Translating P-log, LPMLN, LPOD, and
CR-Prolog?2 into Standard Answer Set Programs

Zhun Yang

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University
Arizona State University, P.O. Box 878809, Tempe, AZ 85287, United States
zyang90Qasu.edu

—— Abstract

Answer set programming (ASP) is a particularly useful approach for nonmonotonic reasoning in
knowledge representation. In order to handle quantitative and qualitative reasoning, a number
of different extensions of ASP have been invented, such as quantitative extensions LPMLN and
P-log, and qualitative extensions LPOD, and CR-Prologs.

Although each of these formalisms introduced some new and unique concepts, we present
reductions of each of these languages into the standard ASP language, which not only gives us an
alternative insight into the semantics of these extensions in terms of the standard ASP language,
but also shows that the standard ASP is capable of representing quantitative uncertainty and
qualitative uncertainty. What’s more, our translations yield a way to tune the semantics of
LPOD and CR-Prologs. Since the semantics of each formalism is represented in ASP rules, we
can modify their semantics by modifying the corresponding ASP rules.

For future work, we plan to create a new formalism that is capable of representing quantitative
and qualitative uncertainty at the same time. Since LPOD rules are simple and informative, we
will first try to include quantitative preference into LPOD by adding the concept of weight and
tune the semantics of LPOD by modifying the translated standard ASP rules.

2012 ACM Subject Classification Computing methodologies — Knowledge representation and
reasoning

Keywords and phrases answer set programming, preference, LPOD, CR-Prolog

Digital Object Identifier 10.4230/0ASIcs.ICLP.2018.17

Acknowledgements This work was partially supported by the National Science Foundation un-
der IIS-1526301.

1 Introduction and Problem Description

In answer set programming, each answer set encodes a solution to the problem that is being
modeled. There is often a need to express how likely a solution is, so several extensions of
answer set programs, such as LPMLN [19] and P-log [7], were made to express a quantitative
uncertainty for each answer set. LPMIN extends answer set programs by adopting the
log-linear weight scheme of Markov Logic. P-log is a probabilistic extension of ASP with
sophisticated semantics. Similarly, since there is often a need to express that one solution is
preferable to another, several extensions of answer set programs, such as Logic Programs
with Ordered Disjunction (LPOD) [8], CR-Prolog [5], and CR-Prologs [6], were made to
express a qualitative preference over answer sets. In LPOD, the qualitative preference is
introduced by the construct of ordered disjunction in the head of a rule: A x B < Body
intuitively means, when Body is true, if possible then A, but if A is not possible, then at
least B. CR-Prologs also has order rules as in LPOD, and it introduces consistency-restoring
rules — rules that can be added only when they can make an inconsistent program consistent.

37 licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 17; pp. 17:1-17:11

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:zyang90@asu.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

17:2

Translating P-log, LPMLN LPOD, and CR-Prolog2 into Standard Answer Set Prog.

It remains an open question whether these formalisms can be reduced back to standard
answer set programs. In other words, whether ASP is expressive enough to express the
semantics of all these extensions? There were few attentions to this question where no
positive answer had been proposed. Lee et al. [19] showed that a subset of P-log can be
represented by LPMLIN which is very similar to ASP except the introducing of weight for
each rule. However, the feature of dynamic probability assignment in P-log is not preserved,
and the reduction from LPMEN to ASP was still unclear. Proposition 2 from [8] states that
there is no reduction of LPOD to disjunctive logic programs [17] based on the fact that the
answer sets of disjunctive logic programs are subset-minimal whereas LPOD answer sets are
not necessarily so. However, this justification is limited to translations that preserve the
underlying signature. Indeed, our paper “LPMEN Weak Constraints, and P-log” [20] and
our ICLP paper that is being evaluated provides a positive answer to this question.

We present a reduction of P-log to LPMLIN
set programs with weak constraints. These translations show how the weights in the
weak constraints can be used to denote quantitative uncertainty and, further, to represent
probabilities. We also present a reduction of LPOD and CR-Prologs to standard answer set
programs by compiling away ordered disjunctions and consistency-restoring rules. These
translations show how qualitative uncertainty is handled by the “definition” rules in ASP.

Since our research shows that ASP is capable of representing quantitative and qualitative
uncertainty, it naturally follows a question that: can we combine quantitative uncertainty
and qualitative preference in a single formalism? We are looking forward to answering this
question in our future work.

The paper will give a summary of my research, including some background knowledge

and a reduction of LPMLN to answer

and reviews of existing literature (Section 2), goal of my research (Section 3), the current
status of my research (Section 4), the preliminary results we accomplished (Section 5), and
some open issues and expected achievements (Section 6).

2 Background and Overview of the Existing Literature

We only review the syntax and semantics of LPMEYN and LPOD. Please refer to [7] and [6]
for the syntax and semantics of P-log and CR-Prologs, whose semantics are all based on a
long translation to answer set programs.

2.1 Review: L PMLN

We review the definition of LPMLN from [19]. In fact, we consider a more general syntax of
programs than the one from [19], but this is not an essential extension. We follow the view
of [15] by identifying logic program rules as a special case of first-order formulas under the
stable model semantics. For example, rule r(z) < p(x), not q(x) is identified with formula
Vz(p(x) A—g(z) = r(z)). An LPMLN program is a finite set of weighted first-order formulas
w : F where w is a real number (in which case the weighted formula is called soft) or «
for denoting the infinite weight (in which case it is called hard). An LPMEN program is
called ground if its formulas contain no variables. We assume a finite Herbrand Universe.
Any LPMIN program can be turned into a ground program by replacing the quantifiers
with multiple conjunctions and disjunctions over the Herbrand Universe. Each of the ground
instances of a formula with free variables receives the same weight as the original formula.

For any ground LPMIYN program II and any interpretation I, IT denotes the unweighted
formula obtained from II, and II; denotes the set of w : F' in II such that I = F', and SMIII]
denotes the set {I | I is a stable model of IT;} (We refer the reader to the stable model

Z.Yang

semantics of first-order formulas in [15]). The unnormalized weight of an interpretation I
under II is defined as LPMEN

Wi(I) = ewp(w:FEGHI w) if I € SMIII];

0 otherwise.

The normalized weight (a.k.a. probability) of an interpretation I under II is defined as

L Wn(I)
R S T
JESMIII)

I is called a (probabilistic) stable model of 11 if Pr(I) # 0.

2.2 Review LPOD

We review the definition of LPOD from [8], which assumes propositional programs.

Syntax. A (propositional) LPOD II is I,y U I,q, where its regular part Il,.4 consists of
usual ASP rules Head < Body, and its ordered disjunction part 11,4 consists of LPOD rules
of the form

C* x ---x C™ < Body (1)

in which C? are atoms, n is at least 2, and Body is a conjunction of atoms possibly preceded
by not.! Rule (1) says “when Body is true, if possible then C*; if C! is not possible then C?;
..;ifall of C,...,C" ! are not possible then C™”.

Semantics. For an LPOD rule (1), its i-th option, where i € {1,...,n}, is defined as
C' < Body, not C*,... not C*~1.

Let IT be an LPOD. A split program of 11 is obtained from II by replacing each rule in I,4
by one of its options. A set S of atoms is a candidate answer set of 11 if it is an answer set of
a split program of II. A split program of IT may be inconsistent (i.e., may not necessarily
have an answer set).

A candidate answer set S of II is said to satisfy rule (1)

to degree 1 if S does not satisfy Body;

to degree j (1 < j < n) if S satisfies Body and j = min{k | C*¥ € S}.

For a set S of atoms, let S?(II) denote the set of rules in Il,4 satisfied by S to degree
i. For candidate answer sets S; and Sy of II, [9] introduces the following four preference
criteria.
1. Cardinality-Preferred: S; is cardinality-preferred to Sy (S1 >¢ Ss) if there is a
positive integer i such that |S(IT)| > |Si(II)|, and |S7(IT)| = |S3(IT)| for all j < 4.
2. Inclusion-Preferred: S is inclusion-preferred to Sy (Sy > S) if there is a positive
integer 4 such that S%(IT) Si(IT), and SJ (IT) = S4(II) for all j < i.

! In [8], a usual ASP rule is viewed as a special case of a rule with ordered disjunction when n = 1 but in
this paper, we distinguish them. This simplifies the presentation of the translation and also allows us to
consider LPOD programs that are more general than the original definition by allowing modern ASP
constructs such as aggregates.

17:3

ICLP 2018

17:4

Translating P-log, LPMLN LPOD, and CR-Prolog2 into Standard Answer Set Prog.

3. Pareto-Preferred: S; is pareto-preferred to Sa (S1 >P Ss) if there is a rule that is
satisfied to a lower degree in S7 than in Ss, and there is no rule that is satisfied to a
lower degree in S5 than in Sj.

4. Penalty-Sum-Preferred: S; is penalty-sum-preferred to Sy (S1 >P® S3) if the sum of
the satisfaction degrees of all rules is smaller in S7 than in S5.

A set S of atoms is a k-preferred (k € {c,i,p,ps}) answer set of an LPOD IT if S is a
candidate answer set of II and there is no candidate answer set S’ of II such that S’ >* S.

2.3 Existing Literature

There are quite a lot of formalisms made to represent quantitative uncertainty.

LPMLN [19] is a probabilistic logic programming language that extends answer set
programs [16] with the concept of weighted rules, whose weight scheme is adopted from that
of Markov Logic [23], a probablistic extension of SAT. It is shown in [19, 18] that LPMLY s
expressive enough to embed Markov Logic and several other probabilistic logic languages,
such as ProbLog [13], Pearls’ Causal Models [22], and a fragment of P-log [7]. On the other
hand, [2] proposed an embedding from LPMEN into P-log.

Another famous quantitative extension of ASP are weak constraints [12], which are to
assign a quantitative preference over the stable models of non-weak constraint rules: weak
constraints cannot be used for deriving stable models.

Many formalisms are made to represent qualitative uncertainty. Most of them are
extensions of ASP, where their semantics or implementations are also based on answer set
programs.

In [11], LPOD is implemented using SMODELS. The implementation interleaves the
execution of two programs—a generator which produces candidate answer sets and a tester
which checks whether a given candidate answer set is maximally preferred or produces a
more preferred candidate if it is not. An implementation of CR-Prolog reported in [3] uses a
similar algorithm.

[14] finds the “order preserving answer sets” of an ordered logic program (where a strict
partial order is assigned among some rules) by meta-programming. Our translations are
similar to the meta-programming approach to handle preference in ASP in that we turn
LPOD and CR-Prologs into answer set programs that do not have the built-in notion of
preference.

In contrast, the reductions shown in this paper can be computed by calling an answer set
solver one time without the need for iterating the generator and the tester. This feature may
be useful for debugging LPOD and CR-Prologs programs because it allows us to compare all
candidate and preferred answer sets globally.

Asprin [10] provides a flexible way to express various preference relations over answer
sets and is implemented in CLINGO. Similar to the existing LPOD solvers, CLINGO makes
iterative calls to find preferred answer sets, unlike the one-shot execution as we do.

In [1], Asuncion et al. extended propositional LPODs to the first order case, where the
candidate answer sets of a first order LPOD can be obtained by finding the models of a
second-order formula.

Z.Yang

3 Goal of the Research

The following are our research objectives.

Find a translation plog2asp from P-log to answer set programs. We design a
one-time translation plog2asp such that for any P-log II, the answer sets of the answer
set program plog2asp(Il) agree with (i.e., their explanation to the domain are the same)
the possible worlds of II.

Find a translation Ilpmin2asp from LPMIN to answer set programs. We design
a one-time translation Ipmin2asp such that for any LPMEN program II, the answer sets
of the answer set program Ipmlin2asp(Il) agree with the probabilistic answer sets of II.

Analyze how quantitative uncertainty can be expressed in standard answer
set programs. We compare the two translations plog2asp and Ipmin2asp, and analyze
how quantitative uncertainty represented by weight (in LPMIYN) and sophisticated
probability assignment (in P-log) can be expressed in standard answer set programs.

Find a translation Ilpod2asp from LPOD to answer set programs. We design a
one-time translation Ipod2asp such that for any LPOD II, the optimal answer sets of the
answer set program lpod2asp(II) “report” all the candidate answer sets of II in different
name spaces and whether each of them is a preferred answer set.

Find a translation crpt2asp from CR-Prolog; to answer set programs. We
design a one-time translation crpt2asp such that for any CR-Prologs program II, the
optimal answer sets of the answer set program crpt2asp(II) “report” all the generalized
answer sets of II in different name spaces and whether each of them is also a candidate
answer sets or a preferred answer sets.

Analyze how qualitative uncertainty can be expressed in standard answer set
programs. We compare the two translations Ipod2asp and crpt2asp, and analyze how
qualitative preference represented by ordered disjunction and consistency-restoring rules
can be expressed in standard answer set programs.

Design a single formalism to represent both quantitative and qualitative un-
certainty. We design a new formalism that can be used to represent quantitative and
qualitative uncertainty at the same time. The semantics of the new formalism is defined
as a reduction to standard answer set programs as we did for those four formalisms.

4 Current Status of the Research

This research is at a middle phase.

The first 2 bullets of our goals are done in our paper accepted by AAAI 2017 [20], where
we proposed a translation plog2lpmin from P-log to LPMIVN and a translation Ipmin2wc
from LPMIN to answer set programs with weak constraints. The translations {pod2asp and
crpt2asp are also completed in our paper accepted by ICLP 2018 [21]. We also compared all
these four translations and have some ideas about how standard answer set programs handle
quantitative and qualitative uncertainty.

Currently, we are testing our ideas by introducing quantitative uncertainty into LPOD.
The experiments are based on our reduction from LPOD to answer set programs. We are
tuning the semantics of LPOD by modifying on the translated rules.

17:5

ICLP 2018

17:6

Translating P-log, LPMLN LPOD, and CR-Prolog2 into Standard Answer Set Prog.

5 Preliminary Results Accomplished

In this section, we will present our main theorems, along with some examples to illustrate
how our translations work.

5.1 From LPMLN to Answer Set Programs

» Theorem 1. (from [20]) For any LPMEN program 11, the most probable stable models (i.e.,
the stable models with the highest probability) of I1 are precisely the optimal stable models of
the program with weak constraints Ipmin2wc(IT).

» Example 2. Consider the LP™EN program II; in Example 1 from [19].

Bird(Jo) < ResidentBird(Jo) (r1)
Bird(Jo) < MigratoryBird(Jo) (r2)
1 < ResidentBird(Jo), MigratoryBird(Jo) (r3)
ResidentBird(Jo) (rd)
MigratoryBird(Jo) (rb)

=N Do O QR

The (simplified) translation IpmIn2wc(I1;) is as follows, which simply removes « from each
hard rule and turns each soft rule into a choice rule and a weak constraint.

Bird(Jo) < ResidentBird(Jo)

Bird(Jo) < MigratoryBird(Jo)

1 < ResidentBird(Jo), MigratoryBird(Jo)
{ResidentBird(Jo)}"

{ MigratoryBird(Jo) }®

:~ ResidentBird(Jo) [—2@0]
:~ MigratoryBird(Jo) [—1@0]

There are three probabilistic stable models of II;: @), {Bird(Jo), ResidentBird(Jo)}, and
{Bird(Jo), MigratoryBird(Jo)}. Among them, {Bird(Jo), ResidentBird(Jo)} is the most
probable stable model of II; since it is associated with a highest weight. It is also an optimal
stable model of lpmIn2wc(II;) since it has the least penalty —2 at level 0.

5.2 From P-log to LPMLN

» Theorem 3. (from [20]) Let 11 be a consistent P-log program. There is a 1-1 correspondence
¢ between the set of the possible worlds of II with non-zero probabilities and the set of
probabilistic stable models of plog2lpmin(II).

» Example 4. Consider a variant of the Monty Hall Problem encoding in P-log from [7] to
illustrate the probabilistic nonmonotonicity in the presence of assigned probabilities. There
are four doors, behind which are three goats and one car. The guest picks door 1, and Monty,
the show host who always opens one of the doors with a goat, opens door 2. Further, while
the guest and Monty are unaware, the statistics is that in the past, with 30% chance the
prize was behind door 1, and with 20% chance, the prize was behind door 3. Is it still better
to switch to another door? This example can be formalized in P-log program Il, using both

Z.Yang

assigned probability and default probability, as

~CanOpen(d) + Selected=d.
~CanOpen(d) + Prize=d.
CanOpen(d) < not ~CanOpen(d).
random(Prize). random(Selected).
random(Open : {x : CanOpen(z)}).

pr(Prize=1) = 0.3. pr(Prize=3) = 0.2.
Obs(Selected=1). Obs(Open=2). Obs(Prize # 2).

(de{1,2,3,4})

Intuitively, the translation plog2lpmIn(Il;) (i) reifies each atom ¢ = v in Il into a form of
Poss(c = v), PossWithAssPr(c = v), and PossWithDefPr(c = v); (ii) defines each of these
reified atoms by hard rules, e.g., «: Poss(Prize = d) < not Intervene(Prize) ; and (iii)
assigns the probabilities by soft rules, e.g., n(0.3): L + not AssPr(Prize =1) . The full
translation is too long to be put here, please refer to Example 3 in [20] for details.

5.3 From LPOD to Answer Set Programs

» Theorem 5. (from [21]) Under any of the four preference criteria, the preferred answer
sets of an LPOD 11 of signature o are exactly the preferred answer sets on o of Ipod2asp(II).

» Example 6. Consider the following LPOD II3 about picking a hotel near the Grand
Canyon. hotel(1) is a 2-star hotel but is close to the Grand Canyon, hotel(2) is a 3-star hotel
and the distance is medium, and hotel(3) is a 4-star hotel but is too far.

close x med x far x tooFar. « hotel(2), not med.
stard x star3 x star2. « hotel(2), not star3.
H{hotel(X) : X =1..3}1. <+ hotel(3), not tooFar.
< hotel(1), not close. < hotel(3), not star4.

« hotel(1), not star2.

The translation Ipod2asp(Il3) is based on the definition of the assumption program,
AP(x1,x2), where z1 € {0,...,4} and z2 € {0,...,3}. Intuitively, the value of x; denotes
an assumption about LPOD rule i: if z; = 0, the body of rule ¢ is false, thus no atom will
be derived by rule 4; if z; > 0, the boy of rule i is true, and the z;-th atom will be derived
by rule ¢ (which requires that all atoms in the head of rule ¢ with a index lower than x;
must be false). An assumption program AP(z1,x2) is initialized by a choice rule and a weak
constraint (which makes sure that all consistent assumption programs are considered).

{ap(X1,X2): X1=0..4, X2=0..3}. i~ ap(X1,X2). [-1, X1, X2]

The assumption programs include all regular rules in II. Note that (i) we turn each atom
a in IT into a(X7, X5) so that the answer sets of assumption program AP(z1,x2) are in its
own name space (1,22); (ii) we add ap(X1, Xs) in the body of each rule so that these rules
will not be “effective” if the assumption program AP(X, X5) is inconsistent.

1{hotel (H,X1,X2): H=1..3}1 :-
:- ap(X1,X2), hotel(l,X1,X2),

ap(X1,X2).

not close(X1,X2).

:- ap(X1,X2), hotel(1,X1,X2), not star2(X1,X2).
:- ap(X1,X2), hotel(2,X1,X2), not med(X1,X2).

:- ap(X1,X2), hotel(2,X1,X2), not star3(X1i,X2).
:- ap(X1,X2), hotel(3,X1,X2), not tooFar(X1,X2).
:- ap(X1,X2), hotel(3,X1,X2), not stard4(X1,X2).

Besides, the assumption programs include all assumptions that we record in (x1,x2).

17:7

ICLP 2018

17:8 Translating P-log, LPMLN LPOD, and CR-Prolog2 into Standard Answer Set Prog.

% close * med * far * tooFar.
body_1(X1,X2) :- ap(X1,X2).

:- ap(X1,X2), X1=0, body_1(X1,X2).

:- ap(X1,X2), X1>0, not body_1(X1,X2).

close(X1,X2) :- body_1(X1,X2), X1=1.

med (X1,X2) :- body_1(X1,X2), X1=2.

far (X1,X2) :- body_1(X1,X2), X1=3.

tooFar (X1,X2) :- body_1(X1,X2), X1=4.

X1=1 :- body_1(X1,X2), close(X1,X2).

X1=2 :- body_1(X1,X2), med(X1,X2), not close(X1,X2).

X1=3 :- body_1(X1,X2), far(X1,X2), not close(X1,X2), not med(X1,X2).
X1=4 :- body_1(X1,X2), tooFar(X1,X2), not close(X1,X2),

not med(X1,X2), not far(X1,X2).

% star4 * star3 * star2.
body_2(X1,X2) :- ap(X1,X2).

:- ap(X1,X2), X2=0, body_2(X1,X2).
:- ap(X1,X2), X2>0, not body_2(X1,X2).

star4 (X1,X2)
star3 (X1, X2)
star2 (X1, X2)

body_l(X1,X2), X2=1.
body_1(X1,X2), X2=2.
body_1(X1,X2), X2=3.

X2=1 :- body_1(X1,X2), star4(X1,X2).
X2=2 :- body_1(X1,X2), star3(X1,X2), not star4(X1,X2).
X2=3 :- body_1(X1,X2), star2(X1,X2), not star4(X1,X2),

not star3(X1,X2).

To calculate the satisfaction degrees D1, Dy of two LPOD rules, Ipod2asp(Il3) contains
degree (ap(X1,X2), D1, D2) :- ap(X1,X2), Di=#max{1;X1}, D2=#max{1;X2}.

Note that all answer sets of AP(z1, z2) will have a same satisfaction degree for each LPOD
rule. Thus we also use ap(z1,x2) to denote an answer set of AP(x1,x2) in the following set
of rules. To compare two candidate answer set .S; and Sy according to, say, Pareto-preference,
and to determine whether an answer set of AP(z1,23) is a Pareto-preferred answer set,
Ipod2asp(Il3) contains

equ(S1,82) :- degree(S1,D1,D2), degree(S2,D1,D2).

prf(S1,S2) :- degree(S1,D11,D12), degree(S2,D21,D22), not equ(S1,S2),
D11<=D21, D12<=D22.

pAS (X1, X2) :- ap(X1, X2), {prf(S, ap(X1,X2))}0.

5.4 From CR-Prolog, to Answer Set Programs

» Theorem 7. (from [21]) For any CR-Prologs program 11 of signature o, (a) the projections
of the generalized answer sets of I1 onto o are exactly the generalized answer sets on o of
crp2asp(Il). (b) the projections of the candidate answer sets of II onto o are exactly the
candidate answer sets on o of crp2asp(Il). (c¢) the preferred answer sets of 11 are exactly the
preferred answer sets on o of crpasp(II).

Z.Yang 17:9

» Example 8. (From [4]) Consider the following CR-Prologs program Il4:

q<t. p <+ not q. 1: t&.
5 t. r < not s. 2: gxsé.
—p,T.

The idea behind crp2asp is similar to that for Ipod2asp. crp2asp(Ily) consists of
(i) all consistent assumption programs

{ap(X1,X2): X1=0..1, X2=0..2}. :~ ap(X1,X2). [-1,X1,X2]

q(X1,X%2)

ap (X1,%2), t(X1,X2).
s (X1,X2) ap(X1,X2), t(X1,X2).
p(X1,X2) ap(X1,X2), not q(X1,X2).
r(X1,X2) :- ap(X1,X2), not s(X1,X2).
- ap(X1,X2), p(X1,X2), r(X1,X2).

%ho1l: t <+-.
t(X1,X2) :- ap(X1,X2), Xi=1.

h 2: qxs <+-.
q(X1,X2) :- ap(X1,X2), X2=1.
s(X1,X2) :- ap(X1,X2), X2=2.

(ii) the definition of dominate as well as the definition of candidate answer set

dominate (ap(X1,X2), ap(Y¥Y1,Y2)) :- ap(X1,X2), ap(Y¥Y1,Y2), 0<X1, X1<Y1.
dominate (ap (X1,X2), ap(Y1,Y2)) :- ap(X1,X2), ap(¥Y1,Y2), 0<X2, X2<Y2.
candidate (X1,X2) :- ap(X1,X2), {dominate(SP,ap(X1,X2))}0.

(iii) the definition of lessCrRuleApplied as well as the definition of preferred answer set

lessCrRuleApplied (ap(X1,X2), ap(Y1,Y2)) :- candidate(X1,X2),
candidate (Y1,Y2), 1{X1!=Y1;X2!=Y2}, X1<=Y1, X2<=Y2.

pAS(X1,X2) :- candidate(X1,X2), {lessCrRule(SP,ap(X1,X2))}0.

6 Open Issues and Expected Achievements

One issue is that, among the 4 translations, only IpmIn2wc has an implemented compiler.
So, for now, most translations must be done manually. However, we may not implement
the compilers for the translations Ipod2asp and crpt2asp, since they are exponential to the
number of non-regular rules.

Another issue is, currently, we are working on combining quantitative and qualitative
uncertainty in a single formalism, but it is still not clear how these two kinds of uncertainty
merge together. For example, if there is a preference rule saying “football > ping-pong >
basketball” with a quantitative confidence 5, and there is another preference rule saying
“indoor game > outdoor game” with confidence 10, what should be the order of these
activities? To answer this question, we should first answer “how should the confidence
be arranged in a rule without loss of generality?” The follow-up question is “what is the
confidence of basketball if there is a probability of 70% that it is an indoor game?”

ICLP 2018

17:10

Translating P-log, LPMLN LPOD, and CR-Prolog2 into Standard Answer Set Prog.

As for the future work, we will check whether the recent approach, Asprin [10], can be

used to implement LPOD, CR-Prology, LPMIN | and even P-log. At the meantime, we
will start to combine quantitative and qualitative uncertainty from tuning the semantics of

LPOD to include quantitative uncertainty in its syntax and semantics. After the formalism

is created and well defined, we will prove its expressivity and implement a compiler for it.

—— References

1

10

11

12

13

14

15

16

Vernon Asuncion, Yan Zhang, and Heng Zhang. Logic programs with ordered disjunction:
first-order semantics and expressiveness. In Proceedings of the Fourteenth International
Conference on Principles of Knowledge Representation and Reasoning, pages 2-11. AAAI
Press, 2014.

Evgenii Balai and Michael Gelfond. On the Relationship between P-log and LPMMN, In
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 915—
921, 2016.

Marcello Balduccini. CR-MODELS: an inference engine for CR-Prolog. In Proceedings
of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning,
pages 18-30. Springer-Verlag, 2007.

Marcello Balduccini, Marcello Balduccini, and Veena Mellarkod. CR-Prolog with Ordered
Disjunction. In In ASP03 Answer Set Programming: Advances in Theory and Implement-
ation, volume 78 of CEUR Workshop proceedings, 2003.

Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-Restoring
Rules. In International Symposium on Logical Formalization of Commonsense Reasoning,
AAAI 2003 Spring Symposium Series, pages 9-18, 2003.

Marcello Balduccini and Veena Mellarkod. A-prolog with cr-rules and ordered disjunc-
tion. In Intelligent Sensing and Information Processing, 2004. Proceedings of International
Conference on, pages 1-6. IEEE, 2004.

Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning with answer
sets. Theory and Practice of Logic Programming, 9(1):57-144, 20009.

Gerhard Brewka. Logic programming with ordered disjunction. In AAAI/IAAI pages
100-105, 2002.

Gerhard Brewka. Preferences in answer set programming. In CAEPIA, volume 4177, pages
1-10. Springer, 2005.

Gerhard Brewka, James P Delgrande, Javier Romero, and Torsten Schaub. asprin: Cus-
tomizing Answer Set Preferences without a Headache. In AAAI pages 1467-1474, 2015.
Gerhard Brewka, Ilkka Niemeld, and Tommi Syrjanen. Implementing ordered disjunction
using answer set solvers for normal programs. In Furopean Workshop on Logics in Artificial
Intelligence, pages 444-456. Springer, 2002.

Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing disjunctive datalog by
constraints. IEEE Transactions on Knowledge and Data Engineering, 12(5):845-860, 2000.
Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog
and its application in link discovery. In IJCAI volume 7, pages 24622467, 2007.

James P Delgrande, Torsten Schaub, and Hans Tompits. A framework for compiling pref-
erences in logic programs. Theory and Practice of Logic Programming, 3(2):129-187, 2003.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and circumscription.
Artificial Intelligence, 175:236-263, 2011.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Robert Kowalski and Kenneth Bowen, editors, Proceedings of International Logic
Programming Conference and Symposium, pages 1070-1080. MIT Press, 1988.

Z.Yang

17 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunct-
ive databases. New Generation Computing, 9:365-385, 1991.

18 Joohyung Lee, Yunsong Meng, and Yi Wang. Markov Logic Style Weighted Rules under the
Stable Model Semantics. In Technical Communications of the 31st International Conference
on Logic Programming, 2015.

19 Joohyung Lee and Yi Wang. Weighted Rules under the Stable Model Semantics. In
Proceedings of International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 145-154, 2016.

20 Joohyung Lee and Zhun Yang. LPMLN, weak constraints, and P-log. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pages 1170-1177, 2017.

21 Joohyung Lee and Zhun Yang. Translating LPOD and CR-Prolog2 into Standard Answer
Set Programs. arXiv preprint arXiv:1805.00643, 2018. arXiv:1805.00643.

22 Judea Pearl. Causality: models, reasoning and inference, volume 29. Cambridge Univ
Press, 2000.

23 Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning,

62(1-2):107-136, 2006.

17:11

ICLP 2018

http://arxiv.org/abs/1805.00643

	Introduction and Problem Description
	Background and Overview of the Existing Literature
	Review: LPMLN
	Review LPOD
	Existing Literature

	Goal of the Research
	Current Status of the Research
	Preliminary Results Accomplished
	From LPMLN to Answer Set Programs
	From P-log to LPMLN
	From LPOD to Answer Set Programs
	From CR-Prolog2 to Answer Set Programs

	Open Issues and Expected Achievements

