
On Subtyping in Type Theories with Canonical
Objects
Georgiana Elena Lungu
Department of Computer Science, Royal Holloway, University of London, U.K.
georgiana.lungu.2013@live.rhul.ac.uk

Zhaohui Luo1

Department of Computer Science, Royal Holloway, University of London, U.K.
Zhaohui.Luo@rhul.ac.uk

Abstract
How should one introduce subtyping into type theories with canonical objects such as Martin-
Löf’s type theory? It is known that the usual subsumptive subtyping is inadequate and it is
understood, at least theoretically, that coercive subtyping should instead be employed. However,
it has not been studied what the proper coercive subtyping mechanism is and how it should
be used to capture intuitive notions of subtyping. In this paper, we introduce a type system
with signatures where coercive subtyping relations can be specified, and argue that this provides
a suitable subtyping mechanism for type theories with canonical objects. In particular, we
show that the subtyping extension is well-behaved by relating it to the previous formulation of
coercive subtyping. The paper then proceeds to study the connection with intuitive notions of
subtyping. It first shows how a subsumptive subtyping system can be embedded faithfully. Then,
it studies how Russell-style universe inclusions can be understood as coercions in our system. And
finally, we study constructor subtyping as an example to illustrate that, sometimes, injectivity
of coercions need be assumed in order to capture properly some notions of subtyping.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases subtyping, type theory, conservative extension, canonical objects

Digital Object Identifier 10.4230/LIPIcs.TYPES.2016.13

Acknowledgements Thanks go to Sergei Soloviev for extremely helpful remarks on this work
during his visit to Royal Holloway and the anonymous referees for their helpful comments.

1 Introduction

Type theories with canonical objects such as Martin-Löf’s type theory [26] have been used as
the basis for both theoretical projects such as Homotopy Type Theory [32] and practical
applications in proof assistants such as Coq [10] and Agda [1]. In this paper, we investigate
how to extend such type theories with subtyping relations, an issue that is important both
theoretically and practically, but has not been settled.

Subsumptive Subtyping. The usual way to introduce subtyping is via the following sub-
sumption rule:

a : A A ≤ B
a : B

1 This work is partially supported by the EU COST Action CA15123 and the CAS/SAFEA International
Partnership Program.

© Georgiana E. Lungu and Zhaohui Luo;
licensed under Creative Commons License CC-BY

22nd International Conference on Types for Proofs and Programs (TYPES 2016).
Editors: Silvia Ghilezan, Herman Geuvers, and Jelena Ivetić; Article No. 13; pp. 13:1–13:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georgiana.lungu.2013@live.rhul.ac.uk
mailto:Zhaohui.Luo@rhul.ac.uk
https://doi.org/10.4230/LIPIcs.TYPES.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 On Subtyping in Type Theories with Canonical Objects

This is directly related to the notion of subset in mathematics and naturally linked to type
assignment systems in programming languages like ML or Haskell. However, subsumptive
subtyping is not adequate for type theories with canonical objects since it would destroy key
properties of such type theories including canonicity (every object of an inductive type is
equal to a canonical object) and subject reduction (computation preserves typing) [21, 16].

For instance, the Russell-style type universes Ui : Ui+1 (i ∈ ω) [23] constitute a special
case of subsumptive subtyping with Ui ≤ Ui+1 [18]. If we adopt the standard notation of
terms with full type information, the resulting type theory with Russell-style universes would
fail to have canonicity or subject reduction.2 An alternative is to use proof terms with less
typing information like using (a, b) instead of pair(A,B, a, b) to represent pairs, as in HoTT
(see Appendix 2 of [32]). The problem with this approach is that not only the property of
type uniqueness fails, but a proof term may have incompatible types. For example, for a : A
and A : U , where U is a type universe, the pair (A, a) has both types U ×A and ΣX:U.X,
which are incompatible in the sense that none of them is a subtype of the other. This would
lead to undecidability of type checking,3 which is unacceptable for type theories with logics
based on the propositions-as-types principle.

In §3 we will show how we can embed a subtyping system with the above subsumption
rule into the coercive subtyping system we introduce in this paper.

Coercive Subtyping. An alternative way to introduce subtyping is coercive subtyping,
where a subtyping relationship between two types is modelled by means of a unique coercion
between them. The early developments of coercion semantics of subtyping for programming
languages include [25, 29, 28, 6], among others. At the theoretical level, previous work on
coercive subtyping for dependent type theories such as [15, 21] show that coercive subtyping
can be adequately employed for dependent type theories with canonical objects to preserve
the meta-theoretic properties such as canonicity and normalisation of the original type
theories. Based on this, coercive subtyping has been successfully used in various applications
based on the implementations of coercions in Coq and several other proof assistants [30, 3, 7].

However, the theoretical research on coercive subtyping such as [21] considers a rather
abstract way of extension with coercive subtyping. For any type theory T , it extends it
with a (coherent, but possibly infinite) set C of subtyping judgements to form a new type
theory T [C]. Although this is well-suited in a theoretical study, it does not tell one how the
extension should be formulated concretely in practice. In fact, a proposal of adding coercive
subtyping assumptions in contexts [22] has met with potential difficulties in meta-theoretic
studies that cast doubts on the seemingly attractive proposal. The complication was caused
by the fact that coercion relations specified in a context can be moved to the right of the
turnstile sign ` to introduce terms with the so-called local coercions that are only effective in
a localised scope. It is still unknown whether such mechanisms can be employed successfully.
This has partly led to the current research that studies a more restrictive calculus that only
allows coercive subtyping relations to be specified in signatures whose entries cannot be
localised in terms.

2 See §4.1 of the current paper for an example of the former and §4.3 of [16] for an example of the latter.
3 To see the problem of type checking, it may be worth pointing out that, for a dependent type theory,

type checking depends on type inference; put in another way, in a type-checking algorithm one has to
infer the type of a term in many situations.

G. E. Lungu and Z. Luo 13:3

Main Contributions. In this paper, we study a type theory with signatures where coercive
subtyping relations can be specified and argue that this provides a suitable subtyping
mechanism for type theories with canonical objects.4 This claim is backed up by first showing
that the subtyping extension is conservative over the original type theory and that all its
valid derivations correspond to valid derivations in the original calculus, and then studying
its connection with subsumptive subtyping and its use in modelling some of the intuitive
notions of subtyping including that induced by Russell-style universes in type theory.

The notion of signature in type theory was first studied in the Edinburgh Logical
Framework [12] with judgements of the form Γ `Σ J , where the signatures Σ are used to
describe constants of a logical system, in contrast with the contexts Γ that introduce variables
which can be abstracted to the right of the turnstile sign by means of quantification or
λ-abstraction. We will introduce the notion of signature by extending (the typed version
of) Martin-Löf’s logical framework LF (Chapter 9 of [14]) to obtain the system LFS , which
can be used similarly as LF in specifying type theories such as Martin-Löf’s type theory [26].
Formulating the coercive subtyping relation in a type theory based on a logical framework
makes it possible to extend the formulation to other type constructors too. We then introduce
ΠS , a system with Π-types specified in LFS , and ΠS,≤ that extends ΠS to allow specification
in signatures of subtyping entries A ≤c B that specifies that A is a subtype of B via
coercion c, a function from A to B. We will justify that the coercive subtyping mechanism is
abbreviational by showing that ΠS,≤ is equivalent to a similar system as previously studied
[21] and hence has desirable properties [31, 13, 33].

Although it is incompatible with the notion of canonical objects, subsumptive subtyping
is widely used and, intuitively, it is the concept in mind in the first place when considering
subtyping. It is therefore worth studying its relationship with the coercive subtyping calculus.
Aspinall and Compagnoni [2] approached the topic of subsumptive subtyping in dependent
type theory by developing a type system, with contextual subsumptive subtyping entries
of the form α ≤ A to declare that the type variable α is a subtype of A, and its checking
algorithm in the Edinburgh Logical Framework. In this paper we shall define a subsumptive
subtyping system in LFS , one similar to that in [2], and prove that it can be faithfully
embedded in ΠS,≤.

It is worth noting that subtyping becomes particularly complicated in the case of dependent
types. In a type system with contextual subtyping entries such as α ≤ A as in Aspinall and
Compagnoni’s system, one has to decide whether to allow abstraction (for example, by λ or
Π) over the subtyping entries. If one did, it would lead to types with bounded quantification
of the form Πα ≤ A.B, which would result in complications and, most likely, undecidability
of type checking (cf., Pierce’s work that shows undecidability of type checking in F≤, an
extension of the second-order λ-calculus with subtyping and bounded quantification [27]). In
order to avoid bounded quantification, Aspinall and Compagnoni [2] present the subtyping
entries in contexts, but do not enable their moving to the right of `. In consequence,
abstraction by λ or Π of those entries that occur to the left of a subtyping entry is obstructed.
We chose to represent subtyping entries in the signatures in order to allow abstraction to
happen freely for contextual entries.

We shall then consider two case studies, showing how coercive subtyping may be used
to capture an intuitive notion of subtyping. Type universes [23] are our first example here.
The Russell-style universes constitute a typical example of subsumptive subtyping. The

4 A type theory with signatures was also proposed by the second author in [19] in the context of applying
type theories to natural language semantics.

TYPES 2016

13:4 On Subtyping in Type Theories with Canonical Objects

second author [18] observed that, although subsumptive subtyping causes problems with
the notion of canonicity, one can obtain the essence of Russell-style universes by means of
Tarski-style universes together with coercive subtyping by taking the explicit lifting operators
between Tarski-style universes as coercions. Our embedding theorem (Theorem 34) that
relates subsumptive and coercive subtyping can be extended for type systems with universes,
therefore justifying this claim.

Subsumptive subtyping, esp. in its extreme forms, intuitively embodies a notion of
injectivity that is in general not the case for coercive subtyping. One of such extreme forms
of subtyping is constructor subtyping [4]. As the second case study, we shall relate it to our
coercive subtyping system and show that, once equipped with injectivity of coercions, coercive
subtyping can faithfully model the notion of injectivity intuitively assumed in subsumptive
subtyping.

Related Work. Subtyping has been studied extensively both for type systems of program-
ming languages and type theories implemented in proof assistants. Early studies of subtyping
for programming languages have considered both subsumptive and coercive subtyping, mainly
for simpler and non-dependent type systems (see, for example, [25, 29, 28, 6]). For example,
Reynolds [28] considered extrinsic and intrinsic models of coercions and their applications to
programming.

Subtyping in dependent type theories has been studied by Aspinall and Compagnoni [2]
for Edinburgh LF, Betarte and Tasistro [5] about subkinding between kinds (called types) for
Martin-Löf’s logical framework, and Barthe and Frade [4] on constructor subtyping, among
others. A theoretical framework of coercive subtyping for type theories with canonical objects
has been developed and studied by the second author and colleagues in a series of papers
and PhD theses [15, 21, 31, 13, 33]. In this setting, any dependent type theory T can be
extended with coercive subtyping by giving a (possibly infinite) set C of basic subtyping
judgements, resulting in the extended calculus T [C]. The meta-theory of such a calculus
T [C] was first studied in [31] where, among other things, the basic approach to proving that
coercive subtyping is an abbreviational extension was developed, which was further studied
and improved in, for example, [13, 33]. Coercions have been implemented in several proof
assistants such as Coq [10, 30], Lego [20, 3], Matita [24] and Plastic [7] and used effectively
for large proof development and, more recently, in formal development of natural language
semantics based on type theory [17, 8, 9].

The above framework of coercive subtyping [21] has served as a theoretical tool to show
in principle that coercive subtyping is adequate for type theories with canonical objects.
However, as pointed out above, such a theoretical framework does not serve as a concrete
system in practice. In this paper, we shall use subtyping entries in signatures to specify basic
subtyping relations and study the resulting calculus, both in meta-theory and in practical
modelling.

In §2, we present ΠS,≤ and study its meta-theoretic properties. §3 presents a subsumptive
subtyping system based on [2] and shows that it can be embedded faithfully in ΠS,≤. The
two case studies on type universes and injectivity are studied in §4, with the relationship
between Russell-style and Tarski-style universes studied in §4.1 and constructor subtyping
and injectivity in §4.2. The Conclusion discusses possible further research directions.

G. E. Lungu and Z. Luo 13:5

2 Coercive Subtyping in Signatures

We aim to introduce a calculus that can model intuitive notions of subtyping such as
subsumption and, at the same time, preserves the desirable properties of the original type
theory. In this section, we present ΠS,≤, a type system with signatures where we can
specify coercive subtyping relations, and then study its properties by relating it to the earlier
formulation of coercive subtyping.

In what follows we use ≡ for syntactic identity and assume that the signatures are
coherent.

2.1 ΠS,≤, a Type Theory with Subtyping in Signatures
2.1.1 Logical Framework with Signatures
Type theories can be specified in a logical framework such as Martin-Löf’s logical framework
[26] or its typed version LF [14]. We shall extend LF with signatures to obtain LFS .

Informally, a signature is a sequence of entries of several forms, one of which is the form
of membership entries c : K, which is the traditional form of entries as occurred in contexts
(we shall add another form of entries in the next section). If a signature has only membership
entries, it is of the form c1 : K1, ..., cn : Kn.
I Remark (Constants and Variables). Intuitively, we shall call c declared in a signature entry
c : K as a constant, while x in a contextual entry x : K as a variable. The formal difference
is that, as declared in a signature entry, c cannot be substituted or abstracted (to the right
of `), while x declared in a contextual entry can either be substituted or abstracted by λ or
Π (see later for the formal details.)

LFS is a dependent type theory whose types are called kinds to distinguish them from
types in the object type theory. It has the kind Type of all types of the object type theory
and dependent Π-kinds of the form (x:K)K ′, which can be written as (K)K ′ if x 6∈ FV (K ′),
whose objects are λ−abstractions of the form [x:K]b. For each type A : Type, we have a
kind El(A) which is often written just as A. In LFS , there are six forms of judgements:

Σ valid, asserting that Σ is a valid signature.
`Σ Γ, asserting that Γ is a valid context under Σ.
Γ `Σ K kind, asserting that K is a kind in Γ under Σ.
Γ `Σ k : K, asserting that k is an object of kind K in Γ under Σ.
Γ `Σ K1 = K2, asserting that K1 and K2 are equal kinds in Γ under Σ.
Γ `Σ k1 = k2 : K, asserting that k1 and k2 are equal objects of kind K in Γ under Σ.

The inference rules of the logical framework LFS are given in Figure 1; they are the same as
those of LF [14], except that we have judgements for signature validity, all other forms of
judgements are adjusted accordingly with signatures attached, and we include some structural
rules such as those for weakening and signature and context replacement (or signature and
contextual equality), as done in the previous formulations in, for example, [21, 31, 33].

2.1.2 Type Theory with Π-types
Let ΠS be the type system with Π-types specified in LFS . These Π-types are specified in the
logical framework by introducing the constants, together with the definition rule, in Figure 2.
Note that, with the constants in Figure 2, the rules in Figure 3 become derivable.

TYPES 2016

13:6 On Subtyping in Type Theories with Canonical Objects

Validity of Signature/Contexts, Assumptions

〈〉 valid
`Σ K kind c 6∈ dom(Σ)

Σ, c:K valid

`Σ,c:K,Σ′ Γ
Γ `Σ,c:K,Σ′ c:K

Σ valid

`Σ 〈〉
Γ `Σ K kind x 6∈ dom(Σ) ∪ dom(Γ)

`Σ Γ, x:K
`Σ Γ, x:K,Γ′

Γ, x:K,Γ′ `Σ x:K
Weakening

Γ `Σ, Σ′ J `Σ K kind c 6∈ dom(Σ,Σ′)
Γ `Σ, c:K, Σ′ J

Γ,Γ′ `Σ J Γ `Σ K kind x 6∈ dom(Γ,Γ′)
Γ, x:K,Γ′ `Σ J

Equality Rules

Γ `Σ K kind

Γ `Σ K = K

Γ `Σ K = K′

Γ `Σ K′ = K

Γ `Σ K = K′ Γ `Σ K′ = K′′

Γ `Σ K = K′′

Γ `Σ k:K
Γ `Σ k = k:K

Γ `Σ k = k′:K
Γ `Σ k′ = k:K

Γ `Σ k = k′:K Γ `Σ k′ = k′′:K
Γ `Σ k = k′′:K

Γ `Σ k:K Γ `Σ K = K′

Γ `Σ k:K′
Γ `Σ k = k′:K Γ `Σ K = K′

Γ `Σ k = k′:K′
Signature Replacement

Γ `Σ0,c:L,Σ1 J `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 J

Context Replacement

Γ0, x:K,Γ1 `Σ J Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ J

Substitution Rules

`Σ Γ0, x:K,Γ1 Γ0 `Σ k:K
`Σ Γ0, [k/x]Γ1

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]K′ kind

Γ0, x:K,Γ1 `Σ L = L′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]L = [k/x]L′

Γ0, x:K,Γ1 `Σ k′:K′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]k′:[k/x]K′

Γ0, x:K,Γ1 `Σ l = l′:K′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k = k′:K
Γ0, [k/x]Γ1 `Σ [k/x]K′ = [k′/x]K′

Γ0, x:K,Γ1 `Σ l:K′ Γ0 `Σ k = k′:K
Γ0, [k/x]Γ1 `Σ [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ `Σ K kind Γ, x:K `Σ K′ kind

Γ `Σ (x:K)K′ kind
Γ `Σ K1 = K2 Γ, x:K1 `Σ K′1 = K′2

Γ `Σ (x:K1)K′1 = (x:K2)K′2

Γ, x:K `Σ y:K′

Γ `Σ [x:K]y:(x:K)K′
Γ `Σ K1 = K2 Γ, x:K1 `Σ k1 = k2:K

Γ `Σ [x:K1]k1 = [x:K2]k2:(x:K1)K
Γ `Σ f :(x:K)K′ Γ `Σ k:K

Γ `Σ f(k):[k/x]K′
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k1 = k2:K

Γ `Σ f(k1) = f ′(k2):[k1/x]K′

Γ, x:K `Σ k′:K′ Γ `Σ k:K
Γ `Σ ([x:K]k′)(k) = [k/x]k′:[k/x]K′

Γ `Σ f :(x:K)K′ x 6∈ FV (f)
Γ `Σ [x:K]f(x) = f :(x:K)K′ The kind Type

`Σ Γ
Γ `Σ Type kind

Γ `Σ A:Type
Γ `Σ El(A) kind

Γ `Σ A = B:Type
Γ `Σ El(A) = El(B)

Figure 1 Inference Rules for LFS .

G. E. Lungu and Z. Luo 13:7

Constant declarations:

Π : (A:Type)(B:(A)Type)Type
λ : (A:Type)(B:(A)Type)((x:A)B(x))Π(A,B)

app : (A:Type)(B:(A)Type)(Π(A,B))(x:A)B(x)

Definitional equality rule

app(A,B, λ(A,B, f), a) = f(a) : B(a).

Figure 2 Constants for Π-types in logical framework.

Γ `Σ A : Type Γ, x:A `Σ B(x) : Type
Γ `Σ Π(A,B) : Type

Γ `Σ A : Type Γ `Σ B : (A)Type Γ `Σ f : (x:A)B(x)
Γ `Σ λ(A,B, f) : Π(A,B)

Γ `Σ g : Π(A,B) Γ `Σ a : A
Γ `Σ app(A,B, g, a) : B(a)

Γ `Σ A : Type Γ `Σ B : (A)Type
Γ `Σ f : (x:A)B(x) Γ `Σ a : A

Γ `Σ app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 3 Inference Rules for ΠS .

2.1.3 Subtyping Entries in Signatures
We present the whole system ΠS,≤. First, subtyping is represented by means of two forms of
judgements:

subtyping judgements Γ `Σ A ≤c B : Type, and
subkinding judgements Γ `Σ K ≤c K ′.

Subtyping relations between types (not kinds) can be specified in a signature by means
of entries A ≤c B : Type (or simply written as A ≤c B), where A and B are types and
c : (A)B.5

The specifications of subtyping relations are also required to be coherent. Coherence
is crucial as it ensures a coercive application abbreviates a unique functional application.
To define this notion of coherence, we need to introduce a subsystem of ΠS,≤, called Π0K

S,≤,
defined by the rules of ΠS together with those in Figures 4 and 5, where in the rule for
dependent products in Figures 4, the notation c2[x] was explained in, for example, [16]: it
means that x may occur free in c2, although only inessentially6. The composition of functions
is defined as follows: For f :(K1)K2 and g:(K2)K3, g ◦ f = [x:K1]g(f(x)):(K1)K3.

Here is the definition of coherence of a signature, which intuitively says that, under a
coherent signature, there cannot be two different coercions between the same types.

5 Using some types not contained in ΠS,≤, more interesting subtyping relations can be specified. For
example, for A ≤c B, we could have A ≡ V ect(N,n), B ≡ List(N) and c maps vector < m1, ...,mn >
to list [m1, ...,mn]. We shall not formally deal with such extended type systems in the current paper,
but the ideas and results are expected to extend to the type systems with such data types (eg, all those
in Martin-Löf’s type theory).

6 For instance, one might have (by using the congruence rule) x:A `Σ B ≤([y:A]e)(x) B
′, where B ≤e B′

and x 6∈ FV (e).

TYPES 2016

13:8 On Subtyping in Type Theories with Canonical Objects

Signature Rules for Subtyping

`Σ A : Type `Σ B : Type `Σ c : (A)B
Σ, A ≤c B valid

`Σ0,A≤cB:Type,Σ1 Γ
Γ `Σ0,A≤cB:Type,Σ1 A ≤c B : Type

Congruence

Γ `Σ A ≤c B : Type Γ `Σ A = A′ : Type Γ `Σ B = B′ : Type Γ `Σ c = c′ : (A)B
Γ `Σ A′ ≤c′ B′ : Type

Transitivity

Γ `Σ A ≤c A′ : Type Γ `Σ A′ ≤c′ A′′ : Type
Γ `Σ A ≤c′◦c A′′ : Type

Weakening

Γ `Σ, Σ′ A ≤d B : Type `Σ K kind

Γ `Σ, c:K, Σ′ A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ A ≤d B : Type Γ `Σ K kind

Γ, x:K,Γ′ `Σ A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Signature Replacement

Γ `Σ0,c:L,Σ1 A ≤d B : Type `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 A ≤d B : Type

Context Replacement

Γ0, x:K,Γ1 `Σ A ≤d B : Type Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ A ≤d B : Type

Substitution

Γ0, x:K,Γ1 `Σ A ≤c B:Type Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Γ `Σ A : Type
Γ `Σ A ≤[x:A]x A : Type

Dependent Product

Γ `Σ A′ ≤c1 A : Type Γ `Σ B,B′ : (A)Type Γ, x:A `Σ B(x) ≤c2[x] B
′(x) : Type

Γ `Σ Π(A,B) ≤d Π(A′, B′ ◦ c1) : Type

where d ≡ [F : Π(A,B)]λ(A′, B′ ◦ c1, [x:A′]c2[x](app(A,B, F, c1(x)))).

Figure 4 Inference Rules for Π0K
S,≤ (1).

I Definition 1. A signature Σ is coherent if, in Π0K
S,≤, Γ `Σ A ≤c B and Γ `Σ A ≤c′ B

imply Γ `Σ c = c′ : (A)B.

Note that, in comparison with earlier formulations such as [21], we have switched from
strict subtyping relation < to ≤ and the coherence condition is changed accordingly as well;
in particular, under a coherent signature, any coercion from a type to itself must be equal to
the identity function. (This is a special case of the above condition when B ≡ A: because

G. E. Lungu and Z. Luo 13:9

Basic Subkinding Rule and Identity Coercion

Γ `Σ A ≤c B:Type
Γ `Σ El(A) ≤c El(B)

Γ `Σ K kind

Γ `Σ K ≤[x:K]x K

Structural Subkinding Rules

Γ `Σ K1 ≤c K2 Γ `Σ K1 = K′1 Γ `Σ K2 = K′2 Γ `Σ c = c′:(K1)K2

Γ `Σ K′1 ≤c′ K′2

Γ `Σ K ≤c K′ Γ `Σ K′ ≤c′ K′′

Γ `Σ K ≤c′◦c K′′

Γ `Σ, Σ′ K ≤d K′ `Σ K0 kind

Γ `Σ, c:K0, Σ′ K ≤d K′
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ K ≤d K′ Γ `Σ K0 kind

Γ, x:K0,Γ′ `Σ K ≤d K′
(x 6∈ dom(Γ,Γ′))

Γ `Σ0,c:L,Σ1 K ≤d K′ `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 K ≤d K′
Γ0, x:K,Γ1 `Σ L ≤d L′ Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ L ≤d L′

Γ0, x:K,Γ1 `Σ K1 ≤c K2 Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Γ `Σ K′1 ≤c1 K1 Γ, x:K1 `Σ K2 kind Γ, x′:K′1 `Σ K′2 kind Γ, x:K1 `Σ [c1(x′)/x]K2 ≤c2 K
′
2

Γ `Σ (x:K1)K2 ≤[f :(x:K1)K2][x′:K′1]c2(f(c1(x′))) (x:K′1)K′2

Figure 5 Inference Rules for Π0K
S,≤ (2).

we always have A ≤[x:A]x A, if A ≤c A, then c = [x:A]x : (A)A.) Note also that, it is easy to
prove by induction that, if Γ `Σ A ≤c B : Type, then Γ `Σ A,B : Type and Γ `Σ c : (A)B.

It is also important to note the difference between a judgement with signature in the
current calculus and that in the calculus employed in [21] where there are no signatures. For
example, the signatures Σ1 that contains A ≤c B and Σ2 that contains A ≤d B can both
be coherent signatures even when c 6= d, while such a situation can only be considered in
the earlier setting by having two different type systems T [C1] and T [C2], which is rather
cumbersome to say the least.7

We can, at this point, complete the specification of the system ΠS,≤ as the extension of
Π0K
S,≤ by adding the rules in Figure 6.
I Remark. We can now explain why we have to present the system Π0K

S,≤ first. The reason is
that the coercive definition rule (CD) will force any two coercions to be equal. Therefore,
we cannot define the notion of coherence for the system including the (CD) rule as, if we did
so, every signature would be coherent by definition.

7 This has some unexpected consequences concerning parameterised coercions as well. But it is a topic
beyond the current paper and will be discussed somewhere else.

TYPES 2016

13:10 On Subtyping in Type Theories with Canonical Objects

Coercive Application

(CA1)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0):[c(k0)/x]K′

(CA2)
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k0 = k′0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 6 The coercive application and definition rules in ΠS,≤.

2.2 Coherence for Kinds and Conservativity
In this subsection, we prove two basic properties of ΠS,≤: (1) coherence, as defined for types,
extends to kinds; (2) it is a conservative extension of the system ΠS .

2.2.1 Coherence for Kinds
Note that the coherence definition refers to types. In what follows we prove that coherence
for types implies coherence for kinds. We categorise kinds and show that they can be related
via definitional equality or subtyping only if they are of the same category. For this we
also define the degree of a kind which intuitively denotes how many dependent product
occurrences are in a kind.

I Lemma 2. If Γ `Σ A ≤c B is derivable in Π0K
S,≤ then Γ `Σ c:(A)B is derivable in Π0K

S,≤.

Proof. By induction on the structure of derivations J

I Lemma 3. If Γ ` K ≤c L is derivable in Π0K
S,≤ then Γ ` c:(K)L is derivable in Π0K

S,≤.

Proof. By induction on the structure of derivations. We consider K ≡ (x:K1)K2 and
L ≡ (x:L1)L2. If a derivation tree for Γ ` K ≤c L ends with the rule for dependent product
kind with premises Γ `Σ L1 ≤c1 K1, Γ, x:K1 `Σ K2 kind, Γ, y:L1 `Σ L2 kind and Γ, y:L1 `Σ
[c1(y)/x]K2 ≤c2 L2. By IH we have Γ `Σ c1:(L1)K1 and Γ, y:L1 `Σ c2:([c1(y)/x]K2)L2. By
weakening Γ, f :(x:K1)K2, y:L1 `Σ c2:([c1(y)/x]K2)L2 and Γ, f :(x:K1)K2, y:L1 `Σ c1:(L1)K1.
We have Γ, f :(x:K1)K2, y:L1 `Σ y:L1 so by application Γ, f :(x:K1)K2, y:L1 `Σ c1(y):K1. We
have Γ, f :(x:K1)K2, y:L1 `Σ f :(x:K1)K2 so by application we have Γ, f :(x:K1)K2, y:L1 `Σ
f(c1(y)):[c1(y)/x]K2. By application again we have Γ, f :(x:K1)K2, y:L1 `Σ c2(f(c1(y))):L2
and by abstraction Γ `Σ [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2 J

I Lemma 4. Let Γ `Σ K ≤c L be derivable in Π0K
S,≤. Then K and L are of the same form,

i.e., both are El-terms or both are dependent product kinds. Furthermore,
if K ≡ El(A) and L ≡ El(B), then Γ `Σ A ≤c B : Type is derivable in Π0K

S,≤ and
if K ≡ (x:K1)K2 and L ≡ (x:L1)L2, then Γ `Σ K1 kind, Γ, x:K1 `Σ K2 kind, Γ `Σ
L1 kind, and Γ, x:L1 `Σ L2 kind are derivable in Π0K

S,≤.

The following lemma states that, if there is a subtyping relation between two dependent
kinds, then the coercion can be obtained by the subtyping for dependent product kind rule
from Figure 5. Note that for this to hold it is essential that we only have subtyping entries
in signatures and not subkinding.

G. E. Lungu and Z. Luo 13:11

I Lemma 5. If Γ `Σ (x:K1)K2 ≤d (y:L1)L2 is derivable in Π0K
S,≤ then there exist derivable

judgements in Π0K
S,≤, Γ `Σ c1:(L1)K1 and Γ, y:L1 `Σ c2:([c1(y)/x]K2)L2 s.t.

Γ `Σ L1 ≤c1 K1
Γ, y:K ′1 `Σ [c1(y)/x]K2 ≤c2 L2 and
Γ `Σ d = [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2

are derivable in Π0K
S,≤.

Proof. By induction on the structure of derivation of Γ `Σ (x:K1)K2 ≤d (y:L1)L2. The only
non trivial case is when it comes from transitivity.

Γ `Σ (x:K1)K2 ≤d1 C Γ `Σ C ≤d2 (y:L1)L2

Γ `Σ (x:K1)K2 ≤d2◦d1 (y:L1)L2

By the previous lemma Γ `Σ C ≡ (z:M1)M2. By IH we have that
Γ `Σ M1 ≤c′1 K1
Γ, z:M1 `Σ [c′1(z)/x]K2 ≤c′2 M2
Γ `Σ d1 = [f :(x:K1)K2][z:M1]c′2(f(c′1(z))):((x:K1)K2)(z:M1)M2

and
Γ `Σ L1 ≤c′′1 M1
Γ, y:L1 `Σ [c′′1(y)/z]M2 ≤c′′2 L2
Γ `Σ d2 = [f :(z:M1)M2][y:L1]c′′2(f(c′′1(y))):((z:M1)M2)(y:L1)L2

are derivable. We apply transitivity to obtain Γ `Σ L1 ≤c′1◦c′′1 K1 and by weakening and sub-
stitution in addition, Γ, y:L1 `Σ [c′1(c′′1(y))/x]K2 ≤c′′2 ◦[c′′1 (y)/z]c′2 L2 and what is left to prove is
that Γ `Σ d2 ◦ d1 = [f :(x:K1)K2][y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(f((c′1 ◦ c′′1)(y))):((x:K1)K2)(y:L1)L2.
Let Γ `Σ F :(x:K1)K2

d2 ◦ d1(F) = d2(d1(F))
= d2([f :(x:K1)K2][z:M1]c′2(f(c′1(z)))(F))
= d2([F/f][z:M1]c′2(f(c′1(z))))
= d2([z:M1]c′2(F (c′1(z))))
= ([f :(z:M1)M2][y:L1]c′′2(f(c′′1(y))))([z:M1]c′2(F (c′1(z))))
= [z:M1]c′2(F (c′1(z)))/f]([y:L1]c′′2(f(c′′1(y))))
= [y:L1]c′′2([z:M1]c′2(F (c′1(z)))(c′′1(y)))
= [y:L1]c′′2([c′′1(y)/z]c′2(F (c′1(c′′1(y)))))
= [y:L1]c′′2([c′′1(y)/z]c′2(F (c′1(c′′1(y)))))
= [y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(F ((c′1 ◦ c′′1)(y)))
= ([f :(x:K1)K2][y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(f((c′1 ◦ c′′1)(y))))(F) J

The following de
nition gives us a measure for the structure of kinds. We will use this measure when

proving coherence for kinds. It is particularly important and we will use the fact that this
measure is not increased by substitution.

I Definition 6. For Γ `Σ K we define the degree of K where Γ `Σ K kind as deg(K) ∈ N
as follows:
1. deg(Type) = 1
2. deg(El(A)) = 1
3. deg((x:K)L) = deg(K) + deg(L)

TYPES 2016

13:12 On Subtyping in Type Theories with Canonical Objects

I Lemma 7. The following hold:
if Γ `Σ K = L is derivable in Π0K

S,≤ then deg(K) = deg(L)
if Γ `Σ K ≤c L is derivable in Π0K

S,≤ then deg(K) = deg(L)

Proof. We do induction on the structure of derivations of Γ `Σ K = L respectively Γ `Σ
K ≤ L. For example if it comes from the rule

Γ `Σ K1 = K2 Γ, x:K1 `Σ K ′1 = K ′2
Γ `Σ (x:K1)K ′1 = (x:K2)K ′2

by IH, deg(K1) = deg(K2) and deg(K ′1) = deg(K ′2), hence deg((x:K1)K ′1) = deg((x:K2)K ′2)
J

I Lemma 8 (Coherence for Kinds). If Γ `Σ K ≤c L and Γ `Σ K ≤c′ L are derivable in Π0K
S,≤,

then Γ `Σ c = c′ : (K)L is derivable in Π0K
S,≤.

Proof. By induction on n = deg(K).
1. For n = 1:

If Γ `Σ K = El(A) and Γ `Σ L = El(B) then by Lemma 4 we have Γ `Σ A ≤c B and
Γ `Σ A ≤c′ B and from coherence for types Γ `Σ c = c′:(A)B, hence Γ `Σ c = c′:(K)L
If Γ `Σ K = Type and Γ `Σ L = Type then we can only have Γ `Σ c = Id:(K)L.

2. For n > 1, Γ `Σ K ≡ (x:K1)K2 and Γ `Σ L ≡ (x:L1)L2, by Lemma 5
Γ `Σ L1 ≤c1 K1,
Γ, x:K1 `Σ [c1(y)/x]K2 ≤c2 L2 and
Γ `Σ c = [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2

are derivable for some Γ `Σ c1:(L1)K1 and Γ, x:K1 `Σ c2:([c1(x)/x]K2)L2 and deg(L1),
deg(K1), deg([c1(y)/x]K2), deg(L2) are all smaller than n. If

Γ `Σ L1 ≤c′1 K1,
Γ, x:K1 `Σ [c′1(y)/x]K2 ≤c′2 L2 and
Γ `Σ c′ = [f :(x:K1)K2][y:L1]c′2(f(c′1(y))):((x:K1)K2)(y:L1)L2

are derivable for some other coercions Γ `Σ c′1:(L1)K1 and Γ, x:K1 `Σ c′2:([c′1(y)/x]K2)L2
then by IH we have Γ `Σ c1 = c′1:(L1)K1 and Γ, x:K1 `Σ c2 = c′2:([c′1(y)/x]K2)L2 and
we are done. J

2.2.2 Conservativity
Here we prove that, if the signatures are coherent, our calculus ΠS,≤ is conservative over ΠS

in the traditional sense. It follows directly from the fact that ΠS,≤ keeps track of subtyping
entries in the signatures and it carries them along in derivations. More precisely we prove
that if a judgement is derivable in ΠS,≤ and not in ΠS then it cannot be written in ΠS .

The following two lemmas state that any subtyping or subkinding judgement can only be
derived with a signature containing subtyping entries, and hence the signature cannot be
written in ΠS .

I Lemma 9. If Γ `Σ A ≤c B:Type is derivable in ΠS,≤, then Σ contains at least a subtyping
entry or Γ `Σ A = B:Type and Γ `Σ c = Id:(A)A are derivable in ΠS,≤.

Proof. By induction on the structure of derivation. For example if it comes from transitivity
from premises Γ `Σ A ≤c A′ : Type and Γ `Σ A′ ≤c′ B : Type then the statement simply is
true by IH. J

G. E. Lungu and Z. Luo 13:13

I Lemma 10. If Γ `Σ K ≤c L is derivable in ΠS,≤, then Σ contains at least a subtyping
entry or Γ `Σ K = L and Γ `Σ c = Id:(K)L are derivable in ΠS,≤.

Proof. By induction on the structure of derivation. For example if it comes from transitivity
from premises Γ `Σ K ≤c M and Γ `Σ M ≤c′ L then the statement simply is true by IH.

If it comes from the rule

Γ `Σ A ≤c B:Type
Γ `Σ El(A) ≤c El(B)

then it follows from Γ `Σ A ≤c B:Type by the previous lemma J

The following lemma extends the statement to express the fact that it is enough for a
judgement to contain a non trivial subtyping or subkinding entry (not the identity coercion)
in its derivation tree to have a signature that cannot be written in ΠS .

I Lemma 11. If D is a valid derivation tree for Γ `Σ J in ΠS,≤ and Γ1 `Σ1 K1 ≤c0 K2
is present in D then, either Σ contains at least a subtyping entry or Γ1 `Σ1 K1 = K2 and
Γ1 `Σ1 c0 = IdK1 :(K1)K1 are derivable in ΠS,≤.

Proof. If Γ `Σ J is a subtyping or subkinding judgement it follows directly from the previous
lemmas 9, 5. Likewise, if the judgement comes from a coercive application or coercive
definition rule with one of the premises Γ `Σ K ≤ L, then, by the previous lemma the
statement holds. Otherwise we do induction on the structure of derivations of Γ `Σ J . For
example if the derivation tree containing the subkinding judgement ends with the rule

Γ `Σ K kind Γ, x:K `Σ K ′ kind

Γ `Σ (x:K)K ′ kind

then the subkinding judgements must be in at least one of the subderivations concluding Γ `Σ
K kind and Γ, x:K `Σ K ′ kind. The statement then holds by induction hypothesis. J

The following lemma states that, if a judgements is derived in ΠS,≤ using only trivial
coercions, then it can be derived in ΠS .

I Lemma 12. If in a derivation tree of a judgement derivable in ΠS,≤ which is not subtyping
or subkinding judgement all of the subtyping and subkinding judgements are of the form
Γ1 `Σ1 A ≤IdA

A:Type respectively Γ1 `Σ1 K ≤[x:K]x K then the judgement is derivable in
ΠS.

Proof. By induction on the structure of derivations. If the derivation tree D that only
contains trivial coercions ends with one of the rules of ΠS ,

D1
J1
...Dn

Jn

J
(R)

then J1,..., Jn also have derivation trees D1,...,Dn which only contain at most trivial coercions,
hence, by IH, they are derivable in ΠS . We can apply to them, with D1,...,Dn replaced by
their derivation in ΠS the same rule R to obtain the judgement J and the derivation is in
ΠS .

Otherwise, if for example the derivation containing only trivial coercions ends with
coercive application

Γ `Σ f :(x:K)K ′ Γ `Σ k0:K Γ `Σ K ≤[x:K]x K

Γ `Σ f(k0):[[x:K]x(k0)/x]K ′

TYPES 2016

13:14 On Subtyping in Type Theories with Canonical Objects

Γ `Σ [[x:K]x(k0)/x]K ′ = [k0/x]K ′ and Γ `Σ f :(x:K)K ′ and Γ `Σ k0:K are derivable
in ΠS by IH, and from them it follows directly by functional application, in ΠS , Γ `Σ
f(k0):[k0/x]K ′ J

I Theorem 13 (Conservativity). If a judgement is derivable in ΠS,≤ but not in ΠS, its
signature will contain subtyping entries, and hence it cannot be written in ΠS.

Proof. From the previous lemma, a judgement can only be derivable in ΠS,≤ but not in ΠS

when it contains in all of its derivation trees non trivial subtyping or subkinding judgements.
If the judgements is itself a subtyping or subkinding judgement then it vacuously cannot
be written in ΠS . Otherwise, by lemma 11 it follows that either all of the subtyping and
subkinding judgements are of the form Γ1 `Σ1 A ≤IdA

A:Type respectively Γ1 `Σ1 K ≤[x:K]x
K in which case the judgement is derivable in ΠS or its signature contains subtyping entries,
in which case it cannot be written in ΠS . J

2.3 Justification of ΠS,≤ as a Well Behaved Extension
We shall show in this subsection that extending the type theory ΠS by coercive subtyping in
signatures results in a well-behaved system. In order to do so, we relate the extension with
the previous formulation: more precisely, for every signature Σ, we consider a corresponding
system Π[CΣ];, which is similar to the system T [CΣ] in [21, 33], and we prove the equivalence
between judgements in ΠS,≤ and judgements in such corresponding systems from the point
of view of derivability. (see Theorems 22 and 29 below for a more precise description).

This way we argue that there exists a stronger relation between the extension with
coercive subtyping entries and the base system based on the fact that was shown in [21, 33]
that every derivation tree in T [C] the extension can be translated to a derivation tree in T
such that their conclusion are equal.

2.3.1 The relation between Π0K
S,≤ and ΠS

Here we show that, if a judgement J is derivable in Π0K
S,≤, we obtain a set of judgements, one

of which is of same as J up to erasing the subtyping entries from a signature. The idea here
is that, for any the valid signature in Π0K

S,≤ and all the judgements using it, we can remove
the subtyping entries from it to obtain a valid signature in ΠS and corresponding judgements
using this signature.

I Definition 14. We define erase(·), a map which simply removes subtyping entries from
signature as follows:

erase(<>) =<>
erase(Σ, c:K) = erase(Σ), c:K
erase(Σ, A ≤c B) = erase(Σ)

The following lemma is a completion of weakening and signature replacement for the
cases when a signature is weakened with subtyping entries or a subtyping entry is replaced
in the signature.

I Lemma 15.
If Γ `Σ,Σ′ J and `Σ,A≤cB:Type,Σ′ Γ are derivable in Π0K

S,≤ then Γ `Σ,A≤cB:Type,Σ′ J is
derivable in Π0K

S,≤.
If Γ `Σ,A≤cBΣ′ J , `Σ A = A′:Type, `Σ B = B′:Type, `Σ c = c′:(A)B `Σ,A′≤c′B

′:Type,Σ′

Γ are derivable in Π0K
S,≤ then Γ `Σ,A′≤c′B

′:Type,Σ′ J is derivable inΠ0K
S,≤.

Proof. By induction on the structure of derivation. J

G. E. Lungu and Z. Luo 13:15

I Lemma 16. For Σ ≡ Σ0, A0 ≤c0 B0,Σ1, ..., An−1 ≤cn−1 Bn−1,Σn a valid signature as
above we will consider the following judgements judgements (?) `erase(Σ0,...,Σi) ci:(Ai)Bi,
where i ∈ 0, ..., n. Then the following statements hold:
1. `Σ Γ is derivable in Π0K

S,≤ if and only if `erase(Σ) Γ and (?) are derivable in ΠS.
2. Γ `Σ J is not a subtyping judgement and is derivable in Π0K

S,≤ if and only if Γ `erase(Σ) J

and (?) are derivable in ΠS.
3. If Γ `Σ A ≤c B is derivable in Π0K

S,≤ then Γ `erase(Σ) c:(A)B and (?) are derivable in ΠS.
4. If Γ `Σ K ≤c L is derivable in Π0K

S,≤ then Γ `erase(Σ) c:(K)L and (?) are derivable in ΠS.

Proof. The only if implication for the first three cases is straightforward by induction on
the structure of derivations as subtyping judgements do not contribute to deriving any other
type of judgement in Π0K

S,≤. For the if implication, Lemma 15 is used. The last two points
also follow by induction. J

2.3.2 Π[C];

Here we consider a system Π[C]; similar to the system T [C] as presented in [21, 33] with T
being the type theory with Π-types.

Here we consider a system similar to the system T [C] from [21, 33] with dependent product.
The difference is that here we fix some prefixes of the context, not allowing substitution and
abstraction for these prefixes. In more details, the judgements of T [C]; will be of the form
Σ; Γ ` J instead of Γ ` J , where Σ and Γ are just contexts and substitution and abstraction
can be applied to entries in Γ but not Σ. We call this system Π[C];. To delimitate these
prefixes we use the symbol “;” and the judgements forms will be as follows:
` Σ; Γ signifies a judgement of valid context
Σ; Γ ` K kind

Σ; Γ ` k:K
Σ; Γ ` K = K ′

Σ; Γ ` k = k′:K
The rules of the system Π[C]; are the ones in Figures 8,9,10, 11 and 12 in the appendix. The
difference between these rules and those described in [21, 33] is that, in addition to regular
contexts, they also refer to the prefixes apart from substitution and abstraction which is only
available for regular contexts. More detailed, we duplicate contexts, assumptions, weakening,
context replacement. For all other rules we adjust them to the new forms of judgements
by replacing Γ ` J with Σ; Γ ` J . Notice that we do not duplicate substitution as only the
context at the righthand side of the ; supports substitution. We will consider the system
Π[C];0K to be the one without coercive application and definition rules, namely the ones in
figures 8,9,10 and 11. C is formed of subtyping judgements and we have the following rule in
Π[C];0K

Γ ` A ≤c B ∈ C
Γ ` A ≤c B

For the system T [C] coercive application is added as an abbreviation to ordinary functional
application and this is ensured by coercive definition together coherence of C. Indeed, it was
proved in [21, 33] that, when C is coherent, Π[C] is a well behaved extension of Π[C]0K in
that every valid derivation tree D in Π[C] can be translated into a valid derivation tree D′ in
Π[C]0K and the conclusion of D is definitionally equal to the conclusion of D′ in Π[C]. We
want to avoid doing the complex proof in [21, 33] again and assume that the properties of
Π[C] carry over to Π[C];. So next we give the definition of coherence for the set C.

TYPES 2016

13:16 On Subtyping in Type Theories with Canonical Objects

I Definition 17. The set C of subtyping judgements is coherent if the following two conditions
hold in Π[C];0K :

If Σ; Γ ` A ≤c B is derivable, then Σ; Γ ` c:(A)B is derivable.
If Σ; Γ ` A ≤c B and Σ; Γ ` A ≤c′ B are derivable, then Σ; Γ ` c = c′:(A)B is derivable.

Notice that in the original formulation Σ; Γ ` A ≤[x:A]x A was not allowed. However the
condition that Σ; Γ 0 A ≤c A was used to prove that a judgement cannot come from both
coercive application and functional application. However with the current condition one can
prove that, if this is the case, the coercion has to be equal to the identity.

2.3.3 The relation between Π[C]; and ΠS,≤

Although there is a difference between the new ΠS,≤ and Π[C]; which lies mainly in the
fact that, by introducing coercive subtyping via signature, we introduce them locally to the
specific signature, this allowing us to have more coercions between two types under the same
kinding assumptions(of the form c:K, x:K) and still have coherence satisfied, whereas by
enriching a system with a set of coercive subtyping, our coercions are introduced globally and
only one coercion(up to definitional equality) can exist between two types under the same
kinding assumptions. However, because signatures are technically just prefix of contexts for
which abstraction and substitution are not available [12], we naturally expect that there is a
relation between ΠS,≤ and Π[C];. And indeed here we shall show that for any valid signature
Σ in ΠS,≤, we can represent a class of judgements of ΠS,≤ depending on Σ as judgements in
a Π[CΣ];.

First we consider just Π0K
S,≤ and Π[C];0K which are the systems without coercive application

and coercive definition and we define a way to transfer coercive subtyping entries of a signature
Σ in Π0K

S,≤ to a set of coercive subtyping judgements of Π[CΣ];0K .

I Definition 18. Let Σ be a signature (not necessarily valid) in Π0K
S,≤ we define ΓΣ as follows:

Γ<> =<>
ΓΣ0,k:K = ΓΣ0 , k:K
ΓΣ0,A≤cB:Type = ΓΣ0

If Σ is valid in Π0K
S,≤ we define CΣ as follows:

C<> = ∅
CΣ0,k:K = CΣ0

CΣ0,A≤cB:Type = CΣ0 ∪ {ΓΣ0 ;<>` A ≤c B:Type}

I Lemma 19. If Σ ≡ Σ0, A ≤c B:Type,Σ1 valid is derivable in Π0K
S,≤, then ΓΣ ≡ ΓΣ0,Σ1

and CΣ = CΣ0,Σ1 ∪ {ΓΣ0 ;<>` A ≤c B:Type}

Proof. By induction on the length of Σ. J

I Lemma 20. Let Σ1,Σ3 and Σ1,Σ2,Σ3 be valid signatures in Π0K
S,≤. If J is derivable in

Π[CΣ1,Σ3];0K then J is derivable in Π[CΣ1,Σ2,Σ3];0K

Proof. By induction on the structure of derivation of J . J

First we mention the following notation which we will use throughout the section and
which is really just a generalization of definitional equality:

<>=<>, Σ, c:K = Σ′, c:K ′ iff Σ = Σ′ and `Σ K = K ′

`Σ Γ, x:K =`Σ′ Γ, x:K ′ iff `Σ Γ =`Σ′ Γ and Γ `Σ K = K ′

Γ `Σ K = Γ′ `Σ′ K
′ iff `Σ Γ =`Σ′ Γ′ and Γ `Σ K = K ′

Γ `Σ k:K = Γ′ `Σ′ k
′:K ′ iff Γ `Σ K kind = Γ′ `Σ′ K

′ kind and Γ `Σ k = k′:K

G. E. Lungu and Z. Luo 13:17

Γ `Σ k = l:K = Γ′ `Σ′ k
′ = l′:K ′ iff Γ `Σ K kind = Γ′ `Σ′ K

′ kind and Γ `Σ k = k′:K
and Γ `Σ l = l′:K
Γ `Σ A ≤c B = Γ′ `Σ′ A

′ ≤c′ B′ iff Γ `Σ A:Type = Γ′ `Σ′ A
′:Type and Γ `Σ B:Type =

Γ′ `Σ′ B
′:Type and Γ `Σ c:(A)B = Γ′ `Σ′ c

′:(A′)B′
We consider the analogous notation for judgements of the form ` Γ0;<>, ` Γ0; Γ and
Γ0; Γ ` J . We will say that the judgements are definitionally equal in a certain system if all
the corresponding definitional equality judgements are derivable in that system.

According to [21, 33], if we add coercive subtyping and coercive definition rules from
Figure 12 in the appendix to a system enriched with a coherent set of subtyping judgements
CΣ, any derivation tree in Π[CΣ]; can be translated to a derivation tree in Π[CΣ];0K (that is a
derivation tree that does not use coercive application and definition rules - CA1, CA2 and
CD) and their conclusions are definitionally equal. We aim to use that result to prove that
for any judgement using a coherent signature in ΠS,≤, there exists a judgement definitionally
equal to it in Π0K

S,≤. For this we shall first prove that CΣ is coherent in the sense of the
definition 17 if Σ is coherent in the sense of the definition 1. To prove this we need to describe
the possible contexts at the lefthand side of ; in Π[CΣ];0K used to infer coercive subtyping
judgements.

We first prove a theorem used throughout the section which allows us to argue about
judgements in Π0K

S,≤ and judgements in Π[CΣ];0K interchangeably. We start by presenting
a lemma representing the base case and then the theorem appears as an extension easily
proven by induction. The lemma is not required to prove the theorem but it gives a better
intuition. The theorem essentially states that for contexts at the lefthand side of ; obtained
by interleaving membership entries in a the image through Γ· of a valid signature Σ or its
prefixes give judgements in Π[CΣ];0K corresponding to judgements in Π0K

S,≤. We will see later
that all the contexts at the lefthand side of ; in Π[CΣ];0K are in fact obtained by interleaving
membership entries in prefixes of Σ.

I Lemma 21. Let Σ ≡ Σ1,Σ2,Σ3 be a valid signature in Π0K
S,≤ then, for any c,K and Σ′1,Σ′2

s.t. Σ1 = Σ′1 and Σ1,Σ2 = Σ′1,Σ′2 the following hold:
` ΓΣ′1 , c:K,ΓΣ′2 ;<> is derivable in Π[CΣ];0K iff Σ′1, c:K,Σ′2 valid is derivable in Π0K

S,≤
` ΓΣ′1 , c:K,ΓΣ′2 ; Γ is derivable in Π[CΣ];0K iff `Σ′1,c:K,Σ′2 Γ is derivable in Π0K

S,≤
ΓΣ′1 , c:K,ΓΣ′2 ; Γ ` J is derivable in Π[CΣ];0K iff Γ `Σ′1,c:K,Σ′2 J is derivable in Π0K

S,≤.

Proof. By induction on the structure of derivation. J

Mainly by repeatedly applying the previous lemma (except for the case when we weaken
with the empty sequence, which is straight forward by induction on the structure of derivations)
we can prove:

I Theorem 22 (Equivalence for Π0K
S,≤). Let Σ ≡ Σ1, ...,Σn bea valid signature in Π0K

S,≤ then,
for any 1 ≤ k ≤ n, for any {Γi}i∈{0..k} sequences free of subtyping entries and and Σ′1, ...,Σ′k
s.t. Σ1, ...,Σk = Σ′1, ...,Σ′k for any i ∈ {1..k} the following hold:
` Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′

k
,Γk;<> is derivable in Π[CΣ];0K if and only if

Γ0,Σ′1,Γ1,Σ′2,Γ2, ...,Γk−1,Σ′k,Γk valid is derivable in Π0K
S,≤

` Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′
k
,Γk; Γ is derivable in Π[CΣ];0K if and only if

`Γ0,Σ′1,Γ1,Σ′2,Γ2,...,Γk−1Σ′
k
,Γk

Γ is derivable in Π0K
S,≤

Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′
k
,Γk; Γ ` J is derivable in Π[CΣ];0K if and only if

Γ `Γ0,Σ′1,Γ1,Σ′2,Γ2,...,Γk−1Σ′
k
,Γk

J is derivable in Π0K
S,≤.

Now we aim to prove that we do not introduce any new subtyping entries in Π0K
S,≤ by

weakening (up to definitional equality). Note that, for this, it is essential that the weakening

TYPES 2016

13:18 On Subtyping in Type Theories with Canonical Objects

rules do not add subtyping entries. More precisely, in the following Lemma we prove a form
of strengthening, which roughly says that by strengthening the assumptions of a subtyping
judgement, we can still derive it(up to definitional equality).

I Lemma 23. Let Σ ≡ Σ1,Σ2 a valid signature in Π0K
S,≤, for any c,K, Σ′1 = Σ1 and

Σ′1,Σ′2 = Σ1,Σ2, if Γ `Σ′1,k:K,Σ′2 A ≤c B is derivable in Π0K
S,≤ then there exists A′, c′, B′ such

that `Σ A′ ≤c′ B′, Γ `Σ′1,k:K,Σ′2 A = A′:Type, Γ `Σ′1,k:K,Σ′2 B = B′:Type and
Γ `Σ′1,k:K,Σ′2 c = c′:(A)B derivable in Π0K

S,≤.

Proof. By induction on the structure of derivation of Γ `Σ′1,k:K,Σ′2 A ≤c B. If it comes
from transitivity with the premises Γ `Σ′1,k:K,Σ′2 A ≤c1 C and Γ `Σ′1,k:K,Σ′2 C ≤c2 B

then by IH, there exist A′, C ′, c′1, C ′′, B′, c′2 s.t. `Σ A′ ≤c′1 C ′ and `Σ C ′′ ≤c′2 B′ and
Γ `Σ′1,k:K,Σ′2 A = A′:Type, Γ `Σ′1,k:K,Σ′2 B = B′:Type, Γ `Σ′1,k:K,Σ′2 C = C ′:Type,
Γ `Σ′1,k:K,Σ′2 C = C ′′:Type, Γ `Σ′1,k:K,Σ′2 c1 = c′1:(A)C and Γ `Σ′1,k:K,Σ′2 c2 = c′2:(C)B.
By transitivity of equality we have Γ `Σ′1,k:K,Σ′2 C

′ = C ′′:Type. By lemma 16 we have that
Γ `erase(Σ′1,k:K,Σ′2) C

′ = C ′′:Type is derivable in ΠS . Similarly, because `Σ C ′:Type and
`Σ C ′′:Type we have that `erase(Σ′1,k:K,Σ′2) C ′:Type and `erase(Σ′1,k:K,Σ′2) C ′′:Type are
derivable in ΠS . From Strengthening Lemma([11]) which holds for ΠS we have that
`erase(Σ) C

′ = C ′′:Type. Again, by 16 we obtain `Σ C ′ = C ′′:Type. At last, we can
apply congruence and transitivity `Σ A′ ≤c′2◦c′1 B

′.
Let us now consider the dependent product rule

Γ `Σ′1,k:K,Σ′2
A′′ ≤c1 A′ Γ `Σ′1,k:K,Σ′2

B′, B′′ : (A′)Type Γ, x:A′ `Σ′1,k:K,Σ′2
B′(x) ≤c2[x] B

′′(x)
Γ `Σ′1,k:K,Σ′2

Π(A′, B′) ≤c Π(A′′, B′′ ◦ c1)

with A ≡ Π(A′, B′), B ≡ Π(A′′, B′′ ◦ c1) and

c ≡ [F : Π(A′, B′)]λ(A′′, B′′ ◦ c1, [x:A′′]c2[x](app(A′, B′, F, c1(x)))).

By IH, there exist A′′0 , A′0, c′1, B′0, B′′0 , c′2 s.t. `Σ A′′0 ≤c′1 A
′
0, `Σ B′ ≤c′2 B

′′ and

Γ `Σ′1,k:K,Σ′2 A
′′ = A′′0 :Type, Γ `Σ′1,k:K,Σ′2 A

′ = A′0:Type,
Γ, x:A′ `Σ′1,k:K,Σ′2 B

′′(x) = B′′0 :Type, Γ, x:A′ `Σ′1,k:K,Σ′2 B
′(x) = B′0:Type,

Γ `Σ′1,k:K,Σ′2 c1 = c′1:(A′′)A′ and Γ, x:A′ `Σ′1,k:K,Σ′2 c2(x) = c′2:(B′(x))B′′(x):Type.

We apply dependent product rule for the case when types are constants and obtain

` A′0 −→ B′0 ≤′c A′′0 −→ B′′0 with c′ ≡ [F : A′0 −→ B′0][x:A′′0](c′′2(F (c′1(x)))).

By normal equality rules for dependent product and its terms we have that

Γ `Σ′1,k:K,Σ′2 A
′
0 −→ B′0 = Π(A′, B′), Γ `Σ′1,k:K,Σ′2 A

′′
0 −→ B′′0 = Π(A′′, B′′) and

Γ `Σ′1,k:K,Σ′2 c = c′:(Π(A′, B′))Π(A′′, B′′) J

By repeatedly applying the previous lemma we obtain

I Corollary 24. For Σ valid derivable in Π0K
S,≤, Σ ≡ Σ1, ...,Σn, for any {Γi}i∈{0..n} sequences

free of subtyping entries and {Σ′i}i∈{1..n} s.t. Σ1, ...,Σi = Σ′1,,Σ′i for any i ∈ {1..n}, if
Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn A ≤c B is derivable in Π0K

S,≤ then there exists A′, c′, B′ s.t.
`Σ A′ ≤c′ B′, Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn

A = A′:Type, Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn
B =

B′:Type and Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn
c = c′:(A)B derivable in Π0K

S,≤.

G. E. Lungu and Z. Luo 13:19

Next we prove that weakening does not break coherence:

I Lemma 25. For Σ valid in Π0K
S,≤, if Σ ≡ Σ1,Σ2,Σ3 is coherent, for any Σ′1,Σ′2 s.t.

Σ1 = Σ′1 and Σ1,Σ2 = Σ′1,Σ′2, for any c,K s.t. Σ′1, c:K, ,Σ′2 is valid, Σ′1, c:K, ,Σ′2 coherent.

Proof. Let us consider the derivable judgements Γ `Σ′1,c:K,,Σ′2 A ≤c B and Γ `Σ′1,c:K,,Σ′2
A ≤d B. Then we know from Lemma 24 that there exist A′, B′, A′′, B′′, c′, d′ s.t. `Σ1,Σ2

A′ ≤c′ B′, `Σ1,Σ2 A′′ ≤d′ B′′, Γ `Σ′1,c:K,,Σ′2 A′ = A:Type, Γ `Σ′1,c:K,,Σ′2 B′′ = B:Type,
Γ `Σ′1,c:K,,Σ′2s B

′′ = B:Type Γ `Σ′1,c:K,,Σ′2 c = c′:(A)B and Γ `Σ′1,c:K,,Σ′2 d = d′:(A)B. As
in the proof of the previous lemma, using Lemma 16 and Strengthening Lemma from [11]
we have that `Σ1,Σ2 A

′ = A′′:Type, `Σ1,Σ2 B
′ = B′′:Type. By congruence we have that

`Σ1,Σ2 A
′ ≤d′ B′ is derivable in Π0K

S,≤. If Σ is coherent then any prefix of it Σ1, ...,Σk is
coherent so `Σ1,Σ2 c

′ = d′:(A′)B′. Further, by weakening and Lemma 15, we have the desired
result. J

By repeatedly applying the previous lemma we obtain:

I Lemma 26. For Σ valid in Π0K
S,≤, if Σ ≡ Σ1, ...,Σn is coherent, for any 1 ≤ k ≤ n, for any

{Γi}i∈{0..k} sequences free of subtyping entries, for any {Σ′i}i∈{0..k} s.t. Σ1, ...,Σi = Σ′1, ...,Σ′i
for any i ∈ {1..k} s.t. Γ0,Σ1,Γ1,Σ2,Γ2, ...,Γk−1,Σk,Γk is valid,
Γ0,Σ1,Γ1,Σ2,Γ2, ...,Γk−1,Σk,Γk is coherent.

Finally, the following lemma describes the relation between parts of the context at the
lefthand side of the ; of judgements in Π[CΣ];0K and Σ. This is a very important result for
proving the coherence of CΣ based on the coherence of Σ. It states that any such context is
in fact obtained from weakening of a prefix of Σ. In addition from this Lemma, because all
the derivable judgements in Π[CΣ];0K that are not in Π; are subtyping judgements, we have
as a consequence that all the judgements of Π[CΣ];0K are equivalent to judgements in Π0K

S,≤.

I Lemma 27. For Σ a valid signature in Π0K
S,≤, for any derivable judgement Γ′; Γ ` J in

Π[CΣ];0K there exists a partition of Σ ≡ Σ1, ...,Σn, 1 ≤ k ≤ n, Γ0, ...,Γk free of subtyping
entries and Σ′1, ...,Σ′k with Σ′1, ...,Σ′i = Σ′1, ...,Σ′i for any 1 ≤ i ≤ k s.t. Γ′ ≡ ΓΓ0,Σ1,Γ1,...,Σk,Γk

Proof. By induction on the structure of derivation of the judgement in Π[CΣ];0K . We only
prove a case for third point when the judgement is Γ′; Γ ` A ≤c B. The only nontrivial case
is when the judgements follows from weakening. Let us assume it comes from a derivation
tree ending with

Γ′1,Γ′2; Γ ` A ≤c B Γ′1;<>` K kind

Γ′1, c:K,Γ′2; Γ ` A ≤c B

with Γ′ ≡ Γ1, c:K,Γ2. By IH we know that there exists a partition of Σ ≡ Σ1, ...,Σn and
1 ≤ k ≤ n and Γ0, ...,Γk and Σ′1, ...,Σ′k with Σ′1, ...,Σ′i = Σ′1, ...,Σ′i for any 1 ≤ i ≤ k s.t.
Γ′1,Γ′2 ≡ ΓΓ0,Σ′1,Γ1,...,Σ′k,Γk

with Γ `Γ0,Σ′1,Γ1...,Σ′k,Γk
A ≤c B. Let us consider the case when

Γ′1 ≡ ΓΓ0,Σ′1,Γ1,...,Γi−1,Σ1′
i
and Γ′2 ≡ ΓΣ2′

i
,Γi,...,Σ′k,Γk

. With Σ′i ≡ Σ1′
i ,Σ2′

i for some 1 ≤ i ≤ k.
We consider the partition of Σ ≡ Σ1, ...,Σ1

i ,Σ2
i , ...,Σn s.t. Σ′1, ...,Σ1′

i ,Σ2′
i , ...,Σ′n Σ1, ...,Σl =

Σ′1, ...,Σ′l for any l ∈ 1..i− 1, Σ1, ...,Σ1
i = Σ′1, ...,Σ1′

i , Σ1, ...,Σ1
i ,Σ2

i = Σ′1, ...,Σ1′
i ,Σ2′

i

and Σ1, ...,Σl = Σ′1, ...,Σ′l for any l ∈ i+ 1..n and Γ0, ...,Γi−1, c:K,Γi, ...,Γk s.t. Γ′ =
ΓΓ0,Σ1,...,Γi−1,Σ1

i
,c:K,Σ2

i
,Γi,...,Σk,Γk

. J

The next lemma refers to the ability to argue about coherence of a set of coercive
subtyping judgements corresponding to a signature.

TYPES 2016

13:20 On Subtyping in Type Theories with Canonical Objects

I Theorem 28 (Equivalence of Coherence). Let Σ be a valid signature in Π0K
S,≤. Then Σ is

coherent in the sense of the Definition 1 iff CΣ is coherent for Π[CΣ];0K in the sense of the
Definition 17.

Proof. Only if: Let Γ′; Γ ` A ≤c B and Γ′; Γ ` A ≤d B be derivable in Π[CΣ];0K . From
Lemma 27, it follows that there exists a partition of Σ ≡ Σ1, ...,Σn and 1 ≤ k ≤ n and
Γ0, ...,Γk s.t. Γ′ = ΓΓ0,Σ1,...,Σk,Γk

. If Σ is coherent, then Γ0,Σ1, ...,Σk,Γk is coherent (from
Lemma 26). From Theorem 22, Γ′; Γ ` A ≤c B and Γ′; Γ ` A ≤d B are derivable in
Π[CΣ];0K iff Γ `Γ0,Σ1,...,Σk,Γk

A ≤c B and Γ ` Γ0,Σ1, ...,Σk,ΓkA ≤d B are derivable in Π0K
S,≤.

From coherence here we have Γ `Γ0,Σ1,...,Σk,Γk
c = d:(A)B which is derivable in Π0K

S,≤ iff
Γ′; Γ ` c = d:(A)B is derivable in Π[CΣ];0K (again by Theorem Theorem 22).

If: By Theorem 22, Γ `Σ A ≤c B:Type and Γ `Σ A ≤d B:Type are derivable in Π0K
S,≤

iff ΓΣ; Γ ` A ≤c B and ΓΣ; Γ ` A ≤d B are derivable in Π[CΣ];0K . Because CΣ is coherent,
ΓΣ; Γ ` c = d:(A)B is derivable in Π[CΣ];0K which happens iff Γ `Σ c = d:(A)B is derivable
in Π0K

S,≤ J

To prove that the system ΠS,≤ is well behaved we first prove that it is well behaved when
all the signatures considered are valid in the restricted system Π0K

S,≤. First we prove another
equivalence lemma for this situation.

I Theorem 29 (Equivalence for ΠS,≤). For Σ valid in Π0K
S,≤, the following hold:

` ΓΣ; Γ is derivable in Π[CΣ]; iff `Σ Γ is derivable in ΠS,≤
ΓΣ; Γ ` J is derivable in Π[CΣ]; iff Γ `Σ J is derivable in ΠS,≤.

Proof. By induction on the structure of derivation. J

The following theorem shows that the system we defined here is well behaved and that
every coercive subtyping application is really just an abbreviation.

I Lemma 30. If a valid signature Σ in Π0K
S,≤ is coherent the following hold:

1. If `Σ Γ is derivable in ΠS,≤ then there exists Γ′ s.t. `Σ Γ′ is derivable in Π0K
S,≤ and

`Σ Γ = Γ′ is derivable in ΠS,≤.
2. If Γ `Σ J is derivable in ΠS,≤ then there exists Γ′, J ′ s.t. Γ′ `Σ J ′ is derivable in Π0K

S,≤
and `Σ Γ = Γ′ and Γ `Σ J = J ′ are derivable in ΠS,≤.

Proof. By Theorem 28, since Σ is coherent in, CΣ is coherent. If we look at the last case, by
Theorem 29, Γ `Σ J is derivable in ΠS,≤ iff ΓΣ; Γ ` J is derivable in Π[CΣ];. From [21, 33]
we know that, when CΣ is coherent, any derivation tree of ΓΣ; Γ ` J can be translated into
a derivation tree in Π[CΣ];0K which concludes with the judgement definitionally equal to
ΓΣ; Γ ` J . So let us consider one such derivation tree, its translation and the definitionally
equal conclusion ΓΣ; ∆ ` J ′ (` ΓΣ;<> is already derivable in Π[CΣ];0K so by inspecting
the definition of the translation in [21, 33] we observe that ΓΣ will not be changed by the
translation). We have ` ΓΣ; Γ = ΓΣ; ∆ and ΓΣ; Γ ` J = J ′ are derivable in Π[CΣ];. From
Lemma 29 we know that in this case `Σ Γ = ∆ and Γ `Σ J = J ′ are derivable in ΠS,≤ so
the desired derivable judgement is simply ∆ `Σ J ′. J

Note that the previous theorem covers the well-behavedness of judgements derived under
a signature that is valid in Π0K

S,≤. We now prove further that any signature valid in ΠS,≤ is
definitionally equal to a signature valid in Π0K

S,≤, then because of signature replacement we
have that any judgement derivable in in ΠS,≤ is definitionally equal to a judgement derivable
in Π0K

S,≤.

G. E. Lungu and Z. Luo 13:21

I Lemma 31. For any signature Σ valid in ΠS,≤ there exists Σ′ valid in Π0K
S,≤ s.t. Σ = Σ′

in ΠS,≤

Proof. By induction on the length of Σ. We assume Σ = Σ0, c:K. By IH we have that
there exists Σ′0 valid in Π0K

S,≤ s.t. Σ0 = Σ′0. By repeatedly applying signature replacement to
`Σ0 K kind we have `Σ′0 K kind is derivable in ΠS,≤. By Theorem 30, we have that there
exists K ′ s.t. `Σ′0 K

′ kind is derivable in Π0K
S,≤ with `Σ′0 K = K ′. That means we can derive,

in Π0K
S,≤, Σ′0, c:K ′ valid. Going back with context replacement we also have `Σ0 K = K ′

derivable, so Σ′0, c:K ′ is the signature we are looking for. J

We finish this section with the following theorem:

I Theorem 32. If a valid signature Σ in ΠS,≤ is coherent the following hold:
1. If `Σ Γ is derivable in ΠS,≤ then there exists Σ′,Γ′ s.t. `Σ′ Γ′ is derivable in Π0K

S,≤ and
Σ = Σ′ and `Σ Γ = Γ′ are derivable in ΠS,≤.

2. If Γ `Σ J is derivable in ΠS,≤ then there exists Σ′,Γ′, J ′ s.t. Γ′ `Σ′ J
′ is derivable in

Π0K
S,≤ and Σ = Σ′, `Σ Γ = Γ′ and Γ `Σ J = J ′ are derivable in ΠS,≤.

Proof. According to the Lemma 31 there exist Σ′ valid in Π0K
S,≤ s.t. Σ = Σ′. If we consider

the last point, by signature replacement Γ `Σ′ J is derivable ΠS,≤. Because Σ′ valid in
Π0K
S,≤, we can apply the Lemma 30 to obtain Γ′ `Σ′ J

′ s.t. `Σ′ Γ = Γ′ and Γ `Σ′ J = J ′ are
derivable in ΠS,≤. Again by signature replacement `Σ Γ = Γ′ and Γ `Σ J = J ′. J

Further, according to the lemma 16, the derivability of any nonsubtyping judgement in
Π0K
S,≤ is equivalent to the derivability of a judgement in ΠS and any subtyping judgement in

Π0K
S,≤ implies a judgement in ΠS .

3 Embedding Subsumptive Subtyping

In this section, we consider how to embed subsumptive subtyping into coercive subtyping.
To this end, we consider a subtyping system which is a reformulation of the one studied by
[2] and show how it can be faithfully embedded into our system of coercive subtyping.

We consider a system analogous to ΠS with the difference that we leave out the signatures.
The types of judgements in this system are Γ valid, Γ
 K kind, Γ
 k:K, Γ
 K = K ′ and
Γ
 k = k′:K syntactically analogous to `<> Γ, Γ `<> K kind, Γ `<> k:K, Γ `<> K = K ′

respectively Γ `<> k = k′:K, baring rules analogous to the ones in the appendix and Figure 2.
Note that there will be no Signature Validity and Assumption rules as there are no signatures.
On top of these judgements we add Γ
 A ≤ B type and Γ
 K ≤ K ′ obtained with the rules
from Figure 7. Besides the ordinary variables in Π, we allow Γ to have subtyping variables
like α ≤ A. We name this extension Π≤.

Π≤ is the subsumptive subtyping system specified in LF that corresponds to the system
λP≤ in [2]. There are some subtle differences between Edinburgh LF (λP) [12] and the
logical framework LF we use (eg, the η-rule holds for the latter but not the former), but they
are irrelevant to the point we are trying to show: the subsumptive subtyping system can be
faithfully embedded in the coercive subtyping system.

Once we introduced this system we will proceed by giving an interpretation of it in the
coercive subtyping system that we introduced in section 2, namely we will show that this
calculus can be faithfully embedded in the coercive subtyping one.

We mentioned that, in this system, an important thing to note is how placing subtyping
entries in contexts interferes with abstraction and hence dependent types, specifically, the
abstraction is not allowed at the lefthand side of subtyping entries. We will give a mapping

TYPES 2016

13:22 On Subtyping in Type Theories with Canonical Objects

General Subtyping Rules

Γ
 K = K′

Γ
 K ≤ K′
Γ
 K ≤ K′ Γ
 K′ ≤ K′′

Γ
 K ≤ K′′
Γ
 A = B:Type
Γ
 A ≤ B:Type

Γ
 A ≤ B:Type Γ
 B ≤ C:Type
Γ
 A ≤ C:Type

Subtyping in Contexts

Γ
 A:Type α 6∈ FV (Γ)
Γ, α ≤ A valid

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′
 α:Type

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′
 α ≤ A:Type

Type Lifting and Subtyping

Γ
 A ≤ B:Type
Γ
 El(A) ≤ El(B)

Γ
 k:K Γ
 K ≤ K′

Γ
 k:K′
Γ
 k = k′:K Γ
 K ≤ K′

Γ
 k = k′:K′

Dependent Product

Γ
 Π(A,B):Type Γ
 Π(A′, B′):Type
Γ
 A′ ≤ A:Type Γ, x:A′
 B ≤ B′:Type

Γ
 Π(A,B) ≤ Π(A′, B′):Type

Figure 7 Inference Rules for Π≤.

that sends the contexts with subtyping entries in the subsumptive system to signatures in
the coercive system, prove that these signatures are coherent, and, finally, that we can embed
the subsumptive subtyping system into the coercive subtyping system via this mapping.
We are motivated, on the one hand by giving a coercive subtyping system in which we
can represent this subsumptive system and at the same time allowing abstraction happen
freely and on the other hand by the fact that we could not employ coercive subtyping in
context as we could make coherent contexts incoherent with substitution. For example
if α1 ≤c1 A,α2 ≤c2 A,Γ is a coherent context (i.e. under this context any two coercions
between the same types are equal), by substitution we can obtain the incoherent context
α ≤c1 A,α ≤c2 A, [α1/α][α2/α]Γ.

We will assume that ∆ is an arbitrary context in Π≤. We can also assume without loss of
generality that ∆ ≡ ∆1, α1 ≤ A1, ...,∆n, αn ≤ An,∆n+1, where {αi ≤ Ai}i=1,n are all of the
subtyping entries of ∆. If ∆n+1 is free of subtyping entries we can abstract over its entries
freely but the abstraction is obstructed by αn ≤ An for the entire prefix. We move this
prefix, together with the obstructing entry to the signature using constant coercions Σ∆ =
∆1, α1:Type, c1:(α1)A1, α1 ≤c1 A1:Type, ...,∆n, αn:Type, cn:(αn)An, αn ≤cn

An:Type. We
map the left ∆n+1 to a context. This way we translate ∆ ≡ ∆1, α1 ≤ A1, ...,∆n, αn ≤
An,∆n+1 ` J in Π≤ to ∆n+1 `Σ∆ J in ΠS,≤, with Σ∆ as above. In the rest of the section
we shall prove that mapping subsumptive subtyping entries in context to constant coercions
in signature is indeed adequate. For this, we first prove that such a signature is coherent.

I Lemma 33. For any valid context ∆ in Π≤, Σ∆ is coherent w.r.t. ΠS,≤.

Proof. We need to show that, in ΠS,≤, if we have Γ `Σ∆ T1 ≤c T2 and Γ `Σ∆ T1 ≤c′ T2,
then c = c′:(T1)T2. There are two cases:
1. T1 ≡ α is a constant. By the validity of ∆, we have that, if αi ≤ Ai and αj ≤ Ai are two

different subtyping entries in ∆, then αi 6= αj , therefore, if αi ≤ci
Ai and αj ≤cj

Ai are
two different coercions in Σ∆, then necessarily, αi 6= αj .

G. E. Lungu and Z. Luo 13:23

2. T1 ≡ Π(A,B) and T2 ≡ Π(A′′, B′′). In this case the non trivial situation is:

Γ `Σ Π(A,B) ≤c1 C Γ `Σ C ≤c2 Π(A′′, B′′)
Γ `Σ Π(A,B) ≤c2◦c1 Π(A′′, B′′)

and C is equal to dependent product too. What we need to show is that applying
dependent product rule followed by transitivity leads to the same coercion as applying
transitivity first and then the dependent product rule. Namely that, for some A′, B′ s.t.

Γ `Σ∆ A′′ ≤c2 A′ ≤c1 A Γ `Σ∆ B ≤d1 B
′ ≤d2 B

′′

Γ `Σ∆ Π(A,B) ≤e1 Π(A′, B′) ≤e2 Π(A′′, B′′)

where, for F :A −→ B and G:Π(A′, B′), e1(F) = λ[x′:A′]d1(app(F, c1(x′))) and e2(G) =
λ[x′′:A′′]d2(app(G, c2(x′′))) applying transitivity rule, first to A, A′, A′′ and to B, B′,
B′′ and then to Π(A,B), Π(A′, B′), Π(A′′, B′′) results in the same coercion, that is:

e2 ◦ e1 = e2(e1(F))
= λ[x′′:A′′]d2(app(e1(F), c2(x′′)))
=β λ[x′′:A′′]d2(d1(app(F, c1(c2(x′′)))))
= d2 ◦ d1(app(F, c1(c2(x′′)))) J

Notation. If Γ `Σ k:K and Γ `Σ K ≤c K ′ are derivable in ΠS,≤, we write Γ `Σ k :: K ′.
In what follows we essentially prove that we can represent the previously introduced

subsumptive subtyping system in our system with coercive subtyping in signatures, meaning
that we can argue about the former system with the sematic richness of the latter.

I Theorem 34 (Embedding Subsumptive Subtyping). Let ∆ and Γ be valid contexts in Π≤,
such that Γ does not contain any subtyping entries. Then we have:
1. If ∆,Γ is valid in Π≤ then `Σ∆ Γ valid in ΠS,≤.
2. If ∆,Γ
 K kind, then Γ `Σ∆ K kind in ΠS,≤.
3. If ∆,Γ
 K = K ′, then Γ `Σ∆ K = K ′ in ΠS,≤.
4. If ∆,Γ
 k:K, then Γ `Σ∆ k::K in ΠS,≤.
5. If ∆,Γ
 k = k′:K, then Γ `Σ∆ k = k′::K in ΠS,≤.
6. If ∆,Γ
 A ≤ B:Type then Γ `Σ∆ A ≤c B:Type for some coercion c:(A)B in ΠS,≤.
7. If ∆,Γ
 K ≤ K ′, then Γ `Σ∆ K ≤c K ′ for some c:(K)K ′ in ΠS,≤.

Proof. The proof proceeds by induction on derivations for all the points of the theorem and
we only exhibit it for the sixth point here and in particular when the last rule in the derivation
tree is the one for the dependent product. We have by IH that, for Γ `Σ∆ Π(A,B)::Type
and Γ `Σ∆ Π(A′, B′)::Type we have Γ `Σ∆ A′ ≤c A:Type and Γ, x:A′ `Σ∆ B ≤c′ B′:Type.
Note that, if K ≤c Type, then K ≡ Type, so Γ `Σ∆ Π(A,B)::Type is equivalent to Γ `Σ∆

Π(A,B):Type, and Γ `Σ∆ Π(A′, B′)::Type with Γ `Σ∆ Π(A′, B′):Type, hence we can directly
apply the rule for dependent product in ΠS,≤ to obtain Γ `Σ∆ Π(A,B) ≤d Π(A′, B′):Type
where, for F :Π(A,B), d(F) = λ[x:A′]c′(app(F, c(x))). J

4 Intuitive Notions of Subtyping as Coercion

In this section, we consider two case studies of how intuitive notions of subtyping may be
considered in the framework of coercive subtyping. The first is about type universes in
type theory and the second is about how injectivity of coercions may play a crucial role in
modelling intuitive notions of subtyping.

TYPES 2016

13:24 On Subtyping in Type Theories with Canonical Objects

4.1 Subtyping between Type Universes
A universe is a type of types. One may consider a sequence of universes indexed by natural
numbers U0 : U1 : U2 : ... and U0 ≤ U1 ≤ U2 ≤ ...

Martin Löf [23] introduced two styles of universes in type theory: the Tarski-style and
the Russell-style. The Tarski-style universes are semantically more fundamental but the
Russell-style universes are easier to use in practice. In fact, the Russell-style universes are
a special case of subsumptive subtyping, which is incompatible with the idea of canonical
objects. As observed by the second author in [18], the two styles of universes are not
equivalent and the Russell-style universes can be emulated by Tarski-style universes with
coercive subtyping and this allows one to reason about Russell universes with the semantic
richness of Tarski universes, but without the overhead of their syntax.

Problem with Russell-style Universes. We extend the subsumptive subtyping system Π≤
with Russell-style universes by adding the following rules (i ∈ ω):

Γ valid

Γ
 Ui : Type
Γ
 A : Ui

Γ
 A : Type
Γ valid

Γ
 Ui : Ui+1

Γ valid

Γ
 Ui ≤ Ui+1

and the rules for the Π-types:

Γ
 A : Ui Γ
 B : (A)Ui
Γ
 Π(A,B) : Ui

Unfortunately, as mentioned in the introduction, this straightforward formulation of universes
does not satisfy the properties of canonicity or subject reduction if one adopts the standard
notation of terms with full type information. For instance, the term λX:U1.Nat, where
Nat : U0, would be represented as λ(U1, [_:U1]U0, [_:U1]Nat), but this term, which is of
type U0 → U0 (by subsumption, since U1 → U0 ≤ U0 → U0 by contravariance), is not
definitionally equal to any canonical term which is of the form λ(U0, ...). As explained in the
introduction, if one used terms with less type information (eg, pairs (a, b), as in HoTT [32],
rather than pair(A,B, a, b), there would be incompatible types of the same term and that
would cause problems in type-checking.

Tarski-style Universes with Coercive Subtyping. The Tarski-style universes are introduced
into ΠS,≤ by adding the following rules (i ∈ ω):

`Σ Γ
Γ `Σ Ui : Type

Γ `Σ a : Ui
Γ `Σ Ti(a) : Type

`Σ Γ
Γ `Σ ti+1 : (Ui)Ui+1

where ti+1 are the lifting operators,

`Σ Γ
Γ `Σ ui : Ui+1

`Σ Γ
Γ `Σ Ti+1(ui) = Ui : Type

where ui is the name of Ui in Ui+1, together with the following rule for the names of Π-types:

Γ `Σ a : Ui Γ, x : Ti(a) `Σ b(x) : Ui
Γ `Σ πi(a, b) : Ui

The following equations also need to be satisfied:
Ti+1(ti+1(a)) = Ti(a):Type

G. E. Lungu and Z. Luo 13:25

Γ `Σ Ti(πi(a, b)) = Π(Ti(a), [x:Ti(a)]Ti(b(x))) : Type
Γ `Σ ti+1(πi(a, b)) = πi+1(ti+1(a), [x:Ti(a)]ti+1(b(x))) : Ui+1
Furthermore, crucially, the lifting operators ti+1 are now declared as coercions by asking that
all the signatures start with the prefix Σi ≡ U0 ≤t0 U1, ..., Ui−1 ≤ti Ui where i is bigger
than the largest universe index that is used in an application.

Use of Coercion-based Tarski-style Universes. If universes are specified in the Tarski-style
as above with the lifting operators declared as coercions, together with several notational
conventions (eg, Ti is omitted, ui is identified with Ui, etc.), they can now be used easily
in Russell-style. The lifting operators are not seen (implicit) by the users. In particular,
in this setting, all the Russell-style universe rules become derivable. Theorem 34 can now
be extended in such a way that the Russell-style universes are faithfully emulated by the
Tarski-style universes with coercive subtyping.

4.2 Injectivity and Constructor Subtyping
In subsumptive subtyping, A ≤ B means that A is directly embedded in B. Intuitively, this
may imply that, for a and a′ in A, if the images of them are not equal in B, then they are
not equal in A, either. If we consider coercive subtyping A ≤c B, this would imply that c is
injective in the sense that c(a) = c(a′) implies that a = a′. In this section, we shall formally
discuss this issue in the context of representing intuitive subtyping notions by means of
coercions.

We shall consider constructor subtyping, studied by [4], in which an (inductive) type is
considered to be a subtype of another if the latter has more constructors than the former.
More precisely we shall discuss the example they start from, namely Even Numbers(Even)
being a subtype of Natural Numbers (Nat) with the argument that the constructors of
Even are 0 and successor of Odd, where Odd is given by the constructor successor of Even.
Then, in Nat the successor constructor is overloaded to a lifting of these constructors as well.
Formally they write:

datatype Odd = S of Even and Even = 0
|S of Odd

datatype Nat = 0
|S of Nat
|S of Odd
|S of Even

The phenomenon we want to discuss here is injectivity, in particular the one related
to Leibnitz equality. Leibnitz equality is defined as follows: x = y if for any predicate P ,
P (x)⇐⇒ P (y). We denote by x =A y for some type A the Leibnitz equality between x and
y related to a certain domain. Then, we have injectivity of subtyping if, given x =Nat y, with
x, y:Even it is the case that x =Even y. Namely, whether for any predicate Q:Even −→ Prop,
it is the case that Q(x) ⇐⇒ Q(y). For this it is enough to show that any predicate
Q:Even −→ Prop admits a lifting Q′:Nat −→ Prop s.t. for any x:Even,Q′(x) =⇒ Q(x).
We can easily define such a Q′ as follows:

Q’(x) = Q(0) if x = 0
Q(S(n)) if x = S of n:Odd
true if x = S of n:Even
true if x = S of n:Nat

TYPES 2016

13:26 On Subtyping in Type Theories with Canonical Objects

Injectivity of the embedding holds here but it is not granted in coercive subtyping. For
functions f :(x:A)B we denote injective(f) = ∀x, y:A.f(x) =B f(y) −→ x =A y. A function
f is then injective if ∃p:injective(f).

I Definition 35. We say a coercion `Σ0,A≤cB,Σ1 A ≤c B is injective with respect to =B

if there exist p s.t. `Σ p:injective(c) is derivable.

For a constant coercions (namely of the form `Σ0,c:(A)B,Σ1,A≤cB,Σ2,Σ3 A ≤c B) we can add
the assumption that they are injective `Σ0,c:(A)B,Σ1,A≤cB,Σ2,p:injective(c),Σ3 A ≤c B. If we
embed a subsumptive subtyping that propagates an equality from a type throughout its
subtypes, we represent it as a constant coercion, thus, all we need to do is add the assumption
that a coercion is injective. It is obvious that the transitivity and congruence preserve the
injectivity property.

An example of noninjective coercions is if we think of Nat and Even as follows

Inductive Nat : Type :=
| O : Nat
| S : Nat -> Nat.

Inductive even : Nat -> Prop :=
| O1 : even O
| O2 : even O
| S1 : forall n1 , even n1 -> even (S (S n1)).

Inductive Even := pair{n:Nat; e:even n}. Definition proj1(ev:Even) :=
match

ev with pair n e => n
end.

Coercion proj1 : Even >-> Nat.

Note that the definition of Even changed and we refer to it as a feature of the natural
numbers rather than as a subset. In order for a natural number to be even we require a
proof of that.

The reason this coercion is not injective is that we can have two different proofs that 4
is even p1, p2:even4, and hence, two different pairs (4, p1), (4, p2):Even, both of them being
mapped to the same 4:Nat. Enforcing injectivity here is similar to enforcing proof irrelevance.

5 Conclusion and Future Work

In this paper, we have developed a new calculus of coercive subtyping and shown that
subsumptive subtyping can be faithfully embedded or represented in the calculus. The idea
of representing coercive subtyping relations in signatures has achieved a balance between
obtaining a powerful (and practical) calculus to capture intuitive notions of subtyping and
keeping the resulting calculus simple enough for meta-theoretic studies.

We intend to extend the calculus to a richer type theory like Martin-Löf’s type theory or
UTT where you have rich inductive types. We do not see any difficulty in doing so, but of
course, studies are needed to confirm this.

Specifying subtyping relations in signatures has changed the nature of ’basic subtyping
relations’ as studied in the earlier setting of coercive subtyping. The earlier setting allows
parameterised coercions such as n:Nat ` V ect(Nat, n) ≤c(n) List(Nat), which instantiates,
in particular, to ` V ect(Nat, 3) ≤c(3) List(Nat). Note that here we don’t use parameterised
in the sense of Coq Proof Assistant. This new system does not cover this kind of coercions
at this point. It would be interesting to study a new mechanism to introduce parameterised
coercions by means of entries in signatures.

G. E. Lungu and Z. Luo 13:27

References
1 The Agda proof assistant (version 2), 2008. URL: http://appserv.cs.chalmers.se/

users/ulfn/wiki/agda.php.
2 D. Aspinall and A. Compagnoni. Subtyping dependent types. Theoretical Computer Sci-

ence, 266:273–309, 2001.
3 A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type Theory. PhD

thesis, University of Manchester, 1999.
4 G. Barthe and M. J. Frade. Constructor subtyping. Lecture Notes in Computer Science,

1576:109–127, 1999.
5 Gustavo Betarte and Alvaro Tasistro. Extension of Martin-Löf’s type theory with record

types and subtyping. Twenty-five Years of Constructive Type Theory, 1998.
6 V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and explicit

coercion. Information and Computation, 93, 1991.
7 P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping and universes.

Journal of Automated Reasoning, 27(1):3–27, 2001.
8 S. Chatzikyriakidis and Z. Luo. Natural language inference in Coq. J. of Logic, Language

and Information., 23(4):441–480, 2014.
9 S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. ISTE/Wiley,

2018. (to appear).
10 The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.3),

INRIA, 2010.
11 Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University

of Edinburgh, 1994.
12 R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the

Association for Computing Machinery, 40:143–184, 1993.
13 Y. Luo. Coherence and Transitivity in Coercive Subtyping. PhD thesis, University of

Durham, 2005.
14 Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford

University Press, 1994.
15 Z. Luo. Coercive subtyping in type theory. In Proc. of CSL’96, the 1996 Annual Conference

of the European Association for Computer Science Logic, Utrecht. LNCS 1258, page draft.,
1996.

16 Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9, 1999.
17 Z. Luo. Formal semantics in modern type theories with coercive subtyping. Linguistics

and Philosophy, 35(6):491–513, 2012.
18 Z. Luo. Notes on Universes in Type Theory (for a talk given at Institute of Advanced

Studies), 2012. URL: https://uf-ias-2012.wikispaces.com/file/view/LuoUniverse.
pdf.

19 Z. Luo. Formal semantics in modern type theories: Is it model-theoretic, proof-theoretic,
or both? (invited talk). In Nicholas Asher and Sergei Soloviev, editors, Logical Aspects
of Computational Linguistics, volume 8535 of Lecture Notes in Computer Science, pages
177–188. Springer Berlin Heidelberg, 2014.

20 Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual. LFCS Report
ECS-LFCS-92-211, Dept of Computer Science, Univ of Edinburgh, 1992.

21 Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: theory and implementation. inform-
ation and computation. Information and Computation, 223:18–42, 2013.

22 Zhaohui Luo and Fjodor Part. Subtyping in type theory: Coercion contexts and local
coercions. In TYPES 2013, Toulouse, 2013.

23 P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
24 The Matita proof assistant. Available from: http://matita.cs.unibo.it/, 2008.

TYPES 2016

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
https://uf-ias-2012.wikispaces.com/file/view/LuoUniverse.pdf
https://uf-ias-2012.wikispaces.com/file/view/LuoUniverse.pdf

13:28 On Subtyping in Type Theories with Canonical Objects

25 J. C. Mitchell. Coercion and type inference. In POPL’83, 1983.
26 Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf’s Type

Theory: An Introduction. Clarendon Press, New York, NY, USA, 1990.
27 Benjamin C. Pierce. Bounded quantification is undecidable. In Information and Computa-

tion, pages 305–315, 1993.
28 J. Reynolds. The meaning of types: From intrinsic to extrinsic semantics. BRICS Report

Series RS-00-32, 2000.
29 John C. Reynolds. Using category theory to design implicit conversions and generic oper-

ators. Semantics-Directed Compiler Generation 1980, Lecture Notes in Computer Science
94, 1980.

30 A. Saïbi. Typing algorithm in type theory with inheritance. POPL’97, 1997.
31 S. Soloviev and Z. Luo. Coercion completion and conservativity in coercive subtyping.

Annals of Pure and Applied Logic, 113(1-3):297–322, 2002.
32 Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Math-

ematics. Institute for Advanced Study, 2013.
33 Tao Xue. Theory and Implementation of Coercive Subtyping. PhD thesis, Royal Holloway

University of London, 2013.

G. E. Lungu and Z. Luo 13:29

A Rules of Π[C];

The rules of Π[C]; consists of those in Figures 8, Figure 9, Figure 10, Figure 11 and Figure 12.

Validity of Signature/Contexts, Assumptions

` 〈〉
Σ;<>` K kind c 6∈ dom(Σ)

` Σ, c:K
` Σ, c:K,Σ′; Γ

Σ, c:K,Σ′; Γ ` c:K

` Σ
` Σ; 〈〉

Σ; Γ ` K kind x 6∈ dom(Σ) ∪ dom(Γ)
` Σ; Γ, x:K

` Σ; Γ, x:K,Γ′

Σ; Γ, x:K,Γ′ ` x:K
Weakening

Σ,Σ′; Γ ` J Σ;<>` K kind c 6∈ dom(Σ,Σ′)
Σ, c:K, Σ′; Γ ` J

Σ; Γ,Γ′ ` J Σ; Γ ` K kind x 6∈ dom(Γ,Γ′)
Σ; Γ, x:K,Γ′ ` J

Equality Rules

Σ; Γ ` K kind

Σ; Γ ` K = K

Σ; Γ ` K = K′

Σ; Γ ` K′ = K

Σ; Γ ` K = K′ Σ; Γ ` K′ = K′′

Σ; Γ ` K = K′′

Σ; Γ ` k:K
Σ; Γ ` k = k:K

Σ; Γ ` k = k′:K
Σ; Γ ` k′ = k:K

Σ; Γ ` k = k′:K Σ; Γ ` k′ = k′′:K
Σ; Γ ` k = k′′:K

Σ; Γ ` k:K Σ; Γ ` K = K′

Σ; Γ ` k:K′
Σ; Γ ` k = k′:K Σ; Γ ` K = K′

Σ; Γ ` k = k′:K′

Context Replacement

Σ0, c:L,Σ1; Γ ` J Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` J
Σ; Γ0, x:K,Γ1 ` J Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` J

Substitution Rules

` Σ; Γ0, x:K,Γ1 Σ; Γ0 ` k:K
` Σ; Γ0, [k/x]Γ1

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K′ kind

Σ; Γ0, x:K,Γ1 ` L = L′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]L = [k/x]L′

Σ; Γ0, x:K,Γ1 ` k′:K′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]k′:[k/x]K′

Σ; Γ0, x:K,Γ1 ` l = l′:K′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k/x]l′:[k/x]K′

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k = k′:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K′ = [k′/x]K′

Σ; Γ0, x:K,Γ1 ` l:K′ Σ; Γ0 ` k = k′:K
Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Σ; Γ ` K kind Σ; Γ, x:K ` K′ kind
Σ; Γ ` (x:K)K′ kind

Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` K′1 = K′2
Σ; Γ ` (x:K1)K′1 = (x:K2)K′2

Σ; Γ, x:K ` y:K′

Σ; Γ ` [x:K]y:(x:K)K′
Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` k1 = k2:K

Σ; Γ ` [x:K1]k1 = [x:K2]k2:(x:K1)K
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k:K

Σ; Γ ` f(k):[k/x]K′
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k1 = k2:K

Σ; Γ ` f(k1) = f ′(k2):[k1/x]K′

Σ; Γ, x:K ` k′:K′ Σ; Γ ` k:K
Σ; Γ ` ([x:K]k′)(k) = [k/x]k′:[k/x]K′

Σ; Γ ` f :(x:K)K′ x 6∈ FV (f)
Σ; Γ ` [x:K]f(x) = f :(x:K)K′

The kind Type

` Σ; Γ
Σ; Γ ` Type kind

Σ; Γ ` A:Type
Σ; Γ ` El(A) kind

Σ; Γ ` A = B:Type
Σ; Γ ` El(A) = El(B)

Figure 8 Inference Rules for LF ;.

TYPES 2016

13:30 On Subtyping in Type Theories with Canonical Objects

Σ; Γ ` A : Type Σ; Γ, x:A ` B(x) : Type
Σ; Γ ` Π(A,B) : Type

Σ; Γ ` A : Type Σ; Γ ` B : (A)Type Σ; Γ ` f : (x:A)B(x)
Σ; Γ ` λ(A,B, f) : Π(A,B)

Σ; Γ ` g : Π(A,B) Σ; Γ ` a : A
Σ; Γ ` app(A,B, g, a) : B(a)

Σ; Γ ` A : Type Σ; Γ ` B : (A)Type
Σ; Γ ` f : (x:A)B(x) Σ; Γ ` a : A

Σ; Γ ` app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 9 Inference Rules for Π;.

Subtyping Rules

Σ; Γ ` A ≤c B ∈ C
Σ; Γ ` A ≤c B

Congruence

Σ; Γ ` A ≤c B : Type Σ; Γ ` A = A′ : Type Σ; Γ ` B = B′ : Type Σ; Γ ` c = c′ : (A)B
Σ; Γ ` A′ ≤c′ B′ : Type

Transitivity

Σ; Γ ` A ≤c A′ : Type Σ; Γ ` A′ ≤c′ A′′ : Type
Σ; Γ ` A ≤c′◦c A′′ : Type

Weakening

Σ,Σ′; Γ ` A ≤d B : Type Σ ` K kind

Σ, c:K, Σ′; Γ ` A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` A ≤d B : Type Σ; Γ ` K kind

Σ; Γ, x:K,Γ′ ` A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Context Replacement

Σ0, c:L,Σ1; Γ ` A ≤c B Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` A ≤c B
Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` A ≤c B

Substitution

Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Σ; Γ ` A:Type
Σ; Γ ` A ≤[x:A]x A:Type

Dependent Product

Σ; Γ ` A′ ≤c1 A : Type Σ; Γ ` B,B′ : (A)Type Σ; Γ, x:A ` B(x) ≤c2[x] B
′(x) : Type

Σ; Γ ` Π(A,B) ≤[F :Π(A,B)]λ(A′,B′◦c1,[x:A′]c2[x](app(A,B,F,c1(x)))) Π(A′, B′ ◦ c1) : Type

Figure 10 Inference Rules for Π[C];0K (1).

G. E. Lungu and Z. Luo 13:31

Basic Subkinding Rule and Identity

Σ; Γ ` A ≤c B:Type
Σ; Γ ` El(A) ≤c El(B)

Σ; Γ ` K kind

Σ; Γ ` K ≤[x:K]x K

Structural Subkinding Rules

Σ; Γ ` K1 ≤c K2 Σ; Γ ` K1 = K′1 Σ; Γ ` K2 = K′2 Σ; Γ ` c = c′:(K1)K2

Σ; Γ ` K′1 ≤c′ K′2

Σ; Γ ` K ≤c K′ Σ; Γ ` K′ ≤c′ K′′

Σ; Γ ` K ≤c′◦c K′′

Σ,Σ′; Γ ` K ≤d K′ Σ;<>` K0 kind

Σ, c:K0,Σ′; Γ ` K ≤d K′
(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` K ≤d K′ Σ; Γ ` K0 kind

Σ; Γ, x:K0,Γ′ ` K ≤d K′
(x 6∈ dom(Γ,Γ′))

Σ0, c:L,Σ1; Γ ` K ≤d K′ Σ0;<>` L = L′

Σ0, c:L′,Σ1; Γ ` K ≤d K′
Σ; Γ0, x:K,Γ1 ` L ≤d L′ Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` L ≤d L′

Σ; Γ0, x:K,Γ1 ` K1 ≤c K2 Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Σ; Γ ` K′1 ≤c1 K1 Σ; Γ, x:K1 ` K2 kind Σ; Γ, x′:K′1 ` K′2 kind Σ; Γ, x:K1 ` [c1(x′)/x]K2 ≤c2 K
′
2

Σ; Γ ` (x:K1)K2 ≤[f :(x:K1)K2][x′:K′1]c2(f(c1(x′))) (x:K′1)K′2

Figure 11 Inference Rules for Π[C];0K (2).

Coercive Application

(CA1)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0):[c(k0)/x]K′

(CA2)
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k0 = k′0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 12 The coercive application and definition rules in Π[C];.

TYPES 2016

	Introduction
	Coercive Subtyping in Signatures
	Pi_{S,<=}, a Type Theory with Subtyping in Signatures
	Logical Framework with Signatures
	Type Theory with Pi-types
	Subtyping Entries in Signatures

	Coherence for Kinds and Conservativity
	Coherence for Kinds
	Conservativity

	Justification of Pi_{S,<=} as a Well Behaved Extension
	The relation between Pi_{S,<=}^{0K} and Pi_S
	Pi[C]^{;}
	The relation between Pi[C]^{;} and Pi_{S,<=}

	Embedding Subsumptive Subtyping
	Intuitive Notions of Subtyping as Coercion
	Subtyping between Type Universes
	Injectivity and Constructor Subtyping

	Conclusion and Future Work
	Rules of Pi[C]^;

