocol as a function of the
messages seen so far. They showed that the majority protocol, in which each player sends a
random bit and the output is the majority value, tolerates O(

√
n) adaptive corruptions. They

conjectured that this is optimal for such adversaries.
We prove that the majority protocol is optimal (up to a poly-logarithmic factor) among all

protocols in which each party sends a single, possibly long, message.
Previously, such a lower bound was known for protocols in which parties are allowed to send

only a single bit (Lichtenstein, Linial, and Saks, Combinatorica ’89), or for symmetric protocols
(Goldwasser, Kalai, and Park, ICALP ’15).

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Coin flipping, adaptive corruptions, byzantine faults, lower bound

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.34

1 Introduction

In the collective coin-flipping problem, introduced by Ben-Or and Linial [7], a set of n
computationally unbounded parties, each equipped with a private source of randomness,
are required to generate a common random bit. The communication model is the “full
information” model [7], where all parties communicate via a single broadcast channel. The
goal of the parties is to agree on a common random bit even in the case that some t = t(n) of
the parties are faulty and controlled by an adversary whose goal is to bias the output of the
protocol in some direction. We say that a protocol Π is resilient (or secure) to t corruptions
if for any adversary A that makes at most t corruptions it holds that

min
{

Pr [Output of A(Π) = 0] ,Pr [Output of A(Π) = 1]
}
≥ Ω(1),

1 Supported in part by a Packard Foundation Fellowship and by an AFOSR grant FA9550-15-1-0262.
2 Research supported by the Simons Collaboration on Algorithms and Geometry and by the National

Science Foundation grants No. CCF-1714779 and CCF-1412958.

© Yael T. Kalai, Ilan Komargodski, and Ran Raz;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yael@microsoft.com
mailto:komargodski@cornell.edu
mailto:ran.raz.mail@gmail.com
https://doi.org/10.4230/LIPIcs.DISC.2018.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

where “Output of A(Π)” is a random variable that corresponds to the output of the protocol Π
when executed in the presence of the adversary A.

The adversary is Byzantine, namely, once it corrupts a party, it completely controls it
and can send arbitrary messages on its behalf. Usually, two types of Byzantine adversaries
are considered, static or adaptive ones. A static adversary is an adversary that chooses which
parties to corrupt ahead of time, before the protocol begins. An adaptive adversary, on the
other hand, is allowed to choose which parties to corrupt adaptively in the course of the
protocol as a function of the messages seen so far. In the case of static adversaries, collective
coin-flipping is well studied and almost matching upper and lower bounds are known; see
Section 1.1. However, the case of adaptive adversaries is much less understood. In this work,
we focus on the setting of adaptive adversaries.

In the seminal work of Ben-Or and Linial [7], they showed that the majority protocol
(in which each party sends a uniformly random bit and the output of the protocol is the
majority of the bits sent) is resilient to O(

√
n) adaptive corruptions. Moreover, with Ω̃(

√
n)

corruptions,3 one can break the security of this protocol. They conjectured that the majority
protocol is optimal: any collective coin-flipping protocol is resilient to at most O(

√
n) adaptive

corruptions, even if parties send multiple messages, each of which may be long.
The first step towards this conjecture was made by Lichtenstein, Linial, and Saks [19].

They proved that there is no single-bit and single-turn protocol which is resilient to more than
Ω̃(
√
n) adaptive corruptions. A single-bit protocol is one in which parties’ messages consist

of a single bit (perhaps over multiple rounds), and a single-turn protocol is such that each
party speaks at most once (perhaps with a long message). More recently, Goldwasser, Kalai,
and Park [15] proved another special case of the conjecture: Any symmetric4 single-turn
protocol cannot be resilient to more than Ω̃(

√
n) adaptive corruptions.

Despite significant efforts, more than three decades after posting the conjecture, fully
resolving it remains an intriguing open problem.

Our results. We prove that any n-party collective coin-flipping protocol in which each
party sends a single, possibly long, message cannot be secure against more than t = Ω̃(

√
n)

adaptive corruptions.

I Theorem 1. Any n-party single-turn collective coin-flipping protocol is insecure against
more than t = Ω̃(

√
n) adaptive corruptions.

As a warm-up, in Section 3, we recover the result of Lichtenstein et al. [19] for single-bit
single-turn protocols. Whereas the original proof of [19] is based on combinatorial arguments
in extremal set theory, our proof is elementary and uses basic tools from probability theory.
A different yet related variant to our simplification was previously given by Cleve and
Impagliazzo [11]; see Section 1.1 below.

1.1 Related Work
The full information model was introduced by Ben Or and Linial [7] to study the collective
coin-flipping problem. Since then, this problem was central in the study of distributed
protocols.

3 Throughout this work, the notation Ω̃ and Õ suppresses poly-logarithmic factors.
4 A symmetric protocol Π is one that is oblivious to the order of its inputs: namely, for any permutation
π : [n]→ [n] of the parties, it holds that Π(r1, . . . , rn) = Π(rπ(1), . . . , rπ(n)).

Y.T. Kalai, I. Komargodski, and R. Raz 34:3

Static adversaries. The case of static corruptions has been extensively studied since the
introduction of the collective coin-flipping problem. The original work of Ben-Or and Linial [7]
showed that a polynomial number (i.e., O(n.63)) of corrupted parties can be tolerated. Later,
Ajtai and Linial [1] showed a different protocol that withstands O(n/ log2 n) corruptions.
For single-round single-bit protocols, in which the global coin is obtained by each party
contributing one bit for an n-input predefined Boolean function, Kahn, Kalai and Linial [17]
showed that no protocol is resilient to more than Ω(n/ logn) corruptions. Saks [22] introduced
a multi-round protocol called the “Baton Passing” game5 and showed that it is resilient to
O(n/ logn) corruptions. The protocol of Saks was modified by Alon and Naor [3] such that
it tolerates a constant fraction of corrupted parties. The optimal resilience of t = (1/2− δ)n
for any δ > 0 was obtained by Boppana and Narayanan [8] shortly afterwards. Since then
the focus has been on improving the explicitness of the protocol, the round complexity, and
the bias of the output bit. Two of the most notable results are that of Feige [14] and of
Russell, Saks, and Zuckerman [21]. Feige gave an explicit (log∗ n+O(1/δ))-round protocol
that tolerates (1/2− δ)n corruptions for any constant δ > 0. Russell, Saks, and Zuckerman
proved that any protocol that is secure against Ω(n) corruptions must either have at least
(1/2− o(1)) · log∗ n rounds, or communicate multiple bits per round.

Interestingly, many protocols for collective coin-flipping that consist of more than one
round of communication per party, achieve a seemingly stronger goal. In these protocols, first
an honest leader is elected and then it outputs a bit that is taken as the protocol outcome.
This approach, while being useful for the static case, is unsuitable for adaptive adversaries,
since the adversary may always wait for the leader to be elected and then corrupt it.

Adaptive adversaries. The literature on collective coin-flipping with adaptive adversaries
is much more scarce. The best known protocol is the majority one suggested by Ben-Or and
Linial [7]. Lichtenstein, Linial, and Saks [19] proved that there is no protocol in which each
party is allowed to send one bit (in total) which is resilient to more than Ω(

√
n) corruptions.

The same lower bound was shown by Goldwasser, Kalai and Park [15] for any single-turn
symmetric protocol (where each message can be long).

Dodis [12] proved that through “black-box” reductions from non-adaptive collective
coin-flipping protocols, it is impossible to tolerate significantly more corruptions than the
majority protocol. His definition of “black-box” is rather restricted: It only considers
sequential composition of non-adaptive coin-flipping protocols, followed by a (non-interactive,
predefined) function operating on the coin-flips thus obtained.

Kalai and Komargodski [18] showed that for any collective coin-flipping protocol in which
messages are long there is a collective coin-flipping protocol with the same communication
pattern, the same output distribution, the same security guarantees, and where parties send
messages of length ` = polylog(n, d), where d is the number of rounds in the original protocol.
In particular, their transformation guarantees that the resulting protocol is resilient against
t adaptive (resp. static) corruptions as long as the original one is resilient against t adaptive
(resp. static) corruptions. The transformation is non-uniform, that is, they only show that
the required protocol exists.

More types of adversaries. En route to resolving the conjecture of Ben-Or and Linial,
stronger types of adversaries were considered.

5 In this game, each party receiving the baton, passes it to a random party that did not have it yet. The
last party having the baton is the leader, and the leader chooses the random bit to be outputted.

DISC 2018

34:4 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

Cleve and Impagliazzo [11] studied re-sampling adaptive adversaries that can decide
whether to intervene in the next message or not after seeing it. More precisely, at the i’th
round, the adversary, after seeing all the messages exchanged in the first i− 1 rounds and
the message to be sent in the current round, can ask to rewind the process back to the
beginning of the i’th round and have the i’th message be re-sampled. They showed that for
any protocol whose expected output is 1/2 in an honest execution and in which each party
sends just one (possibly long) message, there is an adversary that corrupts a single party
and biases the expectation of the output of the protocol away from 1/2 by Ω(1/

√
n) in some

direction.
More recently, Goldwasser, Kalai, and Park [15] studied an even stronger variant called

strong adaptive adversaries in which the adversary sees all messages sent by honest parties in
any given round and, based on the message content, decide whether to corrupt a party or not
(and alter its message for that same round). Here, a corruption allows the adversary to send
any message on behalf of the party (and not only re-sample it, as in [11]). They proved that
any one-round protocol (i.e., all parties talk simultaneously once), in which messages can be
arbitrarily long, can tolerate at most Õ(

√
n) such (strong) adaptive corruptions. They got a

similar lower bound in the standard adaptive corruptions model for symmetric protocols.

Fair Coin-Flipping. There is a rich literature on coin-flipping protocols in settings with
dishonest majority (and static corruptions), starting from the seminal work of Cleve [10]. In
such protocols, the output of the protocol is a random bit, and the requirement is that even
in the presence of an adversary, the output cannot be skewed towards 0 or towards 1 except
with very small probability.6

Cleve [10] proved that for r-round coin-flipping protocol there exists a (static) adversary
corrupting 1/2 of the parties and efficiently biases the output by Θ(1/r). This lower bound
was shown to be tight in the two-party case by Moran, Naor, and Segev [20] and in the
three-party case (up to a polylog factor) by Haitner and Tsfadia [16]. In the general n-party
case, as long as n ≤ log log r, an almost tight upper bound was given by Buchbinder et al. [9].
When there are less than (2/3)n corruptions, Beimel et al. [6] have constructed an n-party
r-round coin-flipping protocol with bias 22k/r, tolerating up to t = (n+ k)/2 corrupt parties.
Alon and Omri [2] constructed an n-party r-round coin-flipping protocol with bias Õ(22n/r),
tolerating up to t corrupted parties, for constant n and t < 3n/4. Very recently, Beimel
et al. [5] gave an improved lower bound in the multi-party case: For any n-party r-round
coin-flipping protocol with nk ≥ r for k ∈ N, there exists an adversary corrupting n − 1
parties and biases the output of the honest party by 1/(

√
r logk r).

1.2 Proof Overview
Since we are in the full information model, we can assume (without loss of generality) that
any collective coin-flipping protocol (in which the parties do not have private inputs except
for a perfect source of randomness), can be transformed into a protocol in which the honest
parties’ messages consist only of uniformly random bits. A sketch of this folklore fact appears
in [18, Section 4]. Thus, from now on, we assume that each party sends a uniformly random
message chosen independently of the previous messages.

6 We emphasize that in our work, we only require that the adversary cannot skew the output with
probability 1− o(1), whereas in fair protocols the adversary should not skew the output with probability
greater than 1/2 + o(1).

Y.T. Kalai, I. Komargodski, and R. Raz 34:5

Concretely, we consider protocols in which each party sends a single message of length
`, possibly across n rounds. Such a protocol can be thought of as a complete 2`-ary tree
whose leaves are labeled by 0 and 1, and whose internal nodes are labeled by numbers in
[n]. If a node is labeled by i ∈ [n], then we say that the node is owned by party i. (Without
loss of generality, we can assume that the order in which the parties send messages is fixed
in advance). The protocol starts at the root and at each time step we are at an internal
node whose owner samples a random string in {0, 1}` to determine where the protocol
proceeds. The protocol ends once we reach a leaf and the output of the protocol is the bit b
corresponding to the label of that leaf.

Let us start with the simpler case where ` = 1. In this case, we present an attacker that
biases the outcome of any protocol towards 0 with probability 1− negl(n), while corrupting
at most Õ(

√
n) parties with probability 1− o(1). (An analogous adversary can bias towards

1 with similar parameters.) The adversary at any point in time computes its possible gain in
the expected output of the protocol by corrupting the next party (either to 0 or to 1). If
the gain is larger than ε = 1√

n·log2 n
, then the adversary corrupts and sends the maliciously

chosen bit (that biases the output towards 0). A standard application of Azuma’s inequality
shows that (with high probability) the influence of the parties that were not corrupted
on the expected output of the protocol is negligible, as there are at most n of them and
the contribution of each of them is at most 1√

n·log2 n
. Intuitively, this means that only the

corrupted parties influence the final output of the protocol and since the adversary controls
these parties, the adversary succeeds in forcing the output to be 0 with high probability.
Moreover, since the adversary gains at least 1√

n·log2 n
in the expected value of the protocol,

with the corruption of each party, and the total gain is at most 1, with high probability the
number of corruptions is at most Õ(

√
n). This gives an alternative (elementary) proof for

the result of [19]. This is formally proved in Section 3.
The proof for the case ` > 1 is more involved. We define two adversaries A0 and A1,

where Ab tries to bias the outcome of the protocol towards b. Here, as opposed to the case
` = 1, only one of the adversaries will be guaranteed to succeed. For A0, we associate with
each node v in the protocol tree three values (we do the same for A1):
1. αv : The expectation of the outcome of the protocol in the presence of the adversary A0,

given that the protocol is at node v.
2. c0v : A bit that is 1 if and only if the adversary A0 corrupts node v.
3. p0

v : A “penalty” value that is proportional to the expected number of corruptions made
by A0 from node v onward.

We set these values inductively from the leaves of the protocol tree to the root. For a
leaf labeled by b ∈ {0, 1}, we set αv = b and c0v = p0

v = 0.
Going one level up to the parents of the leaves, for each such node we compute the

expected α value if we proceed to a random child, compared with the minimal possible α
value over all children (this corresponds to the maximal gain possible via corruption). If
the possible gain by corruption is larger than ε = 1√

n·log3 n
, the adversary will corrupt v, so

we set c0v = 1, and we update the penalty value by setting it to be p0
v = ε, to appropriately

accommodate for this.
In the next levels, the situation is more complicated as we need to take into account the

penalty values. For example, if there is a strategy for corrupting the next message that will
increase our chance of outputting 0 by much, but has a high penalty (i.e., will require many
corruptions in the future), this move is not always worthwhile for the attacker. So, instead of
comparing only the expected outcome of the protocol, we take into account also the penalty.

DISC 2018

34:6 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

For every node v, we define α′v = αv + p0
v, and compare the expected gain versus the

best possible gain with respect to α′v (rather than αv). Namely, we compute the expected α′
value if we proceed to a random child, and compare it to the minimal possible α′ value of
all children. If this gap is larger than ε, the adversary corrupts v, and thus we set c0v = 1
and we set the penalty value p0

v to be p0
v = p0

u + ε, where u is the child that the adversary
proceeds to.

The inductive process ends with a triple of values (αroot, c
0
root, p

0
root), corresponding to the

root node and the adversary A0. The penalty value p0
root is equal to ε times the expected

number of corruptions that the adversary A0 makes. The probability that the protocol
outputs 0 with adversary A0 is 1− αroot.

Similarly, we define the adversary A1 and obtain the values (βroot, c
1
root, p

1
root), where the

penalty value p1
root is equal to ε times the expected number of corruptions that the adversary

A1 makes, and the probability that the protocol outputs 1 with adversary A1 is βroot.
It is not possible to prove that both adversaries succeed with high probability (as there are

protocols that can only be biased towards one of the two possible values, with the corruption
of Õ(

√
n) parties). Technically, the problem with using an argument similar to the case ` = 1

is that we cannot apply Azuma’s inequality as before, because we do not have an upper
bound on the absolute value of each variable.

Nevertheless, we are able to prove that at least one of the two adversaries succeeds with
high probability, while corrupting Õ(

√
n) parties. This argument is more complicated, but

the main idea is to define another “adversary”, “in between” A0 and A1. (In the actual proof
we refer to that adversary as a random walk). The new adversary is defined similarly to A0
and A1, but instead of minimizing α′v (or maximizing β′v) it tries to minimize β′v − α′v (after
they were defined by the definitions of A0 and A1). Very roughly speaking, since the new
adversary is “sandwiched” between A0 and A1, we are able to apply Azuma’s theorem for
the new adversary and to derive a contradiction. Technically, the contradiction is derived by
showing that if α′root is not close to 0 and β′root is not close to 1, then the new adversary gets
(with high probability) to a leaf that is labeled with neither 0 nor 1.

The full proof is the technical heart of the paper and is given in Section 4.

2 Definitions & Preliminaries

For an integer n ∈ N, we denote by [n] the set {1, . . . , n}. Throughout the paper, we denote
by Π a collective coin-flipping protocol, denote by n ∈ N the number of parties participating
in the protocol, and denote the parties by P1, . . . , Pn. We assume that Π, when executed
honestly, outputs the bit 0 (and similarly for 1) with probability Ω(1).

Communication model. The full information model [7] is a synchronous model. Namely,
each protocol consists of rounds in which parties send messages. There exists a global counter
which synchronizes parties in between rounds but they are asynchronous within a round.
The parties communicate via a broadcast channel.

We define two restricted types of protocols: single-bit and single-turn.

I Definition 2 (Single-bit protocol). We say that a protocol is a single-bit protocol for n
parties if this protocol is executed in rounds such that in each round each party sends a
single random bit.

I Definition 3 (Single-turn protocol). We say that a protocol is a single-turn protocol for n
parties if this protocol is executed in n rounds such that party Pi sends a single (possibly
long) message at round i.

Y.T. Kalai, I. Komargodski, and R. Raz 34:7

The above two restricted families of protocols can be naturally described by a game tree
(of arity two in the single-bit case and bigger arity in the single-turn case) whose leaves are
labeled by 0 and 1, and whose internal nodes (including the root) are labeled by numbers in
[n].

Without loss of generality, we restrict our attention to public-coin protocols.

I Definition 4 (Public-coin protocol). A protocol is public-coin if each honest party broadcasts
all of the randomness he generates (i.e., his “local coin-flips”), and does not send any other
messages.

Corruption model. We consider the Byzantine model, where a bound t = t(n) ≤ n is
specified, and the adversary is allowed to corrupt up to t parties. The adversary can see the
entire transcript (i.e., all the messages sent thus far), has full control over all the corrupted
parties, and can broadcast any messages on their behalf. Moreover, the adversary has control
over the order of the messages sent within each round of the protocol (i.e., “rushing”).

Within this model, two main types of adversaries were considered in the literature: static
adversaries, who need to specify the parties they corrupt before the protocol begins, and
adaptive adversaries, who can corrupt the parties adaptively based on the transcript so far.
We focus on adaptive adversaries

I Definition 5 (Adaptive adversary). Within each round, the adversary chooses parties
one-by-one to send their messages; and he can perform corruptions at any point during this
process based on the messages sent thus far and the protocol specification.

Security. The security of a collective coin-flipping protocol is usually measured by the extent
to which an adversary can, by corrupting a subset of parties, bias the protocol outcome
towards his desired bit.

I Definition 6 (ε-security). Fix ε = ε(n) and t = t(n). A coin-flipping protocol Π is ε-secure
against t adaptive corruptions if for all n ∈ N, it holds that for any adaptive adversary A
that corrupts at most t parties,

min
{

Pr [Output of A(Π) = 0] ,Pr [Output of A(Π) = 1]
}
≥ ε(n),

where “Output of A(Π)” is a random variable that corresponds to the output of the protocol
Π when executed in the presence of the adversary A.

We next define a secure protocol as one where an adversary cannot “almost always" get
the outcome he wants.

I Definition 7 (Security). A coin-flipping protocol is secure against t = t(n) corruptions if it
is ε-secure against t corruptions for some constant ε ∈ (0, 1).

2.1 Azuma’s Inequality
We state Azuma’s inequality which is extensively used in our proofs. This formulation is
standard and can be found, for example, in Alon-Spencer [4] and in Dubhashi-Panconesi [13].

I Theorem 8. Let X1, . . . , XN be random variables, such that for every i ∈ [N], |Xi| ≤ εi.
If for every i ∈ [N] it holds that E[Xi | X1, . . . , Xi−1] ≤ 0, then for any s ≥ 0,

Pr
[

N∑
i=1

Xi ≥ s

]
≤ 2 · e

− s2

2
∑N

i=1
ε2
i

DISC 2018

34:8 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

Similarly, if for every i ∈ [N] it holds that E[Xi | X1, . . . , Xi−1] ≥ 0, then for any s ≥ 0,

Pr
[

N∑
i=1

Xi ≤ −s

]
≤ 2 · e

− s2

2
∑N

i=1
ε2
i

3 A Lower Bound for Single-Bit Single-Turn Protocols

In this section, we give a simplified proof for the following theorem, originally proved in [19]

I Theorem 9 ([19]). There does not exist a single-bit single-turn collective coin-flipping
protocol that is resilient to more than Ω̃(

√
n) adaptive corruptions.

Proof. Fix any single-bit single-turn collective coin-flipping protocol Π. Consider the binary
protocol tree of depth n corresponding to Π. We construct an adversary A0 that with
probability 1− o(1), biases the outcome towards 0 while corrupting at most Õ(

√
n) players.7

For each node v in the protocol tree, we associate a sequence of bits b1, . . . , bi that lead
to it from the root of the tree, and a value αv which stands for the probability that the
outcome of the protocol is 0, when executed honestly starting from the node v. Namely,
αv , Pr[Πv = 0], where Πv is a random variable that corresponds to the output of the
protocol Π when executed honestly starting from node v. Let p0 , Pr[Πroot = 0] ≥ Θ(1)
be the probability that the protocol, executed honestly from the root, outputs 0. Further,
observe that for every leaf v that is labeled by b ∈ {0, 1}, it holds that αv = 1− b.

Let ε , 1√
n·log2 n

. Given that the protocol is in node v, the adversary A0 computes two
values

αmin
v = min{αv0, αv1} and αmax

v = max{αv0, αv1},

where αv0 is the value associated with the left child of v and αv1 is the value associated
with the right child of v. Note that αv = (αv0 + αv1)/2. If αv ≥ αmin

v + ε (or, equivalently,
αv ≤ αmax

v − ε), then the adversary corrupts the party that is associated with node v and
sends b ∈ {0, 1} such that αvb > αvb̄ (where b̄ = 1−b). Otherwise, if αmax

v −ε < αv < αmin
v +ε,

then the adversary A0 does not corrupt the corresponding party and lets it send a random
bit. This completes the description of the adversary.

We next show that with overwhelming probability over the execution of the protocol with
the adversary A0, the leaf with which the protocol concludes is a leaf that is labeled with
0. In addition, with overwhelming probability, the number of corruptions along the way is
bounded by 1/ε.

Let (b1, . . . , bn) ∈ {0, 1}n be a random variable corresponding to the n bits sent during
the execution of the protocol ΠA0 . Namely, if A0 corrupts the party sending the i’th bit
in the protocol Π, given that the previous i− 1 bits sent were (b1, . . . , bi−1), and sends the
bit b∗ ∈ {0, 1} on its behalf, then we set bi = b∗. Otherwise, if A0 does not corrupt this
party, then bi is randomly chosen in {0, 1}. Every prefix of the n bits b1, . . . , bn sent during
the course of the protocol, corresponds to a node v in the protocol tree. Thus, we can write
αb1,...,bi for αv, where the vertex v corresponds to the path b1, . . . , bi from the root to v in
the protocol tree. Let δi be a random variable defined as

δi , αb1,...,bi − αb1,...,bi−1 .

7 One can analogously construct an adversary A1 that with probability 1 − o(1), biases the outcome
towards 1 while corrupting at most Õ(

√
n) players.

Y.T. Kalai, I. Komargodski, and R. Raz 34:9

Denote by I ⊆ [n] the set of indices in which the adversary A0 corrupts the corresponding
party. It holds that

n∑
i=1

δi =
∑
i∈I

δi +
∑
i/∈I

δi = αb1,...,bn − αroot. (1)

We first argue that with overwhelming probability
∑

i/∈I δi ≤ o(1).

I Claim 10. Pr
[∣∣∑

i/∈I δi

∣∣ ≥ 1
log n

]
≤ negl(n).

Proof. Define n random variables X1, . . . , Xn as follows: For every i ∈ I we set Xi = 0, and
for every i 6∈ I we define Xi = δi. Note that for every i ∈ [n], it holds that |Xi| ≤ ε and

E[Xi | X1, . . . , Xi−1] = 0.

Thus, by Azuma’s inequality, for any s > 0,

Pr
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ s
]
≤ 4 · e−

s2
2nε2 .

Setting s = ε ·
√
n · logn = 1

log n , we conclude that

Pr
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ 1
logn

]
≤ negl(n). J

We condition on the event that
∣∣∑

i/∈I δi

∣∣ ≤ 1
log n occurs. Also, recall that αroot = Θ(1).

Plugging these into Equation (1), we get that

αb1,...,bn ≥ αroot +
∑
i∈I

δi −
1

logn.

By the definition of A0, whenever it corrupts an index i, it causes δi to be positive. Thus,

αb1,...,bn ≥ αroot −
1

logn.

This implies that αb1,...,bn = 1 since αb1,...,bn ∈ {0, 1} and αroot ≥ Ω(1).
We proceed with the bound on the number of corruptions made by A0. By Equation (1),

the fact that αroot ∈ (0, 1), and that with overwhelming probability
∣∣∑

i/∈I δi

∣∣ ≤ 1
log n and

αb1,...,bn = 1, it holds that (with overwhelming probability)∑
i∈I

δi = αb1,...,bn − αroot −
∑
i/∈I

δi ≤ 1.

Since for each i ∈ I, it holds that δi ≥ ε, the number of corruptions is bounded by 1/ε, as
required. J

4 A Lower Bound for Single-Turn Protocols

In this section, we prove our lower bound for single-turn collective coin-flipping protocols.

I Theorem 11. There does not exist a single-turn collective coin-flipping protocol that is
resilient to more than Ω̃(

√
n) adaptive corruptions.

DISC 2018

34:10 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

Proof. Fix any single-turn collective coin-flipping protocol Π. Since we are in the full
information model, we can assume without loss of generality that the protocol is public-coin
(see Definition 4). Namely, each player sends a random message from some universe {0, 1}`.
We denote L , 2`.

Consider the L-ary protocol tree corresponding to Π. We define two adversaries A0 and
A1, where A0 tries to bias the output towards 0 and A1 tries to bias the output towards 1.
We prove that at least one of these adversaries succeeds with probability 1 − o(1) while
corrupting at most

√
n · polylog(n) players.

To this end, we associate with each node v in the protocol tree, three pairs of values

(αv, βv), (c0v, c1v), and (p0
v, p

1
v).

Intuitively, αv is the expectation of the outcome of the protocol in the presence of the
adversary A0, given that we are at node v, and βv is the expectation of the outcome of the
protocol in the presence of the adversary A1, given that we are at node v. The pair (c0v, c1v)
is a pair of bits, where c0v = 1 if and only if A0 corrupts node v, and c1v = 1 if and only if A1
corrupts node v.8 The pair (p0

v, p
1
v) are a pair of “penalty” values . Intuitively, the penalty p0

v

(resp. p1
v) is proportional to the expected number of corruptions the adversary A0 (resp. A1)

does, from node v onwards.
The penalty values {p0

v}v∈V , along with the values {αv}v∈V , are used by the adversary
A0 to decide which nodes to corrupt (i.e., for which nodes v to set c0v = 1). Similarly, the
penalty values {p1

v}v∈V , along with the values {βv}v∈V , are used by the adversary A1 to
decide which nodes to corrupt (i.e., for which nodes v to set c1v = 1).

Formally, the values (αv, βv), (c0v, c1v), and (p0
v, p

1
v) are defined by induction starting from

the leaves. For any leaf v labeled by 0 we define αv = βv = 0, and for any leaf v labeled by 1
we define αv = βv = 1. For all leaves v we define c0v = c1v = 0 and p0

v = p1
v = 0.

Let k =
√
n · log3 n and let ε = 1

k . For a non-leaf node v, suppose that its L children are
associated with

{(αi, βi)}L
i=1 and {(p0

i , p
1
i)}L

i=1.

For every i ∈ [L], define

α′i = αi + p0
i and β′i = βi − p1

i .

Let

αavg ,
1
L
·

L∑
i=1

αi , α′avg ,
1
L
·

L∑
i=1

α′i , α′min , min{α′1, . . . , α′L}

and let

βavg ,
1
L
·

L∑
i=1

βi , β′avg ,
1
L
·

L∑
i=1

β′i , β′max = max{β′1, . . . , β′L}

If α′min ≤ α′avg − ε, then set c0v = 1. In this case, if the protocol arrives at node v,
then the adversary A0 corrupts node v and proceeds to its child i∗ with minimal α′; i.e.,
i∗ = argmini∈child(v){α′i}, and we set αv = αi∗ and p0

v = p0
i∗ + ε. Otherwise, set c0v = 0. In this

8 When we say that an adversary corrupts node v we mean that it corrupts the party associated with
node v.

Y.T. Kalai, I. Komargodski, and R. Raz 34:11

case, the adversary A0 does not corrupt node v, and we set αv = αavg and p0
v = 1

L ·
∑L

i=1 p
0
i .

We denote

α′v = αv + p0
v.

Similarly, if β′max ≥ β′avg + ε, then set c1v = 1. In this case, if the protocol arrives at node v,
then the adversary A1 corrupts node v and proceeds to its child i∗ with maximal β′; i.e.,
i∗ = argmaxi∈child(v){β′i }, and we set βv = βi∗ and p1

v = p1
i∗ + ε. Otherwise, set c1v = 0. In this

case, the adversary A1 does not corrupt node v, and we set βv = βavg and p1
v = 1

L ·
∑L

i=1 p
1
i .

We denote

β′v = βv − p1
v.

In what follows, we denote by αroot and βroot the α and β values of the root, respectively.
Similarly, we denote by α′root and β′root the α′ and β′ values of the root, respectively. We
denote by p0

root and p1
root the penalty values of the root.

The following claim follows immediately from the definition of p0
root and p1

root.

I Claim 12. For every b ∈ {0, 1}, it holds that

pb
root = 1

k
· E[# of corruptions Ab makes].

In what follows, we denote by ΠA0 the random variable which is the outcome of protocol Π
with adversary A0, and similarly we denote by ΠA1 the random variable which is the outcome
of protocol Π with adversary A1 (in both ΠA0 and ΠA1 the randomness is over the coin
tosses of the honest players). In order to complete the proof of the theorem it suffices to
prove the following two lemmas.

I Lemma 13. Pr[ΠA0 = 0] = 1− αroot and Pr[ΠA1 = 1] = βroot.

I Lemma 14. α′root = o(1) or β′root = 1− o(1).

The reason why these two lemmas suffice is that for any node v in the protocol tree (and
in particular for the root), αv ≤ α′v and βv ≥ β′v. Thus, the two lemmas imply that either

Pr[ΠA0 = 0] = 1− o(1) or Pr[ΠA1 = 1] = 1− o(1).

Moreover, by definition, α′root = αroot + p0
root and β′root = βroot − p1

root. Thus, if α′root = o(1)
then Claim 12, together with the fact that αroot ≥ 0 (see Lemma 13), implies that the
adversary A0 is expected to make only o(k) corruptions. By Markov’s inequality A0 makes
o(k) corruptions with probability 1 − o(1). Similarly, if β′root = 1 − o(1) then Claim 12,
together with the fact that βroot ≤ 1 (see Lemma 13), implies that the adversary A1 is
expected to make only o(k) corruptions. By Markov’s inequality A1 makes o(k) corruptions
with probability 1− o(1). Since we set k =

√
n · log3 n, this completes the proof.

We proceed with the proof of Lemma 13, followed by the proof of Lemma 14.

4.1 Proof of Lemma 13
We prove the more general statement that for any node v in the protocol tree, the probability
that ΠA0 = 0 (respectively, ΠA1 = 1), conditioned on the event that the protocol arrives at
node v, is 1− αv (respectively, βv). To this end, for any node v in the protocol tree, denote
by Πv the protocol execution starting from node v. We prove that for every node v,

Pr[Πv
A0

= 0] = 1− αv and Pr[Πv
A1

= 1] = βv. (2)

DISC 2018

34:12 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

The proof is by induction from the leaves to the root. For leaf nodes, Equation (2) holds
trivially. Suppose that Equation (2) holds for nodes at layer d+ 1, and we shall prove that it
holds for nodes at layer d. To this end, fix a node v at layer d, and denote its L (layer d+ 1)
children by u1, . . . , uL. To be consistent with our previous notation, we denote αi , αui and
let αavg = 1

L

∑L
i=1 αi. We show that Pr[Πv

A0
= 0] = 1− αv and mention that the proof that

Pr[Πv
A1

= 1] = βv is analogous.
We distinguish between two cases:
Case 1: c0

v = 0. This case corresponds to the case where A0 does not corrupt node v.
In this case,

Pr[Πv
A0

= 0] = 1
L

L∑
i=1

Pr[Πui
A0

= 0] = 1
L

L∑
i=1

(1− αi) = 1− αavg = 1− αv,

where the second equality follows from the induction assumption, and the other equalities
follow from the definition of A0, αavg and αv.
Case 2: c0

v = 1. This case corresponds to the case where A0 corrupts node v. We
denote by i∗ the child with minimal α′. In this case,

Pr[Πv
A0

= 0] = Pr[Πui∗
A0

= 0] = (1− αi∗) = 1− αv,

where the second equality follows from our induction assumption, and the other equalities
follow from the definition of A0, and αv.

This completes the proof of the lemma.

4.2 Proof of Lemma 14
Suppose towards contradiction that there exists a constant c > 0 such that α′root > c and
β′root < 1 − c. We prove that at each layer of the circuit there exists a node v for which
α′v > c− o(1) and β′v < 1− c+ o(1). This would imply a contradiction since at each leaf v it
holds that either α′v = 0 or β′v = 1.

We define a random walk on the protocol tree from the root to the leaves. Since Π is a
single turn protocol on n players, the protocol tree is of depth n. We denote the nodes on
the walk by v0, v1, . . . , vn, where v0 is the root and vn is a leaf. The random walk is defined
as follows:
1. Let V1 be the set of all nodes v such that for every child u ∈ child(v) it holds that

|α′u − α′v| ≤ ε · logn and |β′u − β′v| ≤ ε · logn.

If we are at node vi ∈ V1, then vi+1 is a random child of vi.
2. Let V2 be the set of all nodes that are not in V1. If vi ∈ V2, then choose a child vi+1 ∈

child(vi) that minimizes the value β′u − α′u. Namely, vi+1 = argminu∈child(vi) {β
′
u − α′u}.

Recall that in order to get a contradiction, it suffices to prove that with overwhelming
probability, α′vn ≥ c− o(1) and β′vn ≤ 1− c+ o(1). To this end, we define n random variables
X1, . . . , Xn, and n random variables Y1, . . . , Yn, as follows:

Xi+1 = α′vi+1
− α′vi and Yi+1 = β′vi+1

− β′vi .

Notice that

α′vn = α′v0
+

n∑
i=1

Xi and β′vn = β′v0
+

n∑
i=1

Yi.

Y.T. Kalai, I. Komargodski, and R. Raz 34:13

To get a contradiction it suffices to prove that for any constant t > 0, with overwhelming
probability (over the random walk)

n∑
i=1

Xi ≥ −t and
n∑

i=1
Yi ≤ t. (3)

To this end, we partition the set [n] into two sets I1, I2 ⊆ [n], such that i ∈ Ib if and only
if vi ∈ Vb for b ∈ {0, 1} and i ∈ [n] and where V1 and V2 are the sets defined above. Namely,

I1 = {i : vi ∈ V1} and I2 = {i : vi ∈ V2}.

In order to prove Equation (3), it suffices to prove the following two claims.

I Claim 15. For any constant t > 0, with overwhelming probability (over the random walk),∑
i∈I1

Xi ≥ −t and
∑
i∈I1

Yi ≤ t.

I Claim 16. For any constant t > 0, with overwhelming probability (over the random walk),∑
i∈I2

Xi ≥ −t and
∑
i∈I2

Yi ≤ t. (4)

We start by stating the following claim which we will use in the proofs of Claims 15
and 16.

I Claim 17. For every node v in the protocol tree,

α′v ≤ α′avg and β′v ≥ β′avg,

where α′avg denotes the average of the values of {α′u}u∈child{v} over the children of v, and β′avg
denotes the average of the values of {β′u}u∈child{v} over the children of v.

Proof of Claim 17. Fix a node v in the protocol tree. We show that α′v ≤ α′avg and note
that the proof that β′v ≥ β′avg is analogous.

If c0v = 0, then α′v = α′avg and the claim holds. Suppose that c0v = 1. In this case,
α′v = α′min + ε, where α′min = minu∈child{v}{α′u} is the minimal value of α′ over all the children
of v. Also, by definition, α′min ≤ α′avg − ε. Thus, α′v ≤ α′avg − ε+ ε = α′avg, as desired. J

Proof of Claim 15. By definition, for every i ∈ I1, |Xi|, |Yi| ≤ ε · logn. Claim 17 implies
that

E[Xi | X1, . . . , Xi−1] ≥ 0 and E[Yi | Y1, . . . , Yi−1] ≤ 0.

We extend the series of random variables (Xi)i∈I1 and (Yi)i∈I1 , and define two sequences of
n random variables

(X ′1, . . . , X ′n) and (Y ′1 , . . . , Y ′n)

such that for every i ∈ [n] it holds that

X ′i =
{
Xi if i ∈ I1
0 otherwise

and Y ′i =
{
Yi if i ∈ I1
0 otherwise.

DISC 2018

34:14 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

Note that (by Claim 17) it still holds that for every i ∈ [n],

E[X ′i | X ′1, . . . , X ′i−1] ≥ 0 and E[Y ′i | Y ′1 , . . . , Y ′i−1] ≤ 0.

Thus, by Azuma’s inequality (see Theorem 8), for any real s > 0,

Pr
[

n∑
i=1

X ′i ≤ −s

]
≤ 2 · e−

s2
2n(ε·logn)2 and Pr

[
n∑

i=1
Y ′i ≥ s

]
≤ 2 · e−

s2
2n(ε·logn)2 .

By definition
∑

i∈I1
Xi =

∑n
i=1X

′
i and

∑
i∈I1

Yi =
∑n

i=1 Y
′

i and thus

Pr
[∑

i∈I1

Xi ≤ −ε ·
√
n · log2 n

]
= negl(n) and Pr

[∑
i∈I1

Yi ≥ ε ·
√
n · log2 n

]
= negl(n).

Since we set ε = 1
k = 1√

n·log3 n
, we have that ε ·

√
n · log2 n = o(1), which completes the

proof. J

We proceed with the proof of Claim 16. In the proof, we make use of the following two
claims.

I Claim 18. For any node v in the protocol tree and for any u ∈ child(v),

β′u ≤ β′v + ε and α′u ≥ α′v − ε.

Proof. Fix any node v in the protocol tree and fix any child u ∈ child(v). We prove that
β′u ≤ β′v + ε. The proof that α′u ≥ α′v − ε is analogous and thus omitted.

We distinguish between two cases. First, if c1v = 0, then β′v = β′avg and all the children
of v have β′ which is at most β′avg + ε which implies that β′u ≤ β′v + ε. Second, if c1v = 1,
then β′v = β′max − ε, where β′max = maxu∈child(v){β′u} is the maximal β′ of all the children of v.
This also implies that β′u ≤ β′v + ε. J

I Claim 19. For every node v in the protocol tree, it holds that β′v ≥ α′v.

Proof. The proof is by induction from the leaves to the root. For any leaf v, it holds that
β′v = α′v by definition, and in particular β′v ≥ α′v. Suppose that β′v ≥ α′v holds for every
node v in layer d+ 1 and we prove that it holds for every node in layer d.

To this end, fix any node v in layer d. Suppose that its L children (in layer d+ 1) are
associated with values {(α′i, β′i)}L

i=1, and denote

α′avg ,
1
L

L∑
i=1

α′i and β′avg ,
1
L

L∑
i=1

β′i.

The induction assumption implies that β′avg ≥ α′avg. This, together with Claim 17, implies
that

β′v ≥ β′avg ≥ α′avg ≥ α′v,

as desired. J

Proof of Claim 16. We first show that for every i ∈ I2,

β′vi+1
− α′vi+1

≤
(
β′vi − α

′
vi

)
− ε · (logn− 1). (5)

Y.T. Kalai, I. Komargodski, and R. Raz 34:15

Fix any vi ∈ V2. By definition of V2, there exists a child u ∈ child(vi) such that∣∣α′u − α′vi∣∣ ≥ ε · logn or
∣∣β′u − β′vi ∣∣ ≥ ε · logn.

Claim 18 implies that there exists a child u ∈ child(vi) such that

α′u ≥ α′vi + ε · logn or β′u ≤ β′vi − ε · logn.

For concreteness, suppose that α′u ≥ α′vi + ε · logn (the proof for β′u ≤ β′vi − ε · logn is
analogous). Claim 18 implies that β′u ≤ β′vi + ε. These two inequalities imply that

β′u − α′u ≤ β′vi + ε− α′vi − ε · logn = (β′vi − α
′
vi)− ε · (logn− 1).

This implies Inequality (5), since vi+1 was chosen to minimize the value of β′vi+1
− α′vi+1

.
Inequality (5) implies that, with overwhelming probability,

|I2| · ε · (logn− 1) ≤
∑
i∈I2

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
≤
∑
i∈I2

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
+

∑
i∈II

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
+ 1

= (β′root − α′root)−
(
β′vn − α

′
vn

)
+ 1 ≤ 2, (6)

where the first inequality follows by Equation (5) and summing over all i ∈ I2, the second
inequality follows by Claim 15, and the last inequality follows by our assumption that
α′root > c and β′root < 1− c together with Claim 19.

Note that Claim 18 implies that for every i ∈ [n], it holds that Xi ≥ −ε and Yi ≤ ε. This,
together with Equation (6), implies that∑

i∈I2

Xi ≥ −ε · |I2| ≥ −
2

logn− 1 and
∑
i∈I2

Yi ≤ ε · |I2| ≤
2

logn− 1 ,

as desired. J

J

References
1 Miklós Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica, 13(2):129–

145, 1993.
2 Bar Alon and Eran Omri. Almost-optimally fair multiparty coin-tossing with nearly three-

quarters malicious. In Theory of Cryptography - 14th International Conference, TCC 2016-
B, pages 307–335, 2016.

3 Noga Alon and Moni Naor. Coin-flipping games immune against linear-sized coalitions.
SIAM J. Comput., 22(2):403–417, 1993.

4 Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, third edition, 2008.
5 Amos Beimel, Iftach Haitner, Nikolaos Makriyannis, and Eran Omri. Tighter bounds

on multi-party coin flipping, via augmented weak martingales and di erentially private
sampling. Electronic Colloquium on Computational Complexity (ECCC), 24:168, 2017.

6 Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss with a dis-
honest majority. J. Cryptology, 28(3):551–600, 2015.

DISC 2018

34:16 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

7 Michael Ben-Or and Nathan Linial. Collective coin flipping. Advances in Computing
Research, 5:91–115, 1989.

8 Ravi B. Boppana and Babu O. Narayanan. The biased coin problem. SIAM J. Discrete
Math., 9(1):29–36, 1996.

9 Niv Buchbinder, Iftach Haitner, Nissan Levi, and Eliad Tsfadia. Fair coin flipping: Tighter
analysis and the many-party case. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 2580–2600. SIAM, 2017.

10 Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, pages 364–369. ACM, 1986.

11 Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and discrete
control processes (extended abstract), 1993. Unpublished manuscript.

12 Yevgeniy Dodis. Impossibility of black-box reduction from non-adaptively to adaptively
secure coin-flipping. Electronic Colloquium on Computational Complexity (ECCC), 7(39),
2000.

13 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009. doi:10.1017/
CBO9780511581274.

14 Uriel Feige. Noncryptographic selection protocols. In 40th Annual Symposium on Founda-
tions of Computer Science, FOCS, pages 142–153, 1999.

15 Shafi Goldwasser, Yael Tauman Kalai, and Sunoo Park. Adaptively secure coin-flipping,
revisited. In 42nd International Colloquium on Automata, Languages and Programming„
ICALP, pages 663–674, 2015.

16 Iftach Haitner and Eliad Tsfadia. An almost-optimally fair three-party coin-flipping pro-
tocol. SIAM J. Comput., 46(2):479–542, 2017.

17 Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions
(extended abstract). In 29th Annual Symposium on Foundations of Computer Science,
FOCS, pages 68–80, 1988.

18 Yael Tauman Kalai and Ilan Komargodski. Compressing communication in distributed
protocols. In Distributed Computing - 29th International Symposium, DISC, pages 467–
479, 2015.

19 David Lichtenstein, Nathan Linial, and Michael E. Saks. Some extremal problems arising
form discrete control processes. Combinatorica, 9(3):269–287, 1989.

20 Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. J. Cryptology, 29(3):491–
513, 2016.

21 Alexander Russell, Michael E. Saks, and David Zuckerman. Lower bounds for leader election
and collective coin-flipping in the perfect information model. SIAM J. Comput., 31(6):1645–
1662, 2002.

22 Michael E. Saks. A robust noncryptographic protocol for collective coin flipping. SIAM J.
Discrete Math., 2(2):240–244, 1989.

http://dx.doi.org/10.1017/CBO9780511581274
http://dx.doi.org/10.1017/CBO9780511581274

Adapting Local Sequential Algorithms to the
Distributed Setting

Ken-ichi Kawarabayashi
National Institute of Informatics, Tokyo, Japan
k_keniti@nii.ac.jp

Gregory Schwartzman
National Institute of Informatics, Tokyo, Japan
greg@nii.ac.jp

Abstract
It is a well known fact that sequential algorithms which exhibit a strong "local" nature can
be adapted to the distributed setting given a legal graph coloring. The running time of the
distributed algorithm will then be at least the number of colors. Surprisingly, this well known
idea was never formally stated as a unified framework. In this paper we aim to define a robust
family of local sequential algorithms which can be easily adapted to the distributed setting. We
then develop new tools to further enhance these algorithms, achieving state of the art results for
fundamental problems.

We define a simple class of greedy-like algorithms which we call orderless-local algorithms. We
show that given a legal c-coloring of the graph, every algorithm in this family can be converted
into a distributed algorithm running in O(c) communication rounds in the CONGEST model.
We show that this family is indeed robust as both the method of conditional expectations and the
unconstrained submodular maximization algorithm of Buchbinder et al. [10] can be expressed as
orderless-local algorithms for local utility functions – Utility functions which have a strong local
nature to them.

We use the above algorithms as a base for new distributed approximation algorithms for
the weighted variants of some fundamental problems: Max k-Cut, Max-DiCut, Max 2-SAT and
correlation clustering. We develop algorithms which have the same approximation guarantees
as their sequential counterparts, up to a constant additive ε factor, while achieving an O(log∗ n)
running time for deterministic algorithms and O(ε−1) running time for randomized ones. This
improves exponentially upon the currently best known algorithms.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed, Approximation Algorithms, Derandomization, Max-Cut

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.35

Related Version A full version of the paper is available at https://arxiv.org/abs/1711.
10155.

Funding This work was supported by JST ERATO Grant Number JPMJER1201, Japan

Acknowledgements We would like to thank Ami Paz and Seri Khoury for many fruitful discus-
sions and useful advice.

© Ken-ichi Kawarabayashi and Gregory Schwartzman;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k_keniti@nii.ac.jp
mailto:greg@nii.ac.jp
https://doi.org/10.4230/LIPIcs.DISC.2018.35
https://arxiv.org/abs/1711.10155
https://arxiv.org/abs/1711.10155
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Adapting Local Sequential Algorithms to the Distributed Setting

Table 1 Summary of our results for the CONGEST model (Õ hides factors polylogarithmic in
∆). (*) General graphs, max-agree (†) Unweighted graphs, only Max-Cut (k = 2).

Problem Our Approx.Our TimePrev Approx. Prev Time Notes

Weighted Correlation-Clustering* 1/2− ε O(log∗ n) - - det.
Weighted Max k-Cut 1− 1/k − ε O(log∗ n) 1/2 [12]† Õ(∆ + log∗ n) det.
Weighted Max-Dicut 1/3− ε O(log∗ n) 1/3 [12]† Õ(∆ + log∗ n) det.
Weighted Max-Dicut 1/2− ε O(ε−1) 1/2 [12]† Õ(∆ + log∗ n) rand.
Weighted Max 2-SAT 3/4− ε O(ε−1) - - rand.

1 Introduction

A large part of research in the distributed environment aims to develop fast distributed
algorithms for problems which have already been studied in the sequential setting. Ideally,
we would like to use the power of the distributed environment to achieve a substantial
improvement in the running time over the sequential algorithm, and indeed, for many
problems distributed algorithms achieve an exponential improvement over the sequential
case. One approach to designing distributed algorithms is using the sequential algorithm
as natural staring point [5–7,12,18], then certain adjustments are made for the distributed
environment in order to achieve a faster running time.

There is a well known folklore in distributed computing, which roughly says that if a
sequential graph algorithm works by traversing nodes in any order (perhaps adversarial),
and for every node makes a local decision, then given a legal c-coloring of the graph, the
algorithm can be adapted to the distributed setting by going over all color classes, and
for each executing all nodes in the class simultaneously. Surprisingly, there is no formal
framework describing the above. In this paper we provide such a framework for a specific
class of algorithms (defined later).

We note that for general graphs a legal coloring may require at least ∆ + 1 colors, where
∆ is the maximal degree of the graph. Using the above framework we aim to answer the
following question: Are there certain classes of algorithms where using the above can result
in a running time sublinear in ∆? We show that for certain approximation problems the
answer is quite surprising, as we are able to achieve an almost constant running time!

More precisely, we show that for the problems of Max k-Cut, Max-DiCut, Max 2-SAT
and correlation clustering we can adapt the sequential algorithm to these problems in such a
way that the running time is O(log∗ n) rounds for deterministic algorithms and O(ε2) for
randomized ones, while losing only an additive ε-factor in the approximation ratio. For the
problems of Max-Cut and Max-DiCut this greatly improves upon the previous best known
results, which required a number of rounds linear in ∆. A summary of our results appears in
Table 1.

1.1 Tools and results
In this paper we focus our attention on approximation algorithms for unconstrained optimiz-
ation problems on graphs. We are given some graph G(V,E), where each vertex v is assigned
a variable Xv taking values in some set A. We aim to maximize some utility function f

over these variables (For a formal definition see Section 2). Our distributed model is the
CONGEST model of distributed computation, where the network is represented by a graph,
s.t nodes are computational units and edges are communication links. Nodes communicate in

K. Kawarabayashi and G. Schwartzman 35:3

synchronous communication rounds, where at each round a node sends and receives messages
from all of its neighbors. In the CONGEST model the size of messages sent between nodes
is limited to O(logn) bits, where |V | = n. This is more restrictive than the LOCAL model,
where message size is unbounded. Our complexity measure is the number of communication
rounds of the algorithm.

Adapting a sequential algorithm of the type we describe above to the distributed setting,
means we wish each node v in the communication graph to output an assignment to Xv

such that the approximation guarantee is close to that of the sequential algorithm, while
minimizing the number of communication rounds of the distributed algorithm. Our goal is to
formally define a family of sequential algorithms which can be easily converted to distributed
algorithms, and then develop tools to allow these algorithms to run exponentially faster,
while achieving almost the same approximation ratio. To achieve this we focus our attention
on a family of sequential algorithms which exhibit a very strong local nature.

We define a family of utility functions, which we call local utility functions (Formally
defined in Section 2). We say that a utility function f is a local utility function, if the change
to the value of the function upon setting one variable Xv can be computed locally. Intuitively,
while optimizing a general utility function in the distributed setting might be difficult for
global functions, the local nature of the family of local utility functions makes it a perfect
candidate.

We focus on adapting a large family of, potentially randomized, local algorithms to the
distributed setting. We consider orderless-local algorithms - algorithms that can traverse the
variables in any order and in each iteration apply some local function to decide the value of
the variable. By local we mean that the decision only depends on the local environment of
the node in the graph, the variables of nodes adjacent to that variable and some randomness
only used by that node. This is similar to the family of Priority algorithms first defined
in [9]. The goal of [9] was to formally define the notion of a greedy algorithm, and then
to explore the limits of these algorithms. Our definition is similar (and can be expressed
as a special case of priority algorithms), but the goal is different. While [9] aims to prove
lower bounds, we provide some sufficient conditions that allow us to easily transform local
sequential algorithms into fast distributed algorithms.

Our definitions are also similar to the SLOCAL model [21], which also shows that sequential
algorithms which traverse the graph vertices in any order and make local decisions can be
adapted to the distributed LOCAL model in poly logarithmic rounds using randomization.
While the results of [21] are much more broad, our transformation does not require any
randomization and works in the CONGEST model. Finally, we should also mention the
field of local computation algorithms [35] whose aim is developing efficient local sequential
algorithms. We refer the reader to an excellent survey by Levi and Medina [30].

One might expect that due to the locality of this family of algorithms it can be distributed
if the graph is provided with a legal coloring. The distributed algorithm goes over the color
classes one after another and executes all nodes in the color class simultaneously. This solves
any conflicts that may occur form executing two neighboring nodes, while the orderless
property guarantees that this execution is valid. In a sense this argument was already used
for specific algorithm (Coloring to MIS [32], MaxIS of [5], Max-Cut of [12]). We provide a
more general result, using this classical argument. Specifically, we show that given a legal
c-coloring, any orderless-local algorithm can be distributed in O(c)-communication rounds in
the CONGEST model.

To show that this definition is indeed robust, we show two general applications. The
first is adapting the method of conditional expectations (Formally defined in Section 2)

DISC 2018

35:4 Adapting Local Sequential Algorithms to the Distributed Setting

to the distributed setting. This method is inherently sequential, but we show that if the
utility function optimized is a local utility function, then the algorithm is an orderless-local
algorithm. A classical application of this technique is for Max k-cut, where an (1 − 1/k)-
approximation is achieved when every node chooses a cut side at random. This can be
derandomized using the method of conditional expectations, and adapted to the distributed
setting, as the cut function is a local utility function. We note that the same exact approach
results in a (1/2− ε)-approximation for max-agree correlation clustering on general graphs
(see Section 2 for a definition). Because the tools used for Max-Cut directly translate to
correlation clustering, we focus on Max-Cut for the rest of the paper, and only mention
correlation clustering at the very end.

The second application is the unconstrained submodular maximization algorithms of [10],
where a deterministic 1/3-approximation and a randomized expected 1/2-approximation
algorithms are presented. We show that both are orderless-local algorithms when provided
with a local utility function. This can be applied to the problem of Max-DiCut, as it is an
unconstrained submodular function, and also a local utility function. The algorithms of [10]
were already adapted to the distributed setting for the specific problem of Max-DiCut by [12]
using similar ideas. The main benefit of our definition is the convenience and generality of
adapting these algorithms without the need to consider their analysis or reprove correctness.
We conclude that the family of orderless-local algorithms indeed contains robust algorithms
for fundamental problems, and especially the method of conditional expectations.

At the time this paper was first made public, there was no distributed equivalent for
the method of conditional expectations. We have since learned that, independently and
simultaneously, an adaptation of the method of conditional expectations to the distributed
setting was also presented in [20]. Their results show how the method of conditional
expectations combined with a legal coloring can be used to convert any randomized LOCAL
r-round algorithm for a locally checkable problem to a deterministic one, running in O(∆O(r)+
O(r log∗ n)).1 This is done via a transformation to an SLOCAL algorithm, where the
derandomization is applied and then transforming back to a LOCAL algorithm.

Although not stated for the CONGEST model, we believe it to be the case that when r = 1
their application of the method of conditional expectations works in the CONGEST, and is
equivalent to our results. Another difference apart from the different model of communication,
is that they focus on derandomizing locally checkable problems, while we focus on local utility
functions. These two families of problems are different, as the approximation guaranteed for
a certain local utility function need not be locally checkable. This last point highlights the
different goal of the two papers. While [20] skillfully show that a large family of LOCAL
algorithm can be derandomized, we aim to adapt sequential algorithm to the distributed
setting while achieving as fast of a running time as possible in the more restrictive CONGEST
model – hence we focus on local utility function which capture the locality of the optimization
process.

Next, we wish to consider the running time of these algorithms. Recall that we expressed
the running time of orderless local algorithms in terms of the colors of some legal coloring
for the graph. For a general graph, we cannot hope for a legal coloring using less than ∆ + 1,
where ∆ is the maximum degree in the graph. This means that using the distributed version
of an orderless-local algorithm unchanged will have a running time linear in ∆. We show how

1 They actually show that the running time is either O(∆O(r) + O(r log∗ n)) or r · 2O(
√

logn), achieving
the latter via network decomposition. We focus on the first bound, as the second is less relevant for the
comparison which follows.

K. Kawarabayashi and G. Schwartzman 35:5

to overcome this obstacle for Max k-Cut and Max-DiCut. The general idea is to compute a
defective coloring of the graph which uses few colors, drop all monochromatic edges, and call
the algorithm for the new graph which now has a legal coloring.

A key tool in our algorithms is a new type of defective coloring we call a weighted ε-defective
coloring. The classical defective coloring allows each vertex to have at most d monochromatic
edges, for some defect parameter d. We consider positively edge weighted graphs and require
a weighted fractional defect - for every vertex the total weight of monochromatic edges is at
most an ε-fraction of the total weight of all edges of that vertex. We show that a weighted
ε-defective coloring using O(ε−2) colors can be computed deterministically in O(log∗ n)
rounds using the defective coloring algorithm of [29]. The classical algorithm of Kuhn was
found useful in the adaptation of sequential algorithms to the distributed setting [17, 21],
thus its effectiveness for weighted ε-defective coloring might be of further use.

Although we cannot guarantee a legal coloring with a small number of colors for any
graph G(V,E,w), we may remove some subset of E which will result in a new graph G′

with a low chromatic number. We wish to do so while not decreasing the total sum of edge
weights in G′, which we prove guarantees the approximation will only be mildly affected for
our cut problems. Formally, we show that if we only decrease the total edge weight by an
ε-fraction, we will incur an additive ε-loss in the approximation ratio of the cut algorithms
for G. For the randomized algorithm this is easy, simply color each vertex randomly with a
color in [dε−1e] and drop all monochromatic edges. For the deterministic case, we execute
our weighted ε-defective coloring algorithm, and then remove all monochromatic edges. We
then execute the relevant cut algorithm on the resulting graph G′ which now has a legal
coloring, using a small number of colors. The above results in extremely fast approximation
algorithms for weighted Max k-Cut and weighted Max-DiCut, while having almost the same
approximation ratio as their sequential counterpart.

Finally, our techniques can also be applied to the problem of weighted Max 2-SAT. To do
so we may use the randomized expected 3/4-approximation algorithm presented in [34]. It is
based on the algorithm of [10], and thus is almost identical to the unconstrained submodular
maximization algorithm. Because the techniques we use are very similar to the above, we
defer the entire proof to the full version of the paper.2

1.2 Previous research
Cut problems: An excellent overview of the Max-Cut and Max-DiCut problems appears
in [12], which we follow in this section. Computing Max-Cut exactly is NP-hard as shown
by Karp [27] for the weighted version, and by [19] for the unweighted case. As for ap-
proximations, it is impossible to improve upon a 16/17-approximation for Max-Cut and a
12/13-approximation for Max-DiCut unless P = NP [24,38]. If every node chooses a cut side
randomly, an expected 1/2-approximation for Max-Cut, a 1/4-approximation for Max-DiCut
and a (1 − 1/k)-approximation is achieved. This can be derandomized using the method
of conditional expectations. In the breakthrough paper of Goemans and Williamson [23] a
0.878-approximation is achieved using semidefinite programming. This is optimal under the
unique games conjecture [28]. In the same paper a 0.796-approximation for Max-DiCut was
presented. This was later improved to 0.863 in [MatuuraM01]. Other results using different
techniques are presented in [26,37].

2 The full version can be found here: https://arxiv.org/abs/1711.10155.

DISC 2018

https://arxiv.org/abs/1711.10155

35:6 Adapting Local Sequential Algorithms to the Distributed Setting

In the distributed setting the problem has not received much attention. A node may
choose a cut side at random, achieving the same guarantees as above in constant time. In [25]
a distributed algorithm for d-regular triangle free graphs which achieves a (1/2+0.28125/

√
d)-

approximation ratio in a single communication round is presented. The only results for
general graphs in the distributed setting is due to [12]. In the CONGEST model they
present a deterministic 1/2-approximation for Max-Cut, a deterministic 1/3-approximation
for Max-DiCut, and a randomized expected 1/2 approximation for Max-DiCut running in
Õ(∆ + log∗ n) communication rounds. The results for Max-DiCut follow from adapting the
unconstrained submodular maximization algorithm of [10] to the distributed setting. Better
results are presented for the LOCAL model; we refer the reader to [12] for the full details.
Recently, a lower bound of O(1/ε)-rounds in the LOCAL model for any (even randomized)
(1− ε)-approximation algorithm for Max-Cut and Max-DiCut was presented in [8].

Max 2-SAT: The decision version of Max 2-SAT is NP-complete [19], and there exist several
approximation algorithms [16,23,31,33], of which currently the best known approximation
ratio is 0.9401 [31]. In [3] it is shown that assuming the unique games conjecture, the
approximation factor of [31] cannot be improved. Assuming only that P 6= NP it cannot be
approximated to within a 21/22-factor [24]. To the best of our knowledge the problem of
Max 2-SAT (or Max-SAT) was not studied in the distributed model.

Correlation clustering: An excellent overview of correlation clustering (see Section 2 for a
definition) appears in [1], which we follow in this section. Correlation clustering was first
defined by [4]. Solving the problem exactly is NP-Hard, thus we are left with designing
approximation algorithms for the problem, here one can try to approximate max-agree
or min-disagree. If the graph is a clique, there exists a PTAS for max-agree [4, 22], and
a 2.06-approximation for max-disagree [14]. For general (even weighted) graphs there
exists a 0.7666-approximation for max-agree [13, 36], and a O(logn)-approximation for min-
disagree [15]. A trivial 1/2-approximation for max-agree on general graphs can be achieved
by considering putting every node in a separate cluster, then considering putting all nodes in
a single cluster, and taking the more profitable of the two.

In the distributed setting little is known about correlation clustering. In [11] a dynamic
distributed MIS algorithm is provided, it is stated that this achieves a 3-approximation for
min-disagree correlation clustering as it simulates the classical algorithm of Ailon et al. [2].
We note that the algorithm of Ailon et al. assumes the graph to be a clique, thus the above
result is limited to complete graphs where the edges of the communication graph are taken to
be the positive edges, and the non-edges are taken as the negative edges (as indeed for general
graphs, the problem is APX-Hard, and difficult to approximate better than Θ(logn) [15]).
We also note that using only two clusters, where each node chooses a cluster at random,
guarantees an expected 1/2-approximation for max-agree on weighted general graphs. We
derandomize this approach in this paper.

2 Preliminaries

Sequential algorithms: The main goal of this paper is converting (local) sequential graph
algorithms for unconstrained maximization (or minimization) to distributed graph algorithms.
Let us first define formally this family of algorithms. The sequential algorithm receives as
input a graph G = (V,E), we associate each vertex v ∈ V with a variable Xv taking values in
some finite set A. The algorithm outputs a set of assignments X = {Xv = αv}. The goal of

K. Kawarabayashi and G. Schwartzman 35:7

the algorithms is to maximize some utility function f(G,X) taking in a graph and the set of
assignments and outputting some value in R. For simplicity we assume that the order of the
variables in X does not affect f , so we use a set notation instead of a vector notation. We
somewhat abuse notation, and when assigning a variable we write X ∪ {Xv = α}, meaning
that any other assignment to Xv is removed from the set X. We also omit G as a parameter
when it is clear from context.

When considering randomized algorithms we assume the algorithm takes in a vector of
random bits denoted by ~r. This way of representing random algorithms is identical to having
the algorithm generate random coins, and we use these two definitions interchangeably. The
randomized algorithm aims to maximize the expectation of f , where the expectation is taken
over the random bits of the algorithm.

Max k-Cut, Max-DiCut: In this paper we provide fast distributed approximation algorithms
to some fundamental problems, which we now define formally. In the Max k-Cut problem
we wish to divide the vertices into k disjoint sets, such that the weight of edges between
different sets is maximized. In the Max-DiCut problem the edges are directed and we wish to
divide the nodes into two disjoint sets, denoted A,B, such that the weight of edges directed
from A to B is maximized.

Max 2-SAT: In the Max 2-SAT problem we are given a set of unique weighted clauses
over some set of variables, where each clause contains at most two literals. Our goal is to
maximize the weight of satisfied clauses. This problem is more general than the cut problems,
so we must define what it means in the distributed context. First, the variables will be node
variables as defined before. Second, each node knows all of the clauses it appears in as a
literal.

Correlation clustering: We are given an edge weighted graph G(V,E,w), such that each
edge is also assigned a value from {+,−} (referred to positive and negative edges). Given
some partition, C, of the graph into disjoint clusters, we say that an edge agrees with C if it
is positive and both endpoints are in the same cluster, or it is negative, and its endpoints are
in different clusters. Otherwise we say it disagrees with C. We aim to find a partition C,
using any number of clusters, such that the weight of edges that agree with C (agreements) is
maximized (max-agree), or equivalently the weight of edges that disagree with C is minimized
(min-disagree).

The problem is usually expressed as an LP using edge variables, where each variable
indicates whether the nodes are in the same cluster. This allows a solution to use any number
of clusters. In this paper we only aim to achieve a (1/2− ε)-approximation for the problem.
This can be done rather simply without employing the full power of correlation clustering.
Specifically, two clusters are enough for our case as we show that we can deterministically
achieve (1/2− ε) |E| agreements which results in the desired approximation ratio.

Local utility functions: We are interested in a type of utility function which we call a
local utility function. Before we continue with the definition let us define an operator on
assignments X, we define Lv[X] =

{
{Xu = αu} ∈ X | u ∈ N(v)

}
. For convenience, when

we pass Lv[X] as parameter to a function, we assume that the function also receives the
1-hop neighborhood of v which we do not write explicitly. We say that a utility function
f , as defined above, is a local utility function if for every v there exists a function gv s.t
f(X ∪ {Xv = α})− f(X ∪ {Xv = α′}) = gv(Lv[X], α, α′). That is, to compute the change

DISC 2018

35:8 Adapting Local Sequential Algorithms to the Distributed Setting

in the utility function which is caused by changing Xv from α′ to α, we only need to know
the immediate neighborhood of v, and the assignment to neighboring node variables. We
note that for the cut problems considered in this paper the utility functions are indeed local
utility functions. This is proven in the following Lemma:

I Lemma 1. The utility functions for Max k-Cut, Max-DiCut and max-agree correlation
clustering with 2 clusters are local utility functions.

Proof. The utility functions for Max k-Cut is given by f(X) =
∑
e=(w,u)∈E w(e) ·Xw ⊕Xu

where Xw ⊕Xu = 0 if Xw = Xu and 1 otherwise. Thus, if we fix some v it holds that

f(X ∪ {Xv = α′})− f(X ∪ {Xv = α})

=
∑

e=(v,u)∈E

w(e) · α′ ⊕Xu −
∑

e=(v,u)∈E

w(e) · α⊕Xu

=
∑

e=(v,u)∈E

w(e) · (α′ ⊕Xu − α⊕Xu) , gv(Lv[X], α′, α)

Because the final sum only depends on vertices u ∈ N(v), the last equality defines the
local function equivalent to the difference, and we are done.

For the problem of Max-DiCut the utility functions is given by f(X) =
∑
e=(v→u)∈E w(e) ·

Xv ∧ (1−Xu), and for max-agree correlation clustering with 2 clusters the utility function is
given by f(X) =

∑
e=(v,u)∈E+ w(e) · (1−Xv ⊕Xu) +

∑
e=(v,u)∈E− w(e) ·Xv ⊕Xu (E+, E−

are the positive and negative edges, respectively), and the proof is exactly the same. J

Submodular functions: A family of functions that will be of interest in this paper is the
family of submodular functions. A function f : {0, 1}Ω → R is called a set function, with
ground set Ω. It is said to be submodular if for every S, T ⊆ Ω it holds that f(S) + f(T) ≥
f(S ∪ T) + f(S ∩ T). The functions we are interested in have V as their ground set, thus we
remain with our original notation, setting A = {0, 1} and having f take in a set of binary
assignments X as a parameter.

The method of conditional expectations: Next, we consider the method of conditional
expectations. Let A be some set and f : An → R, next let X = (X1, ..., Xn) be a vector of
random variables taking values in A. We wish to be consistent with the previous notation,
thus we treat X as a set of assignments. If E[f(X)] ≥ β, then there is an assignment of
values Z = {Xi = αi}ni=1 such that f(Z) ≥ β. We describe how to find the vector Z. We first
note that from the law of total expectation it holds that E[f(X)] =

∑
α∈AE[f(X) | X1 =

α]Pr[X1 = α], and therefore for at least some α ∈ A it holds that E[f(X) | X1 = α] ≥ β.
We set this value to be α1. We then repeat this process for the rest of the values in X, which
results in the set Z. In order for this method to work we need it to be possible to compute3
the conditional expectation of f(X).

Graph coloring: A c-coloring for G(V,E) is defined as a function ϕ : V → C. For simplicity
we treat any set C of size c with some ordering as the set of integers [c]. This simplifies
things as we can always consider ϕ(v)± 1, which is very convenient. We say that a coloring

3 This point is critical, and this computation is not simple in many cases. In our case we also need this
computation to be done locally at every nodes. We apply this technique to Max-Cut, which meets all of
these demands.

K. Kawarabayashi and G. Schwartzman 35:9

Algorithm 1: OL(G,~r, π).

1 ∀v ∈ V,Xv = init(Lv[X])
2 Order the variables according to π: v1, v2..., vn
3 for i from 1 to n do Xvi

= decide(Lv[X], ri)
4 Return X

is a legal coloring if ∀v, u s.t (v, u) ∈ E it holds that ϕ(v) 6= ϕ(u). An important tool
in this paper is defective coloring. Let us fix some c-coloring function ϕ : V → [c]. We
define the defect of a vertex to be the number of monochromatic edges it has. Formally,
defect(v) = size{u ∈ N(v) | ϕ(v) = ϕ(u)}. We call ϕ a c-coloring with defect d if it holds
that ∀v ∈ V, defect(v) ≤ d. A classic result by Kuhn [29] states that for all d ∈ {1, 2, ...,∆}
an O(∆2/d2)-coloring with defect d can be computed deterministically in O(log∗ n) rounds
in the CONGEST model.

In this paper we define a new kind of defective coloring which we call a weighted ε-
defective coloring. Given a positively edge weighted graph and any coloring, for every vertex
we denote by Em(v) its monochromatic edges. Define its weighted defect as defectw(v) =∑

e=(u,v)∈Em(v) w(e). We aim to find a coloring s.t the defect for every v is below εw(v) =
ε
∑
v∈e w(e). We show that the algorithm of Kuhn actually computes a weighted ε-defective

O(ε−2)-coloring. We state the following theorem (As the analysis is rather similar to the
original analysis of Kuhn, the proof is deferred to the full version):

I Theorem 2. For any constant ε ∈ (0, 1/e) a weighted ε-defective O(ε−2)-coloring can be
computed deterministically in O(log∗ n) rounds in the CONGEST model.

3 Orderless-local algorithms

Next we turn our attention to a large family of (potentially randomized) greedy algorithms.
We limit ourselves to graph algorithms s.t every node v has a variable Xv taking values in
some set A. We aim to maximize some global utility function f(X). We focus on a class
of algorithms we call orderless-local algorithms. These are greedy-like algorithms which
may traverse the vertices in any order, and at each step decide upon a value for Xv. This
decision is local, meaning that it only depends on the 1-hop topology of v and the values of
neighboring variables. The decision may be random, but each variable has its own random
bits, keeping the decision process local.

The code for a generic algorithm of this family is given in Algorithm 1. The algorithm
first initiates the vertex variables. Next it traverses the variables in some order π : V → [n].
Each Xvi

is assigned a value according to some function decide, which only depends on Lv[X]
at the time of the assignment and some random bits ~ri which are only used to set the value
for that variable. Finally the assignment to the variables is returned. We are guaranteed
that the expected value of f is at least β(G) for any, potentially adversarial, ordering π of
the variables. Formally, E~r[f(OL(G,~r, π))] ≥ β(G).

We show that this family of algorithms can be easily distributed using coloring, s.t the
running time of the distributed version depends on the number of colors. The distributed
version, OLDist, is presented as Algorithm 2. The variables are all initiated as in the
sequential version, and then the color classes are executed sequentially, while in each color
class the nodes execute decide simultaneously, and send the newly assigned value to all
neighbors. Decide does not communicate with the neighbors, so the algorithm finishes in
O(c) rounds.

DISC 2018

35:10 Adapting Local Sequential Algorithms to the Distributed Setting

Algorithm 2: OLDist(G,~r, ϕ).

1 ∀v ∈ V,Xv = init(Lv[X])
2 for i from 1 to c do
3 foreach v s.t ϕ(v) = i simultaneously do
4 Xvi

= decide(Lv[X], ri)
5 Send Xvi

to neighbors
6 end
7 end
8 return X

It is easy to see that given the same randomness both the sequential and distributed
algorithms output the same result, this is because all decisions of the distributed algorithm
only depend on the 1-hop environment of a vertex, and we are provided with a legal coloring.
Thus, one round of the distributed algorithm is equivalent to many steps of the sequential
algorithm. We prove the following lemma:

I Lemma 3. For any graph G with a legal coloring ϕ, there exists an order π on the variables
s.t it holds that OL(G,~r, π) = OLDist(G,~r, π) for any ~r.

Proof. We prove the claim by induction on the executions of color classes by the distributed
algorithm. We note that the execution of the distributed algorithm defines an order on the
variables. Let us consider the i-th color class. Let us denote these variables as

{
Xvj

}k
j=1,

assigning some arbitrary order within the class. The ordering we analyze for the sequential
algorithm would be π(vj) = (ϕ(v), j). Now both the distributed and sequential algorithms
follow the same order of color classes, thus we allow ourselves to talk about the sequential
algorithm finishing an execution of a color class.

Let Yi be the assignments to all variables of the distributed algorithm after the i-th color
class finishes execution. And let Y ′i be the assignments made by the sequential algorithm
following π until all variable in the i-th color class are assigned. Both algorithms initiate
the variables identically, so it holds that Y0 = Y ′0 . Assume that it holds that Yi−1 = Y ′i−1.
The coloring is legal, so for any Xu, Xv, s.t ϕ(u) = ϕ(v) = i it holds that N(v) ∩ u = ∅.
Thus, when assigning v, its neighborhood is not affected by any other assignments done in
the color class, so the randomness is identical for both algorithms, and using the induction
hypothesis all assignments up until this color class were identical. Thus, for all variables in
this color class decide will be executed with the same parameters for both the distributed
and sequential algorithms, and all assignments will be identical. J

Finally we show that for any graph G with a legal coloring ϕ, it holds that

E~r[f(OLDist(G,~r, ϕ))] ≥ β(G).

We know from Lemma 3 that for any coloring ϕ there exists an ordering π s.t OL(G,~r, π) =
OLDist(G,~r, ϕ) for any ~r. The proof is direct from here:

E~r[f(OLDist(G,~r, ϕ))] =
∑
~r

Pr[~r]f(OLDist(G,~r, ϕ))

=
∑
~r

Pr[~r]f(OL(G,~r, π)) = E~r[f(OL(G,~r, π))] ≥ β(G)

K. Kawarabayashi and G. Schwartzman 35:11

Algorithm 3: CondExpSeq(G).

1 ∀v ∈ V,Xv = ∅
2 Order the variables according to any order: v1, v2..., vn
3 for i from 1 to n do Xvi

= argmaxαE[f(X) | Y,Xvi
= αv]− E[f(X) | Y]

4 Return X

We conclude that any orderless-local algorithm can be distributed, achieving the same
performance guarantee on f , and requiring O(c) communication rounds to finish, given a
legal c-coloring. We state the following theorem:

I Theorem 4. Given some utility function f , any sequential orderless-local algorithm for
which it holds that E~r[f(OL(G,~r, π))] ≥ β(G), can be converted into a distributed algorithm
for which it holds that E~r[f(OLDist(G,~r, ϕ))] ≥ β(G), where ϕ is a legal c-coloring of the
graph. The running time of the distributed algorithm is O(c) communication rounds.

3.1 Distributed derandomization
We consider the method of conditional expectations in the distributed case for some local
utility function f(G,X), as defined in the preliminaries. Assume that the value of every Xv

is set independently at random according to some distribution on A which depends only
on the 1-hop neighborhood of v. We are guaranteed that ∀G,E[f(G,X)] ≥ β(G). Thus
in the sequential setting we may use the method of conditional expectations to compute a
deterministic assignment to the variables with the same guarantee. We show that because
f is a local utility function, the method of conditional expectations applied on f is an
orderless-local algorithm, and thus can be distributed.

Initially all variables are initiated to some value ∅ /∈ A, meaning the variable is
unassigned. Let Y = {Xu = αu | u ∈ U ⊆ V } be some partial assignment to the vari-
ables. The method of conditional expectations goes over the variables in any order,
and in each iteration sets Xvi

= argmaxαE[f(X) | Y,Xvi
= α]. This is equivalent to

argmaxα
{
E[f(X) | Y,Xvi = α]− E[f(X) | Y]

}
, as the subtracted term is just a constant.

With this in mind, we present the pseudo code for the method of conditional expectations in
Algorithm 3.

To show that Algorithm 3 is an orderless-local algorithm we only need to show that
argmaxαE[f(X) | Y,Xv = αv]− E[f(X) | Y] can be computed locally for any v. We state
the following lemma, followed by the main theorem for this section.

I Lemma 5. The value argmaxαE[f(X) | Y,Xv = αv] − E[f(X) | Y] can be computed
locally.

Proof. It holds that:

E[f(X) | Y,Xv = αv]− E[f(X) | Y]

=
∑
α∈A

E[f(X) | Y,Xv = αv]Pr[Xv = α]−
∑
α∈A

E[f(X) | Y,Xv = α]Pr[Xv = α]

=
∑
α∈A

Pr[Xv = α](E[f(X) | Y,Xv = αv]− E[f(X) | Y,Xv = α])

Where the first equality is due to the law of total expectation and the fact that
∑
α∈A Pr[Xv =

α] = 1. The probability of assigning Xv to some value can be computed locally, so we are only

DISC 2018

35:12 Adapting Local Sequential Algorithms to the Distributed Setting

left with the difference between the expectations. To show that this is indeed a local quantity
we use the definition of expectation as a weighted summation over all possible assignments to
unassigned variables. Let Uv be the set of all possible assignments to unassigned variables in
N(v) and let U be the set of all possible assignments to the rest of the unassigned variables.
It holds that:

E[f(X) | Y,Xv = αv]− E[f(X) | Y,Xv = α]

=
∑
Zv∈Uv

∑
Z∈U

Pr[Zv]Pr[Z]f(X ∪ Zv ∪ Z ∪ {Xv = αv})− f(X ∪ Zv ∪ Z ∪ {Xv = α})

=
∑
Zv∈Uv

∑
Z∈U

Pr[Zv]Pr[Z]gv(Lv[X ∪ Zv ∪ Z], α, αv)

=
∑
Zv∈Uv

∑
Z∈U

Pr[Zv]Pr[Z]gv(Lv[X ∪ Zv], α, αv)

=
∑
Zv∈Uv

Pr[Zv]gv(Lv[X ∪ Zv], α, αv),

where in the first equality we use the definition of expectations and the fact that the
variables are set independently of each other. Then we use the definition of a local utility
function, and finally the dependence on U disappears due to the law of total probability.
The final sum can be computed locally, as the probabilities for assigning variables in Zv are
known and gv is local. J

I Theorem 6. Let G be any graph and f a local utility function for which it holds that
E[f(X)] ≥ β, where the random assignments to the variables are independent of each
other, and depend only on the immediate neighborhood of the node. There exists a distributed
algorithm achieving the same value as the expected value for f , running in O(c) communication
rounds in the CONGEST model, given a legal c-coloring.

3.2 Submodular Maximization
In this section we consider the problem of unconstrained submodular function maximization.
Given an submodular function f (as defined in Section 2), we aim to find an input s.t the
function is maximized. There are no constraints on the input set we pass to the function,
hence it is ’unconstrained’. We are interested in finding an approximate solution to the
problem, to this end, we consider both the deterministic and randomized algorithms of [10],
achieving 1/3 and 1/2 approximation ratios for unconstrained submodular maximization. We
show that both can be expressed as orderless-local algorithms for any local utility function.
As the deterministic and randomized algorithms of [10] are almost identical, we focus on the
randomized algorithm achieving a 1/2-approximation in expectation (Algorithm 5), as it is a
bit more involved (The deterministic algorithm appears as Algorithm 4). The algorithms
of [10] are defined for any submodular function, but as we are interested only in the case
where the ground set is V , we will present it as such.

The algorithm maintains two variable assignment Zi, Yi, initially Z0 = {Xv = 0 | v ∈ V },
Y0 = {Xv = 1 | v ∈ V }. It iterates over the variables in any order, at each iteration it
considers two nonnegative quantities ai, bi. These quantities represent the gain of either
setting Xvi

= 1 in Zi−1 or setting Xvi
= 0 in Yi−1. Next a coin is flipped with probability

p = ai/(ai + bi), if ai = bi = 0 we set p = 1. If we get heads we set Xvi
= 1 in Zi and

otherwise we set it to 0 in Yi. When the algorithm ends it holds that Zn = Yn, and this is
our solution. The deterministic algorithm is almost identical, only that it allows ai, bi to take

K. Kawarabayashi and G. Schwartzman 35:13

Algorithm 4: det-usm(f).

1 Z0 = {Xv = 0 | v ∈ V }, Y0 = {Xv = 1 | v ∈ V }
2 for i from 1 to n do
3 ai = f(Zi−1 ∪ {Xvi = 1})− f(Zi−1)
4 bi = f(Yi−1 ∪ {Xvi

= 0})− f(Yi−1)
5 if ai ≥ bi then
6 Zi = Zi−1 ∪ {Xvi

= 1}
7 Yi = Yi−1

8 end
9 else

10 Zi = Zi−1
11 Yi = Yi−1 ∪ {Xvi

= 0}
12 end
13 end
14 return Zn

Algorithm 5: rand-usm(f).

1 Z0 = {Xv = 0 | v ∈ V }, Y0 = {Xv = 1 | v ∈ V }
2 Order the variables in any order v1, ..., vn
3 for i from 1 to n do
4 ai = max {f(Zi−1 ∪ {Xvi = 1})− f(Zi−1), 0}
5 bi = max {f(Yi−1 ∪ {Xvi

= 0})− f(Yi−1), 0}
6 if ai + bi = 0 then p = 1 else p = ai/(ai + bi)
7 Yi = Yi−1, Zi = Zi−1
8 Flip a coin with probability p, if heads Zi = Zi ∪ {Xvi = 1}, else

Yi = Yi ∪ {Xvi
= 0}

9 end
10 return Zn

negative values, and instead of flipping a coin it makes the decision greedily by comparing
ai, bi.

We first note that the algorithm does not directly fit into our mold, as each vertex has
two variables. We can overcome this, by taking Xv to be a binary tuple, the first coordinate
stores its value for Zi, and the other for Yi. Initially it holds that ∀v ∈ V,Xv = (0, 1), and our
final goal function will only take the first coordinate of the variable. We note that because f
is a local utility function the values ai, bi can be computed locally, this results directly from
the definition of a local utility function, as we are interested in the change in f caused by
flipping a single variable. Now we may rewrite the algorithm as an orderless-local algorithm,
the pseudocode as Algorithm 6.

Using Theorem 4 we state our main result:

I Theorem 7. For any graph G and a local unconstrained submodular function f with V as
its ground set, there exists a randomized distributed 1/2-approximation, and a deterministic
1/3-approximation algorithms running in O(c) communication rounds in the CONGEST
model, given a legal c-coloring.

DISC 2018

35:14 Adapting Local Sequential Algorithms to the Distributed Setting

Algorithm 6: rand-usm(G,~r, π).

1 ∀v ∈ V,Xv = (0, 1)
2 Order the vertices according to π
3 for i from 1 to n do
4 Xu = decide(Lv[X], ~ri)
5 end
6 return Xn

Algorithm 7: decide(Lv[X], r).

1 Z =
{
Xu = αu,1 | {Xu = (αu,1, αu,2)} ∈ Lv[X]

}
2 Y =

{
Xu = αu,2 | {Xu = (αu,1, αu,2)} ∈ Lv[X]

}
3 a = max {gv(Z, 0, 1), 0}
4 b = max {gv(Z, 1, 0), 0}
5 if a+ b = 0 then p = 1
6 else p = a/(a+ b)
7 Flip coin with probability p
8 if heads then return (1,1)
9 else return (0,0)

3.3 Fast approximations for cut functions
Using the results of the previous sections we can provide fast and simple approximation
algorithms for Max-DiCut and Max k-Cut. Lemma 1 guarantees that the utility functions
for these problems are indeed local utility functions. For Max-DiCut we use the algorithms
of Buchbinder et al., as this is an unconstrained submodular function. For Max k-Cut each
node choosing a side uniformly at random achieves a (1− 1/k) approximation, thus we use
the results of Section 3.1. Theorem 7 and Theorem 6 immediately guarantee distributed
algorithms, running in O(c) communication rounds given a legal c-coloring.

Denote by Cut(G,ϕ) one of the cut algorithms guaranteed by Theorem 7 or Theorem 6.
We present two algorithms, approxCutDet, a deterministic algorithm to be used when
Cut(G,ϕ) is deterministic (Algorithm 8), and, approxCutRand, a randomized algorithm
(Algorithm 9) for the case when Cut(G,ϕ) is randomized. approxCutDet works by coloring
the graph G using a weighted ε-defective coloring and then defining a new graph G′ by
dropping all of the monochromatic edges. This means that the coloring is a legal coloring for
G′. Finally we call one of the deterministic cut functions. approxCutRand is identical, apart
from the fact that nodes choose a color uniformly at random from [dε−1e].

For approxCutDet, the running time of the coloring is O(log∗ n) rounds, returning a
weighted ε-defective O(ε−2)-coloring. The running time of the cut algorithms is the number
of colors, thus the total running time of the algorithm is O(ε−2 + log∗ n) rounds. Using the
same reasoning, the running time of approxCutRand is O(ε−1). It is only left to prove the
approximation ratio. We prove the following lemma:

I Lemma 8. Let G(V,E,w) be any graph, and let G′(V,E′, w) be a graph resulting from
removing any subset of edges from G of total weight at most ε

∑
e∈E w(e). Then for any con-

stant p, any p-approximation for Max-DiCut or Max k-Cut for G′ is a p(1−4ε)-approximation
for G.

K. Kawarabayashi and G. Schwartzman 35:15

Algorithm 8: approxCutDet(G, ε).
1 ϕ = epsilonColor(G, ε)
2 Let G′ = (V,E′ = {(v, u) ∈ E | ϕ(v) 6= ϕ(u)})
3 Cut(G′, ϕ)

Algorithm 9: approxCutRand(G, ε).
1 Each vertex v chooses ϕ(v) uniformly at random from [dε−1e]
2 Let G′ = (V,E′ = {(v, u) ∈ E | ϕ(v) 6= ϕ(u)})
3 Cut(G′, ϕ)

Proof. Let OPT,OPT ′ be the size of optimal solutions for G,G′. It holds that OPT ′ ≥
OPT − ε

∑
e∈E w(e), as any solution for G is also a solution for G′ whose value differs

by at most ε
∑
e∈E w(e) (the weight of discarded edges). Assigning every node a cut side

uniformly at random the expected cut weight is at least
∑
e∈E w(e)/4 for Max-DiCut and

Max k-Cut. Using the probabilistic method this implies that OPT ≥
∑
e∈E w(e)/4. Using

all of the above we can say that given a p-approximate solution for OPT ′ it holds that:
p ·OPT ′ ≥ p(OPT − ε

∑
e∈E w(e)) ≥ p(OPT − 4εOPT) = p(1− 4ε)OPT J

Lemma 8 immediately guarantees the approximation ratio for the deterministic algorithm.
As for the randomized algorithm, let the random variable δ be the fraction of edges removed,
let p be the approximation ratio guaranteed by one of the cut algorithms and let ρ be
the approximation ratio achieved by approxCutRand. We know that Eρ[ρ | δ] = p(1− 4δ).
Applying the law of total expectations we get that E[ρ] = Eδ[Eρ[ρ | δ]] = Eδ[p(1− 4δ)] =
p(1− 4ε). We state our main theorems for this section.

I Theorem 9. There exists a deterministic (1 − 1/k − ε)-approximation algorithms for
Weighted Max k-Cut running in O(log∗ n) communication rounds in the CONGEST model.

I Theorem 10. There exists a deterministic (1/3− ε)-approximation algorithm for Weighted
Max-DiCut running in O(log∗ n) communication rounds in the CONGEST model.

I Theorem 11. There exists a randomized distributed expected (1/2− ε)-approximation for
Weighted Max-DiCut running in O(ε−1) communication rounds in the CONGEST model.

Correlation clustering

We note the same techniques used for Max-Cut work directly for max-agree correlation
clustering on general graphs. Specifically, if we divide the nodes into two clusters, s.t each
node selectes a cluster uniformly at random, each edge has exactly probability 1/2 to agree
with the clustering, thus the expected value of the clustering is

∑
e∈E w(e)/2, which is a

1/2-approximation. The above can be derandomized exactly in the same manner as Max-Cut,
meaning this is an orderless local algorithm. Finally, we apply the weighted ε-defective
coloring algorithm twice (note that we ignore the sign of the edge), discard all monochromatic
edges and execute the deterministic algorithm guaranteed from Theorem 6 with a legal
coloring. Because there must exists a clustering which has a value at least

∑
e∈E w(e)/2, a

lemma identical to Lemma 8 can be proved and hence we are done. We state the following
theorem:

DISC 2018

35:16 Adapting Local Sequential Algorithms to the Distributed Setting

I Theorem 12. There exists a deterministic (1/2− ε)-approximation algorithms for weighted
max-agree correlation clustering on general graphs, running in O(log∗ n) communication
rounds in the CONGEST model.

References
1 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.

Correlation clustering in data streams. In ICML, volume 37 of JMLR Workshop and
Conference Proceedings, pages 2237–2246. JMLR.org, 2015.

2 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008.

3 Per Austrin. Balanced max 2-sat might not be the hardest. In STOC, pages 189–197. ACM,
2007.

4 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. In FOCS, page
238. IEEE Computer Society, 2002.

5 Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman.
Distributed approximation of maximum independent set and maximum matching. In
PODC, pages 165–174. ACM, 2017.

6 Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A distributed (2 + ε)-
approximation for vertex cover in o(log ∆ / ε log log ∆) rounds. J. ACM, 64(3):23:1–23:11,
2017.

7 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Struct. Algorithms, 30(4):532–563,
2007.

8 Ran Ben-Basat, Ken-ichi Kawarabayashi, and Gregory Schwartzman. Parameterized dis-
tributed algorithms. CoRR, abs/1807.04900, 2018. arXiv:1807.04900.

9 Allan Borodin, Morten N. Nielsen, and Charles Rackoff. (incremental) priority algorithms.
In SODA, pages 752–761. ACM/SIAM, 2002.

10 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384–
1402, 2015. doi:10.1137/130929205.

11 Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. Optimal dynamic distributed
MIS. In PODC, pages 217–226. ACM, 2016.

12 Keren Censor-Hillel, Rina Levy, and Hadas Shachnai. Fast distributed approximation for
max-cut. In Algorithms for Sensor Systems, 13th International Symposium on Algorithms
and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria,
September 7–8, 2017, Revised Selected Papers, volume 10718 of Lecture Notes in Computer
Science, pages 41–56. Springer, 2017.

13 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. J. Comput. Syst. Sci., 71(3):360–383, 2005.

14 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal LP rounding algorithm for correlationclustering on complete and complete k-partite
graphs. In STOC, pages 219–228. ACM, 2015.

15 Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering
in general weighted graphs. Theor. Comput. Sci., 361(2-3):172–187, 2006.

16 Uriel Feige and Michel X. Goemans. Aproximating the value of two prover proof systems,
with applications to MAX 2sat and MAX DICUT. In ISTCS, pages 182–189. IEEE Com-
puter Society, 1995.

17 Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-
coloring via hypergraph maximal matching. In FOCS, pages 180–191. IEEE Computer
Society, 2017.

http://arxiv.org/abs/1807.04900
http://dx.doi.org/10.1137/130929205

K. Kawarabayashi and G. Schwartzman 35:17

18 Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

19 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified np-complete
graph problems. Theor. Comput. Sci., 1(3):237–267, 1976. doi:10.1016/0304-3975(76)
90059-1.

20 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. CoRR, abs/1711.02194, 2017.

21 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In STOC, pages 784–797. ACM, 2017.

22 Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. Theory of Computing, 2(13):249–266, 2006.

23 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. doi:10.1145/227683.227684.

24 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
25 Juho Hirvonen, Joel Rybicki, Stefan Schmid, and Jukka Suomela. Large cuts with local

algorithms on triangle-free graphs. CoRR, abs/1402.2543, 2014.
26 Satyen Kale and C. Seshadhri. Combinatorial approximation algorithms for maxcut using

random walks. In ICS, pages 367–388. Tsinghua University Press, 2011.
27 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

28 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxim-
ability results for MAX-CUT and other 2-variable csps? SIAM J. Comput., 37(1):319–357,
2007.

29 Fabian Kuhn. Weak graph colorings: distributed algorithms and applications. In SPAA,
pages 138–144. ACM, 2009.

30 Reut Levi and Moti Medina. A (centralized) local guide. Bulletin of EATCS, 2(122), 2017.
31 Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the MAX

2-sat and MAX DI-CUT problems. In IPCO, volume 2337 of Lecture Notes in Computer
Science, pages 67–82. Springer, 2002.

32 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

33 Shiro Matuura and Tomomi Matsui. 0.863-approximation algorithm for MAX DICUT. In
RANDOM-APPROX, volume 2129 of Lecture Notes in Computer Science, pages 138–146.
Springer, 2001.

34 Matthias Poloczek, Georg Schnitger, David P. Williamson, and Anke van Zuylen. Greedy
algorithms for the maximum satisfiability problem: Simple algorithms and inapproximab-
ility bounds. SIAM J. Comput., 46(3):1029–1061, 2017.

35 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In ICS, pages 223–238. Tsinghua University Press, 2011.

36 Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite pro-
gramming. In SODA, pages 526–527. SIAM, 2004.

37 Luca Trevisan. Max cut and the smallest eigenvalue. SIAM J. Comput., 41(6):1769–1786,
2012.

38 Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson. Gadgets,
approximation, and linear programming. SIAM J. Comput., 29(6):2074–2097, 2000.

DISC 2018

http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1145/227683.227684

Strong Separations Between Broadcast and
Authenticated Channels

Julian Loss
Ruhr University Bochum, Germany
julian.loss@rub.de

https://orcid.org/0000-0002-7979-3810

Ueli Maurer
ETH Zurich, Switzerland
maurer@inf.ethz.ch

Daniel Tschudi1

Aarhus University, Denmark
tschudi@cs.au.dk

https://orcid.org/0000-0001-6188-1049

Abstract
In the theory of distributed systems and cryptography one considers a setting with n parties,
(often) connected via authenticated bilateral channels, who want to achieve a certain goal even if
some fraction of the parties is dishonest. A classical goal of this type is to construct a broadcast
channel. A broadcast channel guarantees that all honest recipients get the same value v (consis-
tency) and, if the sender is honest, that v is the sender’s input (validity). Lamport et al. showed
that it is possible to construct broadcast if and only if the fraction of cheaters is less than a third.

A natural question, first raised by Lamport, is whether there are weaker, still useful primi-
tives achievable from authenticated channels. He proposed weak broadcast, where the validity
condition must hold only if all parties are honest, and showed that it can be achieved with an
unbounded number of protocol rounds, while broadcast cannot, suggesting that weak broadcast
is in a certain sense weaker than broadcast.

The purpose of this paper is to deepen the investigation of the separation between broadcast
and authenticated channels. This is achieved by proving the following results. First, we prove
a stronger impossibility result for 3-party broadcast. Even if two of the parties can broadcast,
one can not achieve broadcast for the third party. Second, we prove a strong separation between
authenticated channels and broadcast by exhibiting a new primitive, called XOR-cast, which
satisfies two conditions: (1) XOR-cast is strongly unachievable (even with small error probability)
from authenticated channels (which is not true for weak broadcast), and (2) broadcast is strongly
unachievable from XOR-cast (and authenticated channels). This demonstrates that the hierarchy
of primitives has a more complex structure than previously known. Third, we prove a strong
separation between weak broadcast and broadcast which is not implied by Lamport’s results. The
proofs of these results requires the generalization of known techniques for impossibility proofs.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases cryptography, multi-party computation, broadcast, impossibility

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.36

1 Author was supported by advanced ERC grant MPCPRO.

© Julian Loss, Ueli Maurer, and Daniel Tschudi;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 36; pp. 36:1–36:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julian.loss@rub.de
https://orcid.org/0000-0002-7979-3810
mailto:maurer@inf.ethz.ch
mailto:tschudi@cs.au.dk
https://orcid.org/0000-0001-6188-1049
https://doi.org/10.4230/LIPIcs.DISC.2018.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Strong Separations Between Broadcast and Authenticated Channels

1 Introduction

1.1 Broadcast and Weaker Consistency Guarantees
In the theory of distributed systems and in cryptography one often considers a set of n
parties which must securely perform a certain computation, even if some of the parties are
dishonest. Broadcast, one of the most fundamental and widely used such primitives, allows
one (possibly cheating) party to distribute a value m consistently to the other parties, in a
context where only bilateral (authenticated) channels between parties are available. More
formally, a broadcast protocol allows a sender to distribute a value vs such that: Consistency:
Every honest party outputs the same value v. Validity: If the sender is honest, the honest
parties output the sender’s value v = vs. The seminal result of [12] and [10] states that given
authenticated channels, broadcast can be achieved if and only if strictly less than n

3 of the
involved parties behave dishonestly, even if an error probability of less than 1

3 were tolerated.
In this work, consistency guarantees of a primitive, e.g. a broadcast channel, to which

(potentially) each party has an input and receives an output, are modelled in a very general
and natural manner, using so-called consistency specifications [14]. It captures, for every set
H of (assumed) honest parties and for every tuple of input values of these honest parties,
which tuples of output values are possible, no matter what the other parties do. In other
words, a specification guarantees that no adversarial behavior can result in the honest parties’
output values to be outside the specified set of tuples. Note that while this concept captures
consistency guarantees in the most general form, it does (intentionally) not capture secrecy
guarantees.

Broadcast guarantees a very strong form of consistency. The study of primitives with a
weaker form of consistency guarantee is well-motivated for two different reasons described
below.

First, as argued by Lamport in [11], there are settings of practical relevance where a
weaker form of broadcast is sufficient. Specifically, in the transaction commit problem, a
database transaction is coordinated by some (not necessarily honest) party P1 who decides
whether a transaction should be committed or aborted. A single dishonest party Pi may
be enough to cause the transaction to be aborted, but in this case, the honest parties must
agree on whether to abort the transaction, or to commit to it. To formalize this setting, [11]
introduced a weaker form of broadcast, which we will henceforth refer to as a weak broadcast
channel. This channel behaves like a regular broadcast channel if all parties are honest, but
requires the validity condition to hold only if every party is honest. Such a guarantee may
be achievable even if broadcast is not achievable.

Second, such a weaker primitive P might be assumed to be available, and one can ask
whether a stronger primitive (e.g. a broadcast channel) can be achieved by a protocol that
not only can use authenticated channels, but also has access to P . A result of this type,
proved in [4], is that broadcast is achievable up to n

2 cheaters, assuming that each party can
broadcast to any two other parties.

The ultimate goal of a theory in this field is a characterization of various levels of
consistency guarantees as well as the hierarchy between them.

1.2 Contribution and Outline
In this work, we are concerned with refining the hierarchy between different types of
consistency guarantees and placing weak broadcast in such a hierarchy. As is common for
impossibility results in distributed computing, we first prove all of our results in the setting
of three parties and then generalize them to the n-party setting.

J. Loss, U. Maurer, and D. Tschudi 36:3

In order to strengthen the known impossibility result of [12] one can investigate whether
it still holds, even if certain primitives are available to the parties, in addition to bilateral
authenticated communication. We prove (see Section 4.1) that even if two of the three parties
can broadcast values, there is no protocol that would allow the third party to broadcast a
value. The proof of this result requires the generalization of known techniques for impossibility
proofs to a setting where additional primitives are given. This contribution, which is used
throughout the paper, is of independent interest beyond the specific results of this paper.

In order to investigate the hierarchy of consistency primitives between authenticated
channels and broadcast, we propose an intermediate level which we call XOR-cast (see
Section 4.2). This channel takes a bit b1 from P1 and a bit b2 from P2 as input. If all parties
behave correctly, the value of b1 ⊕ b2 should be output by all parties. If one of the parties P1
or P2 is dishonest, the honest parties must output the same value. If P3 is dishonest, the
remaining parties must output b1 ⊕ b2.

We demonstrate a strong separation between authenticated channels and broadcast by
proving two strong impossibility results, where we call an impossibility strong if it holds even
if a constant error probability is tolerated and even if an arbitrary number of communication
rounds are allowed. First, it is strongly impossible to achieve XOR-cast from authenticated
communication. Second, it is strongly impossible to achieve broadcast from XOR-cast and
authenticated communication. This demonstrates that the hierarchy of primitives has a more
complex structure than previously known.

The outline of our paper is as follows. In Section 2.1, we introduce the notion of
consistency specifications and protocols. We also give some motivating examples of consistency
specifications that will be used throughout our work. Here, we extend the work of [14] to
case of probabilistic protocols.

In Section 3, we introduce the impossibility proof technique used in this work. In Section 4,
we prove our main results, as explained above. Finally, in Section 5 we show how to generalize
the results to the n-party case.

1.3 Related Work
Results on the possibility and impossibility of achieving broadcast when other primitives
(stronger than authenticated communication) are available were proved in [4, 1, 6, 16, 13].
In a related line of work, [9, 15] derive combinatorial lower bounds on the number of partial
broadcast channels among a set of parties needed in order to still be able to achieve broadcast.
The general problem of constructing consistency primitives from assumed such primitives
was proposed and formalized in [14].

In [11, 2] it is shown that there exists no perfectly secure protocol which constructs weak
broadcast from authenticated channels in a finite number of rounds if n3 or more of the parties
behave dishonestly. On the other hand, Lamport provides a protocol which achieves weak
broadcast, but requires an infinite amount of runtime. This suggests that weak broadcast is
in some sense weaker than broadcast; namely, the result in [12] implies that there exists no
such approximation protocol for broadcast. However, in distributed computing or MPC one
is mostly interested in protocols which run for a fixed number of rounds (or at least terminate
eventually). Here, Lamport’s results show that both weak broadcast and broadcast cannot
be achieved with zero error probability given authenticated channels. If one allows protocols
with an error probability negligible in the number of rounds, the impossibility for broadcast
still holds. On the other hand, it was shown in [3] that weak broadcast can be achieved from
authenticated channels with arbitrary small error probability. Moreover, [12, 11, 3] do not
consider the relation between weak broadcast and broadcast. Especially, it is not shown
whether broadcast can be achieved given weak broadcast.

DISC 2018

36:4 Strong Separations Between Broadcast and Authenticated Channels

Upper bounds for probabilistic broadcast and Byzantine agreement were also studied
in [10, 5]. [10] gives an upper bound of 2

3 (for the success probability) for the fully synchronous,
round-based setting. Somewhat surprisingly, [5] consider a synchronous model with a rushing
adversary that can observe the inputs of all other parties in each round before deciding on
its own input for the round. In this setting, [5] show the stronger bound of (

√
5− 1)/2 and

also give protocols that match this bound. Such a stronger bound is possible only because
the guarantee is stronger and includes a secrecy guarantee: the adversary must not learn the
output too early.

2 Preliminaries and Notation

Let P = {P1, ..., Pn} be a set of n parties (also known as players or processors). For
convenience, we will sometimes use i instead of Pi. We distinguish between the subset of
honest parties, H ⊆ P, and the dishonest parties in the complement, P \H. Honest parties
will execute protocol instructions whereas dishonest parties can deviate arbitrarily from the
protocol. For a set M and a subset S ⊆ P , we denote by MS the Cartesian product×i∈SM .
Moreover we write [n] for the set {1, . . . , n}.

2.1 Consistency Specifications
Primitives, such as a broadcast channel, provide the honest parties with consistency guarantees.
That is, for every set H of honest parties and every possible choice ~xH of inputs, the
consistency guarantees restrict the set of possible outputs of the honest parties. In this
manner, consistency guarantees limit the influence of dishonest parties on the possible
outputs of honest parties. We thus model such primitives as functions called consistency
specifications that map a set of honest parties along with their inputs to a non-empty set
of possible outputs. A smaller set of possible outputs implies stronger guarantees offered
by the consistency specification, as the uncertainty over the actual output is smaller. More
formally, a consistency specification (introduced in [14]) with input domain D and output
domain R is defined as follows.

I Definition 1. A consistency specification with input domain D and output domain R is a
function which assigns to every non-empty subset H ⊆ P and every input tuple ~xH ∈ DH
a non-empty set C(H,~xH) ⊆ RH of output tuples and satisfies the following monotonicity
constraint: For any non-empty subset H ′ ⊆ H ⊆ P

C(H,~xH)|H′ ⊆ C(H ′, ~xH|H′). (1)

The monotonicity constraint ensures that larger sets of honest parties do not have weaker
consistency guarantees. It is therefore natural to require that C(H,~xH) is non-empty for any
choice of H and ~xH as having no output is as good as has having an arbitrary output.

Important Consistency Specifications. We consider two important examples of consistency
specifications that we will use throughout this work.

I Definition 2. A bit broadcast channel BCi for sender Pi can be defined as the following
consistency specification

BCi(H,~xH) =
{
~yH ∈ {0, 1}H

∣∣∣∣ ∃v ((∀j ∈ H : ~yH|{j} = v)
∧ (i ∈ H ⇒ v = ~xH|{i})

) } .
The top right line ensures consistency (all honest parties output the same bit) and the bottom
right line ensures validity (if the sender is honest, the output bit is its input bit) condition.

J. Loss, U. Maurer, and D. Tschudi 36:5

I Definition 3. An authenticated bit-channel Authi,j from Pi to Pj can be defined as the
following consistency specification

Authi,j(H,xH) =
{
~yH ∈ {0, 1}H

∣∣ i, j ∈ H ⇒ ~yH|{j} = ~xH|{i}
}
.

It guarantees that Pj ’s output is equal to the input of Pi if both of them are honest.

In the above examples, the inputs of all (honest) parties except Pi have no influence on
the consistency guarantee. Similarly for Authi,j , the outputs of all (honest) parties except
Pj provide no information (they are arbitrary). We say that such parties have no input,
respectively no output. Formally, we define empty inputs and outputs as follows.

I Definition 4. Let C be a consistency specification with input domain D and output
domain R. A party Pi has no input if for every H with Pi ∈ H and all ~aH ,~bH ∈ DH with
~aH |H\{i} = ~bH |H\{i} it holds that C(H,~aH) = C(H,~bH). A party Pi has no output if for
every H with Pi ∈ H and all ~xH it holds that C(H,~xH)|{i} = R.

Finally, we note that the parallel composition of several consistency specifications once
again forms a consistency specification. More formally, consider consistency specifications
C(1), . . . , C(`) where C(j) has input domain Dj and output domain Rj j ∈ [`]. The parallel
composition of C(1), . . . , C(`) is defined as follows.

I Definition 5. The parallel composition of C(1), . . . , C(`) is the (D,R)-consistency specifi-
cation [C(1), . . . , C(`)] where D =

∏
j∈[`]Dj , R =

∏
j∈[`]Rj , and for every H ⊆ P and all

~xH =
(
(xij)j∈[`]

)
i∈H ∈ D it holds that

[C(1), . . . , C(`)](H,~xH) =
{
~yH ∈ R

∣∣∣∣∣ ~yH =
(
(yij)j∈[`]

)
i∈H

∧ ∀j (yij)i∈H ∈ C(j)(H, (xij)i∈H

)} .
The complete network of authenticated channels can be seen as the parallel composition

of authenticated channels.

I Definition 6. The complete network Auth of authenticated bit-channels for parties P is
the parallel composition of the set {Authi,j | Pi, Pj ∈ P} of all authenticated bit-channels.

2.2 Protocols and Constructions.
Protocols are means to construct new consistency specifications from given consistency
specifications. A protocol execution is round-based and proceeds as follows. In each round, a
party computes an input to the consistency specification used in this round. This input may
depend on its protocol input and outputs from previously invoked consistency specifications.
At the end of the protocol execution, each party computes its protocol output as a function
of its protocol input and all the outputs it received from invoked specifications over the
course of the protocol.

Deterministic Protocols. A deterministic protocols runs for ` ≥ 0 rounds. In each round
r, party Pi uses the deterministic round function f (r)

i to compute its input for the round
specification C(r) which has input domain Dr and output domain Rr. At the end of the
last round, party Pi uses its output function gi to compute its protocol output. Denote by
~C = (C(r))r∈1,...,` the tuple of invoked specifications. Then we can define a deterministic
protocol as follows.

DISC 2018

36:6 Strong Separations Between Broadcast and Authenticated Channels

I Definition 7 ([14]). A deterministic `-round protocol π for tuple ~C with input domains D
and output domains R consists of round functions

f
(r)
i : D ×R1 × · · · × R(r−1) → Dr ∀i ∈ P ∀r ∈ [`]

and output functions

gi : D ×R1 × · · · × R(`) → R ∀i ∈ P.

We explicitly allow zero-round protocols where no consistency specifications are invoked. By
executing the protocol π using tuple ~C, the parties achieve a new consistency specification
denoted by π~C. The following definition formally defines how the output of π~C is computed
by iteratively applying the round functions of π to the input tuple ~xH .

I Definition 8. For a protocol π and the corresponding tuple ~C the protocol specification π~C
is the following consistency specification, such that for every H ⊆ P and ~xH = (xi)i∈H ∈ DH ,
we have:

π~C(H,~xH)

=

(yi)i∈H ∈ RH

∣∣∣∣∣∣∣
∀r ∈ [`] ∃(xir)i∈H ∈ DH

r ∃(yir)i∈H ∈ RH
r

∀i ∈ H: xir = f
(r)
i (xi, yi1, . . . , yir−1)

∧ (yir)i∈H ∈ C(r)(H, (xir)i∈H

)
∧ ∀i ∈ H yi = gi(xi, yi1, . . . , yi`)

 .

The goal of a protocol execution is to achieve a consistency specification whose guarantees
are at least as strong as the guarantees of some target specification C. As already argued,
the consistency guarantee becomes stronger as the set of possible outputs becomes smaller.
Therefore, we say that a protocol π constructs a consistency specification C from the tuple
~C, if the set of possible outputs of the protocol specification π~C(H,~xH) for arbitrary inputs
H,~xH to π~C is a subset of the corresponding set of possible outputs C(H,~xH) of the target
specification C. Formally:

I Definition 9. A protocol π constructs a specification C from the tuple ~C if we have for all
H ⊆ P and all ~xH π~C(H,~xH) that ⊆ C(H,~xH).

Often, one is interested in a broader notion of construction where specifications from a
set C may be invoked arbitrarily often during a protocol execution.

I Definition 10. A specification C can be constructed from a set of specifications C, denoted
by C −→ C, if there exists a tuple ~C of specifications from C (including parallel compositions)
which allows to construct C.

The above definition naturally extends to a construction notion among sets of consistency
specifications: A set of consistency specifications C′ is constructible from C, denoted by
C −→ C′ if all C ∈ C′ can be constructed from C.

Probabilistic Protocols. In a probabilistic protocol, the parties may additionally use local
randomness during the protocol execution. Formally, probabilistic protocols are modeled as
distributions over deterministic protocols.

I Definition 11. A probabilistic protocol `-round Π for tuple ~CΠ with input domains D and
output domains R is a random variable (for some distribution) over a set of deterministic
protocols of at most `-rounds for tuple ~CΠ with input domains D and output domains R.

J. Loss, U. Maurer, and D. Tschudi 36:7

Note that our definition allows for protocols where parties have access to correlated
randomness. We denote by Π~CΠ the random variable over the protocol specifications for Π
and ~CΠ. A protocol constructs a target specification C within ε if with probability strictly
larger than 1− ε, Π~CΠ provides better consistency guarantees than C. Formally:

I Definition 12. A probabilistic protocol Π for tuple ~CΠ constructs C within ε if

min
H,~xH

P
(
Π~CΠ(H,~xH) ⊆ C(H,~xH)

)
> 1− ε.

A construction is called perfect if ε = 0. A specification C can be constructed within ε from
a set C, denoted by C

ε−→ C, if there exists a tuple ~CΠ from C which allows to construct C
within ε.

Note that any deterministic construction is a perfect construction.

3 Impossibility Proofs

In this section, we consider a generalized version of so called ‘scenario’-proofs (see e.g., [2]).
This proof technique, a special type of proof by contradiction, is normally used to prove that
a specification, e.g., broadcast, cannot be constructed from authenticated channels within
some ε. Here, we extend ‘scenario’-proofs to the setting where parties are given additional
setup. This means that we want to prove statements of the form “There is no construction of
a specification C from given specifications C within ε” where C is arbitrary set of specification
which contains the complete network of authenticated channels.

More formally, the technique allows to prove a claim of the form: “C cannot be constructed
from C within ε = 1

k where Auth ∈ C.” The corresponding ‘scenario’-proof goes as follows
(for a simple example of such a proof, see the proof of Lemma 14). Towards a contradiction,
assume that there exists a protocol Π which allows to construct C from C within 1

k . This
implies that for each party Pi and for each input xi, there exists a corresponding (probabilistic)
protocol system Πxi

i which executes the protocol part of Pi for input xi2. For every other
party Pj , the protocol system of a party Pi has an interface where one can connect it to
Pj ’s protocol system. This models the assumption that parties are pair-wise connected
via authenticated channels. If the parties are given additional specifications in C (e.g.,
broadcast channels for some parties) or some setup (e.g. shared randomness) during the
protocol execution, this is modeled via a system R that provides the functionality of these
specifications. In this case, all protocol systems have an additional interface where they
expect to be connected to R.

The creative part of the proof is to build a configuration of connected protocol systems
and R, which has impossible output guarantees. This implies that there is no construction
of C from C within 1

k . More formally, we consider a configuration S and the output vector of
selected protocol systems which we denote by the random variable Y. To show that S has
impossible output guarantees, we use the following technical lemma.

I Lemma 13. Let A1, . . . , Ak be sets with non-empty union A =
⋃k
i=1 Ai and let Y be a

random variable over some set U ⊇ A such that P(Y ∈
⋂k
i=1 Ai) = 0. Then mini P(Y ∈

Ai) ≤ 1− 1
k .

2 Such a system can be instantiated, for example, as an interactive Turing machine.

DISC 2018

36:8 Strong Separations Between Broadcast and Authenticated Channels

Proof. For convenience we denote for any set B by P(B) the probability P(Y ∈ B). We
denote by B the complement of B in U . Using elementary set operations and the union
bound we get

P(
k⋂
i=1

Ai) = 1− P(
k⋃
i=1

Ai) ≥ 1−
k∑
i=1

P(Ai)

= 1−
k∑
i=1

(1− P(Ai)) = 1− k +
k∑
i=1

P(Ai).

As the minimum overall P(Y ∈ Ai) is smaller than the average we finally get

min
i

P(Y ∈ Ai) ≤
1
k

k∑
i=1

P(Ai)

≤ 1
k

(
k − 1 + P(

k⋂
i=1

Ai)
)

= 1− 1
k
. J

To get to a contradiction, we thus need to show that there are k sets (of outputs)
A1, . . . , Ak with empty intersection, where Y ∈ Ai with probability strictly greater than
1 − 1

k for any i. To do so, we use k so-called scenarios. Each scenario describes S as a
protocol execution among three parties where exactly one of them is dishonest. With the
exception of two systems (for the two honest parties), all parts of S are considered to be the
‘attack strategy’ of the dishonest party. The initial assumption implies that the outputs of the
two honest parties in this scenario must satisfy some consistency guarantee with probability
strictly greater than 1− 1

k . This directly translates into a condition on Y. Namely, for the
ith scenario, there must exist a set of outputs Ai such that P(Y ∈ Ai) > 1− 1

k . To arrive at
the desired contradiction, the k scenarios are chosen such that the intersection of all Ai’s is
empty and therefore P(Y ∈

⋂k
i=1 Ai) = 0. In this case, the above lemma implies that for at

least one Ai, it must hold that P(Y ∈ Ai) ≤ 1− 1
k , thus contradicting the fact that for all i,

P(Y ∈ Ai) > 1− 1
k (as required by the assumption of a construction within ε = 1

k).

4 Results

In this section we consider specifications for party set P = {P1, P2, P3} where all inputs and
outputs are bit-strings.

4.1 Strong Broadcast Impossibility
Here, we prove a strong impossibility for the construction of broadcast. That is, we show
that broadcast channel, e.g. BC1, cannot be constructed within 1

3 even if all other broadcast
channels are available. This implies the-well known result by Karlin and Yao [10] that
broadcast cannot be constructed from authenticated channels within 1

3 .
As a warm up, we prove first the [10] statement using the impossibility techniques from

above.

I Lemma 14. [10] Auth
1
3
6−→ BC1.

Proof. Towards a contradiction, let us assume that there exists a protocol Π such that
Auth

Π, 1
3−−−→ BC1. Then there exist protocol systems Π0

1,Π1
1,Π2,Π3. Note that only the

J. Loss, U. Maurer, and D. Tschudi 36:9

Π1

Π1

Π2

Π3

0

1

(a) Configuration S.

Π1

Π1

Π2

Π3

0

1

(b) P1 dishonest Y ∈ {(0, 0), (1, 1)}.

Π1

Π1

Π2

Π3

0

1

(c) P2 dishonest Y ∈ {(0, 1), (1, 1)}.

Π1

Π1

Π2

Π3

0

1

(d) P3 dishonest Y ∈ {(0, 0), (0, 1)}.

Figure 1 The configuration S and the three scenarios.

system of P1 has an input. Each of these systems has two interfaces where it expects to be
connected to the systems of the other two parties.

We consider the configuration S in Figure 1a where all four systems are arranged in a
circle. The random variable Y describes the output behavior of systems Π2 and Π3. This
means that Y maps to bit-tuples where the first component represents the output of Π2.

We examine the distribution of Y using different protocol execution scenarios. First, we
consider the scenario where P2 and P3 are honest while P1 is dishonest, i.e., H = {P2, P3}.
In this scenario, consistency of broadcast ensures that the outputs of P2 and P3 are with
probability strictly larger than 1 − 1

3 the same (independently of the behavior of P1). In
the configuration S, this corresponds to the scenario where the system of P1 consists of the
two left-most systems (cf. Figure 1b). This implies that Y is in A1 = {(0, 0), (1, 1)} with
probability strictly larger than 1− 1

3 . Next, we consider the scenario where P1 and P3 are
honest (H = {P1, P3}) and P1 has input 1. In our configuration S, we can perceive the two
systems on the top as the system of the dishonest P2 (cf. Figure 1c). This implies (validity
of broadcast) that P(Y ∈ A2) > 1− 1

3 for A2 = {(0, 1), (1, 1)}. Finally, we consider the case
H = {P1, P3} where P1 has input 0. In our configuration S, we can perceive the two systems
at the bottom as the system of the dishonest P3 (cf. Figure 1d). This implies (validity of
broadcast) that P(Y ∈ A3) > 1− 1

3 for A3 = {(0, 0), (0, 1)}.
We observe that A1 ∩ A2 ∩ A3 = ∅ and thus P(Y ∈

⋂3
i=1 Ai) = 0. This implies with

Lemma 13 that for at least one Ai, P(Y ∈ Ai) ≤ 1− 1
3 . This is a contradiction to the fact

that P(Y ∈ Ai) > 1 − 1
3 for all Ai, as required by the definition of a construction within

ε = 1
3 . Thus, there exists no ε-construction of broadcast for ε ≤ 1

3 . J

I Theorem 15. {Auth,BC2,BC3}
1
3
6−→ BC1.

Proof. To prove this result we use the ‘scenario’-proof technique from Section 3. Assume
therefore that there exists a probabilistic protocol Π which allows to construct BC1 from
{Auth,BC2,BC3} within ε = 1

3 . Thus, there exist protocol systems Π0
1,Π1

1,Π2,Π3 where
the bit on top of Π1 denotes the input of sender P1. Additionally there exists a system
[BC2,BC3] which corresponds to the given broadcast channels for P2 and P3.

DISC 2018

36:10 Strong Separations Between Broadcast and Authenticated Channels

We first show how to construct a system BC from the system [BC2,BC3]. This system
BC will be used to build the configuration S, rather than [BC2,BC3] directly. Thus, BC
corresponds to the system R in our informal description from Section 3. System BC is
essentially the same as [BC2,BC3] except that the interface of P1 is cloned. More precisely,
BC has four interfaces. The two interfaces for parties P2 and P3 have the same input/output
behavior as in [BC2,BC3]. However, the interface for P1 appears twice in BC, where both
copies deliver the same output. Note that this completely describes the behaviour of BC,
since P1’s interface does not take input in [BC2,BC3] (and thus, it also does not take an
input in BC).

System BC can be built from [BC2,BC3] in three different ways. First, one can build
it by adding a system e1 to the P1-interface of [BC2,BC3] which relays the outputs of this
interface to the two P1-interfaces of BC. Second, one can build BC from [BC2,BC3] by
adding a system e2 to the P2-interface of [BC2,BC3]. System e2 relays any input at the BC
P2-interface to [BC2,BC3]. Any output at the P2-interface of [BC2,BC3] is relayed to the
BC P1-interface and the BC P2-interfaces of e2, respectively. Note that adding system e2 in
this way achieves the same as adding e1. This is true, because in [BC2,BC3], the outputs
at any interface are always identical, due to the consistency guarantees of BC2 and BC3.
Analogously, one can build BC from [BC2,BC3] by adding a system e3 to the P3-interface
of [BC2,BC3]. In summary we have that the systems BC, e1[BC2,BC3], e2[BC2,BC3], and
e3[BC2,BC3] have the same input/output behavior.

We consider now the configuration S in Figure 2a and the output Y of systems Π2 and
Π3. It follows from the above argumentation that the configurations seen in Figures 2b-2d
have the same output behavior Y as S.

We examine the distribution of Y using different protocol execution scenarios. First,
we consider the scenario where P1 is dishonest, i.e, H = {P2, P3}. The consistency of
BC1 implies that with probability strictly larger than 1 − 1

3 , the outputs of P2 and P3
are the same. In this scenario, the adversarial P1 could control a system consisting of the
three left-most systems in Figure 2b. The consistency of broadcast thus implies for S that
P(Y ∈ A1) > 1− 1

3 , where A1 = {(0, 0), (1, 1)}. Next, we consider the scenario H = {P1, P3}
where P1 has input 1. Here, dishonest P2 could run the top-three systems in Figure 2c.
The validity condition of BC1 implies that P(Y ∈ A2) > 1 − 1

3 for A2 = {(0, 1), (1, 1)}.
Finally, we consider the scenario H = {P1, P2} where P1 has input 0. Here, dishonest P3
could run the bottom-three systems in Figure 2d. The validity condition of BC1 implies
that P(Y ∈ A3) > 1 − 1

3 for A3 = {(0, 0), (0, 1)}. The intersection A1 ∩ A2 ∩ A3 is empty
and hence P(Y ∈ A1 ∩ A2 ∩ A3) = 0. Now, Lemma 13 implies that for at least one Ai,
P(Y ∈ Ai) ≤ 1− 1

3 . This is a contradiction to the fact that P(Y ∈ Ai) > 1− 1
3 for all Ai as

required by the definition of a construction within ε = 1
3 . Thus no construction of broadcast

BC1 from {Auth,BC2,BC3} exists within ε = 1
3 . J

I Corollary 16. In particular, for every protocol Π which constructs broadcast BC1 from
{Auth,BC2,BC3}, there exists H ⊆ P of size two such that

P
(
Π(Auth,BC2,BC3)(H,~xH) ⊆ BC1(H,~xH)

)
≤ 1− 1

3 .

4.2 Strong Separation of Broadcast and Authenticated Channels
In this section, we prove a strong separation between broadcast and authenticated channels.
That is, we present a specification, called XOR-cast, which neither can be constructed from
authenticated channels within a constant ε, nor is sufficient to construct broadcast within

J. Loss, U. Maurer, and D. Tschudi 36:11

Π1

Π1

Π2

Π3

BC

0

1

(a) Configuration S.

Π1

Π1

Π2

Π3

[BC2,BC3]e1

0

1

(b) P1 dishonest Y ∈ {(0, 0), (1, 1)}.

Π1

Π1

Π2

Π3

[BC2,BC3]

e2

0

1

(c) P2 dishonest Y ∈ {(0, 1), (1, 1)}.

Π1

Π1

Π2

Π3

[BC2,BC3]

e3

0

1

(d) P3 dishonest Y ∈ {(0, 0), (0, 1)}.

Figure 2 The configuration S and the three scenarios. A line between two systems means that
they are connected. In the case of protocol systems this corresponds to the fact that parties can
communicate over authenticated channels.

a constant ε. XOR-cast takes a bit bi from Pi and a bit bj from Pj as input. If all parties
behave correctly, the value of bi ⊕ bj should be output by all parties. If one of the parties
Pi, Pj is dishonest, the honest parties should output the same value. If the third party Pk is
dishonest, the remaining parties should output bi ⊕ bj .

I Definition 17. Let Pi, Pj ∈ P be distinct parties. The XOR-cast XCi,j for Pi and Pj is
defined as follows.

XCi,j(H,~xH)

=
{
~y ∈ {0, 1}H

∣∣∣∣ ∃v ((∀` ∈ H : ~yH|{`} = v)
∧ (i, j ∈ H ⇒ v = ~xH|{i} ⊕ ~xH|{j})

)} .
The top right line in the equation ensures that all honest parties output the same value. The
bottom right line ensures for honest Pi and Pj that the output is the XOR of their input-bits.

We first prove that XOR-cast, e.g., XC1,2, cannot be constructed from the network of
authenticated channels.

I Lemma 18. {Auth}
1
4
6−→ XC1,2.

Proof. We again use the ‘scenario’-proof technique. Towards a contradiction, assume that
there exists a protocol allowing to construct XC1,2 from {Auth} within 1

4 . Then there exist
protocol systems Πx1

1 ,Πx2
2 ,Π3 for parties P1, P2, P3 where x1 denotes the input bit of P1 and

x2 denotes the input bit of P2. Consider the pentagon configuration S in Figure 3. Let Y
be the random variable over the output (a, b, c) of the three left-most systems, i.e., where
a is the output of Π0

2 (top left), b the output of Π3 (middle left), and c the output of Π0
1

(bottom left). We examine the distribution of Y using four different protocol execution
scenarios. First, we consider the scenario where P2 and P3 are honest (H = {P2, P3}) and P2
has input 0. In this scenario, the dishonest P1 could run the three systems in the bottom-left
in Figure 3a. The outputs of P2 and P3 must be the same. This implies P(Y ∈ A1) > 1− 1

4

DISC 2018

36:12 Strong Separations Between Broadcast and Authenticated Channels

Π3

Π1

Π2

Π1

Π2

0

0

0

1
a

b

c

(a) P1 dishonest
Y ∈ {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}.

Π3

Π1

Π2

Π1

Π2

0

0

0

1
a

b

c

(b) P2 dishonest
Y ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)}.

Π3

Π1

Π2

Π1

Π2

0

0

0

1
a

b

c

(c) P3 dishonest, first strategy
Y ∈ {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)}.

Π3

Π1

Π2

Π1

Π2

0

0

0

1
a

b

c

(d) P3 dishonest, second strategy
Y ∈ {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Figure 3 The configuration S and the four scenarios.

for A1 = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}. Next, we consider the scenario H = {P1, P3}
where P1 has input 0 (cf. Figure 3b). Here, the outputs of P1 and P3 must be the same.
This implies that P(Y ∈ A2) > 1 − 1

4 for A2 = {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)}. Next,
we consider the scenario H = {P1, P2} where both P1 and P2 have input 0 (cf. Figure 3c).
Here, the output of P1 must be 0 = 0 ⊕ 0. This implies that P(Y ∈ A3) > 1 − 1

4 for
A3 = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)}. Finally, we consider the scenario H = {P1, P2}
where P1 has input 1 and P2 has input 0 (cf. Figure 3d). Here, the output of P2 must be
1 = 1⊕ 0. This implies that P(Y ∈ A4) > 1− 1

4 for A4 = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
We observe that the intersection A1∩A2∩A3∩A4 is empty and hence P(Y ∈

⋂4
i=1 Ai) = 0.

This implies with Lemma 13 that for at least one Ai, P(Y ∈ Ai) ≤ 1 − 1
4 . This is a

contradiction to the fact that P(Y ∈ Ai) > 1− 1
4 for all Ai as required by the definition of a

construction within ε = 1
4 . Thus no construction of XC1,2 from Auth exists within 1

4 . J

I Corollary 19. In particular, for every protocol Π, there exists H ⊂ P, |H| = 2, such that

P
(
Π(Auth)(H,~xH) ⊆ XC1,2(H,~xH)

)
≤ 1− 1

4 .

Next, we show that one can perfectly construct XCi,j given the complete network of
authenticated channels and a broadcast channel for Pi or Pj .

I Lemma 20. For all i 6= j ∈ {1, 2, 3} {Auth,BCi} −→ XCi,j.

Proof. Let bi be the input of Pi and let bj be the input of Pj and denote by Pk the third
party. Consider the following protocol.
1. Pj sends bj to Pi. Denote by b̂j the bit received by Pi.
2. Pi broadcasts bk := bi ⊕ b̂j using BCi. Denote by b̂k the bit received by Pj and Pk.
3. Pi outputs bk, Pj and Pk both output b̂k.
If at least Pi and Pj are honest we have b̂j = bj and b̂k = bk. All honest parties will output
bk = bi ⊕ bj as required by XCi,j . On the other hand if H = {Pj , Pk} both honest parties
will output b̂k as required by XCi,j . If H = {Pi, Pk} we have b̂k = bk. Both honest parties
will output bk as required by XCi,j . If at most one party is honest any output is fine, thus
the protocol achieves the construction also in those cases. J

J. Loss, U. Maurer, and D. Tschudi 36:13

Auth XC BC

1
4

1
3

ε ≥ 0ε ≥ 0.

Figure 4 XOR-cast strongly separates Auth and BC.

Finally, we show that XOR-cast is strictly weaker than broadcast. Even given all three
XOR-casts, one cannot construct a single broadcast channel. Without loss of generality, we
show that one cannot construct BC1 given all XOR-casts within ε ≤ 1

3 .

I Lemma 21. {XC1,2,XC1,3,XC2,3,Auth}
1
3
6−→ BC1.

Proof. Towards a contradiction, let us assume that one can construct BC1 given the XOR-
casts, i.e., {XC1,2,XC1,3,XC2,3,Auth} −→ BC1 within ε ≤ 1

3 . Lemma 20 implies that one
can perfectly construct all XOR-casts given broadcast channels BC2,BC3. This implies
that one can construct BC1 from {BC2,BC3,Auth} within ε ≤ 1

3 , a contradiction to
Lemma 15. J

The above lemmas directly imply the following theorem.

I Theorem 22. Authenticated channels and broadcast are strongly separated by XOR-cast.

4.3 Weak Broadcast
For comparison, we consider weak broadcast which was introduced in [11]. This specification
provides the same consistency guarantees as broadcast except that validity only holds if all
parties are honest.

I Definition 23. Let Ps ∈ P. A weak broadcast-channel wBCs for sender Ps is defined to
be a ({0, 1} , {0, 1})-consistency specification where for every H ⊆ P and all ~xH ∈ {0, 1}H it
holds that

wBCs(H,~xH)

=
{
~yH ∈ {0, 1}H

∣∣∣∣ ∃v ((∀j ∈ H : ~yH|{j} = v)
∧ (H = P ⇒ v = ~xH|{s})

)} .
It was shown in [11] that weak broadcast cannot be constructed from authenticated

channels using a deterministic protocol.

I Lemma 24. [11] There exists no deterministic r-round protocol Π which allows for
{Auth} −→ wBCi.

Proof. Without loss of generality, let P1 be the sender. Suppose there exists a deterministic
r-round protocol Π which allows to construct wBC1 from Auth. Then, there exist protocol
systems Πx

1 ,Π2,Π3 for parties P1, P2, P3, where x denotes the input of P1. Choose k > r+ 1
as a multiple of 3 and arrange 4k such systems in a ring as follows: Start with a system Π0

1
and continue with systems Π2,Π3; each system is connected via authenticated channels to
its predecessor and successor. Now repeat this pattern going clockwise, until 2k systems

DISC 2018

36:14 Strong Separations Between Broadcast and Authenticated Channels

have been connected in this manner. Because k is a multiple of three, the last system
in this arrangement will be a system Π3. Now, restart the pattern from the end of this
arrangement, but instead of Π0

1, use Π1
1. Arrange another 2k nodes in this manner, thereby

closing the ring.
Consider the system Π0

1 at “the top” of the ring. As all systems in the ring are deterministic
the view of Π0

1 after r rounds is the same as if the system were run in a triangular configuration
(where the triangle consists of Π0

1,Π2,Π3). The validity of weak broadcast implies that the
system Π0

1 must output 0. Similarly, the system Π1
1 at “the bottom” of the ring must output

1. Now, consider any to adjacent systems in the ring. One can view the rest of the ring as
an attack strategy of a corrupted party. Thus by consistency of weak broadcast any two
adjacent systems must output the same value. We thus arrive at a contradiction. J

On the other hand, the results of [3] imply that weak broadcast can be achieved from
authenticated channels for any ε > 0.

I Lemma 25. [3] For any ε > 0 {Auth} ε−→ wBCi.

Finally, we show that weak broadcast is separated from broadcast. More precisely, we
show that broadcast allows to construct weak broadcast while on the other hand broadcast
cannot be constructed from weak broadcast within ε ≤ 1

3 .

I Theorem 26. Weak broadcast and broadcast are strongly separated.

The theorem follows from the following two lemmata.

I Lemma 27. For all i ∈ {1, 2, 3} {BCi} −→ wBCi.

Proof. For all H and all ~xH it holds that BCi(H,~xH) ⊆ wBCi(H,~xH). This directly implies
{BCi} −→ wBCi. J

I Lemma 28. For all i ∈ {1, 2, 3} {wBCi,Auth}
1
3
6−→ BCi.

Proof. We first show that XCi,j for j 6= i is enough to construct wBCi. The following
protocol π allows Pi to weak broadcast its bit b using XCi,j .
1. XCi,j is invoked where Pi inputs b and Pj inputs 0. Denote by bi, bj , bk the bits the

parties Pi, Pj , Pk receive as output from XCi,j .
2. Pi outputs bi, Pj outputs bj and Pk outputs bk.
The properties of XCi,j ensure that honest parties will always output the same bit, as required
by the consistency of wBCi. If at least Pi and Pj are honest, the output of XCi,j is b = b⊕ 0.
The protocol thus achieves the validity condition required by wBCi.

From Lemma 21, we know that {XCi,j ,Auth}
1
3
6−→ BCi. This implies that BCi cannot

be constructed from {wBCi,Auth} within ε ≤ 1
3 . J

In summary, considering constructions for ε > 0, weak broadcast is not stronger than
authenticated channels. It is only when considering perfect constructions that weak broadcast
provides strictly stronger guarantees. This is in contrast to XOR-cast which is stronger than
authenticated channels for any ε ≥ 0.

J. Loss, U. Maurer, and D. Tschudi 36:15

5 Extension to the n-Party Case

In this section, we show how our theorems can be generalized to the n-party case. Note that
our formal definition of XOR-cast can be used without modification for the setting with n
parties. An informal explanation of the resulting specification is as follows. Again, parties Pi
and Pj each input bits bi and bj . As in the three-party setting, if all parties behave correctly,
the value of bi ⊕ bj should be output by all parties. If one or both of the parties Pi, Pj is
dishonest, the honest parties should output the same value. In any other case, the remaining
honest parties should output bi ⊕ bj .

We begin by proving an n-party analogon of Theorem 15. Informally, we prove that,
given any set of at most 2n

3 distinct broadcast channels, no further broadcast channels can
be achieved.

I Theorem 29. Let B = {BC n
3 +1, ...,BCn}. Then {Auth} ∪ B

1
3
6−→ BC1.

Proof. We show that the existence of such a protocol would contradict Corollary 16. Thus,
assume that there exists a protocol Π which allows to construct BCk from {Auth} ∪ B
within ε = 1

3 . In particular, ∀H ′ ⊆ P of size 2n
3 we have that

P
(
Π(Auth,B)(H,~xH′) ⊆ BC1(H ′, ~xH′)

)
> 1− ε. (2)

We show now that this implies the existence of a protocol Π′ which allows to construct
BC1 within 1

3 in the three-party setting. In particular, for protocol Π′ it will hold that
∀H ⊆ {P1, P2, P3} of size two that P

(
Π′(Auth,BC2,BC3)(H,~xH) ⊆ BC1(H,~xH)

)
> 1− ε,

which is a direct contradiction of Corollary 16.
The idea of Π′ is to execute protocol Π where each of the three parties P1, P2, P3

emulates n
3 of the n parties. Concretely, party P1 emulates virtual parties P1, ..., Pn

3
, party

P2 emulates Pn
3 +1, ..., P 2n

3
, and party P3 emulates P 2n

3 +1, ..., Pn. Clearly, all communication
between virtual parties that occurs over authenticated channels can easily be emulated.
Similarly, if a party Pi, i ∈ {n3 + 1, ..., n} broadcasts in Π, then the party P2 or P3 emulating
Pi can use BC2 or BC3, respectively, to carry out Pi’s virtual broadcast over BCi.

We can now map the set of real honest parties to sets of virtual honest parties. For
instance, for H = {P1, P2} , the virtual parties in H ′1 =

{
P1, . . . , P 2n

3

}
are honest. Similarly,

for H = {P1, P3} and H = {P21, P3} we have virtual honest sets H ′2 and H ′3, respec-
tively. By the initial assumptions, in particular the one in Equation 2, it thus follows that
P
(
Π′(Auth,BC2,BC3)(H,~xH) ⊆ BC1(H,~xH)

)
> 1 − ε for any H of size two. But this

contradicts Corollary 16. J

In a similar fashion, one can prove the following statement for the n-party case.

I Lemma 30. {Auth}
1
4
6−→ XC1,2.

Also, using almost the same arguments, we can prove the analogue of Lemma 20.

I Lemma 31. For all i 6= j ∈ [n] {Auth,BCi} −→ XCi,j.

Finally, we can also restate Lemma 21 for the n-party case. Like the previous two
lemmata, the proof proceeds in a similar fashion as the proof for the three-party case.

I Lemma 32. {XC1,2,XC1,3,XC2,3,Auth}
1
3
6−→ BC1.

DISC 2018

36:16 Strong Separations Between Broadcast and Authenticated Channels

6 Conclusion and Outlook

In this work, we showed strong separation results between broadcast and authenticated
channels. In particular, we showed that weak broadcast admits a strong separation from
broadcast. In order to derive these separations, we generalized known techniques for proving
impossibility to cover also probabilistic constructions. We believe that the formal techniques
and the framework that we introduced here will prove useful to future efforts in proving
similar results. We also initiated the natural study of asymmetric consistency primitives, in
which a (strict) subset of the parties has input and every party receives output. Although
both broadcast and weak broadcast are examples of such primitives, our work is the first to
consider primitives in which the subset of parties with input is not a singleton set. We show
that for the example of the XOR-cast, this type of consistency primitive falls into a previously
undiscovered intermediate layer between authenticated channels and broadcast. As such,
we believe that our work opens up several interesting lines of future research. In regards to
further extending the scope of impossibility results, it would be interesting to see whether
our techniques for probabilistic constructions can also be used to derive stronger bounds in
settings with more complicated setup such as [4, 1]. Another interesting direction for future
research would be a closer study of asymmetric consistency primitives in the above sense.
A first question in this area would be to see if the hierarchy of three-party specifications
considered in this work has an even deeper structure than outlined here, or, more generally,
to classify all such specifications. A second immediate question would be to investigate
how the picture changes when we consider primitives with more than three parties or when
switching to stronger models of corruption, such as the general adversary model [7, 8, 16]
(as opposed to the threshold setting we considered here). Conceptually, it would also be
worthwhile to derive connections between such results and the field of information theoretic
MPC.

References
1 Jeffrey Considine, Matthias Fitzi, Matthew K. Franklin, Leonid A. Levin, Ueli M. Maurer,

and David Metcalf. Byzantine agreement given partial broadcast. Journal of Cryptology,
18(3):191–217, jul 2005.

2 Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. In Michael A. Malcolm and H. Raymond Strong, editors,
4th ACM Symposium Annual on Principles of Distributed Computing, pages 59–70, Minaki,
Ontario, Canada, aug 5–7, 1985. Association for Computing Machinery.

3 Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam Smith.
Detectable byzantine agreement secure against faulty majorities. In Aleta Ricciardi, edi-
tor, 21st ACM Symposium Annual on Principles of Distributed Computing, pages 118–126,
Monterey, California, USA, jul 21–24, 2002. Association for Computing Machinery.

4 Matthias Fitzi and Ueli M. Maurer. From partial consistency to global broadcast. In 32nd
Annual ACM Symposium on Theory of Computing, pages 494–503, Portland, Oregon, USA,
may 21–23, 2000. ACM Press.

5 Ronald L. Graham and Andrew Chi-Chih Yao. On the improbability of reaching byzan-
tine agreements (preliminary version). In 21st Annual ACM Symposium on Theory of
Computing, pages 467–478, Seattle, Washington, USA, may 15–17, 1989. ACM Press.

6 Martin Hirt, Ueli Maurer, and Pavel Raykov. Broadcast amplification. In Yehuda Lindell,
editor, TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture Notes
in Computer Science, pages 419–439, San Diego, CA, USA, feb 24–26, 2014. Springer,
Berlin, Germany. doi:10.1007/978-3-642-54242-8_18.

http://dx.doi.org/10.1007/978-3-642-54242-8_18

J. Loss, U. Maurer, and D. Tschudi 36:17

7 Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures
in perfect multiparty computation. Journal of Cryptology, 13(1):31–60, 2000. Extended
abstract in Proc. 16th of ACM PODC ’97.

8 Martin Hirt and Daniel Tschudi. Efficient general-adversary multi-party computation. In
Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part
II, volume 8270 of Lecture Notes in Computer Science, pages 181–200, Bengalore, India,
dec 1–5, 2013. Springer, Berlin, Germany. doi:10.1007/978-3-642-42045-0_10.

9 Alexander Jaffe, Thomas Moscibroda, and Siddhartha Sen. On the price of equivoca-
tion in byzantine agreement. In Darek Kowalski and Alessandro Panconesi, editors, 31st
ACM Symposium Annual on Principles of Distributed Computing, pages 309–318, Funchal,
Madeira, Portugal, jul 16–18, 2012. Association for Computing Machinery.

10 Anna Rochelle Karlin and Andrew Chi-Chih Yao. Probabilistic lower bounds for the byzan-
tine generals problem. unpublished manuscript, 1984.

11 Leslie Lamport. The weak byzantine generals problem. Journal of the ACM, 30(3):668–676,
jul 1983.

12 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, jul
1982.

13 Julian Loss, Ueli Maurer, and Daniel Tschudi. Hierarchy of three-party consistency spec-
ifications. In 2016 IEEE International Symposium on Information Theory (ISIT), pages
3048–3052. IEEE, 2016.

14 Ueli Maurer. Towards a theory of consistency primitives. In Rachid Guerraoui, editor,
International Symposium on Distributed Computing — DISC 2004, volume 3274 of Lecture
Notes in Computer Science, pages 379–389. Springer, Berlin, Germany, 2004.

15 D. V. S. Ravikant, Venkitasubramaniam Muthuramakrishnan, V. Srikanth, K. Srinathan,
and C. Pandu Rangan. On byzantine agreement over (2,3)-uniform hypergraphs. In Rachid
Guerraoui, editor, International Symposium on Distributed Computing — DISC 2004, vol-
ume 3274 of Lecture Notes in Computer Science, pages 450–464. Springer, Berlin, Germany,
Oct 2004.

16 Pavel Raykov. Broadcast from minicast secure against general adversaries. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, ICALP
2015: 42nd International Colloquium on Automata, Languages and Programming, Part II,
volume 9135 of Lecture Notes in Computer Science, pages 701–712, Kyoto, Japan, jul 6–10,
2015. Springer, Berlin, Germany. doi:10.1007/978-3-662-47666-6_56.

DISC 2018

http://dx.doi.org/10.1007/978-3-642-42045-0_10
http://dx.doi.org/10.1007/978-3-662-47666-6_56

Broadcast and Minimum Spanning Tree with
o(m) Messages in the Asynchronous CONGEST
Model
Ali Mashreghi1

Department of Computer Science, University of Victoria, BC, Canada
ali.mashreghi87@gmail.com

Valerie King2

Department of Computer Science, University of Victoria, BC, Canada
val@uvic.ca

Abstract
We provide the first asynchronous distributed algorithms to compute broadcast and minimum
spanning tree with o(m) bits of communication, in a sufficiently dense graph with n nodes and
m edges. For decades, it was believed that Ω(m) bits of communication are required for any
algorithm that constructs a broadcast tree. In 2015, King, Kutten and Thorup showed that in
the KT1 model where nodes have initial knowledge of their neighbors’ identities it is possible
to construct MST in Õ(n) messages in the synchronous CONGEST model. In the CONGEST
model messages are of size O(log n). However, no algorithm with o(m) messages were known
for the asynchronous case. Here, we provide an algorithm that uses O(n3/2 log3/2 n) messages
to find MST in the asynchronous CONGEST model. Our algorithm is randomized Monte Carlo
and outputs MST with high probability. We will provide an algorithm for computing a spanning
tree with O(n3/2 log3/2 n) messages. Given a spanning tree, we can compute MST with Õ(n)
messages.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms, Math-
ematics of computing → Graph algorithms

Keywords and phrases Distributed Computing, Minimum Spanning Tree, Broadcast Tree

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.37

Related Version A full version of the paper is available at [22], https://arxiv.org/abs/1806.
04328.

1 Funded with an NSERC grant.
2 Funded with an NSERC grant.

© Ali Mashreghi and Valerie King;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 37; pp. 37:1–37:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ali.mashreghi87@gmail.com
mailto:val@uvic.ca
https://doi.org/10.4230/LIPIcs.DISC.2018.37
https://arxiv.org/abs/1806.04328
https://arxiv.org/abs/1806.04328
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 Broadcast and MST with o(m) Messages

1 Introduction

We consider a distributed network as an undirected graph with n nodes and m edges, and
the problem of finding a spanning tree and a minimum spanning tree (MST) with efficient
communication. That is, we require that every node in the graph learns exactly the subset
of its incident edges which are in the spanning tree or MST, resp. A spanning tree enables a
message to be broadcast from one node to all other nodes with only n− 1 edge traversals. In
a sensor or ad hoc network where the weight of a link between nodes reflects the amount of
energy required to transmit a message along the link [19], the minimum spanning tree (MST)
provides an energy efficient means of broadcasting. The problem of finding a spanning tree in
a network has been studied for more than three decades, since it is the building block of many
other fundamental problems such as counting, leader election, and deadlock resolution [3].

A spanning tree can be constructed by a simple breadth-first search from a single node
using m bits of communication. The tightness of this communication bound was a “folk
theorem”, according to Awerbuch, Goldreich, Peleg and Vainish [4]. Their 1990 paper defined
the KT1 model where nodes have unique IDs and know only their neighbors. It showed,
for a limited class of algorithms, a lower bound of Ω(m) messages in a synchronous KT1
network. In 2015, Kutten et al. [19] proved a lower bound for general randomized algorithms
with O(log n) bit messages, in the KT0 model, where nodes do not know their neighbors.
In 2015, King, Kutten, and Thorup gave the first distributed algorithm (“KKT”) with
o(m) communication to build a broadcast tree and MST in the KT1 model. They devised
Monte Carlo algorithms in the synchronous KT1 model with Õ(n) communication [18]. This
paper and a followup paper [21] left open the problem of whether a o(m) bit communication
algorithm in the asynchronous model was possible, for either the spanning tree or MST
problem, when nodes know their neighbors’ IDs.

In an asynchronous network, there is no global clock. All processors may wake up at the
start and send messages, but further actions by a node are event-driven, i.e., in response to
messages received. The pioneer work of Gallager, Humblet, and Spira [14] (“GHS”) presented
an asynchronous protocol for finding the MST in the CONGEST model, where messages are
of size O(log n). GHS requires O(m + n log n) messages and O(n log n) time if all nodes are
awakened simultaneously. Afterwards, researchers worked on improving the time complexity
of MST algorithms in the CONGEST model but the message complexity remained Ω(m).
In this paper, we provide the first algorithm in the KT1 model which uses o(m) bits of
communication for finding a spanning tree in an asynchronous network, specifically we show
the following:

I Theorem 1. Given any network of n nodes where all nodes awake at the start, a span-
ning tree and a minimum spanning tree can be built with O(n3/2 log3/2 n) messages in the
asynchronous KT1 CONGEST model, with high probability.

1.1 Techniques
Many distributed algorithms to find an MST use the Boruvka method: Starting from the
set of isolated nodes, a forest of edge disjoint rooted trees which are subtrees of the MST
are maintained. The algorithms runs in phases: In a phase, in parallel, each tree A finds a
minimum weight outgoing edge, that is, one with exactly one endpoint in A and its other
endpoint in some other tree B. Then the outgoing edge is inserted to create the “merged”
tree containing the nodes of A and B. In what seems an inherently synchronous process,
every tree (or a constant fraction of the trees) participates in some merge, the number of

A. Mashreghi and V. King 37:3

trees is reduced by a constant factor per phase, and O(log n) phases suffice to form a single
tree. [14, 3, 18, 21].

The KKT paper introduced procedures FindAny and FindMin which can find any or
the minimum outgoing edge leaving the tree, respectively. These require O(|T |) messages
and Õ(|T |), resp., where |T | is the number of nodes in the tree T or a total of Õ(n) per
phase. As this is done synchronously in KKT, only O(log n) phases are needed, for a total
number of only O(n log n) messages to build a spanning tree.

While FindAny and FindMin are asynchronous procedures, the Boruvka approach of
[18] does not seem to work in an asynchronous model with o(m) messages, as it does not
seem possible to prevent only one tree from growing, one node at a time, while the other
nodes are delayed, for a cost of O(n2) messages. The asynchronous GHS also uses O(log n)
phases to merge trees in parallel, but it is able to synchronize the growth of the trees by
assigning a rank to each tree. A tree which finds a minimum outgoing edge waits to merge
until the tree it is merging with is of equal or higher rank. The GHS algorithm subtly avoids
traversing the whole tree until a minimum weight outgoing edge to an appropriately ranked
tree is found. This method seems to require communication over all edges in the worst case.

Asynchrony precludes approaches that can be used in the synchronous model. For example,
in the synchronous model, if nodes of low degree send messages to all their neighbors, in one
round all nodes learn which of their neighbors do not have low degree, and therefore they
can construct the subgraph of higher degree nodes. In the asynchronous model, a node, not
hearing from its neighbor, does not know when to conclude that its neighbor is of higher
degree.

The technique for building a spanning tree in our paper is very different from the technique
in [18] or [14]. We grow one tree T rooted at one preselected leader in phases. (If there is
no preselected leader, then this may be done from a small number of randomly self-selected
nodes.) Initially, each node selects itself with probability 1/

√
n log n as a star node. (We use

log n to denote log2 n.) This technique is inspired from [10], and provides a useful property
that every node whose degree is at least

√
n log3/2 n is adjacent to a star node with high

probability. Initially, star nodes (and low-degree nodes) send out messages to all of their
neighbors. Each high-degree node which joins T waits until it hears from a star node and
then invites it to join T . In addition, when low-degree and star nodes join T , they invite
their neighbors to link to T via their incident edges. Therefore, with high probability, the
following invariant for T is maintained as T grows:

Invariant: T includes all neighbors of any star or low-degree node in T , as well. Each
high-degree node in T is adjacent to a star node in T .

The challenge is for high-degree nodes in T to find neighbors outside T . If in each phase,
an outgoing edge from a high-degree node in T to a high-degree node x (not in T) is found
and x is invited to join T , then x’s adjacent star node (which must lie outside T by the
Invariant) is also found and invited to join. As the number of star nodes is O(

√
n/ log1/2 n),

this number also bounds the number of such phases. The difficulty is that there is no obvious
way to find an outgoing edge to a high degree node because, as mentioned above, in an
asynchronous network, a high degree node has no apparent way to determine if its neighbor
has high degree without receiving a message from its neighbor.

Instead, we relax our requirement for a phase. With each phase either (A) A high-degree
node (and star node) is added to T or (B) T is expanded so that the number of outgoing
edges to low-degree nodes is reduced by a constant factor. As there are no more than
O(
√

n/ log1/2 n) phases of type A and no more than O(log n) phases of type B between each
type A phase, there are a total of O(

√
n log1/2 n) phases before all nodes are in T . The

DISC 2018

37:4 Broadcast and MST with o(m) Messages

key idea for implementing a phase of type B is that the tree T waits until its nodes have
heard enough messages passed by low-degree nodes over outgoing edges before initiating an
expansion. The efficient implementation of a phase, which uses only O(n log n) messages,
requires a number of tools which are described in the preliminaries section.

Once a spanning tree is built, we use it as a communication network while finding the
MST. This enables us to “synchronize” a modified GHS which uses FindMin for finding
minimum outgoing edges, using a total of Õ(n) messages.

Note: If we do not assume the existence of a pre-selected leader, or the graph is not
connected, then a variant of the algorithm described in the arxiv version [22] is needed.

1.2 Related work
The Awerbuch, Goldreich, Peleg and Vainish [4] lower bound on the number of messages
holds only for (randomized) algorithms where messages may contain a constant number of
IDs, and IDs are processed by comparison only and for general deterministic algorithms,
where ID’s are drawn from a very large size universe.

Time to build an MST in the CONGEST model has been explored in several papers.
Algorithms include, in the asynchronous KT0 model, [14, 3, 13, 26], and in the synchronous
KT0 model, [20, 15, 7, 17]. Recently, in the synchronous KT0 model, Pandurangan gave a
[23] Õ(D +

√
n) time and Õ(m) message randomized algorithm, which Elkin improved by

logarithmic factors with a deterministic algorithm [11]. The time complexity to compute
spanning tree in the algorithm of [18] is O(n log n) which was improved to O(n) in [21].

Lower bounds on time for approximating the minimum spanning tree has been proved in
the synchronous KT0 model In [8, 25] . Kutten et al. [19] show an Ω(m) lower bound on
message complexity for randomized general algorithms in the KT0 model.

FindAny and FindMin which appear in the KKT algorithms build on ideas for sequential
dynamic connectivity in [16]. A sequential dynamic ApproxCut also appeared in that paper
[16]. Solutions to the sequential linear sketching problem for connectivity [1] share similar
techniques but require a more complex step to verify when a candidate edge name is an
actual edge in the graph, as the edges names are no longer accessible once the sketch is made
(See Subsection 2.3).

The threshold detection problem was introduced by Emek and Korman [12]. It assumes
that there is a rooted spanning tree T where events arrive online at T ’s nodes. Given some
threshold k, a termination signal is broadcast by the root if and only if the number of events
exceeds k. We use a naive solution of a simple version of the problem here.

A synchronizer, introduced by Awerbuch [2] and studied in [6, 5, 24, 9], is a general
technique for simulating a synchronous algorithm on an asynchronous network using commu-
nications along a spanning tree. To do this, the spanning tree must be built first. Using a
general synchronizer imposes an overhead of messages that affect every single step of the
synchronous algorithm that one wants to simulate, and would require more communication
than our special purpose method of using our spanning tree to synchronize the modified GHS.

1.3 Organization
Section 2 describes the model. Section 3 gives the spanning tree algorithm for the case
of a connected network and a single known leader. Finally, Section 4 provides the MST
algorithm. (Due to lack of space the algorithm for computing a minimum spanning forest in
disconnected graphs or minimum spanning tree for dealing with the case of no pre-selected
leader is available on the arxiv version [22]. This variant of the algorithm has the same
message complexity.)

A. Mashreghi and V. King 37:5

2 Preliminaries

2.1 Model

Let c ≥ 1 be any constant. The communications network is the undirected graph G = (V, E)
over which a spanning tree or MST will be found. Edge weights are integers in [1, nc]. IDs
are assigned uniquely by the adversary from [1, nc]. All nodes have knowledge of c and n

which is an upper bound on |V | (number of nodes in the network) within a constant factor.
All nodes know their own ID along with the ID of their neighbors (KT1 model) and the
weights of their incident edges. Nodes have no other information about the network. e.g.,
they do not know |E| or the maximum degree of the nodes in the network. Nodes can only
send direct messages to the nodes that are adjacent to them in the network. If the edge
weights are not unique they can be made unique by appending the ID of the endpoints to its
weight, so that the MST is unique. Nodes can only send direct messages to the nodes that
are adjacent to them in the network. Our algorithm is described in the CONGEST model in
which each message has size O(log n). Its time is trivially bounded by the total number of
messages. The KT1 CONGEST model has been referred to as the “standard model” [4].

Message cost is the sum over all edges of the number of messages sent over each edge
during the execution of the algorithm. If a message is sent it is eventually received, but the
adversary controls the length of the delays and there is no guarantee that messages sent by
the same node will be received in the order they are sent. There is no global clock. All nodes
awake at the start of the protocol simultaneously. After awaking and possibly sending its
initial messages, a processor acts only in response to receiving messages.

We say a network “finds” a subgraph if at the end of the distributed algorithm, every
node knows exactly which of its incident edges in the network are part of the subgraph.
The algorithm here is Monte Carlo, in that it succeeds with probability 1 − n−c′′ for any
constant c′′ (“w.h.p.”).

We initially assume there is a special node (called leader) at the start and the graph is
connected. These assumptions are dropped in the algorithm we provide for disconnected
graphs in the full version of the paper.

2.2 Definitions and Subroutines

T is initially a tree containing only the leader node. Thereafter, T is a tree rooted at the
leader node. We use the term outgoing edge from T to mean an edge with exactly one
endpoint in T . An outgoing edge is described as if it is directed; it is from a node in T and
to a node not in T (the “external” endpoint).

The algorithm uses the following subroutines and definitions:
Broadcast(M): Procedure whereby the node v in T sends message M to its children and
its children broadcast to their subtrees.
Expand: A procedure for adding nodes to T and preserving the Invariant after doing so.
FindAny: Returns to the leader an outgoing edge chosen uniformly at random with
probability 1/16, or else it returns ∅. The leader then broadcasts the result. FindAny

requires O(n) messages. We specify FindAny(E′) when we mean that the outgoing edge
must be an outgoing edge in a particular subset E′ ⊆ E.
FindMin: is similarly defined except the edge is the (unique) minimum cost outgoing
edge. This is used only in the minimum spanning tree algorithm. FindMin requires
O(n log2 n/ log log n) messages.

DISC 2018

37:6 Broadcast and MST with o(m) Messages

ApproxCut: A function which w.h.p. returns an estimate in [k/32, k] where k is the
number of outgoing edges from T and k > c log n for c a constant. It requires O(n log n)
messages.
FindAny and FindMin are described in [18] (The FindAny we use is called FindAny-C
there.) FindAny-C was used to find any outgoing edge in the previous paper. It is not
hard to see that the edge found is a random edge from the set of outgoing edges; we use
that fact here. The relationships among FindAny, FindMin and ApproxCut below are
described in the next subsection.
FoundL(v), FoundO(v): Two lists of edges incident to node v, over which v will send
invitations to join T the next time v participates in Expand. After this, the list is emptied.
Edges are added to FoundL(v) when v receives 〈Low-degree〉 message or the edge is found
by the leader by sampling and its external endpoint is low-degree. Otherwise, an edge
is added to FoundO(v) when v receives a 〈Star〉 message over an edge or if the edge is
found by the leader by sampling and its external endpoint is high-degree. Note that star
nodes that are low-degree send both 〈Low-degree〉 and 〈Star〉. This may cause an edge to
be in both lists which is handled properly in the algorithm.
T-neighbor(v): A list of neighbors of v in T . This list, except perhaps during the execution
of Expand, includes all low-degree neighbors of v in T . This list is used to exclude from
FoundL(v) any non-outgoing edges.
ThresholdDetection(k): A procedure which is initiated by the leader of T . The nodes in
T experience no more than k < n2 events w.h.p. The leader is informed w.h.p. when
the number of events experienced by the nodes in T reaches the threshold k/4. Here,
an event is the receipt of 〈Low-degree〉 over an outgoing edge. Following the completion
of Expand, all edges (u, v) in FoundL(u) are events if v /∈ T-neighbor(u). O(|T | log n)
messages suffice.

2.3 Implementation of F indAny, F indMin and ApproxCut

We briefly review FindAny in [18] and explain its connection with ApproxCut. The key
insight is that an outgoing edge is incident to exactly one endpoint in T while other edges
are incident to zero or two endpoints. If there were exactly one outgoing edge, the parity
of the sum of all degrees in T would be 1, and the parity of bit-wise XOR of the binary
representation of the names of all incident edges would be the name of the one outgoing edge.

To deal with possibility of more than one outgoing edge, the leader creates an efficient
means of sampling edges at different rates: Let l = d2 log ne. The leader selects and broadcasts
one pairwise independent hash function h : [edge_names]→ [1, 2l], where edge_name of an
edge is a unique binary string computable by both its endpoints, e.g., {x, y} = x · y for x < y.
Each node y forms the vector

−−→
h(y) whose ith bit is the parity of its incident edges that hash

to [0, 2i], i = 0, . . . , l. Starting with the leaves, a node in T computes the bitwise XOR of
the vectors from its children and itself and then passes this up the tree, until the leader
has computed

−→
b = XORy∈T

−−→
h(y). The key insight implies that for each index i,

−→
bi equals

the parity of just the outgoing edges mapped to [0, 2i]. Let min be the smallest index i s.t.
−→
bi = 1. With constant probability, exactly one edge of the outgoing edges has been mapped
to [1, 2min]. The leader broadcasts min. Nodes send back up the XOR of the edge_names

of incident edges which are mapped by h to this range. If exactly one outgoing edge has
been indeed mapped to that range, the leader will find it by again determining the XOR of
the edge_names sent up. One more broadcast from the leader can be used to verify that
this edge exists and is incident to exactly one node in T .

A. Mashreghi and V. King 37:7

Since each edge has the same probability of failing in [0, 2min], this procedure gives a
randomly selected edge. Note also that the leader can instruct the nodes to exclude certain
edges from the XOR, say incident edges of weight greater than some w. In this way the leader
can binary search for the minimal weight outgoing edge to carry out FindMin. Similarly,
the leader can select random edges without replacement.

Observe that if the number of outgoing edges is close to 2j , we’d expect min to be l − j

with constant probability. Here we introduce distributed asynchronous ApproxCut which
uses the sampling technique from FindMin but repeats it O(log n) times with O(log n)
randomly chosen hash functions. Let min_sum be the minimum i for which the sum of−→
bi s exceeds c log n for some constant c. We show 2min_sum approximates the number of
outgoing edges within a constant factor from the actual number. ApproxCut pseudocode is
given in Algorithm 5.

We show:

I Lemma 2. With probability 1− 1/nc, ApproxCut returns an estimate in [k/32, k] where
k is the number of outgoing edges and k > c′ log n, c′ a constant depending on c. It uses
O(n log n) messages.

The proof is given in Section 3.2.

3 Asynchronous ST construction with o(m) messages

In this section we explain how to construct a spanning tree when there is a preselected leader
and the graph is connected.

Initially, each node selects itself with probability 1/
√

n log n as a star node. Low-degree
and star nodes initially send out 〈Low-degree〉 and 〈Star〉 messages to all of their neighbors,
respectively. (We will be using the 〈M〉 notation to show a message with content M .) A
low-degree node which is a star node sends both types of messages. At any point during
the algorithm, if a node v receives a 〈Low-degree〉 or 〈Star〉 message through some edge e, it
adds e to FoundL(v) or FoundO(v) resp.

The algorithm FindST-Leader runs in phases. Each phase has three parts: 1) Expansion
of T over found edges since the previous phase and restoration of the Invariant; 2) Search
for an outgoing edge to a high-degree node; 3) Wait until messages to nodes in T have been
received over a constant fraction of the outgoing edges whose external endpoint is low-degree.

1) Expansion. Each phase is started with Expand. Expand adds to T any nodes which
are external endpoints of outgoing edges placed on a Found list of any node in T since the
last time that node executed Expand. In addition, it restores the Invariant for T .

Implementation. Expand is initiated by the leader and broadcast down the tree. When a
node v receives 〈Expand〉 message for the first time (it is not in T), it joins T and makes
the sender its parent. If it is a high-degree node and is not a star, it has to wait until it
receives a 〈Star〉 message over some edge e, and then adds e to FoundO(v). It then forwards
〈Expand〉 over the edges in FoundL(v) or FoundO(v) and empties these lists. Otherwise, if
it is a low-degree node or a star node, it forwards 〈Expand〉 to all of its neighbors.

On the other hand, if v is already in T , it forwards 〈Expand〉 message to its children in T

and along any edges in FoundL(v) or FoundO(v), i.e. outgoing edges which were “found”
since the previous phase, and empties these lists. All 〈Expand〉 requests received by v are
answered, and their sender is added to T-neighbor(v). The procedure ends in a bottom-up

DISC 2018

37:8 Broadcast and MST with o(m) Messages

way and ensures that each node has heard from all the nodes it sent 〈Expand〉 requests to
before it contacts its parent.

Let T i denote T after the execution of Expand in phase i. Initially T 0 consists of the
leader node and as its Found lists contain all its neighbors, after the first execution of
Expand, if the leader is high-degree, T1 satisfies the invariant. An easy inductive argument
on T i shows:

I Observation 1. For all i > 0, upon completion of Expand, all the nodes reachable by
edges in the Found lists of any node in T i−1 are in T i, and for all v ∈ T , T-neighbor(v)
contains all the low-degree neighbors of v in T .

Expand is called in line 6 of the main algorithm 1. The pseudocode is given in Expand

Algorithm 1.

2) Search for an outgoing edge to a high degree node. A sampling of the outgoing edges
without replacement is done using FindAny multiple times. The sampling either (1) finds
an outgoing edge to a high degree node, or (2) finds all outgoing edges, or (3) determines
w.h.p. that at least half the outgoing edges are to low-degree nodes and there are at least
2c log n such edges. If the first two cases occur, the phase ends.

Implementation. Endpoints of sampled edges in T communicate over the outgoing edge
to determine if the external endpoint is high-degree. If at least one is, that edge is added
to the FoundO list of its endpoint in T and the phase ends. If there are fewer than 2 log n

outgoing edges, all these edges are added to FoundO and the phase ends. If there are no
outgoing edges, the algorithm ends. If all 2 log n edges go to low-degree nodes, then the phase
continues with Step 3) below. This is implemented in the while loop of FindST-Leader.

Throughout this section we will be using the following fact from Chernoff bounds:
Assume X1, X2, . . . , XT are independent Bernoulli trials where each trial’s outcome is 1
with probability 0 < p < 1. Chernoff bounds imply that given constants c, c1 > 1 and
c2 < 1 there is a constant c′′ such that if there are T ≥ c′′ log n independent trials, then
Pr(X > c1 ·E[X]) < 1/nc and Pr(X < c2 ·E[X]) < 1/nc, where X is sum of the X1, . . . , XT .

We show:

I Lemma 3. After Search, at least one of the following must be true with probability 1−1/nc′ ,
where c′ is a constant depending on c: 1) there are fewer than 2c log n outgoing edges and the
leader learns them all; 2) an outgoing edge is to a high-degree node is found, or 3) there are
at least 2c log n outgoing edges and at least half the outgoing edges are to low-degree nodes.

Proof. Each FindAny has a probability of 1/16 of returning an outgoing edge and if it
returns an edge, it is always outgoing. After 48c log n repetitions without replacement, the
expected number of edges returned is 3c log n. As these trials are independent, Chernoff
bounds imply that at least 2/3 of trials will be successful with probability at least 1− 1/nc,
i.e., 2c log n edges are returned if there are that many, and if there are fewer, all will be
returned.

The edges are picked uniformly at random by independent repetitions of FindAny. If
more than half the outgoing edges are to high-degree nodes, the probability that all edges
returned are to low-degree nodes is 1/22c log n < 1/n2c. J

A. Mashreghi and V. King 37:9

3) Wait to hear from outgoing edges to low-degree external nodes. This step forces the
leader to wait until T has been contacted over a constant fraction of the outgoing edges to
(external) low-degree nodes. Note that we do not know how to give a good estimate on the
number of low-degree nodes which are neighbors of T . Instead we count outgoing edges.

Implementation. This step occurs only if the 2c log n randomly sampled outgoing edges all
go to low-degree nodes and therefore the number of outgoing edges to low-degree nodes is
at least this number. In this case, the leader waits until T has been contacted through a
constant fraction of these edges.

If this step occurs, then w.h.p., at least half the outgoing edges go to low-degree nodes.
Let k be the number of outgoing edges; k ≥ 2c log n. The leader calls ApproxCut to return
an estimate q ∈ [k/32, k] w.h.p. It follows that w.h.p. the number of outgoing edges to
low-degree nodes is k/2. Let r = q/2. Then r ∈ [k/64, k/2].

The nodes v ∈ T will eventually receive at least k/2 messages over outgoing edges of the
form 〈Low-degree〉. Note that these messages must have been received by v after v executed
Expand and added to FoundL(v), for otherwise, these would not be outgoing edges.

The leader initiates a ThresholdDetection procedure whereby there is an event for a
node v for each outgoing edge v has received a 〈Low-degree〉 message over since the last
time v executed Expand. As the ThresholdDetection procedure is initiated after the leader
finishes Expand, the T-neighbor(v) includes any low-degree neighbor of v that is in T . Using
T-neighbor(v), v can determine which edges in FoundL(v) are outgoing.

Each event experienced by a node causes it to flip a coin with probability min{c log n/r, 1}.
If the coin is heads, then a trigger message labelled with the phase number is sent up to the
leader. The leader is triggered if it receives at least (c/2) log n trigger messages for that phase.
When the leader is triggered, it begins a new phase. Since there are k/2 triggering events,
the expected number of trigger messages eventually generated is (c log n/r)(k/2) ≥ c log n.
Chernoff bounds imply that at least (c/2) log n trigger messages will be generated w.h.p.
Alternatively, w.h.p., the number of trigger messages received by the leader will not exceed
(c/2) log n until at least k/8 events have occurred, as this would imply twice the expected
number. We can conclude that w.h.p. the leader will trigger the next phase after 1/4 of the
outgoing edges to low-degree nodes have been found.

I Lemma 4. When the leader receives (c/2) log n messages with the current phase number,
w.h.p, at least 1/4 of the outgoing edges to low-degree nodes have been added to FoundL lists.

3.1 Proof of the main theorem
Here we prove Theorem 1 as it applies to computing the spanning tree of a connected network
with a pre-selected leader.

I Lemma 5. W.h.p., after each phase except perhaps the first, either (A) A high-degree
node (and star node) is added to T or (B) T is expanded so that the number of outgoing
edges to low-degree nodes is reduced by a 1/4 factor (or the algorithm terminates with a
spanning tree).

Proof. By Lemma 3 there are three possible results from the Search phase. If a sampled
outgoing edge to a high-degree node is found, this edge will be added to the FoundO list of
its endpoint in T . If the Search phase ends in fewer than 2c log n edges found and none of
them are to high degree nodes, then w.h.p. these are all the outgoing edges to low-degree
nodes, these edges will all be added to some FoundL. If there are no outgoing edges, the

DISC 2018

37:10 Broadcast and MST with o(m) Messages

algorithm terminates and a spanning tree has been found. If the third possible result occurs,
then there are at least 2 log n outgoing edges, half of which go to low-degree nodes. By
Lemma 4, the leader will trigger the next phase and it will do so after at least 1/4 of the
outgoing edges to low-degree nodes have been added to FoundL lists.

By Observation 1, all the endpoints of the edges on the Found lists will be added to T in
the next phase, and there is at least one such edge or there are no outgoing edges and the
spanning tree has been found. When Expand is called in the next phase, T acquires a new
high degree node in two possible ways, either because an outgoing edge on a Found list is to
a high-degree node or because the recursive Expand on outgoing edges to low-degree edges
eventually leads to an external high-degree node. In either case, by the Invariant, T will
acquire a new star node as well as a high-degree node. Also by the Invariant, all outgoing
edges must come from high-degree nodes. Therefore, if no high-degree nodes are added to
T by Expand, then no new outgoing edges are added to T . On the other hand, 1/4 of the
outgoing edges to low-degree nodes have become non-outgoing edges as their endpoints have
been added to T . So we can conclude that the number of outgoing edges to low-degree nodes
have been decreased by 1/4 factor. J

It is not hard to see:

I Lemma 6. The number of phases is bounded by O(
√

n log1/2 n).

Proof. By Lemma 5, every phase except perhaps the first, is of type A or type B. Chernoff
bounds imply that w.h.p., the number of star nodes does not exceed its expected number
(
√

n/ log1/2 n) by more than a constant factor, hence there are no more than O(
√

n/ log1/2 n)
phases of type A. Before and after each such phase, the number of outgoing edges to
low-degree nodes is reduced by at least a fraction of 1/4; hence, there are no more than
log4/3 n2 = O(log n) phases of type B between phases of type A. J

Finally, we count the number of messages needed to compute the spanning tree.

I Lemma 7. The overall number of messages is O(n3/2 log3/2 n).

Proof. The initialization requires O(
√

n log3/2 n) messages from O(n) low-degree nodes and
O(n) messages from each of O(

√
n/ log1/2 n) stars. In each phase, Expand requires a number

of messages which is linear in the size of T or O(n), except that newly added low-degree
and star nodes send to their neighbors when they are added to T , but this adds just a
constant factor to the initialization cost. FindAny is repeated O(log n) times for a total
cost of O(n log n) messages. ApproxCut requires the same number. The Threshold Detector
requires only O(log n) messages to be passed up T or O(n log n) messages overall. Therefore,
by Lemma 6 the number of messages over all phases is O(n log3/2 n). J

Theorem 1 for spanning trees in connected networks with a pre-selected leader follows
from Lemmas 7 and 6.

3.2 Proof of ApproxCut Lemma
Proof. Let W be the set of the outgoing edges. For a fixed z and i, we have:

Pr(hz,i(T) = 1) = Pr(an odd number of edges in W hash to [2i]) ≥

Pr(∃! e ∈Whashed to [2i]).

A. Mashreghi and V. King 37:11

This probability is at least 1/16 for i = l − dlog |W |e − 2 (Lemma 5 of [18]). Therefore,
since Xj =

∑c log n
z=1 hz,j (from pseudocode), E[Xj] =

∑
E[hz,j] ≥ c log n/16, where j =

l − dlog |W |e − 2. Note that j = l − dlog |W |e − 2 means that 2l

2j+3 < |W | < 2l

2j+1 . Consider
j − 4. Since the probability of an edge being hashed to [2j−4] is 2j−4

2l , we have

Pr(hz,j−4(T) = 1) ≤ Pr(∃e ∈Whashed to [2j−4]) = |W |2
j−4

2l
≤ 1

25 ≤
1
32 .

Thus, E[Xj−4] ≤ c log n/32. Since an edge that is hashed to [2j−k] (for k > 4) is already
hashed to [2j−4], we have:

Pr(hz,j−4(T) = 1 ∨ . . . ∨ hz,0(T) = 1) ≤ Pr(∃e ∈Whashed to [2j−4]or . . . or[20])) =

Pr(∃e ∈Whashed to [2j−4]) = 1
32 .

Let yz be 1 if hz,j−4(T) = 1 ∨ . . . ∨ hz,0(T) = 1, and 0 otherwise. Also, let Y =
∑c log n

z=1 yz.
We haveE[Y] ≤ c log n/32. Also, for any positive integer a,

Pr(Xj−4 > a ∨ . . . ∨X0 > a) ≤ Pr(Y > a).

From Chernoff bounds:

Pr(Xj < (3/4)c log n/16) = Pr(Xj < (3/4)E[Xj]) < 1/nc′

and,

Pr(Xj−4 > (3/2)c log n/16 ∨ . . . ∨X0 > (3/2)c log n/16) ≤ Pr(Y > (3/2)c log n/16) =

Pr(Y > (3/2)c log n/32) < Pr(Y > (3/2)E[Y]) < 1/nc′ .

Therefore, by finding the smallest i (called min in pseudocode) for which Xi > (3/2)c log n/16,
w.h.p. min is in [j − 3, j]. As a result, 2|W | ≤ 2l−min ≤ 64|W |. Therefore,
|W |/32 ≤ 2l−min/64 ≤ |W |.

Furthermore, broadcasting each of the O(log n) hash functions and computing the corre-
sponding vector takes O(n) messages; so, the lemma follows. J

3.3 Pseudocode

Algorithm 1 Initialization of the spanning tree algorithm.
1: procedure Initialization
2: Every node selects itself to be a star node with probability of 1/

√
n log n.

3: Nodes that have degree <
√

n log3/2 n are low-degree nodes. Otherwise, they are
high-degree nodes. (Note that they may also be star nodes at the same time.)

4: Star nodes send 〈Star〉 messages to all of their neighbors.
5: Low-degree nodes send 〈Low-degree〉 messages to all of their neighbors (even if they

are star nodes too).
6: end procedure

DISC 2018

37:12 Broadcast and MST with o(m) Messages

Algorithm 2 Asynchronous protocol for the leader to find a spanning tree.
1: procedure FindST-Leader
2: Leader initially adds all of its incident edges to its FoundL list. // By exception

leader does not need to differentiate between FoundL and FoundO

3: i← 0
4: repeat (Phase i)
5: i← i + 1.
6: Leader calls Expand(). // Expansion

// Search and Sampling:
7: counter ← 0, A← ∅.
8: while counter < 48c log n do
9: FindAny(E \A).

10: if FindAny is successful and finds an edge (u, v) (u ∈ T and v /∈ T) then
11: u sends a message to v to query v’s degree, and sends it to the leader.
12: u adds (u, v) to either FoundL(u) or FoundO(u) based on v’s degree.
13: end if
14: counter ← counter + 1.
15: end while
16: if |A| = 0 then
17: terminate the algorithm as there are no outgoing edges.
18: else if |A| < 2 log n (few edges) or ∃(u, v) ∈ A s.t. v is high-degree then
19: Leader starts a new phase to restore the Invariant.
20: else (at least half of the outgoing edges are to low-degree nodes) // Wait:
21: r ← ApproxCut()/2.
22: Leader calls ThresholdDetection(r).
23: Leader waits to trigger and then starts a new phase.
24: end if
25: until
26: end procedure

Algorithm 3 Given r at phase i, this procedure detects when nodes in T receive at least
r/4 〈Low − degree〉 messages over outgoing edges. c is a constant.

1: procedure ThresholdDetection
2: Leader calls Broadcast(〈Send-trigger, r, i〉).
3: When a node u ∈ T receives 〈Send-trigger, r, i〉, it first participates in the broadcast.

Then, for every event, i.e. every edge (u, v) ∈ Found(u)L such that v /∈ T-neighbor(u),
u sends to its parent a 〈Trigger, i〉 message with probability of c log n/r.

4: A node that receives 〈Trigger, i〉 from a child keeps sending up the message until it
reaches the leader. If a node receives an 〈Expand〉 before it sends up a 〈Trigger, i〉, it
discards the 〈Trigger, i〉 messages as an Expand has already been triggered.

5: Once the leader receives at least c log n/2 〈Trigger, i〉 messages, the procedure ter-
minates and the control is returned to the calling procedure.

6: end procedure

A. Mashreghi and V. King 37:13

Algorithm 4 Leader initiates Expand by sending 〈Expand〉 to all of its children. If this is
the first Expand, leader sends to all of its neighbors. Here, x is any non-leader node.

1: procedure Expand
2: When node x receives an 〈Expand〉 message over an edge (x, y):
3: x adds y to T-neighbor(x).
4: if x is not in T then
5: The first node that x receives 〈Expand〉 from becomes x’s parent. //x joins T

6: if x is a high-degree node and x is not a star node then
7: It waits to receive a 〈Star〉 over some edge e, then adds e to FoundO(x).
8: It forwards 〈Expand〉 over edges in FoundL(x) and FoundO(x) (only once in

case an edge is in both lists), then removes those edges from the Found lists.
9: else (x is a low-degree or star node)

10: It forwards the 〈Expand〉 message to all of its neighbors.
11: end if
12: else (x is already in T)
13: If the sender is not its parent, it sends back 〈Done-by-reject〉. Else, it forwards

〈Expand〉 to its children in T , over the edges in FoundL(x) and FoundO(x),
then removes those edges from the Found lists.

14: end if
// Note that if x added more edges to its Found list after forward of
〈Expand〉, the new edges will be dealt with in the next Expand.

15: When a node receives 〈Done〉 messages (either 〈Done-by-accept〉 or 〈Done-by-reject〉)
from all of the nodes it has sent to, it considers all nodes that have sent
〈Done-by-accept〉 as its children. Then, it sends up 〈Done-by-accept〉 to its parent.

16: The algorithm terminates when the leader receives 〈Done〉 from all of its children.
17: end procedure

Algorithm 5 Approximates the number of outgoing edges within a constant factor. c is a
constant.

1: procedure ApproxCut(T)
2: Leader broadcasts c log n random 2-wise independent hash functions defined from

[1, n2c]→ [2l].
3: For node y, and hash function hz vector

−→
hz(y) is computed where hz,i(y) is the parity

of incident edges that hash to [2i], i = 0, . . . , l.
4: For hash function hz,

−→
hz(T) = ⊕y∈T

−→
hz(y) is computed in the leader.

5: For each i = 0, . . . , l, Xi =
∑c log n

z=1 hz,i(T).
6: Let min be the smallest i s.t. Xi ≥ (3/4)c log n/16.
7: Return 2l−min/64.
8: end procedure

4 Finding MST with o(m) asynchronous communication

The MST algorithm implements a version of the GHS algorithm which grows a forest of
disjoint subtrees (“fragments”) of the MST in parallel. We reduce the message complexity
of GHS by using FindMin to find minimum weight outgoing edges without having to send
messages across every edge. But, by doing this, we require the use of a spanning tree to help
synchronize the growth of the fragments.

DISC 2018

37:14 Broadcast and MST with o(m) Messages

Note that GHS nodes send messages along their incident edges for two main purposes: (1)
to see whether the edge is outgoing, and (2) to make sure that fragments with higher rank
are slowed down and do not impose a lot of time and message complexity. Therefore, if we
use FindMin instead of having nodes to send messages to their neighbors, we cannot make
sure that higher ranked fragments are slowed down. Our protocol works in phases where
in each phase only fragments with smallest ranks continue to grow while other fragments
wait. A spanning tree is used to control the fragments based on their rank. (See [14] for the
original GHS.)

Implementation of FindMST. Initially, each node forms a fragment containing only that
node which is also the leader of the fragment and fragments all have rank zero. A fragment
identity is the node ID of the fragment’s leader; all nodes in a fragment know its identity and
its current rank. Let the pre-computed spanning tree T be rooted at a node r, All fragment
leaders wait for instructions that are broadcast by r over T .

The algorithm runs in phases. At the start of each phase, r broadcasts the message
〈Rank-request〉 to learn the current minimum rank among all fragments after this broadcast.
Leaves of T send up their fragment rank. Once an internal node in T receives the rank
from all of its children (in T) the node sends up the minimum fragment rank it has received
including its own. This kind of computation is also referred to as a convergecast.

Then, r broadcasts the message 〈Proceed, minRank〉 where minRank is the current
minimum rank among all fragments. Any fragment leader that has rank equal to minRank,
proceeds to finding minimum weight outgoing edges by calling FindMin on its own fragment
tree. These fragments then send a 〈Connect〉 message over their minimum weight outgoing
edges. When a node v in fragment F (at rank R) sends a 〈Connect〉 message over an edge e

to a node v′ in fragment F ′ (at rank R′), since R is the current minimum rank, two cases
may happen: (Ranks and identities are updated here.)
1. R < R′: In this case, v′ answers immediately to v by sending back an 〈Accept〉 message,

indicating that F can merge with F ′. Then, v initiates the merge by changing its fragment
identity to the identity of F ′, making v′ its parent, and broadcasting F ′’s identity over
fragment F so that all nodes in F update their fragment identity as well. Also, the new
fragment (containing F and F ′) has rank R′.

2. R = R′: v′ responds 〈Accept〉 immediately to v if the minimum outgoing edge of F ′ is e,
as well. In this case, F merges with F ′ as mentioned in rule 1, and the new fragment will
have F ′’s identity. Also, both fragments increase their rank to R′ + 1.
Otherwise, v′ does not respond to the message until F ′’s rank increases. Once F ′ increased
its rank, it responds via an 〈Accept〉 message, fragments merge, and the new fragment
will update its rank to R′.

The key point here is that fragments at minimum rank are not kept waiting. Also, the
intuition behind rule 2 is as follows. Imagine we have fragments F1, F2, ..., Fk which all have
the same rank and Fi’s minimum outgoing edge goes to Fi+1 for i ≤ k − 1. Now, it is either
the case that Fk’s minimum outgoing edge goes to a fragment with higher rank or it goes to
Fk. In either case, rule 2 allows the fragments Fk−1, Fk−2, . . . to update their identities in a
cascading manner right after Fk increased its rank.

When all fragments finish their merge at this phase they have increased their rank by
at least one. Now, it is time for r to star a new phase. However, since communication is
asynchronous we need a way to tell whether all fragments have finished. In order to do
this, 〈Done〉 messages are convergecast in T . Nodes that were at minimum rank send up to
their parent in T a 〈Done〉 message only after they increased their rank and received 〈Done〉
messages from all of their children in T .

A. Mashreghi and V. King 37:15

Algorithm 6 MST construction with Õ(n) messages. T is a spanning tree rooted at r.
1: procedure FindMST
2: All nodes are initialized as fragments at rank 0.

// Start of a phase
3: r calls Broadcast(〈Rank-request〉), and minRank is computed via a convergecast.
4: r calls Broadcast(〈Proceed, minRank〉).
5: Fragment leaders at rank minRank that have received the 〈Proceed, minRank〉

message, call FindMin. Then, these fragments merge by sending Connect messages
over their minimum outgoing edges. If there is no outgoing edge the fragment leader
terminates the algorithm.

6: Upon receipt of 〈Proceed, minRank〉, a node v does the following:
If it is a leaf in T at rank minRank, sends up 〈Done〉 after increasing its rank.
If it is a leaf in T with a rank higher than minRank, it immediately sends up 〈Done〉.
If it is not a leaf in T , waits for 〈Done〉 from its children in T . Then, sends up the
〈Done〉 message after increasing its rank.

7: r waits to receive 〈Done〉 from all of its children, and starts a new phase at step 3.
8: end procedure

As proved in Lemma 8, this algorithm uses Õ(n) messages.

I Lemma 8. FindMST uses O(n log3 n/ log log n) messages and finds the MST w.h.p.

Proof. All fragments start at rank zero. Before a phase begins, two broadcasts and converge-
casts are performed to only allow fragments at minimum rank to proceed. This requires O(n)
messages. In each phase, finding the minimum weight outgoing edges using FindMin takes
O(n log2 n/ log log n) over all fragments. Also, it takes O(n) for the fragments to update
their identity since they just have to send the identity of the higher ranked fragment over
their own fragment. As a result, each phase takes O(n log2 n/ log log n) messages.

A fragment at rank R must contain at least two fragments with rank R− 1; therefore, a
fragment with rank R must have at least 2R nodes. So, the rank of a fragment never exceeds
log n. Also, each phase increases the minimum rank by at least one. Hence, there are at
most log n phases. As a result, message complexity is O(n log3 n/ log log n). J

From Lemma 8, Theorem 1 for minimum spanning trees follows.

5 Conclusion

We presented the first asynchronous algorithm for computing the MST in the CONGEST
model with Õ(n3/2) communication when nodes have initial knowledge of their neighbors’
identities. This shows that the KT1 model is significantly more communication efficient than
KT0 even in the asynchronous model. Open problems that are raised by these results are:
(1) Does the asynchronous KT1 model require substantially more communication that the
synchronous KT1 model? (2) Can we improve the time complexity of the algorithm while
maintaining the message complexity?

DISC 2018

37:16 Broadcast and MST with o(m) Messages

References
1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, span-

ners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium
on Principles of Database Systems, pages 5–14. ACM, 2012.

2 Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM (JACM),
32(4):804–823, 1985.

3 Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election, and related problems. In Proceedings of the nineteenth annual
ACM symposium on Theory of computing, pages 230–240. ACM, 1987.

4 Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between
information and communication in broadcast protocols. Journal of the ACM (JACM),
37(2):238–256, 1990.

5 Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George Varghese.
A time-optimal self-stabilizing synchronizer using a phase clock. IEEE Transactions on
Dependable and Secure Computing, 4(3), 2007.

6 Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic over-
head. In Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium
on, pages 514–522. IEEE, 1990.

7 Michael Elkin. A faster distributed protocol for constructing a minimum spanning tree. In
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages
359–368. Society for Industrial and Applied Mathematics, 2004.

8 Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM Journal on Computing, 36(2):433–456,
2006.

9 Michael Elkin. Synchronizers, spanners. In Encyclopedia of Algorithms, pages 1–99.
Springer, 2008.

10 Michael Elkin. Distributed exact shortest paths in sublinear time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 757–770,
New York, NY, USA, 2017. ACM. doi:10.1145/3055399.3055452.

11 Michael Elkin. A simple deterministic distributed mst algorithm, with near-optimal time
and message complexities. arXiv preprint arXiv:1703.02411, 2017.

12 Yuval Emek and Amos Korman. Efficient threshold detection in a distributed environment.
In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, pages 183–191. ACM, 2010.

13 Michalis Faloutsos and Mart Molle. Optimal distributed algorithm for minimum spanning
trees revisited. In Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 231–237. ACM, 1995.

14 Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming Languages and
systems (TOPLAS), 5(1):66–77, 1983.

15 Juan A Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal on Computing, 27(1):302–316, 1998.

16 Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the twenty-fourth annual ACM-SIAM symposium
on Discrete algorithms, pages 1131–1142. Society for Industrial and Applied Mathematics,
2013.

17 Maleq Khan and Gopal Pandurangan. A fast distributed approximation algorithm for
minimum spanning trees. In Proceedings of the 20th International Conference on Dis-
tributed Computing, DISC’06, pages 355–369, Berlin, Heidelberg, 2006. Springer-Verlag.
doi:10.1007/11864219_25.

http://dx.doi.org/10.1145/3055399.3055452
http://dx.doi.org/10.1007/11864219_25

A. Mashreghi and V. King 37:17

18 Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of an
mst in a distributed network with o (m) communication. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, pages 71–80. ACM, 2015.

19 Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. On
the complexity of leader election. Journal of the ACM (JACM), 62(1):7, 2015.

20 Shay Kutten and David Peleg. Fast distributed construction of k-dominating sets and
applications. In Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 238–251. ACM, 1995.

21 Ali Mashreghi and Valerie King. Time-communication trade-offs for minimum spanning tree
construction. In Proceedings of the 18th International Conference on Distributed Computing
and Networking, page 8. ACM, 2017.

22 Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m) messages
in the asynchronous congest model. arXiv, 2018. arXiv:1806.04328.

23 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time-and message-optimal
distributed algorithm for minimum spanning trees. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 743–756. ACM, 2017.

24 David Peleg and Jeffrey D Ullman. An optimal synchronizer for the hypercube. In Pro-
ceedings of the sixth annual ACM Symposium on Principles of distributed computing, pages
77–85. ACM, 1987.

25 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

26 Gurdip Singh and Arthur J Bernstein. A highly asynchronous minimum spanning tree
protocol. Distributed Computing, 8(3):151–161, 1995.

DISC 2018

http://arxiv.org/abs/1806.04328

Fault-Tolerant Consensus with an Abstract MAC
Layer
Calvin Newport1

Georgetown University, Washington, D.C., USA
cnewport@cs.georgetown.edu

Peter Robinson2

McMaster University, Hamilton, Ontario, Canada
peter.robinson@mcmaster.ca

Abstract
In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we
produce two new randomized algorithms that solve this problem in the abstract MAC layer model,
which captures the basic interface and communication guarantees provided by most wireless MAC
layers. Our algorithms work for any number of failures, require no advance knowledge of the
network participants or network size, and guarantee termination with high probability after a
number of broadcasts that are polynomial in the network size. Our first algorithm satisfies the
standard agreement property, while our second trades a faster termination guarantee in exchange
for a looser agreement property in which most nodes agree on the same value. These are the first
known fault-tolerant consensus algorithms for this model. In addition to our main upper bound
results, we explore the gap between the abstract MAC layer and the standard asynchronous
message passing model by proving fault-tolerant consensus is impossible in the latter in the
absence of information regarding the network participants, even if we assume no faults, allow
randomized solutions, and provide the algorithm a constant-factor approximation of the network
size.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases abstract MAC layer, wireless networks, consensus, fault tolerance

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.38

Related Version A full version of the paper is available at [42], https://www.cas.mcmaster.
ca/robinson/random-aml.pdf.

1 Introduction

Consensus provides a fundamental building block for developing reliable distributed sys-
tems [23–25]. Accordingly, it is well studied in many different system models [36]. Until
recently, however, little was known about solving this problem in distributed systems made
up of devices communicating using commodity wireless cards. Motivated by this knowledge
gap, this paper studies consensus in the abstract MAC layer model, which abstracts the
basic behavior and guarantees of standard wireless MAC layers. In recent work [41], we
proved deterministic fault-tolerant consensus is impossible in this setting. In this paper, we
describe and analyze the first known randomized fault-tolerant consensus algorithms for this
well-motivated model.

1 Calvin Newport acknowledges the support of the National Science Foundation, award number 1733842.
2 Peter Robinson acknowledges the support of the Natural Sciences and Engineering Research Council of

Canada (NSERC), RGPIN-2018-06322.

© Calvin Newport and Peter Robinson;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 38; pp. 38:1–38:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cnewport@cs.georgetown.edu
mailto:peter.robinson@mcmaster.ca
https://doi.org/10.4230/LIPIcs.DISC.2018.38
https://www.cas.mcmaster.ca/robinson/random-aml.pdf
https://www.cas.mcmaster.ca/robinson/random-aml.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Fault-Tolerant Consensus with an Abstract MAC Layer

The Abstract MAC Layer. Most existing work on distributed algorithms for wireless
networks assumes low-level synchronous models that force algorithms to directly grapple with
issues caused by contention and signal fading. Some of these models describe the network
topology with a graph (c.f., [8,16,20,28,32,38]), while others use signal strength calculations
to determine message behavior (c.f., [17, 21,26,27,37,39]).

As also emphasized in [41], these models are useful for asking foundational questions
about distributed computation on shared channels, but are not so useful for developing
algorithmic strategies suitable for deployment. In real systems, algorithms typically do not
operate in synchronous rounds and they are not provided unmediated access to the radio.
They must instead operate on top of a general-purpose MAC layer which is responsible for
many network functions, including contention management, rate control, and co-existence
with other network traffic.

Motivated by this reality, in this paper we adopt the abstract MAC layer model [34],
an asynchronous broadcast-based communication model that captures the basic interfaces
and guarantees provided by common existing wireless MAC layers. In more detail, if you
provide the abstract MAC layer a message to broadcast, it will eventually be delivered to
nearby nodes in the network. The specific means by which contention is managed – e.g.,
CSMA, TDMA, uniform probabilistic routines such as DECAY [8] – is abstracted away by
the model. At some point after the contention management completes, the abstract MAC
layer passes back an acknowledgment indicating that it is ready for the next message. This
acknowledgment contains no information about the number or identities of the message
recipient.

(In the case of the MAC layer using CSMA, for example, the acknowledgment would
be generated after the MAC layer detects a clear channel. In the case of TDMA, the
acknowledgment would be generated after the device’s turn in the TDMA schedule. In the
case of a probabilistic routine such as DECAY, the acknowledgment would be generated
after a sufficient number of attempts to guarantee successful delivery to all receivers with
high probability.)

The abstract MAC abstraction, of course, does not attempt to provide a detailed rep-
resentation of any specific existing MAC layer. Real MAC layers offer many more modes
and features then is captured by this model. In addition, the variation studied in this paper
assumes messages are always delivered, whereas more realistic variations would allow for
occasional losses.

This abstraction, however, still serves to capture the fundamental dynamics of real
wireless application design in which the lower layers dealing directly with the radio channel
are separated from the higher layers executing the application in question. An important
goal in studying this abstract MAC layer, therefore, is attempting to uncover principles and
strategies that can close the gap between theory and practice in the design of distributed
systems deployed on standard layered wireless architectures.

Our Results. In this paper, we studied randomized fault-tolerant consensus algorithms in
the abstract MAC layer model. In more detail, we study binary consensus and assume a
single-hop network topology. Notice, our use of randomization is necessary, as deterministic
consensus is impossible in the abstract MAC layer model in the presence of even a single
fault (see our generalization of FLP from [41]).

To contextualize our results, we note that the abstract MAC layer model differs from
standard asynchronous message passing models in two main ways: (1) the abstract MAC layer
model provides the algorithm no advance information about the network size or membership,

C. Newport and P. Robinson 38:3

requiring nodes to communicate with a blind broadcast primitive instead of using point-
to-point channels, (2) the abstract MAC layer model provides an acknowledgment to the
broadcaster at some point after its message has been delivered to all of its neighbors. This
acknowledgment, however, contains no information about the number or identity of these
neighbors (see above for more discussion of this fundamental feature of standard wireless
MAC layers).

Most randomized fault-tolerant consensus algorithms in the asynchronous message passing
model strongly leverage knowledge of the network. A strategy common to many of these
algorithms, for example, is to repeatedly collect messages from at least n − f nodes in a
network of size n with at most f crash failures (e.g., [9]). This strategy does not work in the
abstract MAC layer model as nodes do not know n.

To overcome this issue, we adapt an idea introduced in early work on fault-tolerant
consensus in the asynchronous shared memory model: counter racing (e.g., [5, 12]). At a
high-level, this strategy has nodes with initial value 0 advance a shared memory counter
associated with 0, while nodes with initial value 1 advance a counter associated with 1. If a
node sees one counter get ahead of the other, they adopt the initial value associated with
the larger counter, and if a counter gets sufficiently far ahead, then nodes can decide.

Our first algorithm (presented in Section 3) implements a counter race of sorts using the
acknowledged blind broadcast primitive provided by the model. Roughly speaking, nodes
continually broadcast their current proposal and counter, and update both based on the
pairs received from other nodes. Proving safety for this type of strategy in shared memory
models is simplified by the atomic nature of register accesses. In the abstract MAC layer
model, by contrast, a broadcast message is delivered non-atomically to its recipients, and in
the case of a crash, may not arrive at some recipients at all.3 Our safety analysis, therefore,
requires novel analytical tools that tame a more diverse set of possible system configurations.

To achieve liveness, we use a technique loosely inspired by the randomized delay strategy
introduced by Chandra in the shared memory model [12] . In more detail, nodes probabilisti-
cally decide to replace certain sequences of their counter updates with nop placeholders. We
show that if these probabilities are adapted appropriately, the system eventually arrives at a
state where it becomes likely for only a single node to be broadcasting updates, allowing
progress toward termination.

Formally, we prove that with high probability in the network size n, the algorithm
terminates after O(n3 logn) broadcasts are scheduled. This holds regardless of which
broadcasts are scheduled (i.e., we do not impose a fairness condition), and regardless of the
number of faults. The algorithm, as described, assumes nodes are provided unique IDs that
we treat as comparable black boxes (to prevent them from leaking network size information).
We subsequently show how to remove that assumption by describing an algorithm that
generates unique IDs in this setting with high probability.

Our second algorithm (presented in Section 4) trades a looser agreement guarantee for
more efficiency. In more detail, we describe and analyze a solution to almost-everywhere
agreement [18], that guarantees most nodes agree on the same value. This algorithm
terminates after O(n2 log4 n log logn) broadcasts, which is a linear factor faster than our first
algorithm (ignoring log factors). The almost-everywhere consensus algorithm consists of two
phases. The first phase is used to ensure that almost all nodes obtain a good approximation

3 We note that register simulations are also not an option in our model for two reasons: standard
simulation algorithms require knowledge of n and a majority correct nodes, whereas we assume no
knowledge of n and wait-freedom.

DISC 2018

38:4 Fault-Tolerant Consensus with an Abstract MAC Layer

of the network size. In the second phase, nodes use this estimate to perform a sequence of
broadcasts meant to help spread their proposal to the network. Nodes that did not obtain
a good estimate in Phase 1 will leave Phase 2 early. The remaining nodes, however, can
leverage their accurate network size estimates to probabilistically sample a subset to actively
participate in each round of broadcasts. To break ties between simultaneously active nodes,
each chooses a random rank using the estimate obtained in Phase 1. We show that with
high probability, after not too long, there exists a round of broadcasts in which the first node
receiving its acknowledgment is both active and has the minimum rank among other active
nodes – allowing its proposal to spread to all remaining nodes.

Finally, we explore the gap between the abstract MAC layer model and the related
asynchronous message passage passing model. We prove (in Section 5) that fault-tolerant
consensus is impossible in the asynchronous message passing model in the absence of
knowledge of network participants, even if we assume no faults, allow randomized algorithms,
and provide a constant-factor approximation of n. This differs from the abstract MAC
layer model where we solve this problem without network participant or network size
information, and assuming crash failures. This result implies that the fact that broadcasts
are acknowledged in the abstract MAC layer model is crucial to overcoming the difficulties
induced by limited network information.

Related Work. Consensus provides a fundamental building block for reliable distributed
computing [23–25]. It is particularly well-studied in asynchronous models [2, 35,40,44].

The abstract MAC layer approach4 to modeling wireless networks was introduced in [33]
(later expanded to a journal version [34]), and has been subsequently used to study several
different problems [14,15,29,30,41]. The most relevant of this related work is [41], which was
the first paper to study consensus in the abstract MAC layer model. This previous paper
generalized the seminal FLP [19] result to prove deterministic consensus is impossible in
this model even in the presence of a single failure. It then goes on to study deterministic
consensus in the absence of failures, identifying the pursuit of fault-tolerant randomized
solutions as important future work – the challenge taken up here.

We note that other researchers have also studied consensus using high-level wireless
network abstractions. Vollset and Ezhilchelvan [45], and Alekeish and Ezhilchelvan [4],
study consensus in a variant of the asynchronous message passing model where pairwise
channels come and go dynamically – capturing some behavior of mobile wireless networks.
Their correctness results depend on detailed liveness guarantees that bound the allowable
channel changes. Wu et al. [46] use the standard asynchronous message passing model (with
unreliable failure detectors [13]) as a stand-in for a wireless network, focusing on how to
reduce message complexity (an important metric in a resource-bounded wireless setting) in
solving consensus.

A key difficulty for solving consensus in the abstract MAC layer model is the absence of
advance information about network participants or size. These constraints have also been
studied in other models. Ruppert [43], and Bonnet and Raynal [10], for example, study the
amount of extra power needed (in terms of shared objects and failure detection, respectively)
to solve wait-free consensus in anonymous versions of the standard models. Attiya et al. [6]
describe consensus solutions for shared memory systems without failures or unique ids. A

4 There is no one abstract MAC layer model. Different studies use different variations. They all share,
however, the same general commitment to capturing the types of interfaces and communication/timing
guarantees that are provided by standard wireless MAC layers

C. Newport and P. Robinson 38:5

series of papers [3, 11, 22], starting with the work of Cavin et al. [11], study the related
problem of consensus with unknown participants (CUPs), where nodes are only allowed to
communicate with other nodes whose identities have been provided by a participant detector
formalism.

Closer to our own model is the work of Abboud et al. [1], which also studies a single
hop network where nodes broadcast messages to an unknown group of network participants.
They prove deterministic consensus is impossible in these networks under these assumptions
without knowledge of network size. In this paper, we extend these existing results by proving
this impossibility still holds even if we assume randomized algorithms and provided the
algorithm a constant-factor approximation of the network size. This bound opens a sizable
gap with our abstract MAC layer model in which consensus is solvable without this network
information.

We also consider almost-everywhere (a.e.) agreement [18], a weaker variant of consensus,
where a small number of nodes are allowed to decide on conflicting values, as long as a
sufficiently large majority agrees. Recently, a.e. agreement has been studied in the context of
peer-to-peer networks (c.f. [7,31]), where the adversary can isolate small parts of the network
thus rendering (everywhere) consensus impossible. We are not aware of any prior work on
a.e. agreement in the wireless settings.

2 Model and Problem

In this paper, we study a variation of the abstract MAC layer model, which describes
system consisting of a single hop network of n ≥ 1 computational devices (called nodes in
the following) that communicate wirelessly using communication interfaces and guarantees
inspired by commodity wireless MAC layers.

In this model, nodes communicate with a bcast primitive that guarantees to eventually
deliver the broadcast message to all the other nodes (i.e., the network is single hop). At
some point after a given bcast has succeeded in delivering a message to all other nodes,
the broadcaster receives an ack informing it that the broadcast is complete (as detailed
in the introduction, this captures the reality that most wireless contention management
schemes have a definitive point at which they know a message broadcast is complete). This
acknowledgment contains no information about the number or identity of the receivers.

We assume a node can only broadcast one message at a time. That is, once it invokes
bcast, it cannot broadcast another message until receiving the corresponding ack (formally,
overlapping messages are discarded by the MAC layer). We also assume any number of nodes
can permanently stop executing due to crash failures. As in the classical message passing
models, a crash can occur during a broadcast, meaning that some nodes might receive the
message while others do not.

This model is event-driven with the relevant events scheduled asynchronously by an
arbitrary scheduler. In more detail, for each node u, there are four event types relevant to u
that can be scheduled: initu (which occurs at the beginning of an execution and allows u to
initialize), recv(m)u (which indicates that u has received message m broadcast from another
node), ack(m)u (which indicates that the message m broadcast by u has been successfully
delivered), and crashu (which indicates that u is crashed for the remainder of the execution).

A distributed algorithm specifies for each node u a finite collection of steps to execute for
each of the non-crash event types. When one of these events is scheduled by the scheduler,
we assume the corresponding steps are executed atomically at the point that the event is

DISC 2018

38:6 Fault-Tolerant Consensus with an Abstract MAC Layer

scheduled. Notice that one of the steps that a node u can take in response to these events
is to invoke a bcast(m)u primitive for some message m. When an event includes a bcast
primitive we say it is combined with a broadcast.5

We place the following constraints on the scheduler. It must start each execution by
scheduling an init event for each node; i.e., we study the setting where all participating
nodes are activated at the beginning of the execution. If a node u invokes a valid bcast(m)u

primitive, then for each v 6= u that is not crashed when the broadcast primitive is invoked,
the scheduler must subsequently either schedule a single recv(m)v or crashv event at v. At
some point after these events are scheduled, it must then eventually schedule an ack(m)u

event at u. These are the only recv and ack events it schedules (i.e., it cannot create new
messages from scratch or cause messages to be received/acknowledged multiple times). If the
scheduler schedules a crashv event, it cannot subsequently schedule any future events for u.

We assume that in making each event scheduling decision, the scheduler can use the
schedule history as well as the algorithm definition, but it does not know the nodes’ private
states (which includes the nodes’ random bits). When the scheduler schedules an event that
triggers a broadcast (making it a combined event), it is provided this information so that it
knows it must now schedule receive events for the message. We assume, however, that the
scheduler does not learn the contents of the broadcast message.6

Given an execution α, we say the message schedule for α, also indicated msg[α], is the
sequence of message events (i.e., recv, ack, and crash) scheduled in the execution. We
assume that a message schedule includes indications of which events are combined with
broadcasts.

The Consensus Problem. In this paper, we study binary consensus with probabilistic
termination. In more detail, at the beginning of an execution each node is provided an initial
value from {0, 1} as input. Each node has the ability to perform a single irrevocable decide
action for either value 0 or 1. To solve consensus, an algorithm must guarantee the following
three properties: (1) agreement: no two nodes decide different values; (2) validity: if a node
decides value b, then at least one node started with initial value b; and (3) termination
(probabilistic): every non-crashed node decides with probability 1 in the limit.

Studying finite termination bounds is complicated in asynchronous models because the
scheduler can delay specific nodes taking steps for arbitrarily long times. In this paper, we
circumvent this issue by proving bounds on the number of scheduled events before the system
reaches a termination state in which every non-crashed node has: (a) decided; or (b) will
decide whenever the scheduler gets around to scheduling its next ack event.

Finally, in addition to studying consensus with standard agreement, we also study almost-
everywhere agreement, in which only a specified majority fraction (typically a 1−o(n) fraction
of the n total nodes) must agree.

5 Notice, we can assume without loss of generality, that the steps executed in response to an event never
invoke more than a single bcast primitive, as any additional broadcasts invoked at the same time would
lead to the messages being discarded due to the model constraint that a node must receive an ack for
the current message before broadcasting a new message.

6 This adversary model is sometimes called message oblivious and it is commonly considered a good fit
for schedulers that control network behavior. This follows because it allows the scheduler to adapt the
schedule based on the number of messages being sent and their sources – enabling it to model contention
and load factors. One the other hand, there is not good justification for the idea that this schedule
should somehow also depend on the specific bits contained in the messages sent. Notice, our liveness
proof specifically leverages the message oblivious assumption as it prevents the scheduler from knowing
which nodes are sending updates and which are sending nop messages.

C. Newport and P. Robinson 38:7

Algorithm 1 Counter Race Consensus (for node u with UID idu and initial value vu)

Initialization:
cu ← 0
nu ← 2
Cu ← {(idu, cu, vu)}
peers← {idu}
phase← 0
active← true

decide← −1
k ← 3
c← k + 3
bcast(nop, idu, nu)

On Receiving ack(m):
phase← phase+ 1
if m = (decide, b) then

decide(b) and halt()
else

newm← ⊥
C ′u ← Cu

ĉ
(0)
u ← max counter in C ′u paired with value 0 (default to 0 if no such elements)
ĉ

(1)
u ← max counter in C ′u paired with value 1 (default to 0 if no such elements)

if ĉ(0)
u > ĉ

(1)
u then vu ← 0

else if ĉ(1)
u > ĉ

(0)
u then vu ← 1

if ĉ(0)
u ≥ ĉ(1)

u + k or decide = 0 then newm← (decide, 0)
else if ĉ(1)

u ≥ ĉ(0)
u + k or decide = 1 then newm← (decide, 1)

if newm = ⊥ then
if max{ĉ(0)

u , ĉ
(1)
u } ≤ cu and m 6= nop then cu ← cu + 1

else if max{ĉ(0)
u , ĉ

(1)
u } > cu then cu ← max{ĉ(0)

u , ĉ
(1)
u }

update (idu, ∗, ∗) element in Cu with new cu and vu

newm← (counter, idu, cu, vu, nu)
if phase % c = 1 then with probability 1/nu active← true otherwise active← false

if newm = (decide, ∗) or active = true then
bcast(newm)

else
bcast(nop, idu, nu)

On Receiving Message m:
updateEstimate(m)
if m = (decide, b) then

decide← b

else if m = (counter, id, c, v, n′) then
if ∃c′, v′ such that (id, c′, v′) ∈ Cu then

remove (id, c′, v′) from Cu

add (id, c, v) to Cu

DISC 2018

38:8 Fault-Tolerant Consensus with an Abstract MAC Layer

Algorithm 2 The updateEstimate(m) subroutine called by Counter Race Consensus
during recv(m) event.

if m contains a UID id and network size estimate n′ then
peers← peers ∪ {id}
nu ← max{nu, |peers|, n′}

3 Upper Bound

Here we describe analyze our first randomized binary consensus algorithm: counter race
consensus (see Algorithms 1 and 2 for pseudocode, and Section 3.1 for a high-level description
of its behavior). This algorithm assumes no advance knowledge of the network participants
or network size. Nodes are provided unique IDs, but these are treated as comparable black
boxes, preventing them from leaking information about the network size. (We will later
discuss how to remove the unique ID assumption.) It tolerates any number of crash faults.
The detailed proofs can be found in the full paper [42].

3.1 Algorithm Description
The counter race consensus algorithm is described in pseudocode in the figures labeled
Algorithm 1 and 2. Here we summarize the behavior formalized by this pseudocode.

The core idea of this algorithm is that each node u maintains a counter cu (initialized to
0) and a proposal vu (initialized to its consensus initial value). Node u repeatedly broadcasts
cu and vu, updating these values before each broadcast. That is, during the ack event for its
last broadcast of cu and vu, node u will apply a set of update rules to these values. It then
concludes the ack event by broadcasting these updated values. This pattern repeats until u
arrives at a state where it can safely commit to deciding a value.

The update rules and decision criteria applied during the ack event are straightforward.
Each node u first calculates ĉ(0)

u , the largest counter value it has sent or received in a message
containing proposal value 0, and ĉ(1)

u , the largest counter value it has sent or received in a
message containing proposal value 1.

If ĉ(0)
u > ĉ

(1)
u , then u sets vu ← 0, and if ĉ(1)

u > ĉ
(0)
u , then u sets vu ← 1. That is, u adopts

the proposal that is currently “winning” the counter race (in case of a tie, it does not change
its proposal).

Node u then checks to see if either value is winning by a large enough margin to support a
decision. In more detail, if ĉ(0)

u ≥ ĉ(1)
u + 3, then u commits to deciding 0, and if ĉ(1)

u ≥ ĉ(0)
u + 3,

then u commits to deciding 1.
What happens next depends on whether or not u committed to a decision. If u did

not commit to a decision (captured in the if newm = ⊥ then conditional), then it must
update its counter value. To do so, it compares its current counter cu to ĉ(0)

u and ĉ(1)
u . If

cu is smaller than one of these counters, it sets cu ← max{ĉ(0)
u , ĉ

(1)
u }. Otherwise, if cu is the

largest counter that u has sent or received so far, it will set cu ← cu + 1. Either way, its
counter increases. At this point, u can complete the ack event by broadcasting a message
containing its newly updated cu and vu values.

On the other hand, if u committed to deciding value b, then it will send a (decide, b)
message to inform the other nodes of its decision. On subsequently receiving an ack for
this message, u will decide b and halt. Similarly, if u ever receives a (decide, b) message
from another node, it will commit to deciding b. During its next ack event, it will send its

C. Newport and P. Robinson 38:9

own (decide, b) message and decide and halt on its corresponding ack. That is, node u will
not decide a value until it has broadcast its commitment to do so, and received an ack on
the broadcast.

The behavior described above guarantees agreement and validity. It is not sufficient,
however, to achieve liveness, as an ill-tempered scheduler can conspire to keep the race
between 0 and 1 too close for a decision commitment. To overcome this issue we introduce
a random delay strategy that has nodes randomly step away from the race for a while by
replacing their broadcast values with nop placeholders ignored by those who receive them.
Because our adversary does not learn the content of broadcast messages, it does not know
which nodes are actively participating and which nodes are taking a break (as in both
cases, nodes continually broadcast messages) – thwarting its ability to effectively manipulate
the race.

In more detail, each node u partitions its broadcasts into groups of size 6. At the beginning
of each such group, u flips a weighted coin to determine whether or not to replace the counter
and proposal values it broadcasts during this group with nop placeholders – eliminating
its ability to affect other nodes’ counter/proposal values. As we will later elaborate in the
liveness analysis, the goal is to identify a point in the execution in which a single node v
is broadcasting its values while all other nodes are broadcasting nop values – allowing v to
advance its proposal sufficiently far ahead to win the race.

To be more specific about the probabilities used in this logic, node u maintains an estimate
nu of the number of nodes in the network. It replaces values with nop placeholders in a given
group with probability 1/nu. (In the pseudocode, the active flag indicates whether or not u
is using nop placeholders in the current group.) Node u initializes nu to 2. It then updates it
by calling the updateEstimate routine (described in Algorithm 2) for each message it receives.

There are two ways for this routine to update nu. The first is if the number of unique IDs
that u has received so far (stored in peers) is larger than nu. In this case, it sets nu ← |peers|.
The second way is if it learns another node has an estimate n′ > nu. In this case, it sets
nu ← n′. Node u learns about other nodes’ estimates, as the algorithm has each node append
its current estimate to all of its messages (with the exception of decide messages). In essence,
the nodes are running a network size estimation routine parallel to its main counter race
logic – as nodes refine their estimates, their probability of taking useful breaks improves.

3.2 Safety
We begin our analysis by proving that our algorithm satisfies the agreement and validity
properties of the consensus problem. Validity follows directly from the algorithm description.
Our strategy to prove agreement is to show that if any node sees a value b with a counter at
least 3 ahead of value 1− b (causing it to commit to deciding b), then b is the only possible
decision value. Race arguments of this type are easier to prove in a shared memory setting
where nodes work with objects like atomic registers that guarantee linearization points. In our
message passing setting, by contrast, in which broadcast messages arrive at different receivers
at different times, we will require more involved definitions and operational arguments.7

We start with a useful definition. We say b dominates 1 − b at a given point in the
execution, if every (non-crashed) node at this point believes b is winning the race, and none
of the messages in transit can change this perception.

7 We had initially hoped there might be some way to simulate linearizable shared objects in our model.
Unfortunately, our nodes’ lack of information about the network size thwarted standard simulation
strategies which typically require nodes to collect messages from a majority of nodes in the network
before proceeding to the next step of the simulation.

DISC 2018

38:10 Fault-Tolerant Consensus with an Abstract MAC Layer

To formalize this notion we need some notation. In the following, we say at point t (or
at t), with respect to an event t from the message schedule of an execution α, to describe
the state of the system immediately after event t (and any associated steps that execute
atomically with t) occurs. We also use the notation in transit at t to describe messages that
have been broadcast but not yet received at every non-crashed receiver at t.

I Definition 1. Fix an execution α, event t in the corresponding message schedule msg[α],
consensus value b ∈ {0, 1}, and counter value c ≥ 0. We say α is (b, c)-dominated at t if the
following conditions are true:
1. For every node u that is not crashed at t: ĉ(b)

u [t] > c and ĉ(1−b)
u [t] ≤ c, where at point t,

ĉ
(b)
u [t] (resp. ĉ(1−b)

u [t]) is the largest value u has sent or received in a counter message
containing consensus value b (resp. 1 − b). If u has not sent or received any counter
messages containing b (resp. 1− b), then by default it sets ĉ(b)

u [t]← 0 (resp. ĉ(1−b)
u [t]← 0)

in making this comparison.
2. For every message of the form (counter, id, 1− b, c′, n′) that is in transit at t: c′ ≤ c.

The following lemma formalizes the intuition that once an execution becomes dominated
by a given value, it remains dominated by this value.

I Lemma 2. Assume some execution α is (b, c)-dominated at point t. It follows that α is
(b, c)-dominated at every t′ that comes after t.

Proof. In this proof, we focus on the suffix of the message schedule msg[α] that begins with
event t. For simplicity, we label these events E1, E2, E3, ..., with E1 = t. We will prove the
lemma by induction on this sequence.

The base case (E1) follows directly from the lemma statement. For the inductive step,
we must show that if α is (b, c)-dominated at point Ei, then it will be dominated at Ei+1 as
well. By the inductive hypothesis, we assume the execution is dominated immediately before
Ei+1 occurs. Therefore, the only way the step is violated is if Ei+1 transitions the system
from dominated to non-dominated status. We consider all possible cases for Ei+1 and show
none of them can cause such a transition.

The first case is if Ei+1 is a crashu event for some node u. It is clear that a crash cannot
transition a system into non-dominated status.

The second case is if Ei+1 is a recv(m)u event for some node u. This event can only
transition the system into a non-dominated status if m is a counter message that includes
1− b and a counter c′ > c. For u to receive this message, however, means that the message
was in transit immediately before Ei+1 occurs. Because we assume the system is dominated
at Ei, however, no such message can be in transit at this point (by condition 2 of the
domination definition).

The third and final case is if Ei+1 is a ack(m)u event for some node u, that is combined
with a bcast(m′)u event, where m′ is a counter message that includes 1− b and a counter
c′ > c. Consider the values ĉ(b)

u and ĉ(1−b)
u set by node u early in the steps associated with this

ack(m)u event. By our inductive hypothesis, which tells us that the execution is dominated
right before this ack(m)u event occurs, it must follow that ĉ(b)

u > ĉ
(1−b)
u (as ĉ(b)

u = ĉ
(b)
u [Ei]

and ĉ
(1−b)
u = ĉ

(1−b)
u [Ei]). In the steps that immediately follow, therefore, node u will set

vu ← b. It is therefore impossible for u to then broadcast a counter message with value
vu = 1− b. J

To prove agreement, we are left to show that if a node commits to deciding some value
b, then it must be the case that b dominates the execution at this point – making it the
only possible decision going forward. The following helper lemma, which captures a useful
property about counters, will prove crucial for establishing this point.

C. Newport and P. Robinson 38:11

I Lemma 3. Assume event t in the message schedule of execution α is combined with a
bcast(m)v, where m = (counter, idv, c, b, nv), for some counter c > 0. It follows that prior
to t in α, every node that is non-crashed at t received a counter message with counter c− 1
and value b.

Proof. Fix some t, α, v and m = (counter, idv, c, b, nv), as specified by the lemma statement.
Let t′ be the first event in α such that at t′ some node w has local counter cw ≥ c and value
vw = b. We know at least one such event exists as t and v satisfy the above conditions, so
the earliest such event, t′, is well-defined. Furthermore, because t′ must modify local counter
and/or consensus values, it must also be an ack event.

For the purposes of this argument, let cw and vw be w’s counter and consensus value,
respectively, immediately before t′ is scheduled. Similarly, let c′w and v′w be these values
immediately after t′ and its steps complete (i.e., these values at point t′). By assumption:
c′w ≥ c and v′w = b. We proceed by studying the possibilities for cw and vw and their
relationships with c′w and v′w.

We begin by considering vw. We want to argue that vw = b. To see why this is true,
assume for contradiction that vw = 1− b. It follows that early in the steps for t′, node w
switches its consensus value from 1− b to b. By the definition of the algorithm, it only does
this if at this point in the ack steps: ĉ(b)

w > ĉ
(1−b)
w ≥ cw (the last term follows because cw

is included in the values considered when defining c(1−b)
w). Note, however, that c(b)

w must
be less than c. If it was greater than or equal to c, this would imply that a node ended an
earlier event with counter ≥ c and value b – contradicting our assumption that t′ was the
earliest such event. If c(b)

w < c and c(b)
w > cw, then w must increase its cw value during this

event. But because ĉ(b)
w > ĉ

(1−b)
w ≥ cw, the only allowable change to cw would be to set it to

ĉ
(b)
w < c. This contradicts the assumption that c′w ≥ c.

At this checkpoint in our argument we have argued that vw = b. We now consider cw. If
cw ≥ c, then w starts t′ with a sufficiently big counter – contradicting the assumption that t′
is the earliest such event. It follows that cw < c and w must increase this value during this
event.

There are two ways to increase a counter; i.e., the two conditions in the if/else-if
statement that follows the newm = ⊥ check. We start with the second condition. If
max{ĉ(b)

w , ĉ
(1−b)
w } > cw, then w can set cw to this maximum. If this maximum is equal to

ĉ
(b)
w , then this would imply ĉ(b)

w ≥ c. As argued above, however, it would then follow that a
node had a counter ≥ c and value b before t′. If this is not true, then ĉ(1−b)

w > c
(b)
w . If this

was the case, however, w would have adopted value 1− b earlier in the event, contradicting
the assumption that v′w = b.

At this next checkpoint in our argument we have argued that vw = b, cw < c, and
w increases cw to c through the first condition of the if/else if ; i.e., it must find that
max{ĉ(b)

w , ĉ
(1−b)
w } ≤ cw and m 6= nop. Because this condition only increases the counter by 1,

we can further refine our assumption to cw = c− 1.
To conclude our argument, consider the implications of the m 6= nop component of this

condition. It follows that t′ is an ack(m)w for an actual message m. It cannot be the case that
m is a decide message, as w will not increase its counter on acknowledging a decide. Therefore,
m is a counter message. Furthermore, because counter and consensus values are not modified
after broadcasting a counter message but before receiving its subsequent acknowledgment,
we know m = (counter, idw, cw, vw, ∗) = (counter, idw, c − 1, b, ∗) (we replace the network
size estimate with a wildcard here as these estimates could change during this period).

Because w has an acknowledgment for this m, by the definition of the model, prior to t′:
every non-crashed node received a counter message with counter c− 1 and consensus value b.
This is exactly the claim we are trying to prove. J

DISC 2018

38:12 Fault-Tolerant Consensus with an Abstract MAC Layer

Our main safety theorem leverages the above two lemmas to establish that committing to
decide b means that b dominates the execution. The key idea is that counter values cannot
become too stale. By Lemma 3, if some node has a counter c associated with proposal value
1− b, then all nodes have seen a counter of size at least c− 1 associated with 1− b. It follows
that if some node thinks b is far ahead, then all nodes must think b is far ahead in the race
(i.e., b dominates). Lemma 2 then establishes that this dominance is permanent – making b
the only possible decision value going forward.

I Theorem 4. The Counter Race Consensus algorithm satisfies validity and agreement.

Proof. Validity follows directly from the definition of the algorithm. To establish agreement,
fix some execution α that includes at least one decision. Let t be the first ack event in α that
is combined with a broadcast of a decide message. We call such a step a pre-decision step as
it prepares nodes to decide in a later step. Let u be the node at which this ack occurs and
b be the value it includes in the decide message. Because we assume at least one process
decides in α, we know t exists. We also know it occurs before any decision.

During the steps associated with t, u sets newm ← (decide, b). This indicates the
following is true: ĉ(b)

u ≥ ĉ(1−b)
u + 3. Based on this condition, we establish two claims about

the system at t, expressed with respect to the value ĉ(1−b)
u during these steps:

Claim 1. The largest counter included with value 1− b in a counter message broadcast8
before t is no more than ĉ(1−b)

u + 1.
Assume for contradiction that before t some v broadcast a counter message with value
1− b and counter c > ĉ

(1−b)
u + 1. By Lemma 3, it follows that before t every non-crashed

node receives a counter message with value 1− b and counter c− 1 ≥ ĉ(1−b)
u + 1. This set

of nodes includes u. This contradicts our assumption that at t the largest counter u has
seen associated with 1− b is ĉ(1−b)

u .
Claim 2. Before t, every non-crashed node has sent or received a counter message with
value b and counter at least ĉ(1−b)

u + 2.
By assumption on the values u has seen at t, we know that before t some node v
broadcast a counter message with value b and counter c ≥ ĉ

(1−b)
u + 3. By Lemma 3, it

follows that before t, every node has sent or received a counter with value b and counter
c− 1 ≥ ĉ(1−b)

u + 2.

Notice that claim 1 combined with claim 2 implies that the execution is (b, ĉ(1−b)
u + 1)-

dominated before t. By Lemma 2, the execution will remain dominated from this point
forward. We assume t was the first pre-decision, and it will lead u to tell other nodes to
decide u before doing so itself. Other pre-decision steps might occur, however, before all
nodes have received u’s preference for b. With this in mind, let t′ be any other pre-decision
step. Because t′ comes after t it will occur in a (b, ĉ(1−b)

u + 1)-dominated system. This means
that during the first steps of t′, the node will adopt b as its value (if it has not already done
so), meaning it will also promote b.

To conclude, we have shown that once any node reaches a pre-decision step for a value
b, then the system is already dominated in favor of b, and therefore b is the only possible
decision value going forward. Agreement follows directly. J

8 Notice, in these claims, when we say a message is “broadcast” we only mean that the corresponding
bcast event occurred. We make no assumption on which nodes have so far received this message.

C. Newport and P. Robinson 38:13

3.3 Liveness
We now turn our attention liveness. Our goal is to prove the following theorem:

I Theorem 5. With high probability, within O(n3 lnn) scheduled ack events, every node
executing counter race consensus has either crashed, decided, or received a decide message.
In the limit, this termination condition occurs with probability 1.

Notice that this theorem does not require a fair schedule. It guarantees its termination
criteria (with high probability) after any O(n3 lnn) scheduled ack events, regardless of which
nodes these events occur at. Once the system arrives at a state in which every node has
either crashed, decided, or received a decide message, the execution is now univalent (only
one decision value is possible going forward), and each non-crashed node u will decide after
at most two additional ack events at u.9

Our liveness proof is longer and more involved than our safety proof. This follows, in
part, from the need to introduce multiple technical definitions to help identify the execution
fragments sufficiently well-behaved for us to apply our probabilistic arguments. With this
in mind, we divide the presentation of our liveness proof into two parts. The first part
introduces the main ideas of the analysis and provides a road map of sorts to its component
pieces. The second part, which contains the details, can be found in the full paper [42].

3.3.1 Main Ideas
Here we discuss the main ideas of our liveness proof. A core definition used in our analysis is
the notion of an x-run. Roughly speaking, for a given constant integer x ≥ 2 and node u,
we say an execution fragment β is an x-run for some node u, if it starts and ends with an
ack event for u, it contains x total ack events for u, and no other node has more than x ack
events interleaved. We deploy a recursive counting argument to establish that an execution
fragment β that contains at least n · x total ack events, must contain a sub-fragment β′ that
is an x-run for some node u.

To put this result to use, we focus our attention on (2c + 1)-runs, where c = 6 is the
constant used in the algorithm definition to define the length of a group (see Section 3.1
for a reminder of what a group is and how it is used by the algorithm). A straightforward
argument establishes that a (2c+ 1)-run for some node u must contain at least one complete
group for u – that is, it must contain all c broadcasts of one of u’s groups.

Combining these observations, it follows that if we partition an execution into segments
of length n · (2c+ 1), each such segment i contains a (2c+ 1)-run for some node ui, and each
such run contains a complete group for ui. We call this complete group the target group ti
for segment i (if there are multiple complete groups in the run, choose one arbitrarily to be
the target).

These target groups are the core unit to which our subsequent analysis applies. Our goal
is to arrive at a target group ti that is clean in the sense that ui is active during the group
(i.e., sends its actual values instead of nop placeholders), and all broadcasts that arrive at
u during this group come from non-active nodes (i.e., these received messages contain nop
placeholders instead of values). If we achieve a clean group, then it is not hard to show that
ui will advance its counter at least k ahead of all other counters, pushing all other nodes
into the termination criteria guaranteed by Theorem 5.

9 In the case where u receives a decide message, the first ack might correspond to the message it was
broadcasting when the decide arrived, and the second ack corresponds to the decide message that u
itself will then broadcast. During this second ack, u will decide and halt.

DISC 2018

38:14 Fault-Tolerant Consensus with an Abstract MAC Layer

To prove clean groups are sufficiently likely, our analysis must overcome two issues. The
first issue concerns network size estimations. Fix some target group ti. Let Pi be the nodes
from which ui receives at least one message during ti. If all of these nodes have a network
size estimate of at least ni = |Pi| at the start of ti, we say the group is calibrated. We prove
that if ti is calibrated, then it is clean with a probability in Ω(1/n).

The key, therefore, is proving most target groups are calibrated. To do so, we note
that if some ti is not calibrated, it means at least one node used an estimate strictly less
than ni when it probabilistically defined active at the beginning of this group. During this
group, however, all nodes will receive broadcasts from at least ni unique nodes, increasing
all network estimates to size at least ni.10 Therefore, each target group that fails to be
calibrated increases the minimum network size estimate in the system by at least 1. It follows
that at most n target groups can be non-calibrated.

The second issue concerns probabilistic dependencies. Let Ei be the event that target
group ti is clean and Ej be the event that some other target group tj is clean. Notice that
Ei and Ej are not necessarily independent. If a node u has a group that overlaps both ti and
tj , then its probabilistic decision about whether or not to be active in this group impacts the
potential cleanliness of both ti and tj .

Our analysis tackles these dependencies by identifying a subset of target groups that are
pairwise independent. To do so, roughly speaking, we process our target groups in order.
Starting with the first target group, we mark as unavailable any future target group that
overlaps this first group (in the sense described above). We then proceed until we arrive at
the next target group not marked unavailable and repeat the process. Each available target
group marks at most O(n) future groups as unavailable. Therefore, given a sufficiently large
set T of target groups, we can identify a subset T ′, with a size in Ω(|T |/n), such that all
groups in T ′ are pairwise independent.

We can now pull together these pieces to arrive at our main liveness complexity claim.
Consider the first O(n3 lnn) ack events in an execution. We can divide these into O(n2 lnn)
segments of length (2c+ 1)n ∈ Θ(n). We now consider the target groups defined by these
segments. By our above argument, there is a subset T ′ of these groups, where |T ′| ∈ Ω(n lnn),
and all target groups in T ′ are mutually independent. At most n of these remaining target
groups are not calibrated. If we discard these, we are left with a slightly smaller set, of size
still Ω(n lnn), that contains only calibrated and pairwise independent target groups.

We argued that each calibrated group has a probability in Ω(1/n) of being clean. Lever-
aging the independence between our identified groups, a standard concentration analysis
establishes with high probability in n that at least one of these Ω(n/ lnn) groups is clean –
satisfying the Theorem statement.

3.4 Removing the Assumption of Unique IDs
The consensus algorithm described in this section assumes unique IDs. We now show how to
eliminate this assumption by describing a strategy that generates unique IDs w.h.p., and
discuss how to use this as a subroutine in our consensus algorithm.

We make use of a simple tiebreaking mechanism as follows: Each node u proceeds by
iteratively extending a (local) random bit string that eventually becomes unique among the
nodes. Initially, u broadcasts bit b1, which is initialized to 1 (at all nodes), and each time u

10This summary is eliding some subtle details tackled in the full analysis concerning which broadcasts are
guaranteed to be received during a target group. But these details are not important for understanding
the main logic of this argument.

C. Newport and P. Robinson 38:15

samples a new bit b, it appends b to its current string and broadcasts the result. For instance,
suppose that u’s most recently broadcast bit string is b1 . . . bi. Upon receiving ack(b1 . . . bi),
node u checks if it has received a message identical to b1 . . . bi. If it did not receive such a
message, then u adopts b1 . . . bi as its ID and stops. Otherwise, some distinct node must have
sampled the same sequence of bits as u and, in this case, the ID b1 . . . bi is considered to be
already taken. (Note that nodes do not take receive events for their own broadcasts.) Node
u continues by sampling its (i+ 1)-th bit bi+1 uniformly at random, and then broadcasts
the string b1 . . . bibi+1, and so forth. In the full paper [42], we prove the following result and
describe how to combine it with our consensus algorithm:

I Theorem 6. Consider an execution α of the tiebreaking algorithm. Let tu be an event in
the message schedule msg[α] such that node u is scheduled for Ω(logn) ack events before
tu. Then, for each correct node u, it holds that u has a unique ID of O(logn) bits with high
probability at tu.

4 Almost-Everywhere Agreement

In the previous section, we showed how to solve consensus in O(n3 logn) events. Here we show
how to improve this bound by a near linear factor by loosening the agreement guarantees.
In more detail, we consider a weaker variant of consensus, introduced in [18], called almost-
everywhere agreement. This variation relaxes the agreement property of consensus such that
o(n) nodes are allowed to decide on conflicting values so long as the remaining nodes all
decide the same value. For many problems that use consensus as a subroutine, this relaxed
agreement property is sufficient.

In more detail, we present an algorithm for solving almost-everywhere agreement in
the abstract MAC layer model when nodes start with arbitrary (not necessarily binary)
input values. The algorithm consists of two phases. We present the pseudo code in the full
paper [42].

Phase 1. In this phase, nodes try to obtain an estimate of the network size by performing
local coin flipping experiments. Each node u records the number of times that its coin comes
up tails before observing the first heads in a variable X. Then, u broadcasts its value of X
once, and each node updates X to the highest outcome that it has seen until it receives the
ack for its broadcast. In our analysis, we show that, by the end of Phase 1, variable X is
an approximation of log2(n) with an additive O(log logn) term, for all nodes in a large set
called EST , and hence N := 2X is a good approximation of the network size n for any node
in EST .

Phase 2. Next, we use X and N as parameters of a randomly rotating leader election
procedure. Each node decides after T = Θ(N log3(N) log log(N)) rounds. (Note that due
to the asynchronous nature of the abstract MAC layer model, different nodes might be
executing in different rounds at the same point in time.) We now describe the sequence
of steps comprising a round in more detail: A node u becomes active with probability
1/Nu at the start of each round.11 If it is active, then u samples a random rank ρ from a
range polynomial in Xu, and broadcasts a message 〈r, ρ, val〉 where val refers to its current
consensus input value. To ensure that the scheduler cannot derive any information about

11We use the convention Nu when referring to the local variable N of a specific node u.

DISC 2018

38:16 Fault-Tolerant Consensus with an Abstract MAC Layer

whether a node is active in a round, inactive nodes simply broadcast a dummy message
with infinite rank. While an (active or inactive) node v waits for its ack for round r, it
keeps track of all received messages and defers processing of a message sent by a node in
some round r′ > r until the event in which v itself starts round r′. On the other hand, if
a received message was sent in r′ < r, then v simply discards that late message as it has
already completed r′. Node v uses the information of messages originating from the same
round r to update its consensus input value, if it receives such a message from an active
node that has chosen a smaller rank than its own. (Recall that inactive nodes have infinite
rank.) After v has finished processing the received messages, it moves on the next round.

We first provide some intuition why it is insufficient to focus on a round r where the
“earliest” node is also active: Ideally, we want the node w1 that is the first to receive its ack
for round r to be active and to have the smallest rank among all active nodes in round r, as
this will force all other (not-yet decided) nodes to adopt w1’s value when receiving their own
round r ack, ensuring a.e. agreement. However, it is possible that w1 and also the node w2
that receives its round r ack right after w1, are among the few nodes that ended up with a
small (possibly constant) value of X after Phase 1. We cannot use the size of EST to reason
about this probability, as some nodes are much likelier to be in EST than others, depending
on the schedule of events in Phase 1. In that case, it could happen that both w1 and w2
become active and choose a rank of 1. Note that it is possible that the receive steps of their
broadcasts are scheduled such that roughly half of the nodes receive w1’s message before
w2’s message, while the other half receive w2’s message first. If w1 and w2 have distinct
consensus input values, then it can happen that both consensus values gain large support in
the network as a result.

To avoid this pitfall, we focus on a set of rounds where all nodes not in EST have already
terminated Phase 2 (and possibly decided on a wrong value): from that point onwards, only
nodes with sufficiently large values of X and N keep trying to become active. We can show
that every node in EST has a probability of at least Ω(1/(n logn)) to become active and a
probability of Ω(1/ logn) to have chosen the smallest rank among all nodes that are active
in the same round. Thus, when considering a sufficiently large set of rounds, we can show
that the event, where the first node in EST that receives its ack in round r becomes active
and also chooses a rank smaller than the rank of any other node active active in the same
round, happens with probability 1− o(1).

In the full paper [42], we formalize the above discussion by proving the following main
theorem regarding this algorithm:

I Theorem 7. With high probability, the following two properties are true of our almost-
everywhere consensus algorithm: (1) within O(n2 log4 n · log logn) scheduled ack events, every
node has either crashed, decided, or will decided after it is next scheduled; (b) all but at most
o(n) nodes that decide, decide the same value.

5 Lower Bound

We conclude our investigation by showing a separation between the abstract MAC layer
model and the related asynchronous message passing model. In more detail, we prove below
that fault-tolerant consensus with constant success probability is impossible in a variation of
the asynchronous message passing model where nodes are provided only a constant-fraction
approximation of the network size and communicate using (blind) broadcast. This bounds
holds even if we assume no crashes and provide nodes unique ids from a small set. Notice,
in the abstract MAC layer model, we solve consensus with broadcast under the harsher

C. Newport and P. Robinson 38:17

Algorithm 3 Almost-everywhere agreement in the abstract MAC layer model. Code for
node u.
1: val← consensus input value
2: . Phase 1
3: initialize X ← 0; R← ∅
4: while flip_coin() = heads do
5: X ← X + 1
6: bcast(X)
7: while waiting for ack do
8: add received messages to R
9: X ← max(R ∪ {X})
10: N ← 2X

11: . Phase 2
12: T ← dcN log3(N) log log(N)e, where c is a sufficiently large constant.
13: initialize array of sets R[1], . . . , R[T]← ∅
14: for i← 1, . . . , T do . Start of round i at u
15: u becomes active with probability 1

N

16: if u is active then
17: ρ← unif. at random sampled integer from [1, X4]
18: else
19: ρ←∞
20: bcast(〈i, ρ, val〉)
21: while waiting for ack do
22: add received messages to R[i]
23: for each message m = 〈i′, ρ′, val′〉 ∈ R[i] do
24: if i′ = i and ρ′ < ρ then . Received message from node with smaller rank
25: val← val′

26: else if i′ > i then . Received message from node active in future round
27: add m to R[i′]
28: else
29: discard message m
30: decide on val

constraints of no network size information, no ids, and crash failures. The difference is the fact
that the broadcast primitive in the abstract MAC layer model includes an acknowledgment.
This acknowledgment is therefore revealed to be the crucial element of the our model that
allows algorithms to overcome lack of network information. We note that this bound is a
generalization of the result from [1], which proved deterministic consensus was impossible
under these constraints. In the full paper [42], we show that, for any given randomized
algorithm we can construct scenarios that are indistinguishable for the nodes, thus causing
conflicting decisions.

I Theorem 8. Consider an asynchronous network of n nodes that communicate by broadcast
and suppose that nodes are unaware of the network size n, but have knowledge of an integer
that is guaranteed to be a 2-approximation of n. No randomized algorithm can solve binary
consensus with a probability of success of at least 1− ε, for any constant ε < 2−

√
3. This

holds even if nodes have unique identifiers chosen from a range of size at least 2n and all
nodes are correct.

DISC 2018

38:18 Fault-Tolerant Consensus with an Abstract MAC Layer

References
1 Mohssen Abboud, Carole Delporte-Gallet, and Hugues Fauconnier. Agreement without

knowing everybody: a first step to dynamicity. In Proceedings of the International Confer-
ence on New Technologies in Distributed Systems, 2008.

2 Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and consensus in
the crash-recovery model. Distributed computing, 13(2):99–125, 2000.

3 Eduardo AP Alchieri, Alysson Neves Bessani, Joni da Silva Fraga, and Fabíola Greve.
Byzantine consensus with unknown participants. In Proceedings of the International Con-
ference on the Principles of Distributed Systems. Springer, 2008.

4 Khaled Alekeish and Paul Ezhilchelvan. Consensus in sparse, mobile ad hoc networks.
IEEE Transactions on Parallel and Distributed Systems, 23(3):467–474, 2012.

5 James Aspnes. Fast deterministic consensus in a noisy environment. Journal of Algorithms,
45(1):16–39, 2002.

6 Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally anonymous asyn-
chronous shared memory systems. Information and Computation, 173(2):162–183, 2002.

7 John Augustine, Gopal Pandurangan, Peter Robinson, and Eli Upfal. Distributed agree-
ment in dynamic peer-to-peer networks. J. Comput. Syst. Sci., 81(7):1088–1109, 2015.
doi:10.1016/j.jcss.2014.10.005.

8 R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time Complexity of Broadcast in Radio
Networks: an Exponential Gap Between Determinism and Randomization. In Proceedings
of the ACM Conference on Distributed Computing, 1987.

9 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the ACM Conference on Distributed Com-
puting, pages 27–30. ACM, 1983.

10 François Bonnet and Michel Raynal. Anonymous Asynchronous Systems: the Case of
Failure Detectors. In Proceedings of the International Conference on Distributed Computing,
2010.

11 David Cavin, Yoav Sasson, and André Schiper. Consensus with unknown participants or
fundamental self-organization. In ADHOC-NOW, 2004.

12 Tushar Deepak Chandra. Polylog randomized wait-free consensus. In Proceedings of the
ACM Conference on Distributed Computing, 1996.

13 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

14 Alejandro Cornejo, Nancy Lynch, Saira Viqar, and Jennifer L Welch. Neighbor Discovery
in Mobile Ad Hoc Networks Using an Abstract MAC Layer. In Proceedings of the Annual
Allerton Conference on Communication, Control, and Computing, 2009.

15 Alejandro Cornejo, Saira Viqar, and Jennifer L Welch. Reliable Neighbor Discovery for
Mobile Ad Hoc Networks. Ad Hoc Networks, 12:259–277, 2014.

16 A. Czumaj and W. Rytter. Broadcasting Algorithms in Radio Networks with Unknown
Topology. Journal of Algorithms, 60:115–143, 2006.

17 Sebastian Daum, Seth Gilbert, Fabian Kuhn, and Calvin Newport. Broadcast in the Ad
Hoc SINR Model. In Proceedings of the International Conference on Distributed Computing,
2013.

18 Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in net-
works of bounded degree. SIAM Journal on Computing, 17(5):975–988, 1988.

19 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2), 1985.

20 L. Gasieniec, D. Peleg, and Q. Xin. Faster Communication in Known Topology Radio
Networks. Distributed Computing, 19(4):289–300, 2007.

http://dx.doi.org/10.1016/j.jcss.2014.10.005

C. Newport and P. Robinson 38:19

21 O. Goussevskaia, R. Wattenhofer, M.M. Halldorsson, and E. Welzl. Capacity of Arbitrary
Wireless Networks. In Proceedings of the IEEE International Conference on Computer
Communications, 2009.

22 Fabiola Greve and Sebastien Tixeuil. Knowledge connectivity vs. synchrony requirements
for fault-tolerant agreement in unknown networks. In Proceedings of the IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, 2007.

23 Rachid Guerraoui, Michel Hurfinn, Achour Mostéfaoui, Riucarlos Oliveira, Michel Raynal,
and André Schiper. Consensus in asynchronous distributed systems: A concise guided tour.
Advances in Distributed Systems, Lecture Notes in Computer Science, 1752:33–47, 2000.

24 Rachid Guerraoui and Andre Schiper. Consensus: the big misunderstanding [distributed
fault tolerant systems]. In Proceedings of the IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systems, 1997.

25 Rachid Guerraoui and André Schiper. The generic consensus service. IEEE Transactions
on Software Engineering, 27(1):29–41, 2001.

26 Magnus M. Halldorsson and Pradipta Mitra. Wireless Connectivity and Capacity. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2012.

27 Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rozanski, and Grzegorz Stachowiak. Dis-
tributed Randomized Broadcasting in Wireless Networks under the SINR Model. In Pro-
ceedings of the International Conference on Distributed Computing, 2013.

28 Tomasz Jurdziński and Grzegorz Stachowiak. Probabilistic Algorithms for the Wakeup
Problem in Single-Hop Radio Networks. In Algorithms and Computation, pages 535–549.
Springer, 2002.

29 Majid Khabbazian, Fabian Kuhn, Dariusz Kowalski, and Nancy Lynch. Decomposing
Broadcast Algorithms Using Abstract MAC Layers. In Proceedings of the International
Workshop on the Foundations of Mobile Computing, 2010.

30 Majid Khabbazian, Fabian Kuhn, Nancy Lynch, Muriel Medard, and Ali ParandehGheibi.
MAC Design for Analog Network Coding. In Proceedings of the International Workshop
on the Foundations of Mobile Computing, 2011.

31 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable com-
putation in peer-to-peer networks. In Foundations of Computer Science, 2006. FOCS’06.
47th Annual IEEE Symposium on, pages 87–98. IEEE, 2006.

32 D.R. Kowalski and A. Pelc. Broadcasting in Undirected Ad Hoc Radio Networks. Dis-
tributed Computing, 18(1):43–57, 2005.

33 Fabian Kuhn, Nancy Lynch, and Calvin Newport. The Abstract MAC Layer. In Proceedings
of the International Conference on Distributed Computing, 2009.

34 Fabian Kuhn, Nancy Lynch, and Calvin Newport. The Abstract MAC Layer. Distributed
Computing, 24(3-4):187–206, 2011.

35 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, 1998.

36 Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
37 Thomas Moscibroda. TheWorst-Case Capacity of Wireless Sensor Networks. In Proceedings

of the ACM/IEEE International Conference on Information Processing in Sensor Networks,
2007.

38 Thomas Moscibroda and Roger Wattenhofer. Maximal Independent Sets in Radio Networks.
In Proceedings of the ACM Conference on Distributed Computing, 2005.

39 Thomas Moscibroda and Roger Wattenhofer. The Complexity of Connectivity in Wireless
Networks. In Proceedings of the IEEE International Conference on Computer Communi-
cations, 2006.

40 Achour Mostefaoui and Michel Raynal. Solving consensus using Chandra-Touegs unreliable
failure detectors. Lecture Notes in Computer Science, 1693:49–63, 1999.

DISC 2018

38:20 Fault-Tolerant Consensus with an Abstract MAC Layer

41 Calvin Newport. Consensus with an Abstract MAC Layer. In Proceedings of the ACM
Conference on Distributed Computing, 2014.

42 Calvin Newport and Peter Robinson. Fault-Tolerant Consensus with an Abstract MAC
Layer. Technical report, https://www.cas.mcmaster.ca/robinson/random-aml.pdf,
2018.

43 Eric Ruppert. The Anonymous Consensus Hierarchy and Naming Problems. In Proceedings
of the International Conference on Principles of Distributed Systems, 2007.

44 Andre Schiper. Early consensus in an asynchronous system with a weak failure detector.
Distributed Computing, 10(3):149–157, 1997.

45 Einar W Vollset and Paul D Ezhilchelvan. Design and performance-study of crash-tolerant
protocols for broadcasting and reaching consensus in MANETs. In IEEE Symposium on
Reliable Distributed Systems, 2005.

46 Weigang Wu, Jiannong Cao, and Michel Raynal. Eventual clusterer: A modular approach
to designing hierarchical consensus protocols in manets. IEEE Transactions onParallel and
Distributed Systems, 20(6):753–765, 2009.

https://www.cas.mcmaster.ca/robinson/random-aml.pdf

Randomized (∆ + 1)-Coloring in O(log∗∆)
Congested Clique Rounds
Merav Parter
Weizmann IS, Rehovot, Israel
merav.parter@weizmann.ac.il

Hsin-Hao Su
UNC-Charlotte, North Carolina, USA
hsinhao@csail.mit.edu

Abstract
(∆ + 1)-vertex coloring is one of the most fundamental symmetry breaking graph problems,
receiving tremendous amount of attention over the last decades. We consider the congested clique
model where in each round, every pair of vertices can exchange O(logn) bits of information.

In a recent breakthrough, Yi-Jun Chang, Wenzheng Li, and Seth Pettie [CLP-STOC’18]
presented a randomized (∆ + 1)-list coloring algorithm in the LOCAL model that works in
O(log∗ n + Detdeg(log logn)) rounds, where Detdeg(n′) is the deterministic LOCAL complexity
of (deg +1)-list coloring algorithm on n′-vertex graphs. Unfortunately, the CLP algorithm uses
large messages and hence cannot be efficiently implemented in the congested clique model when
the maximum degree ∆ is large (in particular, when ∆ = ω(

√
n)).

Merav Parter [P-ICALP’18] recently provided a randomized (∆ + 1)-coloring algorithm in
O(log log ∆·log∗∆) congested clique rounds based on a careful partitioning of the input graph into
almost-independent subgraphs with maximum degree

√
n. In this work, we significantly improve

upon this result and present a randomized (∆ + 1)-coloring algorithm with O(log∗∆) rounds,
with high probability. At the heart of our algorithm is an adaptation of the CLP algorithm for
coloring a subgraph with o(n) vertices and maximum degree Ω(n5/8) in O(log∗∆) rounds. The
approach is built upon a combination of techniques, this includes: the graph sparsification of
[Parter-ICALP’18], and a palette sampling technique adopted to the CLP framework.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Graph Algorithms, Coloring, congested clique

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.39

1 Introduction & Related Work

Graph coloring is one of the most central symmetry breaking graph problems, and as such it
has been receiving much attention. In the distributed setting, vertex coloring as many other
symmetry breaking tasks are mostly studied in the LOCAL model where the messages sent
in a given round are allowed to be arbitrarily large. Indeed, the recent breakthrough results
for vertex coloring [5, 8] and MIS [6] use large messages, potentially of size Ω(n). This poses
a strong motivation for studying these problems in bandwidth restricted models.

The congested clique model of distributed computing was introduced by Lotker, Pavlov,
Patt-Shamir, and Peleg [14]. In this model, the communication is all-to-all, and per round,
each node can send O(logn) bits to each other node. One can view the congested clique
as being orthogonal to the LOCAL model: the former abstracts away locality (each node is
one-hop from each other node), and the latter abstracts away congestion . The fact that the

© Merav Parter and Hsin-Hao Su;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 39; pp. 39:1–39:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:merav.parter@weizmann.ac.il
mailto:hsinhao@csail.mit.edu
https://doi.org/10.4230/LIPIcs.DISC.2018.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

congested clique model escapes any locality based lower bounds (e.g., [12]) makes it very
attractive for studying the net (or clean) effect of bandwidth limitation on local computation.
Ghaffari [6] posed the following question:

Can we solve the classic local problems: MIS, maximal matching, (∆ + 1)-vertex-
coloring, or (2∆− 1)-edge-coloring – much faster in the congested clique model?

This question was answered in the affirmative in [6] for the MIS problem by presenting a
randomized MIS algorithm that works in Õ(

√
log ∆) congested clique rounds. Very recently,

this bound was further improved to O(log log ∆) rounds by Ghaffari et al. [7]. The latter
work also improved the round complexity of other local problems (e.g., maximal matching)
in the related model of Massively Parallel Computation (MPC), which is arguably the most
popular model framework for large-scale computation (e.g., MapReduce, Hadoop and Spark
[7])1. The problem of (∆ + 1)-vertex coloring in the congested clique model was recently
studied by [15], presenting a randomized algorithm with O(log log ∆ · log∗∆) rounds. We
also note that earlier works in the congested clique model considered weaker versions of MIS
and coloring, see [3, 10, 9].

An orthogonal line of research considers the power of all-to-all communication for determin-
istic local algorithms. Censor et al. [4] presented a quite general scheme for derandomization
in the congested clique model by combining the methods of bounded independence with
efficient computation of the conditional expectation. They provided a deterministic MIS
algorithm that works in O(log ∆ · logn) congested clique rounds. [15] recently showed a
deterministic (∆ + 1)-coloring in O(log ∆) rounds. Barenboim and Khazanov [1] presented
improved deterministic local algorithms as a function of the graph’s arboricity.

1.1 Our Result and Technical Overview
Our main result is an adaptation of the Chang-Li-Pettie (CLP) algorithm to the congested
clique model:

I Theorem 1. There is a randomized algorithm that computes a (∆+1)-coloring in O(log∗∆)
rounds of the congested clique model, with high probability2.

Our algorithm is based on the recent graph sparsfication technique of [15] combined with
modified versions of the key coloring algorithms of [5]. The starting observation made in
[15] is that the CLP algorithm can be simulated in O(log∗∆) congested clique rounds when
∆ = O(

√
n). To handle a graph with arbitrarily large degrees, [15] applies O(log log ∆) phases

of a graph specification procedure, until all unsolved pieces to be colored are subgraphs with
maximum degree O(

√
n) and hence can be colored in O(log∗∆) rounds by employing the

CLP algorithm. In this work, we significantly improve upon this approach, and break this√
n-barrier by modifying the key coloring procedures of the CLP algorithm. This modified

CLP allows us to color o(n)-vertex subgraphs with maximum degree Ω(n5/8) in O(log∗∆)
rounds. The high-level description of our algorithm is as follows: Given a graph G with
maximum degree ∆, G is carefully partitioned into: (i) a collection of ∆1/4 independent
subgraphs Gi with maximum degree ∆(Gi) = O(∆3/4) and (ii) a left-over subgraph G∗ with
N = Õ(n/∆3/8) vertices and maximum degree ∆∗ = Õ(∆5/8). The improvement over [15]
comes from the fact that our algorithm applies only a constant number of phases of the
graph sparsification procedure (for coloring the subgraphs of (i)), rather than O(log log ∆)

1 A general simulation result between these models has been recently provided by [2].
2 As usual, by high probability we mean 1− 1/nc for some constant c ≥ 1.

M. Parter and H.-H. Su 39:3

as in [15]. The first collection of Gi subgraphs are treated as independent in the sense that
each subgraph Gi is given a distinct set of ∆(Gi) + 1 colors in [1,∆ + 1] and thus these
subgraphs can be colored simultaneously within O(log∗∆) rounds using the [15] algorithm.
The partitioning into these graphs is done in a careful manner so that allocating ∆(Gi) + 1
colors to each of them still respects the total number ∆ + 1 of allowed colors. The main
challenge is in coloring the left-over subgraph G∗ overcoming the fact that its degree is
Ω(n1/2+ε). Unlike the previous ∆1/4 subgraphs, here we ran out of budget of free colors and
hence this subgraph should be colored using a list-coloring algorithm only after all other
subgraphs Gi are colored. As will be described later on, the CLP algorithm is based on the
knowledge of the second neighborhood of the vertices (which can be obtained in 2 rounds in
the LOCAL model). In our setting, the degree of G∗ is too large for allowing the vertices
collecting their entire second neighborhoods. The key challenges is in bypassing all critical
points of the CLP that are based on this kind of knowledge. To do that we employ several
congested clique routing techniques combined with a palette sampling technique adopted to
the CLP framework.

Technical History of Coloring and a Short Exposition of the CLP Algorithm. The first
step for breaking the KMW lower bound [12] was made by Schneider and Wattenhofer [17]
who showed that when vertices have sufficiently many excess colors in their palette3 the graph
can be colored considerably faster. Elkin, Pettie and Su made the first connection between
the above observation to a concrete structural graph property. Specifically, they showed that
an (1− ε)-sparse graph4 can be transformed within a single round into a graph in which each
vertex has Ω(ε∆) many access colors in its palette. This graph characterization was the basis
of the decomposition technique by Harris, Schneider and Su [8] which we describe next.

For a given parameter ε ∈ (0, 1), [8] decomposed the input graph G into an ε-sparse and
an ε-dense subgraphs. To color the sparse subgraph, [8] employed the approach of [17], and
their key contribution is a novel dense coloring procedure. [8] showed that the dense subgraph
consists of a collection of almost-clique components with weak diameter 2. Informally, the
dense coloring procedure was based on having a leader in each such almost-clique; the leader
collected the palettes and neighbor-lists of all the vertices in its clique, and colored them
locally such that most of these colors are legal.

The approach of [5] is based on a hierarchical version of [8] with O(log log ∆) sparsity
levels. This partitions the vertices in the graph into O(log log ∆) layers. The algorithm
further groups these layers into O(log∗∆) Starta where all layers in a given strata are colored
simultaneously. When coloring vertices in each stratum, the algorithm applies modified
versions of the dense coloring procedure in [8], which are based upon collecting the information
of each almost-clique to a leader. Since the diameter of the almost-clique is shown to be 2,
this information an be easily collected in the LOCAL model, but might take many rounds,
when the message size is restricted to O(logn) bits.

How to Break the ∆ = O(
√
n) Barrier? The main obstacle for simulating the CLP

algorithm when ∆ = ω(
√
n) in the congested clique model concerns two critical places in the

CLP algorithm, where vertices collect O(∆2) messages (e.g., their second neighborhood). The
first place is for (1) defining the ε-dense subgraph and the second place is for (2) coloring the

3 The excess of colors of vertex v is the number of colors in v’s palette minus the number of uncolored
neighbors of v.

4 I.e., a graph in which in the 2-hop neighborhood of each vertex, there are only (1− ε2)∆2 triangles.

DISC 2018

39:4 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

dense regions by collecting palettes to the leader of each almost-clique. These steps could be
implemented in O(1) rounds only when ∆ = O(

√
n), but require polynomially many rounds

for ∆ = Ω(n1/2+ε). Thus breaking this
√
n barrier calls for alternative procedures that avoid

learning the 2-neighborhoods of the vertices. We now elaborate about these technicalities
and our approach to handle them.

To compute the dense subgraph, in the CLP algorithm every vertex v computes the
number of mutual neighbors with each of its neighbors, i.e., it computes |N(v) ∩ N(u)|
for every u ∈ N(v). Indeed this can be easily done if a vertex knows the neighbors of its
neighbors. In our setting, we use the fact that the left-over subgraph G∗ has N = Õ(n/∆3/8)
vertices and allocate each vertex v in G∗ a subset of r = n/N relay vertices that share
the computational load of vertex v. Specifically, in our scheme, each relay vertex of v is
responsible for computing the intersection size |N(v) ∩N(u)| for a subset of ∆/r neighbors
u ∈ N(v), it would then communicate the outcome of this computation to v.

The second spot in which the CLP algorithm collects the second neighborhood of (some
of the vertices) is in the dense coloring procedures. Our key technical contribution is in
showing that it is sufficient for each almost-clique member to send to its leader a random
sample of O(

√
∆) colors in its palette rather than its entire Θ(∆)-size palette. Since each

almost-clique contains O(∆) vertices and since the maximum degree of the subgraph G∗
is O(n2/3), each leader is a target of O(n) message. Such a routing pattern can then be
implemented O(1) rounds using the routing algorithm of Lenzen. The technical challenge is
in showing the even-though the leader of an almost-clique C knows neither internal edges
in C nor the complete individual palettes of the vertices in C, it can still mimic the CLP
procedures, and color its clique vertices with almost the same success rate.

Lenzen’s Routing Algorithm. Almost all congested clique algorithms are based on the
Lenzen’s routing algorithm [13]. This routing algorithm schedules in O(1) rounds the
common communication setting where each vertex needs to send and receive O(n) messages.

2 Coloring Most Vertices Through Graph Sparsfication

We make use of the following version of Chernoff bound:

I Theorem 2 (Simple Corollary of Chernoff Bound). Suppose X1, X2, . . . , X` ∈ [0, 1] are
independent random variables, and let X =

∑`
i=1Xi and µ = E[X]. If µ ≥ 5 logn, then with

probability at least 1− 1/n2, X ∈ µ±
√

5µ logn, and if µ < 5 logn, then X ≤ µ+ 5 logn.

The Algorithm. The graph G is partitioned into ` = d∆1/4e subgraphs G1, . . . , G`, and a
left-over subgraph G∗. This is done by dividing the vertices into `+ 1 subsets V1, . . . , V`, V

∗

by letting each vertex join Vi with probability

pi = 1/`− 2
√

5 logn/
√

∆ · `,

for every i ∈ {1, . . . , `}, and joining V ∗ with the remaining probability of

p∗ = 2
√

5 logn ·
√
`/∆ = Θ(logn/∆3/8).

For every i ∈ {1, . . . , `, ∗}, let Gi = G[Vi] be the induced subgraph and let ∆i be the
maximum degree of Gi. Using Chernoff bound of Theorem 2, for every i ∈ {1, . . . , `}, w.h.p.,
it holds: ∆i ≤ ∆/`− 2

√
5 logn ·

√
∆/`+

√
5 logn ·

√
∆/` ≤ ∆/`− 1.

M. Parter and H.-H. Su 39:5

Δ1 = ෨𝑂(𝑛3/4)

…

𝐺

𝑁 = ෨𝑂(𝑛5/8)

Modified-CLP

Δ∗ = ෨𝑂(𝑛5/8)

ℓ1 = 𝑂(𝑛1/4)

ℓ2 = 𝑂(𝑛1/4)

Δ2 = ෨𝑂(𝑛1/4)

𝐺∗

Δ2
∗ = ෨𝑂(𝑛1/2)

…

… Δ2
∗ = ෨𝑂(𝑛1/2)

𝐺1

𝐺1,1 𝐺1,ℓ2

𝐺ℓ1

𝐺ℓ1,1 𝐺ℓ1,ℓ2

𝐺1
∗ 𝐺ℓ1

∗

Figure 1 For ease of presentation, we omit log factors from considerations. The graph G is
partitioned into Õ(n1/4) subgrpahs Gi and a left-over subgraph G∗. Each subgraph Gi has maximum
degree Õ(n1/4) and it is further divided into Õ(n1/4) subgraphs and a left-over subgraph in [15].
The non left-over subgraphs are given independent set of colors and are colored simultaneously by
applying CLP. The left-over subgrpahs are colored once all other subgraphs are colored. After all Gi

graphs are colored, we apply our modified CLP algorithm to complete the coloring of G∗.

In the first phase of the coloring algorithm, all subgraphs G1, . . . , G` are colored inde-
pendently and simultaneously. This is done by allocating a distinct set of ∆i + 1 colors
for each of the Gi subgraphs. Overall, we allocate ` · (∆/`) ≤ ∆ colors. Since each
∆i = O(∆3/4) = O(n3/4), this can be done in O(log∗∆) rounds for all G1, . . . , G` simultane-
ously using the following:

I Lemma 3. [15] There is a randomized (∆ + 1)-coloring algorithm in the congested clique
model that works in O(log(1/ε) log∗∆) rounds when ∆ = O((n/ logn)1−ε) for any ε ∈ (0, 1).

The algorithm of [15] also implies that the same round complexity is obtained where one is
given k vertex-disjoint subgraphs each with maximum degree O((n/ logn)1−ε).

Coloring the remaining left-over subgraph G∗. The second phase of the algorithm com-
pletes the coloring of G∗. This coloring should agree with the colors computed for G \G∗.
Hence, G∗ is colored by employing a list coloring algorithm that we describe in the next
section. We next bound the number of vertices and the maximum degree ∆(G∗) of G∗ which
provides the basis for our ability to list-color it efficiently in the congested clique model using
our modified CLP algorithm. By Chernoff bound the following holds:

I Observation 4. |V (G∗)| = O(n logn/∆3/8) and ∆(G∗) = O(∆5/8 · logn).

For an illustration of our algorithm, see Figure 1.

3 List-Coloring of the Remaining Subgraph

Recall that the input graph G has n vertices and maximum degree ∆. At the heart of
our coloring algorithm is a list-coloring procedure that colors a subgraph G∗ ⊆ G with
bounded number of vertices N ≤ n vertices and bounded maximum degree ∆∗. For ease of
presentation, we first assume that each vertex v ∈ G∗ is given a palette of size ∆∗ + 1. At
the end of the section, we explain the needed adaptation for the case where every vertex
v ∈ G∗ has a palette with at least max{deg(v,G∗) + 1,∆∗ − (∆∗)3/5} colors.

DISC 2018

39:6 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

I Theorem 5. Given a subgraph G∗ ⊆ G with N vertices and maximum degree ∆∗, such
that each vertex v ∈ G∗ has a palette of size ∆∗ + 1. If ∆∗ satisfies

(I) ∆∗ ∈ [
√
n,O(n2/3)], (II) ∆∗ = O(n/

√
N), (III) ∆∗ = O(n2/N2).

then G∗ can be coloring in O(log∗∆) rounds, with high probability.

At the of the section, Lemma 17, we show that the remaining subgraph from the previous
section indeed satisfies properties (I-III).

Key Definitions from the CLP Algorithm. For an ε ∈ (0, 1), an edge e = (u, v) is an
ε-friend if |N(u) ∩N(v)| ≥ (1− ε) ·∆∗. The endpoints of an ε-friend edge are ε-friends. A
vertex v is ε-dense if v has at least (1− ε) ·∆∗ ε-friends; otherwise it is ε-sparse.

Given a subset of vertices Ṽ ⊆ V (G∗) (which will be the set of uncolored vertices after the
preliminary OneShotColoring algorithm), we define a partition of Ṽ into layers (V1, . . . , V`, Vsp)
for ` = O(log log ∆) based on the local sparsity. Let (ε1, . . . , ε`) be the sequence of sparsity
parameters where ε1 = (∆∗)−1/10, εi = √εi−1 for i ∈ [2, ` − 1], and ε` = 1/K for a large
enough constant K. For a sparsity parameter εi, let V dεi

, V sεi
be the set of vertices which are

εi-dense (resp., εi-sparse). This defines a hierarchy of ` layers: V1, . . . , V` where V1 = Ṽ ∩V dε1
,

Vi = Ṽ ∩ (V dεi
\ V dεi−1

) and Vsp = Ṽ ∩ V sε`
.

The εi-dense vertices V dεi
are then partitioned into εi-almost cliques for every εi. The

εi-almost cliques are the connected components of the graph induced on V dεi
and the εi-

friend edges incident to these vertices. The following lemma developed in [8] contains some
important properties of ε-almost cliques.

I Lemma 6. Fix any ε < 1/5. The following conditions are met for each ε-almost clique C,
and each vertex v ∈ C. (i) The external degree |N(v) ∪ (V dε \ C)| ≤ ε∆∗ (ii) The anti-degree
|C \ (N(v)∪ {v})| ≤ 3ε∆∗, (iii) |C| ≤ (1 + 3ε∆∗), and (iv) distG(u, v) ≤ 2 for each u, v ∈ C,
i.e., C has weak diameter at most 2.

For i ∈ [1, `], each layer Vi is further partitioned into blocks as follows. Let {C1, C2, . . . , }
be εi-almost cliques, then each clique Cj defines a block Bj = Cj ∩ Vi, that is the block Bj
contains the subset of vertices in Cj that are εi-dense but are not εi−1-dense. Note that all
the blocks form a partition of Ṽ .

An Outline of CLP Algorithm. The sketch of a slightly modified version of CLP algorithm
is outlined in the following. The pseudocodes for the subroutines of [5] are provided in
Appendix A.
1. Execute OneShotColoring which takes O(1) rounds. Let Ṽ be the set of uncolored vertices.

If v ∈ Ṽ is in layer i for i ∈ [2, `], v has Ω(ε2i−1∆∗) excess colors. If v ∈ Ṽ is in Vsp, then
it has Ω(ε2`∆∗) = Ω(∆∗) excess colors.

2. Execute the Dense Coloring Procedure, which takes O(log∗∆) rounds. For every v ∈ Ṽ ,
the number of uncolored its uncolored neighbors in layer i will be bounded by O(ε5i∆∗)
for i ∈ [2, `]. All vertices in layer 1 become colored.

3. After Step 1 and Step 2, for every vertex v ∈ Ṽ , if v is in layer 1, then it will be
colored. If v is in layer i for i ∈ [2, `], then it has Ω(ε2i−1∆∗) excess colors in the
palette. Moreover, the number of neighbors of v ∈ Vi with lower or equal layer is at most
O(
∑i
j=1 ε

5
j∆∗) = O(ε5i∆∗) = O(ε2.5i−1∆∗). Since the number of competing neighbors is

significantly less than the number of excess colors (i.e. ε2.5i−1∆∗ � ε2i−1∆∗), we can color
the remaining vertices very efficiently by using the ColorBidding algorithm (c.f. Appendix
A) in O(log∗∆) rounds.

M. Parter and H.-H. Su 39:7

Adaptation of CLP to the Congested Clique. Our key contribution is in adopting the
above CLP algorithm for coloring G∗, which might have maximum degree Ω(n5/8). For
Step 1, Alg. OneShotColoring can be trivially implemented in O(1) rounds in the congested
clique model, since each vertex is only sending one selected color to its neighbors.

The main challenge lies in Step 2. The basic idea of the dense coloring procedure is the
following. Since the weak diameter of each block is 2, in the LOCAL model, it is possible for a
leader in the block to collect the edges within the block and the palette of each vertex in the
block. Then the leader assigns a random proper coloring to each vertex in the block. Since
there are no internal conflicts in the block and the external number of neighbors is small
for each vertex (i.e., O(εi∆∗) for a layer-i block), the probability that a vertex is assigned
the same color as any of its external neighbors is small (poly(εi) if the vertex in layer i).
Intuitively, after O(1) iterations, the probability that the vertex remains uncolored is O(ε5i).
Therefore, it is plausible that for a given set of layer-i vertices, the number of uncolored
vertices is bounded O(ε5i∆∗). However, this could have problems if a block is too small. In
this case, the palette size of each vertex may also be small. The probability a layer-i vertex
remains uncolored may no longer be poly(εi). To deal with this issue, [5] groups the blocks
into O(log∗∆) strata. They showed that by coloring the strata in the right order, the palette
of the vertices will be large enough at the time the procedure is executed. We describe it
later in detail in the section Coloring Vertices by Stratum.

When it comes to the congested clique model, there are two obstacles. First, in the dense
coloring procedure, each vertex has to know which layer and block it is in. For example,
we need to compute the ε-friends of each vertex without collecting its 2-hop neighborhoods.
We show this can be achieved by using the idle vertices in G \G∗ as relaying vertices. The
second obstacle is that in the congested clique, given a block B, we do not have the capacity
to let each vertex in B send its incident edges and palette to the leader of B. Instead, we
show that it will be sufficient if every vertex in B sends

√
∆∗ independently sampled colors

from its palette to the leader rather than the whole palette. Moreover, each vertex does
not have to send the incident edges to the leader. This will be within our budget since
|B| = O(∆∗) each leader receives O(

√
∆∗ ·∆∗) = O(n) messages. The colors can be routed

by using Lenzen’s algorithm. We show such a modification have negligible effects when we
color vertices by stratum.

For Step 3, in each iteration of ColorBidding algorithm, each vertex v sends a set of
colors Sv to all its neighbors. The size of Sv is Õ((∆∗)1/5). Since every vertex sends and
receives Õ((∆∗)5/4) = O(n) messages (by Property (I)), this can be implemented in O(1)
rounds using Lenzen’s routing algorithm.

Computation of ε-Friends. We describe an O(1)-round procedure that allows each vertex
v to compute its εi-friends for each of the ` = O(log log ∆) sparsity values ε1, . . . ε`. Using
this information, v would be able to compute its minimum sparsity parameter εi such that v
is εi-dense (but εi−1-sparse). A trivial way to compute the ε-friends of each vertex v is by
collecting the neighbor-list of the v’s neighbors. Since this information contains Ω((∆∗)2)
messages, it cannot be done in O(1) rounds when ∆∗ = ω(

√
n). Instead, we use the fact that

G∗ has only N vertices and allocate to each vertex v ∈ G∗, a collection of n/N relay vertices
R(v). These relay vertices would help v in the computation of its ε-friends. Towards that
end, each vertex v first sends the IDs of its ∆∗ neighbors to each of its relay vertices R(v).
Hence, overall v sends ∆∗ · |R(v)| = O(n) messages. At this point, the relay vertices R(v)
of each vertex v know the neighbor list of their designated vertex v. Next, v partitions the
“responsibilities” for its ∆∗ neighbors among its R(v) vertices. Formally, for r ∈ R(v), let

DISC 2018

39:8 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

𝑅(𝑢)

𝑅(𝑣2)𝑅(𝑣1) 𝑅(𝑣Δ)…
𝑅(𝑣n/N) …

𝑁(𝑢)
𝑁(𝑢) 𝑁(𝑢)

𝑁(𝑢)

𝑁(𝑢)𝑁(𝑢)

𝑢

Figure 2 Illustration of ε-Friends Computation via Relay Vertices. Verex u sends its neighbor-list
N(u) to each r ∈ R(u). Each r ∈ R(u) sends N(u) to the corresponding relay vertices of ∆∗/|R(u)|
neighbors in N(u).

N(v, r) ⊆ N(v) be the set of ∆∗/|R(v)| v’s neighbors assigned to r, where ∪rN(v, r) = N(v).
Each r ∈ R(v) will receive the neighbor list of each vertex u ∈ N(v, r). In total, each relay
vertex r ∈ R(v) would be a target of ∆∗ · |N(v, r)| = O((∆∗)2 ·N/n) = O(n) messages, where
the last bound holds due to property (II). To send the neighbor-list to the corresponding
relay vertex, each vertex u uses its relay vertices R(u) again. Specifically, for each of its
neighbors vi ∈ N(u), u knows the ID of the relay vertex to which its neighbor list N(u)
should be sent. It then partitions the responsibilities among its relay vertices by assigning
∆∗/|R(u)| neighbors to each r′ ∈ N(u). The relay r′ ∈ N(u) sends N(u) to the corresponding
∆∗/|R(u)| relay vertices. Overall, each relay vertex sends O((∆∗)2/|R(u)|) = O(n) messages
(by Property (II)). For an illustration see Figure 2. Since each vertex is a source and a target
of O(n) messages, this computation can be done in O(1) rounds by using Lenzen’s routing
algorithm. Each relay node r ∈ R(v) now holds the neighbor-list of ∆∗/|R(v)| neighbors of v
as well as the neighbor-list of v. This allows r to compute the intersection size between N(v)
and N(u) for every u ∈ N(v, r). More specifically, for each neighbor u of v, the relay node in
R(v) responsible for u will send to v the minimum ε′ value such that u and v are ε′-friends.
Since v should receive O(∆∗) messages and each relay vertex r ∈ R(v) sends O(∆∗/|R(v)|)
messages, this can be done in O(1) rounds using Lenzen’s algorithm.

Computation of Almost-Cliques and Block Partition. Now each node v knows its εi-
friends for every sparsity level εi for i ∈ [1, `]. It also knows which layer it is in. The next
step is for v to know which block it is in.

To achieve this, we first compute εi-almost cliques for each i ∈ [1, `], where ` =
O(log log ∆). Recall that an εi-almost clique is a component in the subgraph induced
by εi-friend edges and vertices in V dεi

. For i ∈ [1, `], let Cv,εi
be the εi-almost clique that

contains v. Note that Cv,εi = ∅ if i is lower than the layer of v. For a specific level i, by
using the O(1)-round connectivity-identification algorithm of [11], each vertex v is able to
learn the ID of every vertex in Cv,εi

However, we cannot afford to apply the connectivity-identification algorithm in a serial
manner for each sparsity class. Instead, we will use again n/N relay vertices assigned to each
vertex in G∗. This is done as follows. For each v ∈ G∗, we allocate a relay vertex ui that
“plays” the role of v in the ith application of the connectivity-identification algorithm, i.e., for
computing εi-almost cliques for every i ∈ {1, . . . , O(log log ∆)}. Since n/N = Ω(log log ∆),
this is within our budget. By letting v sending its ∆∗ vertices to each relay vertex ui, the
latter have all the information needed to run the connectivity algorithm on behalf of v. This
allows us to apply the O(log log ∆) connectivity-identification algorithms simultaneously. At
the end of this computation, each relay node of v sends to v the ID of every vertex in its
connected component. This is possible since the size of each almost-clique is O(∆∗) (by

M. Parter and H.-H. Su 39:9

Lemma 6) and O(∆∗ · log log ∆) = O(n) (by Property (I)). This allows each vertex v ∈ G∗
to learn all the vertices in each almost clique Cv,ε1 , . . . , Cv,ε`

. Note that we are computing
more information than we need here, but it will be used later.

We are now ready to compute the partitioning of the cliques into blocks. Suppose that
a vertex v is in layer i(v). The block containing v, Bv, was defined as (Cv,εi(v) ∩ Vi(v)).
Vertex v can identify all the members in Bv if it knows the layer of every vertex in G∗. This
information can be obtained by every vertex in one round in the congested clique, since every
vertex already knows its layer.

Coloring Vertices by Stratum. To ensure that the palettes of the vertices in each block
contain enough color in the execution of the dense coloring procedure, the CLP algorithm
groups the ` layers into s = O(log∗∆) Strata W1, . . . ,Ws where W1 = V1 and

Wk =
⋃

i:εi∈(ξk−1,ξk]

Vi where ξ1 = ε1 and ξk = 1/ log(1/ξk−1) for k ∈ [2, s].

Each vertex can easily determine the stratum of a vertex by its layer. The blocks are
also divided into two categories, large blocks and small blocks. We say a block B is good if
|B| ≥ ∆∗/ log2(1/ξk), where k is the stratum that B lies at. A vertex v determines whether
its block Bv is large or small by the following criteria. Let i(v) denote the layer of v. If Bv
is good and none of the following blocks (Cv,εi(v)+1 ∩ Vi(v)+1), (Cv,εi(v)+2 ∩ Vi(v)+2), . . . , or
(Cv,ε`

∩ V`) are good, then Bv is a large block. Otherwise, Bv is a small block. Since each
vertex v knows the vertices in each almost clique Cv,ε1 , . . . , Cv,ε`

and v knows the layers and
the stratum of all other vertices, whether Bv is small or large can be determined locally.

Define WS
k and WL

k be the set of all vertices in stratum-k small blocks and stratum-k
large blocks. We have that Ṽ = (WS

1 , . . . ,W
S
s ,W

L
1 , . . . ,W

L
s , Vsp). The vertices are colored in

s+ 2 stages. First, all the small blocks are colored in s phases: stratum by stratum. In other
words, all the vertices in the small block are colored according to the order: WS

s , . . . ,W
S
1 .

Next, the algorithm colors the vertices of W ′ =
⋃s
j=2W

L
j , i.e., all the vertices in large blocks,

except for those belonging to blocks of the first layer WL
1 . Lastly, the vertices of the large

blocks in WL
1 are colored. At the end, the the (small) subset of vertices that failed to be

colored and the sparse vertices Vsp are colored in Step 3.
Suppose that we process the blocks according to the stratum in the order described

above. In [5], they showed a crucial property that when we are coloring a small block in WS
k ,

each vertex has ∆∗/2 log2(1/ξk) excess colors (i.e. each vertex v has at least |N(v) ∩WS
k |+

∆∗/2 log2(1/ξk) colors) in its palette. When we process a large block, since the block is large,
each vertex has at least ∆∗/2 log2(1/ξk) colors in the palette.

The CLP algorithm consists of two different versions of dense coloring procedures,
according to whether the blocks being processed are small or large. In a high level way, the
differences are the following: In large blocks we do not have the excess colors. However, all
blocks belongs to different almost-cliques by the definition of large. In small blocks, when we
are processing blocks in WS

k , it is possible that some blocks belong to the same almost-clique.
However, since there are abundant number of excess colors, this allow us to process all these
blocks together using a single leader. The superblocks are defined for this purpose. Consider
WS
k and suppose that stratum-k spans layer i0, . . . i1. Let {C1, C2 . . .} be εi1 almost cliques.

Each Cj defines a superblock Rj = Cj ∩WS
k . Therefore, (R1, R2, . . .) is a partition of WS

k .
Each vertex v can easily identify the members in its superblock by using the same approach
we described for computing the blocks.

DISC 2018

39:10 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

Version 1 – Dense Coloring Procedure for Strata of Small Blocks. Consider the set of
stratum-k small blocks W S

k . Recall that if stratum-k spans layers i0, i0 + 1, . . . , i1, then a
super-block is a maximal almost-εi1 clique induced in W S

k . Let S = W S
k and S1, . . . , Sg be

the super-blocks.
Given vertices u, v ∈ S, we say that u has a higher priority than v if (1) the layer of u is

lower than that of v, or (2) u and v are in the same layer but ID(u) < ID(v). The CLP
algorithm for coloring each super-block Sj works as follows. Let π : {1, . . . , |Sj |} → Sj be a
permutation ordered by the priority of the vertices, from the highest priority to the lowest.
Now a leader processes each vertex π(1), π(2), . . . π(|Sj |). For vertex π(q), it selects a color
randomly from its palette excluding the colors used by its neighbors in π(1), . . . π(q − 1).
Also, CLP showed that in small blocks, each vertex has Zex = ∆∗/2 log2(1/ξk) excess colors.
Let N ′(v) denote the higher priority neighbors of v. Suppose that v is in layer i, we must
have |N ′(v)∩ (S \Sj)| ≤ εi∆∗. Therefore, when the vertex is being processed, the probability
that it has an external conflict is at most (εi∆∗)/(Zex) ≤ 2εi log2(1/ξk) ≤ 2εi log2(1/εi).

Since we cannot afford each vertex to send the whole palette and its incident edges to the
leader in the congested clique model, we let each vertex randomly sample

√
∆∗ colors and send

them to the leader. Since |Sj | = O(∆∗), each leader is receiving at most
√

∆∗ ·O(∆∗) = O(n)
messages (by Property (I)). Thus, the set of colors can be routed to the leader by using
Lenzen’s routing algorithm. The following is the description of our algorithm.

ModifiedSmallDenseColoring (Modified Alg. of DenseColoringStep, version 1 from [5]).
1. Consider a superblock Sj . Let π be the permutation of Sj ordered by the pri-

ority of the vertices. Each vertex π(q) sends a set C(π(q)) of
√

∆∗ colors se-
lected u.a.r. from its palette to the leader. For each selected vertex π(q), if
C(π(q))\{c(π(1)), . . . , c(π(q−1))} is non-empty, then the leader assigns π(q) a color
c(π(q)) randomly selected from the set. Otherwise, we say that π(q) is skipped.

2. Each v ∈ Sj that has selected a color c(v) permanently color itself c(v), if c(v) is not
selected by any vertices u ∈ N ′(v). Otherwise, we say that v is decolored.

I Lemma 7. Let Dv denotes an upper bound on the external higher priority neighbors (i.e.
|N ′(v) \ (S \ Sj)|). Let δv = 2Dv/Zex. The probability that v = π(q) becomes decolored is
at most δv, conditioned on any choices of π(1), π(2), . . . , π(q − 1) and all the other higher
priority vertices in S \ Sj.

Proof. Consider a vertex π(q). Since the anti-degree of π(q) is at most 3εi1∆, at most 3εi1∆
vertices in Sj can be non-neighbors of π(q). Moreover, π(q) has at least Zex uncolored
neighbors outside of S. Therefore, |Pal(π(q)) \ {c(π(1)), . . . , c(π(q − 1))}| ≥ Zex − 3εi1∆∗ ≥
Zex/2. Consider any assignment of colors c(π(1)), . . . , c(π(q − 1)). Since v selects the
colors randomly, any color that is not c(π(1)), . . . , or c(π(q − 1)) has the same probability
to be assigned as c(π(q)). Therefore, the probability that c(π(q)) is a specific color is at
most 1/|Pal(π(q)) \ {c(π(1)), . . . , c(π(q − 1))}| ≤ 2/Zex. Now consider any choices made by
π(1), π(2), . . . , π(q − 1) and any choices made by external neighbors in N ′(π(q)) ∩ (S \ Sj).
Vertices N ′(π(q)) ∩ (S \ Sj) are assigned with at most Dv different colors. Vertex v can only
become decolored only if c(π(q)) is one of the colors selected by the vertices in N ′(π(q)) ∩
(S \ Sj). Therefore, the probability that π(q) is decolored is at most 2Dv/Zex. J

I Lemma 8. In ModifiedSmallDenseColoring, with probability at least exp(−Ω(poly(∆∗))),
no vertices are skipped.

Proof. Recall that Sj is a superblock in stratum k, which spans layer i0, . . . , i1. Consider a
vertex π(q). Since the anti-degree of π(q) is at most 3εi1∆, at most 3εi1∆ vertices in Sj can

M. Parter and H.-H. Su 39:11

be non-neighbors of π(q). Therefore, the palette size of π(q) is at least |Sj | − 3εi1∆∗ + Zex.

The probability that π(q) is skipped is at most
(

i
|Sj |+Zex−3εi1 ∆∗

)√∆∗
. Note that

Zex − 3εi1∆∗ =
(

1
(2 log2(1/ξk))

− 3εi1
)
·∆∗ ≥

(
1

(2 log2(1/εi1))
− 3εi1

)
·∆∗

≥ ∆∗

4 log2(1/εi1)
1
εi
≥ K for large enough constant K

≥ C · ∆∗

log2(∆∗)
for some constant C > 0

Let X be the random variable denoting the total number of vertices skipped. We have

E[X] =
|Sj |∑
i=1

(
i

|Sj |+ Zex − 3ε∆∗

)√∆∗

≤ |Sj | ·

(
|Sj |

|Sj |+ C · ∆∗
log2(∆∗)

)√∆∗

≤ 2∆∗ ·
(

2∆∗

2∆∗ + C · ∆∗
log2(∆∗)

)√∆∗

≤ 2∆∗ ·
(

1
1 + C

2 ·
1

log2(∆∗)

)√∆∗

|Sj | ≤ 2∆∗

≤ 2∆∗ ·
(

1
exp(C

4 log2(∆∗))

)√∆∗

1 + x ≥ exp(x/2) for 0 < x ≤ 2

≤ 2∆∗ · exp
(
−C4 ·

√
∆∗

log2(∆∗)

)
= exp(−Ω(poly(∆∗))) J

Therefore, by Lemma 7 and Lemma 8, a similar version of Lemma 17 in [5] holds.

I Lemma 9. Consider an execution of ModifiedSmallDenseColoring. Let T be any subset of
S and let δ = maxv∈T δv. For any t, the number of uncolored vertices in T is at least t with
probability at most Pr(Binomial(|T |, δ) ≥ t) + exp(−Ω(poly(∆∗))).

Proof. The proof is essentially the same with that of Lemma 17 in [5]. Let T = {v1, . . . v|T |}
be the vertices listed according to their priorities. Conditioned on any choices of v1 . . . vq−1,
the probability that vq is decolored is at most δv ≤ δ by Lemma 7. Therefore, the probability
that at least t vertices are decolored is at most Pr(Binomial(|T |, δ) ≥ t). The probability that
there is any skipped vertex is at most exp(−Ω(poly(∆∗))) by Lemma 8. If there are at least t
uncolored vertices, then either there are at least t vertices that are decolored or some vertices
are skipped. By taking an union over the two events, we conclude the probability there are
at least t uncolored vertices is at most Pr(Binomial(|T |, δ) ≥ t) + exp(−Ω(poly(∆∗))). J

Completing the proof for small blocks, other than stratum 1. We will show that Lemma
6 in [5] holds by using our simulation. That is, we show that after O(1) iterations of
ModifiedSmallDenseColoring, w.h.p. for every v ∈ Ṽ and for each layer i ∈ [2, l], the number
of uncolored layer-i neighbors of v that are in W S

k is at most ε5i∆∗.
Consider a vertex v in Ṽ . Let T be the set of layer-i neighbors of v in S. Let

δ = maxu∈T δu ≤ 2εi∆∗/Zex ≤ 4εi log∗(1/εi). We execute 6 iterations of procedure
ModifiedSmallDenseColoring. Let t0 = |T | and tl = max(2δtl−1, ε

5∆∗). Note that t6 ≤ ε5∆∗.
Suppose that the number of uncolored vertices in T is at most tl−1 at the beginning of iteration
l. By Lemma 9, with probability at least 1−Pr(Binomial(tl, δ) ≥ tl−1)−exp(−Ω(poly(∆∗))) =
1− exp(−Ω(poly(∆∗))) = 1− 1/poly(n), at the end of iteration l, the number of uncolored
vertices in T is at most tl. By an union bound over such events over the 6 iterations, with
probability at least 1− 1/poly(n), the number of uncolored vertices in T is at most ε5i∆∗.

DISC 2018

39:12 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

Completing the proof small blocks of stratum 1. Note that stratum 1 only consists of
vertices that are in layer 1. Instead of proving an analogous lemma to Lemma 7 in [5], we
prove the following lemma that bounds the maximum degree on each layer-1 vertex.

I Lemma 10. Suppose that each vertex in W S
1 has at least ∆∗/2 log2(1/E1) excess colors

w.r.t. W S
1 . Let v ∈ Ṽ . By executing ModifiedSmallDenseColoring for O(1) rounds, w.h.p. the

number of uncolored vertices in |N(v) ∩W S
1 | is at most (∆∗)1/20 for all v ∈W S

1 .

Proof. Let T = N(v)∩W S
1 be the neighbors of v in W S

1 . Let δ = maxu∈T δu ≤ 2ε1∆∗/Zex =
4ε1 log∗(1/ε1) < (∆∗)−1/20/2, where the last inequality holds since ε1 = (∆∗)−1/10. We will
execute 19 iterations of ModifiedSmallDenseColoring.

Let t0 = |T | and tl = max((∆∗)−1/20tl−1, (∆∗)1/20) for 1 ≤ l ≤ 19. Suppose that
the number of uncolored vertices in T is at most tl−1 at the beginning of iteration l. By
Lemma 9, with probability at least 1− Pr(Binomial(tl, δ) ≥ tl−1)− exp(−Ω(poly(∆∗))) =
1− exp(−Ω(poly(∆∗))) = 1− 1/poly(n), at the end of iteration l, the number of uncolored
vertices in T is at most tl. Therefore, by an union bound on the events over the 19 iterations,
w.h.p. the number of uncolored vertices in T is at most tl ≤ |T | · (∆∗)19/20 ≤ (∆∗)1/20. J

By Lemma 10, since the maximum degree of the induced subgraph of layer 1 vertices is
at most (∆∗)1/20 and N · (∆∗)1/20 = O(n) (by Property (III)), a leader can collect the entire
topology and the palette of each vertex and compute a coloring of the W S

1 locally.

Version 2 – Dense Coloring Procedure for Strata of Large Blocks. Let S = W L
2 ∪

W L
3 ∪ . . . ∪ W L

s or S = W L
1 be a set vertices in these large blocks. A crucial difference

between large blocks and small blocks is that for any block B ⊆ S, if v ∈ B, the number
of external neighbors in other blocks with lower or equal layers in S is at most O(ε∆∗).
This property allows us to deal with all the large blocks simultaneous. Suppose that S is
partitioned into S1, . . . , Sg (vertex-disjoint) blocks, where each block Sj is associated with
an ID, ID(Sj) = minv∈Sj

ID(v). We associate each Sj with parameters Dj and δj . Roughly
speaking, Dj represents an upper bound on both the external degree and the anti-degree of
each vertex in Sj and δj is an upper bound on the probability that a vertex in Sj fails to be
colored in a single iteration of ModifiedLargeDenseColoring. We say a Sj has a higher priority
than Sj′ if either (1) δj < δj′ or (ii) δj = δj′ and ID(Sj) < ID(Sj′). For a vertex v ∈ Sj , let
N ′′(v) be the neighbors of v higher priority blocks in S. We simplify the analysis (compared
to that of [5]) by choosing a slightly larger δj . We let δj = 2 ·

√
Dj/Zj . We modify the

algorithm as follows:

ModifiedLargeDenseColoring (Modified Alg. of DenseColoringStep, version 2 from [5]).
1. Each cluster Sj selects (1−δ)|Sj | vertices S′j u.a.r. The vertices in S′j are the selected

vertices. Let π be a random permutation of selected vertices, chosen u.a.r. Each
selected vertex π(q) send a set C(π(q)) of

√
∆∗ colors selected u.a.r. from its palette

to the leader. For each selected vertex π(q), if C(π(q)) \ {c(π(1)), . . . , c(π(q− 1))} is
non-empty, then the leader assigns π(q) a color c(π(q)) randomly selected from the
set. Otherwise, we say π(q) is skipped.

2. Each v ∈ Sj that has selected a color c(v) permanently color itself c(v), if c(v) is not
selected by any vertices u ∈ N ′′(v). Otherwise, we say that v is decolored.

The algorithm above will be executed for O(1) iterations.

I Lemma 11. [Analogue of Lemma 19 in [5]] Let T = {v1, . . . , vk} be any subset of uncolored
vertices of Sj. The probability that v is decolored for all v ∈ T is O(δj)|T |, conditioned on

M. Parter and H.-H. Su 39:13

any choices made by vertices in higher priority blocks than Sj and on whether vertices are
selected in Sj \ T .

Proof. We assume that v1, . . . vk are among the (1 − δj)|Sj | vertices that are selected.
Otherwise, the probability that all vertices in T are decolored would be 0. Let c1, . . . , ck be
a sequence of colors. Let Eq denote the event that vm select cm for m ∈ [1, q]. We have:

Pr(Eq | Eq−1) ≤ 1
δj |Sj | −Dj

≤ 1
δj · Zj −Dj

≤ 1
2 ·
√
DjZj −Dj

≤ 1√
DjZj

Therefore, Pr(Ek) ≤
(

1√
DjZj

)k
. For every vertex vq, there are at most Dj different

colors chosen by N ′′(vq) that can cause vq to become decolored. By considering the (Dj)k
combination of forbidden colors for v1 . . . , vk, we conclude the probability that all vertices in
T are decolored is at most (Dj/

√
DjZj)k = O(δj)k. J

I Lemma 12. Let T = {v1, . . . , vk} be any subset vertices of Sj. The probability that vq is
skipped for all q ∈ [1, k] is O(1/

√
∆∗)|T |. The statement is true even if we are conditioning

on any choices made by vertices in higher priority blocks than Sj and on whether vertices are
selected and decolored in Sj \ T .

Proof. First we assume all nodes in T are selected in S′j . Otherwise, the probability that vq
is skipped for all q ∈ [1, k] is 0. Let S′′j denote the set of vertices in S′j that are skipped.

Let rq be the rank of vq among (S′j \ T) ∪ {v1 . . . vq} in the permutation. Let Eq denote
the event that for m ∈ [1, q], all the colors picked by vm are assigned to some vertices in
S′j \ T with smaller ranks than vm. Note that T ⊆ S′′j if and only if Ek holds. If rq is fixed,

we have Pr(Eq | Eq−1) ≤
(

rq−1
|Sj |−Dj

)√∆∗
. Therefore,

Pr(T ⊆ S′′j) = E
[
Pr(T ⊆ S′′j)

]
r1...rk

≤ E

[
k∏
q=1

(
rq − 1
|Sj | −Dj

)√∆∗
]
r1...rk

=
k∏
q=1

E

[(
rq − 1
|Sj | −Dj

)√∆∗

| r1 . . . rq−1

]
rq

≤
k∏
q=1

 1
|S′j | − k + q

|S′j |−k+q∑
x=1

(
x− 1
|Sj | −Dj

)√∆∗
 ≤

 1
|S′j |
·
|S′j |∑
x=1

(
x− 1
|Sj | −Dj

)√∆∗
k

≤

(
1
|S′j |
·O

(
|S′j |
√

∆∗+1

√
∆∗ · (|Sj | −Dj)

√
∆∗

))k
≤ O

(
1√
∆∗

)k
|S′j | ≤ |Sj | −Dj J

I Lemma 13. Let T be any subset vertices of S that have not been assigned a color and let
δ = maxj:Sj∩T 6= δj. After an iteration of the algorithm, the probability that the number of
uncolored vertices in T is at least t is at most

(|T |
t

)
· (O(δ + (∆∗)−1/2))t.

Proof. Suppose that the clusters S1, . . . , Sg are ordered by their priorities, from the highest
to the lowest. Let U be a size-t subset of T . we consider the 3t ways of partitioning U into U1,
U2, and U3. Note that a vertex remains uncolored only if it is either unselected, decolored,
or skipped. We will calculate the probability that the vertices in U1 are not selected, vertices
in U2 are decolored, and vertices in U3 are skipped.

DISC 2018

39:14 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

Define U (j)
i = Ui ∩ Sj for i = 1, 2, 3 and j = 1, 2 . . . , g. The probability that every vertex

in U (j)
1 is unselected is at most O(δj)|U

(j)
1 | ≤ O(δ)|U

(j)
1 |. By Lemma 11, the probability that

every vertex in U
(j)
2 is decolored is at most O(δj)|U

(j)
2 | ≤ O(δ)|U

(j)
2 |. By Lemma 12, the

probability that every vertex in U
(j)
3 is skipped is at most O(1√

∆∗
)|U

(j)
3 |. Therefore, the

probability that all vertices in U1 are unselected, all vertices in U2 are decolored, all vertices in
U3 are skipped are at most

∏g
j=1O(δ)|U

(j)
1 | ·O(δ)|U

(j)
2 | ·O((∆∗)−1/2)|U

(j)
3 | = O(δ+ (∆∗)−1/2)t.

By an union over all possible size-t sets and partitions, the probability there are at least t
uncolored vertices is at most 3t ·

(|T |
t

)
·O(δ + (∆∗)−1/2)t ≤

(|T |
t

)
·O(δ + (∆∗)−1/2)t. J

Maintenance of Invariants. Suppose that Sj is a layer-i block. We show that w.h.p. the
following invariants are maintained after each iteration l.

Invariant Hl(v): Both the anti-degree the external degree of v are at most D(l+1)
j .

Invariant Hl(Sj): the number of uncolored vertices of Sj is at least Z(l+1)
j .

Sequence
(
D

(l)
j

)
: D(1) = 3εi∆∗, and D(l)

j = β · δ(l−1)
j ·D(l−1)

j , for l > 1, where β > 1 is
an absolute constant.
Sequence

(
Z

(l)
j

)
: Z(1) = ∆∗

log2(1/εi) , and Z
(l)
j = δ

(l−1)
j · Z(l−1)

j , for l > 1.

I Observation 14. δ(l)
j = Ω(1/

√
∆∗) for every l ≥ 1 and so the probability in Lemma 13 is(|T |

t

)
· (O(δ))t.

Proof. For a layer-i block, D(1)
j = 3εi ·∆∗, Z(1)

j = ∆∗/ log2(1/εi), thus δ(1)
j = 2

√
D

(1)
j /Z

(1)
j =

Ω(
√
εi · log2(1/εi)) = Ω((∆∗)−1/20) = Ω((∆∗)−1/2), since εi ≥ 1/(∆∗)1/10. Next, note that

δ
(l)
j is increasing with l, since δ(l)

j = 2
√
β · δ(l−1)

j > δ
(l−1)
j . J

For every block Sj , in the beginning it is clearly true that H0(v) holds for v ∈ Sj and
H0(Sj) holds. Suppose that for every block Sj , Hl−1(v) holds for v ∈ Sj and Hl−1(Sj)
holds. Consider a block Sj . Since the number of unselected vertices is always at least
δ

(l)
j · |Sj | ≥ δ

(l)
j · Z

(l)
j = Z

(l+1)
j , Hl(Sj) hold with probability 1.

Consider a vertex v ∈ Sj . Let T be the set of uncolored external neighbors of v or the set
of uncolored non-neighbor of v in Sj . Since Hl−1(v) holds, |T | ≤ D

(l)
j . Let t = βδ

(l)
j ·D

(l)
j .

By Lemma 13 and Obs. 14, we have Pr(Hl(v)) ≥ 1 −
(|T |
t

)
· (Kδ(l)

j)t ≥ 1 − (KtβT ·
e|T |
t)t ≥

1− 1/poly(n). By taking an union bound on the event Hl(v) holds for all v ∈ S, w.h.p. the
invariants hold after iteration l.

Completing the proof for large blocks, other than stratum 1. We show that after O(1)
iterations of ModifiedLargeDenseColoring, w.h.p. for every v ∈ Ṽ and for each layer i ∈ [2, l],
the number of uncolored layer-i neighbors of v that are inW L

2 ∪W L
3 ∪ . . .∪W L

s is at most ε5i∆∗.
(This is the analogue of Lemma 8 [5].) We execute Algorithm ModifiedLargeDenseColoring
for 12 iterations. W.h.p. for l ∈ [0, 12], the invariants Hl(Sj) hold for every Sj and Hl(v)
holds for every u ∈ S. Let T be the set of layer-i neighbors of v in S and

δ(l) = max
j:Sj∩T 6=

δ
(l)
j = 2 ·

√
D

(l)
j /Z

(l)
j = 2

√
β
l−1
·
√

3εi · log2(1/εi).

Let t0 = |T | and tl = max(βδ(l)tl−1, ε
5∆∗). Suppose that at the beginning of iteration

l, the number of uncolored vertices in T is at most tl−1. By Lemma 13 and Obs. 14,
after iteration l, the probability that the number of uncolored vertices is more than tl

M. Parter and H.-H. Su 39:15

is at most
(
tl−1
tl

)
(K · δ(l))tl ≤ exp(−Ω(tl)) = 1/poly(n). Note that since

∏12
l=1 δ

(l) ≤∏12
l=1

(
2
√
β
l−1 ·

√
3εi · log2(1/εi)

)
≤ (2
√

3)12β66 · ε6i · log12(1/ε) ≤ ε5i , tl = ε5∆∗. By taking

an union on the events over 12 iterations, we conclude w.h.p. the number of uncolored
neighbors in T is at most tl = ε5∆∗.

Completing the proof large blocks of stratum 1. Note that stratum 1 only consists of
vertices that are in layer 1. Instead of proving an analogous lemma to Lemma 9 in [5], we
prove the following lemma that bounds the maximum degree on each layer-1 vertex.

I Lemma 15. Let v ∈ Ṽ . By executing ModifiedLargeDenseColoring for O(1) rounds,
w.h.p. the number of uncolored vertices in |N(v) ∩W L

1 | is at most (∆∗)1/20 for all v ∈W L
1 .

Proof. We execute 19 iterations of ModifiedLargeDenseColoring. W.h.p. for l ∈ [0, 38], the
invariants Hl(Sj) hold for every Sj and Hl(v) holds for every u ∈ S. Let T = N(v) ∩W L

1

be the neighbors of v in W S
1 . Let δ(l) = maxj:Sj∩T 6= δ

(l)
j = 2 ·

√
D

(l)
j /Z

(l)
j = 2

√
β
l−1 ·√

3εi · log2(1/εi) ≤ (∆∗)−1/20/100.
Let t0 = |T | and tl = max((∆∗)−1/20tl−1, (∆∗)1/20) for 1 ≤ l ≤ 19. Suppose that the

number of uncolored vertices in T is at most tl−1 at the beginning of iteration l. By Lemma
13 and Obs. 14, after iteration l, the probability that the number of uncolored vertices is
more than tl is at most

(
tl−1
tl

)
(K · δ(l))tl ≤ exp(−Ω(tl)) = 1/poly(n). Therefore, by an union

bound on the events over the 19 iterations, w.h.p. the number of uncolored vertices in T is
at most tl ≤ |T | · (∆∗)19/20 ≤ (∆∗)1/20. J

By Lemma 15, since the maximum degree of the induced subgraph of layer 1 vertices is
at most (∆∗)1/20 and N · (∆∗)1/20 = O(n) (by Property (III)), a leader can collect the entire
topology and the palette of each vertex and compute a coloring of the W L

1 locally.

Coloring the Remaining Vertices – Simulation of ColorBidding Algorithm. It is therefore
remains to color two subsets of vertices: a subset U of vertices that were not colored by
the Dense Coloring Procedures and Vsp. Similarly to [5], we will apply the ColorBidding
Algorithm to first color all the vertices in U . By Lemma 10 in [5], after O(log∗∆) iterations,
the probability that a vertex remains uncolored is exp(−poly(∆∗)) = 1/poly(n). Then we
repeat the same procedure to color vertices in Vsp in O(log∗∆) rounds w.h.p.

The analysis is mostly straightforward from [5] and the main missing argument is in
showing that a single iteration of Alg. ColorBidding can be simulated in O(1) rounds in the
congested clique model. A simple calculation yields that each vertex selects Õ(∆∗)1/5 colors
in this palette. Hence, each vertex is a target and a sender of Õ(∆∗)4/5 = O(n) messages,
which fits the scheme of Lenzen’s routing. A more detailed description is in the full version.
The next observation follows from Lemma 2.3 in [16].

I Observation 16. The list-coloring algorithm of Theorem 5 holds up to minor modifications
even when every v ∈ G∗ has at least ∆∗ − (∆∗)3/5 available colors in its palette.

Putting it all together. It remains to show that the subgraph G∗ from Section 2 indeed
satisfies the conditions of Theorem 5 and Observation 16.

I Lemma 17. (1) The subgraph G∗ satisfies all the properties of Sec. 3. (2) Every v ∈ G∗
has at least max{deg(v,G∗) + 1,∆∗ − (∆∗)3/5} available colors in its palette after coloring
all its neighbors in G \G∗.

DISC 2018

39:16 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

Proof. Part (1) follows by plugging the bounds of Observation 4. Next consider Claim (2).
First, consider the case where deg(v,G) ≤ ∆ − (∆∗ −

√
5∆∗ · logn). In such case, even

after coloring all neighbors of v, it still has an access of ∆∗ −
√

5∆∗ · logn ≥ ∆∗ − (∆∗)3/5

colors in its palette after coloring G \ G∗ in the first phase. Now, consider a vertex v

with deg(v,G) ≥ ∆ − (∆∗ −
√

5∆∗ · logn). Using Chernoff bound, w.h.p., deg(v,G∗) >
(∆− (∆∗ −

√
∆∗ · 5 logn)) · p∗ −

√
5 logn∆p∗ ≥ ∆∗ − (∆∗)3/5. A vertex v ∈ G∗ has at least

deg(v,G∗) + 1 available colors, since all its neighbors in G∗ are uncolored at the beginning
of the second phase and initially it was given (∆ + 1) colors. J

References

1 Leonid Barenboim and Victor Khazanov. Distributed symmetry-breaking algorithms for
congested cliques. arXiv preprint arXiv:1802.07209, 2018.

2 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Brief announce-
ment: Semi-mapreduce meets congested clique. arXiv preprint arXiv:1802.10297, 2018.

3 Andrew Berns, James Hegeman, and Sriram V Pemmaraju. Super-fast distributed algo-
rithms for metric facility location. In International Colloquium on Automata, Languages,
and Programming, pages 428–439. Springer, 2012.

4 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local dis-
tributed algorithms under bandwidth restrictions. In 31st International Symposium on Dis-
tributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, pages 11:1–11:16,
2017.

5 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆ + 1)-coloring
algorithm? In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, pages 445–456. ACM, 2018.

6 Mohsen Ghaffari. Distributed MIS via all-to-all communication. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA,
July 25-27, 2017, pages 141–149, 2017.

7 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt
Rubinfeld. Improved massively parallel computation algorithms for mis, matching, and
vertex cover. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom, pages 129–138, 2018.

8 David G Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-coloring in
sublogarithmic rounds. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, pages 465–478. ACM, 2016.

9 James W Hegeman and Sriram V Pemmaraju. Lessons from the congested clique applied
to mapreduce. Theoretical Computer Science, 608:268–281, 2015.

10 James W Hegeman, Sriram V Pemmaraju, and Vivek B Sardeshmukh. Near-constant-time
distributed algorithms on a congested clique. In International Symposium on Distributed
Computing, pages 514–530. Springer, 2014.

11 Tomasz Jurdzinski and Krzysztof Nowicki. MST in O(1) rounds of congested clique. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2620–2632, 2018.

12 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower
and upper bounds. Journal of the ACM (JACM), 63(2):17, 2016.

13 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Proceedings of the 2013 ACM symposium on Principles of distributed computing, pages
42–50. ACM, 2013.

M. Parter and H.-H. Su 39:17

14 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning
tree construction in O(log logn) communication rounds. SIAM Journal on Computing,
35(1):120–131, 2005.

15 Merav Parter. (∆ + 1) coloring in the congested clique model. In 45th International Collo-
quium on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 160:1–160:14. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018.

16 Merav Parter. (∆ + 1) coloring in the congested clique model. arXiv preprint, 2018.
arXiv:1805.02457.

17 Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry
breaking. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pages 257–266. ACM, 2010.

A Missing Pseudocodes for the Subroutines of [5]

OneShotColoring. Each uncolored vertex v decided to participates independently with
probability p. Each participating vertex v selects a color c(v) from its palette Ψ(v)
uniformly at random. A participating vertex v successfully colors itself if c(v) is not
chosen by any vertex in N∗(v), where N∗(v) = {u ∈ N(v) | ID(u) < ID(v)}.

In the ColorBidding procedure each vertex v is associated with a parameter pv ≥ |Ψ(v)| −
outdeg(v) and p∗ = minv pv. Let C be a constant satisfying that

∑
u∈Nout(v) 1/pu ≤ 1/C.

ColorBidding. Each color c ∈ Ψ(v) is added to Sv with probability C/2pv independently.
If there exists a color c∗ ∈ Sv that is not selected by vertices in Nout(v), v colors itself
c∗. Nout(v) is the set of neighbors of v that have higher priority than v.

The CLP algorithm contains two versions of the dense coloring procedures. Version
1 is used to color the small blocks and version 2 is used to color the large blocks. All
vertices in S agree on a parameter Zex which is a lower bound on the number of excess
colors with respect to S. Each vertex v ∈ Sj is associated with a parameter Dv. Let
N ′(v) = {u ∈ N(v) | Du ≤ Dv or Du = Dv and ID(u) < ID(v)} to be the neighbors of
v with higher priority. If v ∈ Sj , the parameter Dv must satisfy |N ′(v) ∩ (S \ Sj)| ≤ Dv.
Define δv = Dv/Zex.

Procedure DenseColoringStep (Version 1)
1. Let π = {1, . . . , |Sj |} → Sj be the permutation that lists Sj in increasing order by D-

value, breaking ties by ID. For q from 1 to |Sj |, the vertex π(q) selects a color c(π(q))
uniformly at random from Ψ(π(q)) \ {c(π(q′)) | q′ < q and {π(q), π(q′)} ∈ E(G)}.

2. Each v ∈ Sj permanently colors itself c(v) if c(v) is not selected by any vertices in
N ′(v).

For version 2, for each vertex v ∈ S, define N ′′(v) to be the set of vertices u ∈ N(v)∩S such
that (i) δj′ > δj or (ii) δj′ = δj and ID(Sj) < ID(Sj′), where v ∈ Sj and u ∈ Sj′ .

DISC 2018

http://arxiv.org/abs/1805.02457

39:18 Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique Rounds

Procedure DenseColoringStep (Version 2)
1. Each cluster Sj selects (1− δj)|Sj | vertices u.a.r. and generates a permutation π of

those vertices u.a.r. The vertex π(q) selects a color c(π(q)) u.a.r. from

Ψ(π(q)) \ {c(π(q′)) | q′ < q and {π(q), π(q′)} ∈ E(G)}.

2. Each v ∈ Sj that has selected a color c(v) permanently colors itself c(v) if c(v) is
not selected by any vertices u ∈ N ′′(v).

Congested Clique Algorithms for Graph Spanners
Merav Parter
Weizmann IS, Rehovot, Israel
merav.parter@weizmann.ac.il

Eylon Yogev
Weizmann IS, Rehovot, Israel
eylon.yogev@weizmann.ac.il

Abstract
Graph spanners are sparse subgraphs that faithfully preserve the distances in the original graph
up to small stretch. Spanner have been studied extensively as they have a wide range of ap-
plications ranging from distance oracles, labeling schemes and routing to solving linear systems
and spectral sparsification. A k-spanner maintains pairwise distances up to multiplicative factor
of k. It is a folklore that for every n-vertex graph G, one can construct a (2k − 1) spanner with
O(n1+1/k) edges. In a distributed setting, such spanners can be constructed in the standard
CONGEST model using O(k2) rounds, when randomization is allowed.

In this work, we consider spanner constructions in the congested clique model, and show:
a randomized construction of a (2k−1)-spanner with Õ(n1+1/k) edges in O(log k) rounds.
The previous best algorithm runs in O(k) rounds;
a deterministic construction of a (2k−1)-spanner with Õ(n1+1/k) edges in O(log k+(log logn)3)
rounds. The previous best algorithm runs in O(k logn) rounds. This improvement is achieved
by a new derandomization theorem for hitting sets which might be of independent interest;
a deterministic construction of a O(k)-spanner with O(k · n1+1/k) edges in O(log k) rounds.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Graph Algorithms, Spanner, Congested Clique

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.40

Related Version A full version of the paper is available at [21], https://arxiv.org/abs/1805.
05404.

Acknowledgements We are grateful to Mohsen Ghaffari for earlier discussions on congested-
clique spanners via streaming ideas. We thank Roei Tell for pointing out [15].

1 Introduction & Related Work

Graph spanners introduced by Peleg and Schäffer [23] are fundamental graph structures,
more precisely, subgraphs of an input graph G, that faithfully preserve the distances in G up
to small multiplicative stretch. Spanners have a wide-range of distributed applications [22]
for routing [27], broadcasting, synchronizers [24], and shortest-path computations [3].

The common objective in distributed computation of spanners is to achieve the best-known
existential size-stretch trade-off within small number of rounds. It is a folklore that for every
graph G = (V,E), there exists a (2k − 1)-spanner H ⊆ G with O(n1+1/k) edges. Moreover,
this size-stretch tradeoff is believed to be optimal, by the girth conjecture of Erdős.

There are plentiful of distributed constructions of spanners for both the LOCAL and
the CONGEST models of distributed computing [8, 2, 9, 10, 11, 25, 12, 16]. The standard
setting is a synchronous message passing model where per round each node can send one

© Merav Parter and Eylon Yogev;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 40; pp. 40:1–40:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:merav.parter@weizmann.ac.il
mailto:eylon.yogev@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2018.40
https://arxiv.org/abs/1805.05404
https://arxiv.org/abs/1805.05404
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Congested Clique Algorithms for Graph Spanners

message to each of its neighbors. In the LOCAL model, the message size is unbounded, while
in the CONGEST model it is limited to O(logn) bits. One of the most notable distributed
randomized constructions of (2k − 1) spanners is by Baswana & Sen [2] which can be
implemented in O(k2) rounds in the CONGEST model.

Currently, there is an interesting gap between deterministic and randomized constructions
in the CONGEST model, or alternatively between the deterministic construction of spanners
in the LOCAL vs. the CONGEST model. Whereas the deterministic round complexity of
(2k − 1) spanners in the LOCAL model is O(k) due to [10], the best deterministic algorithm
in the CONGEST model takes O(2

√
logn·log logn) rounds [13].

We consider the congested clique model, introduced by Lotker et al. [20]. In this model,
in every round, each vertex can send O(logn) bits to each of the vertices in the graph. The
congested clique model has been receiving a lot of attention recently due to its relevance to
overlay networks and large scale distributed computation [17, 14, 4].

Deterministic local computation in the congested clique model. Censor et al. [7] initiated
the study of deterministic local algorithms in the congested clique model by means of
derandomization of randomized LOCAL algorithms. The approach of [7] can be summarized
as follows. The randomized complexity of the classical local problems is polylog(n) rounds
(in both LOCAL and CONGEST models). For these randomized algorithms, it is usually
sufficient that the random choices made by vertices are sampled from distributions with
bounded independence. Hence, any round of a randomized algorithm can be simulated by
giving all nodes a shared random seed of polylog(n) bits.

To completely derandomize such a round, nodes should compute (deterministically) a
seed which is at least as “good”1 as a random seed would be. This is achieved by estimating
their “local progress” when simulating the random choices using that seed. Combining the
techniques of conditional expectation, pessimistic estimators and bounded independence,
leads to a simple “voting”-like algorithm in which the bits of the seed are computed bit-by-bit.
The power of the congested clique is hence in providing some global leader that collects all
votes in 1 round and broadcasts the winning bit value. This approach led to deterministic
MIS in O(log ∆ logn) rounds and deterministic (2k − 1) spanners with Õ(n1+1/k) edges
in O(k logn) rounds, which also works for weighted graphs. Barenboim and Khazanov [1]
presented deterministic local algorithms as a function of the graph’s arboricity.

Deterministic spanners via derandomization of hitting sets. As observed by [26, 5, 13],
the derandomization of the Baswana-Sen algorithm boils down into a derandomization of
p-dominating sets or hitting-sets. It is a well known fact that given a collection of m sets S,
each containing at least ∆ elements coming from a universe of size n, one can construct a
hitting set Z of size O((n logm)/∆). A randomized construction of such a set is immediate
by picking each element into Z with probability p and applying Chernoff. A centralized
deterministic construction is also well known by the greedy approach (e.g., Lemma 2.7 of [5]).

In our setting we are interested in deterministic constructions of hitting sets in the
congested clique model. In this setting, each vertex v knows a subset Sv of size at least ∆,
that consists of vertices in the O(k)-neighborhood of v, and it is required to compute a small
set Z that hits (i.e., intersects) all subsets. Censor et al. [7] showed that the above mentioned
randomized construction of hitting sets still holds with g = O(logn)-wise independence,

1 The random seed is usually shown to provide a large progress in expectation. The deterministically
computed seed should provide a progress at least as large as the expected progress of a random seed.

M. Parter and E. Yogev 40:3

Table 1

Stretch #Rounds Type
Adaptation of Baswana & Sen [2] 2k − 1 O(k) Randomized

This Work 2k − 1 O(log k)
Censor-Hillel et al. [7] 2k − 1 O(k logn)

DeterministicThis Work 2k − 1 O(log k + (log logn)3)
This Work O(k) O(log k)

and presented an O(g)-round algorithm that computes a hitting set deterministically by
finding a good seed of O(g logn) bits. Applying this hitting-set algorithm for computing the
k levels of Baswana-Sen’s clustering yields a deterministic algorithm for (2k − 1) spanners
with O(k logn) rounds.

Our Results and Approach in a Nutshell

We provide improved randomized and deterministic constructions of graph spanners in the
congested clique model. Our randomized solution is based on an O(log k)-round algorithm
that computes the O(

√
n) nearest vertices in radius k/2 for every vertex v2. This induces a

partitioning of the graph into sparse and dense regions. The sparse region is solved “locally”
and the dense region simulates only two phases of Baswana-Sen, leading to a total round
complexity of O(log k). We show the following for n-vertex unweighted graphs.

I Theorem 1. There exists a randomized algorithm in the congested clique model that
constructs a (2k − 1)-spanner with Õ(k · n1+1/k) edges within O(log k) rounds w.h.p.

Our deterministic algorithms are based on constructions of hitting-sets with short seeds.
Using the pseudorandom generator of Gopalan et al. [15], we construct a hitting set with
seed length O(logn · (log logn)3) which yields the following for n-vertex unweighted graphs.

I Theorem 2. There exists a deterministic algorithm in the congested clique model that
constructs a (2k − 1)-spanner with Õ(k · n1+1/k) edges within O(log k + (log logn)3) rounds.

In addition, we also show that if one settles for stretch of O(k), then a hitting-set seed of
O(logn) bits is sufficient for this purpose, yielding the following construction:

I Theorem 3. There exists a deterministic algorithm in the congested clique model that
constructs a O(k)-spanner with O(k · n1+1/k) edges within O(log k) rounds.

A summary of our results are given in the Table 1. All results in the table are with
respect to spanners with Õ(n1+1/k) edges for an unweighted n-vertex graph G. All these
bounds are for the congested clique model3.

In what follows we provide some technical background and then present the high level
ideas of these construction.

2 To be more precise, the algorithm computes the O(n1/2−1/k) nearest vertices at distance at most
k/2− 1.

3 Baswana-Sen [2] does not mention the congested clique model, but the best randomized solution in the
congested clique is given by simulating [2].

DISC 2018

40:4 Congested Clique Algorithms for Graph Spanners

A brief exposition of Baswana-Sen [2]. The algorithm is based on constructing k levels of
clustering C0, . . . , Ck−1, where a clustering Ci = {Ci,1, . . . , } consists of vertex disjoint subsets
which we call clusters. Every cluster C ∈ Ci has a special node that we call cluster center.
For each C ∈ Ci, the spanner contains a depth-i tree rooted at its center and spanning all
cluster vertices. Starting with the trivial clustering C0 = {{v}, v ∈ V }, in each phase i,
the algorithm is given a clustering Ci and it computes a clustering Ci+1 by sampling the
cluster center of each cluster in Ci−1 with probability n−1/k. Vertices that are adjacent to
the sampled clusters join them and the remaining vertices become unclustered. For the latter,
the algorithm adds some of their edges to the spanner. This construction yields a (2k − 1)
spanner with O(kn1+1/k) edges in expectation.

It is easy to see that this algorithm can be simulated in the congested clique model using
O(k) rounds. As observed in [26, 16], the only randomized step in Baswana-Sen is picking
the cluster centers of the (i+ 1)th clustering. That is, given the n1−i/k cluster centers of Ci,
it is required to compute a subsample of n1−(i+1)/k clusters without having to add too many
edges to the spanner (due to unclustered vertices). This is exactly the hitting-set problem
where the neighboring clusters of each vertex are the sets that should be covered, and the
universe is the set of centers in Ci (ideas along these lines also appear in [26, 13]).

Our Approach. In the following, we provide the high level description of our construction
while omitting many careful details and technicalities. We note that some of these tech-
nicalities stems from the fact that we insist on achieving the (nearly) optimal spanners, as
commonly done in this area. Settling for an O(k)-spanner with Õ(kn1+1/k) edges could
considerably simplify the algorithm and its analysis. The high-level idea is simple and it is
based on dividing the graph G into sparse edges and dense edges, constructing a spanner
for each of these subgraphs using two different techniques. This is based on the following
intuition inspired by the Baswana-Sen algorithm.

In Baswana-Sen, the vertices that are clustered in level-i of the clustering are vertices
whose i-neighborhood is sufficiently dense, i.e., contains at least ni/k vertices. We then divide
the vertices into dense vertices Vdense and sparse vertices Vsparse, where Vdense consists of
vertices that have Ω(

√
n) vertices in their k/2-ball, and Vsparse consists of the remaining

vertices. This induces a partitioning of G edges into Esparse = (Vsparse × V) ∩ E(G) and
Edense that contains the remaining G-edges, i.e., edges whose both endpoints are dense.

Collecting Topology of Closed Neighborhood. One of the key-building blocks of our
construction is an O(log k)-round algorithm that computes for each vertex u the subgraph
Gk/2(u) induced on its closest O(

√
n) vertices within distance at most k/2 in G. Hence the

algorithm computes the entire k/2-neighborhoods for the sparse vertices. For the sake of
the following discussion, assume that the maximum degree in G is O(

√
n). Our algorithm

handles the general case as well. Intuitively, collecting the k/2-neighborhood can be done in
O(log k) rounds if the graph is sufficiently sparse by employing the graph exponentiation
idea of [19]. In this approach, in each phase the radius of the collected neighborhood is
doubled. Employing this technique in our setting gives rise to several issues. First, the input
graph G is not entirely sparse but rather consists of interleaving sparse and dense regions,
i.e., the k/2-neighborhood of a sparse vertex might contain dense vertices. For that purpose,
in phase i of our algorithm, each vertex (either sparse or dense) should obtain a subset of its
closest O(

√
n) vertices in its 2i neighborhood. Limiting the amount collected information is

important for being able to route this information via Lenzen’s algorithm [18] in O(1) rounds
in each phase.

M. Parter and E. Yogev 40:5

Another technicality concerns the fact that the relation “u is in the
√
n nearest vertices

to v” is not necessarily symmetric. This entitles a problem where a given vertex u is “close”4
to many vertices w, and u is not close to any of these vertices. In case where these w vertices
need to receive the information from u regarding its closest neighbors (i.e., where some
their close vertices are close to u), u ends up sending too many messages in a single phase.
To overcome this, we carefully set the growth of the radius of the collected neighborhood
in the graph exponentiation algorithm. We let only vertices that are close to each other
exchange their topology information and show that this is sufficient for computing the Gk/2(u)
subgraphs. This procedure is the basis for our constructions as explained next.

Handling the Sparse Region. The idea is to let every sparse vertex u locally simulate a
LOCAL spanner algorithm on its subgraph Gk/2(u). For that purpose, we show that the
deterministic spanner algorithm of [10] which takes k rounds in general, in fact requires
only k/2 rounds when running by a sparse vertex u. At the end of these k/2 rounds, for
each spanner edge (u, v), at least one of the endpoints know that this edge is in the spanner.
This implies that the subgraph Gk/2(u) contains all the information needed for u to locally
simulate the spanner algorithm. This seemingly harmless approach has a subtle defect.
Letting only the sparse vertices locally simulate a spanner algorithm might lead to a case
where a certain edge (u, v) is not added by a sparse vertex due to a decision made by a
dense vertex w in the local simulation u in Gk/2(u). Since w is a dense vertex it did not run
the algorithm locally and hence is not aware of adding these edges5. To overcome this, the
sparse vertices notify the dense vertices about their edges added in their local simulations.
We show how to do it in O(1) rounds.

Handling the Dense Region. In the following, we settle for stretch of (2k + 1) for ease of
description. By applying the topology collecting procedure, every dense vertex v computes
the set Nk/2(v) consisting of its closest Θ(

√
n) vertices within distance k/2. The main benefit

in computing these Nk/2(v) sets, is that it allows the dense vertices to “skip” over the first
k/2− 1 phases of Baswana-Sen, ready to apply the (k/2) phase.

As described earlier, picking the centers of the clusters can be done by computing a
hitting set for the set S = {Nk/2(v) | v ∈ Vdense}. It is easy to construct a random subset
Z ⊆ V of cardinality O(n1/2) that hits all these sets and to cluster all the dense vertices
around this Z set. This creates clusters of strong diameter k (in the spanner) that cover all
the dense vertices. The final step connects each pair of adjacent clusters by adding to the
spanner a single edge between each such pair, this adds |Z|2 = O(n) edges to the spanner.

Hitting Sets with Short Seed. The description above used a randomized solution to the
following hitting set problem: given n subsets of vertices S1, . . . , Sn, each |Si| ≥ ∆, find a
small set Z that intersects all Si sets. A simple randomized solution is to choose each node
v to be in Z with probability p = O(logn/∆). The standard approach for derandomization
is by using distributions with limited independence. Indeed, for the randomized solution to
hold, it is sufficient to sample the elements from a logn-wise distribution. However, sampling
an element with probability p = O(logn/∆) requires roughly logn random bits, leading to a
total seed length of (log2 n), which is too large for our purposes.

4 By close we mean being among the
√
n nearest vertices.

5 If we “add” one more round and simulate k/2 + 1 rounds, then there is no such problem as both
endpoints of a spanner edge know that the edge is in the spanner. However, we could only collect the
information up to radius k/2.

DISC 2018

40:6 Congested Clique Algorithms for Graph Spanners

Our key observation is that for any set Si the event that Si ∩ Z 6= ∅ can be expressed
by a read-once DNF formula. Thus, in order to get a short seed it suffices to have a
pseudoranom generator (PRG) that can “fool” read-once DNFs. A PRG is a function that
gets a short random seed and expands it to a long one which is indistinguishable from a
random seed of the same length for such a formula. Luckily, such PRGs with seed length
of O(logn · (log logn)3) exist due to Gopalan et al. [15], leading to deterministic hitting-set
algorithm with O((log logn)3) rounds.

Graph Notations. For a vertex v ∈ V (G), a subgraph G′ and an integer ` ∈ {1, . . . , n}, let
Γ`(v,G′) = {u | dist(u, v,G′) ≤ `}. When ` = 1, we omit it and simply write Γ(v,G′), also
when the subgraph G′ is clear from the context, we omit it and write Γ`(v). For a subset
V ′ ⊆ V , let G[V ′] be the induced subgraph of G on V ′. Given a disjoint subset of vertices
C,C ′, let E(C,C ′, G) = {(u, v) ∈ E(G) | u ∈ C and v ∈ C}. we say that C and C ′ are
adjacent if E(C,C ′, G) 6= ∅. Also, for v ∈ V , E(v, C,G) = {(u, v) ∈ E(G) | u ∈ C}. A
vertex u is incident to a subset C, if E(v, C,G) 6= ∅.

Road-Map. Section 2 presents algorithm NearestNeighbors to collect the topology of nearby
vertices. At the end of this section, using this collected topology, the graph is partitioned
into sparse and dense subgraphs. Section 3 describes the spanner construction for the sparse
regime. Section 4 considers the dense regime and is organized as follows. First, Section 4.1
describes a deterministic construction spanner given an hitting-set algorithm as a black box.
Then, Section 5 fills in this missing piece and shows deterministic constructions of small
hitting-sets via derandomization. Finally, Section 5.3 provides an alternative deterministic
construction, with improved runtime but larger stretch.

2 Collecting Topology of Nearby Neighborhood

For simplicity of presentation, assume that k is even, for k odd, we replace the term (k/2− 1)
with bk/2c. In addition, we assume k ≥ 6. Note that randomized constructions with O(k)
rounds are known and hence one benefits from an O(log k) algorithm for a non-constant k.
In the full version, we show the improved deterministic constructions for k ∈ {2, 3, 4, 5}.

2.1 Computing Nearest Vertices in the (k/2 − 1) Neighborhoods
In this subsection, we present an algorithm that computes the n1/2−1/k nearest vertices with
distance k/2− 1 for every vertex v. This provides the basis for the subsequent procedures
presented later on. Unfortunately, computing the nearest vertices of each vertex might
require many rounds when ∆ = ω(

√
n). In particular, using Lenzen’s routing6[18], in the

congested clique model, the vertices can learn their 2-neighborhoods in O(1) rounds, when
the maximum degree is bounded by O(

√
n). Consider a vertex v that is incident to a heavy

vertex u (of degree at least Ω(
√
n)). Clearly v has Ω(n1/2−1/k) vertices at distance 2, but it

is not clear how v can learn their identities. Although, v is capable of receiving O(n1/2−1/k)
messages, the heavy neighbor u might need to send n1/2−1/k messages to each of its neighbors,
thus Ω(n3/2−1/k) messages in total. To avoid this, we compute the n1/2−1/k nearest vertices
in a lighter subgraph Glight of G with maximum degree

√
n. The neighbors of heavy vertices

might not learn their 2-neighborhood and would be handled slightly differently in Section 4.

6 Lenzen’s routing can be viewed as a O(1)-round algorithm applied when each vertex v is a target and a
sender of O(n) messages.

M. Parter and E. Yogev 40:7

I Definition 4. A vertex v is heavy if deg(v,G) ≥
√
n, the set of heavy vertices is denoted

by Vheavy. Let Glight = G[V \ Vheavy].

I Definition 5. For each vertex u ∈ V (Glight) define Nk/2−1(u) to be the set of y(u) =
min{n1/2−1/k, |Γk/2−1(u,Glight)|} closest vertices at distance at most (k/2 − 1) from u

(breaking ties based on IDs) in Glight. Define Tk/2−1(u) to be the truncated BFS tree rooted
at u consisting of the u-v shortest path in Glight, for every v ∈ Nk/2−1(u).

I Lemma 6. There exists a deterministic algorithm NearestNeighbors that within O(log k)
rounds, computes the truncated BFS tree Tk/2−1(u) for each vertex u ∈ V (Glight). That is,
after running Alg. NearestNeighbors, each u ∈ V (Glight) knows the entire tree Tk/2−1(u).

Algorithm NearestNeighbors. For every integer j ≥ 0, we say that a vertex u is j-sparse
if |Γj(u,Glight)| ≤ n1/2−1/k, otherwise we say it is j-dense. The algorithm starts by having
each non-heavy vertex compute Γ2(u,Glight) in O(1) rounds using Lenzen’s algorithm. This
is the only place where it is important that we work on Glight rather than on G. Next, in
each phase i ≥ 1, vertex u collects information on vertices in its γ(i+ 1)-ball in Glight, where:

γ(1) = 2, and γ(i+ 1) = min{2γ(i)− 1, k/2}, for every i ∈ {1, . . . , dlog(k/2)e}.

At phase i ∈ {1, . . . , dlog(k/2)e} the algorithm maintains the invariant that a vertex u holds
a partial BFS tree T̂i(u) in Glight consisting of the vertices N̂i(u) := V (T̂i(u)), such that:
(I1) For an γ(i)-sparse vertex u, N̂i(u) = Γγ(i)(u).
(I2) For an γ(i)-dense vertex u, N̂i(u) consists of the closest n1/2−1/k vertices to u in Glight.
Note that in order to maintain the invariant in phase (i + 1), it is only required that in
phase i, the γ(i)-sparse vertices would collect the relevant information, as for the γ(i)-dense
vertices, it already holds that N̂i+1(u) = N̂i(u). In phase i, each vertex v (regardless of being
sparse or dense) sends its partial BFS tree T̂i(v) to each vertex u only if (1) u ∈ N̂i(v) and
(2) v ∈ N̂i(u). This condition can be easily checked in a single round, as every vertex u can
send a message to all the vertices in its set N̂i(u). Let N̂ ′i+1(u) =

⋃
v∈N̂i(u) | u∈N̂i(v) N̂i(v)

be the subset of all received N̂i sets at vertex u. It then uses the distances to N̂i(u), and the
received distances to the vertices in the N̂i sets, to compute the shortest-path distance to each
w ∈ N̂i(v) . As a result it computes the partial tree T̂i+1(u). The subset N̂i+1(u) ⊆ N̂ ′i+1(u)
consists of the (at most n1/2−1/k) vertices within distance γ(i+ 1) from u. This completes
the description of phase i. We next analyze the algorithm and show that each phase can be
implemented in O(1) rounds and that the invariant on the T̂i(u) trees is maintained.

Analysis. We first show that phase i can be implemented in O(1) rounds. Note that by
definition, |N̂i(u)| ≤

√
n for every u, and every i ≥ 1. Hence, by the condition of phase i,

each vertex sends O(n) messages and receives O(n) messages, which can be done in O(1)
rounds, using Lenzen’s routing algorithm [18].

We show that the invariant holds, by induction on i. Since all vertices first collected their
second neighborhood, the invariant holds7 for i = 1. Assume it holds up to the beginning of
phase i, and we now show that it holds in the beginning of phase i+ 1. If u is γ(i)-dense,
then u should not collect any further information in phase i and the assertion holds trivially.

7 This is the reason why we consider only Glight, as otherwise γ(1) = 0 and we would not have any
progress.

DISC 2018

40:8 Congested Clique Algorithms for Graph Spanners

𝑢

𝑤

𝛾 𝑖

≤ 𝛾 𝑖 − 1

𝑧

𝑧’

𝑃

Figure 1 Shown is a path P between u and w where z is the first dense vertex on the γ(i)-length
prefix of P . If u /∈ N̂i(z) then u,w ∈ N̂i(z′).

Consider an γ(i)-sparse vertex u and let Nγ(i+1)(u) be the target set of the n1/2−1/k

closest vertices at distance γ(i + 1) from u. We will fix w ∈ Nγ(i+1)(u), and show that
w ∈ N̂i+1(u) and in addition, u has computed the shortest path to w in Glight. Let P be
u-w shortest path in Glight. If all vertices z on the γ(i)-length prefix of P are γ(i)-sparse,
then the claim holds as z ∈ N̂i(u), u ∈ N̂i(z), and w ∈ N̂i(z′) where z′ in the last vertex
on the γ(i)-length prefix of P . Hence, by the induction assumption for the N̂i sets, u can
compute in phase i its shortest-path to w.

We next consider the remaining case where not all the vertices on the γ(i)-length path
are sparse. Let z ∈ N̂i(u) be the first γ(i)-dense vertex (closest to u) on the γ(i)-length
prefix of P . Observe that w ∈ N̂i(z). Otherwise, N̂i(z) contains n1/2−1/k vertices that are
closer to z than w, which implies that these vertices are also closer to u than w, and hence
w should not be in Nγ(i+1)(u) (as it is not among the closest n1/2−1/k vertices to u), leading
to contradiction. Thus, if also u ∈ N̂i(z), then z sends to u in phase i its shortest-path to
w. By the induction assumption for the N̂i(u), N̂i(z) sets, we have that u has the entire
shortest-path to w. It remains to consider the case where the first γ(i)-dense vertex on P , z,
does not contain u in its N̂i(z) set, hence it did not send its information on w to u in phase i.
Denote x = dist(u, z,Glight) and y = dist(z, w,Glight), thus x+ y = |P | ≤ 2γ(i)− 1. Since
w ∈ N̂i(z) but u /∈ N̂i(z), we have that y ≤ x and 2y ≤ |P |, which implies that y ≤ γ(i)− 1.
Let z′ be the vertex preceding z on the P path, hence z′ also appear on the γ(i)-length prefix
of P and z′ ∈ Ni(u). By definition, z′ is γ(i)-sparse and it also holds that u ∈ N̂i(z′). Since
dist(z′, w,Glight) = y + 1 ≤ γ(i), it holds that w ∈ N̂i(z′). Thus, u can compute the u-w
shortest-path using the z′-w shortest-path it has received from z′. For an illustration, see
Figure 1.

2.2 Dividing G into Sparse and Dense Regions
During the execution of NearestNeighbors every non-heavy vertex v computes the sets
Nk/2−1(v) and the corresponding tree Tk/2−1(v). The vertices are next divided into dense
vertices Vdense and sparse vertices Vsparse. Roughly speaking, the dense vertices are those
that have at least n1/2−1/k vertices at distance at most k/2 − 1 in G. Since the subsets
of nearest neighbors are computed in Glight rather than in G, this vertex division is more
delicate.

I Definition 7. A vertex v is dense if either (1) it is heavy, (2) a neighbor of a heavy vertex
or (3) |Γk/2−1(v,Glight)| > n1/2−1/k. Otherwise, a vertex is sparse. Let Vdense, Vsparse be
the dense (resp., sparse) vertices in V .

M. Parter and E. Yogev 40:9

I Observation 8. For k ≥ 6, for every dense vertex v it holds that |Γk/2−1(v,G)| ≥ n1/2−1/k.

The edges of G are partitioned into:

Edense = ((Vdense × Vdense) ∩ E(G)) , Esparse = (Vsparse × V) ∩ E(G)

Since all the neighbors of heavy vertices are dense, it also holds that Esparse = (Vsparse ×
(V \ Vheavy)) ∩ E(Glight).

Overview of the Spanner Constructions. The algorithm contains two subprocedures, the
first takes care of the sparse edge-set by constructing a spanner Hsparse ⊆ Gsparse and
the second takes care of the dense edge-set by constructing Hdense ⊆ G. Specifically,
these spanners will satisfy that for every e = (u, v) ∈ Gi, dist(u, v,Hi) ≤ 2k − 1 for
i ∈ {sparse, dense}. We note that the spanner Hdense ⊆ G rather than being contained
in Gdense. The reason is that the spanner Hdense might contain edges incident to sparse
vertices as will be shown later. The computation of the spanner Hsparse for the sparse edges,
Esparse, is done by letting each sparse vertex locally simulating a local spanner algorithm.
The computation of Hdense is based on applying two levels of clustering as in Baswana-Sen.
The selection of the cluster centers will be made by applying an hitting-set algorithm.

3 Handling the Sparse Subgraph

In the section, we construct the spanner Hsparse that will provide a bounded stretch for the
sparse edges. As we will see, the topology collected by applying Alg. NearestNeighbors allows
every sparse vertex to locally simulate a deterministic spanner algorithm in its collected
subgraph, and deciding which of its edges to add to the spanner based on this local view.

Recall that for every sparse vertex v it holds that |Γk/2−1(v,Glight)| ≤ n1/2−1/k where
Glight = G[V \ Vheavy] and that Esparse = (Vsparse × V) ∩ E(G). Let Gsparse(u) =
Gsparse[Γk/2−1(u,G)]. By applying Alg. NearestNeighbors, and letting sparse vertices sends
their edges to the sparse vertices in their (k/2− 1) neighborhoods in Glight, we have:

I Claim 9. There exists a O(log k)-round deterministic algorithm, that computes for each
sparse vertex v its subgraph Gsparse(v).

Our algorithm is based on an adaptation of the local algorithm of [10], which is shown to
satisfy the following in our context. The proof is in the full version [21].

I Lemma 10. There exists a deterministic algorithm LocalSpanner that constructs a (k − 3)
spanner in the LOCAL model, such that every sparse vertex u decides about its spanner edges
within k/2 − 1 rounds. In particular, u can simulate Alg. LocalSpanner locally on Gsparse
and for every edge (u, z) not added to the spanner Hsparse, there is a path of length at most
(k − 3) in Gsparse(u) ∩Hsparse.

A useful property of the algorithm8 by Derbel et al. (Algorithm 1 in [10]) is that if a vertex
v did not terminate after i rounds, then it must hold that |Γi(v,G)| ≥ ni/k. Thus in our
context, every sparse vertex terminates after at most k/2− 1 rounds9. We also show that for

8 This algorithm works only for unweighted graphs and hence our deterministic algorithms are for
unweighted graphs. Currently, there are no local deterministic algorithms for weighted graphs.

9 By definition we have that |Γk/2−1(u,Glight)| ≤ n1/2−1/k. Moreover, since Gsparse ⊆ Glight it also
holds that |Γk/2−1(u,Gsparse)| ≤ n1/2−1/k.

DISC 2018

40:10 Congested Clique Algorithms for Graph Spanners

simulating these (k/2− 1) rounds of Alg. LocalSpanner by u, it is sufficient for u to know
all the neighbors of its (k/2− 2) neighborhood in Gsparse and these edges are contained in
Gsparse(u). The analysis of Lemma 10 appears in the full version of the paper.

We next describe Alg. SpannerSparseRegion that computes Hsparse. Every vertex u

computes Gsparse(u) in O(log k) rounds and simulate Alg. LocalSpanner in that subgraph.
Let Hsparse(u) be the edges added to the spanner in the local simulation of Alg. LocalSpanner
in Gsparse(u). A sparse vertex u sends to each sparse vertex v ∈ Γk/2−1(u,Gsparse), the
set of all v-edges in Hsparse(u). Hence, each sparse vertex sends O(n) messages (at most√
n-edges to each of its at most

√
n vertices in Γk/2−1(v,Gsparse)). In a symmetric manner,

every vertex receives O(n) messages and this step can be done in O(1) rounds using Lenzen’s
algorithm. The final spanner is given by Hsparse =

⋃
u∈Vsparse

Hsparse(u). The stretch
argument is immediate by the correctness of Alg. LocalSpanner and the fact that all the
edges added to the spanner in the local simulations are indeed added to Hsparse. The size
argument is also immediate since we only add edges that Alg. LocalSpanner would have
added when running by the entire graph.

Algorithm SpannerSparseRegion (Code for a sparse vertex u)
1. Apply Alg. NearestNeighbors to compute Gsparse(u) for each sparse vertex u.
2. Locally simulate Alg. LocalSpanner in Gsparse(u) and let Hsparse(u) be the edges

added to the spanner in Gsparse(u).
3. Send the edges of Hsparse(u) to the corresponding sparse endpoints.
4. Add the received edges to the spanner Hsparse.

4 Handling the Dense Subgraph

In this section, we construct the spanner Hdense satisfying that dist(u, v,Hdense) ≤ 2k − 1
for every (u, v) ∈ Edense. In this case, since the (k/2− 1) neighborhood of each dense vertex
is large then there exists a small hitting that covers all these neighborhoods. The structure
of our arguments is as follows. First, we describe a deterministic construction of Hdense

using an hitting-set algorithm as a black box. This would immediately imply a randomized
spanner construction in O(log k)-rounds. Then in Section 5, we fill in this last missing piece
and show deterministic constructions of hitting sets.

Constructing spanner for the dense subgraph via hitting sets. Our goal is to cluster all
dense vertices into small number of low-depth clusters. This translates into the following
hitting-set problem defined in [5, 28, 13]: Given a subset V ′ ⊆ V and a set collection
S = {S(v) | v ∈ V ′} where each |S(v)| ≥ ∆ and

⋃
v∈V ′ S(v) ⊆ V ′′, compute a subset

Z ⊆ V ′′ of cardinality O(|V ′′| logn/∆) that intersects (i.e., hits) each subset S ∈ S. A
hitting-set of size O(|V ′′| logn/∆) is denoted as a small hitting-set.

We prove the next lemma by describing the construction of the spanner Hdense given
an algorithm A that computes small hitting sets. In Section 5, we complement this lemma
by describing several constructions of hitting sets. Let G = (V,E) be an n-vertex graph,
and let ∆ ∈ [n] be a parameter. Let V ′ be a subset of nodes such that each node u ∈ V ′
knows a set Su where |Su| ≥ ∆. Let S = {Su ⊂ V : u ∈ V ′} and suppose that V ′′ is such
that

⋃
Su ⊆ V ′′.

I Lemma 11. Given an algorithm A for computing a small hitting-set in rA rounds, there
exists a deterministic algorithm SpannerDenseRegion for constructing the (2k − 1) spanner
Hdense within O(log k + rA) rounds.

M. Parter and E. Yogev 40:11

The next definition is useful in our context.

`-depth Clustering. A cluster is a subset of vertices and a clustering C = {C1, . . . , C`}
consists of vertex disjoint subsets. For a positive integer `, a clustering C is a `-depth
clustering if for each cluster C ∈ C, the graph G contains a tree of depth at most ` rooted at
the cluster center of C and spanning all its vertices.

4.1 Description of Algorithm SpannerDenseRegion

The algorithm is based on clustering the dense vertices in two levels of clustering, in a
Baswana-Sen like manner. The first clustering C1 is an (k/2− 1)-depth clustering covering
all the dense vertices. The second clustering, C2 is an (k/2)-depth clustering that covers only
a subset of the dense vertices. For k odd, let C2 be equal to C1.

Defining the first level of clustering. Recall that by running Algorithm NearestNeighbors,
every non-heavy vertex v ∈ Glight knows the set Nk/2−1(v) containing its n1/2−1/k nearest
neighbors in Γk/2−1(v,Glight). For every heavy vertex v, let Nk/2−1(v) = Γ(v,G). Let Vnh
be the set of all non-heavy vertices that are neighbors of heavy vertices. By definition,
Vnh ⊆ Vdense. Note that for every dense vertex v ∈ Vdense \ Vnh, it holds that |Nk/2−1(v)| ≥
n1/2−1/k. The vertices u of Vnh are in Glight and hence have computed the set Nk/2−1(u),
however, there is in guarantee on the size of these sets.

To define the clustering of the dense vertices, Algorithm SpannerDenseRegion applies the
hitting-set algorithm A on the subsets S1 = {Nk/2−1(v) | v ∈ Vdense \Vnh} and the universe
V . Since every set in S1 has size at least ∆ := n1/2−1/k, the output of algorithm A is a
subset Z1 of cardinality O(n1/2+1/k) that hits all the sets in S1.

We will now construct the clusters in C1 with Z1 as the cluster centers. To make sure
that the clusters are vertex-disjoint and connected, we first compute the clustering in the
subgraph Glight, and then cluster the remaining dense vertices that are not yet clustered.
For every v ∈ Glight (either dense or sparse), we say that v is clustered if Z1 ∩Nk/2−1(v) 6= ∅.
In particular, every dense vertex v for which |Γk/2−1(v,Glight)| ≥ n1/2−1/k is clustered (the
neighbors of heavy vertices are either clustered or not). For every clustered vertex v ∈ Glight
(i.e., even sparse ones), let c1(v), denoted hereafter the cluster center of v, be the closest
vertex to v in Z1 ∩Nk/2−1(v), breaking shortest-path ties based on IDs. Since v knows the
entire tree Tk/2−1(v), it knows the distance to all the vertices in Nk/2−1(v) and in addition, it
can compute its next-hop p(v) on the v-c1(v) shortest path in Glight. Each clustered vertex
v ∈ Glight, adds the edge (v, p(v)) to the spanner Hdense. It is easy to see that this defines
a (k/2− 1)-depth clustering in Glight that covers all dense vertices in Glight. In particular,
each cluster C has in the spanner a tree of depth at most (k/2− 1) that spans all the vertices
in C. Note that in order for the clusters C to be connected in Hdense, it was crucial that
all vertices in Glight compute their cluster centers in Nk/2−1(v), if such exists, and not only
the dense vertices. We next turn to cluster the remaining dense vertices. For every heavy
vertex v, let c1(v) be its closest vertex in Γ(v,G)∩Z1. It then adds the edge (v, c1(v)) to the
spanner Hdense and broadcasts its cluster center c1(v) to all its neighbors. Every neighbor u
of a heavy vertex v that is not yet clustered, joins the cluster of c1(v) and adds the edge
(u, v) to the spanner. Overall, the clusters of C1 centered at the subset Z1 cover all the dense
vertices. In addition, all the vertices in a cluster C are connected in Hdense by a tree of
depth k/2− 1. Formally, C1 = {C1(s), | s ∈ Z1} where C1(s) = {v | c1(v) = s}.

DISC 2018

40:12 Congested Clique Algorithms for Graph Spanners

Defining the second level of clustering. Every vertex v that is clustered in C1 broadcasts
its cluster center c1(v) to all its neighbors. This allows every dense vertex v to compute
the subset Nk/2(v) = {s ∈ Z1 | E(v, C1(s), G) 6= ∅} consisting of the centers of its
adjacent clusters in C1. Consider two cases depending on the cardinality of Nk/2(v). Every
vertex v with |Nk/2(v)| ≤ n1/k logn, adds to the spanner Hdense an arbitrary edge in
E(v, C1(s), G) for every s ∈ Nk/2(v). It remains to handle the remaining vertices V ′dense =
{v ∈ Vdense | |Nk/2(v)| > n1/k logn}. These vertices would be clustered in the second level
of clustering C2. To compute the centers of the clusters in C2, the algorithm applies the hitting-
set algorithm A on the collection of subsets S2 = {Nk/2(v) | v ∈ V ′dense} with ∆ = n1/k logn
and V ′′ = Z1. The output of A is a subset Z2 of cardinality O(|Z1| logn/∆) = O(

√
n logn)

that hits all the subsets in S2. The 2nd cluster-center c2(v) of a vertex v ∈ V ′dense is chosen to
be an arbitrary s ∈ Nk/2(v) ∩ Z2. The vertex v then adds some edge (v, u) ∈ E(v, C1(s), G)
to the spanner Hdense. Hence, the trees spanning rooted at s ∈ Z2 are now extended by one
additional layer resulting in a (k/2)-depth clustering.

Connecting adjacent clusters. Finally, the algorithm adds to the spanner Hdense a single
edge between each pairs of adjacent clusters C,C ′ ∈ C1×C2, this can be done in O(1) rounds
as follows. Each vertex broadcasts its cluster ID in C2. Every vertex v ∈ C for every cluster
C ∈ C1 picks one incident edge to each cluster C ′ ∈ C2 (if such exists) and sends this edge to
the corresponding center of the cluster of C ′ in C2. Since a vertex sends at most one message
for each cluster center in C2, this can be done in O(1) rounds. Each cluster center r of the
cluster C ′ in C2 picks one representative edge among the edges it has received for each cluster
C ∈ C1 and sends a notification about the selected edge to the endpoint of the edge in C.
Since the cluster center sends at most one edge for every vertex this take one round. Finally,
the vertices in the clusters C ∈ C1 add the notified edges (that they received from the centers
of C2) to the spanner. This completes the description of the algorithm. We now complete
the proof of Lemma 11.

Proof. Recall that we assume k ≥ 6 and thus |Γk/2−1(v)| ≥ n1/2−1/k, for every v ∈ Vdense.
We first show that for every (u, v) ∈ Edense, dist(u, v,Hdense) ≤ 2k − 1. The clustering
C1 covers all the dense vertices. If u and v belong to the same cluster C in C1, the claim
follows as Hdense contains an (k/2 − 1)-depth tree that spans all the vertices in C, thus
dist(u, v,Hdense) ≤ k − 2. From now on assume that c1(u) 6= c1(v). We first consider the
case that for both of the endpoints it holds that |Nk/2(v)|, |Nk/2(u)| ≤ n1/k logn. In such a
case, since v is adjacent to the cluster C1 of u, the algorithm adds to Hdense at least one
edge in E(v, C1, G), let it be (x, v). We have that dist(v, u,Hdense) ≤ dist(v, x,Hdense) +
dist(x, u,Hdense) ≤ k − 1 where the last inequality holds as x and u belong to the same
cluster C1 in C1. Finally, it remains to consider the case where for at least one endpoint, say v,
it holds that |Nk/2(v)| > n1/k logn. In such a case, v is clustered in C2. Let C1 be the cluster
of u in C1 and let C2 be the cluster of v in C2. Since C1 and C2 are adjacent, the algorithm
adds an edge in E(C1, C2, G), let it be (x, y) where x, u ∈ C1 and y, v ∈ C2. We have that
dist(u, v,Hdense) ≤ dist(u, x,Hdense) + dist(x, y,Hdense) + dist(y, v,Hdense) ≤ 2k− 1, where
the last inequality holds as u, x belong to the same (k/2−1)-depth cluster C1, and v, y belong
to the same (k/2)-depth cluster C2. Finally, we bound the size of Hdense. Since the clusters
in C1, C2 are vertex-disjoint, the trees spanning these clusters contain O(n) edges. For each
unclustered vertex in C2, we add O(n1/k logn) edges. By the properties of the hitting-set
algorithm A it holds that |Z1| = O(n1/2−1/k · logn) and |Z2| = O(n1/2 · logn). Thus adding
one edge between each pair of clusters adds |Z1| · |Z2| = O(n1+1/k · log2 n) edges. J

M. Parter and E. Yogev 40:13

Putting All Together: Randomized spanners in O(log k) rounds. We now complete the
proof of Theorem 1. For an edge (u, v) ∈ Esparse, the correctness follows by the correctness
of Alg. LocalSpanner. We next consider the dense case. Let A be the algorithm where each
v ∈ V ′ is added into Z with probability of log /∆. By Chernoff bound, we get that w.h.p.
|Z| = O(|V ′| logn/∆) and Z ∩ Si 6= ∅ for every Si ∈ S. The correctness follows by applying
Lemma 11. J

Algorithm SpannerDenseRegion
1. Compute an (k/2− 1) clustering C1 = {C(s) | s ∈ Z1} centered at subset Z1.
2. For every v ∈ Vdense, let Nk/2(v) = {s ∈ Z1 | E(v, C1(s), G) 6= ∅}.
3. For every v ∈ Vdense with |Nk/2(v)| ≤ n1/k logn, add to the spanner one edge in

E(v, C(s), G) for every s ∈ Nk/2(v).
4. Compute an (k/2) clustering C2 centered at Z2 to cover the remaining dense vertices.
5. Connect (in the spanner) each pair of adjacent clusters C,C ′ ∈ C1 × C2 .

5 Derandomization of Hitting Sets

5.1 Hitting Sets with Short Seeds
The main technical part of the deterministic construction is to completely derandomize the
randomized hitting-set algorithm using short seeds. We show two hitting-set constructions
with different tradeoffs. The first construction is based on pseudorandom generators (PRG)
for DNF formulas. The PRG will have a seed of length O(logn(log logn)3). This would
serve the basis for the construction of Theorem 2. The second hitting-set construction is
based on O(1)-wise independence, it uses a small seed of length O(logn) but yields a larger
hitting-set. This would be the basis for the construction of Theorem 3.

We begin by setting up some notation. For a set S we denote by x ∼ S a uniform
sampling from S. For a function PRG and an index i, let PRG(s)i the ith bit of PRG(s).

I Definition 12 (Pseudorandom Generators). A generator PRG : {0, 1}r → {0, 1}n is an
ε-pseudorandom generator (PRG) for a class C of Boolean functions if for every f ∈ C:

| E
x∼{0,1}n

[f(x)]− E
s∼{0,1}r

[f(PRG(s))] | ≤ ε.

We refer to r as the seed-length of the generator and say PRG is explicit if there is an efficient
algorithm to compute PRG that runs in time poly(n, 1/ε).

I Theorem 13. For every ε = ε(n) > 0, there exists an explicit pseudoranom generator,
PRG : {0, 1}r → {0, 1}n that fools all read-once DNFs on n-variables with error at most ε
and seed-length r = O((log(n/ε)) · (log log(n/ε))3).

Using the notation above, and Theorem 13 we formulate and prove the following Lemma:

I Lemma 14. Let S be subset of [n] where |S| ≥ ∆ for some parameter ∆ ≤ n and let c
be any constant. Then, there exists a family of hash functions H = {h : [n]→ {0, 1}} such
that choosing a random function from H takes r = O(logn · (log logn)3) random bits and for
Zh = {u ∈ [n] : h(u) = 0} it holds that:
(1) Prh

[
|Zh| ≤ Õ(n/∆)

]
≥ 2/3, and (2) Prh[S ∩ Zh 6= ∅] ≥ 1− 1/nc.

Proof. We first describe the construction of H. Let p = c′ logn/∆ for some large constant
c′ (will be set later), and let ` = blog 1/pc. Let PRG : {0, 1}r → {0, 1}n` be the PRG
constructed in Theorem 13 for r = O(logn` · (log logn`)3) = O(logn · (log logn)3) and

DISC 2018

40:14 Congested Clique Algorithms for Graph Spanners

for ε = 1/n10c. For a string s of length r we define the hash function hs(i) as follows.
First, it computes y = PRG(s). Then, it interprets y as n blocks where each block is of
length ` bits, and outputs 1 if and only if all the bits of the ith block are 1. Formally,
we define hs(i) =

∧i`
j=(i−1)`+1 PRG(s)j . We show that properties 1 and 2 hold for the set

Zhs
where hs ∈ H. We begin with property 1. For i ∈ [n] let Xi = hs(i) be a random

variable where s ∼ {0, 1}r. Moreover, let X =
∑n
i=1 Xi. Using this notation we have that

|Zhs
| = X. Thus, to show property 1, we need to show that Prs∼{0,1}r [X ≤ Õ(n/∆)] ≥ 2/3.

Let fi : {0, 1}n` → {0, 1} be a function that outputs 1 if the ith block is all 1’s. That is,
fi(y) =

∧i`
j=(i−1)`+1 yj . Since fi is a read-once DNF formula we have that∣∣∣∣ E

y∼{0,1}n`
[fi(y)]− E

s∼{0,1}r
[fi(PRG(s))]

∣∣∣∣ ≤ ε.
Therefore, it follows that

E[X] =
n∑
i=1

E[Xi] =
n∑
i=1

E
s∼{0,1}r

[fi(PRG(s))] ≤

n∑
i=1

(E
y∼{0,1}n`

[fi(y)] + ε) = n(2−` + ε) = Õ
(n

∆

)
.

Then, by Markov’s inequality we get that Prs∼{0,1}r [X > 3 E[X]] ≤ 1/3 and thus

Pr
s∼{0,1}r

[
X ≤ Õ(n/∆)

]
≥ 1− Pr

s∼{0,1}r
[X > 3 E[X]] ≥ 2/3.

We turn to show property 2. Let S be any set of size at least ∆ and let g : {0, 1}n` → {0, 1}
be an indicator function for the event that the set S is covered. That is,

g(y) =
∨
i∈S

i∧̀
j=(i−1)`+1

yj .

Since g is a read-once DNF formula, and thus we have that∣∣∣∣ E
y∼{0,1}n`

[g(y)]− E
s∼{0,1}r

[g(PRG(s))]
∣∣∣∣ ≤ ε.

Let Yi =
∧i`
j=(i−1)`+1 yj , and let Y =

∑
i∈S Yi. Then E[Y] =

∑
i∈S E[Yi] ≥ ∆2−` ≥ ∆p =

c′ logn. Thus, by a Chernoff bound we have that Pr[Y = 0] ≤ Pr[E[Y]−Y ≥ c′ logn] ≤ 1/n2c,
for a large enough constant c′ (that depends on c). Together, we get that
Prs[S ∩ Zhs

6= ∅] = Es∼{0,1}r [g(PRG(s))] ≥ Ey∼{0,1}n` [g(y)]− ε = Pry∼{0,1}n` [Y ≥ 1]− ε ≥
1− 1/nc. J

We turn to show the second construction of dominating sets with short seed. In this
construction the seed length of shorter, but the set is larger. By a direct application of
Lemma 2.2 in [6], we get the following lemma which becomes useful for showing Theorem 3.

I Lemma 15. Let S be a subset of [n] where |S| ≥ ∆ for some parameter ∆ ≤ n and let
c be any constant. Then, there exists a family of hash functions H = {h : [n] → {0, 1}}
such that choosing a random function from H takes r = O(logn) random bits and for
Zh = {u ∈ [n] : h(u) = 0} it holds that: (1) Prh

[
|Zh| ≤ O(n17/16/

√
∆)
]
≥ 2/3, and (2)

Prh[S ∩ Zh 6= ∅] ≥ 1− 1/nc.

M. Parter and E. Yogev 40:15

5.2 Deterministic Hitting Sets in the Congested Clique
We next present a deterministic construction of hitting sets by means of derandomization.
The round complexity of the algorithm depends on the number of random bits used by the
randomized algorithms.

I Theorem 16. Let G = (V,E) be an n-vertex graph, let V ′ ⊂ V , let S = {Su ⊂ V : u ∈ V ′}
be a set of subsets such that each node u ∈ V ′ knows the set Su and |Su| ≥ ∆, and let c be a
constant. Let H = {h : [n]→ {0, 1}} be a family of hash functions such that choosing a ran-
dom function from H takes gA(n,∆) random bits and for Zh = {u ∈ [n] : h(u) = 0} it holds
that: (1) Pr[|Zh| ≤ fA(n,∆)] ≥ 2/3 and (2) for any u ∈ V ′: Pr[Su ∩ Zh 6= ∅] ≥ 1− 1/nc.
Then, there exists a deterministic algorithm Adet that constructs a hitting set of size
O(fA(n,∆)) in O(gA(n,∆)/ logn) rounds.

Proof. Our goal is to completely derandomize the process of finding Zh by using the method
of conditional expectation. We follow the scheme of [7] to achieve this, and define two bad
events that can occur when using a random seed of size g = gA(n,∆). Let A be the event
where the hitting set Zh consists of more than fA(n,∆) vertices. Let B be the event that
there exists an u ∈ V ′ such that Su ∩ Zh = ∅. Let XA, XB be the corresponding indicator
random variables for the events, and let X = XA +XB .

Since a random seed with gA(n,∆) bits avoids both of these events with high probability,
we have that E[X] < 1 where the expectation is taken over a seed of length g bits. Thus,
we can use the method of conditional expectations in order to get an assignment to our
random coins such that no bad event occurs, i.e., X = 0. In each step of the method, we run
a distributed protocol to compute the conditional expectation. Actually, we will compute a
pessimistic estimator for the conditional expectation.

Letting Xu be indicator random variable for the event that Su is not hit by Zh, we can
write our expectation as follows: E[X] = E[XA] + E[XB] = Pr[XA = 1] + Pr[XB = 1] =
Pr[XA = 1]+Pr[∨uXu = 1] Suppose we have a partial assignment to the seed, denoted by Y .
Our goal is to compute the conditional expectation E[X|Y], which translates to computing
Pr[XA = 1|Y] and Pr[∨uXu = 1|Y]. Notice that computing Pr[XA = 1|Y] is simple since it
depends only on Y (and not on the graph or the subsets S). The difficult part is computing
Pr[∨uXu = 1|Y]. Instead, we use a pessimistic estimator of E[X] which avoids this difficult
computation. Specifically, we define the estimator: Ψ = XA +

∑
u∈V ′ Xu. Recall that for any

u ∈ V ′ for a random g-bit length seed, it holds that Pr[Xu = 1] ≤ 1/nc and thus by applying
a union bound over all n sets, it also holds that E[Ψ] = Pr[XA = 1] +

∑
u Pr[Xu = 1] < 1.

We describe how to compute the desired seed using the method of conditional expectation.
We will reveal the assignment of the seed in chunks of ` = blognc bits. In particular, we
show how to compute the assignment of ` bits in the seed in O(1) rounds. Since the seed has
g many bits, this will yield an O(g/ logn) round algorithm.

Consider the ith chunk of the seed Yi = (y1, . . . , y`) and assume that the assignment for
the first i−1 chunks Y1 . . . , Yi−1 have been computed. For each of the n possible assignments
to Yi, we assign a node v that receives the conditional probability values Pr[Xu = 1|Y1, . . . , Yi]
from all nodes u ∈ V ′. Notice that a node u can compute the conditional probability values
Pr[Xu = 1|Y1, . . . , Yi], since u knows the IDs of the vertices in Su and thus has all the
information for this computation. The node v then sums up all these values and sends
them to a global leader w. The leader w can easily compute the conditional probability
Pr[XA = 1|Y], and thus using the values it received from all the nodes it can compute E[X|Y]
for of the possible n assignments to Yi. Finally, w selects the assignment (y∗1 , . . . , y∗`) that
minimizes the pessimistic estimator Ψ and broadcasts it to all nodes in the graph. After
O(g/ logn) rounds Y has been completely fixed such that X < 1. Since XA and XB get
binary values, it must be the case that XA = XB = 0, and a hitting set has been found. J

DISC 2018

40:16 Congested Clique Algorithms for Graph Spanners

Combining Lemma 14 and Lemma 15 with Theorem 16, yields:

I Corollary 17. Let G = (V,E) be an n-vertex graph, let V ′, V ′′ ⊂ V , let S = {Su ⊂ V : u ∈
V ′} be a set of subsets such that each node u ∈ V ′ knows the set Su, such that |Su| ≥ ∆ and⋃
Su ⊆ V ′′. Then, there exists deterministic algorithms Adet,A′det in the congested clique

model that construct a hitting set Z for S such that: (1) |Z| = Õ(|V ′′|/∆) and Adet runs in
O((log logn)3) rounds. (2) |Z| = O(|V ′′|17/16/

√
∆) and A′det runs in O(1) rounds.

Deterministic construction in O(log k + O((log log n)3)) Rounds. Theorem 2 follows
by plugging Corollary 17(1) into Lemma 11.

5.3 Deterministic O(k)-Spanners in O(log k) Rounds

In this subsection, we provide a proof sketch of Theorem 3. The complete proof appears in
the full version. Let k ≥ 10. According to Section 3, it remains to consider the construction
of Hdense for the dense edge set Edense. Recall that for every dense vertex v, it holds that
|Γk/2(v,G)| ≥ n1/2−1/k. Similarly to the proof of Lemma 11, we construct a (k/2− 1) domin-
ating set Z for the dense vertices. However, to achieve the desired round complexity, we use
the O(1)-round hitting set construction of Corollary 17(2) with parameters of ∆ = n1/2−1/k

and V ′ = V . The output is then a hitting set Z of cardinality O(n13/16+1/(2k)) that hits all
the (k/2 − 1) neighborhoods of the dense vertices. Then, as in Alg. SpannerDenseRegion,
we compute a (k/2 − 1)-depth clustering C1 centered at Z. The key difference to Alg.
SpannerDenseRegion is that |Z| is too large for allowing us to add an edge between each pair
of adjacent clusters, as this would result in a spanner of size O(|Z|2). Instead, we essentially
contract the clusters of C1 (i.e., contracting the intra-cluster edges) and construct the spanner
recursively in the resulting contracted graph G′′. Every contracted node in G′′ corresponds
to a cluster with a small strong diameter in the spanner. Specifically, G′′ is decomposed into
sparse and dense regions. Handling the sparse part is done deterministically by applying
Alg. SpannerSparseRegion. To handle the dense case, we apply the hitting-set algorithm
of Corollary 17(2) to cluster the dense nodes (which are in fact, contracted nodes) into
|V (G′′)|/

√
∆ clusters for ∆ = n1/2−1/k. After O(1) repetitions of the above, we will be left

with a contracted graph with o(
√
n) vertices. At this point, we connect each pair of clusters

(corresponding to these contracted nodes) in the spanner.
A naïve implementation of such an approach would yield a spanner with stretch kO(1),

as the diameter of the clusters induced by the contracted nodes is increased by a k-factor
in each of the phases. To avoid this blow-up in the stretch, we enjoy the fact that already
after the first phase, the contracted graph G′ has O(n13/16+o(1)) nodes and hence we can
allow to compute a (2k′ − 1) spanner for G′ with k′ = 8 as this would add O(n) edges to the
final spanner. Since in each of the phases (except for the first one) the stretch parameter is
constant, the stretch will be bounded by O(k), and the number of edges by O(k · n1+1/k).

References

1 Leonid Barenboim and Victor Khazanov. Distributed symmetry-breaking algorithms for
congested cliques. arXiv preprint arXiv:1802.07209, 2018.

2 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm
for computing sparse spanners in weighted graphs. Random Structures and Algorithms,
30(4):532–563, 2007.

M. Parter and E. Yogev 40:17

3 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In DISC, 2017.

4 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Brief announce-
ment: Semi-mapreduce meets congested clique. arXiv preprint arXiv:1802.10297, 2018.

5 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P
Woodruff. Transitive-closure spanners. SIAM Journal on Computing, 41(6):1380–1425,
2012.

6 L Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins: Smaller hash
families and faster evaluation. SIAM Journal on Computing, 42(3):1030–1050, 2013.

7 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local dis-
tributed algorithms under bandwidth restrictions. In 31 International Symposium on Dis-
tributed Computing, 2017.

8 Bilel Derbel and Cyril Gavoille. Fast deterministic distributed algorithms for sparse span-
ners. Theoretical Computer Science, 2008.

9 Bilel Derbel, Cyril Gavoille, and David Peleg. Deterministic distributed construction of
linear stretch spanners in polylogarithmic time. In DISC, pages 179–192. Springer, 2007.

10 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of distrib-
uted sparse spanner construction. In PODC, pages 273–282, 2008.

11 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. Local computation of
nearly additive spanners. In DISC, 2009.

12 Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Sublinear fully distributed partition
with applications. Theory of Computing Systems, 47(2):368–404, 2010.

13 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set.
Manuescript, 2018.

14 Mohsen Ghaffari, Themis Gouleakis, Slobodan Mitrović, and Ronitt Rubinfeld. Improved
massively parallel computation algorithms for mis, matching, and vertex cover. PODC,
2018.

15 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil P. Vadhan.
Better pseudorandom generators from milder pseudorandom restrictions. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 120–129, 2012.

16 Ofer Grossman and Merav Parter. Improved deterministic distributed construction of
spanners. In DISC, 2017.

17 James W Hegeman and Sriram V Pemmaraju. Lessons from the congested clique applied
to mapreduce. Theoretical Computer Science, 608:268–281, 2015.

18 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages 42–50, 2013.

19 Christoph Lenzen and Roger Wattenhofer. Brief announcement: exponential speed-up of
local algorithms using non-local communication. In Proceedings of the 29th Annual ACM
Symposium on Principles of Distributed Computing, PODC 2010, Zurich, Switzerland, July
25-28, 2010, pages 295–296, 2010.

20 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in
O(log logn) communication rounds. In the Proceedings of the Symposium on Parallel Al-
gorithms and Architectures, pages 94–100. ACM, 2003.

21 Merav Parter and Eylon Yogev. Congested clique algorithms for graph spanners. arXiv
preprint, 2018. arXiv:1805.05404.

22 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
23 David Peleg and Alejandro A Schäffer. Graph spanners. Journal of graph theory, 13(1):99–

116, 1989.

DISC 2018

http://arxiv.org/abs/1805.05404

40:18 Congested Clique Algorithms for Graph Spanners

24 David Peleg and Jeffrey D Ullman. An optimal synchronizer for the hypercube. SIAM
Journal on computing, 18(4):740–747, 1989.

25 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Dis-
tributed Computing, 22(3):147–166, 2010.

26 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In International Colloquium on Automata, Languages, and
Programming, pages 261–272. Springer, 2005.

27 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures, pages 1–10. ACM, 2001.

28 Virginia Vassilevska Williams. Graph algorithms – Fall 2016, MIT, lecture notes 5, 2016.
URL: http://theory.stanford.edu/~virgi/cs267/lecture5.pdf.

http://theory.stanford.edu/~virgi/cs267/lecture5.pdf

Lattice Agreement in Message Passing Systems

Xiong Zheng
University of Texas at Austin, Austin, TX 78712, USA
zhengxiongtym@utexas.edu

Changyong Hu
University of Texas at Austin, Austin, TX 78712, USA
colinhu9@utexas.edu

Vijay K. Garg
University of Texas at Austin, Austin, TX 78712, USA
garg@ece.utexas.edu

Abstract
This paper studies the lattice agreement problem and the generalized lattice agreement problem
in distributed message passing systems. In the lattice agreement problem, given input values from
a lattice, processes have to non-trivially decide output values that lie on a chain. We consider the
lattice agreement problem in both synchronous and asynchronous systems. For synchronous lat-
tice agreement, we present two algorithms which run in log(f) and min{O(log2h(L)), O(log2f)}
rounds, respectively, where h(L) denotes the height of the input sublattice L, f < n is the num-
ber of crash failures the system can tolerate, and n is the number of processes in the system.
These algorithms have significant better round complexity than previously known algorithms.
The algorithm by Attiya et al. [Attiya et al. DISC, 1995] takes log(n) synchronous rounds, and
the algorithm by Mavronicolasa [Mavronicolasa, 2018] takes min{O(h(L)), O(sqrt(f))} rounds.
For asynchronous lattice agreement, we propose an algorithm which has time complexity of
2 ∗min{h(L), f + 1} message delays which improves on the previously known time complexity of
O(n) message delays.

The generalized lattice agreement problem defined by Faleiro et al in [Faleiro et al. PODC,
2012] is a generalization of the lattice agreement problem where it is applied for the replicated
state machine. We propose an algorithm which guarantees liveness when a majority of the
processes are correct in asynchronous systems. Our algorithm requires min{O(h(L)), O(f)}
units of time in the worst case which is better than O(n) units of time required by the algorithm
in [Faleiro et al. PODC, 2012].

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Lattice Agreement, Replicated State Machine, Consensus

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.41

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.
11557.

Funding Supported by NSF CNS-1812349, NSF CNS-1563544, NSF CNS-1346245, Huawei Inc.,
and the Cullen Trust for Higher Education Endowed Professorship.

Acknowledgements We want to thank John Kaippallimalil for providing some useful application
cases for CRDT and generalized lattice agreement.

© Xiong Zheng, Changyong Hu, and Vijay K. Garg;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 41; pp. 41:1–41:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhengxiongtym@utexas.edu
mailto:colinhu9@utexas.edu
mailto:garg@ece.utexas.edu
https://doi.org/10.4230/LIPIcs.DISC.2018.41
https://arxiv.org/abs/1807.11557
https://arxiv.org/abs/1807.11557
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Lattice Agreement in Message Passing Systems

1 Introduction

Lattice agreement, introduced in [2] to solve the atomic snapshot problem [1] in shared
memory, is an important decision problem in distributed systems. In this problem, processes
start with input values from a lattice and need to decide values which are comparable to
each other. Lattice agreement problem is a weaker decision problem than consensus. In
synchronous systems, consensus cannot be solved in fewer than f + 1 rounds [6], but lattice
agreement can be solved in log f rounds (shown by an algorithm we propose). In asynchronous
systems, the consensus problem cannot be solved even with one failure [8], whereas the lattice
agreement problem can be solved in asynchronous systems when a majority of processes is
correct [7].

In synchronous message passing systems, a log n rounds recursive algorithm based on
“branch-and-bound” approach is proposed in [2] to solve the lattice agreement problem with
message complexity of O(n2). It can tolerate at most n − 1 process failures. Later, [12]
gave an algorithm with round complexity of min{1 + h(L), b(3 +

√
8f + 1/2)c}, for any

execution where at most f < n processes may crash. Their algorithm has the early-stopping
property and is the first algorithm with round complexity that depends on the actual height
of the input lattice. Our first algorithm, for synchronous lattice agreement, LAα, requires
log h(L) rounds. It assumes that the height of the input lattice is known to all processes.
By applying this algorithm as a building block, we give an algorithm, LAβ , which requires
only log f rounds without the height assumption in LAα. Instead of directly trying to
decide on the comparable output values which are from a lattice with an unknown height,
this algorithm first performs lattice agreement on the failure set known by each process by
using LAα. Then each process removes values from faulty processes they know and outputs
the join of all the remaining values. Our third algorithm, LAγ , has round complexity of
min{O(log2 h(L)), O(log2 f)), which depends on the height of the input lattice but does not
assume that the height is known. This algorithm iteratively guesses the actual height of the
input lattice and applies LAα with the guessed height as input, until all processes terminate.

Lattice agreement in asynchronous message passing systems is useful due to its applic-
ations in atomic snapshot objects and fault-tolerant replicated state machines. Efficient
implementation of atomic snapshot objects in crash-prone asynchronous message passing
systems is important because they can make design of algorithms in such systems easier
(examples of algorithms in message passing systems based on snapshot objects can be found
in [18], [13] and [4]). As shown in [2], any algorithm for lattice agreement can be applied
to solve the atomic snapshot problem in a shared memory system. We note that [3] does
not directly use lattice agreement to solve the atomic snapshot problem, but their idea of
producing comparable views for processes is essentially lattice agreement. Thus, by using the
same transformation techniques in [2] and [3], algorithms for lattice agreement problem can
be directly applied to implement atomic snapshot objects in crash-prone message passing
systems. We give an algorithm for asynchronous lattice agreement problem which requires
min{O(h(L)), O(f)} message delays. Then, by applying the technique in [3], our algorithm
can be used to implement atomic snapshot objects on top of crash-prone asynchronous mes-
sage passing systems and achieve time complexity of O(f) message delays in the worst case.
Our result significantly improves the message delays in the previous work by Delporte-Gallet,
Fauconnier et al [5]. The algorithm in [5] directly implements an atomic snapshot object on
top of crash-prone message passing systems and requires O(n) message delays in the worst
case.

X. Zheng, C. Hu, and V.K. Garg 41:3

Another related work for lattice agreement in asynchronous systems is by Faleiro et
al. [7]. They solve the lattice agreement problem in asynchronous systems by giving a Paxos
style protocol [10, 11], in which each proposer keeps proposing a value until it gets accept
messages from a majority of acceptors. The acceptor only accepts a proposal when the
proposal has a bigger value than its accepted value. Their algorithm requires O(n) message
delays. Our asynchronous lattice agreement algorithm does not have Paxos style. Instead, it
runs in round-trips. Each round-trip is composed of sending a message to all and getting
n−f acknowledgements back. Our algorithm guarantees termination in min{O(h(L)), O(f)}
message delays which is a significant improvement over O(n) message delays.

Generalized lattice agreement problem defined in [7] is a generalization of the lattice
agreement problem in asynchronous systems. It is applied to implement a specific class of
replicated state machines. In conventional replicated state machine approach [14], consensus
based mechanism is used to implement strong consistency. Due to performance reasons,
many systems relax the strong consistency requirement and support eventual consistency [17],
i.e, all copies are eventually consistent. However, there is no guarantee on when this eventual
consistency happens. Also, different copies could be in an inconsistent state before this
eventual situation happens. Conflict-free replicated data types (CRDT) [15, 16] is a data
structure which supports such eventual consistency. In CRDT, all operations are designed
to be commutative such that they can be concurrently executed without coordination. As
shown in [7] by applying generalized lattice agreement on top of CRDT, the states of any
two copies can be made comparable and thus provide linearizability guarantee [9] for CRDT.

The following example from [7] motivates generalized lattice agreement. Consider a
replicated set data structure which supports adds and reads. Suppose there are two concurrent
updates, add(a) and add(b), and two concurrent reads on copy one and two respectively.
By using CRDT, it could happen that the two reads return {a} and {b} respectively. This
execution is not linearizable [9], because if add(a) appears before add(b) in the linear order,
then no read can return {b}. On the other hand, if we use conventional consensus replicated
state machine technique, then all operations would be coordinated including the two reads.
This greatly impacts the throughput of the system. By applying generalized lattice agreement
on top of CRDT, all operations can be concurrently executed and any two reads always
return comparable views of the system. In the above example, the two reads return either
(i) {a} and {a, b} or (ii) {b} and {a, b} which is linearizable. Therefore, generalized lattice
agreement can be applied on top of CRDT to provide better consistency guarantee than
CRDT and better availability than conventional replicated state machine technique.

Since the generalized lattice agreement problem has applications in building replicated
state machines, it is important to reduce the message delays for a value to be learned. Faleiro
et al. [7] propose an algorithm for the generalized lattice agreement by using their algorithm
for the lattice agreement problem as a building block. Their generalized lattice agreement
algorithm satisfies safety and liveness assuming f < dn2 e. A value is eventually learned in
their algorithm after O(n) message delays in the worst case. Our algorithm guarantees that
a value is learned in min{O(h(L)), O(f)} message delays.

In summary, this paper makes the following contributions:
We present an algorithm, LAα to solve the lattice agreement in synchronous system
in log h(L) rounds assuming h(L) is known. Using LAα, we propose an algorithm,
LAβ to solve the standard lattice agreement problem in log f rounds. This bound
is significantly better than the previously known upper bounds of log n by [3] and
min{1 + h(L), b(3 +

√
8f + 1/2)c} by [12] (and solves the open problem posed there). We

also give an algorithm, LAγ which runs in min{O(log2 h(L)), O(log2 f)} rounds.

DISC 2018

41:4 Lattice Agreement in Message Passing Systems

Table 1 Previous Work and Our Results.

Problem Protocol Time Message

LA sync

[3] O(log n) O(n2)
[12] min{O(h(L)), O(

√
f)} n2 ·min{O(h(L)), O(

√
f)}

LAα O(log h(L)) O(n2 log h(L))
LAβ O(log f) O(n2 log f)
LAγ min{O(log2 h(L)), O(log2 f)} n2 ·min{O(log2 h(L)), O(log2 f)}

LA async [7] O(n) O(n3)
LAδ min{O(h(L)), O(f)} n2 ·min{O(h(L)), O(f)}

GLA async [7] O(n) O(n3)
GLAα min{O(h(L)), O(f)} n2 ·min{O(h(L)), O(f)}

For the lattice agreement problem in asynchronous systems, we give an algorithm, LAδ

which requires 2 ·min{h(L), f + 1} message delays which improves the O(n) bound by [7].
Based on the asynchronous lattice agreement algorithm, we present an algorithm, GLAα,
to solve the generalized lattice agreement with time complexity min{O(h(L)), O(f)}
message delays which improves the O(n) bound by [7].

Related previous work and our results are summarized in Table 1. LA sync and LA async
represent lattice agreement in synchronous systems and asynchronous systems, respectively.
GLA async represents generalized lattice agreement in asynchronous systems. LAα is designed
to solve the lattice agreement problem with the assumption that the height of the input
lattice is given. It serves as a building block for LAβ and LAγ . For synchronous systems, the
time complexity is given in terms of synchronous rounds. For asynchronous system, the time
complexity is given in terms of message delays. The message column represents the total
number of messages sent by all processes in one execution. For generalized lattice agreement
problem, the message complexity is given in terms of the number of messages needed for a
value to be learned.

2 System Model and Problem Definitions

2.1 System Model
We assume a distributed message passing system with n processes in a completely connected
topology, denoted as p1, ..., pn. We consider both synchronous or asynchronous systems.
Synchronous means that message delays and the duration of the operations performed by the
process have an upper bound on the time. Asynchronous means that there is no upper bound
on the time for a message to reach its destination. The model assumes that processes may
have crash failures but no Byzantine failures. The model parameter f denotes the maximum
number of processes that may crash in a run. We assume that the underlying communication
system is reliable but the message channel may not be FIFO. We say a process is faulty in a
run if it crashes and correct or non-faulty otherwise. In our following algorithms, when a
process sends a message to all, it also sends this message to itself.

2.2 Lattice Agreement
Let (X, ≤, t) be a finite join semi-lattice with a partial order ≤ and join t. Two values u

and v in X are comparable iff u ≤ v or v ≤ u. The join of u and v is denoted as t{u, v}. X

is a join semi-lattice if a join exists for every nonempty finite subset of X. As customary in
this area, we use the term lattice instead of join semi-lattice in this paper for simplicity.

X. Zheng, C. Hu, and V.K. Garg 41:5

In the lattice agreement problem [2], each process pi can propose a value xi in X and
must decide on some output yi also in X. An algorithm is said to solve the lattice agreement
problem if the following properties are satisfied:
Downward-Validity: For all i ∈ [1..n], xi ≤ yi.
Upward-Validity: For all i ∈ [1..n], yi ≤ t{x1, ..., xn}.
Comparability: For all i ∈ [1..n] and j ∈ [1..n], either yi ≤ yj or yj ≤ yi.

In this paper, all the algorithms that we propose apply join operation to some subset of
input values. Therefore, it is sufficient to focus on the join-closed subset of X that includes
all input values. Let L be the join-closed subset of X that includes all input values. L is
also a join semi-lattice. We call L the input sublattice of X. All algorithms proposed in this
paper are based on L. Since the complexity of our algorithms depend on the height of lattice
L, we give the formal definitions as below:

I Definition 1. The height of a value v in a lattice X is the length of longest path from any
minimal value to v, denoted as hX(v) or h(v) when it is clear.

I Definition 2. The height of a lattice X is the height of its largest value, denoted as h(X).

Each process proposes a value from a boolean lattice. Thus, the largest value in this
lattice is the set consists of all the n values. From the definition 2, we have h(L) ≤ n.

2.3 Generalized Lattice Agreement
In generalized lattice agreement problem, each process may receive a possibly infinite sequence
of values as inputs that belong to a lattice at any point of time. Let xpi denote the ith value
received by process p. The aim is for each process p to learn a sequence of output values ypj
which satisfies the following conditions:
Validity: Any learned value ypj is a join of some set of received input values.
Stability: The value learned by any process p is non-decreasing: j < k =⇒ ypj ≤ ypk.
Comparability: Any two values ypj and yqk learned by any two process p and q are comparable.
Liveness: Every value xpi received by a correct process p is eventually included in some

learned value yqk of every correct process q: i.e, xpi ≤ yqk.

3 Lattice Agreement in Synchronous Systems

3.1 Lattice Agreement with Known Height
In this section, we first consider a simpler version of the standard lattice agreement problem
by assuming that the height of the input sublattice L is known in advance, i.e, h(L) is given.
We propose an algorithm, LAα, to solve this problem in log h(L) synchronous rounds. In
section 3.2, we give an algorithm to solve the lattice agreement problem when the height is
not given using this algorithm.

Algorithm LAα runs in synchronous rounds. At each round, by calling a Classifier
procedure (described below), processes within a same group (to be defined later) are classified
into different groups. The algorithm guarantees that any two processes within the same
group have equal values and any two processes in different groups have comparable values at
the end. Thus, values of all processes are comparable to each other at the end. We present
the algorithm by first introducing the fundamental Classifier procedure.

DISC 2018

41:6 Lattice Agreement in Message Passing Systems

3.1.1 The Classifier Procedure
The Classifier procedure is inspired by the Classifier procedure given by Attiya and Rachman
in [3], called AR-Clasifier, where it is applied to solve the atomic snapshot problem in the
shared memory system. The intuition behind the Classifier procedure is to classify processes
to master or slave and ensure all master processes have values greater than all slave processes.

The pseudo-code for Classifier is given in Figure 1. It takes two parameters: the input
value v and the threshold value k. The output is composed of three items: the output
value, the classification result and the decision status. The process which calls the Classifier
procedure should update their value to be the output value. The classification result is either
master or slave. The decision status is a Boolean value which is used to inform whether
the invoking process can decide on the output value or not. The main functionality of the
Classifier procedure is either to tell the invoking process to decide, or to classify the invoking
process as a master or a slave. Details of the Classifier procedure are shown below:

Line 1-3: The invoking process sends a message with its input value v and the threshold
value k to all. It then collects all the received values associated with the threshold value k in
a set U .

Line 5-6: It checks whether all values in U are comparable to the input value. If they are
comparable, it terminates the Classifier procedure and returns the input value as the output
value and true as the decision status.

Line 8-12: It performs classification based on received values. Let w be the join of all
received values associated with the threshold value k. If the height of w in lattice L is greater
than the threshold value k, then the Classifier returns w as the output value, master as the
classification result and false as the decision status. Otherwise, it returns the input value
as the output value, slave as the classification result and false as the decision status. From
the classification steps, it is easy to see that the processes classified as master have values
greater than those classified as slave because w is the join of all values in U .

There are four main differences between the AR-Classifier and our Classifier : 1) The
AR-Classifier is based on the shared memory model whereas our algorithm is based on
synchronous message passing. 2) The AR-Classifier does not allow early termination. 3)
Each process in the AR-Classifier needs values from all processes whereas our Classifier uses
values only from processes within its group. 4) The AR-Classifier procedure requires the
invoking process to read values of all processes again if the invoking process is classified as
master where as our algorithm needs to receive values from all processes only once.

3.1.2 Algorithm LAα

Algorithm LAα (shown in Figure 2) runs in at most log h(L) rounds. It assumes knowledge
of H = h(L), the height of the input lattice. Let xi denote the initial input value of process
i, vri denote the value held by process i at the beginning of round r, and class denote the
classification result of the Classifier procedure. The class indicates whether the process
is classified as a master or a slave. The decided variable shows whether the process has
decided or not. Each process i has a label denoted as li. This label is updated at each round.
Processes which have the same label l are said to be in the same group with label l. The
definitions of label and group are formally given as:

I Definition 3 (label). Each process has a label, which serves as a knowledge threshold and
is passed as the threshold value k whenever the process calls the Classifier procedure.

I Definition 4 (group). A group is a set of processes which have the same label. The label
of a group is the label of the processes in this group.

X. Zheng, C. Hu, and V.K. Garg 41:7

Classifier(v, k):
v: input value k: threshold value

1: Send (v, k) to all
2: Receive messages of the form (−, k)
3: Let U be values contained in received messages
3:
4: /* Early Termination */
5: if |U | = 0 or ∀u ∈ U : v ≤ u ∨ u ≤ v

6: return (v, −, true)
6:
7: /* Classification */
8: Let w := t{u : u ∈ U}
9: if h(w) > k

10: return (w, master, false)
11: else
12: return (v, slave, false)

Figure 1 Classifier.

LAα(H, xi) for pi:
H: given height xi: input value

1: v1
i := xi // value at round 1

2: li := H
2 // label

3: decided := false

4:
5: for r := 1 to log H + 1
6: (vr+1

i , class, decided)
:= Classifier(li, vri)

7: if decided
8: return vr+1

i

9: else if class = master

10: li := li + H
2r+1

11: else
12: li := li − H

2r+1

13: end for

Figure 2 Algorithm LAα.

A process has decided if it has set its decision status to true. Otherwise, it is undecided.
At each round r, an undecided process invokes the Classifier procedure with its current value
and its current label li as parameters v and k, respectively. Since each process passes its
label as the threshold value k when invoking the Classifier procedure, line 2 of the Classifier
is equivalent to receiving messages from processes within the same group; that is, at each
round, a process performs the Classifier procedure within its group. Processes which are in
different groups do not affect each other. At round r, by invoking the Classifier procedure,
each process i sets vr+1

i , class and decided to the returned output value, the classification
result and the decision status. Each process first checks the value of decided. If it is true,
process i decides on vr+1

i and terminates the algorithm. Otherwise, if it is classified as a
master, it increases its label by H

2r+1 . If it is classified as a slave, it decreases its label by H
2r+1 .

Now we show how the Classifier procedure combined with this label update mechanism
makes any two processes have comparable values at the end.

Let G be a group of processes at round r. Let M(G) and S(G) be the group of processes
which are classified as master and slave, respectively, when they run the Classifier procedure
in group G. We say that G is the parent of M(G) and S(G). Thus, M(G) and S(G) are
both groups at round r + 1. Process i ∈M(G) or i ∈ S(G) indicates that i does not decide
in group G at round r. Initially, all process have the same label H2 and are in the same group
with label H2 . When they execute the Classifier, they will be classified into different groups.
We can view the execution as processes traversing through a binary tree. Initially, all of
them are at the root of the tree. As the program executes, if they are classified as master,
then they go to the right child. Otherwise, they go to the left child.

Before we prove the correctness of the given algorithm, we first give some useful properties
satisfied by the Classifier procedure. Although Lemma 5 is similar to a lemma given in [5],
it is discussed here in message passing systems and the proofs are different.

I Lemma 5. Let G be a group at round r with label k. Let L and R be two nonnegative integers
such that L ≤ k ≤ R. If L < h(vri) ≤ R for every process i ∈ G, and h(t{vri : i ∈ G}) ≤ R,
then

DISC 2018

41:8 Lattice Agreement in Message Passing Systems

(p1) for each process i ∈M(G), k < h(vr+1
i) ≤ R

(p2) for each process i ∈ S(G), L < h(vr+1
i) ≤ k

(p3) h(t{vr+1
i : i ∈M(G)}) ≤ R

(p4) h(t{vr+1
i : i ∈ S(G)}) ≤ k, and

(p5) for each process i ∈M(G), vr+1
i ≥ t{vr+1

i : i ∈ S(G)}

Proof.
(p1)–(p3): Immediate from the Classifier procedure.
(p4): Since S(G) is a group of processes which are at round r + 1, all processes in S(G) are

correct (non-faulty) at round r. So, all processes in S(G) must have received values of each
other in the Classifier procedure at round r in group G. Thus, h(t{vr+1

i : i ∈ S(G)}) ≤ k,
otherwise all of them should be in group M(G) instead of S(G), according to the condition
at line 9 of the Classifier procedure.

(p5): Since all processes in S(G) are correct at round r, all processes in M(G) must have
received values of all processes in S(G) in the Classifier procedure at round r. Any
process which proceeds to group M(G) takes the join of all received values at round r,
according to line 10. Thus, for every process i ∈M(G), vr+1

i ≥ t{vr+1
i : i ∈ S(G)}. J

I Lemma 6. Let x be a value from a lattice L, and V be a set of values from L. Let U be
any subset of V . If x is comparable with ∀ v ∈ V , then x is comparable with t{u | u ∈ U}.

Proof. If ∀u ∈ U : u ≤ x, then t{u | u ∈ U} ≤ x. Otherwise, ∃y ∈ U : x ≤ y. Since
y ≤ t{u | u ∈ U}, so x ≤ t{u | u ∈ U}. J

I Lemma 7. If process i decides at round r on value yi, then yi is comparable with vrj for
any correct process j.

Proof. Let process i decide in group G at round r. Consider the two cases below:
Case 1: j 6∈ G. Let G′ be a group at the maximum round r′ such that both i and j belong

to G′. Then, either i ∈M(G′) ∧ j ∈ S(G′) or j ∈M(G′) ∧ i ∈ S(G′). We only consider the
case i ∈ M(G′) ∧ j ∈ S(G′). The other case is similar. From (p5) of Lemma 5, we have
t{vrp : p ∈ S(G′)} ≤ yi. Since j ∈ S(G′), then vrj ≤ t{vrp : p ∈ S(G′)}. Thus, vrj ≤ yi. For
the other case, we have yi ≤ vrj . Therefore, yi is comparable with vrj .

Case 2: j ∈ G, since process j is correct, then i must have received vrj at round r. Thus,
by line 5 of the Classifier procedure, we have that yi is comparable with yrj . J

Now we show that any two processes decide on comparable values.

I Lemma 8. (Comparability) Let process i and j decide on yi and yj, respectively. Then yi
and yj are comparable.

Proof. Let process i and j decide at round ri and rj , respectively. Without loss of generality,
assume ri ≤ rj . At round ri, from Lemma 7 we have yi is comparable with vrk for any correct
undecided process k. Let V = {vri

k | process k undecided and correct}. Since rj ≥ ri, yj is
at most the join of a subset of V . Thus, from Lemma 6 we have yi and yj are comparable. J

Now we prove that all processes decide within log H + 1 rounds by showing all processes
in the same group at the beginning of round log H + 1 have equal values, given by Lemma 9
and Lemma 10. Since Lemma 9 and Lemma 10 and the corresponding proofs are similar to
the ones given in [3], the proofs are omitted here and can be found in the full paper. Proof
of Lemma 9 is based on (p1-p4) of Lemma 5 by induction. Proof of Lemma 10 is based on
Lemma 9.

X. Zheng, C. Hu, and V.K. Garg 41:9

I Lemma 9. Let G be a group of processes at round r with label k. Then
(1) for each process i ∈ G, k − H

2r < h(vri) ≤ k + H
2r

(2) h(t{vri : i ∈ G}) ≤ k + H
2r

I Lemma 10. Let i and j be two processes that are within the same group G at the beginning
of round r = log H + 1. Then vri and vrj are equal.

I Lemma 11. All processes decide within log H + 1 rounds.

Proof. From Lemma 10, we know any two processes which are in the same group at the
beginning of round log H + 1 have equal values. Then, the condition in line 5 of Classifier
procedure is satisfied. Thus, all undecided processes decide at round log H + 1. J

I Remark 12. Since at the beginning of round log H + 1 all undecided processes have
comparable values, LAα only needs log H rounds. For simplicity, one more round is executed
to make all processes decide at line 5 of the Classifier procedure.

I Theorem 13. Algorithm LAα solves lattice agreement problem in log H rounds and can
tolerate f < n failures.

Proof. Downward-Validity follows from the fact that the value of each process is non-
decreasing at each round. For Upward-Validity, according to the Classifier procedure, each
process either keeps its value unchanged or takes the join of the values proposed by other
processes which could never be greater than t{x1, ..., xn}. For Comparability, from Lemma
8, we know for any two process i and j, if they decide, then their decision values must be
comparable. From Lemma 11, we know all processes decide. Thus, comparability holds. J

Complexity. Time complexity is log H rounds. For message complexity, since each process
sends n messages per round, log H rounds results in n2 log H messages in total. Notice that
the number of messages can be further reduced by keeping a set of processes which are not
in its group. If a process p receives a message from process q with a threshold value different
from its own threshold value, it knows that q is not in its group. Each process does not send
messages to the processes in this set.

Algorithm LAβ runs in log height(L) rounds by assuming that height(L) is given. How-
ever, in order to know that actual height of input lattice, we need to know how many distinc
values all process propose which needs extra effort. For this reason, in following sections, we
introduce algorithms to solve the lattice agreement problem without this assumption.

3.2 Lattice Agreement with Unknown Height
In this section, we consider the standard lattice agreement in which the height of the lattice
is not known to any process. We propose algorithm, LAβ , (shown in Figure 3) based on
algorithm LAα.

3.2.1 Algorithm LAβ

Algorithm LAβ runs in log f + 1 synchronous rounds. It makes use of algorithm LAα as a
building block. Instead of directly agreeing on input values which are taken from a lattice
with unknown height, we first do lattice agreement on the failure set that each process knows
after one round of broadcast. The set of all failure sets forms a boolean lattice with union
as the join operation and with height equal to f (since there are at most f failures). The
algorithm consists of two phases. At Phase A, all processes exchange their values. Process i

DISC 2018

41:10 Lattice Agreement in Message Passing Systems

LAβ for pi

1: Vi := {xi} // set of values, initially xi
2: Fi := ∅ // set of known failure processes
3: f := the maximum number of failures
3:
4: /* Exchange Values and Record Failures*/
5: Phase A:
6: Send Vi to all
7: for j := 1 to n

8: if Vj is received from process j

9: Vi := Vi ∪ Vj
10: else
11: Fi := Fi ∪ j

12: end for
12:
13: /* LA with Known Height f */
14: Phase B:
15: F

′

i := LAα(f, Fi)
16: Ui := values from processes in F

′

i in Phase A
17: Ci := Vi − Ui // set of correct values
18: yi := t{v : v ∈ Ci}

Figure 3 Algorithm LAβ .

LAγ for pi

1: vi := xi // input value
2: decided := false

2:
3: /* Exchange Values */
4: Phase A:
5: Send vi to all
6: for j := 1 to n

7: receive vj from pj
8: vi := vi t vj
9: end for
9:

10: /* Guessing Height */
11: Phase B:
12: guess := 2 // guess height
13: while (!decided)
14: vi := LAα(guess, vi)
15: guess := 2 ∗ guess

16: end while
16:
17: yi := vi

Figure 4 Algorithm LAγ .

includes j into its failure set if it does not receive value from process j at the first phase.
After the first phase, each process has a failure set which contains failed processes it knows.
Then in phase B, they invoke algorithm LAα with f as the height and its failure set as
input. After that, each process decides on a failure set which satisfies lattice agreement
properties. The new failure set of any two process i and j are comparable to each other, i.e,
F

′

i is comparable to F
′

j . Equipped with this comparable failure set, each process removes
values it received from processes which are in its failure set and decides on the join of the
remaining values.

The following lemma shows that any two processes decide on comparable values. We only
give the sketch of proof, and the detailed proof is available in the full paper.

I Lemma 14. (Comparability) Let process i and j decide on yi and yj, respectively. Then
yi and yj are comparable.

Proof sketch. According to comparability of LAα, all processes have comparable failure sets.
Then, the set of values they received at Phase A from correct processes must be comparable,
i.e, Ci is comparable with Cj . Therefore, yi and yj are comparable. J

I Theorem 15. LAβ solves lattice agreement problem in log f + 1 rounds, where f < n is
the maximum number of failures the system can tolerate.

Proof. Downward-Validity. Initially, for correct process i, vi = xi. After Phase A, since i is
correct, so i is not in any failure set of any process. At Phase B, process i invokes algorithm
LAα with failure set as the input value. Thus, according to the Upward-Validity of LAα, i

X. Zheng, C. Hu, and V.K. Garg 41:11

is not included in F
′

i . So, xi ∈ Ci. Therefore, xi ≤ yi. Upward-Validity is immediate from
the fact that each process receives at most all values by all processes. Comparability follows
from Lemma 14. J

3.2.2 Algorithm LAγ

Algorithm LAβ solves lattice agreement in log f + 1 rounds whereas Algorithm LAα solves
lattice agreement in log h(L) rounds assuming h(L) is given. We now propose an algorithm
to solve lattice agreement which has round complexity related to h(L) even when h(L) is not
known. This algorithm called LAγ (shown in Figure 4), solves the standard lattice agreement
in O(min{log2 h(L), log2 f}) rounds. The basic idea is to “guess” the height of L and apply
algorithm LAα using the guessed height as input. The algorithm is composed of two phases.
At Phase A, each process simply broadcasts its value and takes the join of all received values.
Phase B is the guessing phase which invokes algorithm LAα repeatedly. Notice that decided
variable is updated at line 6 of LAα.

Let wi denote the value of vi after Phase A. Let Ψ denote the sublattice formed by values
of all correct processes after Phase A, i.e, Ψ = {u | (u ∈ L) ∧ (∃i : wi ≤ u)}. Since there are
at most f failures, we have h(Ψ) ≤ f . Now we show that Phase B terminates in at most
dlog h(Ψ)e executions of LAα. We call the i-th execution of LAα as iteration i. Notice that
the guessed height of iteration i is 2i.

I Lemma 16. After iteration dlog h(Ψ)e of LAα at Phase B, all processes decide.

Proof. Since 2dlogh(Ψ)e ≥ h(Ψ), Lemma 9 still holds which implies Lemma 10. Thus, all
undecided processes have equal values at the last round of iteration dlog h(Ψ)e. Therefore,
all undecided processes decide after iteration dlog h(Ψ)e. J

We now show that two processes decide on comparable values irrespective of whether
they both decide on the same iteration of LAα.

I Lemma 17. (Comparability) Let i and j be any two processes that decide on value yi and
yj, respectively. Then yi and yj are comparable.

Proof. Assume process i decides on Gi at round ri of execution ei of LAα and process j

decides on Gj at round rj of execution ej of LAα. If ei = ej , then yi and yj are comparable
by Lemma 8. Otherwise, ei 6= ej . Without loss of generality, suppose ei < ej . Consider round
ri of execution ei of LAα. Since i decides on value yi at this round, then from Lemma 7, we
have that yi is comparable with vrk for any correct process k. Let V = {vrk | k is correct}.
Then, yj is at most the join of a subset of V . From Lemma 6, it follows that yi is comparable
with yj . J

I Theorem 18. LAγ solves the lattice agreement problem and can tolerate f < n failures.

Proof. Downward-Validity follows from that fact that the value of each process is non-
decreasing along the execution. Upward-Validity follows since each process can receive at
most all values from all processes. Comparability holds by Lemma 17. J

Complexity. From Lemma 16, we know Phase B terminates in at most dlog h(Ψ)e executions
of LAα. Thus, Phase B takes log 2 + log 4 + ... + dlog h(Ψ)e = (dlogh(Ψ)e+1)∗(dlogh(Ψ)e)

2
rounds in worst case. Since h(Ψ) ≤ f and h(Ψ) ≤ h(L), LAγ has round complexity of
min{O(log2 h(L)), O(log2 f)}. Each process sends n messages at each round, thus message
complexity is n2 ·min{O(log2 h(L)), O(log2 f)}.

DISC 2018

41:12 Lattice Agreement in Message Passing Systems

LAδ for pi
acceptVal := xi// accept value
learnedV al := ⊥ // learned value

on receiving prop(vj , r) from pj :
if vj ≥ acceptVal

Send ACK (“accept”, −, r)
acceptVal := vj

else
Send ACK (“reject”, acceptVal, r)

for r := 1 to f + 1
val := acceptVal
Send prop(val, r) to all
wait for n− f ACK (−,−, r) messages
let Vr be values contained in reject ACKs
let tally be number of accept ACKs
if tally > n

2
learnedV al := val

break
else

acceptVal := acceptVal t{v | v ∈ Vr}
end for

Figure 5 Algorithm LAδ.

4 Lattice Agreement in Asynchronous Systems

In this section, we discuss the lattice agreement problem in asynchronous systems. The
algorithm proposed in [7] requires O(n) units of time, whereas our algorithm (LAδ shown in
Figure 5) requires only O(f) units of time. We first note that

I Theorem 19. The lattice agreement problem cannot be solved in asynchronous message
systems if f ≥ n

2 .

Proof. The proof follows from the standard partition argument. If two partitions have
incomparable values then they can never decide on comparable values. J

4.1 Algorithm LAδ

On account of Theorem 19, we assume that f < n
2 . The algorithm proceeds in round-trips. A

single round-trip is composed of sending messages to all and getting n− f acknowledgement
messages back. At each round-trip, a process sends a prop message to all, with its current
accepted value as the proposal value, and waits for n − f ACK messages. If majority of
these ACK messages are accept, then it decides on its current proposed value. Otherwise, it
updates its current accept value to be the join of all values received and starts next round-trip.
Whenever a process receives a proposal, i.e, a prop message, if the proposal has a value at
least as big as its current value, then it sends back an ACK message with accept and updates
its current accept value to be the received proposal value. Otherwise, it sends back an ACK

message with reject.
Let acceptV alri denote the accept value (variable acceptVal) held by pi at the beginning

of round-trip r. Let L(r) = {u | (u ∈ L) ∧ (∃i : acceptV alri ≤ u)}, i.e, L(r) denotes the
join-closed subset of L that includes the accept values held by all undecided processes at the
beginning of the round-trip r. Notice that L(1) = L.

I Lemma 20. For any round-trip r, h(L(r+1)) < h(L(r)).

Proof. If a process decides at round-trip r, its value is not in L(r+1). So, we only need to prove
that h(acceptV alri) < h(acceptV alr+1

i) for any process i which does not decide at round-trip
r. The fact that process i does not decide at round-trip r implies that i must have received at
least one reject ACK with a greater value. Since acceptV alr+1

i is the join of all values received
at round-trip r, acceptV alri < acceptV alr+1

i . Hence, h(acceptV alri) < h(acceptV alr+1
i) for

any undecided process i. Therefore, h(L(r+1)) < h(L(r)). J

X. Zheng, C. Hu, and V.K. Garg 41:13

I Lemma 21. All process decide within min{h(L), f + 1} asynchronous round-trips.

Proof. We first show that h(L(2)) ≤ f . At the first round-trip, each process receives
n − f ACKs, which is equivalent to receiving n − f values. Therefore, h(L(2)) ≤ f . Let
rmin = min{h(L), f + 1}. Combining the fact that h(L(2)) ≤ f with Lemma 20, we have
h(L(rmin)) ≤ 1. This means that undecided correct processes have the same value. Thus, all
of them receive n− f ACK messages with accept and decide. Therefore, all processes decide
within min{h(L), f + 1} round-trips. J

We note here that the algorithm in [7] takes O(n) message delays for a value to be learned
in the worst case. A crucial difference between LAδ and the algorithm in [7] is that LAδ

starts with the accepted value as the input value. Hence, after the first round-trip, there is a
significant reduction in the height of the sublattice, from n initially (in the worst case) to f .
In [7], acceptors start with the accepted value as null. Hence, there is reduction of height by
only 1 in the worst case. Since in their algorithm, acceptors are different from proposers (in
the style of Paxos), acceptors do not have access to the proposed values.

I Theorem 22. Algorithm LAδ solves the lattice agreement problem in min{h(L), f + 1}
round-trips.

Proof. Down-Validity holds since the accept value is non-decreasing for any process i.
Upward-Validity follows because each learned value must be the join of a subset of all initial
values which is at most t{x1, ..., xn}. For Comparability, suppose process i and j decide on
values yi and yj . There must be at least one process that has accepted both yi and yj . Since
each process can only accept comparable values. Thus, we have either yi ≤ yj or yj ≤ yi. J

Complexity. From Lemma 21, we know that LAδ takes at most min{h(L), f + 1} round-
trips, which results in 2 ·min{h(L), f + 1} message delays, since one round-trip takes two
message delays. At each round-trip, each process sends out at most 2n messages. Thus, the
number of messages for all processes is at most 2 · n2 ·min{h(L), f + 1}.

5 Generalized Lattice Agreement

In this section, we discuss the generalized lattice agreement problem as defined in Section
2.3. Since it is easy to adapt algorithms for lattice agreement in synchronous systems to
solve generalized lattice agreement problem, we only consider asynchronous systems. We
show how to adapt LAδ to solve the generalized lattice agreement problem (algorithm GLAα

shown in Figure 6) in min{O(h(L)), O(f)} units of time.

5.1 Algorithm GLAα

GLAα invokes the Agree() procedure to learn a new value multiple times. The Agree()
procedure is an execution of LAδ with some modifications (to be given later). A sequence
number is associated with each execution of the Agree() procedure, thus each correct process
has a learned value for each sequence number. The basic idea of GLAα is to let all processes
sequentially execute LAδ to learn values, and make sure: 1) any two learned values for the
same sequence number are comparable, 2) any learned value for a bigger sequence number is
at least as big as any learned value for a smaller sequence number. The first goal can be
simply achieved by invoking LAδ with the sequence number. In order to achieve the second
goal, the key idea is to make any proposal for sequence number s + 1 to be at least as big

DISC 2018

41:14 Lattice Agreement in Message Passing Systems

as the largest learned value for sequence number s. Notice that at each round-trip of LAδ

execution, a process waits for n− f ACKs, and any two set of n− f processes have at least
one process in common. Thus, the second goal can be achieved by making sure at least n− f

processes know the largest learned value after execution of LAδ for a sequence number.
Upon receiving a value v from client in a message tagged with ClientValue, a process adds

v into its buffer and sends a ServerValue message with v to all other processes. The process
can start to learn new values only when it succeeds at its current proposal. Otherwise, LAα

may not terminate, as shown by an example in [7]. Upon receiving a ServerValue message
with value v, a process simply adds v to its buffer.

The Agree() procedure is automatically executed when the guard condition is satisfied;
that is, it is not currently proposing a value and it has some value in its buffer or it has seen
a sequence number bigger than its current sequence number. Inside the Agree() procedure, a
process first updates its acceptVal to be the join of current acceptVal and buffVal. Then, it
starts an adapted LAδ execution. The original LAδ and adapted LAδ differ in the following
ways: 1) Each message in the adapted LAδ is associated with a sequence number. 2) A
process can also decide on a value for a sequence number if it receives any decide ACK
message for that sequence number. 3) On receiving a prop message associated with a sequence
number s′, if s′ is smaller than its current sequence number which means it has learned a
value for s′, then it simply sends ACK message with its learned value for s′ back. If s′ is
greater than its current sequence number, it updates its maxSeq and waits until its current
sequence number matches s′. After that it sends back ACK message with accept or reject
based on whether the proposal value is bigger than its current accept value or not. The
reason a process keeps track of the maximal sequence number it has ever seen, is to make sure
each process has a learned value for each sequence number. When the maximum sequence
number is bigger than its current sequence number, it has to invoke Agree() procedure even
if it does not have any new value to propose. After execution of adapted LAδ, a process
increases its current sequence number.

We next show the correctness of GLAα. Let acceptV alps denote the acceptVal of process p

at the end of Agree() procedure for sequence number s. Let LVp denote the map of sequence
number to learned value (variable LV) for process p and ms = t{LVp[s] : p ∈ [1..n]}, i.e,
ms denotes the join of all learned values for sequence number s. Let LPs = {p | (p ∈
[1..n]) ∧ (ms ≤ acceptV alps)}, i.e, LPs is the set of processes which have acceptVal greater
than the join of all learned values for the sequence number s. Notice that a process has
two ways to learn a value for its current sequence number in the Agree() procedure: 1) by
receiving a majority of accept ACKs. 2) by receiving some decide ACKs.

The following lemma proves that the adapted LAα satisfies the first goal.

I Lemma 23. For any sequence number s, LVp[s] is comparable with LVq[s] for any two
processes p and q.

Proof. We only need to show that any two processes which learn by the first way must learn
comparable values, since processes which learn by the second way simply learn values from
processes which learn by the first way. By the same reasoning as Comparability of Theorem
22, we know this is true. J

From Lemma 23, we know that ms is the largest learned value for sequence number s.

I Lemma 24. For any sequence number s, |LPs| > n
2 .

X. Zheng, C. Hu, and V.K. Garg 41:15

GLAα for pi
s := 0 // sequence number
maxSeq := -1 // max seq number seen
buffVal := ⊥ // received values
/* map from seq to learned value */
LV := ⊥
acceptVal := ⊥
active := false

on receiving ClientValue(v):
buffVal := buffVal t v

Send ServerValue(v) to all

on receiving ServerValue(v):
buffVal := buffVal t v

on receiving prop(vj , r, s′) from pj :
if s′ < s

Send ACK (“decide”, LV [s′], r, s′)
break

if s′ > s

maxSeq := max{s′,maxSeq}
wait until s = s′

if vj ≥ acceptVal
Send ACK (“accept”, −, r, s′)
acceptVal := vj

else
Send ACK (“reject”, acceptVal, r, s′)

Procedure Agree():
guard: (active = false)

∧ (buffVal 6= ⊥ ∨ maxSeq ≥ s)
effect:

active := true

acceptVal := buffVal t acceptVal
buffVal := ⊥

/* LAδ with sequence number */
for r := 1 to f + 1

val := acceptVal
Send prop(val, r, s) to all
wait for n− f ACK (−,−, r, s)
let V be values in reject ACKs
let D be values in decide ACKs
let tally be number of accept ACKs
if |D| > 0

val := t{d|d ∈ D}
break

else if tally > n
2

break
else

acceptVal := acceptVal
t{v | v ∈ V }

end for
LV [s] := val
s := s + 1
active := false

Figure 6 Algorithm GLAα.

Proof. Consider Agree() procedure for s. Since ms is the largest learned value for sequence
number s, there must exist a process p which learns ms by the first way. Thus, p must
have received a majority of accept ACKs, which means at least a majority of processes have
acceptVal greater than ms after Agree() procedure for s. Therefore, |LPs| > n

2 . J

The lemma below shows that GLAα achieves the second goal.

I Lemma 25. ms ≤ LVp[s + 1] for any process p and any sequence number s.

Proof. From Lemma 24, we know for sequence number s at least a majority of processes
have acceptVal greater than ms. To decide on LVp[s + 1], process p must get majority accept.
Since any two majority has at least one process in common, ms ≤ LVp[s + 1]. J

I Theorem 26. Algorithm GLAα solves generalized lattice agreement when a majority of
processes is correct.

DISC 2018

41:16 Lattice Agreement in Message Passing Systems

Proof. Validity holds since any learned value is the join of a subset of values received.
Stability. From Lemma 25 and the fact that LVp[s] ≤ ms, we have that LVp[s] ≤ LVp[s+1]

for any process p and any sequence number s, which implies Stability.
Comparability. We need to show that LVp[s] and LVq[s′] are comparable for any two

processes p and q, and for any two sequence number s and s′. If s = s′, this is immediate
from Lemma 23. Now consider the case when s 6= s′. Without loss of generality, assume
s < s′. From Lemma 25, we can conclude that LVp[s] ≤ LVq[s′]. Thus, comparability holds.

Liveness. Any received value v is eventually included in some proposal, i.e, prop message.
From Theorem 22, we know that in at most 2 ·min{h(L), f + 1} message delays that proposal
value will be included in some learned value. Thus, v will be learned eventually. J

Complexity. For time complexity, from the analysis for liveness in Theorem 26, we know
that a received value is learned in at most 2 ·min{h(L), f + 1} message delays. For message
complexity, since each process sends out n messages per round-trip, the total number of
messages needed to learn a value is 2 · n2 ·min{h(L), f + 1}.

6 Conclusions

We have presented algorithms for the lattice agreement problem and the generalized lattice
agreement problem. These algorithms achieve significantly better time complexity than
previous algorithms. For future work, we would like to know the answers to the following
two questions: 1) Is log f rounds a lower bound for lattice agreement in synchronous message
passing systems? 2) Is O(f) message delays optimal for the lattice agreement and generalized
lattice agreement problem in asynchronous message passing systems?

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–890, 1993.
2 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agree-

ment. Distributed Computing, 8(3):121–132, 1995.
3 Hagit Attiya and Ophir Rachman. Atomic snapshots in O(nlogn) operations. SIAM

Journal on Computing, 27(2):319–340, 1998.
4 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and

advanced topics, volume 19. John Wiley & Sons, 2004.
5 Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Michel Raynal. Imple-

menting snapshot objects on top of crash-prone asynchronous message-passing systems. In
International Conference on Algorithms and Architectures for Parallel Processing, pages
341–355. Springer, 2016.

6 Danny Dolev and H Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

7 Jose M Faleiro, Sriram Rajamani, Kaushik Rajan, G Ramalingam, and Kapil Vaswani.
Generalized lattice agreement. In Proceedings of the 2012 ACM symposium on Principles
of distributed computing, pages 125–134. ACM, 2012.

8 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

9 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

X. Zheng, C. Hu, and V.K. Garg 41:17

10 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16(2):133–169, 1998.

11 Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
12 Marios Mavronicolas. A bound on the rounds to reach lattice agreement, 2000. URL:

http://www.cs.ucy.ac.cy/~mavronic/pdf/lattice.pdf.
13 Michel Raynal. Concurrent programming: algorithms, principles, and foundations. Springer

Science & Business Media, 2012.
14 Fred B Schneider. Implementing fault-tolerant services using the state machine approach:

A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.
15 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated

data types. In Symposium on Self-Stabilizing Systems, pages 386–400. Springer, 2011.
16 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Convergent and com-

mutative replicated data types. Bulletin-European Association for Theoretical Computer
Science, 104:67–88, 2011.

17 Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

18 Gadi Taubenfeld. Synchronization algorithms and concurrent programming. Pearson Edu-
cation, 2006.

DISC 2018

http://www.cs.ucy.ac.cy/~mavronic/pdf/lattice.pdf

Brief Announcement: Local Distributed
Algorithms in Highly Dynamic Networks
Philipp Bamberger
University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
philipp.bamberger@cs.uni-freiburg.de

Fabian Kuhn
University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
kuhn@cs.uni-freiburg.de

Yannic Maus
University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
yannic.maus@cs.uni-freiburg.de

Abstract
We define a generalization of local distributed graph problems to (synchronous round-based)
dynamic networks and present a framework for developing algorithms for these problems. We
require two properties from our algorithms: (1) They should satisfy non-trivial guarantees in
every round. The guarantees should be stronger the more stable the graph has been during the
last few rounds and they coincide with the definition of the static graph problem if no topological
change appeared recently. (2) If a constant neighborhood around some part of the graph is stable
during an interval, the algorithms quickly converge to a solution for this part of the graph that
remains unchanged throughout the interval.

We demonstrate our generic framework with two classic distributed graph, namely (degree+1)-
vertex coloring and maximal independent set (MIS).

2012 ACM Subject Classification Networks → Network algorithms

Keywords and phrases dynamic networks, distributed graph algorithms, MIS, vertex coloring

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.42

Funding Second and third author were supported by ERC Grant No. 336495 (ACDC).

1 Introduction

Many modern computer systems are built on top of large-scale networks such as the Internet,
the world wide web, wireless ad hoc and sensor networks, or peer-to-peer networks. Often, the
network topology of such systems is inherently dynamic: nodes can join or leave at any time
and (e.g., in the context of overlay networks or mobile wireless networks) communication links
might appear and disappear constantly. As a consequence, we aim to develop distributed
algorithms that can cope with a potentially highly dynamic network topology and to understand
what can and what cannot be computed in a dynamic network. In particular, we investigate
techniques to develop distributed dynamic network solutions for distributed graph problems
and more specifically for solving local distributed graph problems such as computing a graph
coloring or a maximal independent set (MIS) of the network graph (see, e.g., [1, 5, 6]).

Most previous work on solving distributed graph problems in the dynamic setting is of
the following flavor [3, 2]: After one or more topology changes, the algorithm has a recovery
period to fix its output and the network does not undergo any changes during this recovery
period. If further dynamic changes occur while recovering from a previous change such an

© Philipp Bamberger, Fabian Kuhn, and Yannic Maus;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 42; pp. 42:1–42:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philipp.bamberger@cs.uni-freiburg.de
mailto:kuhn@cs.uni-freiburg.de
mailto:yannic.maus@cs.uni-freiburg.de
https://doi.org/10.4230/LIPIcs.DISC.2018.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Local Distributed Algorithms in Highly Dynamic Networks

algorithm loses its guarantees and it might even fail to provide any guarantees at all. We
therefore follow a different approach. Our randomized algorithms constantly adapt to a
changing environment. They always satisfy non-trivial guarantees, no matter how dynamic
the network is. The guarantees become stronger if the network is less dynamic. In particular,
if the network becomes static in a constant neighborhood around some part of the network,
the solution of that part also converges to a static solution after a short time.

In the present paper, we develop a framework to build distributed dynamic network
algorithms with the aforementioned properties and apply the framework to two of the classic
distributed graph problems, namely, the problem of computing a maximal independent set
(MIS) and the problem of computing a vertex coloring of the network graph. We however
note that the general framework also applies to various additional graph problems. For
example, it seems particularly suitable to convert classic covering or packing optimization
problems to the dynamic setting. Examples for such problems are minimum dominating
set, minimum vertex cover, or maximum matching. For the coloring problem, our algorithm
guarantees that after two nodes are joined by an edge, they can only have the same color for
a short time. Further, the total number of colors used is still essentially upper bounded by
the maximum degree of the network as in the static version of the problem. In the context
of dynamic networks, the degree of some node v at a time t is defined to be the number of
distinct neighbors v has had during the last few rounds.

2 Model, Contribution & Techniques

We model a dynamic network as a synchronous system over a set V of n potential nodes.
Time is divided into rounds and in each round r = 0, 1, 2, . . . , there is a communication
graph Gr = (Vr, Er). We generally assume that nodes can wake up gradually, however for
the purpose of this summary, we assume that all nodes wake up initially and we thus have
Vr = V for all r ≥ 1. We consider graph problems that can be decomposed into two parts
that are given by a packing and a covering graph property. Essentially, a packing property is
a graph property that remains true when removing edges and a covering property is a graph
property that remains true when adding edges. In addition, we assume that the validity of a
solution can be checked locally, i.e., by evaluating it in the constant neighborhood of every
node [4]. For example, the problem of finding an MIS on a graph G can be decomposed into
the problem of finding a subset S of the nodes such that no two neighbors are in S (packing
property) and S is a dominating set of G (covering property). For the (degree+1)-coloring
problem, the requirement that the vertex coloring is proper is a packing property and the
requirement that the color of a node v is from {1, . . . ,deg(v) + 1} is a covering property.
For a given graph problem and an integer parameter T ≥ 1, we say that a given solution
is a T -dynamic solution at time r if a) the solution satisfies the packing property for the
intersection graph GT∩

r = Gr−T +1 ∩ Gr−T +1 ∩ . . . ∩ Gr (i.e., the graph that contains all
edges that have been present throughout the last T rounds), and b) the solution satisfies the
covering property for the union graph GT∪

r = Gr−T +1 ∪Gr−T +1 ∪ . . . ∪Gr (i.e., the graph
that contains all edges that have been present at least once in the last T rounds). We believe
that this provides a natural generalization of a static graph problem to the dynamic context.
Note that the dynamic guarantees are stronger the less dynamic the graph is and if the graph
has been static during rounds r − T + 1, . . . , r, a T -dynamic solution at time r is the same
as a static solution for the given graph problem for the graph Gr in round r.

When designing a distributed algorithm for a given dynamic graph problem, we require
that for some T ≥ 1, the algorithm outputs a T -dynamic solution after each round r. Assume

P. Bamberger, F. Kuhn, and Y. Maus 42:3

that we can construct an algorithm A such that if all nodes start A in round 1, after round
T , A outputs a T -dynamic solution w.r.t. to the first T graphs (i.e., a solution that satisfies
the packing property for GT∩

T and the covering property for GT∪
T). Given such an algorithm

A, we can in principle design an algorithm that always outputs a T -dynamic solution by
just starting a new instance of A in every round and outputting the solution of an instance
started in round r + 1 after round r + T . However, such a solution would not be satisfactory
because especially if A is randomized, the output might change completely from round to
round even if the graph is only mildly dynamic or even static. Thus we refine this approach
and define two abstract types of algorithms to deal with dynamic graph problems.

For two positive integers T and α, we say that an algorithm A1 is a (T, α)-network-static
algorithm for a given dynamic graph problem if it satisfies the following properties. At the
end of each round r ≥ 1, the algorithm outputs a valid partial solution for the graph Gr (In a
partial solution, nodes are allowed to output ⊥ and for each node v that outputs a value 6= ⊥,
there is an extension of the partial solution such that the packing property for v is satisfied
and the covering property for v is satisfied for all extensions of the partial solution). In
addition, if the α-neighborhood of some node v remains static in some interval [r, r2], v must
output a fixed value 6= ⊥ throughout the interval [r+T, r2]. Further, for a positive integer T ,
we say that an algorithm A2 is a T -dynamic algorithm for a given dynamic graph problem if
it satisfies the following property. Let r ≥ 1 be some round and assume that we are given a
valid partial solution for Gr. If A2 is started in round r+ 1, at the end of round r+ T − 1, it
outputs a T -dynamic solution that extends the given partial solution for Gr. The following
theorem shows that a T1-dynamic algorithm and a (T2, α)-network-static algorithm can be
combined to obtain a distributed algorithm that always outputs a T1-dynamic solution while
behaving well if the graph is locally static for sufficiently long. Our framework thus allows to
separate the two tasks of (1) always outputting a T -dynamic solution and (2) providing a
locally stable output if the network is locally static.

I Theorem 1. Let T1 and T2 be positive integers, P a packing, and C a covering problem.
Given a T1-dynamic algorithm and a (T2, α)-network-static algorithm for (P, C), one can
combine both algorithms to an algorithm such that:
1. (dynamic solution) Its output in round r is a T1-dynamic solution for (P, C) .
2. (locally static) If the graph is static in the α-neighborhood of a node v ∈ Vr in all rounds

in an interval [r, r2], then the output of v does not change for all rounds in [r+T1 +T2, r2].

3 Two Sample Problems: MIS & Vertex-Coloring

We show how to apply the above framework to two of the classic local symmetry breaking
problems: computing a vertex coloring and computing an MIS of the network graph. In both
cases, we only slightly adapt existing randomized algorithms (e.g., [5, 1, 6]) to obtain the
results. We see the relatively simple adaptation – compared to a huge and heavy machinery –
of existing static algorithms to the dynamic case as a strength of the framework in terms
of practicability. Of course, some of the existing proofs need additional care and some
algorithms, e.g., the MIS algorithm by Ghaffari [5], need some (crucial) modifications to
assure termination in the dynamic setting.

I Corollary 2. There is a T = O(logn) and an algorithm that, w.h.p., outputs a T -dynamic
solution for (degree+1)-coloring (for MIS) in every round and the output of any node v is
static in all rounds in the interval [r+ 2T, r2] if the 2-neighborhood of v is static in all rounds
in the interval [r, r2].

DISC 2018

42:4 Local Distributed Algorithms in Highly Dynamic Networks

References
1 N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the

maximal independent set problem. J. of Algorithms, 7(4):567–583, 1986.
2 S. Assadi, K. Onak, B. Schieber, and S. Solomon. Fully dynamic maximal independent set

with sublinear update time. In Proc. 50th ACM Symp. on Theory of Comp. (STOC), 2018.
3 K. Censor-Hillel, E. Haramaty, and Z.S. Karnin. Optimal dynamic distributed MIS. In

Proc. 35th ACM Symp. on Principles of Distr. Computing (PODC), pages 217–226, 2016.
4 P. Fraigniaud, A. Korman, and D. Peleg. Local distributed decision. In Proc. 52nd Symp.

on Foundations of Computer Sc. (FOCS), pages 708–717. IEEE Computer Society, 2011.
5 M. Ghaffari. An improved distributed algorithm for maximal independent set. In Proc.

27th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 270–277, 2016.
6 M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.

Comp., 15:1036–1053, 1986.

Brief Announcement: Randomized Blind Radio
Networks
Artur Czumaj
University of Warwick, Coventry, UK
A.Czumaj@warwick.ac.uk

Peter Davies
University of Warwick, Coventry, UK
P.W.Davies@warwick.ac.uk

Abstract
Radio networks are a long-studied model for distributed system of devices which communicate
wirelessly. When these devices are mobile or have limited capabilities, the system is best modeled
by the ad-hoc variant, in which the devices do not know the structure of the network. Much work
has been devoted to designing algorithms for the ad-hoc model, particularly for fundamental
communications tasks such as broadcasting. Most of these algorithms, however, assume that
devices have some network knowledge (usually bounds on the number of nodes in the network
n, and the diameter D), which may not be realistic in systems with weak devices or gradual
deployment. Little is known about what can be done without this information.

This is the issue we address in this work, by presenting the first randomized broadcasting
algorithms for blind networks in which nodes have no prior knowledge whatsoever. We demon-
strate that lack of parameter knowledge can be overcome at only a small increase in running time.
Specifically, we show that in networks without collision detection, broadcast can be achieved in
O(D log n

D log2 log n
D + log2 n) time, almost reaching the Ω(D log n

D + log2 n) lower bound. We
also give an even faster algorithm for directed networks with collision detection.

2012 ACM Subject Classification Theory of computation → Distributed algorithms, Networks
→ Network algorithms

Keywords and phrases Broadcasting, Randomized Algorithms, Radio Networks

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.43

Funding Research partially supported by the Centre for Discrete Mathematics and its Applica-
tions (DIMAP), by EPSRC award EP/D063191/1, and by EPSRC award EP/N011163/1.

1 Model and problem

In the ad-hoc multi-hop radio network model, a communications network is represented as a
graph, with nodes corresponding to devices with wireless capability. A directed edge (u, v)
in the graph means that device u can reach device v via direct transmission. Efficiency of
algorithms is measured in terms of number of nodes n in the network, and eccentricity D

(maximum distance between any pair of nodes). The defining feature of radio networks is
the rule for how nodes can communicate: time is divided into discrete synchronous steps,
in which each node can choose whether to transmit a message or listen for messages. A
listening node in a given time-step then hears a message iff exactly one of its in-neighbors
transmits. In the model with collision detection, a listening node can distinguish between the
cases of having 0 in-neighbors transmit and having more than one, but in the model without
collision detection these scenarios are indistinguishable.

© Artur Czumaj and Peter Davies;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 43; pp. 43:1–43:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:A.Czumaj@warwick.ac.uk
mailto:P.W.Davies@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.DISC.2018.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 Randomized Blind Radio Networks

While, in the ad-hoc model, the underlying graph is unknown to the nodes, it is usual to
assume that nodes do know the values of n and D. We do not make this assumption, and
thus are dealing with a more restrictive model, which we call blind radio networks, in which
nodes have no prior network knowledge whatsoever.

We design randomized algorithms for the task of broadcasting, in which a single designated
source node starts with a message, and must inform all nodes in the network via transmissions.
We assume that all nodes except the source begin in an inactive state, and become active
when they receive a transmission. Our algorithms are Monte-Carlo algorithms succeeding
with high probability (i.e., their failure probability is at most n−c for some c > 0).

1.1 Related work

Broadcasting is possibly the most studied problem in radio networks, and has a wealth of
literature in various settings. In networks without collision detection, optimal broadcasting
was achieved by Czumaj and Rytter [3], and Kowalski and Pelc [5], who gave randomized
algorithms that complete the task in O(D log n

D + log2 n) time with high probability. This
matched a known Ω(D log n

D + log2 n) lower bound for the task [1, 6]. However, their
algorithms intrinsically require parameter knowledge, and algorithms that do not require
such knowledge have been little studied. The closest analogue in the literature is the work of
Jurdzinski and Stachowiak [4], who give algorithms for wake-up in single-hop radio networks
under a wide range of node knowledge assumptions. Their Use-Factorial-Representation
algorithm is the most relevant; the running time is given as O((log n log log n)3) for single-hop
networks, but a similar analysis as we present would demonstrate that the algorithm also
performs broadcasting in multi-hop networks in O((D + log n) log2 n

D log3 log n
D) time.

1.2 New results

We present a randomized algorithm for broadcasting in blind (directed or undirected)
networks without collision detection which succeeds with high probability within time
O(D log n

D log2 log n
D + log2 n). This improves over the running time of [4] and comes

within a poly-log log factor of the Ω(D log n
D + log2 n) lower bound [1, 6]. We also present an

O(D log n
D log log log n

D +log2 n)-time algorithm for directed networks with collision detection.

2 Algorithms

The main idea of our randomized algorithms in blind radio networks is as follows: when
considering a particular node v we wish to inform, all of its active in-neighbors will be
transmitting with some probability. We wish to make the sum of these probabilities ap-
proximately constant (say 1

2), since then we can show that v will be informed with good
probability. However, we do not know the size of v’s active in-neighborhood, so choosing
appropriate probabilities is difficult. To do so, we have the source node generate a global
random variable from some distribution Y for each time-step, which will function as a ‘guess’
of in-neighborhood size. By appending these variables to the source message, we can ensure
that all active nodes are aware of them. Then, based on these global variables and upon
local randomness, the active nodes decide whether to transmit.

By choosing and analyzing the distribution Y we can obtain some bound on the probability
that a node with active neighbors is informed, in each time-step. We then show a recipe for
converting these probabilities to a running time for broadcasting.

A. Czumaj and P. Davies 43:3

Algorithm 1 Broadcast Framework.
for t = 1 to ∞ do

let T = 2t.
for each j ∈ [T], s generates a random variable xj from distribution Y .
s appends variables xj to the source message.
for j from 1 to T , in time-step j, do active nodes v transmit with probability 2−xj .

end for

2.1 Blind radio networks without collision detection
In networks without collision detection, we take Y to be the sum of two components, which
account for different network conditions. Under most circumstances, we use General-
Broadcast; where the source “guesses” a neighborhood size from 1 to ∞ in each time-step,
with a probability that decreases in neighborhood size in order to converge. In low diameter
networks, we improve upon this with Shallow-Broadcast component, which quickly informs
networks of low diameter using T to approximate in-neighborhood size.

I Theorem 1. Broadcasting can be performed in networks without collision detection in
O(D log n

D log2 log n
D + log2 n) time, succeeding with high probability.

2.2 Directed blind radio networks with collision detection
When collision detection (and a global clock) is available, nodes can learn their exact distance
dv from the source node within O(D) time, via a process known as beep waves [2]. The
local transmission probabilities that nodes use during our broadcasting algorithm can then
depend on dv, as well as T and the global randomness provided by the source. We add two
new components to the two already defined which exploit this: Deep-Broadcast, which
quickly informs nodes far from the source, and Semi-Shallow-Broadcast, which removes
a running-time bottleneck when D is small.

I Theorem 2. Broadcasting can be performed in networks with collision detection in
O(D log n

D log log log n
D + log2 n) time, succeeding with high probability.

References
1 N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio broadcast. Journal

of Computer and System Sciences, 43(2):290–298, 1991.
2 A. Czumaj and P. Davies. Communicating with beeps. In Proceedings of the 19th Interna-

tional Conference on Principles of Distributed Systems (OPODIS), pages 1–16, 2015.
3 A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with unknown

topology. In Proceedings of the 44th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 492–501, 2003.

4 T. Jurdziński and G. Stachowiak. Probabilistic algorithms for the wakeup problem in
single-hop radio networks. Theory of Computing Systems, 38(3):347–367, 2005.

5 D. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks. Distributed
Computing, 18(1):43–57, 2005.

6 E. Kushilevitz and Y. Mansour. An Ω(D log(N/D)) lower bound for broadcast in radio
networks. SIAM Journal on Computing, 27(3):702–712, 1998.

DISC 2018

Brief Announcement: Deterministic Contention
Resolution on a Shared Channel
Gianluca De Marco
Dipartimento di Informatica, University of Salerno, Italy
demarco@dia.unisa.it

Dariusz R. Kowalski
Department of Computer Science, University of Liverpool, UK
d.kowalski@liverpool.ac.uk

Grzegorz Stachowiak
Institute of Computer Science, University Wrocław, Poland
gst@cs.uni.wroc.pl

Abstract
A shared channel, also called multiple-access channel, is one of the fundamental communication
models. Autonomous entities communicate over a shared medium, and one of the main challenges
is how to efficiently resolve collisions occurring when more than one entity attempts to access
the channel at the same time. In this work we explore the impact of asynchrony, knowledge (or
linear estimate) of the number of contenders, and acknowledgments, on both latency and channel
utilization for the Contention resolution problem with non-adaptive deterministic algorithms.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Shared channel, multiple-access channel, distributed algorithm

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.44

1 Introduction

The formal model that is taken as the basis for theoretical studies is defined as follows, cf.
the surveys by Gallager [9] and Chlebus [4] and the recent works [5, 7, 8]. A set of k stations,
also called nodes, are connected to the same transmission medium (called a shared channel)
and can communicate by transmitting and receiving messages on the shared channel in
synchronous rounds. The stations have distinct ids in the range [N] = {0, 1, . . . , N − 1}. A
contention resolution algorithm is a distributed algorithm that schedules the transmissions
for each of the k stations possessing a packet, guaranteeing that every station eventually
transmits individually (i.e., without interfering with other stations) on the channel.

All the literature on this problem (with the exception of recent papers [3, 7, 8]) either
assumed the (simplified) static situation in which the k stations are all activated at the very
beginning (and therefore start simultaneously their transmitting schedules) [1, 11, 12, 13] or
that the activation times are restricted to statistical or adversarial-queuing models [2, 6, 10].
In the dynamic scenario, considered in this paper, Bender et al. [3] gave a very efficient
randomized adaptive algorithm with collision detection. In contrast, our work deals with
deterministic non-adaptive algorithms, i.e., protocols that are not using any channel feedback.

Inspired by the inherently decentralized nature of the multiple access model, and adopting
the model from [8] developed in the context of randomized solutions, in this paper we focus
on a more general dynamic scenario, in which the stations with packets could get awake (i.e.,
start their local executions) in arbitrary times, i.e., the sequence of activation times, also
called a wake-up schedule, is totally determined by a worst-case adversary. This scenario,

© Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 44; pp. 44:1–44:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:demarco@dia.unisa.it
mailto:d.kowalski@liverpool.ac.uk
mailto:gst@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.DISC.2018.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Deterministic Contention Resolution on a Shared Channel

also called asynchronous, reflects the more realistic situation in which the stations are
geographically far apart or totally independent (from themselves and/or from the scheduler
which injects packets to the underlying communication protocol), and consequently each
activation time is locally determined and cannot be known or predicted.

Although the communication is in synchronous rounds, we assume no global clock and no
system-based synchronization: each station starts its local clock in the round when it wakes
up, without knowing anything about the round numbers of other stations’ clock. In the static
model there is no distinction between the model with a global clock and that without it.
Indeed, one can assume that a global clock is always available in the latter: all stations start
simultaneously and therefore their clocks, will always tick the same rounds. In this sense, the
dynamic model considered in this work is more general and challenging than the static one.

We measure the efficiency of a station in terms of its latency, i.e., the number of rounds
necessary for the station to transmit its packet successfully, measured since its activation
time. The complexity of an algorithm, called an algorithm latency (or simply a latency if it is
understood from the context) is defined as the maximum latency over all awaken stations. A
channel utilization, sometimes called a throughput, is defined as the worst-case ratio between
the contention size k (which corresponds to the absolute minimum number of rounds needed
for all the awaken stations to transmit successfully to the channel) and the algorithm latency.

2 Our contribution

Our first result shows that if the number of contenders k (or a linear upper bound of it)
is known and the stations switch-off after the acknowledgment of their successful trans-
missions, the channel admits efficient solutions: there exists a deterministic non-adaptive
distributed algorithm working in O(k log k log N) time. This is close to the known lower
bound Ω(k log(N/k)). In terms of channel utilization, the algorithm achieves throughput
Ω(1/(log k log N)), which is close to the upper bound O(1/ log(N/k)).

In a nutshell, we first generate a randomized schedule that succeeds with very high
probability and then we use the probabilistic method to show that a schedule allowing every
station to transmit must exist. Since we know k, the schedule for any station can be organized
in such a way that we start with a probability of transmission O(1/k) and double it every
O(k log N) rounds until the station transmits with constant probability. For any fixed station
v, the rounds t at which v has a good (constant) probability of successfully transmission
are those with the sum of all transmission probabilities at t being a constant. The main
challenge is to show that there are sufficiently many rounds with such a favorable property,
in order to get a sufficiently high probability of short latency allowing derandomization.

In the same settings but when k is unknown, we show an Ω(k2/ log k) lower bound, which
points out that the ignorance of contention k makes the channel nearly quadratically less
efficient, even if the stations could switch-off after acknowledgments. In very broad terms, the
proof is organized as follows. We start by defining a randomly generated wake-up pattern for
the k stations. Then we prove that in such a (worst-case) random pattern no station is able
to successfully transmit after Ω(k2/ log k) rounds with a high probability. The probabilistic
method is finally used to show that such a wake-up pattern exists.

In our final result we nearly match the above mentioned complexity (for unknown k) by
presenting an upper bound of O(k2 log N), which is achieved even if acknowledgments are not
provided. In terms of channel utilization, the algorithm achieves throughput Ω(1/(k log N)),
which is close to the upper bound O((log k)/k). The high level approach follows the lines
of the first result. Here the additional challenge is the ignorance of parameter k, which

G. De Marco, D. R. Kowalski, and G. Stachowiak 44:3

complicates the design of the random schedule. In particular, in this case the transmission
probabilities cannot depend on the unknown k. Thus, we let them start from a constant
value and decrease (contrary to what we did when k was known). One of the main issues
is the right choice of the decrease factor. On one hand it should be relatively fast in order
to guarantee the sought latency. On the other hand, it cannot be too fast since avoiding
collisions becomes harder in absense of switch-off’s (due to no acknowledgements). We found
out that starting from a constant probability and decreasing it every O(ln N) rounds from
1/
√

j to 1/
√

j + 1 for j = 4, 5, 6, . . ., allows us to balance both challenges.
Surprisingly, our results imply that the knowledge of the contention size has an exponential

impact on the deterministic utilization of an asynchronous channel, while it is known that for
synchronized channels this feature does not influence asymptotically the channel utilization.
The second implication concerns the impact of acknowledgments – our results exponentially
improve deterministic channel utilization if (some estimate of) k is known, unlike the case of
randomized algorithms where the corresponding improvement is only polynomial.

References
1 A. Fernández Anta, M. A. Mosteiro, and J. Ramon Mu noz. Unbounded contention resol-

ution in multiple-access channels. Algorithmica, 67:295–314, 2013.
2 M. A. Bender, M. Farach-Colton, S. He, B. C. Kuszmaul, and C. E. Leiserson. Adversarial

contention resolution for simple channels. In Proceedings, 17th ACM Symp. on Parallel
Algorithms (SPAA), pages 325–332, New York, NY, USA, 2005. ACM.

3 M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young. Contention resolution with
log-logstar channel accesses. In Proceedings, 48th ACM Symp. on Theory of Computing
(STOC), pages 499–508, Cambridge, MA, USA, 2016. ACM.

4 B. S. Chlebus. Randomized communication in radio networks. In P. M. Pardalos, S. Ra-
jasekaran, J. H. Reif, and J. D. P. Rolim, editors, Handbook on Randomized Computing,
pages 401–456. Springer, New York, NY, USA, 2001.

5 B. S. Chlebus, G. De Marco, and D. R. Kowalski. Scalable wake-up of multi-channel single-
hop radio networks. Theor. Comput. Sci., 615:23–44, 2016. doi:10.1016/j.tcs.2015.11.
046.

6 B. S. Chlebus, D. R. Kowalski, and M. A. Rokicki. Adversarial queuing on the multiple
access channel. ACM Trans. on Algorithms, 8:5:1–5:31, 2012.

7 G. De Marco and D. R. Kowalski. Contention resolution in a non-synchronized multiple
access channel. Theor. Comput. Sci., 689:1–13, 2017. doi:10.1016/j.tcs.2017.05.014.

8 G. De Marco and G. Stachowiak. Asynchronous shared channel. In Proceedings, ACM
Symp. on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July
25-27, 2017, pages 391–400, 2017. doi:10.1145/3087801.3087831.

9 Robert G. Gallager. A perspective on multiaccess channels. IEEE Trans. Information
Theory, 31(2):124–142, 1985.

10 L. A. Goldberg, P. D. MacKenzie, M. Paterson, and A. Srinivasan. Contention resolution
with constant expected delay. J. ACM, 47(6):1048–1096, 2000.

11 A. G. Greenberg and A S. Winograd. Lower bound on the time needed in the worst case to
resolve conflicts deterministically in multiple access channels. J. ACM, 32:589–596, 1985.

12 J. Komlós and A. G. Greenberg. An asymptotically optimal nonadaptive algorithm for
conflict resolution in multiple-access channels. IEEE Trans. on Information Theory, 31:302–
306, 1985.

13 D. Kowalski. On selection problem in radio networks. In Proceedings, 24th ACM Symp. on
Principles of Distributed Computing (PODC), pages 158–166, Las Vegas, NV, USA, 2005.
ACM.

DISC 2018

http://dx.doi.org/10.1016/j.tcs.2015.11.046
http://dx.doi.org/10.1016/j.tcs.2015.11.046
http://dx.doi.org/10.1016/j.tcs.2017.05.014
http://dx.doi.org/10.1145/3087801.3087831

Brief Announcement: Generalising Concurrent
Correctness to Weak Memory
Simon Doherty1

Department of Computer Science, University of Sheffield, UK
s.doherty@sheffield.ac.uk

Brijesh Dongol2

Department of Computer Science, University of Surrey, Guildford, UK

Heike Wehrheim
Department of Computer Science, Paderborn University, Paderborn, Germany

John Derrick
Department of Computer Science, University of Sheffield, UK

Abstract
Correctness conditions like linearizability and opacity describe some form of atomicity imposed
on concurrent objects. In this paper, we propose a correctness condition (called causal atomicity)
for concurrent objects executing in a weak memory model, where the histories of the objects in
question are partially ordered. We establish compositionality and abstraction results for causal
atomicity and develop an associated refinement-based proof technique.

2012 ACM Subject Classification Theory of computation → Concurrency, Theory of computa-
tion → Shared memory algorithms

Keywords and phrases Weak Memory, Concurrent Object, Execution Structure

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.45

1 Foundations

Correctness conditions like linearizability for data structures and opacity for software transac-
tional memory (STM) specify atomicity for concurrent objects. They are developed under the
assumption that the underlying memory model is sequentially consistent. Our objective here
is to generalise such notions to weak memory models. We develop a new notion of correctness:
casual atomicity3, which we show is compositional and ensures client abstraction. Causal
atomicity applies to both concurrent objects and transactional memory, thus it encompasses
both linearizability and opacity. Causal linearizability is covered earlier [1]; here we specialise
causal atomicity to causal opacity and develop a proof technique for it.

Our framework is based on object executions given as execution structures [4]. They
describe the usual precedence order between events as well as a communication relation.
Informally, a communication relation between two events arises when some low-level op-
eration of the first event synchronises with some operation belonging to the second event.
Events describe e.g. transactions in an STM or operations on a data structure, and their

1 Simon Doherty and John Derrick are funded by EPSRC Grant EP/M017044/1.
2 Funded by EPSRC Grant EP/R019045/1.
3 This notion is related to, but different from causal atomicity defined by Farzan and Madhusudan [3].

For example, their notion is not compositional.

© Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 45; pp. 45:1–45:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.doherty@sheffield.ac.uk
https://doi.org/10.4230/LIPIcs.DISC.2018.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Generalising Concurrent Correctness to Weak Memory

implementations give arise to the execution of low-level operations. In prior work [1], we
have used this technique to define a causal version of linearizability. Here, we generalise the
methods and define a notion of atomicity that is also applicable to transactional memory.

I Definition 1. An execution structure is a tuple (E, ,) consisting of a finite set of
events E, a strict order ⊆ E × E and a relation ⊆ E × E satisfying:
1. If t1 t2, then both t1 t2 and ¬(t2 t1).
2. If t1 t2 t3 or t1 t2 t3, then t1 t3.
3. If t1 t2 t3 t4, then t1 t4.
Like other concurrent correctness conditions, we employ some sequential object on a fixed
alphabet to compare the executions of the concurrent object against. A sequential object S
specifies a set of legal sequential executions denoted legalS. Syntactically, each element of
legalS is a sequence of events that are labelled with operations that the object provides.

2 Contributions

Causal atomicity. When comparing concurrent executions against sequential ones, some
key orders of the concurrent execution need to be preserved. In our case, these are the
relations and of the execution structure. We say < is a logical order of an execution
structure E = (E, ,) iff < ⊆ E × E is a strict order such that ⊆ < ⊆ . For a
partial order < ⊆ E×E, we let LE(<) = {w ∈ E∗ | < ⊆ w} be the set of linear extensions
of <, where w is the total order corresponding to the (total) order on the elements of w.

I Definition 2. Let S be a sequential object. An execution structure E is causally atomic
w.r.t. S iff there exists a logical order < of E such that LE(<) ⊆ legalS.

The logical order at least needs to contain the precedence order and at most the commu-
nication relation . Note that the logical order (induced by a specification) can introduce
additional communication in an implementation (see example below).

Compositionality. A key requirement on every correctness condition is compositionality:
when a program employs operations from two different concurrent objects, these objects
individually satisfy the correctness condition if, and only if, their combined usage also satisfies
the correctness condition. Technically, we use a composition operator ⊗ on sequential objects
to compute the interleavings of sequential executions, and an operator | to restrict execution
structures to events from a given alphabet.

I Theorem 3. Let S1 and S2 be sequential objects with disjoint alphabets Σ1 and Σ2 and let
E = (E, ,) be an execution structure. Then E|Σ1 and E|Σ2 are causally atomic w.r.t. S1
and S2, respectively, iff E is causally atomic w.r.t. S1 ⊗ S2.

For example, consider the execution structure below, which comprises a stack object S and
an STM, where we assume memory values are initialised to 0. The event W (x, 1);W (y, 1)
corresponds to a transaction consisting of a write to x followed by a write to y. Similarly,
R(x, 1);R(y, 1) corresponds to a transaction comprising a read of x followed by a read of y.

S.Push(1) W (x, 1);W (y, 1)

R(x, 1);R(y, 1) (S.Pop, empty)

The execution should not be allowed since there is no total ordering of events that re-
spects the existing precedence order . Causal atomicity necessitates a communication
relation W (x, 1);W (y, 1) R(x, 1);R(y, 1) which, together with axiom A3 induces order

S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick 45:3

S.Push(1) (S.Pop, empty). Thus, when considering the full execution structure the
composition execution restricted to the stack object is not causally atomic. A more detailed
example composition of concurrent objects is given in [1].

Abstraction. Another property of causal atomicity is abstraction, which formalises a notion
of substitutability: when a client uses the operations that an object provides in its interface,
then it should not be able to distinguish the implementation from its sequential specification.
To formalise this, we represent a client C as a set of client executions, each of which is
simply a partial order over events labelled with operations from the alphabet of the object
and other client-local events such as reads and writes to client variables. Suppose O is
a set of execution structures over Σ. The client-object composition of C and O is the set
CJOK = {≺ ∈ C | ∃ ((dom(≺) ∪ ran(≺)) ∩ Σ, ,) ∈ O.≺|Σ ⊆ }.

Given a sequential object S, we let CA[S] be the set of execution structures that are
causally atomic w.r.t. S. Furthermore, we lift sequential objects to sets of execution structures
by letting E [S] be the set of execution structures such that there is some w ∈ legalS where
both the precedence order and communication relation is the total order w. Our goal is to
compare, for any client C, the client-object composition CJCA[S]K with the corresponding
composition with the sequential object, CJE [S]K. To do so, we define a notion of observational
refinement, denoted v, such that CJCA[S]K v CJE [S]K holds if for every execution in CJCA[S]K,
there is an observationally equivalent execution in CJE [S]K. Our notion of observational
equivalence requires that any pair of equivalent executions must have compatible orders
when restricted to client-local events. We then prove the following.

I Theorem 4. If C is a client and S a sequential object, then CJCA[S]K v CJE [S]K.

Transactional Memory. We use causal atomicity to obtain a correctness condition for
transactional memory, which we call causal opacity. To do so, we first define a transactional
sequential object, denoted T, whose alphabet is made up of entire blocks of reads and writes,
and whose semantics requires that each block executes atomically. Causal opacity itself is a
condition on transactional operations rather than atomic blocks, thus allowing concurrent
transactions. It is defined in terms a transformation called µ-abstraction [4], that combines
these operations into a block from the alphabet of T. An execution structure is said to be
causally opaque whenever its µ-abstraction is causally atomic w.r.t. T.

We show how to verify causal opacity using a sequential object, C, such that the µ-
abstraction of every execution structure in CA[C] is causally atomic w.r.t. T. The object C
is adapted from TMS2 [2], and like its predecessor, is given in an operational fashion which
enables simulation-based refinement proofs.

References
1 S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. Making Linearizability Compositional

for Partially Ordered Executions. In iFM, volume 11023 of LNCS, 2018.
2 S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and

verifying transactional memory. Formal Asp. Comput., 25(5):769–799, 2013.
3 A. Farzan and P. Madhusudan. Causal atomicity. In CAV, volume 4144 of LNCS, pages

315–328. Springer, 2006.
4 L. Lamport. On interprocess communication. part I: basic formalism. Distributed Comput-

ing, 1(2):77–85, 1986.

DISC 2018

Brief Announcement: Exact Size Counting in
Uniform Population Protocols in Nearly
Logarithmic Time
David Doty
Department of Computer Science, University of California, Davis
doty@ucdavis.edu

Mahsa Eftekhari
Department of Computer Science, University of California, Davis
mhseftekhari@ucdavis.edu

Othon Michail
Department of Computer Science, University of Liverpool, UK
Othon.Michail@liverpool.ac.uk

Paul G. Spirakis
Department of Computer Science, University of Liverpool, UK and Computer Technology
Institute & Press “Diophantus” (CTI), Patras, Greece
P.Spirakis@liverpool.ac.uk

Michail Theofilatos
Department of Computer Science, University of Liverpool, UK
michail.theofilatos@liverpool.ac.uk

Abstract
We study population protocols: networks of anonymous agents whose pairwise interactions are
chosen uniformly at random. The size counting problem is that of calculating the exact number
n of agents in the population, assuming no leader (each agent starts in the same state). We give
the first protocol that solves this problem in sublinear time.

The protocol converges in O(logn log logn) time and uses O(n60) states (O(1)+60 logn bits of
memory per agent) with probability 1−O(log log n

n). The time to converge is also O(logn log logn)
in expectation. Crucially, unlike most published protocols with ω(1) states, our protocol is
uniform: it uses the same transition algorithm for any population size, so does not need an
estimate of the population size to be embedded into the algorithm.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases population protocol, counting, leader election, polylogarithmic time

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.46

Funding DD, ME: NSF grant CCF-1619343. OM, PS, MT: EEE/CS initiative NeST. MT: Lever-
hulme Research Centre for Functional Materials Design.

1 Introduction

Population protocols [4] are networks that consist of computational entities called agents
with no control over the schedule of interactions with other agents. In a population of n
agents, repeatedly a random pair of agents is chosen to interact, each observing the state of
the other agent before updating its own state.

© David Doty, Mahsa Eftekhari, Othon Michail, Paul G. Spirakis, and Michail Theofilatos;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 46; pp. 46:1–46:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:doty@ucdavis.edu
mailto:mhseftekhari@ucdavis.edu
mailto:Othon.Michail@liverpool.ac.uk
mailto:P.Spirakis@liverpool.ac.uk
mailto:michail.theofilatos@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.DISC.2018.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Size Counting in Uniform Population Protocols in Nearly Logarithmic Time

The (parallel) time for some event to happen in a protocol is a random variable, defined
as the number of interactions, divided by n, until the event happens. A recent blitz of
impressive results in population protocol has shown that leader election [1, 9, 7, 8] and
exact majority [3, 2] can be solved in polylog(n) time using polylog(n) states. Most of the
protocols with ω(1) states use a nonuniform model: given n, the state set Qn and transition
function δn : Qn ×Qn → Qn ×Qn are allowed to depend arbitrarily on n, other than the
constraint that |Qn| ≤ f(n) for some function f growing as polylog(n). This nonuniformity
is used in most of the cited protocols to encode a value such as blognc into each agent.

We define a uniform variant of the model: the same transition algorithm is used for all
populations, though the number of states may vary with the population size. A uniform
protocol can be deployed into any population without knowing in advance the size, or even a
rough estimate of the size. The original, O(1)-state model [4, 5, 6], is uniform since there is
a single transition function. Because we allow memory to grow with n, our model’s power
exceeds that of the original, but is strictly less than that of the nonuniform model of most
papers using ω(1) states.

2 Algorithm

The problem of counting the number of agents and storing this number in each agent is
clearly solvable by an O(n) time protocol using a straightforward leader election: Agents
initially assume they are leaders and the count is 1. When two leaders meet, one agent sums
their counts while the other becomes a follower, and followers propagate by epidemic the
maximum count. No faster protocol was previously known. Our main result improves this.

I Theorem 2.1. There is a leaderless, uniform population protocol solving the exact size
counting problem with probability 1. With probability at least 1− 10+5 log log n

n , the convergence
time is at most 6 lnn log logn, and each agent uses 17+60 logn bits of memory. The expected
time to convergence is at most 7 lnn log logn.

Key to our technique is a protocol, due to Mocquard et al. [10] (and similar to that of
Alistarh and Gelashvili [3]), that counts the exact difference between the number b of “blue”
and r of “red” agents in the initial population. The protocol assumes that each agent initially
stores n exactly (so is nonuniform). Blue agents start with an integer value −M, while red
agents start with M. When two agents meet, they average their values, one rounding up
and the other down if the sum is odd. This eventually converges to all agents sharing the
population-wide average (b− r) M

n , and the estimates of this average get close enough for the
output to be correct within O(logn) time [10]. Our protocol essentially inverts this, starting
with one blue agent (a leader) and n− 1 red agents, we compute the population size as a
function of the average. (See below for details.) However, for this to work, our protocol
requires a leader and for each agent to share a value M ≥ 3n3, which are not present initially.
Four sub-protocols are used in total (although all agents run in parallel, each subprotocol
runs sequentially within each agent whenever it interacts): UniqueID, ElectLeader,
Averaging, and Timer.

UniqueID eventually assigns to every agent a unique ID, represented as a binary string.
Agents start with ID ε (empty string), and whenever two agents with the same ID meet,
all agents double the length of their IDs with uniformly random bits (appending a single
bit when two ε’s meet). This protocol requires Ω(n) time to converge, but within only
O(logn log logn) time can be used by the next subprotocol to elect a leader.

ElectLeader propagates the lexicographically largest ID (considered the ID of the
leader) by epidemic (via transition of the form x, y → y, y if y > x lexicographically). The
length of the leader’s ID is used as a polynomial-factor upper bound on 3n3.

D. Doty, M. Eftekhari, O. Michail, P. G. Spirakis, and M. Theofilatos 46:3

Averaging uses a fast averaging protocol [10, 3]. We assume the initial configuration of
this protocol is one leader and n − 1 followers. (This protocol and the next (Timer) are
restarted each time the UniqueID protocol discovers two agents shared an ID; so eventually
Averaging will be restarted with a unique leader.) Each agent stores the value M, and the
leader initializes an integer field ave to be M, with followers initializing ave to be 0. When
two agents meet, they average their ave fields, with one rounding up and the other rounding
down if the sum is odd. Thus the population-wide sum is always M. Eventually all agents
have ave = d M

ne or b
M
nc, so n =

⌊ M
ave + 1

2
⌋
(i.e., M

ave + 1
2 rounded to the nearest integer). It

could take linear time for ave to converge this closely to M
n , but as long as M ≥ 3n3 and ave

is within n of M
n ,

⌊ M
ave + 1

2
⌋
is the correct population size n; we show that in O(logn) time

all ave fields are within n of M
n .

Since UniqueID continues restarting beyond the O(logn log logn) time required for
initialize convergence to a correct output, Timer is used to detect when Averaging has
likely converged, waiting to write output into the output field of the agent. Timer is a phase
clock [6] that ensures after the correct value is written, on subsequent restarts of Averaging,
the incorrect values that exist before Averaging re-converges will not overwrite the correct
value recorded into output during the earlier restart.

3 Conclusion

Ω(n) is a clear lower bound on the number of states required for any protocol computing the
exact population size, since logn bits are required merely to write the number n. (Note that
our protocol uses 60 logn bits.) It is an open question if there exists a uniform polylog-time,
O(n)-state population protocol for exact size computation.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest. Time-

space trade-offs in population protocols. In SODA, 2017.
2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population

protocols. In SODA, 2018.
3 Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population pro-

tocols. In ICALP, 2015.
4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-

putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006.

5 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In PODC, 2006.

6 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population pro-
tocols with a leader. Distributed Computing, 21(3):183–199, 2008.

7 Petra Berenbrink, Dominik Kaaser, Peter Kling, and Lena Otterbach. Simple and Efficient
Leader Election. In SOSA, 2018.

8 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Brief announcement:
Population protocols for leader election and exact majority with O(log2 n) states and
O(log2 n) convergence time. In PODC, 2017.

9 Leszek Gasieniec and Grzegorz Stachowiak. Fast space optimal leader election in population
protocols. In SODA, 2018.

10 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with population protocols. In NCA, 2015.

DISC 2018

Brief Announcement: A Tight Lower Bound for
Clock Synchronization in Odd-Ary M-Toroids
Reginald Frank1

Texas A&M University, College Station, TX, USA
reginaldfrank77@tamu.edu

https://orcid.org/0000-0002-0423-1071

Jennifer L. Welch2

Texas A&M University, College Station, TX, USA
welch@cse.tamu.edu

Abstract
In this paper we show a tight closed-form expression for the optimal clock synchronization in
k-ary m-cubes with wraparound, where k is odd. This is done by proving a lower bound of
1
4um

(
k − 1

k

)
, where k is the (odd) number of processes in each of the m dimensions, and u is

the uncertainty in delay on every link. Our lower bound matches the previously known upper
bound.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Clock synchronization, Lower bound, k-ary m-toroid

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.47

Related Version Find the full paper at https://arxiv.org/abs/1807.05139.

1 Introduction

Synchronizing clocks in a distributed system in which processes communicate through
messages with uncertain delays is subject to inherent errors. A body of work has sought
bounds on how closely the clocks can be synchronized when there is no drift in the hardware
clocks and there are no failures. Lundelius and Lynch [5] showed that, in an n-process clique
with the same uncertainty u on every link, the best synchronization possible is u

(
1− 1

n

)
.

Subsequently, Halpern et al. [4] considered arbitrary topologies in which each link may have
a different uncertainty and showed that the optimal clock synchronization is the solution of
an optimization problem. This work was generalized by [1, 6] in which algorithms were given
for finding the optimal clock synchronization in any given execution. In contrast to the more
general lower bounds of [4, 1, 6], Biaz and Welch [3] gave a collection of closed-form upper
and lower bounds on the optimal clock synchronization in the worst case for k-ary m-cubes
(m-dimensional hypercubes with k processes in every dimension), both with and without
wraparound, in which every link has the same uncertainty, u. When there is no wraparound,
the tight bound is 1

2um (k − 1). When there is wraparound and k is even, the tight bound is
1
4umk. However, when there is wraparound and k is odd, there is a gap between the upper
bound of 1

4um
(
k − 1

k

)
and the lower bound of 1

4um (k − 1).

1 Supported in part by CRA-W and CDC’s DREU program and NSF grant CNS-0540631.
2 Supported in part by NSF grant 1526725.

© Reginald Frank and Jennifer L. Welch;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 47; pp. 47:1–47:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reginaldfrank77@tamu.edu
https://orcid.org/0000-0002-0423-1071
mailto:welch@cse.tamu.edu
https://doi.org/10.4230/LIPIcs.DISC.2018.47
https://arxiv.org/abs/1807.05139
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 A Tight Lower Bound for Clock Synchronization in Odd-Ary M-Toroids

In this paper, we consider k-ary m-cubes with wraparound (“m-toroids”) and odd k. We
show a lower bound of 1

4um
(
k − 1

k

)
, which matches the previously known upper bound. We

use the same shifting technique from previous lower bounds for clock synchronization (e.g.,
[5, 4, 3]). The key insight in our improved lower bound is to exploit the fact that the graph is
a collection of rings in each dimension and to use multiple shifted executions instead of one.

2 Preliminaries

We first present our model and problem statement (following [5, 2, 3]). We consider a
graph of km processes, where k ≥ 3 is odd and m ≥ 1, in which each process id is a tuple
〈p0, p1, ..., pm−1〉 where each pi ∈ {0, 1, ..., k − 1}. There are links in both directions between
any two processes ~p and ~q if and only if their ids differ in exactly one component, say the
i-th, such that pi = qi + 1 (addition on process id components is modulo k throughout).
Each process ~p has a hardware clock modeled as a function H~p from reals (real time) to reals
(clock time). We assume there is no drift, so H~p(t) = t + c~p for some constant c~p. Each
process is modeled as a state machine whose transition function takes as input the current
state, current value of the hardware clock, and current event (receipt of a message or some
internal occurrence), and produces a new state and a message to send over each incident link.

A history of process ~p is a sequence of alternating states and pairs of the form (event,
hardware clock value), beginning with ~p’s initial state. Each state must follow correctly
from the previous one according to ~p’s transition function and the hardware clock values
must increase. A timed history of ~p is a history together with an assignment of a real time t
to each pair (e, T) in the history such that H~p(t) = T . An execution is a set of km timed
histories, one per process, with a bijection for each link between the set of messages sent
over the link and the set of messages received over the link. The delay of a message is the
difference between the real time when it is received and the real time when it is sent. An
execution is admissible if every message has delay in [0, u] where u is a fixed value called the
uniform uncertainty.

We assume each process ~p has a local variable adj~p as part of its state and we define
its adjusted clock A~p(t) to be equal to H~p(t) + adj~p(t). An execution has terminated once
all processes have stopped changing their adj variables. We say the algorithm achieves ε-
synchronized clocks if every admissible execution eventually terminates with |A~p(t)−A~q(t)| ≤ ε
for all processes ~p and ~q and all times t after termination.

“Shifting” an execution changes the real times at which events occur [5]. Let x be an
m-dimensional matrix of real numbers with k elements in each dimension, which we call a
shift matrix; elements of x are indexed by process ids. Define shift(α,x) be the result of
adding x~p to the real time associated with each event in ~p ’s timed history in α. Shifting
changes the hardware clocks and message delays as follows [5, 2]:

I Lemma 1. Let α be an execution with hardware clocks H~p and let x be a shift matrix.
Then shift(α,x) is a (not necessarily admissible) execution in which

(a) the hardware clock of each ~p, denoted H ′~p(t), equals H~p(t)− x~p and
(b) every message from ~p to ~q has delay δ − x~p + x~q, where δ is the message’s delay in α.

3 Lower Bound

I Theorem 2. For any algorithm that achieves ε-synchronized clocks in a k-ary m-toroid
with uniform uncertainty u, where k is odd, it must be that ε ≥ 1

4um
(
k − 1

k

)
.

The complete proof and an example for the k = 5 case are in the full paper.

R. Frank and J. L. Welch 47:3

Proof sketch. Let A be any algorithm that achieves ε-synchronized clocks in a k-ary m-
toroid with uniform uncertainty u, where k = 2r + 1 for some integer r ≥ 1. Let α be the
admissible execution of A in which H~p(t) = t for each process ~p, every message from ~p to
~q, where ~q is ~p’s neighbor in the h-th dimension such that qh = ph + 1, has the same fixed
delay δ~p,~q, which is 0 if 0 ≤ ph < r and is u if r ≤ ph < k, and every message from ~q to ~p has
the same fixed delay δ~q,~p = u− δ~p,~q.

For 0 ≤ i < k, define αi = shift(α,xi), where the ~p-th element of the shift matrix xi,
denoted xi

~p, is defined as
∑m−1

j=0 Wi
pj
, where W is defined as follows:

range of i ∈ {0, . . . , m− 1}

0 ≤ i < r r ≤ i < k

range of pj Wi
pj

range of pj Wi
pj

0 ≤ pj ≤ i 0 0 ≤ pj ≤ i− r pju

i < pj ≤ r (pj − i)u i− r < pj ≤ r (i− r)u
r < pj ≤ r + i + 1 (r − i)u r < pj ≤ i (i− pj)u
r + i + 1 < pj ≤ 2r (2r − pj + 1)u i < pj ≤ 2r 0

The idea behind the shift amounts in W is to cause two processes that are farthest apart
in the graph to be shifted as far apart in real time as possible – thus achieving a large
skew between their adjusted clocks – while maintaining valid message delays between all
neighbors. By considering multiple shifted executions, we can cancel out terms involving
adjusted clocks, leaving behind only terms that involve the system parameters ε and u, and
the graph parameters k and m.

In the full paper we show that all shifted executions are admissible, i.e., that all message
delays are in [0, u]:

I Lemma 3. For all i, 0 ≤ i < k, αi is admissible.

Fix any i with 0 ≤ i < r. We focus on two processes that are maximally far away from each
other. Since αi is admissible by Lemma 3, A must ensure that Ai

〈i,...,i〉−A
i
〈i+r+1,...,i+r+1〉 ≤ ε,

where Ai
~p denotes the adjusted clock of process ~p after termination in αi. By definition of αi

and Lemma 1(a), Ai
〈i,...,i〉 = A〈i,...,i〉 and Ai

〈i+r+1,...,i+r+1〉 = A〈i+r+1,...,i+r+1〉 −m(r − i)u.
Thus by substituting we get A〈i,...,i〉 − A〈i+r+1,...,i+r+1〉 ≤ −m(r − i)u + ε, for 0 ≤ i < r.
Similarly, we can show A〈i,...,i〉 −A〈i−r,...,i−r〉 ≤ −m(i− r)u+ ε, for r ≤ i < k.

Adding together these k inequalities and simplifying gives ε ≥ 1
4um

(
k − 1

k

)
. J

References
1 Hagit Attiya, Amir Herzberg, and Sergio Rajsbaum. Optimal clock synchronization under

different delay assumptions. SIAM J. Comput., 25(2):369–389, 1996.
2 Hagit Attiya and Jennifer L. Welch. Distributed Computing: Fundamentals, Simulations,

and Advanced Topics, Second Edition. John Wiley & Sons, Hoboken, NJ, 2004.
3 Saad Biaz and Jennifer L. Welch. Closed form bounds for clock synchronization under

simple uncertainty assumptions. Inf. Process. Lett., 80(3):151–157, 2001.
4 Joseph Y. Halpern, Nimrod Megiddo, and Ashfaq A. Munshi. Optimal precision in the

presence of uncertainty. J. Complexity, 1(2):170–196, 1985.
5 Jennifer Lundelius and Nancy Lynch. An upper and lower bound for clock synchronization.

Inform. Control, 62(2/3):190–204, 1984.
6 Boaz Patt-Shamir and Sergio Rajsbaum. A theory of clock synchronization (extended

abstract). In Proc. 26th Annual ACM Symp. Theory of Comput., pages 810–819, 1994.

DISC 2018

Brief Announcement: On Simple Back-Off in
Unreliable Radio Networks
Seth Gilbert
National University of Singapore
seth.gilbert@comp.nus.edu.sg

Nancy Lynch
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
lynch@csail.mit.edu

Calvin Newport
Georgetown University, Washington, D.C., USA
cnewport@cs.georgetown.edu

Dominik Pajak
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
pajak@csail.mit.edu

Abstract
In this paper, we study local broadcast in the dual graph model, which describes communication
in a radio network with both reliable and unreliable links. Existing work proved that efficient
solutions to these problems are impossible in the dual graph model under standard assumptions.
In real networks, however, simple back-off strategies tend to perform well for solving these basic
communication tasks. We address this apparent paradox by introducing a new set of constraints
to the dual graph model that better generalize the slow/fast fading behavior common in real
networks. We prove that in the context of these new constraints, simple back-off strategies
now provide efficient solutions to local broadcast in the dual graph model. These results provide
theoretical foundations for the practical observation that simple back-off algorithms tend to work
well even amid the complicated link dynamics of real radio networks.

2012 ACM Subject Classification Theory of computation → Distributed algorithms, Networks
→ Ad hoc networks

Keywords and phrases radio networks, broadcast, unreliable links, distributed algorithm, ro-
bustness

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.48

Related Version The full version is available at https://arxiv.org/abs/1803.02216.

1 Introduction

Existing papers proved that it is impossible to solve standard broadcast problems efficiently
in the dual graph model without the addition of strong extra assumptions [3]. In real radio
networks, however, which suffer from the type of link dynamics abstracted by the dual graph
model, simple back-off strategies tend to perform quite well.

These dueling realities seem to imply a dispiriting gap between theory and practice: basic
communication tasks that are easily solved in real networks are impossible when studied in
abstract models of these networks.

What explains this paradox? This paper tackles this fundamental question.
© Seth Gilbert, Nancy Lynch, Calvin Newport, and Dominik Pajak;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 48; pp. 48:1–48:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:seth.gilbert@comp.nus.edu.sg
mailto:lynch@csail.mit.edu
mailto:cnewport@cs.georgetown.edu
mailto:pajak@csail.mit.edu
https://doi.org/10.4230/LIPIcs.DISC.2018.48
https://arxiv.org/abs/1803.02216
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 On Simple Back-Off in Unreliable Radio Networks

As detailed below, we focus our attention on the adversary entity that decides which
unreliable links to include in the network topology in each round of an execution in the dual
graph model. We introduce a new type of adversary with constraints that better generalize
the dynamic behavior of real radio links. We then reexamine simple back-off strategies
originally introduced in the standard radio network model (which has only reliable links) [1],
and prove that for reasonable parameters, these simple strategies now do guarantee efficient
communication in the dual graph model combined with our new, more realistic adversary.

Dual Graph Model. This model describes the network topology with two graphs G = (V,E)
and G′ = (V,E′), where E ⊆ E′. The n = |V | vertices in V correspond to the wireless devices
in the network, which we call nodes in the following. The edge in E describe reliable links
(which maintain a consistently high quality), while the edges in E′ \ E describe unreliable
links (which have quality that can vary over time). For a given dual graph, we use ∆ to
describe the maximum degree in G′, and D to describe the diameter of G.

Time proceeds in synchronous rounds that we label 1, 2, 3... For each round r ≥ 1, the
network topology is described by Gr = (V,Er), where Er contains all edges in E plus a
subset of the edges in E′ \ E. The subset of edges from E′ \ E are selected by an adversary.
The graph Gr can be interpreted as describing the high quality links during round r. That
is, if {u, v} ∈ Er, this mean the link between u and v is strong enough that u could deliver a
message to v, or garble another message being sent to v at the same time.

With the topology Gr established for the round, behavior proceeds as in the standard
radio network model. That is, each node u ∈ V can decide to transmit or receive. If u
receives and exactly one neighbor v of u in Er transmits, then u receives v’s message. If u
receives and two or more neighbors in Er transmit, u receives nothing as the messages are
lost due to collision. If u receives and no neighbor transmits, u also receives nothing. We
assume u does not have collision detection, meaning it cannot distinguish between these last
two cases.

The Fading Adversary. We parameterize the adversary with a stability factor that we
represent with an integer τ ≥ 1. In each round, the adversary must draw the subset of edges
(if any) from E′ \ E to include in the topology from a distribution defined over these edges.
The adversary selects which distributions it uses and it can change this distribution at most
once every τ rounds.

Problem. In this paper, we study the local broadcast problem. The problem assumes a
set B ⊆ V of nodes are provided with a message. Let R ⊆ V be the set of nodes in V that
neighbor at least one node in B in E. The problem is solved once every node in R has
received at least one message from a node in B.

Uniform Algorithms. In this paper focus on uniform algorithms, which require nodes to
make their probabilistic transmission decisions according to a predetermined sequence of
broadcast probabilities that we express as a repeating cycle, (p1, p2, ..., pk) of k probabilities
in synchrony.

Our results. In standard Dual Graph Model, where the adversary can arbitrarily change
the state of all the unreliable edges in every step, the time of local broadcast can be lower
bounded by Ω(n/ logn) [3]. On the other hand, in reliable networks, decay algorithm solves
local broadcast in time O(log ∆ log(n/ε)) [1] with probability at least 1− ε and this time
is optimal [2]. Thus there is an exponential gap between the reliable model and worst-case

S. Gilbert, N. Lynch, C. Newport, and D. Pajak 48:3

unreliable model. Our fading adversary can be (for large τ) seen as an average-case unreliable
model. For smaller τ the model becomes similar to the standard dual graph model (in
particular, for τ = 1 model with fading adversary is stronger than the dual graph model).

We show that for τ ≥ log ∆, the optimal time of local broadcast for reliable networks
can be achieved in the model with fading adversary. Secondly we prove a tradeoff between
the optimal time of local broadcast in the model with fading adversary and the value of
τ . We show that factor ∆1/τ is necessary in the time complexity of any uniform local
broadcast algorithm. This shows how quickly the optimal time increases between both
extremes depending on τ .

2 Results

Our algorithm is a simple back-off style strategy inspired by the decay routine from [1]. We
use notation τ̄ = min{dlog2e ∆/2e, τ}.

1 Procedure: Uniform(k, p1, p2, . . . , pk)
2 for i = 1, 2, . . . , k do
3 if has message then
4 with prob. pi Transmit else Listen
5 else Listen // without a message

listen

1 Algorithm: FRLB(r)

2 for i← 1 to τ̄ do pi ← log2e ∆
∆i/τ̄ τ̄

3 repeat r times
4 Uniform (τ̄ , p1, p2, . . . , pτ̄)

I Theorem 1. For any error bound ε > 0, algorithm FRLB(2dln(n/ε)e · d4∆1/τ̄ τ̄ / log ∆e)
solves local broadcast in O

(
∆1/τ̄ ·τ̄2

log2e ∆ · log (n/ε)
)

rounds, with probability at least 1− ε.

Notice, for τ ≥ log ∆ this bound simplifies toO(log ∆ log (n/ε)), matching the performance
of decay algorithm [1] and the lower bound in the standard reliable radio network model [2].
This performance, however, degrades toward the polynomial lower bounds from the existing
dual graph literature [3] as τ reduces from log ∆ toward a minimum value of 1. We show
this degradation to be near optimal by proving that any local broadcast algorithm that
uses a fixed sequence of broadcast probabilities requires Ω(∆1/ττ/ log ∆) rounds to solve
the problem with probability 1/2 for a given τ . For τ ∈ O(log ∆/ log log ∆) , we refine this
bound further to Ω(∆1/ττ2/ log ∆), matching our upper bound within constant factors.
I Theorem 2. Fix a maximum degree ∆ ≥ 10, stability factor τ and uniform local broadcast
algorithm A. Assume that A solves local broadcast in expected time f(∆, τ) in all graphs
with maximum degree ∆ and fading adversary with stability τ . It follows that:
1. if τ < ln(∆− 1)/(12 log log(∆− 1)) then f(∆, τ) ∈ Ω(∆1/ττ2/ log ∆),
2. if τ < ln(∆− 1)/16 then f(∆, τ) ∈ Ω(∆1/ττ/ log ∆).

References
1 Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of broadcast

in multi-hop radio networks: An exponential gap between determinism and randomization.
J. Comput. Syst. Sci., 45(1):104–126, 1992.

2 Mohsen Ghaffari, Bernhard Haeupler, Nancy A. Lynch, and Calvin C. Newport. Bounds on
contention management in radio networks. In Distributed Computing - 26th International
Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings, pages 223–237,
2012.

3 Mohsen Ghaffari, Nancy A. Lynch, and Calvin C. Newport. The cost of radio network
broadcast for different models of unreliable links. In ACM Symposium on Principles of
Distributed Computing, PODC ’13, Montreal, QC, Canada, pages 345–354, 2013.

DISC 2018

Brief Announcement: Fast and Scalable Group
Mutual Exclusion
Shreyas Gokhale
The University of Texas at Dallas
Richardson, TX 75080, USA
shreyas.gokhale@utdallas.edu

https://orcid.org/0000-0002-7589-6927

Neeraj Mittal
The University of Texas at Dallas
Richardson, TX 75080, USA
neerajm@utdallas.edu

https://orcid.org/0000-0002-8734-1400

Abstract
The group mutual exclusion (GME) problem is a generalization of the classical mutual exclusion
problem in which every critical section is associated with a type or session. Critical sections
belonging to the same session can execute concurrently, whereas critical sections belonging to
different sessions must be executed serially. The well-known read-write mutual exclusion problem
is a special case of the group mutual exclusion problem.

In a shared memory system, locks based on traditional mutual exclusion or its variants are
commonly used to manage contention among processes. In concurrent algorithms based on fine-
grained synchronization, a single lock is used to protect access to a small number of shared
objects (e.g., a lock for every tree node) so as to minimize contention window. Evidently, a
large number of shared objects in the system would translate into a large number of locks. Also,
when fine-grained synchronization is used, most lock accesses are expected to be uncontended in
practice.

Most existing algorithms for the solving the GME problem have high space-complexity per
lock. Further, all algorithms except for one have high step-complexity in the uncontented case.
This makes them unsuitable for use in concurrent algorithms based on fine-grained synchroniza-
tion. In this work, we present a novel GME algorithm for an asynchronous shared-memory system
that has O(1) space-complexity per GME lock when the system contains a large number of GME
locks as well as O(1) step-complexity when the system contains no conflicting requests.

2012 ACM Subject Classification Theory of computation → Concurrent algorithms

Keywords and phrases Group Mutual Exclusion, Fine-Grained Synchronization, Space Com-
plexity, Contention-Free Step Complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.49

Funding This work was supported, in part, by the National Science Foundation (NSF) under
grants numbered CNS-1115733 and CNS-1619197.

1 Introduction

The group mutual exclusion (GME) problem is a generalization of the classical mutual
exclusion (ME) problem in which every critical section is associated with a type or session [7].
Critical sections belonging to the same session can execute concurrently, whereas critical
sections belonging to different sessions must be executed serially. The GME problem models

© Shreyas Gokhale and Neeraj Mittal;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 49; pp. 49:1–49:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shreyas.gokhale@utdallas.edu
https://orcid.org/0000-0002-7589-6927
mailto:neerajm@utdallas.edu
https://orcid.org/0000-0002-8734-1400
https://doi.org/10.4230/LIPIcs.DISC.2018.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 Fast and Scalable Group Mutual Exclusion

situations in which a resource may be accessed at the same time by processes of the same
group, but not by processes of different groups. As an example, suppose data is stored on
multiple discs in a shared CD-jukebox. When a disc is loaded into the player, users that need
data on that disc can access the disc concurrently, whereas users that need data on a different
disc have to wait until the current disc is unloaded [7]. The well-known readers/writers
problem is a special case of the group mutual exclusion problem.

In a shared memory system, locks based on traditional mutual exclusion or its variants
are commonly used to manage contention among processes. A lock grants a process exclusive
access to a shared object, preventing any other process from modifying the object. This
makes it easier to design, analyze, implement and debug lock-based concurrent algorithms.

With the wide availability and use of multicore systems, developing concurrent data
structures that scale well with the number of cores has gained increasing importance. Many of
the best performing concurrent algorithms for data structures use fine-grained synchronization
in which a single lock is used to protect access to a small number of shared objects so as
to minimize contention window [5]. In order to perform an operation, a process typically
needs to lock only a small number of objects, thereby allowing multiple processes whose
operations do not conflict with each other to manipulate parts of the data structure at the
same time. Typically, in such a system, most lock accesses are expected to be uncontended
in practice [5]. Recently, GME-based locks have been used to improve the performance of a
concurrent skip list using the notion of unrolling in which multiple key-value pairs are stored
in a single node [8].

All existing algorithms for solving the GME problem have either high space-complexity
of Ω(n) per lock or high step-complexity of Ω(n) in the uncontented case or both, where n

denotes the number of processes in the system [7, 6, 2, 1, 4]. This makes them unsuitable
for use in lock-based concurrent data structures that employ fine-grained synchronization to
manage contention. In this work, we present a novel GME algorithm for an asynchronous
shared-memory system that has O(1) space-complexity per GME lock when the system
contains a large number of GME locks as well as O(1) step-complexity when the system
contains no conflicting requests.

2 The Group Mutual Exclusion Algorithm

Our GME algorithm is inspired by Herlihy’s universal construction for deriving a wait-free
linearizable implementation of a concurrent object from its sequential specification using
consensus objects [5]. Roughly speaking, the universal construction works as follows. The
state of the concurrent object is represented using (i) its initial state and (ii) the sequence of
operations that have applied to the object so far. The two are maintained using a singly linked
list in which the first node represents the initial state and the remaining nodes represent the
operations. To perform an operation, a process first creates a new node and initializes it with
all the relevant details of the operation (type, input arguments, etc.). It then tries to append
the node at the end of the list. To manage conflicts in case multiple processes are trying
to append their own node to the list, a consensus object is used to determine which of the
several nodes is chosen to be appended to the list. Specifically, every node stores a consensus
object and the consensus object of the current last node is used to decide its successor (i.e.,
the next operation to be applied to the object). A process whose node is not selected simply
tries again. A helping mechanism is used to guarantee that every process trying to perform
an operation eventually succeeds in appending its node to the list.

S. Gokhale and N. Mittal 49:3

We modify the aforementioned universal construction to derive a GME algorithm that
satisfies several desirable properties. Intuitively, an operation in the universal construction
corresponds to a critical section request in our GME algorithm. Appending a new node to
the list thus corresponds to establishing a new session. However, unlike in the universal
construction, a single session in our GME algorithm can be used to satisfy multiple critical
section requests. This basically means that every critical section request does not cause a
new node to be appended to the list. This requires some careful bookkeeping so that no
“empty” sessions are established. Further, a simple consensus algorithm, implemented using
LL/SC instructions, is used to determine the next session to be established. Helping is used
to ensure that every request is eventually satisfied.

If the node for a critical section request is appended to the list, then the process that
owns the node is said to enter the session as a leader; otherwise it is said to enter the session
as a follower. A leader process, on leaving its critical section, relinquishes the ownership of
its current node and claims the ownership of the node for the previous session instead. This
enables us to bound the length of the linked list and make our algorithm space-efficient.

More details of our GME algorithm are available in [3], where we also describe a way to
bound the values of all the variables used in our GME algorithm.

I Theorem 1 (multi-lock space complexity). The space complexity of our GME algorithm
is O(m + n2 + n`) space, where n denotes the number of processes, m denotes the number
of GME objects and ` denotes the maximum number of locks a process needs to hold at the
same time.

I Theorem 2 (concurrent entering step complexity). The maximum number of steps a process
has to execute in its entry and exit sections provided no other process in the system has an
outstanding conflicting request during that period is O(1).

Note that the above theorem also implies O(1) step complexity in contention-free case.

References
1 V. Bhatt and C. C. Huang. Group Mutual Exclusion in O(log n) RMR. In Proceedings of

the 29th ACM Symposium on Principles of Distributed Computing (PODC), pages 45–54,
JUL 2010.

2 R. Danek and V. Hadzilacos. Local-Spin Group Mutual Exclusion Algorithms. In Proceed-
ings of the 18th Symposium on Distributed Computing (DISC), pages 71–85, OCT 2004.

3 S. Gokhale and N. Mittal. Fast and Scalable Group Mutual Exclusion. Available at
http://arxiv.org/abs/1805.04819.

4 Y. He, K. Gopalakrishnan, and E. Gafni. Group Mutual Exclusion in Linear Time and
Space. In Proceedings of the 17th International Conference on Distributed Computing And
Networking (ICDCN), JAN 2016.

5 M. Herlihy and N. Shavit. The Art of Multiprocessor Programming, Revised Reprint. Mor-
gan Kaufmann, 2012.

6 P. Jayanti, S. Petrovic, and K. Tan. Fair Group Mutual Exclusion. In Proceedings of the
22nd ACM Symposium on Principles of Distributed Computing (PODC), pages 275–284,
JUL 2003.

7 Y.-J. Joung. Asynchronous Group Mutual Exclusion. Distributed Computing (DC),
13(4):189–206, 2000.

8 K. Platz. Saturation in Lock-Based Concurrent Data Structures. PhD thesis, Department
of Computer Science, The University of Texas at Dallas, 2017.

DISC 2018

Brief Announcement: On the Impossibility of
Detecting Concurrency

Éric Goubault
École Polytechnique, Palaiseau, France
eric.goubault@lix.polytechnique.fr

Jérémy Ledent
École Polytechnique, Palaiseau, France
jeremy.ledent@lix.polytechnique.fr

Samuel Mimram
École Polytechnique, Palaiseau, France
samuel.mimram@lix.polytechnique.fr

Abstract
We identify a general principle of distributed computing: one cannot force two processes running
in parallel to see each other. This principle is formally stated in the context of asynchronous
processes communicating through shared objects, using trace-based semantics. We prove that it
holds in a reasonable computational model, and then study the class of concurrent specifications
which satisfy this property. This allows us to derive a Galois connection theorem for different
variants of linearizability.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases concurrent specification, concurrent object, linearizability

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.50

1 Introduction

A common setting to study distributed computing is the one of asynchronous processes
communicating through shared objects. In this context, the question of how to formally specify
the behavior of the shared objects arises: what we want is an abstract, high-level specification,
that does not refer to a particular implementation of the object. This is easy to achieve when
the objects that we consider are concurrent versions of sequential data structures, such as
lists or queues. Namely, we can simply take the usual sequential specification of the object,
and extend it to a concurrent setting using one of the many correctness criteria found in the
literature: atomicity [8], sequential consistency [5], serializability [10], causal consistency [11],
or linearizability [4]. However, we also want to be able to specify objects with an intrinsically
concurrent nature, such as those found in the area of distributed computability [3]: consensus
and set-agreement objects, immediate snapshot. Another example is Java’s Exchanger object:
two processes that call the Exchanger object concurrently can swap values. A process calling
the Exchanger alone fails and receives an error value.

A very general way of specifying such objects was proposed by Lamport [6]. The
specification of a concurrent object is simply the set of all the execution traces that we
consider correct for this object. For example, a correct execution trace of the Exchanger
object is depicted below:

© Éric Goubault and Jérémy Ledent and Samuel Mimram;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 50; pp. 50:1–50:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eric.goubault@lix.polytechnique.fr
mailto:jeremy.ledent@lix.polytechnique.fr
mailto:samuel.mimram@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.DISC.2018.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 On the Impossibility of Detecting Concurrency

Exchange(4) 6

Exchange(6) 4

Exchange(7) Fail
P0

P1

P2

T = i40 · i62 · r6
0 · r2

2 · i71 · rFail
1

The trace T consists of invocation events ixi meaning that the object was called by process i
with input x, and response events ry

i meaning that process i returned with output value y.
This trace can be seen as an abstraction of the real-time execution pictured above, where the
horizontal axis represents global time. Formally, for a fixed set V of values and n processes,
the set of actions is:

A = {ixi | 0 ≤ i < n and x ∈ V} ∪ {ry
i | 0 ≤ i < n and y ∈ V}

A trace is a word T ∈ A∗ such that for every process i, the projection of T on i starts with
an invocation and alternates between invocations and responses. We write T for the set of
all traces. Then, a concurrent specification in the sense of [6] is simply a subset of T .

This notion of concurrent specification is not convenient to use when reasoning about
distributed systems. In fact, the correctness criteria such as linearizability can be regarded as
more convenient ways of defining such concurrent specifications: starting from a sequential
specification σ, we obtain Lin(σ) ⊆ T which is the set of all the traces that are linearizable
w.r.t. σ. The advantage of this is that sequential specifications are much easier to describe
than general concurrent specifications. To specify objects with a more concurrent flavor,
variants of linearizability have been described: set-linearizability [9] (a.k.a. concurrency-aware
linearizability [2]) and interval-linearizability [1]. The last one is the most expressive: it
captures all the distributed tasks, in the sense of [3].

Contribution. In the following, we restrict to a class of concurrent specifications: those
satisfying the undetectability of concurrency property. As it turns out, they correspond
exactly to the concurrent specifications definable using interval-linearizability. We show that
these are the only relevant concurrent specifications, and prove a theorem showing how the
different notions of linearizability relate to this property.

2 Results

A concurrent specification σ ⊆ T satisfies the undetectability of concurrency property if the
following two conditions hold, where a is an action of some process j 6= i.
(1) invocations commute to the left: if T · a · ixi · T ′ ∈ σ, then T · ixi · a · T ′ ∈ σ,
(2) responses commute to the right: if T · ry

i · a · T ′ ∈ σ, then T · a · r
y
i · T ′ ∈ σ.

Such properties come up in Lipton’s reduction proof technique [7]: (1) and (2) assert that
invocations and responses are left/right movers, respectively. Pictorially, these two properties
mean that if we take a correct execution trace (a) and “expand” the intervals, then the
resulting trace (b) must also be considered correct. Intuitively, in (b), the two processes failed
to see each other and acted as in the sequential trace (a).

Exchange(4) Fail

Exchange(7) Fail
P0

P1

(a)

Exchange(4) Fail

Exchange(7) Fail
P0

P1

(b)

É. Goubault, J. Ledent, and S. Mimram 50:3

As a naive attempt at specifying the Exchanger object, we might have wanted to allow (a)
and forbid (b). But implementing such a specification would have been hopeless, as we show
in a reasonable trace-based computational model:

I Theorem 1. The semantics JP K of any program P satisfies properties (1) and (2).

Intuitively, the reason why Theorem 1 holds is that calling an object or returning a value
does not communicate any information to the other processes. If a process idles right after
invoking, or just before returning, it is invisible to the other processes.

The undetectability of concurrency property is naturally enforced by the usual specification
techniques such as linearizability, so by using these tools we do not have to worry about this
property: we get it for free.

I Proposition 2. Let σ be a sequential specification. Then Lin(σ), the set of all linearizable
traces, satisfies properties (1) and (2).

We now write SSpec for the set of sequential specifications, and CSpec for the set of concurrent
specifications which satisfy the undetectability of concurrency. Proposition 2 says that we
can view Lin as a map from SSpec to CSpec. Conversely, there is also a map in the other
direction U : CSpec→ SSpec which, given a concurrent specification, forgets about all the
concurrent behaviors and keeps only the sequential ones.

I Theorem 3. The functions Lin and U are monotonous w.r.t. inclusions, and form a Galois
connection, i.e., for every σ ∈ SSpec and τ ∈ CSpec, Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ).

The fact that we imposed the undetectability of concurrency property on CSpec is crucial in
order to establish Theorem 3. This theorem can be understood as follows: given a sequential
specification σ, we want to extend it to a concurrent one. Then any τ ∈ CSpec that contains σ
must also contain Lin(σ), i.e., Lin(σ) is the smallest extension of σ which is in CSpec. Thus,
Lin(σ) can be described as follows: we start with the set of all sequential traces of σ, then
close it under the two properties (1) and (2).

Finally, note that analogues of Proposition 2 and Theorem 3 still hold when we replace
linearizability by set- or interval-linearizability. In particular, Theorem 3 for interval-
linearizability gives us the following characterization of interval-linearizable objects:

I Corollary 4. The concurrent specifications which are definable using interval-linearizability
are exactly the ones satisfying the undetectability of concurrency.

References
1 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Specifying Concurrent Prob-

lems: Beyond Linearizability and up to Tasks. In DISC 2015, Proceedings, pages 420–435,
2015.

2 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. Modular Verification of Concurrency-
Aware Linearizability. In DISC 2015, Proceedings, pages 371–387, 2015.

3 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann Publishers Inc., 2013.

4 Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for Con-
current Objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

5 L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 28(9):690–691, 1979.

DISC 2018

50:4 On the Impossibility of Detecting Concurrency

6 Leslie Lamport. On interprocess communication. Distributed Computing, 1(2):77–85, 1986.
7 Richard J Lipton. Reduction: A method of proving properties of parallel programs. Com-

munications of the ACM, 18(12):717–721, 1975.
8 J. Misra. Axioms for memory access in asynchronous hardware systems. In Stephen D.

Brookes, Andrew William Roscoe, and Glynn Winskel, editors, Seminar on Concurrency,
pages 96–110. Springer Berlin Heidelberg, 1985.

9 Gil Neiger. Set-Linearizability. In Proceedings of the Thirteenth Annual ACM Symposium
on Principles of Distributed Computing, page 396, 1994.

10 Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of
the ACM, 26(4):631–653, 1979.

11 M. Raynal, G. Thia-Kime, and M. Ahamad. From serializable to causal transactions for
collaborative applications. In Proceedings of the 23rd EUROMICRO, pages 314–321, 1997.

Brief Announcement: Effects of Topology
Knowledge and Relay Depth on Asynchronous
Consensus
Dimitris Sakavalas
Boston College, USA
dimitris.sakavalas@bc.edu

Lewis Tseng
Boston College, USA
lewis.tseng@bc.edu

Nitin H. Vaidya1

Georgetown University, USA
nitin.vaidya@georgetown.edu

Abstract
Consider an asynchronous incomplete directed network. We study the feasibility and efficiency of
approximate crash-tolerant consensus under different restrictions on topology knowledge and relay
depth, i.e., the maximum number of hops any message can be relayed.

2012 ACM Subject Classification Computer systems organization → Fault-tolerant network
topologies

Keywords and phrases Asynchrony, crash fault, consensus, topology knowledge, relay

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.51

Related Version A full version is available at [5], https://arxiv.org/abs/1803.04513.

1 Introduction

The fault-tolerant consensus problem introduced by Lamport et al. [4] and its variations have
been studied extensively. The need to overcome the FLP impossibility result for consensus
in asynchronous systems has led to the study of the approximate consensus problem [3],
where nodes are required to output roughly the same value. We consider a directed network of
n nodes, wherein at most f nodes are subject to crash failure. We explore the feasibility
and efficiency of achieving approximate consensus in asynchronous incomplete networks under
different restrictions on topology knowledge and relay depth (defined as the maximum number
of hops that information can be propagated). These constraints are useful in large-scale
networks to avoid memory overload and network congestion.

Our prior work [7] showed that exact crash-tolerant consensus is solvable in synchronous
networks with only one-hop knowledge and relay depth 1, i.e., each node only needs to know its
immediate neighbors, and no message needs to be relayed. Such a local algorithm is of practical
interest due to low deployment cost and message complexity in each round. In asynchronous
undirected networks, there exists a simple flooding-based algorithm adapted from [2] that
achieves approximate consensus with up to f crash faults if the network satisfies (f + 1)

1 This research is supported in part by National Science Foundation awards 1421918. Any opinions, findings,
and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect
the views of the funding agencies or the U.S. government.

© Dimitris Sakavalas, Lewis Tseng, and Nitin H. Vaidya;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 51; pp. 51:1–51:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dimitris.sakavalas@bc.edu
mailto:lewis.tseng@bc.edu
mailto:nitin.vaidya@georgetown.edu
https://doi.org/10.4230/LIPIcs.DISC.2018.51
https://arxiv.org/abs/1803.04513
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

51:2 Topology Knowledge, Relay Depth, and Asynchronous Consensus

node-connectivity and n > 2f , where n is the number of nodes. However, the sufficiency of the
conditions is not guaranteed if we restrict topology knowledge and relay depth. Motivated by
this observation, this work addresses the following question in asynchronous systems:

What is a tight condition on the underlying communication graph to achieve approximate
consensus if each node has only a k-hop topology knowledge and relay depth k′?

To the best of our knowledge, two prior papers [1, 6] examined a similar problem
– synchronous Byzantine consensus. In [6], Su and Vaidya identified the condition under
different relay depths. Alchieri et al. [1] studied the problem under unknown participants. The
technique developed for asynchronous consensus in this work is significantly different. Please
refer to our technical report [5] for more discussion on other related work.

Model and Terminology. The point-to-point message-passing network is represented by
directed graph G(V, E), where V is the set of n nodes, and E is the set of directed edges. The
communication links are assumed to be reliable. Node i can transmit messages to its outgoing
neighbors and itself. Up to f nodes may suffer crash failures in an execution, in which case they
stop taking steps. We consider asynchronous communication. i.e., a message may be delayed
arbitrarily but will eventually be delivered. Let N−i , N

+
i denote the sets of incoming neighbors

and outgoing neighbors of node i respectively. Also, for a node i, its k-hop incoming neighbors
N−i (k), are defined as the nodes j which can reach i using a directed path in G that has ≤ k
hops. The notion of k-hop outgoing neighborsN+

i (k), is defined similarly. For set B ⊆ V , node
i is said to be an incoming neighbor of set B if i 6∈ B, and there exists j ∈ B such that (i, j) ∈ E .
With N−B we will denote the incoming neighbors of B.

Approximate Consensus. In the approximate consensus problem [3], each node imaintains a
state vi with vi[p] denoting the state of node i at the end of phase (or iteration) p. The
initial state of node i, vi[0], is equal to the initial input provided to node i. At the start of
asynchronous phase p (p > 0), the state of node i is vi[p−1]. Let U [p] and µ[p] be the maximum
and the minimum state at nodes that have not crashed by the end of phase p. Then, a correct
approximate consensus algorithm needs to satisfy the following two conditions for any ε > 0:

Validity: ∀p > 0, U [p] ≤ U [0] and µ[p] ≥ µ[0]; and
ε-Convergence: ∃p,∀r ≥ p, U [r]− µ[r] < ε.

2 Limited Topology Knowledge and Relay Depth

Prior works (e.g., [7]) assumed that each node has n-hop topology knowledge and relay
depth n, which is not realistic in large-scale networks. Hence, we are interested in the family
of algorithms (iterative k-hop algorithms) in which nodes only know their k-hop neighborhoods,
and propagate state values to nodes that are at most k-hops away for 1 ≤ k ≤ n. Note that no
exchange of topology information takes place.

Iterative k-hop algorithms. Each node i performs the following three steps in phase p:
1. Transmit: Transmit messages of the form (vi[p−1], ·) to nodes that are reachable from node

i via at most k hops away, through intermediate relays.
2. Receive: Receive messages from all k-hop incoming neighbors. Denote by Ri[p] the set of

messages that node i received at phase p.
3. Update: Update state using a transition function Zi, where Zi is a part of the specification

of the algorithm, and takes as input the set Ri[t]. i.e., vi[t] := Zi(Ri[t], vi[t−1]) at node i.

D. Sakavalas, L. Tseng, and N.H. Vaidya 51:3

Main Results. Below, we present two definitions to facilitate the discussion.

I Definition 1 (A→k B). Given disjoint non-empty subsets of nodes A and B, we will say
that A→k B holds if there exists a node i in B for which there exist at least f+1 node-disjoint
paths of length at most k from distinct nodes in A to i. More formally, if PA

i (k) is the family
of all sets of k-length node-disjoint paths (with i being their only common node) initiating in A
and ending in node i, A→k B means that ∃i ∈ B, max

P∈PA
i

(k)
|P | ≥ f + 1.

I Definition 2 (Condition k-CCA). For any partition L,C,R of V, where L and R are both
non-empty, either L ∪ C →k R or R ∪ C →k L.

I Theorem 3. Approximate crash-tolerant consensus in an asynchronous system using
iterative k-hop algorithms is feasible iff G satisfies Condition k-CCA.

The complete proof is presented in [5]. We only sketch the proof here. The necessity is
proved using an indistinguishable argument inspired by [3, 7]. For sufficiency, we present
Algorithm k-LocWA. Our key contribution is to identify what are the set of messages that each
node needs to receive before updating its state value in Step 3 of the iterative k-hop algorithms.
Algorithm k-LocWA relies on Condition k-WAIT : For Fi ⊆ N−i (k), we denote with reachk

i (Fi)
the set of nodes that have paths of length l ≤ k to node i in GV−Fi . That is, the set of
k-hop incoming neighbors of i that remain connected with i even when all nodes in set Fi crash.
The condition is satisfied at node i, in phase p if there exists Fi ⊆ N−i (k) with |Fi[p]| ≤ f such
that reachk

i (Fi[p]) ⊆ heardi[p]. Finally, we show that if G satisfies Condition k-CCA, then
Algorithm k-LocWA correctly solves approximate consensus.

We derive an upper bound on the number of asynchronous phases needed for ε-convergence
of Algorithm k-LocWA in [5]. This upper bound is naturally a function of values ε, k, f, n and
δ = U [0]− µ[0]. As a function of k, the bound implies that for k′ ≥ k, Algorithm k′-LocWA
ε-converges faster than k-LocWA. We also prove that for values k, k′ ∈ N with k ≤ k′,
Condition k-CCA implies Condition k′-CCA and that n-CCA is equivalent to CCA from [7].

Topology Discovery and Unlimited Relay Depth. Even if the topology knowledge of the
nodes is restricted to their 1-hop neighborhood, we show that allowing topology information
exchange and relay depth n, one can achieve approximate consensus whenever condition
CCA [7] holds. This can be achieved through Algorithm LWA, presented in the full version
[5], which introduces a topology discovery mechanism to learn the crucial topology information
that is necessary to achieve consensus. This result implies that knowledge of topology does not
affect the feasibility of the problem if topology knowledge can be relayed.

References
1 Eduardo A. P. Alchieri, Alysson Neves Bessani, Joni da Silva Fraga, and Fabíola Greve.

Byzantine consensus with unknown participants. In OPODIS 2008, volume 5401 of LNCS,
pages 22–40. Springer, 2008. doi:10.1007/978-3-540-92221-6_4.

2 Danny Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1), 1982.
3 Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.

Reaching approximate agreement in the presence of faults. J. ACM, 33(3):499–516, 1986.
doi:10.1145/5925.5931.

4 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J.
ACM, 27(2):228–234, 1980. doi:10.1145/322186.322188.

5 Dimitris Sakavalas, Lewis Tseng, and Nitin H. Vaidya. Effects of topology knowledge and
relay depth on asynchronous consensus. CoRR, abs/1803.04513, 2018. arXiv:1803.04513.

DISC 2018

http://dx.doi.org/10.1007/978-3-540-92221-6_4
http://dx.doi.org/10.1145/5925.5931
http://dx.doi.org/10.1145/322186.322188
http://arxiv.org/abs/1803.04513

51:4 Topology Knowledge, Relay Depth, and Asynchronous Consensus

6 Lili Su and Nitin Vaidya. Reaching approximate Byzantine consensus with multi-hop
communication. In SSS 2015, volume 9212 of LNCS, pages 21–35. Springer, 2015. doi:
10.1007/978-3-319-21741-3_2.

7 Lewis Tseng and Nitin H. Vaidya. Fault-tolerant consensus in directed graphs. In PODC ’15,
pages 451–460. ACM, 2015. doi:10.1145/2767386.2767399.

http://dx.doi.org/10.1007/978-3-319-21741-3_2
http://dx.doi.org/10.1007/978-3-319-21741-3_2
http://dx.doi.org/10.1145/2767386.2767399

Brief Announcement: Loosely-stabilizing Leader
Election with Polylogarithmic Convergence Time
Yuichi Sudo
Graduate School of Information Science and Technology, Osaka University, Japan
y-sudou@ist.osaka-u.ac.jp

Fukuhito Ooshita
Graduate School of Science and Technology, Nara Institute of Science and Technology, Japan
f-oosita@is.naist.jp

Hirotsugu Kakugawa
Graduate School of Information Science and Technology, Osaka University, Japan
kakugawa@ist.osaka-u.ac.jp

Toshimitsu Masuzawa
Graduate School of Information Science and Technology, Osaka University, Japan
masuzawa@ist.osaka-u.ac.jp

Abstract
We present a fast loosely-stabilizing leader election protocol in the population protocol model. It
elects a unique leader in a poly-logarithmic time and holds the leader for a polynomial time with
arbitrarily large degree in terms of parallel time, i.e, the number of steps per the population size.

2012 ACM Subject Classification Theory of computation → Self-organization

Keywords and phrases Self-stabilization, Loose-stabilization, Population protocols

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.52

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers 17K19977,
16K00018, 18K11167, and 18K18000 and Japan Science and Technology Agency(JST) SICORP.

1 Introduction

We consider the population protocol (PP) model [1] in this paper. A network called population
consists of a large number of finite-state automata, called agents. Agents often make
interactions, each between a pair of agents to communicate with, by which agents update
their states. As with the majority of studies on population protocols, we consider only
the population of complete graphs and the uniformly-random scheduler, which selects an
interacting pair of agents at each step uniformly at random.

We focus on Self-Stabilizing Leader Election (SS-LE) problem, which is one of the most
important and well-studied problems in the PP model. This problem requires that starting
from any configuration, a population reaches a safe configuration in which exactly one
leader exists; and after that, the population keeps that leader forever. Unfortunately, it
is well known that no protocol solves SS-LE unless every agent knows the exact size n of
the population (i.e., the number of agents). To circumvent this impossibility, our previous
work [3] introduced the concept of loose-stabilization, a relaxed variant of self-stabilization:
Starting from any initial configuration, the population must reach a safe configuration within
a short time; after that, the specification of the problem must be sustained for a sufficiently
long time, though not necessarily forever. This previous work gave a loosely-stabilizing leader

© Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 52; pp. 52:1–52:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:y-sudou@ist.osaka-u.ac.jp
mailto:f-oosita@is.naist.jp
mailto:kakugawa@ist.osaka-u.ac.jp
mailto:masuzawa@ist.osaka-u.ac.jp
https://doi.org/10.4230/LIPIcs.DISC.2018.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Loosely-stabilizing Leader Election with Polylogarithmic Convergence Time

Table 1 LS-LE protocols in the PP model. Time complexities are presented in parallel time.

Convergence Time Holding Time Agent Memory
Sudo et al. [3] O(N log N) Ω(eN) O(log N)

Izumi [2] O(N) Ω(eN) O(log N)
Proposed Protocol (PPL) O(c log3 N) Ω(cn10c) O(log log N)

Algorithm 1 PPL: specifying a state-transition at interaction between agents a0 and a1.
1: a0.timerP ← a1.timerP ← max(a0.timerP − 1, a1.timerP − 1, 0)
2: for i ∈ {0, 1} such that ai.timerP = 0 do ai.leader← > endfor
3: if ∃i ∈ {0, 1} : ai.leader = > then a0.timerP ← a1.timerP ← tmax endif
4: a0.virus← a1.virus← max(a0.virus− 1, a1.virus− 1, 0)
5: for i ∈ {0, 1} such that ¬ai.shield ∧ (ai.virus > 0) do ai.leader← ⊥ endfor
6: for i ∈ {0, 1} do ai.timerL ← max(ai.timerL − 1, 0) endfor
7: if a0.timerL = 0 ∧ a0.leader = > then
8: a0.virus← tvirus
9: a0.shield← >

10: end if
11: if a1.timerL = 0 ∧ a1.leader = > then a1.shield← ⊥ endif
12: for i ∈ {0, 1} such that ai.timerL = 0 do ai.timerL ← temit endfor

election (LS-LE) protocol assuming that every agent knows only a common upper bound N of
n. This protocol is practically equivalent to an SS-LE protocol since it maintains the unique
leader for exponential time in n after reaching a safe configuration within O(N log N) parallel
time, i.e., the number of steps (interactions) per the population size n. Recently, Izumi [2]
presented a method to improve the convergence time of this protocol to O(N) parallel time.
He also proved the optimality of its convergence time by showing that any LS-LE protocol
whose holding time is exponential requires Ω(N) parallel time for convergence.

In this paper, we break through the barrier of this linear lower bound of convergence
time and achieve poly-logarithmic parallel convergence time. Given a parameter c ≥ 1 and
an upper bound N of n, our protocol converges to a safe configuration in O(c log3 N) time,
and preserves the unique leader for Ω(cn10c) time thereafter (Table 1). Owing to the above
impossibility result by [2], the holding time of our protocol is no longer exponential but
polynomial in n. However, we can arbitrarily increase the degree of the polynomial using
parameter c. For example, the holding time is Ω(n100) if we assign c = 10, which is expected
to be large enough in all practical situations.

2 Proposed Protocol

The pseudo code of PPL is shown in Algorithm 1. Each agent has five variables leader ∈
{>,⊥}, shield ∈ {>,⊥}, virus ∈ [0, tvirus], timerP ∈ [0, tmax], and timerL ∈ [0, temit].
The first two variables leader and shield are Boolean variables: v.leader = > means that
agent v is a leader, and v.shield will be explained later. The variables virus, timerP ,
and timerL are count-down timers where their maximum values are tvirus = 60dlog Ne,
tmax = 12c · tvirusdlog Ne, and temit = 12c · tvirusdlog Ne, respectively (tmax = temit).

Protocol PPL consists of a timeout mechanism (Lines 1-3) and a virus-war mechanism
(Lines 4-12). The timeout mechanism creates a leader when no leader exists in the population
while the virus-war mechanism reduces the number of leaders when two or more leaders exist.

Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 52:3

The timeout mechanism of PPL (Lines 1-3) is almost the same as that of the protocol
given in [3]. This mechanism uses a propagating timer timerP , which indicates the possibility
of existence of a leader. A leader agent always keeps the maximum value of the timer, i.e.,
timerP = tmax, and resets the timer of the other agent to tmax every time it interacts with
a non-leader agent (Line 3). When two non-leaders interact, the higher value of the two
timers is propagated, but is decremented by one (Line 1). When the timer of a non-leader
decreases to zero, it suspects that no leader exists in the population, and it becomes a new
leader (Line 2). The loosely-stabilizing property of this mechanism holds because (i) when no
leader exists, some agent detects the timeout of its timer within a short time (O(tmax log n)
parallel time) and it becomes a leader, and (ii) when at least one leader exists, timeout rarely
happens thanks to the timer reset by the leader(s) and the larger-value propagation.

We uses the virus war mechanism presented in [4], but implements it in a considerably
different way to achieve a poly-logarithmic convergence time. Every leader tries to kill other
leaders by using viruses and become the unique leader. We say that agent v has a virus if
v.virus > 0, and that v is wearing a shield if v.shield = >. Every agent has a local timer
timerL to create a new virus periodically. This timer is decreased by one every time the
agent interacts (Line 6). When the local timer of a leader reaches zero at an interaction, the
leader meets a different fate according to its role, initiator or responder, in the interaction.
If the leader is an initiator, it succeeds in creating a new virus and wears a shield, that is, it
substitutes virus← tvirus and shield← > (Lines 8-9). If it is a responder, it fails to create
a new virus and its shield gets broken if it wears (Line 11). Note that the uniformly-random
scheduler gives each side of the coin-toss (initiator or responder) the same probability, i.e.,
1/2. Thereafter, the local timer is reset to the maximum value temit (Line 12). A virus
spreads by interactions (Line 4). A leader is kelled and becomes a non-leader if it catches
a virus when it does not wear a shield (Line 5). The value of virus corresponds to the
TTL (time to live) of a virus and decreases in the large-value propagation fashion. The
loosely-stabilizing property of this mechanism holds because (i) as long as multiple leaders
exist, the number of leaders decreases by half in every O(temit) parallel time thanks to the
fair coin-toss of the uniformly random scheduler and (ii) viruses rarely remove all leaders
from the population thanks to tvirus � temit. (tvirus � temit guarantees that at least one
leader wears a shield with high probability when viruses exist in the population.)

The above intuitive explanation holds if tvirus is sufficiently large. However, we assign
logarithmic value to tvirus to get poly-logarithmic convergence time. A critical question arises
here: Are created viruses propagated to the whole population with high probability? A
similar question arises for the propagating timers. Careful and non-trivial analysis, omitted
from this paper, affirms these questions and proves the performance of PPL in Table 1.

References
1 D. Angluin, J Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in networks

of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, 2006.
2 T. Izumi. On space and time complexity of loosely-stabilizing leader election. In SIROCCO,

pages 299–312, 2015.
3 Y. Sudo, J. Nakamura, Y. Yamauchi, F. Ooshita, et al. Loosely-stabilizing leader election

in a population protocol model. Theoretical Computer Science, 444:100–112, 2012.
4 Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa. Loosely-stabilizing leader election

on arbitrary graphs in population protocols. In OPODIS, pages 339–354, 2014.

DISC 2018

	p00-frontmatter
	Preface
	Symposium Organization
	2018 Edsger W. Dijkstra Prize in Distributed Computing
	2018 Principles of Distributed Computing Doctoral Dissertation Award
	Details of the DISC'18 Reviewing Process

	p01-Fekete
	p02-Goldstein
	How do we train neural nets
	Why is training on HPC platforms hard?
	Can't we just use bigger batch sizes?
	So what can be done to scale up SGD in distributed environments?

	p03-Mendler
	p04-Emek
	Introduction
	Model
	Results
	Additional Related Literature

	SA° Algorithm for k-Leader Selection
	Preliminaries
	The Ball Growing Subroutine
	Broadcast and Echo over G
	The Main Algorithm
	The Detection Phase
	The Elimination Phase

	Run-Time

	Negative Results

	p05-Sulamy
	Introduction
	Related Work

	Model
	Equilibrium in Distributed Algorithms
	Knowledge Sharing
	2-Knowledge Sharing

	Coloring

	Impossibility With No Knowledge
	Impossibility of Knowledge Sharing
	Impossibility of Coloring

	Algorithms
	Knowledge Sharing in a Ring
	Coloring in General Graphs

	How Much Knowledge Is Necessary?
	Knowledge Sharing
	Coloring
	Leader Election
	Ring Partition
	Orientation

	Discussion

	p06-Ahmadi
	Introduction
	Exact Unweighted Maximum Matching in Bipartite Graphs
	Approximate Fractional Weighted Maximum Matching
	Deterministic Rounding of Fractional Matchings
	Lower Bound for (1-O(1/sqroot(n)))-Approximate Fractional Matching

	Related Work
	Model and Definitions
	Exact Integral Maximum Matching in Bipartite Graphs
	Setting Up an Augmenting Path: Procedure SetupPath

	Fractional Matching Approximation
	Deterministic Rounding of Fractional Matchings
	Lower Bound

	p07-Antoniadis
	Introduction
	Model
	Consensus
	State Machine Replication

	Complexity Lower Bound on State Machine Replication
	Complexity Lower Bound
	Extension to other Models

	The Empirical Perspective
	Experimental Methodology
	Experimental Results on a Single Machine
	Wide-area Experiments

	Discussion
	Concluding Remarks

	p08-Aspnes
	Introduction
	Model
	Time complexity

	Space complexity
	Examples of allocate-on-use space complexity
	Monte Carlo Mutual Exclusion
	The algorithm
	Proof of Theorem 3
	Mutual exclusion
	Deadlock-freedom
	RMR Bound

	When the algorithm fails

	Simulating allocation on update
	Open problems

	p09-Balliu
	Introduction
	Model and related work
	Model of computation
	Locally checkable labellings
	Related work

	Near-linear complexities in general graphs
	Linear bounded automata
	Grid structure
	Grid labels
	Unbalanced grid graphs

	Machine encoding
	Labels

	LCL construction
	LCL Problem Pi_M
	Time complexity
	Instantiating the LCL construction

	Complexity gap on trees
	Skeleton tree
	Virtual tree
	Properties of the virtual tree
	Solving the problem faster
	Filling gaps by bruteforce

	p10-Kling
	Introduction
	Exact majority: the general idea of canceling-doubling phases
	Exact majority in O(log^5/3 n) time with Theta(log²n) states
	Analysis of the FastMajority1 protocol
	Reducing the number of states to Theta(log n)

	p11-Berger
	Introduction
	Space bounds for encoded, multi-register, and Byzantine storage
	Our results
	Related work and applicability of our bounds

	Preliminaries
	Disintegrated storage
	Lower bounds for disintegrated storage
	General properties
	Invisible reads
	Visible reads

	Lower bounds for common write disintegrated storage
	General observation
	Invisible reads
	Visible reads

	Discussion

	p12-Bonamy
	Introduction
	Related work
	Preliminaries
	Simple upper bounds
	Recoloring algorithm for trees
	Recoloring algorithm for subcubic graphs
	Recoloring in toroidal grids
	Simple corollaries

	p13-Brandt
	Introduction
	Related Work
	Preliminaries
	The Model
	Definitions and Notation
	A Single Agent

	Techniques
	The Schedule
	Traveling and Meeting
	The Travel Vector and a Modulo Operation
	Three Semi-Synchronous Agents Do Not Suffice

	p14-Chockler
	Introduction
	Transaction Certification Service
	Multi-Shot 2PC and Shard-Local Certification Functions
	Fault-Tolerant Commit Protocol
	Related Work
	Conclusion

	p15-Davies
	Introduction
	Models and problems
	Multiple access channels
	Ad-hoc multi-hop radio networks
	Node knowledge
	Tasks

	Related work
	Wake-up
	Broadcasting

	New results
	Previous approaches
	Novel approach
	A note on non-explicitness

	Combinatorial objects
	Unbounded universal synchronizers
	Unbounded transmission schedules

	Algorithms for multiple access channels
	Algorithms for radio networks
	Conclusions

	p16-Konrad
	Introduction
	Our results
	Techniques: Framework of two-party communication complexity
	Related works
	Property testing of H-freeness

	Lower bound results: Detecting a clique requires Omega(sqroot(n)) rounds
	Lower-bound graphs
	Using lower-bound graphs and set disjointness to prove the hardness of clique detection
	Detection of K_l for l>=5

	Lower-bound graph construction
	Construction of a (Omega(n²), O(n^3/2))-lower-bound graph
	Analysis of Algorithm 1

	Two-party communication protocol for listing all cliques
	Conclusions

	p17-Daian
	Introduction
	Model
	Write and Read Next Objects
	Solving (k,k-1)-Set Consensus using WRN_k Objects
	Solution in a System of k Processes
	Solution in a System with k Participating Processes Out of Many

	Constructing 1sWRN_k from (k,k-1)-Set Consensus Implementation
	WRN_k is Weaker than 2-Consensus
	Implications
	Set Consensus Ratio
	Infinite Hierarchy

	Conclusion

	p18-Palmieri
	Introduction
	Related Work
	Terminology, NUMA & Linked Data Structures
	NUMASK: A Concurrent Skip List Designed for NUMA
	Per-NUMA zone index layers
	Per-NUMA zone intermediate layers
	Propagation of Data Layer Modifications.
	Example of NUMASK deployment
	Design Trade-offs

	NUMASK: Protocol Details
	NUMASK: Data Structure Operations
	Data-Layer-Helper
	Per-NUMA-Helper
	Correctness Arguments

	NUMASK Optimization
	Evaluation
	Conclusion

	p19-Viglietta
	Introduction
	Framework and Background
	Contributions

	Definitions and Preliminaries
	Oracle Semi-Oblivious Real RAMs
	Mobile Robots as Real RAMs

	Implementing the TuringMobile
	Basic Implementation
	Complete Implementation

	Applications
	Exploring the Plane
	Minimality of the Basic TuringMobile
	Near-Gathering with Limited Visibility
	Pattern Formation with Limited Visibility
	Higher Dimensions

	Conclusions

	p20-Dufoulon
	Introduction
	Related Work
	Contributions

	Model and Definitions
	Preliminaries
	Model Definitions
	Leader Election

	Leader Election Algorithms
	Uniform Eventual Leader Election
	Description
	Balanced messages
	Designing constant-size communication phases
	Remarks on the eventual leader election algorithm

	Uniform Terminating Leader Election (Explicit LE)
	Overlay network
	Termination detection component for explicit leader election

	Discussion and Perspectives

	Additional Results
	Randomized Leader Election
	MIS and 5-coloring for Trees
	Multi-Broadcast with Provenance

	p21-Woelfel
	Introduction
	Other Related Work.

	Abortable Compare-And-Swap in the CC Model
	From TAS to Name Consensus
	From Name Consensus to Compare-And-Swap

	RMR Lower Bound for Abortable Leader Election
	Lower Bound Preliminaries
	Properties of Abortable Leader Election
	Constructing an Expensive Execution
	Additional Assumptions
	Terminology and Notation
	Overview of the Construction

	p22-Medina
	Introduction and Related Work
	Background
	Our Result
	The Main Related Work and Comparison of Techniques
	Other related work

	Problem Definition and Model of Computation
	Preliminaries
	Vertex Cover in Hypergraphs (VCH)
	The Network

	Algorithm Description
	The Algorithm (ALG)

	Analysis
	Approximation Ratio
	Bounding the Number of Rounds
	Golden Iterations
	Useful Claims
	Proof of Theorem 8

	Distributed Implementation
	Proof of the Main Result
	Discussion

	p23-Feldman
	Introduction
	Motivating Example
	Proving Linearizability
	Proving the Assertions

	The Framework: Correctness of Traversals Using Local Views
	Reachability Along Search Paths
	Local Views and Their Properties
	Local View Argument: Conditions & Guarantees
	Condition I: Temporal Acyclicity
	Condition II: Preservation of Search Paths
	Local View Arguments' Guarantee

	Proof Idea

	Putting It All Together: Proving Linearizability Using Local Views
	Additional Case Studies
	Lazy and Optimistic Lists
	Lock-free List and Skip-List

	Related Work
	Conclusions and Future Work

	p24-Paz
	Introduction
	Context and Objective
	Our Results
	Our Techniques
	Previous Work

	Model and Notations
	All Proof-Labeling Schemes Scale Linearly in Trees
	Universal Scaling of Uniform Proof-Labeling Schemes
	Certifying Distance-Related Predicates
	Distributed Proofs for Spanning Trees
	Conclusion

	p25-Hirvonen
	Introduction
	Model and definitions
	The price of locality
	Proof sizes
	Price of locality
	High price of locality
	Intermediate price of locality

	Locality for free and reversing decision
	Beyond free locality
	Local decision and communication complexity
	Connecting local decision and communication complexity

	p26-Fischer
	Introduction
	Our Result, and Related Work.
	Our Sampling Technique, and Related Approaches
	Notation and Preliminaries

	Local Glauber Dynamics
	Description of Path Coupling.
	Properties of the Coupling
	Bounding the Expected Number of Differing Nodes

	p27-Nowak
	Introduction
	Contribution

	Model and Problem
	Dynamic Network Model
	Problem Formulation
	Performance Metrics

	Algorithms
	Non-split Network Models
	Asynchronous Byzantine Message Passing

	Performance Bounds
	Bounds for MidExtremes
	Bounds for ApproachExtreme
	One-dimensional Case
	Multidimensional Case

	Conclusion

	p28-Garncarek
	Introduction
	Our results
	Previous and related work

	Model
	Shared channel
	Adversaries injecting packets
	Local schedulers
	Quality of service

	Universally stable algorithm with (small) memory
	Window-based algorithm under additional assumptions
	Modified algorithm
	Analysis of the modified algorithm

	Unknown queue size
	Impossibility result
	Auxiliary terminology and high level description of the impossibility result
	Formal proof of the impossibility result

	Algorithm

	Conclusions

	p29-Ghaffari
	Introduction and Related Work
	Our Contributions
	Spanners
	Minimum Dominating Set
	Network Decompositions and Neighborhood Covers

	Our Method in a Nutshell, and Comparison with Prior Methods

	Model and Definitions
	Hitting Set
	Spanners
	Minimum Set Cover and Dominating Set

	p30-Ghaffari
	Introduction
	Our Results

	Preliminaries
	Minimum Spanning Tree
	Fast Gossiping with Bounded-Size Messages

	p31-Ghaffari
	Introduction and Related Work
	Our Results
	Multicommodity Routing on Random Graphs
	Transformation

	Some Other Related Work

	Multicommodity Routing
	Parallel to Distributed
	Applications to Parallel Algorithms

	Conclusion and Open Problems
	High Degree Communication

	p32-Gmyr
	Introduction
	Our Contributions and Comparison with Related Work
	High-Level Overview of Approach
	Other Related Work

	Preliminaries
	Notation and Definitions
	Model
	Underlying Algorithms

	Distributed Danner Construction
	Applications
	Broadcast, Leader Election, and Spanning Tree
	Minimum Spanning Tree and Connectivity
	O(log n)-Approximate Minimum Cut
	Algorithms for Graph Verification Problems

	Conclusion

	p33-Haeupler
	Introduction
	The Low-Congestion Shortcut Framework: A Brief Summary
	CONGEST model and Shortest Path Problems
	CONGEST Model
	Shortest Path Problems

	Our Results
	SSSP
	Distance labeling schemes
	Transshipment problem

	Related Work

	Distance-Preserving Tree
	Correctness
	Algorithm Main Loop

	Solving SSSP and Related Problems
	SSSP Trees
	Distance Labeling Schemes
	Transshipment Problem

	Conclusion and Future Work

	p34-Komargodski
	Introduction
	Related Work
	Proof Overview

	Definitions & Preliminaries
	Azuma's Inequality

	A Lower Bound for Single-Bit Single-Turn Protocols
	A Lower Bound for Single-Turn Protocols
	Proof of Lemma 13
	Proof of Lemma 14

	p35-Schwartzman
	Introduction
	Tools and results
	Previous research

	Preliminaries
	Orderless-local algorithms
	Distributed derandomization
	Submodular Maximization
	Fast approximations for cut functions

	p36-Tschudi
	Introduction
	Broadcast and Weaker Consistency Guarantees
	Contribution and Outline
	Related Work

	Preliminaries and Notation
	Consistency Specifications
	Protocols and Constructions.

	Impossibility Proofs
	Results
	Strong Broadcast Impossibility
	Strong Separation of Broadcast and Authenticated Channels
	Weak Broadcast

	Extension to the n-Party Case
	Conclusion and Outlook

	p37-Mashreghi
	Introduction
	Techniques
	Related work
	Organization

	Preliminaries
	Model
	Definitions and Subroutines
	Implementation of FindAny, FindMin and ApproxCut

	Asynchronous ST construction with o(m) messages
	Proof of the main theorem
	Proof of ApproxCut Lemma
	Pseudocode

	Finding MST with o(m) asynchronous communication
	Conclusion

	p38-Newport
	Introduction
	Model and Problem
	Upper Bound
	Algorithm Description
	Safety
	Liveness
	Main Ideas

	Removing the Assumption of Unique IDs

	Almost-Everywhere Agreement
	Lower Bound

	p39-Parter
	Introduction & Related Work
	Our Result and Technical Overview

	Coloring Most Vertices Through Graph Sparsfication
	List-Coloring of the Remaining Subgraph
	Missing Pseudocodes for the Subroutines of [5]

	p40-Parter
	Introduction & Related Work
	Collecting Topology of Nearby Neighborhood
	Computing Nearest Vertices in the (k/2 - 1) Neighborhoods
	Dividing G into Sparse and Dense Regions

	Handling the Sparse Subgraph
	Handling the Dense Subgraph
	Description of Algorithm SpannerDenseRegion

	Derandomization of Hitting Sets
	Hitting Sets with Short Seeds
	Deterministic Hitting Sets in the Congested Clique
	Deterministic O(k)-Spanners in O(log k) Rounds

	p41-Zheng
	Introduction
	System Model and Problem Definitions
	System Model
	Lattice Agreement
	Generalized Lattice Agreement

	Lattice Agreement in Synchronous Systems
	Lattice Agreement with Known Height
	The Classifier Procedure
	Algorithm LA_alpha

	Lattice Agreement with Unknown Height
	Algorithm LA_beta
	Algorithm LA_gamma

	Lattice Agreement in Asynchronous Systems
	Algorithm LA_delta

	Generalized Lattice Agreement
	Algorithm GLA_alpha

	Conclusions

	p42-Bamberger
	Introduction
	Model, Contribution & Techniques
	Two Sample Problems: MIS & Vertex-Coloring

	p43-Davies
	Model and problem
	Related work
	New results

	Algorithms
	Blind radio networks without collision detection
	Directed blind radio networks with collision detection

	p44-De_Marco
	Introduction
	Our contribution

	p45-Dongol
	Foundations
	Contributions

	p46-Doty
	Introduction
	Algorithm
	Conclusion

	p47-Welch
	Introduction
	Preliminaries
	Lower Bound

	p48-Pajak
	Introduction
	Results

	p49-Gokhale
	Introduction
	The Group Mutual Exclusion Algorithm

	p50-Goubault
	Introduction
	Results

	p51-Sakavalas
	Introduction
	Limited Topology Knowledge and Relay Depth

	p52-Sudo
	Introduction
	Proposed Protocol

