
Technical Communications of the
34th International Conference on
Logic Programming

ICLP 2018, July 14–17, 2018 ,Oxford, United Kingdom

Edited by

Alessandro Dal Palu’
Paul Tarau
Neda Saeedloei
Paul Fodor

OASIcs – Vo l . 64 – ICLP 2018 www.dagstuh l .de/oas i c s

Editors
Alessandro Dal Palu’ Paul Tarau
Università di Parma, Italy University of North Texas, USA
alessandro.dalpalu@unipr.it Paul.Tarau@unt.edu

Neda Saeedloei Paul Fodor
Southern Illinois University Carbondale, USA Stony Brook University, USA
neda@cs.siu.edu pfodor@cs.stonybrook.edu

ACM Classification 2012
Software and its engineering → Constraint and logic languages, Theory of computation → Logic,
Theory of computation → Constraint and logic programming,

ISBN 978-3-95977-090-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-090-3.

Publication date
November 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICLP.2018.0

ISBN 978-3-95977-090-3 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-090-3
http://www.dagstuhl.de/dagpub/978-3-95977-090-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ICLP.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-090-3
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

http://www.dagstuhl.de/oasics

ICLP 2018

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Preface
Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor 0:vii–0:ix

ICLP 2018: Technical Communications

Epistemic Logic Programs with World View Constraints
Patrick Thor Kahl and Anthony P. Leclerc . 1:1–1:17

Cumulative Scoring-Based Induction of Default Theories
Farhad Shakerin and Gopal Gupta . 2:1–2:15

Introspecting Preferences in Answer Set Programming
Zhizheng Zhang . 3:1–3:13

A New Proof-Theoretical Linear Semantics for CHR
Igor Stéphan . 4:1–4:17

CHRvis: Syntax and Semantics
Nada Sharaf, Slim Abdennadher, and Thom Frühwirth . 5:1–5:20

Improving Candidate Quality of Probabilistic Logic Models
Joana Côrte-Real, Anton Dries, Inês Dutra, and Ricardo Rocha 6:1–6:14

Towards Incremental and Modular Context-Sensitive Analysis
Isabel Garcia-Contreras, José F. Morales, and Manuel V. Hermenegildo 7:1–7:2

MASP-Reduce: A Proposal for Distributed Computation of Stable Models
Federico Igne, Agostino Dovier, and Enrico Pontelli . 8:1–8:4

Declarative Algorithms in Datalog with Extrema: Their Formal Semantics
Simplified

Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky, and
Tyson Condie . 9:1–9:3

Towards Static Performance Guarantees for Programs with Run-Time Checks
Maximiliano Klemen, Nataliia Stulova, Pedro Lopez-Garcia, José F. Morales, and
Manuel V. Hermenegildo . 10:1–10:2

SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)
Da Shen and Yuliya Lierler . 11:1–11:15

Learning Commonsense Knowledge Through Interactive Dialogue
Benjamin Wu, Alessandra Russo, Mark Law, and Katsumi Inoue 12:1–12:19

Application of Logic-Based Methods to Machine Component Design
Bram Aerts and Joost Vennekens . 13:1–13:15

Explanations Generation For Web Service Workflow
Van Duc Nguyen, Son Cao Tran, and Enrico Pontelli . 14:1–14:3

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

0:vi Contents

ICLP 2018: Doctoral Consortium

Probabilistic Action Language pBC+
Yi Wang . 15:1–15:12

Explaining Actual Causation via Reasoning About Actions and Change
Emily C. LeBlanc . 16:1–16:11

Translating P-log, LP MLN , LPOD, and CR-Prolog2 into Standard Answer Set
Programs

Zhun Yang . 17:1–17:11

Proof-Relevant Resolution for Elaboration of Programming Languages
František Farka . 18:1–18:9

The Learning-Knowledge-Reasoning Paradigm for Natural Language
Understanding and Question Answering

Arindam Mitra . 19:1–19:6

Speeding up Lazy-Grounding Answer Set Solving
Richard Taupe . 20:1–20:9

Knowledge Authoring and Question Answering via Controlled Natural Language
Tiantian Gao . 21:1–21:8

Natural Language Generation From Ontologies Using Grammatical Framework
Van Duc Nguyen . 22:1–22:7

Model Revision of Logical Regulatory Networks Using Logic-Based Tools
Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro . 23:1–23:10

Scalable Robotic Intra-Logistics with Answer Set Programming
Philipp Obermeier . 24:1–24:5

Preface

This volume contains the Technical Communications and the Doctoral Consortium papers
of the 34-th International Conference on Logic Programming (ICLP 2018), held in Oxford,
United Kingdom, from July 14th to July 17th, 2018.

ICLP 2018 was part of the Federated Logic Conference 2018, (FLOC 2018), as the premier
conference on foundations and applications of logic programming, including but not restricted
to answer-set programming, non-monotonic reasoning, unification and constraints based logic
languages, constraint handling rules, argumentation logics, deductive databases, description
logics, inductive and co-inductive logic programming.

Contributions to ICLP are sought in all areas of logic programming, including:

Foundations: semantics, execution algorithms, formal models.
Implementation: virtual machines, compilation, memory management, parallel execu-
tion, foreign interfaces.
Language Design: inference engines, type systems, concurrency and distribution,
modules, metaprogramming, relations to object-oriented and functional programming,
logic-based domain-specific languages.
Software-Development Techniques: declarative algorithms and data structures,
design patterns, debugging, testing, profiling, execution visualization.
Transformation and Analysis: assertions, type and mode inference, partial evaluation,
abstract interpretation, program transformations.
Applications and Synergies: interaction with SAT, SMT and CSP solvers, logic
programming techniques for type inference and theorem proving, horn-clause analysis,
knowledge representation, cognitive computing, artificial intelligence, natural language
processing, information retrieval, web programming, education, computational life sciences,
computational mathematics.

Three kinds of submissions were accepted:
Technical papers, which include technically sound, innovative ideas that can advance the
state of logic programming;
Application papers, which describe interesting application domains;
System and tool papers, which emphasize novelty, practicality. usability, and availability
of the systems and tools.

ICLP implemented the hybrid publication model used in all recent editions of the
conference, with journal papers and Technical Communications (TCs), following a decision
made in 2010 by the Association for Logic Programming. Papers of the highest quality
were selected to be published as rapid publications in this special issue of TPLP. The TCs
comprise papers which the Program Committee (PC) judged of good quality but not yet of
the standard required to be accepted and published in TPLP as well as dissertation project
descriptions stemming from the Doctoral Program (DP) held with ICLP.

We have received 63 submissions of abstracts, of which 49 resulted in full submissions.
The Program Chairs, acting as guest editors of the special issue, organized the refereeing
process, which was undertaken by the PC with the support of external reviewers. Each
paper was reviewed by at least three referees who provided detailed written evaluations.
This enabled a list of papers to be short-listed as candidates for rapid communication. The
authors of these papers revised their submissions in light of the reviewers’ suggestions, and
Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

0:viii Preface

all these papers were subject to a second round of reviewing. Of these candidates papers,
25 were accepted as rapid communications, to appear in the special issue. In addition, the
PC recommended 15 papers to be accepted as TCs, of which 14 were also presented at the
conference (1 was withdrawn). We would like to thank the organizers of these affiliated
events for their contributions to the conference as a whole. We are also deeply indebted to
the Program Committee members and external reviewers, as the conference would not have
been possible without their dedicated, enthusiastic and outstanding work. The Program
Committee members were:

Mario Alviano Hassan Aït-Kaci Marcello Balduccini
Mutsunori Banbara Pedro Cabalar Mats Carlsson
Manuel Carro Michael Codish Alessandro Dal Palù
Marina De Vos Thomas Eiter Esra Erdem
Thom Frühwirth Marco Gavanelli Martin Gebser
Gopal Gupta Michael Hanus Amelia Harrison
Manuel Hermenegildo Tomi Janhunen Angelika Kimmig
Ekaterina Komendantskaya Nicola Leone Michael Leuschel
Yuliya Lierler Vladimir Lifschitz Barry O’Sullivan
David Pearce Enrico Pontelli Ricardo Rocha
Chiaki Sakama Vitor Santos Costa Tom Schrijvers
Tran Cao Son Theresa Swift Peter Szeredi
Mirek Truszczyński German Vidal Jan Wielemaker
Stefan Woltran Roland Yap Jia-Huai You
Neng-Fa Zhou

The external reviewers were:

Weronika T. Adrian Sandra Alves Joaquín Arias
João Barbosa Zhuo Chen Md Solimul Chowdhury
Carmine Dodaro Gregory Duck Wolfgang Faber
František Farka Mário Florido Michael Frank
Daniel Gall Gregory Gelfond Jurriaan Hage
Markus Hecher Arash Karimi Emily Leblanc
Jan Maly Fumio Mizoguchi Eric Monfroy
Michael Morak Falco Nogatz Adrian Palacios
Javier Romero Elmer Salazar Zeynep Saribatur
Sebastian Schellhorn Peter Schüller Farhad Shakerin
Nada Sharaf Jon Sneyers Finn Teegen
Pedro Vasconcelos Alicia Villanueva Yisong Wang
Philipp Wanko Fangkai Yang

The 14th Doctoral Consortium (DC) on Logic Programming was held in conjunction with
ICLP 2018 and FLoC 2018. It attracts Ph.D. students in the area of Logic Programming
Languages from different backgrounds (e.g. theoretical, implementation, application) and
encourages a constructive and fruitful advising. Topics included: theoretical foundations of
logic and constraint logic programming, sequential and parallel implementation technologies,
static and dynamic analysis, abstract interpretation, compilation technology, verification,
logic-based paradigms (e.g., answer set programming, concurrent logic programming, induct-
ive logic programming) and innovative applications of logic programming. This year the
Doctoral Consortium accepted ten papers in the areas described above: 5 in Logical Systems,
1 in Implementations and 4 in Applications of logic programming. We warmly thank all

Preface 0:ix

student authors, supervisors, referees, co-chairs, members of the program committee and the
organizing team that made the Doctoral Consortium greatly successful.

The accepted papers were:
Yi Wang. Probabalistic Action Language pBC+
Emily Leblanc. Explaining Actual Causation via Reasoning about Actions and Change
Zhun Yang. Translating P-log, LPMLN , LPOD, and CR-Prolog2 into Standard Answer
Set Programs
Frantisek Farka. Proof-relevant resolution for elaboration of programming languages
Arindam Mitra. The Learning-Knowledge-Reasoning Paradigm For Natural Language
Understanding and Question Answering
Richard Taupe. Speeding Up Lazy-Grounding Answer Set Solving
Tiantian Gao. Knowledge Acquisition and Question Answering via Controlled Natural
Language
Van Nguyen. Natural Language Generation From Ontologies
Filipe Gouveia, Ines Lynce and Pedro T. Monteiro. Model Revision of Logical Regulatory
Networks using Logic-based Tools
Philipp Obermeier. Scalable Robotic Intra-Logistics with Answer Set Programming

The DC Program Committee members were:

Marina De Vos, University of Bath
Fabio Fioravanti, University of Chieti-Pescara
Martin Gebser, Aalto University
Jose F. Morales, IMDEA Software Research Institute
Takehide Soh, Information Science and Technology Center, Kobe University
Frank D. Valencia LIX, Ecole Polytechnique
Neda Saeedloei, Southern Illinois University Carbondale
Paul Fodor, Stony Brook University

We would also like to express our gratitude to the full ICLP 2018 organization committee,
namely Marco Gavanelli who acted as general chair; Stefan Woltran, who served as workshop
chair; Enrico Pontelli, who acted as publicity chair and designed the web pages; Paul Fodor
and Neda Saeedloei, who jointly chaired the Doctoral Program of ICLP; and Paul Fodor,
who organized the programming contest. Our gratitude must be extended to Torsten Schaub,
who is serving in the role of President of the Association of Logic Programming (ALP), to all
the members of the ALP Executive Committee and to Mirek Truszczyński, Editor-in-Chief of
TPLP. Also, to the staff at Cambridge University Press, especially Richard Horley, and to the
personnel at Schloss Dagstuhl-Leibniz Zentrum fur Informatik, especially Michael Wagner,
for their assistance. We would also like to thank the staff of the EasyChair conference
management system for helping the Program Chairs with their prompt support. We wish to
thank each author of every submitted papers, since their efforts keep the conference alive
and the participants to ICLP for bringing and sharing their ideas and latest developments.

Finally, we would like to thank the FLOC 2018 conference general chair: Moshe Y. Vardi
and to the FLOC 2018 co-chairs Daniel Kroening and Marta Kwiatkowska for their help and
guidance to make ICLP part of this outstanding scientific event.

Alessandro Dal Palù
Paul Fodor
Neda Saeedloei
Paul Tarau

ICLP 2018

Epistemic Logic Programs with World View
Constraints
Patrick Thor Kahl
Space and Naval Warfare Systems Center Atlantic, North Charleston, SC, USA
patrick.kahl@navy.mil

Anthony P. Leclerc
Space and Naval Warfare Systems Center Atlantic, North Charleston, SC, USA; and
College of Charleston, Charleston, SC, USA
anthony.leclerc@navy.mil, leclerca@cofc.edu

Abstract
An epistemic logic program is a set of rules written in the language of Epistemic Specifications, an
extension of the language of answer set programming that provides for more powerful introspect-
ive reasoning through the use of modal operators K and M. We propose adding a new construct
to Epistemic Specifications called a world view constraint that provides a universal device for
expressing global constraints in the various versions of the language. We further propose the use
of subjective literals (literals preceded by K or M) in rule heads as syntactic sugar for world view
constraints. Additionally, we provide an algorithm for finding the world views of such programs.

2012 ACM Subject Classification Software and its engineering → Constraints

Keywords and phrases Epistemic Specifications, Epistemic Logic Programs, Constraints, World
View Constraints, World View Rules, WV Facts, Answer Set Programming, Logic Programming

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.1

Acknowledgements The authors wish to express their thanks to Evan Austin, Michael Gelfond,
and ICLP anonymous reviewers for their valued suggestions and comments on drafts of this work.

1 Introduction

The language of Epistemic Specifications extends answer set programming (ASP) by adding
modal operators K (“known”) and M (“may be true”). It was introduced by Gelfond [15]
after observing a need for more powerful introspective reasoning than that offered by ASP
alone. A program written in this language is called an epistemic logic program (ELP), with
semantics defined using the notion of a world view – a collection of sets of literals (belief
sets), analogous to answer sets of an ASP program. Recent interest has led to a succession
of proposed semantics [17, 21, 12, 35, 44] advocating differing perspectives with respect to
the meaning of connectives and intended world views of programs. This clash of intuition is
only one aspect of the problem as defining a semantics that facilitates understanding and yet
accurately reflects intuition appears to be quite difficult as discussed in Section 2.

In this paper, we don’t try to resolve the clash; instead, we focus on the important problem
of modeling knowledge using purely epistemic constraints. With the original semantics, such
constraints could be used to eliminate possible worlds. As will be shown, this property
was lost with the more recent semantics. This leads to substantial difficulties in modeling
knowledge. Thus, in an attempt to facilitate ELP development in the midst of language
evolution, we propose extending the language with a syntactic construct called a world view
constraint (WVC) to distinguish certain constraints as global. WVCs are universal – immune
by design to the various devices (e.g., maximality requirements) used to tweak the semantics.

© Patrick Thor Kahl and Anthony P. Leclerc;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 1; pp. 1:1–1:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:patrick.kahl@navy.mil
mailto:anthony.leclerc@navy.mil, leclerca@cofc.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 ELPs with WVCs

As an introductory example, let us look at a simple epistemic logic program that features
a purely epistemic constraint:

p or q.

← not K p. % purely epistemic constraint

The second rule is purely epistemic in that its body consists solely of a subjective literal
whose interpretation is global in the sense that its truth value depends on the entire collection
of belief sets in some possible world view rather than some current (local) working set. To
be precise, the truth value of not K p depends on whether p is in all belief sets of some
possible world view under consideration. For example, considering W = {{p}, {q}} as a
possible world view, not K p evaluates to true, thus violating the constraint.

As W is the only possible world view that is consistent with the rest of the program (i.e.,
the first rule), this program has no world view under the original semantics [15]. However,
under most of the recently proposed semantics [21, 12, 35], its world view is {{p}} – a result
that some may consider unexpected. To achieve the same result as that of the original
semantics, we propose replacing the second rule with the following:

wv← not K p. % world view constraint

which results in no world view for any of the proposed ELP semantics (if extended with our
new construct). This motivating example and others are discussed in Sections 3 and 5.

The paper is organized as follows. We begin with a summary of related work in develop-
ment of the language semantics and ELP solvers. Next we discuss the use of constraints in
both ASP and Epistemic Specifications, providing motivational argument for the introduction
of WVCs. We then present the syntax and semantics of the extended language. We follow
with examples demonstrating its use. Finally, we give an algorithm for computing the world
views of an ELP with WVCs, and close with suggestions for related extensions.

2 Background and Related Work

With his good friend and colleague Vladimir Lifschitz, the foundations for what we now
call answer set programming (ASP) had been laid down in the seminal works of Michael
Gelfond [19, 20] by 1991. It seems strange in hindsight that, in the same year, a far less
known language called Epistemic Specifications was proposed by Gelfond [15] in an attempt
to address an observed inadequacy in the expressiveness of its better known predecessor.
Gelfond noticed that the following ASP program does not entail a required interview for a
scholarship applicant whose eligibility is not able to be established:

% rules for scholarship eligibility at a certain college where S represents a scholarship applicant

eligible(S)← highGPA(S).
eligible(S)← fairGPA(S), minority(S).
¬eligible(S)← ¬highGPA(S), ¬fairGPA(S).
% ASP attempt to express that an interview is required if applicant eligibility can’t be determined

interview(S)← not eligible(S), not ¬eligible(S).
% applicant data

fairGPA(mike) or highGPA(mike).

P.T. Kahl and A. P. Leclerc 1:3

The program correctly reflects that Mike’s eligibility can not be determined, but its answer sets,
{fairGPA(mike), interview(mike)} and {highGPA(mike), eligible(mike)}, do not conclude
that an interview is required since only one contains interview(mike).

Gelfond’s solution was to extend the language by adding modal operator K (“known”)
and changing the fourth rule above as follows:

% updated rule to express interview requirement using modal operator K

interview(S)← not K eligible(S), not K ¬eligible(S).

The updated rule says that interview(S) is to be believed if both eligible(S) and ¬eligible(S)
are each not known (i.e., not in all belief sets of the world view). The program has world view
{{fairGPA(mike), interview(mike)}, {highGPA(mike), eligible(mike), interview(mike)}}
with its belief sets both containing interview(mike); thus, the required interview is entailed.

Although the language of Epistemic Specifications was revised in the first years of its
introduction, after 1994 [5, 16] (referred to hereafter as ES1994) little concerning its semantics
was seen in the literature for almost two decades. In the intervening years before 2011,
Chen [10] proposed GOL, a generalization of Levesque’s logic of only knowing (OL) [28],
that “covers Gelfond’s important notion of Epistemic Specifications.” Preda [33] proposed an
alternative to Epistemic Specifications using multiple levels of negation (perhaps a precursor
to the 2016 Shen-Eiter proposal discussed later). Wang and Yan Zhang [41] offered another
alternative, proposing an epistemic extension to Pearce’s equilibrium logic of here-and-there
[32]. Efforts in 2011 by Faber & Woltran [13] and Truszczyński [39] mark the beginning of a
renewed interest in Epistemic Specifications.

With the resurgence of interest, Gelfond felt an update to Epistemic Specifications was
needed. His proposal [17] (referred to hereafter as ES2011) specifically addressed unintended
world views due to recursion through modal operator K, as exemplified here:

p← K p.

Under ES1994 semantics, this program has two world views, {{}} and {{p}}. Under ES2011
semantics, only the first is a world view, which is arguably more intuitive. It was observed,
however, that unintended world views due to recursion through modal operator M remain,
as demonstrated by the following one-line program:

p← M p.

Under ES2011 semantics the program has two world views, {{}} and {{p}}. This result did
not seem intuitive. Following Gelfond’s lead, Kahl et al. [22, 21] proposed another update
(referred to hereafter as ES2014) to address the issue, with semantics supporting only the
latter world view.

It was suggested by Fariñas del Cerro et al. [12] that there remain unintended world
views for certain programs with ES2014 semantics, particularly the following:

p← M q, not q.

q ← M p, not p.

Per ES2014, the program has two world views, {{}} and {{p}, {q}}, of which the first,
they argue, seems unintended. Their notion of autoepistemic equilibrium models (AEEMs)
attempts to address this concern with a new epistemic extension of equilibrium logic that
includes a maximality condition on epistemic equilibrium models. Using AEEMs successfully
eliminates {{}} from the above program’s world views.

ICLP 2018

1:4 ELPs with WVCs

Shen and Eiter [35] offered another update to the semantics, albeit using different syntactic
notation, that focused on resolving unintended world views due to:

epistemic circular justification in which a literal is considered true solely on the assumption
that it is in all belief sets (i.e., belief in ` is justified only by K `); and
not satisfying the property of knowledge minimization with epistemic negation.

The property of knowledge minimization with epistemic negation is based on a maximality
requirement on a guess (i.e., a set of epistemic negations – equivalent to subjective literals of
the forms not K ` and M ` – considered true within the program under consideration) for
its associated collection of belief sets to be a world view, all other conditions being satisfied.
In [23], the authors provided a revision of ES2014 semantics by adding this maximality
requirement (referred to hereafter as ES2016).

Following suit, Zhizheng Zhang [45] updated his semantics for answer set programming
with graded modality (ASPGM) by adding a maximality condition in line with Shen and Eiter.
With some syntactic liberty, Epistemic Specifications can be viewed as a proper subset of
ASPGM with ASPGM allowing for expressing a lower and upper bound on the number of belief
sets containing a specified literal within a world view. (We will revisit ASPGM in Section 7.)

Recently, Yan Zhang and Yuanlin Zhang [44] offered a different semantics for ELPs, with
a stricter view on circular justification. To illustrate, they argue that the program

p← M p.

should have the world view {{}} rather than {{p}} as they do not consider circular justification
of p as sufficient reason to accept the latter. To them, justification for M p being true requires
that belief in p is forced in some belief set of the rational agent.1 Others argue that M p is
equivalent to not K not p and that the rationality principle (which states that a rational
agent should believe only what it is forced to believe) favors not knowing (not K) over
knowing (K), so {{p}} is the preferred world view. In contrast, Zhang & Zhang use this
same principle to argue against {{p}} since the possibility of p is not viewed as enough by
itself to force belief in p.

Regardless of differing views, it appears there remains room for improvement. As one
example, in [35] the problem of unintended world views due to recursion through M is defined
as a semantics for which “its world views do not satisfy the property of knowledge minimization
with epistemic negation.” Use of this definition avoids the question of whether, based on
intuition, a program has unintended world views. Consider again the program

p← M q, not q.

q ← M p, not p.

for which {{p}, {q}} is the only world view per this knowledge minimization property. Adding

r ← M p, M q.

results in the world view {{p, r}, {q, r}}, as one might expect. But now if we add the rule

s← K r.

we get two world views: {{p, r, s}, {q, r, s}} and {{}}. In lieu of the other results, this seems
unintuitive in spite of following the property of knowledge minimization with epistemic
negation. We believe this demonstrates the difficulty in defining an intuitive semantics.

1 See the notion of an externally-supported M-cycle in [22].

P.T. Kahl and A. P. Leclerc 1:5

In conjunction with development of the language, there has been concomitant development
of tools for finding world views. Attempts at developing a solver or inference engine include
ELMO by Watson [42], sismodels by Balduccini [3], Wviews by Kelly [24, 25, 40] using Yan
Zhang’s algorithm [43], ESmodels by Zhizheng Zhang et al. [34, 46], ELPS by Balai [1, 2],
ELPsolve by the authors [23], EP-ASP by Son et al. [26, 36], EHEX by Strasser [37], and selp
by Bichler et al. [6, 7]. A thorough discussion of these tools is left for another paper [27]. It
deserves note, however, that all extant solvers use an ASP solver for backend processing, and
as ASP solver development has matured, ELP solver development has slowly followed.

3 Motivation for World View Constraints

It is well known (see, for example, Proposition 2 in [30]) that constraints (headless rules)
in an ASP program have the net effect of, at most, ruling out certain answer sets from the
program (modulo its constraints). To illustrate, consider the following ASP program:

p or q.

p← q.

which has one answer set {p}. If we add the constraint

← p, not q.

the resulting program has no answer set since {p} violates this constraint.
With Epistemic Specifications, constraints can have an additive or subtractive effect on

belief sets or entire world views. Consider, for example, the following ELP:

p or q.

r ← M q.

with world view {{p, r}, {q, r}}. If we add the constraint

← q.

the resulting program has world view {{p}}. Let’s look at another example:

p or q.

r ← M p.

s or t← K p.

This program has a single world view, {{p, r}, {q, r}}. If we add the constraint

← M p, M q.

the resulting program has two world views per ES2016: {{p, r, s}, {p, r, t}} and {{q}}.
The previous examples illustrate potential differences in the effect of constraints on an

ELP compared to an ASP program. The last may also show how constraints can be a possible
source of confusion with respect to world views.2 Consider another example:

p or q.

← not K p.

2 Should the program even have a world view? Under the earlier ES1994 semantics, it does not!

ICLP 2018

1:6 ELPs with WVCs

Under ES2016 semantics, its world view is {{p}}; however, under the original semantics [15],
the program has no world view. This raises the question:

Which result is intended?

If the intent of the constraint is to rule out world views that do not contain p in every
belief set, then the latter (from the original semantics) would seem correct. Under the later
semantics, the net effect of the constraint is to eliminate belief sets that would otherwise
result in a world view that violates the constraint.

For ES2014 semantics, it was shown in [21] that, in general, to eliminate world views that
do not contain p in every belief set (and not simply eliminate belief sets from a world view
that would otherwise not meet this requirement), two constraints are required instead of the
one given above, resulting here in the following program:

p or q.

← p, not K p.

← not M p.

So with ES2014 semantics we now have a program with no world view. The same is true
in this case with the later ES2016 semantics; however, the new maximality requirement in
ES2016 means such “tricks” won’t work for all programs. Consider the following:

p← M q, not q.

q ← M p, not p.

r ← M p, M q.

Under ES2014 semantics, {{}} and {{p, r}, {q, r}} are the world views. Per ES2016, only
the latter is a world view. If we now add the constraint

← K r.

the resulting program has world view {{}}, which is not an ES2016 world view without this
constraint. We observe that there does not appear to be a general way to simply rule out
world views under ES2016 semantics. This observation leads to our thesis.

As the semantics of Epistemic Specifications has evolved to address uninten-
ded world views and support intuition with respect to certain programs, we
believe the added complexity has had a negative side effect with respect to in-
tuitive understanding of certain other programs – particularly those involving
constraints with subjective literals. Thus, in an attempt to facilitate correct problem
encoding/program development in line with intuition, we propose a new language construct
called a world view constraint (WVC) and introduce symbol wv← read as “it is not a world
view (if...)” for use in forming a WVC. For example,

wv← K p.

is read “it is not a world view if p is known” and means (informally) that any world view
satisfying K p is ruled out from the set of world views of the program under consideration.
This is analogous to how constraints affect answer sets in ASP, though at the world view
level for Epistemic Specifications.

P.T. Kahl and A. P. Leclerc 1:7

4 Syntax and Semantics

For the purpose of demonstrating the use of WVCs, we first define the syntax and semantics
for two versions of the language: ES2014 and ES2016. We direct the reader to the papers
referenced earlier for information on other versions of Epistemic Specifications. We present
our proposal for extending the language in Section 4.3, and follow by suggesting a means of
expressing the bounds for the grounding of variables within the context of the new constructs.

In general, the syntax and semantics of the language of Epistemic Specifications follow
that of ASP with the notable addition of modal operators K and M, plus the new notion of a
world view which is a collection of belief sets analogous to answer sets. We assume familiarity
with ASP [4, 8, 14, 18, 29]. We use AS(P) to denote the set of answer sets of ASP program
P. We use symbol |= for satisfies and 6|= for does not satisfy.

4.1 Syntax [ES2014 and ES2016]
An epistemic logic program is a set of rules of the form

`1 or ... or `k ← e1, ..., en.

where k ≥ 0, n ≥ 0, each `i is a literal (an atom or a classically-/strongly-negated atom;
called an objective literal when needed to avoid ambiguity), and each ei is a literal or a
subjective literal (a literal immediately preceded by K or M) possibly preceded by not (default
negation). As in ASP, a rule having an objective/subjective literal with a variable term is a
shorthand for all ground instantiations of the rule. By body(R) we denote the set {e1, ..., en}
from the body of rule R.

4.2 Semantics
I Definition 1 (When a Subjective Literal Is Satisfied). Let W be a non-empty set of consistent
sets of ground literals, and ` be a ground literal.
• W |= K ` if ∀A ∈W : ` ∈ A. • W |= not K ` if ∃A ∈W : ` /∈ A.
• W |= M` if ∃A ∈W : ` ∈ A. • W |= not M` if ∀A ∈W : ` /∈ A.

I Definition 2 (Modal Reduct). Let Π be a ground epistemic logic program, W be a non-
empty set of consistent sets of ground literals, and ` be a ground literal. We denote by ΠW

the modal reduct of Π with respect to W defined as the ASP program3 obtained from Π
by replacing/removing subjective literals in rule bodies or deleting associated rules per the
following table:

subjective literal ϕ if W |= ϕ then... if W 6|= ϕ then...

K ` replace K ` with ` delete rule containing K `

not K ` remove not K ` replace not K ` with not `

M` remove M` replace M` with not not `

not M` replace not M` with not ` delete rule containing not M`

I Definition 3 (World View under ES2014 Semantics). Let Π be a ground epistemic logic
program and W be a non-empty set of consistent sets of literals. W is a world view of Π
under ES2014 semantics if W= AS(ΠW).

3 with nested expressions of the form not not ` as defined in [30]

ICLP 2018

1:8 ELPs with WVCs

I Definition 4 (Epistemic Negations4). Let Π be a ground epistemic logic program, W be a
non-empty set of consistent sets of literals, and ` be a ground literal. We denote by EP (Π)
the set of distinct subjective literals appearing (regardless of being negated) in Π, each taking
the form of not K` or M` (referred to as epistemic negations) as follows:

EP (Π) = { not K` : K` appears in Π } ∪ { M` : M` appears in Π }.

In context with Π, we use Φ to denote a subset of EP (Π), and denote by ΦW the subset of
epistemic negations in EP (Π) that are satisfied by W ; i.e., ΦW = { ϕ : ϕ ∈ EP (Π) ∧W |= ϕ }.

I Definition 5 (World View under ES2016 Semantics). Let Π be a ground epistemic logic
program and W be a non-empty set of consistent sets of literals. W is a world view of Π
under ES2016 semantics if:
(1) W= AS(ΠW); and (2) there is no W ′ such that W ′= AS(ΠW ′) and ΦW ′ ⊃ ΦW .5

4.3 World View Constraints and World View Rules
We extend the language of Epistemic Specifications by introducing a world view constraint as a
construct for restricting the world views of an ELP, and a world view rule as a syntactic device
for specifying a world view constraint in an effort to facilitate problem encoding/program
development. The syntax and semantics of ES2016 are assumed here for the core ELP,
though the definitions should work with other language versions.

4.3.1 World View Constraints
A world view constraint (WVC) is an epistemic logic program rule of the form

wv← s1, ..., sn.

where each si is a (possibly negated) subjective literal.6

I Definition 6 (When a World View Constraint Is Violated). Let W be a non-empty set of
consistent sets of ground literals, and C be a ground WVC of the form wv← s1, ..., sn. We
say that W violates C if ∀si ∈ body(C) : W |= si.7

I Definition 7 (Semantics of an ELP with WVCs). Let Π be a ground ELP with WVCs such
that Π = Π0 ∪Πwvc where Πwvc is the set of all WVCs in Π and Π0 = Π \Πwvc (i.e., the part
of the program without WVCs). Let W be a non-empty set of consistent sets of ground
literals. W is a world view of Π if:
(1) W is a world view of Π0; and (2) W does not violate any rule in Πwvc.

Returning to our example, let Π be the following program, partitioned as shown:

p← M q, not q.

q ← M p, not p.

r ← M p, M q.

}
Π0

wv← K r. } Πwvc

Per ES2016 semantics, Π0 has one world view W = {{p, r}, {q, r}}, but by our definition W

violates the WVC in Πwvc since W |= K r ; hence, Π has no world view.

4 introduced in [35] using a different syntax
5 The maximality requirement on ΦW comes from the general epistemic semantics of Shen and Eiter [35].
6 A negated subjective literal is of the form not K ` or the form not M ` in ES2016 syntax.
7 Likewise, we say that W satisfies C (i.e., W |= C) if ∃si ∈ body(C) : W 6|= si.

P.T. Kahl and A. P. Leclerc 1:9

4.3.2 World View Rules and World View Facts
A world view rule (WVR) is an epistemic logic program rule of the form

s1 or ... or sk
wv← sk+1, ..., sn.

where each si is a (possibly negated) subjective literal. We define a WVR as follows:

s1 or ... or sk
wv← sk+1, ..., sn.

def= wv← not s1, ..., not sk, sk+1, ..., sn.

where not not ϕ ≡ ϕ for a subjective literal ϕ. A WVR is thus syntactic sugar for a WVC.
Similar to a fact in ASP, the wv← symbol can be omitted from a WVR with no body. We

refer to such rules as world view facts, or WV facts,8 and use below in our example:

p← M q, not q.

q ← M p, not p.

r ← M p, M q.

not K r. % equivalent to wv← K r.

Note that with these definitions, any WVC can be written as a WVR, or equivalently as a
WV fact. To demonstrate, the following three rules are all strongly equivalent:

wv← K p, not K q, M r, not M s. % expressed here as a WVC

not K p or K q wv← M r, not M s. % expressed here as a WVR

not K p or K q or not M r or M s. % expressed here as a WV fact

4.4 Grounding Concerns
The issue of grounding an ELP received attention by both Kelly [24] and Cui et al. [11]. In
[22], Kahl proposed an ELP solver algorithm that first creates a corresponding ASP program
from the ungrounded ELP, and then uses an ASP grounder to determine the associated
ground terms. This requires the rules in the ELP to be safe in the sense that any variable
term appearing in a rule has a corresponding positive literal (either an objective literal or a
subjective literal of the form K `) in the body with the same variable term.

Having only subjective literals of the form K ` available for rule safety is too restrictive
for WVCs. One could argue that the use of a sorted signature, such as in an epistemic logic
program with sorts [2], would suffice if rule safety were the only issue; however, being able to
limit the grounding of variable terms to less than the full range of their acceptable domains
is key to abstraction. Without such capability, flexibility and elaboration tolerance suffer.
To address the practical need of having a reasonable way to express limits on the domain of
a variable term in a WVC, we propose an extended syntax for a WV fact as follows:

s1 or ... or sm ← d1, ..., dn.

where each si is a (possibly negated) subjective literal, and each di is a domain atom9 – also
referred to as a domain predicate [38] – or a comparison atom (typically expressed using
an infix “built-in” predicate; e.g., X 6= a). The body is used here only to determine the

8 In addition to being a notational convenience, solver developers can avoid introducing a new token for
the wv← symbol since any WVC can be expressed as a (possibly disjunctive) WV fact.

9 The associated ground domain atoms are understood to be the same in every belief set.

ICLP 2018

1:10 ELPs with WVCs

appropriate grounding of variable terms in the head of the rule. The use of the ← symbol is
intentional as the body is not (after grounding and translation) part of any WVC.10 The
program rules below demonstrate the use of this extended syntax:

% domain atoms

d_x(a). d_x(b).
d_y(0). d_y(1). d_y(2). d_y(3).
% WV fact using the extended syntax

not K p(X, Y) or M q(X)← d_x(X), d_y(Y), Y < 2.

Grounding11 the last rule results in four WV facts:

not K p(a, 0) or M q(a). not K p(b, 0) or M q(b).
not K p(a, 1) or M q(a). not K p(b, 1) or M q(b).

5 Examples and Simplifications

Henceforth, ES2016 extended with WVCs is assumed unless stated otherwise.

5.1 Epistemic Conformant Planning Module
The epistemic conformant planning module12 for ES2014 with a sorted signature is as follows:

occurs(A, S)← M occurs(A, S), S < n.

¬occurs(A2, S)← occurs(A1, S), A1 6= A2.

success← goal(n).
← success, not K success.

← not M success.

where constant n ∈ N represents the plan horizon, variables A, A1, and A2 range over actions,
and variable S ranges over integral time steps where 0 ≤ S ≤ n. The last two rules are
constraints that together (as discussed in Section 3) rule out world views that do not satisfy
K success. With the proposed extension, we can replace these two constraints with one WVC
that is succinct, intuitive, and easier to understand than the original pair of constraints:

wv← not K success.

This is also relevant in that the proof of correctness for solving conformant planning problems
encoded using the original epistemic conformant planning module (with the other elements of
this methodology) depends in part on the two constraints ruling out world views that do not
satisfy K success; however, that part of the proof is not valid for ES2016 semantics. Using
the proposed WVC instead of the two original constraints elucidates this for both semantics.

10 It also fits well with the idea that the solver developer need not introduce a new token for the wv← symbol.
11 to include forward propagation with removal of body literals that are always true and removal of any

rule where a body literal is always false (so-called “smart” grounding)
12 See [21] for details on the use of ELPs to solve conformant planning problems using this module.

P.T. Kahl and A. P. Leclerc 1:11

5.2 Autonomous Control
Consider an exploratory robot operating on Mars with a round-trip communication delay
of 30 minutes with Earth. Although an Earth operator may receive a continuous stream of
data from the robot, the data is already 15 minutes old when received, and any instruction
sent will not be received by the robot for another 15 minutes. As Thomas Ormston [31] of
the European Space Agency put it, “there’s a lot that can happen in half an hour on Mars.”
It is important, for example, that the robot does not fall off a cliff. Though intermittent
goals may be provided from Earth, some autonomous control is needed for the robot to move
at a reasonable pace. We envision as part of the on-board control system13 of the robot
an epistemic planning component that uses information about the terrain and observable
surroundings to help form and select a plan to get to a specified goal. Included in rules used
to plan could be WVCs as follows:

wv← M likelihood_of_falling_off_a_cliff(high).
wv← M likelihood_of_falling_off_a_cliff(moderate).

These would prevent selecting a plan where the possibility of falling off a cliff is high/moderate.

5.3 Subsumption and Simplification
In the table below are subjective literal forms that can subsume others in a rule body.14

subsumer subsumed
M `

K ` not M `

not K `

M ` not K `

not M ` not K `

For example:
wv← K p, M p, not M ¬p, not K ¬p. ≡ wv← K p.

wv← M p, not K ¬p. ≡ wv← M p.
wv← not M p, not K p. ≡ wv← not M p.

With world view constraints, subsumption can also occur across multiple rules, perhaps most
easily seen using the WV fact form. Consider the following pair of WV facts:

K p. M p.

The subsumer-subsumed list above applies to pairs of non-disjunctive WV facts. Any world
view satisfying the first rule must satisfy the second; thus, the second rule can be removed.

Identifying tautologies can also help in program simplification. For example, WV fact

K p or not K p.

is worthless and can be removed. For a more complex example, consider the following rules:

M q or K p. M q or not K p.

With respect to any world view of a program containing this pair, either Kp or not Kp will
be satisfied (but not both), so these two rules can be reduced to the one rule: M q.

13Details of such a control system are beyond the scope of this paper and left to the reader’s imagination.
14The symbol ` in the table indicates the logical complement of (ground) objective literal `; e.g., if ` = ¬p

then ` = p. Logical subsumption follows from Definition 1 and the definition of a world view.

ICLP 2018

1:12 ELPs with WVCs

6 Algorithm for Computing World Views of an ELP with WVCs

The following is a generic algorithm for finding the world views of an ELP with WVCs:

Generic Algorithm
INPUT: Π (a ground ELP with WVCs)
1. partition Π into Πwvc (the WVCs of Π) and Π0 = Π \Πwvc

2. use your favorite ELP solver to find the world views of Π0
3. eliminate any world view of Π0 that violates a WVC of Πwvc

OUTPUT: remaining world views of Π0 not eliminated in Step 3

For those interested in implementing a solver, we now provide a more detailed algorithm.
Details of an algorithm to compute the world views of an ELP under ES2016 semantics are
given in [23]. We use a simplified version, modified to handle WVCs. Although we provided
a grounding strategy for WVCs in Section 4.4, for brevity, the input is assumed ground.

Notation: From a ground ELP with WVCs Π = Π0 ∪Πwvc, ASP program Π′
0 is created

as a modal reduct framework to aid in computing the world views of Π0. For each literal `

appearing in an epistemic negation of the form not K ` in EP (Π0), fresh atoms k_`, k0_`,
k1_` are created by prefixing ` with k_, k0_, and k1_ (respectively), and substituting 2
for ¬ if ` is a classically-/strongly-negated atom. Likewise, for ` appearing in an epistemic
negation of the form M ` in EP (Π0), fresh atoms m_`, m0_`, m1_` are created. These
fresh atoms are referred to as k-/m-atoms, or, allowing for negated forms, k-/m-literals. For
example, given an epistemic negation of the form not K `, if ` = p(a) then k_` denotes
k_p(a), but if `=¬p(a) then k_` denotes k_2p(a). Fresh atoms k_` (in negated form) and
m_` are used as substitutes for K ` and M `, respectively, in the ASP representation of the
modal reduct of Π with respect to a potential world view. The intended meaning of k1_` is
“K ` is true”; k0_` means “K ` is false”; m1_` means “M ` is true”; and m0_` means “M ` is
false”. Additionally, given a set W of sets of literals (including k-/m-literals), we use W\km to
denote W modulo k-/m-literals (i.e., the result of removing all k-/m-literals from sets in W).

The algorithm uses a “guess and check” method to compute the world views of Π0. Each
guess corresponds to a set of truth value assignments for the elements of EP (Π0). A systematic
approach is used, starting with the guess corresponding to the elements of EP (Π0) being all
true, working down by increasing the number of false elements by 1 at each successive level.
Each computed world view of Π0 is checked to ensure no WVC in Πwvc is violated before it
is considered a world view of Π. Any guess for which the epistemic negations assigned as true
are a subset of those for a guess associated with a previously computed Π0 world view will
be filtered out. The order of computation and subsequent filtering enforces the maximality
requirement of ES2016 semantics. (For ES2014, remove this filtering; also, computation
order w.r.t. guesses is irrelevant.)

The algorithm iterates through all relevant guesses, one-guess-at-a-time, requiring (in
general) computing answer sets of up to 2n ASP programs where n = |EP (Π0)|. This is
inefficient but relatively easy to understand. A more complex algorithm may involve including
multiple guesses in each ASP program (at the expense of the need for aggregating computed
answer sets) and parallelization. See [23] for a solver that uses this approach. Steps that
handle WVCs can be applied there, as well as to other approaches, such as the one in [36].

Since we start with a proven algorithm for computing world views of Π0, correctness
of the algorithm is clear from the definitions and semantics of an ELP with WVCs given
herein. We note that filtering out guesses that would violate WVCs during the computation
of world views (rather than filtering out world views as a post-processing step as proposed
here) could prune the search if EP (Π0) ∩ EP (Πwvc) 6= ∅, but would (in general) not be correct

P.T. Kahl and A. P. Leclerc 1:13

per ES2016 semantics. (That approach may be useful for an ES2014 solver.) If, however,
there are epistemic negations in Πwvc that are not in Π0, the search space of guesses is
pruned significantly from what it might be without WVCs, assuming those from
Πwvc would otherwise be included in other rules.

Finally, as the algorithm simply checks if world views of Π0 violate the WVCs in Πwvc, the
effective complexity of solving Π is the same as for solving an equivalent15 ELP Π2 (without
WVCs), assuming Π2 differs only in constraints, with |EP (Π)| ≤ |EP (Π2)| .

Algorithm 1. [Computing the World Views of an ELP with WVCs]

input: a ground ELP with WVCs Π output: the world views of Π

1. Program Partition: Partition Π into Πwvc (the WVCs of Π) and Π0 = Π \Πwvc.

2. Translation: Create ASP program16 Π′
0 from Π0 by:

leaving rules without subjective literals unchanged;
otherwise, replacing subjective literals and adding new rules per the following table:

subj. lit. ϕ replace ϕ with add rules

K ` not ¬k_`, ` ¬k_` ← k0_`.

not K ` ¬k_` ¬k_` ← k1_`, not `.

M ` m_` m_`← m1_`.

not M ` not m_` m_`← m0_`, not not `.

3. Guess & Check: Repeat (a)-(c) until all relevant guesses are generated and checked.
a. Generate Guess: For each iteration, generate a guess Φ, starting with Φ = EP (Π0)

for the first iteration and moving on in popcount order17 for further iterations, filtering
out any guess that is a subset of a guess associated with a previously found world view
of Π0. Create Π′′

0 by appending to Π′
0 the ASP representation of Φ (i.e., k-/m-atoms

as facts corresponding to the epistemic negations in Φ) as follows:

Π′′
0 = Π′

0 ∪ {k0_`. | not K ` ∈ Φ} ∪ {k1_`. | not K ` ∈ EP (Π0) ∧ not K ` 6∈ Φ}
∪ {m1_`. | M ` ∈ Φ} ∪ {m0_`. | M ` ∈ EP (Π0) ∧M ` 6∈ Φ}.

b. Compute Answer Sets: Use an ASP solver to compute the answer sets of Π′′
0 .

c. Check: If Π′′
0 is consistent, let W be the collection of answer sets computed in (b).

Verify the following conditions:
if k1_` is in the sets of W , then ` is in every set of W ;
if k0_` is in the sets of W , then ` is missing from at least one set of W ;
if m1_` is in the sets of W , then ` is in at least one set of W ; and
if m0_` is in the sets of W , then ` is missing from every set of W .

W\km is a world view of Π0 if the conditions are met. W\km is a world view of Π if
W\km is a world view of Π0 and W\km doesn’t violate any WVC in Πwvc.

15We note there may not be a straightforward equivalent program without WVCs under ES2016 semantics.
16with nested expressions of the form not not ` as defined in [30]
17 guess size (|Φ|) will be reduced by one after exhausting all guesses of the current size

ICLP 2018

1:14 ELPs with WVCs

7 Conclusions and Future Work

World view constraints provide a straightforward device for encoding restrictions on the
world views of an ELP, allowing the specification of high-level conditions that must not be
violated. They do not fix all semantics issues, but WVCs retain consistent meaning in all.

WVCs can also be a useful addition to languages extending Epistemic Specifications,
such as ASPGM [45]. Subjective literals in ASPGM have the form M[lb:ub] ` where lb, ub ∈ N,
lb ≤ ub, and ` is a literal. For M[lb:ub] ` to be satisfied by a world view, the number of belief
sets containing ` must be in the closed range [lb, ub]. To indicate no upper bound, ub can be
omitted. The definitions in Section 4.3.1 can be used to extend ASPGM with WVCs; however,
support for negated subjective literals needs to be added for the later definitions to apply.

For future work, we would like to incorporate the notion of weak WVCs into Epistemic
Specifications in a manner analogous to weak constraints [9] in ASP, but at the world view
level. In principle, these would function like normal WVCs unless the program is inconsistent,
where they would be systematically relaxed (perhaps in order by given weight/level) until
consistency or exhaustion. Ergo, we introduce symbol wv

¢ and suggest the following syntax:
wv
¢ s1, ..., sn. [w@l]

where n > 0, each si is a (possibly negated) subjective literal, and both w and l are non-
negative integers representing weight and level values, respectively. Returning to the Martian
robot example of Section 5.2, it may be more appropriate for planning to use the following:

wv← M likelihood_of_falling_off_a_cliff(high).
wv
¢ M likelihood_of_falling_off_a_cliff(moderate). [1@0]

These rules express a preference for plans where likelihood of falling off a cliff is neither high
nor moderate, but if none exist, moderate likelihood is accepted by relaxing the weak WVC.

References
1 Evgenii Balai. ELPS, 2015. Texas Tech. URL: https://github.com/iensen/elps/wiki/.
2 Evgenii Balai and Patrick Kahl. Epistemic Logic Programs with Sorts. In Daniela Inclezan

and Marco Maratea, editors, Proc. 7th Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP 2014), 2014. URL: https://sites.google.com/site/
aspocp2014/paper_4.pdf.

3 Marcello Balduccini. sismodels, 2001. See http://www.mbal.tk/ for more information.
4 Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.

Cambridge University Press, New York, NY, USA, 2003.
5 Chitta Baral and Michael Gelfond. Logic Programming and Knowledge Representation. J.

Log. Program., 19/20:73–148, 1994. doi:10.1016/0743-1066(94)90025-6.
6 Manuel Bichler, Michael Morak, and Stefan Woltran. selp, 2018. URL: http://dbai.

tuwien.ac.at/proj/selp/.
7 Manuel Bichler, Michael Morak, and Stefan Woltran. Single-Shot Epistemic Logic Program

Solving. In Jérôme Lang, editor, Proc. 27th Intl. Joint Conf. on AI (IJCAI 2018) [to
appear], 2018. URL: http://dbai.tuwien.ac.at/proj/selp/ijcai2018.pdf.

8 Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set programming at
a glance. Commun. ACM, 54(12):92–103, 2011. doi:10.1145/2043174.2043195.

9 Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong and Weak Constraints
in Disjunctive Datalog. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proc.
4th Intl. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), volume
1265 of LNCS, pages 2–17. Springer, 1997. doi:10.1007/3-540-63255-7_2.

https://github.com/iensen/elps/wiki/
https://sites.google.com/site/aspocp2014/paper_4.pdf
https://sites.google.com/site/aspocp2014/paper_4.pdf
http://www.mbal.tk/
http://dx.doi.org/10.1016/0743-1066(94)90025-6
http://dbai.tuwien.ac.at/proj/selp/
http://dbai.tuwien.ac.at/proj/selp/
http://dbai.tuwien.ac.at/proj/selp/ijcai2018.pdf
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1007/3-540-63255-7_2

P.T. Kahl and A. P. Leclerc 1:15

10 Jianhua Chen. The Generalized Logic of only Knowing (GOL) that Covers the Notion of Epi-
stemic Specifications. J. Log. Comput., 7(2):159–174, 1997. doi:10.1093/logcom/7.2.
159.

11 Rongcun Cui, Zhizheng Zhang, and Kaikai Zhao. ESParser: An epistemic specification
grounder. In James P. Delgrande and Wolfgang Faber, editors, Proc. 1st Intl. Conf. on
Computer Science and Service System (CSSS 2012), pages 1823–1827. IEEE Computer
Society CPS, 2012. doi:10.1109/CSSS.2012.454.

12 Luis Fariñas del Cerro, Andreas Herzig, and Ezgi Iraz Su. Epistemic Equilibrium Logic. In
Qiang Yang and Michael Wooldridge, editors, Proc. 24th Intl. Joint Conf. on AI (IJCAI
2015), pages 2964–2970. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/419.

13 Wolfgang Faber and Stefan Woltran. Manifold Answer-Set Programs and Their Applica-
tions. In Marcello Balduccini and Tran Cao Son, editors, Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday, volume 6565 of LNCS, pages 44–63. Springer, 2011.
doi:10.1007/978-3-642-20832-4_4.

14 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Synthesis Lectures on AI and ML. Morgan and Claypool, 2012.

15 Michael Gelfond. Strong Introspection. In Thomas L. Dean and Kathleen McKeown,
editors, Proc. 9th National Conf. on Artificial Intelligence (AAAI-91), pages 386–391.
AAAI/MIT Press, 1991. URL: http://www.aaai.org/Papers/AAAI/1991/AAAI91-060.
pdf.

16 Michael Gelfond. Logic Programming and Reasoning with Incomplete Information. Ann.
Math. Artif. Intell., 12(1-2):89–116, 1994. doi:10.1007/BF01530762.

17 Michael Gelfond. New Semantics for Epistemic Specifications. In James P. Delgrande and
Wolfgang Faber, editors, Proc. 11th Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2011), volume 6645 of LNCS, pages 260–265. Springer, 2011. doi:
10.1007/978-3-642-20895-9_29.

18 Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press,
2014. doi:10.1017/CBO9781139342124.

19 Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Program-
ming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Proc. 5th Intl. Conf. and
Symposium on Logic Programming (ICLP/SLP 1988), pages 1070–1080. MIT Press, 1988.

20 Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Disjunct-
ive Databases. New Generation Comput., 9(3/4):365–386, 1991. doi:10.1007/BF03037169.

21 Patrick Kahl, Richard Watson, Evgenii Balai, Michael Gelfond, and Yuanlin Zhang. The
Language of Epistemic Specifications (Refined) Including a Prototype Solver. Journal of
Logic and Computation, 2015. doi:10.1093/logcom/exv065.

22 Patrick Thor Kahl. Refining the Semantics for Epistemic Logic Programs. PhD thesis,
Texas Tech, Lubbock, TX, USA, May 2014. URL: http://hdl.handle.net/2346/58710.

23 Patrick Thor Kahl, Anthony P. Leclerc, and Tran Cao Son. A Parallel Memory-efficient
Epistemic Logic Program Solver: Harder, Better, Faster. In Bart Bogaerts and Amelia
Harrison, editors, Proc. 9th Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP 2016), 2016. URL: https://arxiv.org/abs/1608.06910.

24 Michael Kelly. Wviews: A World View Solver for Epistemic Logic Programs. Honours
thesis, University of Western Sydney, October 2007.

25 Michael Kelly. Wviews, 2018. URL: https://github.com/galactose/wviews.
26 Tiep Le and Tran Cao Son. EP-ASP, 2017. NMSU. URL: https://github.com/tiep/

EP-ASP.

ICLP 2018

http://dx.doi.org/10.1093/logcom/7.2.159
http://dx.doi.org/10.1093/logcom/7.2.159
http://dx.doi.org/10.1109/CSSS.2012.454
http://ijcai.org/Abstract/15/419
http://dx.doi.org/10.1007/978-3-642-20832-4_4
http://www.aaai.org/Papers/AAAI/1991/AAAI91-060.pdf
http://www.aaai.org/Papers/AAAI/1991/AAAI91-060.pdf
http://dx.doi.org/10.1007/BF01530762
http://dx.doi.org/10.1007/978-3-642-20895-9_29
http://dx.doi.org/10.1007/978-3-642-20895-9_29
http://dx.doi.org/10.1017/CBO9781139342124
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1093/logcom/exv065
http://hdl.handle.net/2346/58710
https://arxiv.org/abs/1608.06910
https://github.com/galactose/wviews
https://github.com/tiep/EP-ASP
https://github.com/tiep/EP-ASP

1:16 ELPs with WVCs

27 Anthony P. Leclerc and Patrick Thor Kahl. A Survey of Advances in Epistemic Logic
Program Solvers. In Jorge Fandinno and Johannes K. Fichte, editors, Proc. 11th Workshop
on Answer Set Programming and Other Computing Paradigms (ASPOCP 2018) [to appear],
2018.

28 Hector J. Levesque. All I Know: A Study in Autoepistemic Logic. Artif. Intell., 42(2-
3):263–309, 1990. doi:10.1016/0004-3702(90)90056-6.

29 Vladimir Lifschitz. What Is Answer Set Programming? In Dieter Fox and Carla P. Gomes,
editors, Proc. 23rd AAAI Conf. on Artificial Intelligence (AAAI 2008), pages 1594–1597,
2008.

30 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested Expressions in Logic Pro-
grams. Ann. Math. Artif. Intell., 25(3-4):369–389, 1999. doi:10.1023/A:1018978005636.

31 Thomas Ormston. Time delay between Mars and Earth. In: ESA’sMars Express blog. URL:
http://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/.

32 David Pearce. A New Logical Characterisation of Stable Models and Answer Sets. In Jür-
gen Dix, Luís Moniz Pereira, and Teodor C. Przymusinski, editors, Proc. Non-Monotonic
Extensions of Logic Programming (NMELP 1996), volume 1216 of LNCS, pages 57–70.
Springer, 1996. doi:10.1007/BFb0023801.

33 Mircea Preda. Modeling Epistemic Knowledge in Logic Programs with Negation as Fail-
ure. In Dimitris Dranidis and Illias Sakellariou, editors, Proc. 3rd South-East European
Workshop on Formal Methods (SEEFM’07). SEERC, 2007.

34 SEU. ESmodels, 2015. URL: http://cse.seu.edu.cn/people/seu_zzz/indexe.htm.
35 Yi-Dong Shen and Thomas Eiter. Evaluating epistemic negation in answer set programming.

Artif. Intell., 237:115–135, 2016. doi:10.1016/j.artint.2016.04.004.
36 Tran Cao Son, Tiep Le, Patrick Kahl, and Anthony Leclerc. On Computing World Views

of Epistemic Logic Programs. In Carles Sierra, editor, Proc. 26th Intl. Joint Conf. on AI
(IJCAI 2017), pages 1269–1275, 2017. doi:10.24963/ijcai.2017/176.

37 Anton Strasser. EHEX, 2018. TU Wien. URL: https://github.com/hexhex/ehex.
38 Tommi Syrjänen and Ilkka Niemelä. The Smodels System. In Thomas Eiter, Wolfgang

Faber, and Miroslaw Truszczyński, editors, Proc. 6th Intl. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2001), volume 2173 of LNCS, pages 434–438. Springer,
2001. doi:10.1007/3-540-45402-0_38.

39 Miroslaw Truszczyński. Revisiting Epistemic Specifications. In Marcello Balduccini and
Tran Cao Son, editors, Logic Programming, Knowledge Representation, and Nonmonotonic
Reasoning - Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday,
volume 6565 of LNCS, pages 315–333. Springer, 2011. doi:10.1007/978-3-642-20832-4_
20.

40 UWS. Wviews, 2007. URL: http://staff.scem.uws.edu.au/~yan/Wviews.html.
41 Kewen Wang and Yan Zhang. Nested Epistemic Logic Programs. In Chitta Baral, Gian-

luigi Greco, Nicola Leone, and Giorgio Terracina, editors, Proc. 8th Intl. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2005), volume 3662 of LNCS, pages
279–290. Springer, 2005. doi:10.1007/11546207_22.

42 Richard Glenn Watson. An Inference Engine for Epistemic Specifications. Master’s thesis,
UTEP, El Paso, TX, USA, May 1994.

43 Yan Zhang. Computational Properties of Epistemic Logic Programs. In Patrick Doherty,
John Mylopoulos, and Christopher A. Welty, editors, Proc. 10th Intl. Conf. on Principles
of Knowledge Representation and Reasoning, pages 308–317. AAAI Press, 2006.

44 Yan Zhang and Yuanlin Zhang. Epistemic Specifications and Conformant Planning. In Ro-
man Barták, Thomas Leo McCluskey, and Enrico Pontelli, editors, Proc. 2017 Workshop on
Knowledge-based Techniques for Problem Solving and Reasoning (KnowProS 2017), 2017.

http://dx.doi.org/10.1016/0004-3702(90)90056-6
http://dx.doi.org/10.1023/A:1018978005636
http://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/
http://dx.doi.org/10.1007/BFb0023801
http://cse.seu.edu.cn/people/seu_zzz/indexe.htm
http://dx.doi.org/10.1016/j.artint.2016.04.004
http://dx.doi.org/10.24963/ijcai.2017/176
https://github.com/hexhex/ehex
http://dx.doi.org/10.1007/3-540-45402-0_38
http://dx.doi.org/10.1007/978-3-642-20832-4_20
http://dx.doi.org/10.1007/978-3-642-20832-4_20
http://staff.scem.uws.edu.au/~yan/Wviews.html
http://dx.doi.org/10.1007/11546207_22

P.T. Kahl and A. P. Leclerc 1:17

45 Zhizheng Zhang. Answer Set Programming with Graded Modality. In Marcello Balduccini
and Tomi Janhunen, editors, Proc. 14th Intl. Conf. on Logic Programming and Nonmono-
tonic Reasoning (LPNMR 2017), volume 10377 of LNCS, pages 205–211. Springer, 2017.
doi:10.1007/978-3-319-61660-5_18.

46 Zhizheng Zhang, Kaikai Zhao, and Rongcun Cui. ESmodels: An inference engine of epi-
stemic specifications. In Proc. 25th Intl. Conf. on Tools with Artificial Intelligence (ICTAI
2013), pages 769–774. IEEE Computer Society, 2013. doi:10.1109/ICTAI.2013.118.

ICLP 2018

http://dx.doi.org/10.1007/978-3-319-61660-5_18
http://dx.doi.org/10.1109/ICTAI.2013.118

Cumulative Scoring-Based Induction of Default
Theories
Farhad Shakerin
The University of Texas at Dallas, Texas, USA
fxs130430@utdallas.edu

https://orcid.org/0000-0002-1825-0097

Gopal Gupta
The University of Texas at Dallas, Texas, USA
gupta@utdallas.edu

Abstract
Significant research has been conducted in recent years to extend Inductive Logic Programming
(ILP) methods to induce a more expressive class of logic programs such as answer set programs.
The methods proposed perform an exhaustive search for the correct hypothesis. Thus, they
are sound but not scalable to real-life datasets. Lack of scalability and inability to deal with
noisy data in real-life datasets restricts their applicability. In contrast, top-down ILP algorithms
such as FOIL, can easily guide the search using heuristics and tolerate noise. They also scale
up very well, due to the greedy nature of search for best hypothesis. However, in some cases
despite having ample positive and negative examples, heuristics fail to direct the search in the
correct direction. In this paper, we introduce the FOLD 2.0 algorithm – an enhanced version
of our recently developed algorithm called FOLD. Our original FOLD algorithm automates the
inductive learning of default theories. The enhancements presented here preserve the greedy
nature of hypothesis search during clause specialization. These enhancements also avoid being
stuck in local optima – a major pitfall of FOIL-like algorithms. Experiments that we report
in this paper, suggest a significant improvement in terms of accuracy and expressiveness of the
class of induced hypotheses. To the best of our knowledge, our FOLD 2.0 algorithm is the first
heuristic based, scalable, and noise-resilient ILP system to induce answer set programs.

2012 ACM Subject Classification Computing methodologies → Inductive logic learning

Keywords and phrases Inductive Logic Programming, Negation As Failure, Answer Set Pro-
gramming, Default reasoning, Machine learning

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.2

Funding Authors are partially supported by NSF Grant IIS 171894

1 Introduction

Statistical machine learning methods produce models that are not comprehensible for humans
because they are algebraic solutions to optimization problems such as risk minimization or
data likelihood maximization. These methods do not produce any intuitive description of
the learned model. Lack of intuitive descriptions makes it hard for users to understand and
verify the underlying rules that govern the model. Also, these methods cannot produce a
justification for a prediction they compute for a new data sample. Additionally, extending
prior knowledge (background knowledge) in these methods, requires the entire model to
be relearned by adding new features to its feature vector. A feature vector is essentially
propositional representation of data in statistical machine learning. In case of missing features,
statistical methods such as Expectation Maximization (EM) algorithm are applied to fill the

© Farhad Shakerin and Gopal Gupta;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 2; pp. 2:1–2:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fxs130430@utdallas.edu
https://orcid.org/0000-0002-1825-0097
mailto:gupta@utdallas.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 Cumulative Scoring-Based Induction of Default Theories

absent feature(s) with an average estimate that would maximize the likelihood of present
features. This is fundamentally different from the human thought process that relies on
common-sense reasoning. Humans generally do not directly perform probabilistic reasoning
in the absence of information. Instead, most of the time human reasoning relies on learning
default rules and exceptions.

Default Logic [15] is a non-monotonic logic to formalize reasoning with default assumptions.
Normal logic programs provide a simple and practical formalism for expressing default rules.
A default rule of the form α1∧...∧αm:¬βm+1,...,¬βn

γ can be formalized as the following normal
logic program:

γ ← α1, ..., αm, not βm+1, ..., not βn

where γ, αs and βs are positive predicates.
Inductive Logic Programming (ILP) [9] is a sub-field of machine learning that mines data

presented in the form of Horn clauses to learn hypotheses also as Horn clauses. However,
Horn clause ILP is not expressive enough to induce default theories. Therefore, in order to
learn default theories, an algorithm should be able to efficiently deal with negation-as-failure
and normal logic programs [16].

Many researchers have tried to extend Horn ILP into richer non-monotonic logic formal-
isms. A survey of extending Horn clause based ILP to non-monotonic logics can be found
in the work by Sakama [16]. He also proposes algorithms to learn from the answer set of
a categorical normal logic program. He extends his algorithms in a framework called brave
induction [17]. Law et. al. realized that this framework is not expressive enough to induce
programs that solve practical problems such as combinatorial problems and proposed the
ILASP system [4]. ASPAL [1] system is also an effort in this direction. Both ILASP and
ASPAL encode the ILP instance as an ASP program and then they use an ASP solver to
perform the exhaustive search of the correct hypothesis. This approach suffers from lack of
scalability due to this exhaustive search. More discussion of advantages of our work presented
in this paper vis a vis these earlier efforts is reported in Section 6.

The previous ILP systems are characterized as either bottom-up or top-down depending
on the direction they guide the search. A bottom-up ILP system, such as Progol [10], builds
most-specific clauses from the training examples. It is best suited for incremental learning
from a few examples. In contrast, a top-down approach, such as the well-known FOIL
algorithm [13], starts with the most-general clauses and then specializes them. It is better
suited for large-scale datasets with noise, since the search is guided by heuristics [23].

In [20] we introduced an algorithm called FOLD that learns default theories in the form
of stratified normal logic programs1. The default theories induced by FOLD, as well as the
background knowledge used, is assumed to follow the stable model semantics [3]. FOLD
extends the FOIL algorithm. FOLD can tolerate noise but it is not sound (i.e., there is
no guarantee that the heuristic would always direct the search in the right direction). The
information gain heuristic used in FOLD (that has been inherited from FOIL), has been
extensively compared to other search heuristics in decision-tree induction [7]. There seems to
be a general consensus that it is hard to improve the heuristic such that it would always select
the correct literal to expand the current clause in specialization. The blame rests mainly on
getting stuck in local optima, i.e, choosing a literal producing maximum information gain at
a particular step that does not lead to a global optimum.

1 Note that FOLD has been recently extended by us to learn arbitrary answer set programs, i.e., non-
stratified ones too [19]; discussion of this extension is beyond the scope of this paper.

F. Shakerin and G. Gupta 2:3

Similarly, in multi-relational datasets, a common case is that of a literal that has zero
information gain but needs to be included in the learned theory. Heuristics-based algorithms
will reject such a literal. Quinlan in [12] introduces determinate literals and suggests to add
them all at once to the current clause to create a potential path towards a correct hypothesis.
FOIL then requires a post pruning phase to remove the unnecessary literals. This approach
cannot trivially be extended to the case of default theories where determinate literals may
appear in composite abnormality predicates and FOIL’s language bias simply does not allow
negated composite literals.

In this paper we present an algorithm called FOLD 2.0 which avoids being trapped in
local optima and adds determinate literals while inducing default theories. We make the
following novel contributions:

We propose a new “cumulative” scoring function which replaces the original scoring
function (called information gain). Our experiments show a significant improvement in
terms of our algorithm’s accuracy.
We also extend FOLD with determinate literals. This extension enables FOLD to learn a
broader class of hypotheses that, to the best of our knowledge, no other ILP system is
able to induce. Finally, we apply our algorithm in variety of different domains including
kinship and legal as well as UCI benchmark datasets to show how FOLD 2.0, significantly
improves our algorithm’s predictive power.

Rest of the paper is organized as follows: Section 2 presents background material. Section
3 introduces the FOLD algorithm. Section 4 presents the “cumulative” scoring function and
determinate literals in FOLD 2.0. Section 5 presents our experiments and results. Section
6 discusses related research and Section 7 presents conclusions along with future research
directions.

2 Background

Our original learning algorithm for inducing answer set programs, called FOLD (First Order
Learning of Default rules) [20], is itself an extension of the well known FOIL algorithm.
FOIL is a top-down ILP algorithm which follows a sequential covering approach to induce a
hypothesis. The FOIL algorithm is summarized in Algorithm 1. This algorithm repeatedly
searches for clauses that score best with respect to a subset of positive and negative examples,
a current hypothesis and a heuristic called information gain (IG). The FOIL algorithm learns
a target predicate that has to be specified. Essentially, the target predicate appears as the
head of the learned goal clause that FOIL aims to learn. A typical stopping criterion for the
outer loop is determined as the coverage of all positive examples. Similarly, it can be specified
as exclusion of all negative examples in the inner loop. The function covers(ĉ, E+, B) returns
a set of examples in E+ implied by the hypothesis ĉ ∪B.

The inner loop searches for a clause with the highest information gain using a general-to-
specific hill-climbing search. To specialize a given clause c, a refinement operator ρ under
θ-subsumption [11] is employed. The most general clause is {p(X1, ..., Xn) :- true.},
where the predicate p/n is the target and each Xi is a variable. The refinement operator
specializes the current clause {h :- b1,...,bn.}. This is realized by adding a new literal l
to the clause, which yields the following: {h :- b1,...,bn,l}. The heuristic based search
uses information gain. In FOIL, information gain for a given clause is calculated as follows [8]:

IG(L,R) = t

(
log2

p1

p1 + n1
− log2

p0

p0 + n0

)
(1)

ICLP 2018

2:4 Cumulative Scoring-Based Induction of Default Theories

Algorithm 1 Overview of the FOIL algorithm.
Input: goal, B,E+, E−

Output: Hypothesis H
1: Initialize H ← ∅
2: while not(stopping criterion) do
3: c← {goal :- true.}
4: while not(stopping criterion) do
5: for all c′ ∈ ρ(c) do
6: compute score(E+, E−, H ∪ {c′}, B)
7: end for
8: let ĉ be the c′ ∈ ρ(c) with the best score
9: c← ĉ

10: end while
11: add ĉ to H
12: E+ ← E+ \ covers(ĉ, E+, B)
13: end while

where L is the candidate literal to add to rule R, p0 is the number of positive bindings of R,
n0 is the number of negative bindings of R, p1 is the number of positive bindings of R+ L,
n1 is the number of negative bindings of R + L, t is the number of positive bindings of R
also covered by R+ L.

FOIL handles negated literals in a naive way by adding the literal not L to the set of
specialization candidate literals for any existing candidate L. This approach leads to learning
predicates that do not capture the concept accurately as shown in the following example:

I Example 1. B,E+ are background knowledge and positive examples respectively under
Closed World Assumption, and the target predicate is fly.

B : bird(X) :- penguin(X). bird(tweety). bird(et).
cat(kitty). penguin(polly).

E+ : fly(tweety). fly(et).

The FOIL algorithm would learn the following rule:

fly(X) :- not cat(X), not penguin(X).

which does not yield a constructive definition. The best theory in this example is as follows:

fly(X):- bird(X), not penguin(X).

which FOIL fails to discover.

3 FOLD Algorithm

The intuition behind FOLD algorithm is to learn a concept in terms of a default and possibly
multiple exceptions (and exceptions to exceptions, and so on). Thus, in the bird example
given above, we would like to learn the rule that X flies if it is a bird and not a penguin, rather
than that all non-cats and non-penguins can fly. FOLD tries first to learn the default by
specializing a general rule of the form {goal(V1, ..., Vn) :- true.} with positive literals. As
in FOIL, each specialization must rule out some already covered negative examples without

F. Shakerin and G. Gupta 2:5

significantly decreasing the number of positive examples covered. Unlike FOIL, no negative
literal is used at this stage. Once the IG becomes zero, this process stops. At this point,
if any negative example is still covered, they must be either noisy data or exceptions to
the current hypothesis. Exceptions are separated from noise via distinguishable patterns in
negative examples [21]. In other words, exceptions can be learned by swapping of positive
and negative examples and calling the same algorithm recursively. This swapping of positive
and negative examples and then recursively calling the algorithm again can continue, so
that we can learn exceptions to exceptions, and so on. Each time a rule is discovered for
exceptions, a new predicate ab(V1, ..., Vn) is introduced. To avoid name collisions, FOLD
appends a unique number at the end of the string “ab” to guarantee the uniqueness of
invented predicates. It turns out that the outlier data samples are covered neither as default
nor as exceptions. If outliers are present, FOLD identifies and enumerates them to make
sure that the algorithm converges. This ability to separate exceptions from noise allows
FOLD (and FOLD 2.0, introduced later) pinpoint noise more accurately. This is in contrast
to FOIL, where exceptions and noisy data are clubbed together. Details can be found in [20].

Algorithm 2 shows a high level implementation of the FOLD algorithm. In lines 1-8,
function FOLD, serves like the FOIL outer loop. In line 3, FOLD starts with the most
general clause (e.g. fly(X) :- true). In line 4, this clause is refined by calling the function
SPECIALIZE. In lines 5-6, set of positive examples and set of discovered clauses are
updated to reflect the newly discovered clause.

In lines 9-29, the function SPECIALIZE is shown. It serves like the FOIL inner loop. In
line 12, by calling the function ADD_BEST_LITERAL the “best” positive literal is chosen
and the best IG as well as the corresponding clause is returned. In lines 13-24, depending on
the IG value, either the positive literal is accepted or the EXCEPTION function is called. If,
at the very first iteration, IG becomes zero, then a clause that just enumerates the positive
examples is produced. A flag called first_iteration is used to differentiate the first iteration.
In lines 26-27, the sets of positive and negative examples are updated to reflect the changes
of the current clause. In line 19, the EXCEPTION function is called while swapping E+

and E−.
In line 31, the “best” positive literal that covers more positive examples and fewer

negative examples is selected. Again, note the current positive examples are really the
negative examples and in the EXCEPTION function, we try to find the rule(s) governing the
exception. In line 33, FOLD is recursively called to extract this rule(s). In line 34, a new ab
predicate is introduced and at lines 35-36 it is associated with the body of the rule(s) found
by the recurring FOLD function call at line 33. Finally, at line 38, default and exception are
combined together to form a single clause.

Now, we illustrate how FOLD discovers the above set of clauses given E+ = {tweety, et}
and E− = {polly, kitty} and the goal fly(X). By calling FOLD, at line 2 while loop, the
clause {fly(X) :- true.} is specialized. Inside the SPECIALIZE function, at line 12,
the literal bird(X) is selected to add to the current clause, to get the clause ĉ = fly(X)
:- bird(X), which happens to have the greatest IG among {bird,penguin,cat}. Then,
at lines 26-27 the following updates are performed: E+ = {}, E− = {polly}. A negative
example polly, a penguin is still covered. In the next iteration, SPECIALIZE fails to
introduce a positive literal to rule it out since the best IG in this case is zero. Therefore,
the EXCEPTION function is called by swapping the E+, E−. Now, FOLD is recursively
called to learn a rule for E+ = {polly}, E− = {}. The recursive call (line 33), returns
{fly(X) :- penguin(X)} as the exception. In line 34, a new predicate ab0 is introduced
and at lines 35-37 the clause {ab0(X) :- penguin(X)} is created and added to the set of

ICLP 2018

2:6 Cumulative Scoring-Based Induction of Default Theories

Algorithm 2 FOLD Algorithm
Input: target, B,E+, E−

Output: D = {c1, ..., cn} . defaults’ clauses
AB = {ab1, ..., abm} . exceptions/abnormal clauses

1: function FOLD(E+, E−)
2: while (|E+| > 0) do
3: c← (target :- true.)
4: ĉ← specialize(c,E+,E−)
5: E+ ← E+ \ covers(ĉ, E+, B)
6: D ← D ∪ {ĉ}
7: end while
8: end function
9: function SPECIALIZE(c, E+, E−)

10: while |E−| > 0 ∧ c.length < max_rule_length do
11: (cdef , ˆIG)← add_best_literal(c,E+,E−)
12: if ˆIG > 0 then
13: ĉ← cdef
14: else
15: ĉ← exception(c, E−, E+)
16: if ĉ == null then
17: ĉ← enumerate(c, E+)
18: end if
19: end if
20: E+ ← E+ \ covers(ĉ, E+, B)
21: E− ← covers(ĉ, E−, B)
22: end while
23: end function
24: function EXCEPTION(cdef , E+, E−)
25: ˆIG← add_best_literal(c, E+, E−)
26: if ˆIG > 0 then
27: c_set← FOLD(E+, E−)
28: c_ab← generate_next_ab_predicate()
29: for each c ∈ c_set do
30: AB ← AB ∪ {c_ab:- bodyof(c)}
31: end for
32: ĉ← (headof(cdef):- bodyof(c),not(c_ab))
33: else
34: ĉ← null

35: end if
36: end function

invented abnormalities, namely, AB. In line 38, the negated exception (i.e not ab0(X)) and
the default rule’s body (i.e bird(X)) are compiled together to form the following theory:

fly(X) :- bird(X), not ab0(X).
ab0(X) :- penguin(X).

More detailed examples can be found in [20].

F. Shakerin and G. Gupta 2:7

Table 1 FOLD Execution to Discover Rule (1).

Literal / Clause uncle(V1,V2) :- true uncle(V1,V2) :- male(V1)
parent(V1,V3) 1.44 1.01
parent(V2,V3) 1.06 1.16
parent(V3,V1) 1.44 1.01
sibling(V1,V3) 2.27 1.01
sibling(V3,V1) 2.27 1.01
male(V1) 3.18 -
female(V2) 0.34 0.50
married(V1,V3) 0.69 0
married(V2,V3) 0.34 0.50
married(V3,V1) 0.69 0
married(V3,V2) 0.34 0.5

4 The FOLD 2.0 Algorithm

4.1 Cumulative Scoring Function
The kinship domain is one of the initial successful applications of the FOIL algorithm [13],
where the algorithm learns general rules governing social interactions and relations (particu-
larly kinship) from a series of examples. For example, it can learn the “Uncle” relationship,
given the background knowledge of “Brother”, “Sister”, “Father”, “Mother”, “Husband”,
“Wife” and some positive and negative examples of the concept. However, if the background
knowledge only contains the primitive relationships including “Sibling”, “Parent”, “Married”
and gender descriptors, it fails to discover the correct rule for “Uncle”. As an experiment,
we used an arbitrarily produced kinship dataset only containing the primitive relationships.
The FOIL algorithm produced the following rules:

Rule (1) uncle(A,B) :- male(A), parent(A,_), female(B).
Rule (2) uncle(A,_) :- male(A), parent(A,B), female(B), sibling(B,_).

Similarly, the FOLD algorithm found incorrect rules as follows:

Rule (1) uncle(V1,V2) :- male(V1), parent(V2,V3).
Rule (2) uncle(V1,V2) :- male(V1), parent(V2,V3), female(V2).

Table 1 shows the information gain for each candidate literal while discovering Rule (1).
At first iteration, the algorithm successfully finds the literal male(V1), because it has the
maximum gain (IG = 3.18). At second iteration, the literal parent(V2,V3) has the highest
gain (IG = 1.16) and hence is selected. At this point, since the rule does not cover any
negative example, the algorithm returns. This example characterizes a case in which the
highest score does not correspond to the correct literal. The correct literal at second iteration
is sibling(V1,V3), whose information gain is 1.01 and it is less than the maximum.

We observed that neither increasing the number of examples nor changing the scoring
function would solve this problem. As an experiment, we replaced the information gain with
other scoring functions reported in the literature including Matthews Correlation Coefficient
(MCC), Fβ-measure [23] and the FOSSIL [2] scoring measure based on statistical correlation.
They all suffer from the same problem.

ICLP 2018

2:8 Cumulative Scoring-Based Induction of Default Theories

A key observation is the following: as more literals are introduced, the number of positive
and negative examples covered by the current clause shrinks. With fewer examples, the
accuracy of heuristic decreases too. In Table 1, sibling(V1,V3) should have had the
highest score at second iteration. At first iteration, sibling(V1,V3) ranks second after
male(V1). A simple comparison between the score of sibling(V1,V3) and parent(V2,V3)
shows the former provides better coverage (exclusion) of positive (negative) examples than
the latter. But the algorithm is oblivious of this information at the beginning of second
iteration as it goes only by magnitude of the scoring function for the current iteration. This
score becomes less and less accurate as more literals are introduced and fewer examples
remain to cover. If the algorithm could remember that at first iteration, sibling(V1,V3)
was able to cover/exclude the examples much better than parent(V2,V3), it would prefer
sibling(V1,V3) over parent(V2,V3).

To concretize this, we propose the idea of keeping a cumulative score, i.e., to transfer
a portion of past score (if one exists) to the value that the scoring function computes for
current iteration. Our experiments suggest that there is not a universal optimal value that
would always result in highest accuracy. In other words, the optimal value varies from a
dataset to another. Thus, in order to implement the “cumulative score”, we introduce a new
hyperparameter2, namely, α, whose value is decided via cross-validation of the dataset being
used. In order to compute the score of each literal during the search, the information gain is
replaced with “cumulative gain”.

Formally, let Ri denote the induced rule up until iteration i+ 1 of FOLD’s inner loop
execution. Thus, R0 is the rule {goal :- true.}. Also, let scorei(Ri−1, L) denote the score
of literal L in clause Ri−1 at iteration i of FOLD’s inner loop execution. The “cumulative”
score at iteration i+ 1 for literal l is computed as follows:

scorei+1(Ri, L) = IG(Ri, L) + α× scorei(Ri−1, L)

If scorei(Ri−1, L) does not exist, it is considered as zero. Also, if IG(Ri, L) = 0, the “cumulat-
ive” score from the past is not taken into account. Initially, the cumulative score is considered
zero for all candidate literals. Table 2 shows the FOLD 2.0 algorithm’s execution to learn
“uncle” predicate on the same dataset. With choice of α = 0.2, the algorithm is able to dis-
cover the following rule: uncle(V1,V2) :- male(V1), sibling(V1,V3), parent(V3,V2).
It should also be noted that only promising literals are shown in Table 1 and 2. Next, we
discuss how our FOLD 2.0 algorithm handles zero information-gain literals.

4.2 Extending FOLD with Determinate Literals
A literal in the body of a clause can serve two purposes: (i) it may contribute directly to
the inclusion/exclusion of positive/negative examples respectively; or, (ii) it may contribute
indirectly by introducing new variables that are used in the subsequent literals. This type of
literal may or may not yield a positive score. Therefore, it is quite likely that our hill-climbing
algorithm would miss them. Two main approaches have been used to take this issue into
account: determinate literals [12] and lookahead technique [6]. The latter technique is not of
interest to us because it does not preserve the greedy nature of search.

Determinate literals are of the form r(X,Y), where r/2 is a new literal introduced in the
hypothesis’ body and Y is a new variable. The literal r/2 is determinate if, for every value

2 In Machine Learning, a hyperparameter is a parameter whose value is set before the learning process
begins.

F. Shakerin and G. Gupta 2:9

Table 2 FOLD 2.0 Execution with Cumulative Score.

Literal / Clause uncle(V1,V2). uncle(V1,V2):- male(V1) uncle(V1,V2):-male(V1), sibling(V1,V3)
parent(V1,V3) 1.44 1.30 0
parent(V2,V3) 1.06 1.38 0
parent(V3,V2) 0 0 2.49
parent(V3,V1) 1.44 1.30 0
parent(V2,V4) - - 0.83
sibling(V1,V3) 2.27 1.47 -
sibling(V3,V1) 2.27 1.47 1.15
male(V1) 3.18 - -
female(V2) 0.34 0.57 0
female(V3) - - 1.15
married(V1,V3) 0.69 0 0
married(V2,V3) 0.34 0.57 0
married(V3,V1) 0.69 0 0
married(V3,V2) 0.34 0.57 0
married(V2,V4) - - 1.24
married(V4,V2) - - 1.24

of X, there is at most one value for Y, when the hypothesis’ head is unified with positive
examples. Determinate literals are not contributing directly to the learning process, but they
are needed as they influence the literals chosen in the future. Since their inclusion in the
hypothesis is computationally inexpensive, the FOIL algorithm adds them to the hypothesis
simultaneously. In Section 2 we showed why the naive handling of negation in FOIL would
not work in case of non-monotonic logic programs. Another issue with FOIL’s handling of
negated literals arises when we deal with determinate literals. Whenever a combination of a
determinate and a gainful literal attempts to find a pattern in the negative examples, the
FOIL algorithm fails to discover it because FOIL prohibits conjunction of negations in its
language bias to prevent search space explosion. However, by introducing the abnormality
predicates and recursively swapping positive and negative examples, FOLD makes inductive
learning of such default theories possible.

The FOLD algorithm always selects literals with positive information gain first. Next,
if some negative examples are still covered and no gainful literal exists, it would swap the
current positive examples with current negative examples and recursively calls itself to learn
the exceptions. To accommodate determinate literals in FOLD 2.0, we make the following
modification to FOLD. In the SPECIALIZE function, right before swapping the examples
and making the recursive call to the FOLD function (see Algorithm 3), we try the current
rule for a second time. By adding determinate literals and iterating again, we hope that a
positive gainful literal will be discovered. Next, if that choice does not exclude the negative
examples, FOLD 2.0 swaps the examples and recursively calls itself. A nice property of
this recursive approach is that the determinate literals might be added inside the exception
finding routine to induce a composite abnormality predicate. Neither FOIL nor FOLD could
induce such hypotheses. The following example shows how this is handled in the FOLD 2.0
algorithm.

I Example 2. In United States immigration system, student visa holders are classified
as F1(student) and F2(student’s spouse). F1 and F2 status remains valid until a student
graduates. The spouse of such an individual maintains a valid status, as long as that
individual is a student. Table 3 shows a dataset for this domain. In this dataset, it turns out
that married(V 1, V 2) is a determinate literal and essential to the final hypothesis. If we

ICLP 2018

2:10 Cumulative Scoring-Based Induction of Default Theories

Algorithm 3 Overview of FOLD 2.0 Algorithm + Determinate Literals
Input: goal, B,E+, E−

Output: D = {c1, ..., cn}, AB = {ab1, ..., abm}
1: function SPECIALIZE(c, E+, E−)
2: determinate_added← false

3: while (size(E−) > 0) do
4: (cdef , ˆIG)← add_best_literal(c,E+,E−)
5: if ˆIG ≤ 0 then
6: if determinate_added == false then
7: c← ADD_DETERMINATE_LITERAL(c, E+, E−)
8: determinate_added← true

9: else
10: ĉ← exception(c, E−, E+)
11: if ĉ == null then
12: ĉ← enumerate(c, E+)
13: end if
14: end if
15: else
16: E+ ← E+ \ covers(ĉ, E+, B)
17: E− ← covers(ĉ, E−, B)
18: end if
19: end while
20: end function

run the FOLD 2.0 algorithm, it would produce the following hypothesis:

Default rule(1): valid(V1) :- student(V1), not ab1(V1).
Default rule(2): valid(V1) :- class(V1,f2), not ab2(V1).
Exception(1) : ab1(V1) :- graduated(V1).
Exception(2) : ab2(V1) :- married(V1,V2), graduated(V2).

In this example default rule(1) as well as rules for its exception are discovered first. This
rule (rule(1)) takes care of students who have not graduated yet. Then, while discovering
rule(2), after choosing the only gainful literal, i.e., class(V1,f2), the algorithm is recursively
called on the exception part. It turns out that there is no gainful literal that covers the
now positive examples (previously negative examples). The only determinate literal in this
example is married(V1,V2), which is added at this point. This is followed by FOLD 2.0
finding a gainful literal, i.e., graduated(V2), and then returning the default rule(2). At this
point, all positive examples are covered and the algorithm terminates. Default rule(2) takes
care of the class of F2 visa holders whose spouse is a student unless they have graduated.
The Algorithm 3 shows the changes necessary to the FOLD algorithm in order to handle
determinate literals.

5 Experiments and results

In this section we present our experiments on UCI benchmark datasets [5]. Table 4 summarizes
an accuracy-based comparison between Aleph [21], FOLD [20] and FOLD 2.0. We report a
significant improvement just by picking up an optimal value for α via cross-validation. In
these experiments we picked α ∈ {0, 0.2, 0.5, 0.8, 1}.

F. Shakerin and G. Gupta 2:11

Table 3 Valid Student Visa Dataset.

B E+ E−

class(p1,f2). class(p7,f1). student(p3). married(p1,p2). valid(p1). valid(p4).
class(p2,f1). class(p8,f1). student(p4). married(p5,p6). valid(p2). valid(p5).
class(p3,f1). class(p9,f2). student(p6). married(p9,p10). valid(p3). valid(p6).
class(p4,f1). class(p10,f1). student(p7). graduated(p4). valid(p7). valid(p8).
class(p5,f2). student(p8). graduated(p6). valid(p9).
class(p6,f1). student(p10). graduated(p8). valid(p10).

ILP algorithms usually achieve lower accuracy compared to state-of-the-art statistical
methods such as SVM. But in case of “Post Operative” dataset, for instance, our FOLD 2.0
algorithm outperforms SVM, whose accuracy is only 67% [18]. Next, we show in detail how
FOLD 2.0 achieves higher accuracy in case of Moral Reasoner dataset. Moral Reasoner is a
rule-based model that qualitatively simulates moral reasoning. The model was intended to
simulate how an ordinary person, down to about age five, reasons about harm-doing. The
Horn-clause theory has been provided along with 202 instances that were used in [22]. The
top-level predicate to predict is guilty/1. We encourage the interested reader to refer to [5]
for more details. Our goal is to learn the moral reasoning behavior from examples and check
how close it is to the Horn-clause theory reported in [22].

First, we run FOLD 2.0 algorithm with α = 0. This literally turns off the “cumulative
score” feature. The algorithm would return the following set of rules:

Rule(1) guilty(V1) :- severity(V1,1), external_force(V1,n),
benefit_victim(V1,0),intervening_contribution(V1,n).

Rule(2) guilty(V1) :- severity(V1,1), external_force(V1,n),
benefit_victim(V1,0),foresee_intervention(V1,y).

Rule(3) guilty(V1) :- someone_else_cause_harm(V1,y),achieve_goal(V1,n),
control_perpetrator(V1,y), foresee_intervention(V1,n).

In the original Horn clause theory [22] there are two theories for being guilty: i) blame-
worthy, ii) vicarious_blame. The following rules for blame_worthy(X) are reproduced from
[22]:

blameworthy(X):- responsible(X), not justified(X), severity_harm(X,H),
benefit_victim(X,L), H > L.

responsible(X):- cause(X), not accident(X), external_force(X,n),
not intervening_cause(X).

intervening_cause(X) :- intervening_contribution(X,y),
forsee_intervention(X).

Rule(1) and Rule(2), that FOLD 2.0 learns, together build the blameworthy definition of the
original theory. The predicates severity_harm and benefit_victim occur in Rule(1) and
Rule(2). It should be noted that due to the nature of the provided examples, FOLD 2.0 comes
up with a more specific version compared to the original theory reported in [22]. In addition,
instead of learning the predicate responsible(X), our algorithm learns its body literals. The
predicate cause(X) does not appear in the hypothesis because it is implied by all positive
and negative examples, one way or another. The predicate not intervening_cause(X)
appears in our hypothesis due to application of De Morgan’s law and flipping yes and no in

ICLP 2018

2:12 Cumulative Scoring-Based Induction of Default Theories

Table 4 Performance Results on UCI Benchmark Datasets.

Dataset Accuracy (%)
α

Aleph FOLD FOLD 2.0
Labor 85 94 100 0.5
Post-op 62 65 78 1
Bridges 89 90 93 1
Credit-g 70 78 84 0.5
Moral 96 96 100 0.2

the second arguments. The rest of the guilty cases fall into the category of vicarious_blame
below:

vicarious_blame(X):- vicarious(X), vicarious(X) :-
not justified(X), someone_else_cause_harm(X,y),
severity_harm(X,H), outrank_perpetrator(X,y),
benefit_victim(X,L), H > L. control_perpetrator(X,y).

There is a discrepancy in Rule(3), compared to the corresponding vicarious_blame in the
original theory. However, by setting the cumulative score parameter α = 0.2, FOLD 2.0
would produce the following set of rules:

Rule(1): Rule(2):
guilty(V1) :- severity_harm(V1,1), guilty(V1) :-

external_force(V1,n), severity_harm(V1,1),
benefit_victim(V1,0), external_force(V1,n),
intervening_contribution(V1,n). benefit_victim(V1,0),

foresee_intervention(V1,y).
Rule(3):
guilty(V1) :- severity_harm(V1,1), benefit_victim(V1,0),

someone_else_cause_harm(V1,y),outrank_perpetrator(V1,y),
control_perpetrator(V1,y).

Rule(1) and Rule(2) are generated in FOLD 2.0 as before. However, Rule(3) perfectly
matches that of the original theory which our FOLD algorithm would have not been able
to discover without “cumulative score”. Note that the cumulative score heuristics is quite
general and can be used to enhance any machine learning algorithm that relies on the concept
of information gain. In particular, it can be used to improve the FOIL algorithm itself.

6 Related Work

A survey of non-monotonic ILP work can be found in [16]. Sakama also introduces an
algorithm to induce rules from answer sets. His approach may yield premature generalizations
that include redundant negative literals. We skip the illustrative example due to lack of
space, however, the reader can refer to [20]. ASPAL [1] is another ILP system capable
of producing non-monotonic logic programs. It encodes ILP problem as an ASP program.
XHAIL [14] is another ILP system that heavily uses abductive logic programming to search
for the best hypothesis. Both ASPAL and XHAIL systems can only learn hypotheses that
have a single stable model. ILASP [4] is the successor of ASPAL. It can learn hypotheses
that have multiple stable models by employing brave induction [17]. All of these systems
perform an exhaustive search to find the correct hypothesis. Therefore, they are not scalable
to real-life datasets. They also have a restricted language bias to avoid the explosion of

F. Shakerin and G. Gupta 2:13

search space of hypotheses. This overly restricted language bias does not allow them to
learn new predicates, thus keeping them from inducing sophisticated default theories with
nested or composite abnormalities that our FOLD 2.0 algorithm can induce. For instance
consider the following example, a default theory with abnormality predicate represented as
conjunction of two other predicates, namely s(X) and r(X).

p(X) :- q(X), not ab(X).
ab(X) :- s(X), r(X).

Our algorithm has advantages over the above mentioned systems: It follows a greedy top-
down approach and therefore it is better suited for larger datasets and noisy data. Also, it
can invent new predicates [19], distinguish noise from exceptions, and learn nested levels of
exceptions.

7 Conclusion and Future Work

In this paper we presented cumulative score-based heuristic to guide the search for best
hypothesis in a top-down non-monotonic ILP setting. The main feature of this heuristic
is that it avoids being trapped in local optima during clause specialization search. This
results in significant improvement in the accuracy of induced hypotheses. This heuristic is
quite general and can be used to enhance any machine learning algorithm that relies on the
concept of information gain. In particular, it can be used to improve the FOIL algorithm
itself. We used it in this paper to extend our FOLD algorithm to obtain the FOLD 2.0
algorithm for learning answer set programs. FOLD 2.0 performs significantly better than
our FOLD algorithm [20], where the FOLD algorithm itself produces better results than
previous systems such as FOIL and ALEPH. We also showed how determinate literals can
be adapted to identifying patterns in negative examples after the swapping of positive and
negative examples in FOLD. Note that while determinate literals were introduced in the
FOIL algorithm, their use in FOIL was limited to only positive literals. Generalizing the
use of determinate literals in FOLD 2.0, enables us to induce hypotheses that no other
non-monotonic ILP system is able to induce.

There are three main avenues for future work: (i) handling large datasets using methods
similar to QuickFoil [23]. In QuickFoil, all the operations of FOIL are performed in a database
engine. Such an implementation, along with pruning techniques and query optimization tricks,
can make the FOLD 2.0 training phase much faster. (ii) FOLD 2.0 learns function-free answer
set programs. We plan to investigate extending the language bias towards accommodating
functions. (iii) Combining statistical methods such as SVM with FOLD 2.0 to increase
accuracy as well as providing explanation for the behavior of models produced by SVM.

References
1 Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive Logic Programming

in Answer Set Programming. In Stephen Muggleton, Alireza Tamaddoni-Nezhad, and
Francesca A. Lisi, editors, Inductive Logic Programming - 21st International Conference,
ILP 2011, Windsor Great Park, UK, July 31 - August 3, 2011, Revised Selected Pa-
pers, volume 7207 of Lecture Notes in Computer Science, pages 91–97. Springer, 2011.
doi:10.1007/978-3-642-31951-8_12.

2 Johannes Fürnkranz. FOSSIL: A robust relational learner. In Francesco Bergadano and
Luc De Raedt, editors, Machine Learning: ECML-94, pages 122–137, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.

ICLP 2018

http://dx.doi.org/10.1007/978-3-642-31951-8_12

2:14 Cumulative Scoring-Based Induction of Default Theories

3 Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Program-
ming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming, Pro-
ceedings of the Fifth International Conference and Symposium, Seattle, Washington, August
15-19, 1988 (2 Volumes), pages 1070–1080. MIT Press, 1988.

4 Mark Law, Alessandra Russo, and Krysia Broda. Inductive Learning of Answer Set
Programs. In Eduardo Fermé and João Leite, editors, Logics in Artificial Intelligence
- 14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-
26, 2014. Proceedings, volume 8761 of LNCS, pages 311–325. Springer, 2014. doi:
10.1007/978-3-319-11558-0_22.

5 M. Lichman. UCI machine learning repository, 2013. URL: http://archive.ics.uci.
edu/ml.

6 Marco Lippi, Manfred Jaeger, Paolo Frasconi, and Andrea Passerini. Relational information
gain. Machine Learning, 83(2):219–239, May 2011. doi:10.1007/s10994-010-5194-7.

7 John Mingers. An Empirical Comparison of Selection Measures for Decision-Tree Induction.
Machine Learning, 3:319–342, 1989.

8 Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

9 Stephen Muggleton. Inductive Logic Programming. New Generation Comput., 8(4):295–
318, 1991. doi:10.1007/BF03037089.

10 Stephen Muggleton. Inverse Entailment and Progol. New Generation Comput.,
13(3&4):245–286, 1995. doi:10.1007/BF03037227.

11 G. D. Plotkin. A further note on inductive generalization, In machine Intelligence, volume
6, pages 101-124, 1971.

12 J. R. Quinlan. Determinate Literals in Inductive Logic Programming. In Proceedings of
the 12th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’91,
pages 746–750, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. URL:
http://dl.acm.org/citation.cfm?id=1631552.1631572.

13 J. Ross Quinlan. Learning Logical Definitions from Relations. Machine Learning, 5:239–266,
1990. doi:10.1007/BF00117105.

14 Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3):329–
340, 2009. Special Issue: Abduction and Induction in Artificial Intelligence. doi:10.1016/
j.jal.2008.10.007.

15 Raymond Reiter. A Logic for Default Reasoning. Artif. Intell., 13(1-2):81–132, 1980.
doi:10.1016/0004-3702(80)90014-4.

16 Chiaki Sakama. Induction from answer sets in nonmonotonic logic programs. ACM Trans.
Comput. Log., 6(2):203–231, 2005. doi:10.1145/1055686.1055687.

17 Chiaki Sakama and Katsumi Inoue. Brave induction: a logical framework for learn-
ing from incomplete information. Machine Learning, 76(1):3–35, 2009. doi:10.1007/
s10994-009-5113-y.

18 Mathieu Serrurier and Henri Prade. Introducing possibilistic logic in ILP for dealing with
exceptions. Artificial Intelligence, 171:939–950, 2007.

19 Farhad Shakerin and Gopal Gupta. Technical Report, Heuristic Based Induc-
tion of Answer Set Programs: From Default theories to combinatorial problems,
http://arxiv.org/abs/1802.06462, 2018. URL: http://arxiv.org/abs/1802.06462.

20 Farhad Shakerin, Elmer Salazar, and Gopal Gupta. A new algorithm to automate in-
ductive learning of default theories. TPLP, 17(5-6):1010–1026, 2017. doi:10.1017/
S1471068417000333.

21 Ashwin Srinivasan, Stephen Muggleton, and Michael Bain. Distinguishing Exceptions from
Noise in Non-Monotonic Learning,In S. Muggleton and K. Furukawa, editors, Second In-
ternational Inductive Logic Programming Workshop (ILP92), 1996.

http://dx.doi.org/10.1007/978-3-319-11558-0_22
http://dx.doi.org/10.1007/978-3-319-11558-0_22
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/s10994-010-5194-7
http://dx.doi.org/10.1007/BF03037089
http://dx.doi.org/10.1007/BF03037227
http://dl.acm.org/citation.cfm?id=1631552.1631572
http://dx.doi.org/10.1007/BF00117105
http://dx.doi.org/10.1016/j.jal.2008.10.007
http://dx.doi.org/10.1016/j.jal.2008.10.007
http://dx.doi.org/10.1016/0004-3702(80)90014-4
http://dx.doi.org/10.1145/1055686.1055687
http://dx.doi.org/10.1007/s10994-009-5113-y
http://dx.doi.org/10.1007/s10994-009-5113-y
http://arxiv.org/abs/1802.06462
http://dx.doi.org/10.1017/S1471068417000333
http://dx.doi.org/10.1017/S1471068417000333

F. Shakerin and G. Gupta 2:15

22 James Wogulis. Revising Relational Domain Theories. In Lawrence Birnbaum and Gregg
Collins, editors, Proceedings of the Eighth International Workshop (ML91), Northwestern
University, Evanston, Illinois, USA, pages 462–466. Morgan Kaufmann, 1991.

23 Qiang Zeng, Jignesh M. Patel, and David Page. QuickFOIL: Scalable Inductive Logic Pro-
gramming. Proc. VLDB Endow., 8(3):197–208, November 2014. doi:10.14778/2735508.
2735510.

ICLP 2018

http://dx.doi.org/10.14778/2735508.2735510
http://dx.doi.org/10.14778/2735508.2735510

Introspecting Preferences in Answer Set
Programming
Zhizheng Zhang1

School of Computer Science and Engineering, Southeast University, Nanjing, China
seu_zzz@seu.edu.cn

Abstract
This paper develops a logic programming language, ASPEP, that extends answer set programming
language with a new epistemic operator <x where x ∈ {],⊇}. The operator are used between two
literals in rules bodies, and thus allows for the representation of introspections of preferences in
the presence of multiple belief sets: G <] F expresses that G is preferred to F by the cardinality
of the sets, and G <⊇ F expresses G is preferred to F by the set-theoretic inclusion. We define
the semantics of ASPEP, explore the relation to the languages of strong introspections, and study
the applications of ASPEP by modeling the Monty Hall problem and the principle of majority.

2012 ACM Subject Classification Computing methodologies→ Logic programming and answer
set programming

Keywords and phrases Answer Set, Preference, Introspection

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.3

1 Introduction

Preferences have extensively been studied in disciplines such as economy, operations research,
psychology, philosophy, and artificial intelligence as showed in [8], [18], [2], [15], and [7] etc.
In [25], von Wright defined preference as a relation between states of affairs. In formal logical
languages, states of affairs are typically represented as propositions. Follow this tradition, one
of the important directions in artificial intelligence is the logical representation and reasoning
of preferences. Many extensions of the languages of answer set programming (ASP) have been
developed for handling preferences due to the strong power of ASP in expressing defaults.
Those languages provide elegant methodologies for modeling the intractable problems with
defaults and preferences. Examples include the ordered logic programming [20], the logic
programming with ordered disjunction [4], the answer set optimization [5][3], the prioritized
logic programming [19], the CR-prolog [1], the possibilistic answer set programming [17] etc.
The preferences handled in those answer set programs are used to evaluate the preferred
answer sets via specifying the precedence over the rules or the literals in rules heads.

Different from the above answer set programming paradigms with preferences, our purpose
in this paper is to represent introspections of preferences over propositions in the presence
of multiple belief sets by proposing a new epistemic operator <x where x ∈ {],⊇}. For
propositions F and G, F <] G expresses that F is true in more belief sets than G, and can
be read as “F is more possible than G”. And F <⊇ G expresses that F is always true in the
belief sets where G is true, which tells “F is antecedent to G” or “F is true whenever G is
true” etc. We first demonstrate this motivation using an example from our family life.

1 This work is supported by the National Key Research and Development Plan of China (No.
2017YFB1002801).

© Zhizheng Zhang;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 3; pp. 3:1–3:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:seu_zzz@seu.edu.cn
https://doi.org/10.4230/OASIcs.ICLP.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Introspecting Preferences in Answer Set Programming

Table 1 Combo of Attractions.

(a) Packages Information

Package Attractions Ages

1
a1 Kids,teens
a2 Adults
a3 teens

2
b1 All
b2 Adults
b3 Kids

3
c1 All
c2 teens
c3 Kids

(b) Possible Combinations of Attractions]

Package Combinations Age Interest

1
{a1,a2} All
{a1,a3} Kids,teens
{a2,a3} Adults,teens

2
{b1,b2} All
{b1,b3} All
{b2,b3} Adults,Kids

3
{c1,c2} All
{c1,c3} All
{c2,c3} teens,Kids

I Example 1. Consider three discount packages offered by an amusement resort as showed
in Table 1(a)2. Each of them contains three attractions but only two of them are available.
A family is allowed to buy at most one package in advance, and may determine which two
attractions to choose according to the actual situations, such as the waiting time, physical
situation, when they are in the resort. For instance, a family with a kid child and a teenage
boy decide which package to buy by the following criteria: (1). The family prefer the package
that promises more opportunities for the kid child; (2). The parents request that their teenage
boy has an attraction to visit whenever they visit an attraction3.

Directly, the packages information allow the family to have nine possible combinations of
attractions as showed in the table 1(b).

And the family can have the following three conclusions via simple counting.

(i) Both package 2 and package 3 provide more opportunities for the kid child than
package 1.

(ii) Both package 1 and package 3 guarantee that the teenage boy has an attraction to visit
whenever the parents visit an attraction.

(iii) By (i) and (ii), Package 3 should be the favorite package for the family.

It is easy to get the combinations by encoding the packages information and the purchase
requirements in a logic program Πep containing the following rules:

2 In the tables, “All” means that there is no age limitation.
3 To avoid the boy running around without parents.

Z. Zhang 3:3

1{package(1); package(2); package(3)}1
2{attraction(a1); attraction(a2); attraction(a3)}2← package(1)
2{attraction(b1); attraction(b2); attraction(b3)}2← package(2)
2{attraction(c1); attraction(c2); attraction(c3)}2← package(3)
age(kids)← attraction(a1)
age(adults)← attraction(a2)
age(teens)← attraction(a3)
age(all)← attraction(b1)
age(adults)← attraction(b2)
age(kids)← attraction(b3)
age(all)← attraction(c1)
age(teens)← attraction(c2)
age(kids)← attraction(c3)
age(kids)← age(all)
age(teens)← age(all)
age(adults)← age(all)
age_interest(X,Y)← package(X), age(Y).

that has exactly nine answer sets which correspond to the nine possible combinations in
Table 1. We now expect to expand Πep by rules that is able to intuitively represent the
criteria such that the result program is able to give the conclusions as showed in (i),(ii), and
(iii). It is easy to see, for achieving the above goal, our representation and reasoning system
should have an introspective ability that is able to look at the preferences over the beliefs
with regard to those belief sets/answer sets.

Specifically, this paper will address the issue of introspection of preferences illustrated in
the above example. We develop a logic programming language, ASPEP, that extends the
answer set programming language with a new epistemic operator <x where x ∈ {],⊇}. In
ASPEP, the operator is used between two literals in rules bodies, and thus allows for the
representation of introspections of preferences. Consider rules r]:

prefer(X,Y, kid)← age_interest(X, kids) <] age_interest(Y, kids),
package(X), package(Y)
and r⊆:
request(X)← age_interest(X, teens) <⊇ age_interest(X, adults), package(X)

They are able to represent the criteria (1) and (2) in the motivation example respectively.
The rest of the paper is organized as follows. In the next section, we review the basic

principles underlying the answer set semantics of logic programs. In section 3, we introduce
syntax and semantics of ASPEP. In section 4, we consider the relationship between ASPEP

and the strong introspection specification languages. In section 6, we explore the applications
of ASPEP. We conclude in section 7 with some further discussion.

ICLP 2018

3:4 Introspecting Preferences in Answer Set Programming

2 Answer Set Programming

Throughout this paper, we assume a finite first-order signature σ that contains no function
constants of positive arity. There are finitely many Herbrand interpretations of σ, each of
which is finite as well. We follow the description of ASP from [14]. A logic program over σ is
a collection of rules of the form

l1 or ... or lk ← lk+1, ..., lm, not lm+1, ..., not ln

where the ls are literals of σ, not is called negation as failure, or is epistemic disjunction.
The left-hand side of a rule is called the head and the right-hand side is called the body.
A rule is called a fact if its body is empty and its head contains only one literal, and a
rule is called a denial if its head is empty. A logic program is called ground if it contains
no variables. [14] intuitively interprets that an answer set associated with a ground logic
program is a set of beliefs (collection of ground literals) and is formed by a reasoner guided
by three principles:

Rule’s Satisfiability principle: Believe in the head of a rule if you believe in its body.
Consistency principle: Do not believe in contradictions.
Rationality Principle: Believe nothing you are not forced to believe.

The definition of the answer set is extended to any non-ground program by identifying it
with the ground program obtained by replacing every variable with every ground term of
σ. It is worthy noting that > can be removed if it is in the body of a rule, the rule can be
removed from the program if ⊥ is in its body.

3 The ASPEP Language

3.1 Syntax
An ASPEP program Π is a set of rules of the form

l1 or ... or lk ← e1, ..., em, s1, ..., sn.

where k ≥ 0, m ≥ 0, n ≥ 0, the ls are literals in first order logic language and are called
objective literals here, es are extended literals which are 0-place connectives > and ⊥, or
objective literals possibly preceded by not, ss are subjective literals of the form e <x e

′ or
e 6<x e

′ where e and e′ are extended literals and x ∈ {],⊇}. The left-hand side of a rule is
called the head and the right-hand side is called the body. As in usual logic programming, a
rule is called a fact if its body is empty and its head contains only one literal, and a rule is
called a denial if its head is empty. We use head(r) to denote the set of objective literals in
the head of a rule r and body(r) to denote the set of extended literals and subjective literals
in the body of r. Sometimes, we use head(r) ← body(r) to denote a rule r. The positive
body of a rule r is composed of the extended literals containing no not in its body. We use
body+(r) to denote the positive body of r. r is said to be safe if each variable in it appears
in the positive body of the rule. We will use sl(Π) to denote the set of subjective literals
appearing in Π.

It is clear that an ASPEP program containing no subjective literals is a disjunctive logic
program that can be dealt with by ASP solvers like DLV [9], CLASP [10].

It is worthy of noting that, for convenient description, we will use e �x e
′ to denote the

strict preference that can be expressed by the conjunction of e <x e
′ and e′ 6<x e, and use

e ≈x e
′ to denote the preferential indifference that can be expressed by the conjunction of

Z. Zhang 3:5

e �x e′ and e′ �x e, and use e ≡x e′ to denote the preferential equivalence that can be
expressed by the conjunction of e <x e

′ and e′ <x e.

3.2 Semantics
We will restrict our definition of the semantics to ground programs. However, we admit
rule schemata containing variables bearing in mind that these schemata are just convenient
representations for the set of their ground instances. In the following definitions, l is used to
denote a ground objective literal, e is used to denote a ground extended literal, and s is used
to denote a ground subjective literal.

3.2.1 Satisfiability
Let W be a non-empty collection of consistent sets of ground objective literals, (W,w) is a
pointed ASPEP structure of W where w ∈W . W is a model of a program Π if for each rule
r in Π, r is satisfied by every pointed ASPEP structure of W . The notion of satisfiability
denoted by |=ep is defined below.

(W,w) |=ep >
(W,w) 6|=ep ⊥
(W,w) |=ep l if l ∈ w
(W,w) |=ep not l if l 6∈ w
(W,w) |=ep e <] e′ if |{w ∈W : (W,w) |=ep e}| ≥ |{v ∈W : (W, v) |=ep e

′}|
(W,w) |=ep e <⊇ e′ if {w ∈W : (W,w) |=ep e} ⊇ {v ∈W : (W, v) |=ep e

′}
(W,w) |=ep e 6<x e′ if (W,w) 6|=ep e <x e′, x ∈ {],⊇}

Then, for a rule r in Π, (W,w) |=ep r if
∃l ∈ head(r): (W,w) |=ep l, or
∃t ∈ body(r): (W,w) 6|=ep t.

The satisfiability of a subjective literal does not depend on a specific belief set w in W , hence
we can simply write W |=ep s if (W,w) |=ep s and say the subjective literal s is satisfied by
W , and we can simply write W 6|=ep s if (W,w) 6|=ep s and say the subjective literal s is not
satisfied by W .

We consider the properties of the above satisfiability by some axioms of the strict
preference relation proposed by von Wright in [25]. Let W be a non-empty collection of
consistent sets of ground objective literals, the following properties of the satisfiability |=ep
hold.
�x Asymmetry. W |=ep e �x e′ =⇒W |=ep e

′ �x e

�] Inescapability. W |=ep e �] e′,W |=ep e
′′ �] e′ =⇒W |=ep e �] e′′

�x Transitivity. W |=ep e �x e′,W |=ep e
′ �x e′′ =⇒ W |=ep e �x e′′

�x Irreflexivity. W |=ep e �x e

≈x Reflexivity. W |=ep e ≈x e

≈x Symmetry. W |=ep e ≈x e′ =⇒W |=ep e
′ ≈x e

≈] Transitivity.W |=ep e ≈] e′,W |=ep e
′ ≈] e′′ =⇒ W |=ep e ≈x e′′

�] R-Analogy. W |=ep e �] e′,W |=ep e
′ ≈] e′′ =⇒ W |=ep e �] e′′

�] L-Analogy. W |=ep e ≈] e′,W |=ep e
′ �] e′′ =⇒ W |=ep e

′ �] e′′

where x ∈ {],⊇}.
In addition, let W be a non-empty collection of consistent sets of ground objective literals,

it is easy to find that
W |=ep e <x e

W |=ep > <x e

ICLP 2018

3:6 Introspecting Preferences in Answer Set Programming

W |=ep e <x ⊥
W |=ep e 6<⊇ enot

where enot is l if e is not l, and enot is not l if e is l, and >not is ⊥, and ⊥not is >.

3.2.2 World Views
We first give the definition of candidate world view for disjunctive logic programs and arbitrary
ASPEP programs respectively. Then, we define world view for ASPEP programs by presenting
a minimizing preferences principle.

I Definition 2. Let Π be a disjunctive logic program, the candidate world view of Π is the
non-empty set of all its answer sets, written as AS(Π).

I Definition 3. Let Π be an arbitrary ASPEP program, and W is a non-empty collection of
consistent sets of ground objective literals in the language of Π, we use ΠW to denote the
disjunctive logic program obtained by removing the epistemic operators using the following
reduct laws
1. removing from Π all rules containing subjective literals not satisfied by W .
2. removing all other occurrences of subjective literals of the form e <x e or > <x e or

e <x ⊥ or e 6<⊇ enot.
3. replacing all other occurrences of subjective literals of the form e <x > by e.
4. replacing all other occurrences of subjective literals of the form ⊥ <x e by enot.
5. replacing other occurrences of subjective literals of the form e1 <x e2 or e1 6<x e2 by four

conjunctions e1, e2, and enot
1 , e2, and e1, e

not
2 , and enot

1 , enot
2 respectively.

where enot is l if e is not l, and enot is not l if e is l, and >not is ⊥, and ⊥not is >. Then, W
is a candidate world view of Π if W is a candidate world view of ΠW .

We use cwv(Π) to denote the set of candidate world views of an ASPEP program Π. ΠW is
said to be the reduct of Π with respect to W . Such a reduct process eliminates subjective
literals so that the belief sets in the model are identified with the answer sets of the program
obtained by the reduct process. The intuitive meanings of the reduct laws can be described
as follows:

The first reduct law directly comes from the notion of Rule Satisfiability and Rationality
Principle in answer set programming which means if a rule’s body cannot be satisfied
(believed in), the rule will contribute nothing;
The second reduct law stems from the fact e <x e and > <x e and e <x ⊥ and e 6<⊇ enot

are tautologies.
The third reduct law states that, you are forced to believe e with regard to each belief
set due to the fact that e <x > implies e is true with regard to each answer set and the
Rationality Principle in ASP.
The fourth law states that, you are forced to believe enot with regard to each belief set
due to the fact that ⊥ <x e implies e is not true with regard to each answer set.
The last law states that, both the literals e1 and e2 in e1 <x e2 may be true or not with
regard to each belief set.

I Definition 4. Let Π be an arbitrary ASPEP program, and W is a non-empty collection of
consistent sets of ground objective literals in the language of Π, W is a world view of Π if it
satisfies the conditions below

W ∈ cwv(Π)
Minimizing preferences principle: @V ∈ cwv(Π)({s̄|s ∈ sl(Π) ∧ V |=ep s̄} ⊃ {s̄|s ∈
sl(Π) ∧W |=ep s̄})

Z. Zhang 3:7

where s̄ is e <x e
′ if s is e 6<x e

′, and s̄ is e 6<x e
′ if s is e <x e

′.

We use wv(Π) to denote the set of world views of an ASPEP program Π.

I Definition 5. Let Π be an ASPEP program, a ground objective literal l is true in Π
(written by Π `ep l) if ∀W ∈ wv(Π)∀w ∈W ((W,w) |=ep l).

I Example 6. Consider Π = Πep ∪ {r], r⊇} where Πep and r] and r⊇ are given in section 1.
It is easy to see that Π has an unique world view containing nine belief sets:

{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,kids),
age_interest(1,adults),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,kids),
age_interest(1,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,adults),
age_interest(1,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,kids),
age_interest(2,adults),age_interest(2,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,kids),
age_interest(2,adults),age_interest(2,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,adults),
age_interest(2,kids),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(3),age_interest(3,kids),
age_interest(3,adults),age_interest(3,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(3),age_interest(3,kids),
age_interest(3,adults),age_interest(3,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),age_interest(3,teens), age_interest(1,kids),...}

Then we have Π `ep prefer(2, 1) and Π `ep prefer(3, 1) corresponding to the conclusion
(i), and Π `ep request(3) and Π `ep request(1) corresponding to the conclusion (ii), and it is
easy to verify that if we add to Π another rule:

buy(X)← request(X), not prefer(Y,X), package(X), package(Y), X! = Y

that states a simple ordered-based choice strategy, then we can get Π `ep buy(3) corresponding
to the conclusion (iii) in section 1.

4 Relation to Strong Introspection Specifications

Several languages have been developed by extending the languages of answer set programming
(ASP) using epistemic operators to handle introspections. The need for such extension of ASP
was early recognized and addressed by Gelfond in [11], where Gelfond proposed an extension
of ASP with two modal operators K and M and their negations (ASPKM). Informally, K p

expresses “p is known”(p is true in all belief sets of the agent), M p means “p may be true”(p
is true in some belief sets of the agent). It has been proved that ASPKM is potential in
dealing with some important issues in the field of knowledge representation and reasoning,
for instance the correct representation of incomplete information in the presence of multiple
belief sets [12], commonsense reasoning [12], formalization for conformant planning [16], and
meta-reasoning [24] etc. Recently, there is increasing research in this direction to address
the long-standing problems of unintended world views due to recursion through modalities

ICLP 2018

3:8 Introspecting Preferences in Answer Set Programming

Table 2 Modal Reduct in ASPKM.

subjective literal s if W |=km s W 6|=km s

Kl replace Kl with l delete the rule
not Kl remove not Kl replace not Kl with not l

Ml remove Ml replace Ml with not not l

not Ml replace not Ml with not l delete the rule

that were introduced by Gelfond [11], e.g. [13, 16, 6]. Very recently, Shen and Eiter [22]
introduced general logic programs possible containing epistemic negation NOT (ASPNOT),
and defined its world views by minimizing the knowledge. ASPNOT can not only express K p

and M p formulas by not NOT p and NOT not p, but also offer a solution to the problems of
unintended world views. In this section we show that ASPKM logic programs in [16] where
the most recent version of ASPKM is defined, and a special kind of ASPNOT programs can
be viewed as ASPEP programs.

4.1 Relation to ASPKM

An ASPKM program is a set of rules of the form h1 or ... or hk ← b1, ..., bm where k ≥ 0,
m ≥ 0, hi is an objective literal, and bi is an objective literal possible preceded by a negation
as failure operator not, a modal operator K or M, or a combination operator not K or
not M. For distinguishment, we call the world view of the ASPKM program KM-world
view. Let W be a non-empty collection of consistent sets of ground objective literals, W is
a KM-world view of an ASPKM program Π if W = AS(ΠW) where ΠW is a disjunctive
logic program obtained using Modal Reduct as showed in Table 2.

In ASPKM, the notion of satisfiability is defined from |=km relationship below.
< W,w >|=km l if l ∈ w
< W,w >|=km not l if l 6∈ w
< W,w >|=km Kl if ∀v ∈W : l ∈ v
< W,w >|=km not Kl if ∃v ∈W : l 6∈ v
< W,w >|=km Ml if ∃v ∈W : l ∈ v
< W,w >|=km not Ml if ∀v ∈W : l 6∈ v

I Definition 7. Given an ASPKM program Ω, an ASPEP program is called a KM-EP-Image
of Ω, denoted by KM − EP − I(Ω), if it is obtained by

Replacing all occurrences of literals of the form K l in Π by l <] >.
Replacing all occurrences of literals of the form M l in Π by not l 6<] > and not not l4
respectively.
Replacing all occurrences of literals of the form not K l in Π by l 6<] > and not l

respectively.
Replacing all occurrences of literals of the form not M l in Π by not l <] >.

I Theorem 8. Let Ω be an ASPKM program, and Π be the ES-EP-Image of Ω, and W be a
non-empty collection of consistent sets of ground objective literals, W is a candidate world
view of Π iff W is a KM-world view of Ω.

4 Here, we view not not l as a representation of not l′ where we have l′ ← not l and l′ is a fresh literal. It
is worthwhile to note that CLINGO is able to deal with not not.

Z. Zhang 3:9

I Example 9. Consider an ASPKM program Ω: p← M p. Ω has an unique KM-world view
{{p}}. Its ES-EP-Image Π contains two rules

p← not p 6<] > p← not not p

Then, the reduct Π{{p}} contains five rules

p← p,> p← not p,> p← p,⊥ p← not p,⊥ p← not not p

which has only one answer set {p}. While the reduct Π{{}} contains only one rule p← not not p

which has two answer sets {} and {p}. Then, {{p}} is the unique candidate world view of Π.

4.2 Relation to ASPNOT

Here, we consider the ASPNOT program that is a set of the rules of the form l1 or ... or lk ←
e1, ..., em, s1, ..., sn where k ≥ 0, m ≥ 0, n ≥ 0, li is an objective literal, ei is an extended
literal, si is a subjective literal of the form NOT e or not NOT e. For distinguishment, we
call the world view of an ASPNOT program NOT-world view. Let W be a non-empty
collection of consistent sets of ground objective literals, W is a candidate NOT-world view
of an ASPNOT program Π if W = AS(ΠW) where ΠW is a general logic program obtained
using Epistemic Reduct by (1) replacing every NOT F that is satisfied by W with >, and
(2) replacing every NOT F that is not satisfied by W with not F . In ASPNOT, the notion of
satisfiability of a subjective formula NOT F is defined from |=NOT relationship

< W,w >|=NOT NOT F if ∃v ∈W : v 6|=GLP F

where the satisfaction denoted by |=GLP is as the satisfaction of a formula defined in general
logic programming introduced in [23]. W is a NOT-world view of an ASPNOT program Π
if it is a candidate NOT-world view satisfying maximal set of literals of the form NOT e

appearing in Π.

I Definition 10. Given an ASPNOT program Ω, an ASPEP program is called a NOT-EP-
Image of Ω, denoted by NOT-EP-I(Ω), if it is obtained by

Replacing all occurrences of literals of the form not NOT e in Ω by e <] >.
Replacing all occurrences of literals of the form NOT e in Ω by e 6<] > and not e

respectively.

I Theorem 11. Let Ω be an ASPNOT program, and Π be the NOT-EP-Image of Ω, and W
be a non-empty collection of consistent sets of ground objective literals, W is a world view of
Π iff W is a NOT-world view of Ω.

I Example 12. Consider an ASPNOT program from [22] that contains two rules

innocent(john)|guilty(john) innocent(john)← NOT guility(john)

Ω has an unique NOT-world view {{innocent(john)}}. The NOT-EP-Image of Ω has three
rules

innocent(john)|guilty(john)
innocent(john)← guilty(john) 6<] >
innocent(john)← not guility(john)

and a unique world view {{innocent(john)}}.

ICLP 2018

3:10 Introspecting Preferences in Answer Set Programming

5 Applications

Consider the relationship between ASPEP and the languages of strong introspections men-
tioned in section 5, ASPEP is potential in dealing with some important issues. In this section,
we illustrate the use of ASPEP in modeling problems with introspective preferences.

5.1 Describing the Principle of Majority
The principle of majority (PM) is a widely used epistemic commonsense in the fields of
information fusion, decision making, social choice, etc, where incomplete information usually
causes multiple belief sets, and queries are usually answered by the principle of majority. For
example, consider the behavior of common birds modeled by a program PM as below:

pigeon(X) or raven(X) or swallow(X) sparrow(X)← commonBird(X)
behavior(X,migratory)← swallow(X)
behavior(X, resident)← pigeon(X)
behavior(X, resident)← raven(X)
behavior(X, resident)← sparrow(X)

Then, given a fact ft:

commonBird(tom)

and answer the query behavior(tom,?) by the principle of majority described by the following
rules rr, rm, and ru:

behavior(X, resident)← behavior(X, resident) �] behavior(X,migratory), bird(X)
behavior(X,migratory)← behavior(X,migratory) �] behavior(X, resident), bird(X)
behavior(X,unknown)← behavior(X,migratory) ≈] behavior(X, resident), bird(X)

They express that a bird X is a resident(migratory) bird if X being resident(migratory) is
strictly more possible than X being migratory(resident), otherwise it is unknown. It is easy
to see that the program PM ∪ {ft, rr, rm, ru} gives answer behavior(tom, resident) to the
query, that is

PM ∪ {ft, rr, rm, ru} `ep behavior(tom, resident)

5.2 Modeling the Monty Hall Problem
We will use ASPEP to solve the Monty Hall problem from [21]: One of the three boxes labeled
1, 2, and 3 contains the keys to that new 1975 Lincoln Continental. The other two are empty.
If you choose the box containing the keys, you win the car. A contestant is asked to select
one of three boxes. Once the player has made a selection, Monty is obligated to open one of
the remaining boxes which does not contain the key. The contestant is then asked if he would
like to switch his selection to the other unopened box, or stay with his original choice. Here is
the problem:does it matters if the contentant switches? The answer is YES.

One of many solutions of the Monty Hall Problem is by arithmetic [21], where nine
possible states are given as showed in Table 3, and the idea in the solution can be described
naturally as: Constestant switches if SWITCH can bring more wins than STAY, Constestant
stays if STAY can bring more wins than SWITCH.

Z. Zhang 3:11

Table 3 Possible Results of MHP.

Keys are in box Contestant choose box Monty can open box Contestant switches Results
1 1 2 or 3 2 or 3 loses
1 2 3 1 wins
1 3 2 1 wins
2 1 3 2 wins
2 2 1 or 3 1 or 3 loses
2 3 1 2 wins
3 1 2 3 wins
3 2 1 3 wins
3 3 1 or 2 1 or 2 loses

Encode the definition of the problem using a disjunctive logic program MHP below.

box(1)
box(2)
box(3)
1{choose_box(X) : box(X)}1
1{key_in_box(X) : box(X)}1
can_open_box(X)← box(X), not choose_box(X), not key_in_box(X)
win_by_switch← choose_box(X), not key_in_box(X)
win_by_stay ← choose_box(X), key_in_box(X)

Represent the idea in the solution by two rules r1 :

switch← win_by_switch <] win_by_stay, win_by_stay 6<] win_by_switch

and r2:

stay ← win_by_stay <] win_by_switch, win_by_switch 6<] win_by_stay

Then, we have the following result that gives a correct answer for the problem.

I Theorem 13. MHP ∪ {r1, r2} `ep switch and MHP ∪ {r1, r2} 0ep stay.

6 Conclusion and Future Work

We present a logic programming formalism capable of reasoning that combines nonmonotonic
reasoning, epistemic preferential reasoning, which is built on the existing efficient answer
set solvers. This makes it an elegant way to formalize some problems with defaults and
introspections of preferences.

A limitation of the work in this paper is that we do not consider the relationships between
ASPEP and other well developed formalisms of preferences.

As a next goal, we will consider the introspection of other typs of preferences which are
considered in the AI field [8, 18]. Our future work also includes the mathematical properties
of ASPEP programs, the methodologies for modeling with ASPEP, and the efficient solver of
ASPEP programs.

ICLP 2018

3:12 Introspecting Preferences in Answer Set Programming

References
1 Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-Restoring

Rules. In International Symposium on Logical Formalization of Commonsense Reasoning,
AAAI 2003 Spring Symposium Series, pages 9–18, 2003.

2 Ronen I. Brafman and Carmel Domshlak. Preference Handling - An Introductory Tu-
torial. AI Magazine, 30(1):58–86, 2009. URL: http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2114.

3 Gerhard Brewka. Answer Sets and Qualitative Optimization. Logic Journal of the IGPL,
14(3):413–433, 2006. doi:10.1093/jigpal/jzl017.

4 Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Logic Programs with Ordered
Disjunction. Computational Intelligence, 20(2):335–357, 2004. doi:10.1111/j.0824-7935.
2004.00241.x.

5 Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. Answer Set Optimization.
In IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, August 9-15, 2003, pages 867–872, 2003. URL: http://
ijcai.org/Proceedings/03/Papers/125.pdf.

6 Luis Fariñas Del Cerro, Andreas Herzig, and Ezgi Iraz Su. Epistemic equilibrium logic.
In Proc. 24th Int. Joint Conference on Artificial Intelligence (IJCAI-15), pages 2964–2970,
2015.

7 James P. Delgrande, Torsten Schaub, Hans Tompits, and KewenWang. A Classification and
Survey of Preference Handling Approaches in Nonmonotonic Reasoning. Computational
Intelligence, 20(2):308–334, 2004. doi:10.1111/j.0824-7935.2004.00240.x.

8 Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. Preferences in AI: An
overview. Artif. Intell., 175(7-8):1037–1052, 2011. doi:10.1016/j.artint.2011.03.004.

9 Wolfgang Faber, Gerald Pfeifer, Nicola Leone, Tina Dell’armi, and Giuseppe Ielpa. Design
and Implementation of Aggregate Functions in the DLV System. Theory Pract. Log. Pro-
gram., 8(5-6):545–580, November 2008. doi:10.1017/S1471068408003323.

10 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven Answer Set
Solving: From Theory to Practice. Artif. Intell., 187–188:52–89, August 2012. doi:10.
1016/j.artint.2012.04.001.

11 Michael Gelfond. Strong Introspection. In Thomas L. Dean and Kathleen McKeown,
editors, Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim,
CA, USA, July 14-19, 1991, Volume 1., pages 386–391. AAAI Press / The MIT Press,
1991. URL: http://www.aaai.org/Library/AAAI/1991/aaai91-060.php.

12 Michael Gelfond. Logic Programming and Reasoning with Incomplete Information. Ann.
Math. Artif. Intell., 12(1-2):89–116, 1994. doi:10.1007/BF01530762.

13 Michael Gelfond. New semantics for epistemic specifications. In Logic Programming and
Nonmonotonic Reasoning, pages 260–265. Springer, 2011.

14 Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents. Cambridge Unversity Press, 2014.

15 Judy Goldsmith and Ulrich Junker. Preference Handling for Artificial Intelligence. AI
Magazine, 29(4):9–12, 2008. URL: http://www.aaai.org/ojs/index.php/aimagazine/
article/view/2180.

16 Patrick Kahl, Richard Watson, Michael Gelfond, and Yuanlin Zhang. A Refinement of
the Language of Epistemic Specifications. Journal of Logic and Computation, 2015. URL:
10.1093/logcom/exv065.

17 Pascal Nicolas, Laurent Garcia, Igor Stéphan, and Claire Lefèvre. Possibilistic uncertainty
handling for answer set programming. Ann. Math. Artif. Intell., 47(1-2):139–181, 2006.
doi:10.1007/s10472-006-9029-y.

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2114
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2114
http://dx.doi.org/10.1093/jigpal/jzl017
http://dx.doi.org/10.1111/j.0824-7935.2004.00241.x
http://dx.doi.org/10.1111/j.0824-7935.2004.00241.x
http://ijcai.org/Proceedings/03/Papers/125.pdf
http://ijcai.org/Proceedings/03/Papers/125.pdf
http://dx.doi.org/10.1111/j.0824-7935.2004.00240.x
http://dx.doi.org/10.1016/j.artint.2011.03.004
http://dx.doi.org/10.1017/S1471068408003323
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://www.aaai.org/Library/AAAI/1991/aaai91-060.php
http://dx.doi.org/10.1007/BF01530762
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2180
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2180
10.1093/logcom/exv065
http://dx.doi.org/10.1007/s10472-006-9029-y

Z. Zhang 3:13

18 Gabriella Pigozzi, Alexis Tsoukiàs, and Paolo Viappiani. Preferences in artificial intelligence.
Ann. Math. Artif. Intell., 77(3-4):361–401, 2016. doi:10.1007/s10472-015-9475-5.

19 Chiaki Sakama and Katsumi Inoue. Prioritized logic programming and its applica-
tion to commonsense reasoning. Artif. Intell., 123(1-2):185–222, 2000. doi:10.1016/
S0004-3702(00)00054-0.

20 Torsten Schaub and Kewen Wang. A semantic framework for preference handling in answer
set programming. TPLP, 3(4-5):569–607, 2003. doi:10.1017/S1471068403001844.

21 Steve Selvin. A problem in probability (letter to the editor). American Statistician, 29:67,
1975.

22 Yi-Dong Shen and Thomas Eiter. Evaluating epistemic negation in answer set programming.
Artificial Intelligence, 237:115–135, 2016.

23 Yidong Shen, Kewen Wang, and Thomas Eiter. FLP answer set semantics without circular
justifications for general logic programs. Artificial Intelligence, 213:1–41, 2014.

24 Mirosław Truszczyński. Revisiting epistemic specifications. In Logic programming, know-
ledge representation, and nonmonotonic reasoning, pages 315–333. Springer, 2011.

25 G. H. Von Wright. The logic of preference reconsidered. Theory and Decision, 3(2):140–169,
1972. doi:10.1007/BF00141053.

ICLP 2018

http://dx.doi.org/10.1007/s10472-015-9475-5
http://dx.doi.org/10.1016/S0004-3702(00)00054-0
http://dx.doi.org/10.1016/S0004-3702(00)00054-0
http://dx.doi.org/10.1017/S1471068403001844
http://dx.doi.org/10.1007/BF00141053

A New Proof-Theoretical Linear Semantics for
CHR
Igor Stéphan
LERIA, Université d’Angers, France
igor.stephan@univ-angers.fr

Abstract
Constraint handling rules are a committed-choice language consisting of multiple-heads guarded
rules that rewrite constraints into simpler ones until they are solved. We propose a new proof-
theoretical declarative linear semantics for Constraint Handling Rules. We demonstrate com-
pleteness and soundness of our semantics w.r.t. operational ωt semantics. We propose also a
translation from this semantics to linear logic.

2012 ACM Subject Classification Theory of computation→ Constraint and logic programming

Keywords and phrases Constraint Handling Rules, Linear Logic

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.4

1 Introduction

CHR (for constraint handling rules) [9, 10, 11, 12, 13, 14] are a committed-choice language
consisting of multiple-heads guarded rules that rewrite constraints into simpler ones until
they are solved. CHR are a special-purpose language concerned with defining declarative
constraints in the sense of Constraint logic programming [16, 17, 18]. CHR are a language
extension that allows to introduce user-defined constraints, i.e. first-order predicates, as for
example less-than-or-equal (≤), into a given host language as Prolog, Lisp, Java or C/C++.
CHR define simplification of user-defined constraints, which replaces constraints by simpler
ones while preserving logical equivalence. For example the antisymmetry of less-than-or-equal
constraint: ((X ≤ Y), (Y ≤ X)⇔ (X = Y)) where “(X ≤ Y), (Y ≤ X)” is the multiple head
of the rule, X, Y are variables and “,” denotes conjunction. This rule means “if constraints
(X ≤ Y) and (Y ≤ X) are present then equality (X = Y) is enforced and constraints
are solved”. CHR define also propagation over user-defined constraints that adds new
constraints, which are logically redundant but may cause further simplifications. For example
the transitivity of less-than-or-equal constraint: ((X ≤ Y), (Y ≤ Z)⇒ (X ≤ Z)). This rule
means “if constraints (X ≤ Y) and (Y ≤ Z) are present then constraint (X ≤ Z) is logically
equivalent”. CHR allow to use guards, which are sequences of host language statements.
For example the reflexivity of less-than-or-equal constraint: ((X ≤ Y)⇔ (X = Y) | true)
where (X = Y) is a test and true is a reserved symbol that has for operational semantics
“add nothing”. This rule means “if constraint (X ≤ Y) is present and (X = Y) is true
then constraint (X ≤ Y) is solved”. CHR finally define simpagation over user-defined
constraints that mixes and subsumes simplification and propagation. The general schema
of CHR (simpagation) rules is then (K1, . . . , Kn\D1, . . . , Dm ⇒ guard | G) with n + m 6= 0
and G = B1, . . . , Bp or G = true. Constraints K1, . . . , Kn are kept like in propagation and
constraints D1, . . . , Dm are deleted like in simplification. If n = 0, a simpagation rule is a
simplification rule, and if m = 0, a simpagation rule is a propagation rule. For example,
the idempotency of less-than-or-equal constraint: ((X ≤ Y)\(X ≤ Y)⇔ true). This rule
means “if constraint (X ≤ Y) is present twice, only one occurrence is kept”. This last

© Igor Stéphan;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 4; pp. 4:1–4:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:igor.stephan@univ-angers.fr
https://doi.org/10.4230/OASIcs.ICLP.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 A New Proof-Theoretical Linear Semantics for CHR

example suggests that CHR is more about consumption than truth. CHR rules are applied
on multi-sets of constraints. Repeated application of those rules on a multi-set of initial
constraints incrementally solves these constraints. The committed-choice principle expresses
a don’t care nondeterminism, which leads to efficient implementations.

From the very beginning, [9, 10] gives a declarative semantics in terms of first-order
classical logic: simplification rules are considered as logical equivalences and propagation
rules as implications (with an equivalence-based semantics ωe [19]). But [10] gives also a first
abstract (or high-order or theoretical) operational semantics ωt based on a transition system
over sets (with some extensions to avoid the trivial nontermination of propagation rules [1]).
The refined operational semantics ωr [8] is finer than the previous one w.r.t. the classical
implementations of CHR. Those operational semantics are in fact ad-hoc linear semantics
[6]. In [5, 6, 4] two different proof-theoretical intuitionistic linear semantics for CHR are
proposed based on (intuitionist) Linear Logic [15]. Those linear semantics for CHR have
been extended to CHR∨[2] which introduces the don’t know nondeterminism1 in CHR [7].

As emphasized in [6], “Many implemented algorithms do not have a first-order classical
logical reading, especially when these algorithms are deliberately non-confluent”, i.e. the
committed-choice matters. Moreover “Considering arbitrary derivation from a given goal,
termination (and confluence) under the abstract semantics ωt are preserved under the refined
semantics ωr, but not the other way around. While it fixes the constraint and rule order for
execution, the refined operational semantics is still nondeterministic” [14]. But if anyone
wants, for example, to compile another high level language to CHR paradigm there must
be only two sources of nondeterminism: the don’t care nondeterminism of the committed-
choice and the don’t know nondeterminism of the disjunction of CHR∨ and no other hidden
nondeterminism not controllable by the programmer. But in the already defined semantics
of the literature and the current implementations, there is a third source of nondeterminism
due to the management of the constraints as an unordered multi-set: the order in which
the constraints are reactivated by the wake-up-policy function2 is left unspecified (page
68 of [14]). And there is even a forth source of nondeterminism due to the management
of the multiple heads of the simpagation rules. The matching order in the application of
a simpagation rule is not deterministic and we do not know which constraints from the
multi-set may be chosen and kept or deleted, if more than one possibility exists (page 69
of [14]). Consider the following first-order CHR program with only one rule, which illustrates
the first hidden nondeterminism:

(a(X), a(Y), s⇔ true)

and {a(1), a(2), a(3), s} as the store (an unordered multi-set) of constraints. The final state
may be {a(1)}, {a(2)} or {a(3)}. Even with the refined ωr semantics, the semantics of the
CHR program rests unknown. We propose in this article a new proof-theoretical linear
semantics for CHR by means of a sequent calculus system in which the store is managed as
a multi-set as in the ωt semantics. This system is proved to be sound and complete w.r.t.
the ωt semantics. We propose also a second new proof-theoretical linear semantics for CHR
by means of a sequent calculus system in which the store is managed as a sequence. This
system is proved to be sound. But, more important, this system is completely deterministic
and overcomes the two sources of hidden nondeterminism defined above. Finally, we propose
for those two systems a translation into the Linear Logic and we prove the soundness of this
translation.

1 freely offered when the host language is Prolog
2 With first-order constraints, instantiation of some variables of the constraints makes them eligible to

the application of CHR rules.

I. Stéphan 4:3

Section 2 presents the needed background on Linear Logic (Subsection 2.1) and CHR
syntax and semantics (Subsection 2.2). Section 3 presents our two new linear sequent calculi
for CHR, the ωl sequent calculus system in which the store is managed as a multi-set and
the ω⊗l sequent calculus system in which the store is managed as a sequence (Subsection 3.1).
Those systems are then translated into the Linear Logic and we prove the soundness of this
translation (Subsection 3.2). We conclude by a discussion about the possible links to focusing
proofs of [3] and on some remarks about our two new proof-theoretical semantics for CHR.

2 Background

2.1 Linear logic
Linear Logic is a substructural logical formalism introduced in [15]. It is based on tokens
which are built on predicate symbols and terms in the usual first-order manner. These
tokens (w.r.t. atoms of classical first order logic) represent resources (w.r.t. truth). Linear
Logic consumes and produces resources and is aware of their multiplicities. The linear-logic
sequent calculus is based on the sequent, which is a pair of multi-sets of linear-logic formulas.
Linear formulas are built on tokens and the following operators (we only present the useful
ones for us): The symbol ⊗ stands for the multiplicative conjunction and is similar to
conjunction of classical logic. The 1 symbol stands for the neutral of ⊗ and represents empty
resource and corresponds to the true of classical logic. The symbol & stands for the additive
conjunction. a&b represents an internal choice between a and b, it means that one can freely
choose between a and b but not have a and b at the same time. The symbol (stands
for the linear implication and apply modus ponens but by consuming the preconditions.
The symbol 0 corresponds to the false of classical logic. The modality symbol ! marks the
unlimited resources. The symbol ∃ (resp. ∀) stands for existential (resp. universal) first-order
quantifications.

In what follows we only use the fragment of the linear-logic sequent calculus that is
relevant for us in its two-sided version (F , F1, F2 and L some linear formulas, Γ, Γ1, Γ2, ∆,
∆1, ∆2 some multi-sets of formulas).

Identity rules
I

F ` F
Γ1 ` L L, Γ2 ` ∆

Cut
Γ1, Γ2 ` ∆

Multiplicative rules
Γ, F1, F2 ` ∆

⊗L
Γ, F1 ⊗ F2 ` ∆

Γ1 ` ∆1, F1 Γ2 ` ∆2, F2 ⊗R
Γ1, Γ2 ` ∆1, ∆2, F1 ⊗ F2

Γ ` ∆ 1L
1, Γ ` ∆

Γ1 ` F1, ∆1 Γ2, F2 ` ∆2
(L

Γ1, Γ2, F1 (F2 ` ∆1, ∆2

Additive rules
Γ, F1 ` ∆

&L1Γ, F1&F2 ` ∆
Γ, F2 ` ∆

&L2Γ, F1&F2 ` ∆
Quantifier rules (t is a term)

Γ, [x← t](F) ` ∆
∀L

Γ, (∀x F) ` ∆
Γ, [x← y](F) ` ∆

∃L
Γ, (∃x F) ` ∆

ICLP 2018

4:4 A New Proof-Theoretical Linear Semantics for CHR

The usual proviso for the ∃L rule is assumed: the variable y must not be free in the
formulas of the sequent conclusion of the inference rule.
Exponential rules

Γ, !F, !F ` ∆
!C

Γ, !F ` ∆
Γ, F ` ∆

!D
Γ, !F ` ∆

Γ ` ∆ !W
Γ, !F ` ∆

A proof tree is a finite labeled tree whose nodes are labeled with sequents such that every
sequent node is the consequence of its direct children according to one of the inference
rules of the calculus. A proof tree is a linear proof if all its leaves are axioms (i.e. instances
of the Identity rule I).

2.2 CHR language and its semantics
In this article, we consider a first-order CHR program as an intensional version of the
grounded corresponding propositional program with respect to its Herbrand universe based
on the function and constant symbols of the program. A constraint is a predicate symbol
with elements of the Herbrand universe as arguments. With this point of view, we omit the
guard and there is no need of equivalence relation between variables. Moreover, there is
no need for a wake up rule since there is no more variable to be woken up in the store of
constraints.

2.2.1 The syntax
The CHR formalism is defined as follows : a CHR rule is a rule of the form (K1, . . . , Km,

D1, . . . , Dn, B1, . . . , Bp some constraints):
[Simpagation rule] (K1, . . . , Km\D1, . . . , Dn ⇔ B) with n > 0, m > 0 or
[Propagation rule] (K1, . . . , Km ⇒ B) with m > 0 or
[Simplification rule] (D1, . . . , Dn ⇔ B) with n > 0

and B = B1, . . . , Bp with p > 0 or true or false (two reserved symbols).

2.2.2 The operational ωt semantics
An identified constraint A#i is a constraint A with some unique integer i, its identity.
Function const, resp. id, gets from an identified constraint its constraint, resp. identity:
const(A#i) = A, resp. id(A#i) = i. The id function and const are extended to sequences,
sets and multi-sets of identified constraints in the obvious manner. An execution state is
a tuple 〈Ω, S, H〉c where Ω (the current goal) stands for a multi-set of constraints to be
executed, S (the current store) stands for a multi-set of identified constraints, H (the current
propagation history) stands for a set of words, each recording the name of a rule and identities
of identified constraints, c stands for a counter that represents the next free integer which
can be used to number an identified constraint. For an initial goal Ω, the initial state is
〈Ω, ∅, ∅〉1. The operational semantics ωt is based on the following two transitions, which map
a state to an other state (symbol] stands for union of multi-sets):

[Introduce] 〈{A}] Ω, S, H〉c t 〈Ω, {A#c}] S, H〉c+1

[Apply] 〈Ω, K#]D#] S, H〉c t 〈B] Ω, K#] S, H] {r.i1 . . . im}〉c where there exists
a simpagation rule r@(K\D ⇔ B) such that K# = {K1#i1, . . . , Km#im} and D# =
{D1#im+1, . . . , Dn#im+n} and K1, . . . , Km = K and D1, . . . , Dn = D and r.i1 . . . im 6∈
H (r.i1 . . . im is the identity of the instantiated rule and r is a name for the rule).

I. Stéphan 4:5

The [Introduce] transition transports a constraint from the goal to the store and associates
an identity to this constraint. A CHR rule (K\D ⇔ B) is applicable if the head of the rule
(considered as a multi-set) K]D is a subset of the multi-set const(S) of the constraints of
the store S. If a CHR rule (K\D ⇔ B) is applicable then the CHR rule is applied: [Apply]
transition removes identified constraints D1#im+1, . . . , Dn#im+n from the store and adds
the constraints of B to the goal. If B = true nothing is added to the goal. This can only
be done if the CHR rules has not already been fired with the same identity in order to
forbid trivial loops. In the [Apply] transition, if B = false there is no transition at all. The
transitions are non-deterministically applied until either no more transition is applicable (a
successful derivation), or B = false (a failed derivation). In both cases a final state has been
reached.

I Example 1. Consider the following first-order CHR program of the introduction with only
one rule

(a(X), a(Y), s⇔ true)

and {a(1), a(2), a(3), s} as the store of constraints.
We give an ωt derivation:

〈{a(1), a(2), a(3), s}, ∅, ∅〉1
[Introduce] t 〈{a(2), a(3), s}, {a(1)#1}, ∅〉2
[Introduce] t 〈{a(2), s}, {a(1)#1, a(3)#2}, ∅〉3
[Introduce] t 〈{a(2)}, {a(1)#1, a(3)#2, s#3}, ∅〉4

[Apply] t 〈{a(2)}, ∅, {r.1.2.3}〉4
[Introduce] t 〈∅, {a(2)#4}, {r.1.2.3}〉5

The store in the final state is {a(2)} but may be {a(1)} or {a(3)} since the order of
[Introduce] derivation steps is arbitrary.

The semantics of this program is only clear if we consider its extensional version with the
grounded rules in this (arbitrary) order:

(a(1), a(2), s⇔ true) (a(1), a(3), s⇔ true) (a(2), a(3), s⇔ true)

and the initial store (a sequence) of constraints as, for example, a(1), a(2), a(3), s. When
the constraint s is considered the constraints a(1), a(2) and a(3) are already in the store of
constraints. The first rule is tried and the matching of its multiple head with the store of
constraints is a success. Since it is a simplification rule, the constraints a(1) and a(2) are
deleted from the store of constraints. The final store of constraints is then {a(3)}.

The operational ωr semantics. There exists a refined operational semantics ωr [8] which
considers the goal as a sequence instead of a multi-set. This semantics is very closed to the
way it is usually implemented. It also uses a transition system with identified constraints,
identities and propagation history. The operational semantics ωt is based on six transitions
which map a state to another state.

Linear-logic semantics of [6, 5]. This linear-logic semantics is directly inspired by the
classical first-order logic semantics: goals (and stores of constraints) are translated to
multiplicative conjunctions, simpagation rules (K\D ⇔ B) to the linear-logic formulas:
!(K ⊗D)((K ⊗ B) and a CHR program to a large conjunction of linear-logic formulas.
We denote by (.)L the above translation. A CHR program P has a computation with initial
store S0 and final store Sn if and only if (P)L ` ((S0)L ((Sn)L).

ICLP 2018

4:6 A New Proof-Theoretical Linear Semantics for CHR

Axiomatic linear semantics of [5, 7]. The axiomatic linear semantics is based on the
cut-rule of the linear logic and proper axioms: each CHR rule of the program is interpreted
as an axiom. A goal is solved if there exists a linear proof of true in a linear-logic sequent
calculus augmented by the proper axioms.

None of the previous semantics offers a semantics for the example of the introduction
since they all manage the store of constraints as an unordered multi-set.

3 ωl and ω⊗
l sequent calculus

In this section, we first define two sequent calculi: the ωl and the ω⊗l sequent calculi. The
first one keeps the multi-sets of the ωt and ωr semantics while the second uses a sequence.
Then we prove that the ωl system is sound and complete w.r.t. the ωt semantics while the
ω⊗l system is sound (but not complete) w.r.t. the ωt semantics. Finally we give a translation
from the ωl (and ω⊗l) system to the linear-logic sequent calculus and prove the soundness of
this translation.

3.1 ωl and ω⊗
l systems

We first define the notion of store for the ωl and ω⊗l systems.

I Definition 2 (ωl and ω⊗l stores). An ωl store is a multi-set of identified constrains. An
ω⊗l store is a sequence of identified constraints.

The ωl and ω⊗l systems are based on two kinds of sequents: the focused sequent is focused
on a particular identified constraint, the current identified constraint, while the non focused
sequent works on a sequence of identified constraints, the current goal.

We first define our sequents for the ωl and ω⊗l systems.

I Definition 3 (non focused and focused ωl and ω⊗l sequents).
A non focused sequent is a quadruple (Γ I Ω# J S↑ ` S↓) where S↓, the down store,
and S↑, the up store, are two stores of identified constraints, Γ is a sequence of CHR rules
and Ω#, the goal, is a sequence of identified constraints3.
A focused sequent is a quintuple (Γ ! ∆ . a / S↑ ` S↓) where S↓, S↑ and Γ are defined as
for the non focused sequent, ∆ is an ending sequence of Γ and a is an identified constraint.

The intuitive meaning of a non focused sequent (Γ I Ω# J S↑ ` S↓) is to try and
consume the identified constraints Ω#

4 with the sequence of CHR rules Γ thanks to the store
S↑. The elements of the store S↓ are the unconsumed identified constraints: the identified
constraints of S↑ that have not been consumed and those produced by Ω# and not consumed
during this production.

The intuitive meaning of a focused sequent (Γ ! ∆ . A#i / S↑ ` S↓) is the same as for
a non focused sequent but restricted to a unique identified constraint A#i which may be
consumed only by the sequence of CHR rules ∆ 5.

In our sequent calculi, the final store of identified constraints is what we have to prove.
Solve the problem represented by a CHR program and an initial goal is to prove true.

Now we define the ω⊗l sequent calculus:

3 Note that in the ωt semantics the goal is a set of constraints.
4 i.e. to solve the constraints of const(Ω#)
5 the identified constraints produced by A#i may be consumed by the CHR rules of Γ

I. Stéphan 4:7

I Definition 4 (ω⊗l sequent calculus system). The ω⊗l system is based on four types of
ω⊗l inference rules (S↓, Sa

↓ , S↑, Sa
↑ , SB

↑ , SB
↓ , SΩ

↓ , SΩ
↑ , S, SK , SD, S⊆K , S⊆K

↑ some stores;
K1, . . . , Km, D1, . . . , Dn, B1, . . . , Bp some constraints, B a sequence of constraints; a an
identified constraint; Ω#, the goal, a sequence of identified constraints; i, i′ some integers).

The non focused subsystem:
The true axiom:

trueΓ I true J S ` S

The Left-elimination-of-conjunction inference rule:
Γ I a J Sa

↑ ` Sa
↓ Γ I Ω# J Sa

↓ , SΩ
↑ ` SΩ

↓
⊗L

Γ I a, Ω# J Sa
↑ , SΩ

↑ ` SΩ
↓

The Exchange inference rule:
Γ I Ω# J A′#i′, A#i, S↑ ` S↓

X
Γ I Ω# J A#i, A′#i′, S↑ ` S↓

with the proviso that A 6= A′.
The focused subsystem:

The Inactivate axiom:
↑

Γ ! . a / S ` a, S

The Weakening inference rule:

Γ ! ∆ . a / S↑ ` S↓
W

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ G), ∆ . a / S↑ ` S↓

with no j, (1 ≤ j ≤ n such that Dj = const(a) or 1 ≤ j ≤ m such that Kj = const(a)),
SD ⊆ S↑, SK ⊆ S↑, SD]SK]{a} = {K1#i1, . . . , Km#im, D1#im+1, . . . , Dn#im+n}6.

The Focusing inference rule:
Γ ! Γ . a / S↑ ` S↓

FΓ I a J S↑ ` S↓

The Apply inference rule:

Γ I B1#i′, . . . , Bp#(i′ + p) J SK , SB
↑ ` S⊆K , SB

↓ Γ I S⊆K J SB
↓ , S⊆K

↑ ` S↓
\ ⇔

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, SK , SB
↑ , S⊆K

↑ ` S↓

with either there exists j, 1 ≤ j ≤ n such that Dj = const(a), SK = K1#i1, . . . , Km#im,
a inserted in SD at place j is equal to D1#im+1, . . . , Dn#im+n, or there exists j, 1 ≤ j ≤
m such that Kj = const(a), a inserted in SK at place j is equal to K1#i1, . . . , Km#im,
SD = D1#im+1, . . . , Dn#im+n; i′ a new integer, S⊆K is a subsequence of K1#i1, . . . ,

Km#im.

The ωl sequent calculus system is less structurally constrained than the ω⊗l system:

I Definition 5 (ωl sequent calculus system). The ωl sequent calculus system is the ω⊗l sequent
calculus system where the store of identified constraints and the multiple heads of rules are
multi-sets instead of sequences and the Exchange inference rule is omitted.

6 When used with multi-set operations, sequences are considered as multi-sets

ICLP 2018

4:8 A New Proof-Theoretical Linear Semantics for CHR

The non focused system splits the current goal and allocates the resources. If the current
goal is the true goal then no identified constraint is consumed and the true axiom is applied.
If the current goal is a sequence of identified constraints, the Left-elimination-of-conjunction
inference rule is applied: The first identified constraint a of the sequence is isolated and
a part of the resources Sa

↑ are allocated to solve the constraint const(a), the rest of the
identified constraints, SΩ

↑ , and those produced by a but unconsumed, Sa
↓ , are allocated to

the sequence of identified constraints S⊆K7. This inference rule realizes in fact a hidden
use of the cut-rule of the linear-logic sequent calculus: the Sa

↓ is a lemma computed by the
left subproof and used in the right subproof. Both operational semantics eliminate those
instances of the cut-rule in order to linearize the derivation.

The focused system chooses, if any, a CHR rule to be applied on the focused identified
constraint a. If no such CHR rule exists, the Inactivate axiom stores the identified constraint
into the store. The Weakening inference eliminates, in the order of the sequence ∆, the first
CHR rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) that cannot be applied since there are no subset SK

and SD of S↑ such that SK] SD] {a} = {K1#i1, . . . , Km#im, D1#im+1, . . . , Dn#im+n}.
The Focusing inference rule flips from the non focused ω⊗l system to the focused ω⊗l

system by focusing on an identified constraint.
The Apply inference rule flips from focused ω⊗l system to non focused ω⊗l system by apply-

ing a CHR rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) on the focused identified constraint a since
there are two subsequences SK and SD of S↑ such that SK]SD]{a} = {K1#i1, . . . , Km#im,

D1#im+1, . . . , Dn#im+n}. The solving of the constraint underlying the identified constraint
a is reduced to the solving of the goal of the CHR rule B = B1, . . . , Bp and eventually the solv-
ing of the constraints underlying S⊆K in the case that identified constraints from S⊆K ⊆ SK

were not consumed during the process of consumption/production of B1#i′, . . . , Bp#i′ + p.
As for the Left-elimination-of-conjunction inference rule a part of the resources SK] SB

↑
is allocated to solve the goal B1#i′, . . . , Bp#(i′ + p), the rest of the identified constraints
S⊆K and those produced by B1#i′, . . . , Bp#(i′ + p) but unconsumed SB

↓ are allocated to
a sequence S⊆K . Since the ω⊗l system only applies a CHR rule if one of the identified
constraints of its head is focused on, the calculus of (Γ I S⊆K J SB

↓ , S⊆K
↑ ` S↓) is necessary

to the completeness. But S⊆K is not necessarily equal to K1#i1, . . . , Km#im since some
identified constraints may have been consumed during the process of consumption/production
of B1#i′, . . . , Bp#(i′ + p). Moreover, S⊆K may be empty if all the resources have been
consumed.

In a classical implementation of CHR, S⊆K
↑ is captured by the flow SB

↑ /SB
↓ . In this

configuration SB
↑ is not anymore the necessary resources to prove B and SB

↓ the resources
produced but unconsumed by B but respectively the input store and the output store of the
derivation of B.

Once again, this Apply inference rule realizes in fact a hidden use of the cut-rule of the
linear-logic sequent calculus: a lemma is computed by the left subproof and used in the right
subproof. Both operational semantics eliminate those instances of the cut-rule in order to
linearize the derivation.

When the applied CHR rule is such that S⊆K = ∅ the Apply inference rule is simplified to

Γ I B1#i′, . . . , Bp#(i′ + p) J SK , S↑ ` S↓
\ ⇔

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, SK , S↑ ` S↓

7 In the case of the ωl system, the elements of the multi-set S⊆K must be ordered in a sequence Ω⊆K
.

I. Stéphan 4:9

Moreover, when the applied CHR rule is a simplification rule (SK = ∅ and S⊆K = ∅)
then the Apply inference rule is simplified to

Γ I B1#i′, . . . , Bp#(i′ + p) J S↑ ` S↓
⇔

Γ ! (D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, S↑ ` S↓

I Example 6. What follows is a proof 8 in the ωl system for the ωl sequent

(Γ I d#1, a#2 J ` S↓) = (r1, r2, r3 I d#1, a#2 J ` c#6, f#5, g#4, d#1).

with S↓ = {c#6, f#5, g#4, d#1}, Γ = r1@(d⇒ e), r2@(a\e⇔ g), r3@(a⇔ f, c)

∇1

F ↑
Γ I g#4 J a#2, d#1 ` g#4, a#2, d#1

∇2
FΓ I a#2 J g#4, d#1 ` S↓
\ ⇔

Γ ! r2, r3 . a#2 / d#1, e#3 ` S↓
WΓ ! r1, r2, r3 . a#2 / d#1, e#3 ` S↓
FΓ I a#2 J d#1, e#3 ` S↓

⊗LΓ I d#1, a#2 J ` S↓

with ∇1:

F ↑
Γ I e#3 J d#1 ` e#3, d#1

F ↑
Γ I d#1 J e#3 ` d#1, e#3

\ ⇔
Γ ! r1, r2, r3 . d#1 / ` d#1, e#3

FΓ I d#1 J ` d#1, e#3

and ∇2:

F ↑
Γ I f#5 J g#4, d#1 ` f#5, g#4, d#1

F ↑
Γ I c#6 J f#5, g#4, d#1 ` S↓

⊗LΓ I f#5, c#6 J g#4, d#1 ` S↓ ⇔
Γ ! r3 . a#2 / g#4, d#1 ` S↓

WΓ ! r2, r3 . a#2 / g#4, d#1 ` S↓
WΓ ! r1, r2, r3 . a#2 / g#4, d#1 ` S↓

What follows is a proof in the ω⊗l system:

∇1

F ↑
Γ I g#4 J a#2, d#1 ` g#4, a#2, d#1

∇2
FΓ I a#2 J g#4, d#1 ` S↓
\ ⇔

Γ ! r2, r3 . a#2 / e#3, d#1 ` S↓
WΓ ! r1, r2, r3 . a#2 / e#3, d#1 ` S↓
FΓ I a#2 J e#3, d#1 ` S↓

XΓ I a#2 J d#1, e#3 ` S↓
⊗LΓ I d#1, a#2 J ` S↓

Notice the use of the Exchange inference rule (X) in order to permute the identified
constraints d#1 and e#3.

We give the first contribution of this article: the soundness and completeness theorem of
the ωl system w.r.t. the ωt semantics:

8 In this example, we define the F ↑ axiom: r1,r2,...,rn I a J S` a,S as a shorthand for an instance of
a Focusing inference rule followed by many instances, as needed, of the Weakening inference rule and
followed by an instance of the Inactivate axiom.

ICLP 2018

4:10 A New Proof-Theoretical Linear Semantics for CHR

I Theorem 7 (Soundness and completeness of the ωl system w.r.t. the ωt semantics). Let Γ
be a CHR program and B1, . . . , Bp some constraints. The initial goal B1, . . . , Bp is solved in
the ωt semantics by Γ with a final store (a multi-set) of identified constraints Σ if and only
if there exists an ωl proof of (Γ I B1#1, . . . , Bp#p J ` Σ).

And as a corollary, we obtain the soundness of the ω⊗l system w.r.t. the ωt semantics:

I Theorem 8 (Soundness of the ω⊗l system w.r.t. the ωt semantics). Let Γ be a CHR program
and B1, . . . , Bp some constraints and Σ a store (a multi-set) of identified constraints. If there
exists an ω⊗l proof of (Γ I B1#1, . . . , Bp#p J ` S), where S is a sequence of Σ then the
initial goal B1, . . . , Bp is solved in the ωt semantics by Γ with a final store Σ.

The ω⊗l system is not complete w.r.t. the ωt semantics since the Exchange inference rule
is limited to identified constraints that are based on different constraints.

I Example 9 (Example of the introduction continued). We can prove with the ω⊗l system the
sequent (r I a(1)#1, a(2)#2, a(3)#3, s#4 J ` a(1)#1):

F ↑
r I a(1)#1 J ` a(1)#1

F ↑
r I a(2)#2 J a(1)#1 ` a(2)#2, a(1)#1 ∇

⊗L

r I a(2)#2, a(3)#3, s#4 J a(1)#1 ` a(1)#1
⊗L

r I a(1)#1, a(2)#2, a(3)#3, s#4 J ` a(1)#1

with ∇ (S = a(3)#3, a(2)#2, a(1)#1):

F ↑
r I a(3)#3 J a(2)#2, a(1)#1 ` S

true
r I true J a(1)#1 ` a(1)#1

⇔
r ! r . s#4 / S ` a(1)#1

F
r I s#4 J S ` a(1)#1

⊗L

r I a(3)#3, s#4 J a(2)#2, a(1)#1 ` a(1)#1

But not the sequent (r I a(3)#3, a(2)#2, a(1)#1, s#4 J ` a(2)#2) of Example 1 nor the
sequent (r I a(3)#3, a(2)#2, a(1)#1, s#4 J ` a(3)#3) since the store S is a sequence
(and not a multi-set) and the Exchange inference rule cannot be applied since the identified
constraints a(1)#1, a(2)#2 and a(3)#3 are based on the same constraint a.

3.2 Translation from ωl and ω⊗
l systems into Linear Logic

We define a translation from the ωl system into the linear-logic sequent calculus and prove
that the result of the translation of a ωl proof is a linear-logic proof in the sense of the
definition of Section 2.1. We first give the translation of the CHR rules, then the translation
for the ωl sequents and finally the translation for the ωl system. The translation from the ω⊗l
system into the linear-logic sequent calculus is directly obtained from previous translation by
omitting the Exchange inference rule (and by considering sequences as multi-sets).

I Definition 10 (Translation of the CHR rules and CHR programs into linear-logic formulas).
The CHR rules are translated into linear-logic formulas as follows thanks to the function (.)Γ:

(K1, . . . , Km\D1, . . . , Dn ⇔ true)Γ =
∀x1 . . . ∀xm+n

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
((K1(x1)⊗ . . .⊗Km(xm)⊗ 1))

I. Stéphan 4:11

(K1, . . . , Km\D1, . . . , Dn ⇔ false)Γ =
∀x1 . . . ∀xm+n

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
((K1(x1)⊗ . . .⊗Km(xm)⊗ 0))

(K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp)Γ =
∀x1 . . . ∀xm+n∃y1 . . . ∃yp

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
((K1(x1)⊗ . . .⊗Km(xm)⊗B1(y1)⊗ . . .⊗Bp(yp)))

(r, ∆)Γ = (r)Γ & (∆)Γ with r a CHR rule and ∆ a non empty sequence of CHR rules.

CHR constant true is interpreted to 1, the neutral of ⊗ the multiplicative conjunction.
CHR constant false is interpreted to 0 which has no elimination rule. Introduction of new
identities are interpreted to existential quantifications in order to generate a brand new one
each time while transmission of identities of identified constraints are interpreted by universal
quantifications. In a CHR rule, symbol “⇔” is interpreted to linear implication and symbol
“,” is interpreted to the multiplicative conjunction ⊗. Finally, in CHR program, symbol “,”
is interpreted to the additive conjunction &, an (ordered) committed choice.

I Example 11 (Example continued).

(r1)Γ = (d⇒ e)Γ = (∀x (∃y (d(x)(d(x)⊗ e(y))))
(r2)Γ = (a\e⇔ g)Γ = (∀x, x′ (∃y (a(x)⊗ e(x′)(a(x)⊗ g(y))))
(r3)Γ = (a⇔ f, c)Γ = (∀x (∃y, y′ (a(x)(f(y)⊗ c(y′))))

I Definition 12 (Translation of the ωl sequents into linear sequent). The ωl system language
is translated into Linear Logic as follows thanks to three functions (.)Ω, (.)↑ and (.)↓ for
translating respectively the goal, the up store and the down store of an ωl sequent.

(true)Ω = 1, (false)Ω = 0,

(A#i)Ω = A(i) a token, with A a constraint and i an identity,
((a, Ω#))Ω = ((a)Ω ⊗ (Ω#)Ω)
with a an identified constraint and Ω# a sequence of identified constraints

(A#i)↑ = A(i) a token, with A a constraint and i an identity,
(S)↑ = {(a)↑ | a ∈ S}
with a an identified constraint and S a store.

(A#i)↓ = A(i) a token, with A a constraint and i an identity,
(S)↓ =

⊗
a∈S (a)↓

with a an identified constraint and S a store.

For any ωl sequent is translated into a linear sequent as follows thanks to the function
L(.) :

L(Γ I Ω# J S↑ ` S↓) = !(Γ)Γ, (Ω#)Ω, (S↑)↑ ` (S↓)↓
L(Γ ! ∆ . Ω# / S↑ ` S↓) = !(Γ)Γ, (∆)Γ&1, (Ω#)Ω, (S↑)↑ ` (S↓)↓
L(Γ ! . Ω# / S↑ ` S↓) = !(Γ)Γ, (Ω#)Ω, (S↑)↑ ` (S↓)↓

The goal and the down store of identified constraints of the ωl sequent are interpreted to
multiplicative conjunctions of tokens while the up store of identified constraints is interpreted
to a sequence of tokens. The multiplicative conjunction of the goal induces a sequence on
the identified constraints of the goal. The multiplicative conjunction of the goal allows
the introduction of the cut-rule of the Left-elimination-of-conjunction inference and Apply
inference rules.

ICLP 2018

4:12 A New Proof-Theoretical Linear Semantics for CHR

The CHR program is interpreted as a large additive conjunction of linear implications
ended with the 1 constant in order to allow the move in the Inactivate inference rule of
the identified constraint from the goal to the down store when no CHR rule is found to be
applied.

I Definition 13 (Translation of the ωl system into the linear-logic sequent calculus).
The non focused ωl system:

true axiom
trueΓ I true J S ` S

is translated into 9

I⊗
(S)↑ ` (S)↓

1L
1, (S)↑ ` (S)↓

!W
L(Γ I 1 J S ` S)

Left-elimination-of-conjunction inference rule:
Γ I a J Sa

↑ ` Sa
↓ Γ I Ω# J Sa

↓ , SΩ
↑ ` SΩ

↓
⊗L

Γ I a, Ω# J Sa
↑ , SΩ

↑ ` SΩ
↓

is translated into

L(Γ I a J Sa
↑ ` Sa

↓)

L(Γ I Ω# J Sa
↓ , SΩ

↑ ` SΩ
↓)

⊗L∗
!(Γ)Γ, (Ω#)Ω, (Sa

↓)↓, (SΩ
↑)↑ ` (SΩ

↓)↓
Cut

!(Γ)Γ, !(Γ)Γ, (a)Ω, (Ω#)Ω, (Sa
↑)↑, (SΩ

↑)↑ ` (SΩ
↓)↓

!C
!(Γ)Γ, (a)Ω, (Ω#)Ω, (Sa

↑)↑, (SΩ
↑)↑ ` (SΩ

↓)↓
⊗L

L(Γ I (a, Ω#) J Sa
↑ , SΩ

↑ ` SΩ
↓)

The focused ωl system:
Weakening rule:

Γ ! ∆ . a / S↑ ` S↓
W

Γ ! (K\D ⇔ B), ∆ . a / S↑ ` S↓

is translated into
L(Γ ! ∆ . a / S↑ ` S↓)

&L2
L(Γ ! (K\D ⇔ B), ∆ . a / S↑ ` S↓)

Inactivate rule:
↑

Γ ! . A#i / S ` A#i, S

is translated into

9 The following axiom I⊗: B1,B2,...,Bn ` B1⊗B2⊗...⊗Bn
is a shorthand for the following linear proof

I
B1 ` B1

I
Bn−1 ` Bn−1

I
Bn ` Bn

⊗R
Bn−1, Bn ` Bn−1 ⊗Bn

...
B2, . . . , Bn ` B2 ⊗ . . .⊗Bn

⊗R
B1, B2, . . . , Bn ` B1 ⊗B2 ⊗ . . .⊗Bn

I. Stéphan 4:13

I⊗
A(i), (S)↑ ` (A(i)⊗ (S)↓)

!W
L(Γ ! . A#i / S ` A#i, S)

The Focusing rule:
Γ ! Γ . a / S↑ ` S↓

FΓ I a J S↑ ` S↓

is translated into

L(Γ ! Γ . a / S↑ ` S↓)
!D

!(Γ)Γ, !(Γ)Γ, (a)Ω, (S↑)↑ ` (S↓)↓
!C

L(Γ I a J S↑ ` S↓)

The Apply rule with

(K1, . . . , Km\D1, . . . , Dn ⇔ B)Γ =
∀x1 . . . ∀xm+n∃y1 . . . ∃yp((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
((K1(x1)⊗ . . .⊗Km(xm)⊗B1(y1)⊗ . . .⊗Bp(yp)))

such that K⊗ = K1(i)⊗ . . .⊗Km(i + m), D⊗ = D1(i + m + 1)⊗ . . .⊗Dn(i + m + n),
B = B1, . . . , Bp, B# = B1#i′, . . . , Bp#(i′ + p), i′ = i + m + n + 1 and p > 0, and
B⊗ = B1(i′)⊗ . . .⊗Bp(i′ + p) = (B1#i′, . . . , Bp#(i′ + p))Ω.
The Apply rule

Γ I B# J SK , SB
↑ ` S⊆K , SB

↓ Γ I Ω⊆K
J SB

↓ , S⊆K
↑ ` S↓

\ ⇔
Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B), ∆ . a / SD, SK , SB

↑ , S⊆K
↑ ` S↓

is translated into

I⊗
(a)Ω, (SD)↑, (SK)↑ ` K⊗ ⊗D⊗ ∇

(L

!(Γ)Γ, (K⊗ ⊗D⊗(K⊗ ⊗B⊗), (a)Ω, (SD)↑, (SK)↑, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓
∃L*∀L*

!(Γ)Γ, (K1, . . . , Km\D1, . . . , Dn ⇔ B)Γ, (a)Ω, (SD)↑, (SK)↑, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓
&L1

L(Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B), ∆ . a / SD, SK , SB
↑ , S⊆K

↑ ` S↓)

with ∇ =

L(Γ I B# J SK , SB
↑ ` S⊆K , SB

↓)

L(Γ I Ω⊆K
J SB

↓ , S⊆K ` S↓)
⊗L∗

!(Γ)Γ, (Ω⊆K
)Ω ⊗ (SB

↓)↓, (S⊆K)↑ ` (S↓)↓
Cut

!(Γ)Γ, !(Γ)Γ, (SK)↑, B⊗, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓
!C

!(Γ)Γ, (SK)↑, B⊗, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓
⊗L∗

!(Γ)Γ, K⊗ ⊗B⊗, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓

Note that since Ω⊆K
is a sequence over S⊆K , it may be chosen such that (Ω⊆K

)Ω =
(S⊆K)↓. If S⊆K = ∅ or B = true or B = false the above translation is simplified in a
straightforward manner.

ICLP 2018

4:14 A New Proof-Theoretical Linear Semantics for CHR

The linear cut-rule is used in the translation of the Left-elimination-of-conjunction
inference rule in order to transmit the down store of the left subproof to the right subproof.
This down store which is a multiplicative conjunction is then split into a sequence of identified
constraints thanks to linear-logic ⊗ left elimination ⊗L-rule.

Weakening inference rule tries the CHR rules in the order of the CHR program thanks to
the linear-logic &L2 rule.

The linear cut-rule is also used in the translation of the Apply inference rule in order
to transmit the down store of the left subproof to the the right subproof if SK has not
been completely consumed by the subproof (ie. S⊆K 6= ∅). This down store which is a
multiplicative conjunction is then split into a sequence of identified constraints thanks to the
linear-logic ⊗ left elimination ⊗L-rule.

We now establish the second contribution of this article, the soundness of the translation
from the ωl system to the linear-logic sequent calculus:

I Theorem 14. The result of the translation by Definitions 10, 12 and 13 of an ωl proof is
a linear proof.

As a direct corollary, the soundness of the translation from the ω⊗l system to the linear-logic
sequent calculus with the same translation that for the ωl system (instances of the Exchange
inference rule are simply ignored):

I Theorem 15. The result of the translation by Definitions 10, 12 and 13 of an ω⊗l proof is
a linear proof.

4 Discussion

[3] proposes a normalization process of the Linear Logic proofs to a subclass of proofs,
called the “focusing” proofs, which is complete (any derivable formula in Linear Logic has
a focusing proof). Focusing proofs are expressed in a Triadic system, which respects the
symmetry of Linear Logic. This process of normalization informally interleaves a don’t care
nondeterministic phase on asynchronous formulae and a phase applied on a synchronous
focused formula. This last phase is a critical section and don’t know nondeterminism can only
appear during this phase. Since our ω⊗l system is completely deterministic, the two phases of
the ω⊗l system are not based on the same principles as the two phases of the Triadic system.
But, since the Triadic system is complete w.r.t. Linear Logic, it would be interesting to
translate the ωl and ω⊗l proofs in focusing proofs to understand the semantics of CHR in
terms of synchronous and asynchronous connectors.

5 Conclusion

We have proposed in this article two new proof-theoretical linear sequent systems for
the semantics of CHR. The ω⊗l system makes the semantics of the language completely
deterministic. This semantics overcomes the hidden nondeterminism due to the management
of the store of identified constraints and the multiple head of rules as multi-sets. But we can
reintroduce the don’t care nondeterminism of the committed choice principle if we allow the
weakening inference rule even if the CHR rule is applicable (and of course also the don’t
know nondeterminism). Due to the lack of space, we cannot present a restricted version of
the Apply inference rule (with S⊆K replaces only by K) which corresponds more faithfully
to the ωr semantics.

I. Stéphan 4:15

References
1 S. Abdennadher. Operational Semantics and Confluence of Constraint Propagation Rules.

In Proceedings of the 3rd International Conference on Principles and Practice of Constraint
Programming (CP’97), pages 252–266, 1997.

2 S. Abdennadher and H. Schütz. CHR∀: A Flexible Query Language. In Proceedings of the
3rd International Conference on Flexible Query Answering Systems, pages 1–14, 1998.

3 J.M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal of logic
and computation, 2(3):297–347, 1992.

4 H. Betz. A linear-logic semantics for constraint handling rules With Disjunction. In Pro-
ceedings of the 4th Workshop on Constraint Handling Rules (CP’07), pages 17–31, 2007.

5 H. Betz. A Unified Analytical Foundation for Constraint Handling Rules, PhD thesis, Ulm
University, 2014.

6 H. Betz and T.W. Frühwirth. A Linear-Logic Semantics for Constraint Handling Rules. In
Proceedings of the 11th International Conference on Principles and Practice of Constraint
Programming (CP’05), pages 137–151, 2005.

7 H. Betz and T.W. Frühwirth. Linear-Logic Based Analysis of Constraint Handling Rules
with Disjunction. ACM Transactions on Computational Logic, 14(1), 2013.

8 G.J. Duck, P.J. Stuckey, M.G. de la Banda, and C. Holzbaur. The Refined Operational Se-
mantics of Constraint Handling Rules. In Proceedings of the 20th International Conference
on Logic Programming (ICLP’04), pages 90–104, 2004.

9 T.W. Frühwirth. Constraint Handling Rules. Technical report, ECRC, 1992.
10 T.W. Frühwirth. Constraint Handling Rules. In Constraint Programming: Basics and

Trends, pages 90–107, 1994.
11 T.W. Frühwirth. Theory and Practice of Constraint Handling Rules. Journal of Logic

Programming, 37(1-3):95–138, 1998.
12 T.W. Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009.
13 T.W. Frühwirth and S. Abdennadher. Essentials of Constraint Programming. Springer-

Verlag, 2003.
14 T.W. Frühwirth and F. Raiser, editors. Constraint Handling Rules: Compilation, Execu-

tion, and Analysis. Books on Demand, March 2011.
15 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.
16 P. Van Hentenryck. Constraint logic programming. Knowledge Engineering Review,

6(3):151–194, 1991.
17 J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proceedings of the 14th

Annual ACM Symposium on Principles of Programming Languages, pages 111–119, 1987.
18 J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of Logic

Programming, 19/20:503–581, 1994.
19 F. Raiser, H. Betz, and Thom Frühwirth. Equivalence of CHR states revisited. In Pro-

ceedings of the 6th International Workshop on Constraint Handling Rules, pages 34–48,
2009.

6 Appendix

In order to prove the soundness and completeness of the ωl system w.r.t. the ωt semantics,
we first introduce the ωt sequent calculus system that imitates faithfully the ωt semantics.
Hence we prove the soundness and completeness of this ωt system w.r.t. the ωt semantics
and then prove the soundness and completeness of ωl system w.r.t. ωt system.

We first define what is a ωt sequent.

ICLP 2018

4:16 A New Proof-Theoretical Linear Semantics for CHR

I Definition 16 (ωt sequent). An ωt sequent is a triplet (Γ I Ω J S `) where S, the store
of identified constraints, is a multi-set of identified constraints, Ω, the current goal, is a
multi-set of constraints and Γ, the program, is a sequence of CHR rules.

Notice that in a ωt sequent, compare to ωl or ω⊗l sequents, the final store is empty. It
will be only known at the (unique) leaf of the ωt proof.

Now we are able to define our ωt system.

I Definition 17 (ωt system). The symbol Γ denotes a program, Ω a multi-set of constraints,
S, SK , SD some sets of identified constraints, A, K1, . . . , Km, D1, . . . , Dn some constraints,
i, i1 . . . , im+n some distinct integers, B a sequence of constraints. The ωt system is the set
of the following ωt inference rules:

ωt axiom:
ωt

Γ I J S `
with no simpagation rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) ∈ Γ such that SK =
{K1#i1, . . . , Km#im} and SD = {D1#im+1, . . . , Dn#im+n} and SK ∪ SD ⊆ S.
ωt-Tokenize inference rule:

Γ I Ω J A#i, S `
#

Γ I A, Ω J S `

A usual proviso for quantifier elimination is assumed: i must be a brand new integer.
ωt-Apply inference rule10:

Γ I B, Ω J SK , S `
\ ⇔

Γ I Ω J SK , SD, S `

with (K1, . . . , Km\D1, . . . , Dn ⇔ B) in Γ and SK = {K1#i1, . . . , Km#im} and SD =
{D1#im+1, . . . , Dn#im+n}.
ωt-true Apply inference rule:

Γ I Ω J SK , S `
\ ⇔

Γ I Ω J SK , SD, S `

with (K1, . . . , Km\D1, . . . , Dn ⇔ true) in Γ and SK = {K1#i1, . . . , Km#im} and SD =
{D1#im+1, . . . , Dn#im+n}.

We define also what are a ωt proof tree and an ωt proof.

I Definition 18 (ωt proof tree and ωt proof). The set of ωt proof trees is the least set of
trees containing all one-node trees labeled with an ωt sequent, and closed under the rules
of Definition 17 in the following sense: For any ωt proof tree ∇ whose root is labeled with
sequent ωt, s (and whose unique leaf is labeled with sequent s′′) and for any instance of an
inference rule s

s′ of Definition 17, the tree ∇s′ is an ωt proof tree whose root is labeled with s′

(and whose unique leaf is labeled with s′′).
An ωt proof of a sequent s is any ωt proof tree whose root is labeled with s and whose

unique leaf is labeled with an ωt axiom.

10 If B is the sequence B1, . . . , Bp, p > 0 then B, Ω means {B1, . . . , Bp}] Ω.

I. Stéphan 4:17

The following lemma expressing the completeness of the ωt system w.r.t. the ωt semantics
is straightforward.

I Lemma 19 (Completeness of the ωt system w.r.t. ωt semantics). Let Γ be a program, Ω
and Ω′ two goals, S and S′ two stores, c and c′ integers such that c ≤ c′, H and H ′ two
propagation histories such that H ⊆ H ′.

If 〈Ω, S, H〉c ∗t 〈Ω′, S′, H ′〉c′ is an ωt derivation then there exists an ωt proof tree whose
root is (Γ I Ω J S `) and such that there is only one sequent leaf (Γ I Ω′ J S′ `).

The following lemma expressing the soundness of the ωt system w.r.t. the ωt semantics is
a little more difficult since the policy applied to avoid trivial loops has to be maintained.

I Lemma 20 (Soundness of ωt system w.r.t. ωt semantics). Let Γ be a program, Ω and Ω′
two multi-sets of constraints, Ω# and Ω′# two multi-sets of identified constraints and H a
set of identities of instantiated rules.

If (Γ I Ω# J S `) admits an ωt proof tree such that there is only one sequent leaf
(Γ I Ω′# J S′ `) with no identity of an instantiated rule in the ωt proof tree appearing twice
nor in H, then there exists an ωt derivation 〈Ω, S, H〉i ∗t 〈Ω′, S′, H ′〉i′+1 with i (resp. i′)
the integer introduced by the first (last) instance of the ωt-Tokenize inference rule in the ωt

proof tree and H ′ is the union of H and all the identities of the instantiated rules of the ωt

proof tree.

The following theorem of completeness and soundness of the ωt system w.r.t. the ωt

semantics is a direct corollary of the two previous lemmas.

I Theorem 21 (Soundess and completeness of ωt system w.r.t. ωt semantics). Let Γ be a
program and Ω an initial goal.
〈Ω, ∅, ∅〉1 admits a successful ωt derivation if and only if (Γ I Ω J `) admits an ωt

proof with no identity of instantiated rule appearing twice.

I Lemma 22 (Completeness of ωl system w.r.t. ωt system). Let Γ be a CHR program and
B1, . . . , Bp some constraints.

If the ωt sequent (Γ I B1, . . . , Bp J `) admits an ωt proof with a last sequent
(Γ I J S `) then the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof.

I Lemma 23 (Soundness of ωl system w.r.t. ωt system). Let Γ be a CHR program and
B1, . . . , Bp some constraints.

If the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof then the ωt sequent
(Γ I B1, . . . , Bp J `) admits an ωt proof with a last sequent (Γ I J S `).

I Theorem 24 (Soundness and completeness of ωl system w.r.t. ωt system). Let Γ be a CHR
program and B1, . . . , Bp some constraints.

The ωt sequent (Γ I B1, . . . , Bp J `) admits an ωt proof with a last sequent (Γ I J S `)
if and only if the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof.

Proof of Theorem 24. Direct consequence of Lemmas 22 and 23. J

Proof of Theorem 7. Direct consequence of Theorems 21 and 24. J

Proof of Theorem 8. The soundness is a direct consequence of Theorem 7. J

ICLP 2018

CHRvis: Syntax and Semantics
Nada Sharaf
The German University in Cairo, Egypt
nada.hamed@guc.edu.eg

Slim Abdennadher
The German University in Cairo, Egypt
slim.abdennadher@guc.edu.eg

Thom Frühwirth
Ulm University, Germany
thom.fruehwirth@uni-ulm.de

Abstract
The work in the paper presents an animation extension (CHRvis) to Constraint Handling Rules
(CHR). Visualizations have always helped programmers understand data and debug programs.
A picture is worth a thousand words. It can help identify where a problem is or show how
something works. It can even illustrate a relation that was not clear otherwise. CHRvis aims
at embedding animation and visualization features into CHR programs. It thus enables users,
while executing programs, to have such executions animated. The paper aims at providing the
operational semantics for CHRvis. The correctness of CHRvis programs is also discussed.

2012 ACM Subject Classification Human-centered computing → Visualization systems and
tools

Keywords and phrases Constraint Handling Rules, Visualization, Animation

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.5

1 Introduction

Animation tools are considered as a basic construct of programming languages. They are
used to visualize the execution of a program. They provide users with a simple and intuitive
method to debug and trace programs. This paper presents an extension to Constraint
Handling Rules (CHR). The extension adds new visual features to CHR. It enables users to
animate executions of CHR programs.

CHR [9, 8] has evolved over the years into a general purpose language. Originally, it
was proposed for writing constraint solvers. Due to its declarativity, it has, however, been
used with different algorithms such as sorting algorithms, graph algorithms, ... etc. CHR
lacked tracing and debugging tools. Users were only able to use the textual trace facility of
SWI-Prolog as shown in Figure 1 which is hard to follow especially with big programs.

Two types of visual facilities are important for a CHR programmer/beginner. Firstly, the
programmer would like to get a visual trace showing which CHR rule gets applied at every
step and its effect. Secondly, since CHR has developed into a general purpose language, it has
been used with different types of algorithms such as sorting and graph algorithms. It is thus
important to have a visual facility to animate the execution of the algorithms rather than
just seeing the rules being executed. CHR lacked such a tool. The tool should be able to
adapt with the execution nature of CHR programs where constraints are added and removed
continuously from the constraint store.

© Nada Sharaf, Slim Abdennadher, and Thom Frühwirth;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 5; pp. 5:1–5:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nada.hamed@guc.edu.eg
mailto:slim.abdennadher@guc.edu.eg
mailto:thom.fruehwirth@uni-ulm.de
https://doi.org/10.4230/OASIcs.ICLP.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 CHRvis: Syntax and Semantics

(a) Using the normal trace option. (b) Using the chr_trace option.

Figure 1 Current Tracing Facilities in SWI-Prolog.

Several approaches have been devised for visualizing CHR programs and their executions.
In [2], a tool called VisualCHR was proposed. VisualCHR allows its users to visually debug
constraint solving. The compiler of JCHR [13] (on which VisualCHR is based) was modified.
The visualization feature was thus not available for Prolog versions, the more prominent
implementation of CHR. [3] introduced a tool for visualizing the execution of CHR programs.
It was able to show at every step the constraint store and the effect of applying each CHR
rule in a step-by-step manner. The tool was based on the SWI-Prolog implementation of
CHR. Source-to-source transformation was used in order to eliminate the need of doing any
changes to the compiler. The tool could thus be deployed directly by any user.

Despite of the availability of such visualization tools, CHR was still missing a system
for animating algorithms. The available tools were able to show at each point in time
the executed rule and the status of the constraint store [3, 1]. However, the algorithm
implemented had no effect on the produced visualization. Existing algorithm animation tools
could not be adopted with CHR. For example, one of the available tools is XTANGO [16]
which is a general purpose animating system. However, the algorithm should be implemented
in C or another language such that it produces a trace file to be read by a C program
driver making it difficult to use with CHR. Due to the wide range of algorithms implemented
through CHR, an algorithm-based animation was needed. Such animation should show at
each step in time the changes to the data structure affected by the algorithm.

The paper presents a different direction for animating CHR programs. It allows users to
animate any kind of algorithm implemented in CHR. This direction thus augments CHR with
an animation extension. As a result, it allows a CHR programmer to trace the program from
an algorithmic point of view independent of the details of the execution of its rules. The
formal analysis of the new extension is presented in the paper. The paper thus presents a new
operational semantics of CHR that embeds visualization into its execution. The formalism
is able to capture not only the behavior of the CHR rules, it is also able to represent the
graphical objects associated with the animation. It is used to prove the correctness of the
programs extended with animation features. To eliminate the need of users learning the new
syntax for using the extension, a transformation approach is also provided.

The paper is organized as follows: Section 2 introduces CHR. Section 3 introduces the new
extension. In Section 3.2, the formalization is given by introducing ωvis, a new operational
semantics for CHR that accounts for annotation rules. Conclusions and directions for future
work are presented at the end of the paper.

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:3

2 Constraint Handling Rules

CHR was initially developed for writing constraint solvers [9, 8, 10]. The rules of a CHR
program keeps on rewriting the constraints in the constraint store until a fixed point is
reached. At that point no CHR rules could be applied. The constraint store is initialized by
the constraints in the query of ths user. CHR has implementations in different languages
such as Java, C and Haskell. The most prominent implementation is the Prolog one. A CHR
program has two types of constraints: user-defined/CHR constraints and built-in constraints.
CHR constraints are defined by the user at the beginning of a program. Built-in constraints,
on the other hand, are handled by the constraint theory (CT) of the host language. A CHR
program consists of a set of “simpagation rules”. A simpagation rule has the following format:

optional_rule_name @ Hk \ Hr ⇔ G | B.

Hk and Hr represent the head of the rule. The body of the rule is B. The guard G represents
a precondition for applying the rule. A rule is only applied if the constraint store contains
constraints that match the head of the rule and if the guard is satisfied. As seen from the
previous rule, the head has two parts: Hk and Hr. The head of a rule could only contain
CHR constraints. The guard should consist of built-in constraints. The body, on the other
hand, can contain CHR and built-in constraints. On applying the rule, the constraints in
Hk are kept in the constraint store. The constraints in Hr are removed from the constraint
store. The body constraints are added to the constraint store.

There are two special kinds of CHR rules: propagation rules and simplification rules. A
propagation rule has an empty Hr. A propagation rule does not remove any constraint from
the constraint store. It has the following format:

optional_rule_name @ Hk ⇒ G | B.

A simplification rule on the other hand has an empty Hk. A simplification rule removes all
the head constraints from the constraint store. A simplification rule has the following format:

optional_rule_name @ Hr ⇔ G | B.

The following program aims at sorting numbers in an array/list. Each number is
represented by the constraint cell(I,V). I represents the index and V represents the value
of the element. The program contains one rule: sort_rule. It is applied whenever the
constraint store contains two cell constraints representing two unsorted elements. The
guard makes sure that the two elements are not sorted with respect to each other. The
element at index I1 has a value (V1) that is greater than the value (V2) of the element at
index I2. I1 is less than I2. Thus, V1 precedes V2 in the array despite of the fact that it is
greater than it. Since sort_rule is a simplification rule, the two constraints representing
the unsorted elements are removed from the constraint store. Two cell constraints are
added through the body of the rule to represent the performed swap to sort the two elements.
Successive applications of the rule makes sure that any two elements that are not sorted with
respect to each other are swapped. The fixed point is reached whenever sort_rule is no
longer applicable. At this point, the array is sorted. The program is shown below:

:-chr_constraint cell/2.
sort_rule @ cell(I1,V1), cell(I2,V2) <=> I1<I2,V1>V2 |

cell(I2,V1), cell(I1,V2).

ICLP 2018

5:4 CHRvis: Syntax and Semantics

2.1 Refined Operational Semantics ωr

In the theoretical semantics of CHR (ωt), a state is represented by the tuple 〈G, S, B, T 〉Vn
[9, 4]. G represents the goal store. It initially contains the query of the user. S is the
CHR constraint store containing the currently available CHR constraints. B, on the other
hand, is the built-in store with the built-ins handled by the host language (Prolog in this
case). The propagation history, T , holds the names of the applied CHR rules along with the
identifiers of the CHR constraints that activated the rules. T is used to eliminate the trivial
nontermination problem. Each CHR constraint is associated with an identifier. n represents
the next available identifier. V represents the set of global variables. Such variables are the
ones that exist in the initial query of the user. V does not change during execution, it is thus
omitted throughout the rest of the paper. A variable v /∈ V is called a local variable [12].

I Definition 1. The function chr is defined such that chr(c#n) = c. It is extended into
sequences and sets of CHR constraints. Likewise, the function id is defined such that id(c#n)
= n. It is also extended into sequences and sets of CHR constraints.

The refined operational semantics [7, 9] is adapted in most implementations of CHR. It
removes some of the sources of the non-determinism that exists in the theoretical operational
semantics (wt). In wt the order in which constraints are processed and the order of rule
application is non-deterministic. However, in wr, rules are executed in a top-down manner.
Thus, in the case where there are two matching rules, wr ensures that the rule that appears
on top is executed. Each atomic head constraint is associated with a number (occurrence).
Numbering starts from 1. It follows a top-down approach as well. For example, a CHR
program to find the minimum value is numbered as follows:

remove_dup @ min(X)_2 \ min(X)_1 <=> true.
remove_min @ min(X)_4 \ min(Y)_3 <=> X<Y | true.

I Definition 2. The active/occurrenced constraint c#i : j refers to a numbered constraint
that should only match with occurrence j of the constraint c inside the program. i is the
identifier of the constraint [7].

A state in wr is the tuple < A, S, B, T >n. Unlike wt, the goal A is a stack instead
of a multi-set. S, B, T and n have the same interpretation as an wt state. In the refined
operational semantics, constraints are executed similar to procedure calls. Each constraint
added to the store is activated. An active constraint searches for an applicable rule. The rule
search is done in a top-down approach. If a rule matches, the newly added constraints (from
the body of the applied rule) could in turn fire new rules. Once all rules are fired, execution
resumes from the same point. Constraints in the constraint store are reconsidered/woken if
a newly added built-in constraint could affect them (according to the wakeup policy). An
active constraint thus tries to match with all the rules in the program. Table 1 shows the
transitions of wr.

Solve+Wake: This transition introduces a built-in constraint c to the built-in store. In
addition, all constraints that could be affected by c (S1 in this case) are woken up by adding
them on top of the stack. These constraints are thus re-activated. A constraint where all
its terms have become ground will not be thus woken up by the implemented wake-up
policy since it is never affected by a new built-in constraint. vars (S0) ⊆ fixed (B) where
fixed (B) represents the variables fixed by B.
Activate: This transition introduces a CHR constraint into the constraint store and
activates it. The introduced constraint has the occurrence value 1 as a start.

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:5

Table 1 Transitions of ωr.

1. Solve+wakeup : 〈[c|A] , S0 ∪ S1, B, T 〉n 7→solve+wake 〈S1 + A, S0 ∪ S1, B′, T 〉n

given that c is a built-in constraint and CT |= ∀((c ∧ B ↔ B′))
and wakeup (S0 ∪ S1, c, B) = S1

2. Activate 〈[c|A] , S, B, T 〉n 7→activate 〈[c#n : 1|A] , c#n ∪ S, B, T 〉n+1 given that c is a CHR con-
straint.

3. Reactivate 〈[c#i|A] , S, B, T 〉n 7→reactivate 〈[c#i : 1|A] , S, B, T 〉n given that c is a CHR constraint.
4. Apply 〈[c#i : j|A] , H1 ∪ H2 ∪ S, B, T 〉n 7→apply r

〈C + H + A, H1 ∪ S, chr (H1) = (H ′
1) ∧ chr (H2) = (H ′

2) ∧ g ∧ B , T ∪ {(r, id (H1) + id (H2))}〉n

given that the jth occurrence of c is part of the head of the re-named apart rule with variables x′:
r @ H ′

1 \ H ′
2 ⇔ g | C.

where CT |= ∃(B) ∧ ∀(B =⇒ ∃x′
((

chr (H1) = (H ′
1) ∧ chr (H2) = (H ′

2) ∧ g
))

and (r, id (H1) + id (H2)) /∈ T .
If c occurs in H ′

1 then H = [c#i : j] otherwise H = [].
5. Drop 〈[c#i : j|A] , S, B, T 〉n 7→drop 〈A, S, B, T 〉n

given that c#i : j is an occurrenced active constraint and c has no occurrence j in the program.
That could thus imply that all existing occurrences were tried before.

6. Default 〈[c#i : j|A] , S, B, T 〉n 7→default 〈[c#i : j + 1|A] , S, B, T 〉n

in case there is no other applicable transition.

Reactivate: The reactivate transition considers a constraint that was already added to
the store before. It became re-activated and was added to the stack. The transition
activates the constraint by associating it with an occurrence value starting with 1.
Apply: This transition applies a CHR rule r if an active constraint matched a constraint
in the head of r with the same occurrence number. If the matched constraint is part of
the constraints to be removed, it is also removed from the stack. Otherwise, it is kept in
the constraint store and the stack.
Drop: This transition removes the active constraint c#i : j from the stack when there
no more occurrences to check. This occurs when the occurrence number of the active
constraint does not appear in the program. In other words, the existing ones were tried.
Default: This transition proceeds to the next occurrence of the constraint if the currently
active one could not be matched with the associated rule. This transition ensures that
all occurrences are tried.

3 CHRvis: An Animation Extension for CHR

The proposed extension aims at embedding visualization and animation features into CHR
programs. The basic idea is that some constraints, the interesting ones, are annotated by
visual objects. Thus on adding/removing such constraints to/from the constraint store,
the corresponding graphical object is added/removed to/from the graphical store. These
constraints are thus treated as interesting events. Interesting constraints are those constraints
that directly represent/affect the basic data structure used along the program. Visualizing
such constraints thus leads to a visualization of the execution of the corresponding program.
In addition, changes in the constraint store affects the data structure and its visualization.
This results in an animation of the execution. For example, in a program to encode the
“Sudoku” game, the interesting constraints would be those representing the different cells in
the board and their values [15, 14].

The approach aims at introducing a generic animation platform independent of the
implemented algorithm. This is achieved through two features. First, annotation rules are

ICLP 2018

5:6 CHRvis: Syntax and Semantics

Figure 2 Annotating the cell/2 constraint.

used. The idea of using interesting events for animating programs was introduced before
in Balsa [6] and Zeus [5]. Both systems use the notion of interesting events. However,
users need to know many details to be able to use them. CHRvis eliminated the need for
the user to know any details about the animation. The second feature is outsourcing the
animation into an existing visual tool. For proof of concept, Jawaa [11], was used. Jawaa
provides its users with a wide range of basic structures such as circle, rectangle, line, textual
node , ... etc. Users can also apply actions on Jawaa objects such as movement, changing
a color , ... etc. In order to define interesting events and their annotations, users are
able to write their own CHRvis programs with the syntax discussed later in this section.
However, users are also provided with an interface (as shown in Figure 2) that allows them
to specify every interesting event/constraint. In that case, the programs are automatically
generated. They are then able to choose the visual object/action (from the list of Jawaa
objects/actions) to link the constraint to. Once they make a choice, the panel is populated
with the corresponding parameters. Parameters represent the visual properties of the object
such as: color, x-coordinate, ... etc. Users have to specify a value for each parameter. A
value could be one of/combinations of:
1. a constant value e.g. 100, blue, ... etc.
2. the function valueOf/1. valueOf(X) outputs the value of the argument X such that X is

one of the arguments of the interesting constraint.
3. the function prologValue/1. prologValue(Exp) outputs the value of the argument “X”

computed through the mathematical expression Exp.
4. The keyword random that generates a random number.

3.1 Extended Programs
This section introduces the syntax of the CHR programs that are able to produce animations
on execution. In addition to the basic constructs of a CHR program, the extended version
needs to specify the graphical objects to be used throughout the programs. In addition, the
interesting constraints and their associations with graphical objects should be described.

3.1.1 Syntax of CHRvis

The annotation rules that associate CHR constraint(s) with visual objects have the following
format:
g opt_rule_name @ Hvis ⇒ Condition | graphical_obj_name (par1, par2, . . . , parn) .

Hvis contains either one interesting constraint or a group of interesting constraints that are
associated with a graphical object. Similar to normal CHR rules, graphical annotation rules

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:7

could have a pre-condition that has to be satisfied for the rule to be applied. The literal
g is added at the beginning of the rule to differentiate between CHR rules and annotation
rules. A CHRvis program thus has two types of rules. There are the normal CHR rules and
the annotation rules responsible for associating CHR constraint(s) with graphical object(s).
Moreover, there are meta-annotation rules that associate CHR rules with graphical object(s).
In this case, instead of associating CHR constraint(s) with visual object(s), the association
is for a CHR rule. In other words, once such rule is executed the associated visual objects
are produced. The association is thus done with the execution of the rule rather than the
generation of a new CHR constraint. The rule annotation is done through associating a rule
with an auxiliary constraint. The auxiliary constraint has a normal constraint annotation
rule with the required visual object. Such meta-annotation rule has the following format:

g opt_rule_name @ chr_rule_name ⇒ Condition | aux_constraint (par1aux
, . . . , parmaux

) .

g aux_constraint (par1aux
, . . . , parmaux

) ⇒ graphical_obj_name (par1, par2, . . . , parn) .

The CHRvis program has to determine whether head constraints affect the visualization.
If this is the case, the removed head constraints would result in removing the associated
objects. In this case, head constraints should be comminicated to the tracer, Thus, a rule for
comm_head/1 has to be added to the CHRvis program.
The rule (comm_head(T) ==> T=true.) means that head constraints are to be communicated
to the tracer. On the other hand, the rule (comm_head(T) ==> T=false.) means that the
removed head constraints should not affect the visualization.

The program provided in Section 2 aims at sorting a list of numbers. In order to animate the
execution, the elements of the list should be visualized. Changes of the elements lead to a
change in the visualization and thus animating the algorithm. The interesting constraint in
this case is the cell constraint. As shown in Figure 2, every cell(Index, Value) constraint
was associated with a rectangular node whose height is a factor of the value of the element.
The x-coordinate is a factor of the index. That way, the location and size of a node represent
an element of the array. The new CHRvis program is:

:-chr_constraint cell/2.
:-chr_constraint comm_head/1.
comm_head(T) ==> T=true.
sort_rule @ cell(I1,V1), cell(I2,V2) <=> I1<I2,V1>V2 |

cell(I2,V1), cell(I1,V2).
g ann_rule_cell @ cell(Index,Value) ==> node(valueOf(Value),

valueOf(Index)*12+2,
50,10,valueOf(Value)*5 ,1,valueOf(Value),
black, green, black, RECT).

Figure 3 shows the result of running the query cell(0,7),cell(1,6),cell(2,4). As shown
from the taken steps, each number added to the list and thus to the constraint store adds a
corresponding rectangular node. Once cell(0,7) and cell(1,6) are added to the constraint
store, the rule sort_rule is applicable. Thus, the two constraints are removed from the
store. The rule adds cell(1,7) and cell(0,6) to the constraint store.1

1 More examples are available through met.guc.edu.eg/chrvis/index.aspx.

ICLP 2018

met.guc.edu.eg/chrvis/index.aspx

5:8 CHRvis: Syntax and Semantics

(a) adding cell(0,7),
cell(1,6) to the store.

(b) removing cell(0,7),
cell(1,6) from the store.

(c) adding cell(1,7),
cell(0,6) to the store.

(d) adding cell(2,4) to
the store.

(e) removing cell(0,6)
and cell(2,4) to the store.

(f) adding cell(2,6). (g) removing cell(1,7),
cell(2,6).

(h) adding cell(2,7),
cell(1,6) and cell(0,4).

Figure 3 Sorting an array of numbers.

Afterwards, cell(2,4) is added to the store. At this point cell(0,6) and cell(2,4)
activate sort_rule and are removed from the constraint store. The rule first adds cell(2,6)
to the store. At this point cell(1,7) and cell(2,6) activate sort_rule again. Thus
they are both removed from the store. The constraints cell(2,7), cell(1,6) are added.
Afterwards, the last constraint cell(0,4) is added to the store. As seen from Figure 3,
using annotations for constraints has helped animate the execution of the sorting algorithm.
However, in some of the steps, it might not have been clear which two numbers are being
swapped. In that case it would be useful to use an annotation for the rule sort_rule instead
of only annotating the constraint cell. The resulting program looks as follows:

:-chr_constraint cell/2.
:-chr_constraint comm_head/1.

comm_head(T) ==> T=false.
sort_rule @ cell(I1,V1), cell(I2,V2) <=> I1<I2,V1>V2 |

cell(I2,V1), cell(I1,V2).
g ann_rule_cell @ cell(Index,Value) ==> node(nodevalueOf(Value),

valueOf(Index)*12+2,50,10,
valueOf(Value)*5 , 1, valueOf(Value), black,
green, black, RECT).

g swap(I1,V1,I2,V2) ==> changeParam(nodevalueOf(V1),bkgrd,pink)
g swap(I1,V1,I2,V2) ==> changeParam(nodevalueOf(V2),bkgrd,pink)
g swap(I1,V1,I2,V2) ==> moveRelative(nodevalueOf(V1),

(valueOf(I2)-valueOf(I1))*12,0)
g swap(I1,V1,I2,V2) ==> moveRelative(nodevalueOf(V2),

(valueOf(I2)-valueOf(I1))*(-12),0)
g swap(I1,V1,I2,V2) ==> changeParam(nodevalueOf(V1),bkgrd,green)
g swap(I1,V1,I2,V2) ==> changeParam(nodevalueOf(V2),bkgrd,green)

g sort_rule ==> swap(I1,V1,I2,V2).

The annotations make sure that once two numbers are swapped, they are first marked with a
different color (pink in this case). The two rectangular bars are then moved. The bar on the

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:9

(a) after adding cell(0,7),
cell(1,6) to the store,
they are marked to be
swapped. (b) swapping 7 and 6. (c) 7 and 6 are swapped. (d) cell(2,4) is added.

(e) 6 and 4 are marked
to be swapped.

(f) swapping 4 and 6. (g) 7 and 6 are marked
to be swapped.

(h) swapping 7 and 6.

(i) final sorted list.

Figure 4 Sorting an array of numbers through a rule annotation.

left is moved to the right. The bar on the right is moved to the left (negative displacement).
The space between the start of one node and the start of the next node is 12 pixels.

Thus the displacement is calculated as the difference between the two indeces multiplied
by 12. After the swap is done, the two bars are colored back into green. The result of
executing the query: cell(0,7),cell(1,6),cell(2,4) is shown in Figure 4.

3.2 Animation Formalization
The rest of the section offers a formalization of the animation to be able to run CHRvis

programs and reason about their correctness. The basic idea is introducing a new “graphical”
store. CHRvis adds, besides the classical constraint store of CHR, a new store called the
graphical store. As implied by the name, the graphical store contains graphical/visual objects.
Such objects are the visual mappings of the interesting constraints. Over the course of the
program execution, and as a result of applying the different rules, the constraint store and
the graphical store would change. As introduced before, the change of the visual objects leads
to an animation of the program. The rest of the section introduces some needed definitions.
It then proceeds to show the transitions of the new operational semantics.

I Definition 3. In CHRvis, a state is represented by a tuple 〈G, S, Gr, B, T, H_ann〉n.
G, S, B, T , and n have the same meanings as in a normal CHR state (goal store, CHR
constraint store, built-in store, propagation history and the next available identification
number) introduced in Section 2.1. Gr is a store of graphical objects. H_ann is the history
of the applications of the visual annotation rules. Each element in H_ann has the following
format: 〈rule_name, Head_ids, Object_ids〉 where

rule_name represents the name of the fired annotation rule.

ICLP 2018

5:10 CHRvis: Syntax and Semantics

Head_ids contain the ids of the head constraints that fired the annotation rule.
Object_ids are the ids of the graphical objects added to the graphical store through
firing rule_name using Head_ids.

I Definition 4. For a sequence Sq = (c1#id1, . . . , cn#idn), the function
get_constraints (Sq) = (c1 . . . , cn).

I Definition 5. Two sequences A and B are equivalent: A
.= B if

1. For every X, if X exists N times in A such that N > 0, then X exists N times in B.
2. For every Y , if Y exists N times in B such that N > 0, then Y exists N times in A.

I Definition 6.

The function output_graphical_object(c(Arg0, . . . , Argn), {Arg′0, . . . , Arg′n},
output(Object, OArg0, . . . , OArgk)) = graphical_object(Actual0, . . . , Actualk) such that:

graphical_object = Object.
Each parameter Actualn = get_actual (OArgn) such that

if OArgn is a constant value then get_actual (OArgn) = OArgn.
if OArgn = valueOf (Argm) then get_actual (OArgn) = (Arg′n).
if OArgn = prologV alue (Expr) then get_actual (OArgn) = X where Expr is
evaluated in SWI-Prolog and binds the variable X to a value.
if OArgn = random , then get_actual (OArgn) is a randomly computed number.

I Definition 7.

The function
generate_new_ann_history (Graph_obj, Obj_id, rule_name, Head_id, H_ann) =
H ′_ann such that: in the case where 〈rule_name, Head_id, Objects_ids〉 ∈ H_ann,
H ′_ann = H_ann− 〈rule_name, Head_id, Objects_ids〉
∪〈rule_name, Head_id, Objects_ids ∪{Obj_id}〉,

I Definition 8.

The function remove_gr_obj (G_store, Rem_head_id, H_ann) = G′_store such that: in
the case where there is some Tuple T : 〈rule_name, Head_ids, Objects_ids〉 such that
T ∈ H_ann ∧Rem_head_id ⊆ Head_ids.
In this case, G′_store = G_store− ∪i (Obji where Obji ∈ Objects_ids).

I Definition 9.

The function contains (H_ann, 〈rule, Headids〉) is:
true in the case where H_ann contains a tuple of the form 〈rule, Headids, Objects〉.
false in the case where H_ann does not contain a tuple of the form
〈rule, Headids, Objects〉.

Table 2 shows the basic transitions of ωvis. To make the transitions easier to follow,
table 2 shows the transitions needed to run CHR programs with constraint annotation
rules. Annotations of CHR rules are thus discarded from the set of transitions. ωvis

allows for running programs that contain constraint annotations. The three transitions
apply_annotation, draw and updatestore are responsible for dealing with the graphical
store and its constituents. The transition, apply_annotation, applies a constraint annotation
rule. The rest of the transitions, such as solve, introduce and apply, have the same behavior
as in ωr. These transitions do not affect the graphical store or the application history of the
annotation rules. The transitions affecting the graphical store are:

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:11

Table 2 Transitions of ωvis.

1. Solve+wakeup:
〈[c|A] , S0 ∪ S1, Gr, B, T, H_ann〉n 7→solve+wake 〈S1 + A, S0 ∪ S1, Gr, B′, T, H_ann〉n

given that c is a built-in constraint and CT |= ∀
((

c ∧ B ↔ B′
))

and wakeup (S0 ∪ S1, c, B) = S1

2. Activate:
〈[c|A] , S, Gr, B, T, H_ann〉n 7→activate 〈[c#n : 1|A] , {c#n} ∪ S, Gr, B, T, H_ann〉n+1
given that c is a CHR constraint.

3. Reactivate:
〈[c#i|A] , S, Gr, B, T, H_ann〉n 7→reactivate 〈[c#i : 1|A] , S, Gr, B, T, H_ann〉n

given that c is a CHR constraint.
4. Draw:

〈[〈Obj#〈r, id (H)〉|A] , S, Gr, B, T, H_ann〉n 7→draw

〈A, S, Gr ∪ {Obj#n}, B, T, H_ann′〉n+1
given that Obj is a graphical object: graphical_object (Actual0, . . . , Actualk).
and H_ann′ = generate_new_ann_history (Obj, n, r, id (H) , H_ann)
The actual parameters of graphical_object are used to visually render the object.

5. Update Store:
〈[〈Obj#〈r, id (H)〉|A] , S, Gr, B, T, H_ann〉n 7→updatestore 〈A, S, Gr′, B, T, H_ann〉n

given that Obj is a graphical action: graphical_action (Actual0, . . . , Actualk).
Gr′ = update_graphical_store (Gr, graphical_action (Actual0, . . . , Actualk))
The function update_graphical_store uses the actual parameters of graphical_action to update
the attributes of the graphical objects available in the graphical store tht are affected by the action.

6. Apply_Annotation:
〈[c#i : j|A] , H ∪ S, Gr, B, T, H_ann〉n 7→apply_annotation

〈[Obj#〈r, id (H)〉, c#i : j|A] ,H ∪ S, Gr, B, T, H_ann ∪ {〈r, id (H) , {}〉}〉n

where there is: a renamed, constraint annotation rule with variables y′ of the form:
g r @ H ′ ==> Condition | Obj′

where c is part of H ′ and
(CT) |= ∃(B)
∧ ∀(B ⇒ ∃y′(chr(H) = (H ′) ∧ Condition∧ output_graphical_object(H ′, y′, Obj′) = Obj))
and ¬(contains(H_ann, (r, id(H))))†

7. Apply:
〈[c#i : j|A] , Hk ∪ Hr ∪ S, Gr, B, T, H_ann〉n 7→apply

〈C + H + A, Hk ∪ S, Gr, chr (Hk) = (H ′
k) ∧ chr (Hr) = (H ′

r) ∧ G ∧ B
T ∪ {〈r, id (Hk) + id (Hr)〉}, H_ann〉n where:

there is no applicable constraint annotation rule for c (or part of it).
(i.e. every applicable rule has already been applied).
In other words, for renamed-apart every annotation rule with variables y′:
g r @ H ′ ==> Cond | Obj′ where,
c is part of H ′ ∧(CT) |= ∃ (B) ∧ ∀

(
B =⇒ ∃y′(chr (H) = (H ′) ∧ Condition)

)
, it is already the case that: (contains (H_ann, (r, id (H)))) = true
There is a renamed rule in Pvis with the form r @ H ′

k \ H ′
r ⇔ G | C.

with variables x′ and the jth occurrence of c is part of the head of the renamed rule,
where CT |= ∃ (B) ∧ ∀(B =⇒ ∃x′

(
(chr (Hk) = (H ′

k) ∧ chr (Hr) = (H ′
r) ∧ G)

)
and 〈r, id (Hk) + id (Hr)〉 /∈ T .
If c occurs in H ′

k then H = [c#i : j] otherwise H = [].
If the program communicates the head constraints (i.e. contains comm_head(T) ==> T=true)
then Gr′ = remove_gr_obj (G, id (Hr) , H_ann)

8. Drop:
〈[c#i : j|A] , S, Gr, B, T, H_ann〉n 7→drop 〈A, S, Gr, B, T, H_ann〉n

given that c#i : j is an occurrenced active constraint
and c has no occurrence j in the program
and that there is no applicable constraint annotation rule for the constraint c.
That could thus imply that all existing ones were tried before.

9. Default:
〈[c#i : j|A] , S, Gr, B, T, H_ann〉n 7→default 〈[c#i : j + 1|A] , S, Gr, B, T, H_ann〉n

in case there is no other applicable transition.

† For simplicity, the annotation rule is considered to contain one graphical output object. In general,
the rule could associate constraint(s) with multiple objects.

ICLP 2018

5:12 CHRvis: Syntax and Semantics

1. Draw: The new transition draw adds a graphical object (Obj) to the graphical store.
Since multiple copies of a graphical object are allowed, each object is associated with a
unique identifier.

2. Update Store: This transition applies a graphical action to the objects in the graphical
store. This could thus change some of the aspects of the drawn graphical object(s).

3. Apply_Annotation: The Apply_Annotation transition applies a constraint annotation
rule (ann_rule). An annotation rule is applicable if the CHR constraint store contains
matching constraints. The condition of the rule has to be implied by the built in store
under the matching. The built in constraint store B is also first checked for satisfiability.
For the rule to be applied, it should not have appeared in the history of applied annotation
rules with the same constraints i.e. it should be the first time the constraint(s) fire this
annotation rule. Executing the rule adds to the goal the graphical object in the body
of the executed annotation rule. The history of annotation rules is updated accordingly
with the name of the rule in addition to the id(s) of the CHR constraint(s) in the head. In
fact, this transition has a higher precedence than the transition apply. Thus in the case
where an annotation rule and a CHR rule are applicable, the annotation rule is triggered
first. The precedence makes sure that graphical objects are added in the intended order
to ensure producing correct animations.

I Definition 10 (Built-In Store Equivalence). Two built-in constraint stores B1 and B2 are
considered equivalent iff:
(CT) |= ∀(∃y1(B1) ↔ ∃y2(B2)) where y1 and y2 are the local variables inside B1 and B2
respectively. The equivalence thus basically ensures that there are no contradictions in the
substitutions since local variables are renamed apart in every CHR program. The equivalence
check thus ensures the logical equivalence rather than the syntactical equivalence.

I Definition 11. A CHRvis state Stvis = 〈Gvis, Svis, Grvis, Bvis, Tvis, TvisAnn〉nvis is equi-
valent to a CHR state St = 〈G, S, B, T 〉n if and only if
1. get_constraints (Gvis) .= get_constraints (G) according to Definition 5.
2. get_constraints (Stvis) .= get_constraints (S) = C according to Definition 5.
3. Bvis and B are equivalent according to Definition 10.
4. Tvis = T

5. nvis ≥ n

The idea is that a CHRvis state basically has an extra graphical store. The correspondence
check is effectively done through the CHR constraints since they are the most distinguishing
constituents of a state. Thus, the constraint store and the stack should contain the same
constraints. The propagation history should be also the same indicating that the same CHR
rules have been applied. nvis could, however, have a value higher than n. This is due to the
fact that graphical objects have identifiers. The definition of state equivalence described here
follows the properties introduced in [12]. However, it is stricter.

I Theorem 12 (Soundness). Given a CHR program P (running under ωr) along with its
user defined annotations and its corresponding PCHRvis program (running under ωvis), for
the same query Q, every derived state Schrvis

: Q 7→∗ωvis
Schrvis

has en equivalent state Schr:
Q 7→∗ωr

Schr

Proof.
Base Case:
For the initial query the two states Q, Schrvis = 〈Q, {}, {}〉 and Schr = 〈Q, {}〉 are equivalent
according to Definition 11.

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:13

Induction Hypothesis: Suppose that there are two equivalent derived states
Schrvis

= 〈A, S, Gr, B, T, H_ann〉m and Schr = 〈A, S, B, T 〉n such that Q 7→i
ωvis

Schrvis
and

Q 7→j
ωr

Schr.
Induction Step:
The proof shows that any transition applicable to Schrvis

under ωvis produces a state S′chr

such that under ωr applying a transition to Schr (which is equivalent to Schrvis) produces a
state S′chr that is equivalent to Schr.
The different cases are enumerated below:
1. Applying solve+wakeup to Schrvis :

Under ωvis, solve+wakeup is applicable in the case where the stack has the form [c|A]
such that c is a built-in constraint and CT |= ∀((c ∧B ↔ B′))
and wakeup (S0 ∪ S1, c, B) = S1 such that
Schrvis

7→solve+wake S′chrvis
: 〈S1 +A, S0∪S1, Gr, B′, T, H_ann〉m. Since Schrvis

and Schr

are equivalent, Schr has an equivalent stack and built-in store according to Definition 11.
Thus the corresponding transition solve+wakeup is applicable to Schr under ωr producing
a state S′chr such that: S′chr = 〈S1 + A, S0 ∪ S1, B′, T 〉n. According to Definition 11, the
two states S′chrvis

and S′chr are equivalent.
2. Applying Activate:

Such a transition is applicable to Schrvis
under ωvis in the case where the top of the stack

of Schrvis contains a CHR constraint c. In this case:
Schrvis

: 〈[c|A] , S, Gr, B, T, H_ann〉m 7→activate

S′chrvis
: 〈[c#m : 1|A] , {c#m} ∪ S, Gr, B, T, H_ann〉m+1

given that c is a CHR constraint.
The equivalent state Schr has the same stack triggering the transition Activate under
ωr producing a state S′chr : 〈[c#n : 1|A] , {c#n} ∪ S, Gr, B, T, H_ann〉n+1 which is also
equivalent to S′chrvis

3. Applying Reactivate:
In this case, Schrvis

7→reactivate S′chrvis
〈[c#i : 1|A] , S, Gr, B, T, H_ann〉m

such that Schrvis
= 〈[c#i|A] , S, Gr, B, T, H_ann〉m and c is a CHR constraint.

The equivalent state Schr has an equivalent stack triggering the transition reactivate
under ωr. The transition application produces S′chr : 〈[c#i : 1|A] , S, B, T 〉n which is also
equivalent to S′chrvis

.
4. According to Definition 11 and since Schrvis is equivalent to Schr, they both have the

same stack. The transition Draw is only applicable if the top of the stack contains a
graphical object. Since the stack of Schr never contains graphical objects and since it is
equivalent to Schrvis

, the stack of Schrvis
at this point does not contain graphical objects

as well. Thus, in this case, the transition draw would not be applicable to Schrvis
under

ωvis.
5. Similarly, according to Definition 11 and since Schrvis is equivalent to Schr, the stack of

Schrvis
at this point does not contain graphical actions since both states should have the

same stack. The transition update store is only applicable if the top of the stack contains
a graphical action. Thus, similarly, at this point, the transition update store could not be
applied to Schrvis

under ωvis.
6. Apply Annotation Rule Transition:

The transition Apply Annotation is triggered when the stack has on top a constraint
associated with an annotation rule. The constraint store should contain constraints
matching the head of the annotation rule such that this rule was not fired with those
constraint(s) before and the pre-condition of the annotation rule is satisfied. Thus, the

ICLP 2018

5:14 CHRvis: Syntax and Semantics

rule could be associated with more than one constraint including the one on top of the
stack. The constraint store should however, contain matching constraints for the rest of
the constraints in the head of the annotation rule.
Schrvis

7→apply_annotation S′chrvis
:

〈[Obj#〈r, id (H)〉|A] , H ∪ S, Gr, B, T, H_ann ∪ {〈r, id (H) , { }〉}〉m
such that ¬contains (H_ann, 〈r, id (H)〉). The renamed annotation rule with variables
x′ is :
g r @ H ′ ==> Condition | Obj′

(CT) |= ∃ (B) ∧ ∀(B =⇒ ∃x′((chr (H) =
H ′ ∧ Cond ∧ output_graphical_object (H ′, x′, Obj′) = Obj)))
Either the transition draw or update store is applicable to S′chrvis

. The output is
S′′chrvis

: 〈A, S, Gr′, T, H ′_ann〉m′ . In case, Obj is a graphical object, then H ′_ann =
generate_new_ann_history (Obj, m, r, id(H), H_ann ∪ {〈r, id (H) , {}〉})∧
Gr′ = Gr ∪ {Obj#m} ∧m′ = m + 1. In case, Obj is a graphical action, then
Gr′ = update_graphical_store (Gr, Obj) ∧Gr′ = Gr ∧m′ = m. Any transition
applicable to S′′chrvis

at this stage is covered through the rest of the cases. Thus the
application of the transition apply_annotation is considered as not to affect the
equivalence of the output state with Schr.

7. The Apply transition:
In the case where a CHR rule is applicable to Schrvis , the transition Apply is triggered
under ωvis. A CHR rule r is applicable when there is a renamed version of the rule
r with variables x′: (r @ H ′k \ H ′r ⇔ g | C.) where 〈r, id (Hk) + id (Hr)〉 /∈ T and
CT |= ∃(B) ∧ ∀(B =⇒ ∃x′(chr (Hk) = (H ′k) ∧ chr (Hr) = (H ′r) ∧ g)). In this case,
Schrvis

has the form: 〈[c#i : j|G], Hk ∪Hr ∪ S, Gr, B, T, H_ann〉m. The output state
S′chrvis

has the form
〈C + H + G, Hk ∪ S, Gr, B ∧ chr (Hk) = (H ′k) ∧ chr (Hr) = (H ′r) ∧ g, T ∪ {〈r, id (Hk) +
id (Hr)〉}, H_ann〉m. Due to the fact that Schr is equivalent to Schrvis , it has the following
form: 〈[c#i : j|G], Hk∪Hr∪S, B, T 〉n. For the same program, the CHR rule r is applicable
producing S′chr:
〈C + +H + +G, Hk ∪ S, chr (Hk) = (H ′k) ∧ chr (Hr) = (H ′r) ∧ g ∧ B, T ∪ {〈r, id (Hk) +
id (Hr)〉n}

H =
{

[c#i : j] if c occurs in H ′k

[] otherwise

We assume, without loss of generality, that the same renaming variables are used in both
cases. Due to the fact that the same CHR rule is applied for both states, the new built-in
stores are equivalent according to Definition 10. This is due to the fact that since the
original states have equivalent constraint stores, we assume without loss of generality
that the matchings in both cases are the same since the same rule was applied. Thus, the
rule in the two programs Pchr and Pchrvis

are renamed similarly. Since no annotation
rule could be applied to a non-occurrenced constraint and according to Definition 11, the
two states are equivalent.

8. Applying Drop:
In the case where Schrvis

= 〈[c#i : j|A] , S, Gr, B, T, H_ann〉m such that c has no occur-
rence j in the program and case 5 is not applicable, the transition Drop is triggered. Drop
produces the state S′chrvis

= 〈A, S, Gr, B, T, H_ann〉m
Since Schr is equivalent to Schrvis

, they both have the same stack [c#i : j|A]. Thus under

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:15

ωvis, the same transition drop is triggered producing S′chr : 〈A, S, B, T 〉n. According to
Definition 11, S′chrvis

and S′chr are equivalent as well.
9. Applying Default:

In the case where none of the above cases hold, the transition Default transforms Schrvis

to
S′chrvis

: 〈[c#i : j + 1|A] , S, Gr, B, T, H_ann〉m. Similarly the equivalent state Schr trig-
gers the same transition Default in this case. The output state S′chr : [c#i : j + 1|A] , S, B,

T 〉n is still equivalent to S′chrvis

Thus in all cases an equivalent state is produced under ωr J

I Theorem 13 (Completeness). Given a CHR program P (running under ωr) along with
its user defined annotations and its corresponding PCHRvis (running under ωvis) program,
for the same query Q, every derived state Schr: Q 7→∗ωr

Schr has an equivalent state Schrvis
:

Q 7→∗ωvis
Schrvis

.

For space limitations, the proof is given in B.

4 Conclusions

In conclusion, the paper presented a formalization for embedding animation features into
CHR programs. The new extension, CHRvis is able to allow for dynamic associations of
constraints and rules with visual objects. The annotation rules are thus activated on the
execution of the program to produce algorithm animations. Although the idea of using
interesting events was introduced in earlier work, it was (to the best knowledge of the authors)
never formalized before. In fact, no operational semantics for animation was proposed before.
The paper offered operational semantics for CHRvis. It thus provides a foundation for
formalizing the animation process in general and for CHR programs in particular. In the
future, with the availability of formal foundations through ωvis, the possibility of using
CHRvis as the base of a pure a visual representation for CHR should be investigated. A
group of students in the German University in Cairo were exposed to the classic textual tracer
and the new visual racing facility in a focus group. Most of the students stated that for them
it was hard to use the textual trace to understand how a program works. They preferred to
see the visual tracer which according to a conducted survey helped them understand what
the presented CHR programs do.

References
1 Slim Abdennadher, Ekkerhard Krämer, Matthias Saft, and Matthias Schmauss. JACK: A

java constraint kit. Electr. Notes Theor. Comput. Sci., 64:1–17, 2002.
2 Slim Abdennadher and Matthias Saft. A Visualization Tool for Constraint Handling Rules.

In In Proceedings of 11th Workshop on Logic Programming Environments, 2001.
3 Slim Abdennadher and Nada Sharaf. Visualization of CHR through Source-to-Source Trans-

formation. In Agostino Dovier and Vítor Santos Costa, editors, ICLP (Technical Commu-
nications), volume 17 of LIPIcs, pages 109–118. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2012. doi:10.4230/LIPIcs.ICLP.2012.109.

4 Hariolf Betz, Frank Raiser, and Thom Frühwirth. A Complete and Terminating Execution
Model for Constraint Handling Rules. Theory and Practice of Logic Programming, 10:597–
610, July 2010.

5 Marc H. Brown. Zeus: A System for Algorithm Animation and Multi-View Editing. In
VL, pages 4–9, 1991.

ICLP 2018

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.109

5:16 CHRvis: Syntax and Semantics

6 Marc H. Brown and Robert Sedgewick. A System for Algorithm Animation. In Proceedings
of, SIGGRAPH ’84, pages 177–186, New York, NY, USA, 1984. ACM.

7 Gregory J. Duck, Peter J. Stuckey, Maria J. García de la Banda, and Christian Holzbaur.
The Refined Operational Semantics of Constraint Handling Rules. In Bart Demoen and
Vladimir Lifschitz, editors, Logic Programming, 20th International Conference, ICLP 2004,
Saint-Malo, France, September 6-10, 2004, Proceedings, volume 3132 of Lecture Notes in
Computer Science, pages 90–104. Springer, 2004.

8 Thom Frühwirth. Theory and Practice of Constraint Handling Rules, Special Issue on
Constraint Logic Programming. Journal of Logic Programming, 37(1-3):95–138, October
1998.

9 Thom Frühwirth. Constraint Handling Rules. Cambridge University Press, August 2009.
10 Thom W. Frühwirth. Constraint Handling Rules - What Else? In Nick Bassiliades, Georg

Gottlob, Fariba Sadri, Adrian Paschke, and Dumitru Roman, editors, Rule Technologies:
Foundations, Tools, and Applications - 9th International Symposium, RuleML 2015, Ber-
lin, Germany, August 2-5, 2015, Proceedings, volume 9202 of Lecture Notes in Computer
Science, pages 13–34. Springer, 2015.

11 Willard C. Pierson and Susan H. Rodger. Web-based Animation of Data structures using
JAWAA. In John Lewis, Jane Prey, Daniel Joyce, and John Impagliazzo, editors, Pro-
ceedings of the 29th SIGCSE Technical Symposium on Computer Science Education, 1998,
Atlanta, Georgia, USA, February 26 - March 1, 1998, pages 267–271. ACM, 1998.

12 GFrank Raiser, Hariolf Betz, and Thom Frühwirth. Equivalence of CHR states revisited.
In 6th International Workshop on Constraint Handling Rules (CHR), pages 34–48, 2009.

13 Matthias Schmauss. An Implementation of CHR in Java. Master’s thesis, Master Thesis,
Institute of Computer Science, LMU, Munich, Germany, November 1999.

14 Nada Sharaf, Slim Abdennadher, and ThomW. Frühwirth. CHRAnimation: An Animation
Tool for Constraint Handling Rules. In Maurizio Proietti and Hirohisa Seki, editors, Logic-
Based Program Synthesis and Transformation - 24th International Symposium, LOPSTR
2014, Canterbury, UK, September 9-11, 2014. Revised Selected Papers, volume 8981 of
Lecture Notes in Computer Science, pages 92–110. Springer, 2014.

15 Nada Sharaf, Slim Abdennadher, and Thom W. Frühwirth. Visualization of Constraint
Handling Rules. CoRR, abs/1405.3793, 2014.

16 John Stasko. Animating algorithms with XTANGO. SIGACT News, 23(2):67–71, May
1992.

A CHRvis to CHRr Transformation Approach

The aim of the transformation is to eliminate the need of doing any compiler modifications
in order to animate CHR programs. A CHRvis program P vis is thus transformed to a
corresponding CHRr program P with the same behavior. P is thus able to produce the
same states in terms of CHR constraints and visual objects as well. A similar transformation
was introduced in [14].

As a first step, the transformation adds for every constraint constraint/n a rule of the
form:
comm_cons_constraint @ constraint (X1, X2, ..., Xn) ⇒ check (status, false) |

communicate_constraint (constraint (X1, X2, ..., Xn)) .

The extra rule ensures that every time a constraint is added to the store, the tracer
(external module) is notified. If constraint was annotated as an interesting constraint, its
corresponding annotation rule is activated producing the corresponding visual object(s). The
new rules communicate any constraint added to the constraint store.

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:17

The user can also choose to communicate to the tracer the head constraints since they
could affect the animation. A removed head constraint could affect the visualization in case
it is an interesting constraint. In this case, if the user chose to communicate head constraints,
the associated visual object, produced before, should be removed from the visual trace.2.

As a second step, the transformer adds for every compound constraint-annotation of the
form:
cons1, . . . , consn ==> annotation_constraintcons1,...,consn

(Arg1, . . . , Argm), a new rule of
the form:
compoundcons1,...,consn

@ cons1
(
Argcons11

, . . . , Argcons11x

)
, . . . , consn

(
Argconsn1

, . . . , Argconsnny

)
⇒ check (status, false) | annotation_constraintcons1,...,consn

(Arg1, . . . , Argm).
By default, a propagation rule is produced to keep cons1, . . . , consn in the constraint store.

However, the transformer could be instructed to produce a simplification rule instead. The
annotation is triggered whenever cons1, . . . , consn exist in the constraint store. Whenever this
is the case, the rule compoundcons1,...,consn is triggered producing the annotation constraint.
Since the annotation constraint is a normal CHR constraint, it is automatically communicated
to the tracer using the previous step.

As a third step, the CHR rules annotated by the user as interesting rules should be
transformed. The idea is that the CHR constraints produced by such rules should be ignored.
In other words, even if the rule produces an interesting CHR constraint, it should not trigger
the corresponding constraint annotation. Instead, the rule annotation is triggered.

Hence, to avoid having problems with this case, a generic status is used throughout
the transformed program PT rans. Any rule annotated by the user as an interesting rule
changes the status to true at execution. However, the rules added in the previous
two steps check that the status is set to false. In other words, if the interesting rule
is triggered, no constraint is communicated to the tracer since the guard of the corres-
ponding communicate_constraint rule fails. Any rule rulei@HK \ HR ⇔ G | B with
the corresponding annotation rulei ==> annotation_constraintrulei

is transformed to:
rulei@HK \ HR ⇔ G | set (status, true) , B, annotation_constraintrulei ,

set (status, false) . In addition, the transformer adds the following rule to PT rans:
comm_consannotation_constraintrulei

@ annotation_constraintrulei ⇔
communicate_constraint (annotation_constraintrulei

).
The new rule thus ensures that the events associated with the rule annotation are considered
and that all annotations associated with the constraints in the body of the rule are ignored.

The aim of the transformation process is to produce a CHRr program (Ptrans) that is able
to perform the same behavior of the corresponding CHRvis program (Pvis) which basically
contains the original CHR program P along with the constraint(s) and rule annotations.
This section shows that the transformed program, using the steps shown previously, is a
correct one. In other words, for the same query Q, Ptrans produces an equivalent state to
the one produced by P . As seen from the previous section ωvis was proven to be sound and
complete. This implies that any state reachable by ωr is also reachable by ωvis. In addition,
any state reachable by ωvis is also reachable by ωr. The focus of this section is the initial
CHR program provided by the user. The aim is to make sure that Ptrans produces the same
CHR constraints that P produces to make sure that the transformation did not change the
behavior that was initially intended by the programmer. The focus is thus to compare how
P and Ptrans perform over ωr.

2 The tracer is able to handle the problem of having multiple Jawaa objects with the same name by
removing the old object having the same name before adding the new one. This is possible even if the
removed head constraint was not communicated.

ICLP 2018

5:18 CHRvis: Syntax and Semantics

B Completeness Proof

Proof.
Base Case: For a given query Q, the initial state in ωr is Schr = 〈Q, {}, {}, {}〉1. The initial
state in ωvis is Schrvis

= 〈Q, {}, {}, {}, {}, {}〉1.3 According to Definition 11 Schr and Schrvis

are equivalent.

Induction Hypothesis:
Suppose that there are two equivalent derived states Schr = 〈A, S, B, T 〉n and Schrvis

=
〈A, S, Gr, B, T, H_ann〉m such that Q 7→i

ωr
Schr and Q 7→j

ωvis
Schrvis .

Induction Step:
According to the induction hypothesis, Schr and Schrvis

are equivalent. The rest of the proof
shows that any transition applicable to Schr in ωr produces a state that has an equivalent
state produced by applying a transition to Schrvis in ωvis. Thus, no matter how many times
the step is repeated, the output states are equivalent.

Applying solve+wakeup:
In this case, Schr 7→ S′chr such that:
Schr : 〈[c|A] , S0 ∪ S1, B, T 〉n 7→solve+wake 〈S1 + A, S0 ∪ S1, B′, T 〉n
Transition solve+wakeup is applicable if:
1. c is a built-in constraint
2. CT |= ∀((c ∧B ↔ B′))
3. wakeup (S0 ∪ S1, c, B) = S1
Schrvis(〈Stack, Schrvis , Gr, Bvis, Tvis, Tann〉m) is equivalent to Schr(〈[c|A] , S0∪S1, B, T 〉n).
Thus according to Definition 11, Stack = [c|A] ∧ Schrvis

= S0∪S1 ∧ Bvis = B ∧ Tvis = T

∧m ≥ n. Thus accordingly, the transition solve + wakeup is applicable to Schrvis under
ωvis producing S′chrvis

:〈S1 + A, S0 ∪ S1, Gr, B ∧ c, T, H_ann〉m. According to Definition
11, S′vis is equivalent to S′chr

Applying Activate:
In this case, Schr = 〈[c|A] , S, B, T 〉n where c is a CHR constraint. Thus Schr 7→activate

S′chr : 〈[c#n : 1|A] , c#n ∪ S, B, T 〉n+1.
Since Schrvis

(〈Stack, Schrvis
, Gr, Bvis, Tvis, Tann〉m) is equivalent to

Schr(〈[c|A] , S0∪S1, B, T 〉n). Thus according to Definition 11: Stack = [c|A] ∧ Schrvis
= S

∧ Bvis = B ∧ Tvis = T ∧ m ≥ n

Accordingly, Schrvis
7→activate S′chrvis

: 〈[c#m : 1|A] , {c#m} ∪ S, Gr, B, T, Tann〉m+1
which is equivalent to S′chr. (Since m ≥ n, then m + 1 ≥ n + 1).

Applying Reactivate:
The transition reactivate is applicable if the stack has on top of it an element of the form
c#i where c is a CHR constraint. In this case Schr = 〈[c#i|A] , S, B, T 〉n. Accordingly,
Schr 7→reactivate S′chr : 〈[c#i : 1|A] , S, B, T 〉n. Since Schrvis

and Schr are equivalent, then
Schrvis has the same stack. Schrvis = 〈[c#i|A] , S, Gr, B, T, Tann〉m triggers the transition
reactivate producing S′chrvis

: 〈[c#i : 1|A], S, Gr, B, T, Tann〉m which is also equivalent to
S′chr. Since c is not associated with an occurrence yet, no annotation rule is applicable at
this point.

3 Throughout the different proofs, identifiers are omitted for brevity.

N. Sharaf, S. Abdennadher, and T. Frühwirth 5:19

Applying the transition Apply
The transition Apply is triggered under ωr in the case where Schr = 〈[c#i : j|A] , H1 ∪
H2 ∪S, B, T 〉n such that the jth occurrence of c is part of the head of the re-named apart
rule with variables x′: r @ H ′1 \ H ′2 ⇔ g | C.

such that:
CT |= ∃(B) ∧ ∀(B =⇒ ∃x′(chr (H1) = (H ′1) ∧ chr (H2) = (H ′2) ∧ g))) and 〈r, id (H1) +
id (H2)〉 /∈ T .
Thus in such a case Schr 7→apply r S′chr : 〈C +H +A, H1∪S, chr (H1) = (H ′1)∧chr (H2) =
(H ′2) ∧ g∧ B, T ∪ {〈r, id (H1) + id (H2)〉}〉n

H =
{

[c#i : j] if c occurs in H ′1

[] otherwise

Due to the fact that Schr and Schrvis are equivalent, in the case where Schr triggers the
transition Apply under ωr, the same rule is also applicable under ωvis to Schrvis

. However
for Schrvis , one of two possibilities could happen:
1. There is no applicable constraint annotation rule:

This could be due to the fact that any applicable annotation rule was already executed
or that there are no applicable annotation rules at this point. In this case, the transition
apply is triggered right away under ωvis producing a state
(S′chrvis

: 〈C + H + A, H1 ∪ S, Gr, chr (H1) = H ′1 ∧ chr (H2) = H ′2 ∧ g ∧B,

T ∪ {〈r, id (H1) + id (H2)〉, H_ann}〉m) equivalent to (S′chr). The original states are
equivalent and the same rule is applied in both cases. We can assume that, without
loss of generality , in the chrvis program, the rule is renamed using the same variables
x′ resulting in the same matching. This is because the same matching should happen
to be able to apply the same rule using the given constraint stores.

2. There is an applicable annotation rule:
In this case an annotation rule (rann) for c is applicable such that:
Schrvis〈[c#i : j|A] , H1 ∪H2 ∪ S, Gr, B, T, H_ann〉m 7→apply_annotation

S′chrvis
: 〈[Obj#〈r, id (H)〉, c#i : j|A] , H1 ∪H2 ∪ S, Gr, B, T, H_ann ∪ {〈rann, id (H) , { }〉}〉m

according to the previously mentioned conditions.
At this point either the transition draw or update store is applicable such that:
S′chrvis

7→
draw

/
updatestore

S′′chrvis
: 〈[c#i : j|A] , H1 ∪H2 ∪ S, Gr′, B, T, H ′_ann〉m′

In case Obj is a graphical object, the transition draw is applied such that: Gr′ = Gr ∪
{Obj#m} ∧ m′ = m+1 ∧ H ′_ann = generate_new_ann_history(Obj, m, r, id (H) ,

H_ann ∪ {〈rann, id(H), { }〉}).
In case, Obj is a graphical action, the transition update store is applied such that:
Gr′ = update_graphical_store (Gr, Obj) ∧ m′ = m ∧ H ′_ann = H_ann ∪
{〈rann, id (H) , { }〉}
Since the two transitions, could only change the graphical stores, annotation history
and the next available identifier, the equivalence of the states is not affected.
At this point ωvis fires the transition Apply for the same CHR rule that triggered the
same transition under ωr earlier. The produced state S′′′chrvis

has the format:
〈C+H +A, H1∪S, Gr′, chr (H1) = H ′1∧chr (H2) = H ′2∧B, T ∪{〈r, id (H1)+id (H2)〉},
H ′_ann〉m′ . Similarly the same matching (local variable renaming x′) has to be
applied for the rule to fire.
Consequently, according to Definition 11, the state S′′′chrvis

is still equivalent to S′chr

ICLP 2018

5:20 CHRvis: Syntax and Semantics

Applying the transition drop:
In the case where the top of the stack has an occurrenced active constraint c#i : j

such that c has no occurrence j in the program, the transition drop is applied. Thus,
Schr : 〈[c#i : j|A] , S, B, T 〉n 7→drop S′chr : 〈A, S, B, T 〉n
Since Schrvis

and Schr are equivalent, the stack of both states have to be equivalent.
Thus Schrvis = 〈[c#i : j|A] , S, Gr, B, T, H_ann〉m. For ωvis one of two possibilities is
applicable:
1. No annotation rule is applicable. This could be either because c is not associated with

any visual annotation rules or because all such rules have been already applied. In
this case
Schrvis : 〈[c#i : j|A] , S, Gr, B, T, H_ann〉m 7→drop S′CHRvis

: 〈A, S, Gr, B, T, H_ann〉m
which is equivalent to S′chr.

2. The second possibility is the existence of an applicable annotation rule: trans-
forming Schrvis

to S′chrvis
: 〈[Obj#〈r, id (H)〉, c#i : j|A] , S, Gr, B, T, H ′_ann〉m. At

that point either draw or update store are to be applied transforming S′chrvis
to

S′′chrvis
: 〈[c#i : j|A] , S, Gr′, B, T, H ′′_ann〉m′ . At that point, the transition drop

is applicable converting S′′chrvis
to S′′′chrvis

: 〈A, S, Gr′, B, T, H ′′_ann〉m′ . S′′′chrvis
is

equivalent to S′chr.

Applying the default transition
If none of the previous cases is applicable, Schr : 〈[c#i : j|A] , S, B, T 〉n 7→default

S′chr : 〈[c#i : j + 1|A] , S, B, T 〉n.

For the equivalent Schrvis
, one of two possible cases could happen:

1. Apply annotation is not applicable:
In that case, the Default transition is directly applied transforming Schrvis

toS′chrvis

such that
〈[c#i : j|A] , S, Gr, B, T, H_ann〉m 7→default 〈[c#i : j + 1|A] , S, Gr, B, T, H_ann〉m.
The produced state (S′chrvis

) is equivalent to S′chr as well.
2. Apply annotation is applicable:

In this case an annotation rule for one of the existing constraints is applicable such
that:
Schrvis

〈[c#i : j|A] , S, Gr, B, T, H_ann〉m 7→apply_annotation

S′chrvis
: 〈[Obj#〈r, id(H)〉, c#i : j|A] , S, Gr, B, T, H ′_ann〉m according to the previ-

ously mentioned conditions.
At this point, either the transition draw or the transition update store is applicable
such that:
S′chrvis

7→draw S′′chrvis
: 〈[c#i : j|A] , S, Gr′, B, T, H ′′_ann〉m′

S′′chrvis
is still equivalent to Schr.

At the point where the transition apply_annotation is no longer applicable, the only
applicable transition is Default transforming S′′chrvis

to S′′′chrvis
such that S′′′chrvis

=
〈[c#i : j + 1|A] , S, Gr′, B, T, H ′′_ann〉m′ . According to Definition 11, S′′′chrvis

is equi-
valent to S′chr

Thus in all cases an equivalent state is produced under ωvis. J

J

Improving Candidate Quality of Probabilistic Logic
Models
Joana Côrte-Real1

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
jcr@dcc.fc.up.pt

https://orcid.org/0000-0002-1085-3264

Anton Dries
KU Leuven, Department of Computer Science
Celestijnenlaan 200A bus 2402, 3001 Leuven, Belgium
anton.dries@cs.kuleuven.be

https://orcid.org/0000-0003-2944-2067

Inês Dutra
CINTESIS and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
ines@dcc.fc.up.pt

https://orcid.org/0000-0002-3578-7769

Ricardo Rocha
CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
ricroc@dcc.fc.up.pt

https://orcid.org/0000-0003-4502-8835

Abstract
Many real-world phenomena exhibit both relational structure and uncertainty. Probabilistic
Inductive Logic Programming (PILP) uses Inductive Logic Programming (ILP) extended with
probabilistic facts to produce meaningful and interpretable models for real-world phenomena.
This merge between First Order Logic (FOL) theories and uncertainty makes PILP a very ad-
equate tool for knowledge representation and extraction. However, this flexibility is coupled with
a problem (inherited from ILP) of exponential search space growth and so, often, only a subset
of all possible models is explored due to limited resources. Furthermore, the probabilistic eval-
uation of FOL theories, coming from the underlying probabilistic logic language and its solver,
is also computationally demanding. This work introduces a prediction-based pruning strategy,
which can reduce the search space based on the probabilistic evaluation of models, and a safe
pruning criterion, which guarantees that the optimal model is not pruned away, as well as two
alternative more aggressive criteria that do not provide this guarantee. Experiments performed
using three benchmarks from different areas show that prediction pruning is effective in (i) main-
taining predictive accuracy for all criteria and experimental settings; (ii) reducing the execution
time when using some of the more aggressive criteria, compared to using no pruning; and (iii)
selecting better candidate models in limited resource settings, also when compared to using no
pruning.

2012 ACM Subject Classification Computing methodologies → Probabilistic reasoning

Keywords and phrases Relational Machine Learning, Probabilistic Inductive Logic Program-
ming, Search Space Pruning, Model Quality, Experiments

1 Funded by the FCT grant SFRH/BD/52235/2013.

© Joana Côrte-Real, Anton Dries, Inês Dutra, and Ricardo Rocha;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 6; pp. 6:1–6:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jcr@dcc.fc.up.pt
https://orcid.org/0000-0002-1085-3264
mailto:anton.dries@cs.kuleuven.be
https://orcid.org/0000-0003-2944-2067
mailto:ines@dcc.fc.up.pt
https://orcid.org/0000-0002-3578-7769
mailto:ricroc@dcc.fc.up.pt
https://orcid.org/0000-0003-4502-8835
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Improving Candidate Quality of Probabilistic Logic Models

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.6

Funding Work partially funded by the North Portugal Regional Operational Programme (NOR-
TE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European
Regional Development Fund (ERDF) as part of project NanoSTIMA (NORTE-01-0145-FEDER-
000016) and through the operation POCI-01-0145-FEDER-007746 funded by COMPETE2020
and by national funds from FCT within CINTESIS, R&D Unit (reference UID/IC/4255/2013).

1 Introduction

The ability to take uncertainty into account when building a declarative model of a real-
world phenomena can result in a closer representation of reality. The Probabilistic Logic
Programming (PLP) paradigm addresses this issue by encoding knowledge as facts or rules,
which are believed to be true to some degree or with a given frequency, instead of using
crisp true or false statements. There are several Prolog-based probabilistic logic languages
in the literature that can represent and manipulate uncertainty, such as SLP [15], ICL [17],
Prism [20], BLP [12], CLP(BN) [19], MLN [18], ProbLog [13], among others. Please see the
work by [8] for a recent survey of PLP.

Performing structure learning over PLP produces models which are understandable by
humans whilst still taking uncertainty into account. Probabilistic Inductive Logic Program-
ming (PILP) is a subset of Statistical Relational Learning (SRL) that uses a probabilistic
First Order Logic (FOL) language to represent data and their induced models. PILP differs
from traditional Inductive Logic Programming (ILP) in that facts and rules have success
probabilities ranging between 0 and 1, as opposed to being either 0 or 1 (false or true,
respectively). In this setting, there are no longer positive and negative examples, but only
target probabilities for each example. The aim of a PILP model is to predict probability values
which are as close as possible to the target probabilities of each example. PILP algorithms
use (i) a set of Probabilistic Examples (PE), and (ii) logical information pertaining complex
relations expressed as logic facts and rules, the Probabilistic Background Knowledge (or
PBK), to find a FOL model that explains the PE. PILP focuses on structure learning – the
logic rules compose a theory that models the structure of the PE w.r.t PBK – but parameter
learning can also be incorporated by tuning the probabilistic output of the rules which are
learned [7].

A number of PILP systems exist in the literature: ProbFOIL [9, 7], SLIPCOVER [1, 2],
and SkILL [5, 4]. Additionally, there are other ILP-based structure learning methods such as
CLP(BN) [19] and MLN [14]. One of the limitations of the available PILP systems is that
they inherit the exponential search space from ILP, and must in addition evaluate the fitness
of each candidate model by computing, for each example, the likelihood of that example given
the model. This can be very time consuming, since the evaluation process must consider all
possible worlds where the theory in the model may be true. For a small number of facts and
rules in the PBK this is not a problem, but computation grows exponentially as the size of
the PBK is increased [10].

To address this problem, this work introduces prediction pruning. Prediction pruning
prunes the PILP search space based on previously evaluated theories by taking into account
the logical operation (conjunction or disjunction) that will be performed next. Prediction
pruning can be effective in reducing the execution time, compared to using no pruning.
Additionally, the quality of the explored candidate models is improved when prediction
pruning is used in conjunction with beam search. Unlike other pruning approaches, such as

https://doi.org/10.4230/OASIcs.ICLP.2018.6

J. Côrte-Real, A. Dries, I. Dutra, and R. Rocha 6:3

beam search as used in [7, 2, 5], or estimation pruning as used in [4], prediction pruning can
guarantee safety such that when the safe criterion is used the optimal model is never pruned
away. This work thus also investigates three possible criteria for prediction pruning: a safe
criterion and two other more aggressive pruning criteria. Experiments using three benchmarks
and two PILP systems show that all three criteria are effective in maintaining (or increasing)
predictive accuracy for all experimental settings. Furthermore, the more aggressive criteria
reduce execution time compared to using no pruning, without loss of predictive accuracy.
Finally, in limited resource settings, better candidate models are generated when compared
to using no pruning.

This paper is organized as follows. Section 2 briefly introduces the main concepts of PILP.
Next, Section 3 presents the proposed pruning strategy and the proposed pruning criteria.
Section 4 evaluates the proposed approach and discusses the results. Finally, conclusions
and perspectives of future work are put forward in Section 5.

2 Background

Traditional ILP generates sets of FOL rules (or theories) trying to describe a problem, given
as a target predicate, in terms of the clauses contained in a given background knowledge.
The theory’s fitness to describe the problem is assessed according to a loss function. The aim
of ILP is to find a theory that explains all given positive examples and does not explain any
of the given negative examples, but in practice it is common to relax these criteria and allow
for some noise (misclassified examples). It is also common to define a declarative language
bias using mode declarations in order to specify which rules are valid within the search space.

PILP extends the ILP setting by introducing a Probabilistic Background Knowledge
(or PBK), where FOL data descriptions can be annotated with a probability value ranging
from 0 to 1, and by introducing a set of Probabilistic Examples (PE), no longer positive or
negative, also with a value ranging between 0 and 1. Facts and rules in the PBK and PE
can represent either statistical information or the degree of belief in a statement, using type
I or type II probability structures, respectively [11]. Non-annotated data is assumed to have
a probabilistic value of 1. Because PILP theories are still generated based on the logical
information of the data, the ILP language bias translates directly to PILP. The process of
generating theories also mimics ILP, since they are based on the logical clauses in the PBK.
Good theories are the ones which most closely predict the values of the PE or rather that
minimize the error between predictions and the PE values.

In this work, probabilities are annotated according to ProbLog’s syntax, using possible
world semantics [8]. In ProbLog, each fact pj :: cj in the PBK represents an independent
binary random variable, meaning that it can either be true with probability pj or false with
probability 1−pj . This means that each probabilistic fact introduces a probabilistic choice in
the model. Each set of possible choices over all facts of the PBK represents a possible world
ωi, where ω+

i is the set of facts that are true in that particular world, and ω−i = ωi \ ω+
i is

the set of facts that are false. Since these facts have a probabilistic value, a ProbLog program
defining a probabilistic distribution over the possible worlds can be formalized as shown in
Eq. 1.

P (ωi) =
∏

cj∈ω+
i

pj

∏
cj∈ω−

i

(1− pj) (1)

A ProbLog query q is said to be true in all worlds wq where wq |= q, and false in all other
worlds. As such, the success probability of a query is given by the sum of the probabilities of

ICLP 2018

6:4 Improving Candidate Quality of Probabilistic Logic Models

all worlds where it is found to be true, as denoted in Eq. 2.

P (q) =
∑

ωi|=q

P (wi) (2)

Even though the prediction (success probability) of a rule changes according to the
literals contained in its body, the probabilistic model generated from the PBK is not altered
throughout the execution of the program. The search for the best model in PILP thus
consists of finding the theory whose success probabilities (for all examples) have the best
fitness w.r.t. the PE values (according to some loss function), given a PBK. This allows for
defining standard scoring metrics such as probabilistic accuracy (or PAcc), as introduced by
De Raedt et al. in [9]. PAcc can also be represented in terms of the mean absolute error
(MAE) between predictions and example values as used by Chen et al. in [3]. These two
formulations are equivalent.

3 Prediction Pruning

The PILP search space can be split in two separate dimensions w.r.t. the operation that
is being used to traverse it, i.e., there is a dimension for rules (or theories of length one),
which uses the AND operation to generate new rules, and a dimension for theories (of length
greater than one), which in turn uses the OR operation to generate new theories. Fully
exploring the PILP search space is equivalent to evaluating each theory in the theory lattice
in order to determine the best theory according to a given metric.

The theories used to explain examples in PILP are built from the literals that are present
in the program’s PBK. The rule (AND) search space is composed by all rules whose body
contains one or more of those literals. Rules can be combined using logical conjunction to
form longer, more specific rules. The theory (OR) search space can be defined in a similar
way. Theories are formed by combining a set of distinct rules using logical disjunction. In
the same way that literals are the building blocks of rules, rules are the building blocks of
theories. Adding a rule to a theory makes it more general.

The procedure to explore the PILP search space can thus be done in two steps: (i) explore
the AND search space, and (ii) explore the OR search space. An exhaustive search strategy
would be very time-consuming leading to a scenario where good theories might never have a
chance to be evaluated due to the complexity of the probabilistic evaluation. When resources
are limited, it is thus preferable to focus on good candidate theories and avoid candidate
theories which are below a threshold of quality to transition to the next iteration. Prediction
pruning is thus applied over previously evaluated theories which are determined to be useless
for further combination. Prediction pruning excludes theories whose predictions suggest
that the theory is already too specific, for the AND operation, or too general, for the OR
operation. Algorithm 1 presents this procedure.

Algorithm 1 starts by exploring the AND search space in a direction of increasing
specificity. It starts out by generating rules containing only one literal (line 3) and then uses
these rules to generate combinations for the next iteration (lines 5–8). In order to prevent
rules which are determined to be too specific from being considered for combination in the
next iteration, prediction pruning is applied according to a given CriterionAND (procedure
AND_pred_pruning on line 7). Rules that are pruned by this criterion are still included
in Rall but they are not further specialized in Rnew (line 8). The combination process is
repeated until it yields no new rules. The set of initial theories T1 is then populated with
all rules in Rall (line 9). Similarly to the AND search space, T1 is used to generate new

J. Côrte-Real, A. Dries, I. Dutra, and R. Rocha 6:5

Algorithm 1 PILP_algorithm(PBK, PE, CriterionAND, CriterionOR).
1: Tall = ∅
2: Rall = ∅
3: R1 = generate_rules_one_literal(PBK, PE)
4: Rnew = R1
5: while Rnew 6= ∅ do
6: Rall = Rall ∪Rnew

7: Rpru = AND_pred_pruning(Rnew, CriterionAND)
8: Rnew = {r1 ∧ rpru | (r1, rpru) ∈ R1 ×Rpru}
9: T1 = Rall

10: Tnew = T1
11: while Tnew 6= ∅ do
12: Tall = Tall ∪ Tnew

13: Tpru = OR_pred_pruning(Tnew, CriterionOR)
14: Tnew = {t1 ∨ tpru | (t1, tpru) ∈ T1 × Tpru}
15: return Tall

theories Tnew through combination using logical disjunction (lines 11-14). This process is
analogous to the exploration of the AND search space, except that the pruning criterion
CriterionOR, used in procedure OR_pred_pruning (line 13), is based on generality as
opposed to specificity.

The decision on whether a candidate theory should be further explored is made based on
the theory’s individual prediction values for each example. Depending on which search space
is being explored, the criterion to exclude theories will differ. When two rules ra and rb are
combined using logical conjunction, a more specific rule ra,b = ra ∧ rb will result. This is due
to the fact that more literals in the body of the rule must succeed simultaneously so that the
rule can be verified.

In the probabilistic setting, a rule r is composed of a logical part l(r) and a prediction
value p(r) ranging from 0 to 1. The prediction value of rule r for a given example i, pi(r)
is equal to the sum of the probabilities P (ωn) of each world ωn in the program in which
ωn |= li(r) for that same example i. This means that for the more specific rule ra,b to be
true, both ra and rb must be true simultaneously, i.e. only the worlds where both ra and
rb are true can be considered. This is equivalent to the intersection of the set of worlds
which entail l(ra) and l(rb), taking also into account the variable groundings for ra and rb.
Therefore, the prediction value of a specific rule for an example i can be defined in terms of
the prediction values of less specific rules which compose it.

pi(ra,b) =
∑

ωn|=li(ra,b)

P (ωn) =
∑

ωn|=li(ra)∩
ωn|=li(rb)

P (ωn) (3)

From Eq. 3, it follows that, for an example i, the prediction value of a more specific
rule pi(ra,b) will always be less than or equal to the prediction value of pi(ra) and pi(rb).
Therefore, the prediction value of rule pi(r) will be monotonically decreasing with the
application of the AND operation, since in each iteration the rules become more specific.

Having established this ordering allows prediction pruning to be applied over previously
evaluated rules to determine whether they are useless for further combination, given some
criterion. For a given example i, if the prediction value of a rule pi(r) is less than the example
value ei, then continuing to apply the AND operation can only result in distancing pi(r)

ICLP 2018

6:6 Improving Candidate Quality of Probabilistic Logic Models

Table 1 Expressions for the soft, hard and safe criteria.

Criterion Search Space
AND OR

Soft
∑

i

(
pi(t)− ei

)
< 0

∑
i

(
pi(t)− ei

)
> 0

Hard ∃i : pi(t) < ei ∃i : pi(t) > ei

Safe ∀i : pi(t) < ei ∀i : pi(t) > ei

from ei further, since pi(r) can only decrease from the application of the AND operation. As
such, prediction pruning excludes rules whose prediction values for all examples suggest that
the theory is already too specific when compared to the example values. A similar argument
can be made for the OR operation and the generality of theories.

To determine whether theories will be pruned away or not, several criteria are possible.
This work proposes three criteria for deciding if a theory is too specify/general: a soft
criterion, a hard criterion and a safe criterion. These three criteria take into account
the predictions of a theory pi(t) for the given examples, as well as the example values ei

themselves. Table 1 presents the expressions for the pruning criteria when applied to the
AND and OR search spaces. The soft pruning criterion takes into account the theory’s
predictions for every example, and only prunes the theory away if it is overall more specific
(for the AND operation) or more general (for the OR operation) than the values of the
examples. The hard pruning criterion prunes a theory away if, in any example, the theory
made a prediction that was more specific (for the AND operation) or more general (for the
OR operation) than the annotated value for that example. The soft criterion differs from
the hard criterion in that it takes into account the aggregate value of all examples, whilst
the hard pruning criterion can discard theories based on one example value only. On the
other hand, the safe pruning criterion excludes theories only when all of their predictions are
found to be too specific (for the AND operation) or too general (for the OR operation), and
no prediction can be improved by continuing with the search in that search space. Therefore,
it is safe to prune away these candidate theories, since they can never perform better with
more specialisation/generalisation, respectively.

Figure 1 illustrates these concepts for a PILP setting with three examples and three
theories. For each example i, the example value ei (squares in black) and three predictions of
theories pi(t1), pi(t2) and pi(t3) are plotted. The ground truth model would predict exactly
ei for every example. If a prediction value pi(t) is plotted below the example value ei, then
that theory is too specific for that example. Conversely, if pi(t) is plotted above ei, the theory
is more general for that example.

In Fig. 1, for the AND operation, the safe pruning criterion would prune away theory t1

because, for every example, its prediction values are lower than the example values. The soft
pruning criterion would prune away theories t1 and t2 because their prediction values are
overall lower than the example values. Finally, the hard pruning criterion would prune away
all theories. For example, theory t3 is pruned away because its prediction for e = 1 is lower
than the example value. An analogous reasoning can be made for the OR operation and
higher prediction values. In summary, the theories pruned away by the safe criterion are a
subset of the theories pruned away by the soft criterion, and similarly the theories pruned
away by the soft criterion are a subset of those pruned away by the hard criterion.

J. Côrte-Real, A. Dries, I. Dutra, and R. Rocha 6:7

e1 e2 e3
0

0.2

0.4

0.6

0.8

1

Examples

Pr
ob

ab
ili
ty

ei pi(t1) pi(t2) pi(t3)

Figure 1 PILP setting with three examples and three theories. For each example, the example
values (squares in black) and three predictions of theories (green circles for pi(t1), brown diamonds
for pi(t2) and red triangles for pi(t3)) are plotted.

4 Experiments

The experiments presented in this section are aimed at answering the following three questions:
(i) how much does prediction pruning reduce the exhaustive PILP search space? (ii) can
prediction pruning maintain predictive quality of models? (iii) how does prediction pruning
impact the quality of the candidate models explored in a limited resource setting?

Prediction pruning was implemented and evaluated in two state-of-the-art PILP systems:
SkILL [5] and ProbFOIL+ [7]. SkILL runs on top of the Yap Prolog system [6], uses
TopLog [16] as the basis for rule generation and the ProbLog Yap library as its probabilistic
inference engine. The experiments using the SkILL system were run on a machine containing 4
AMD Opteron 6300 processors with 16 cores each and a total of 250GB of RAM. ProbFOIL+
is based on Python and it uses the Yap Prolog system for logical inference of theories. In
these experiments, ProbFOIL+ uses only the examples provided in the training data (without
generation of additional negative examples as used in the original paper) and it uses negated
literals in the theories. The experiments using ProbFOIL+ were run on a machine containing
an Intel Core i7 processor with 4 cores and a total of 16GB of RAM. All experiments use
five-fold stratified cross validation and results presented are the average values for all folds.
The evaluation was performed using three different datasets: metabolism, athletes and
breast cancer.

The metabolism dataset consists of an adaptation of the dataset originally from the
2001 KDD Cup Challenge2. It is composed of 230 examples (half positive and half neg-
ative) and approximately 7000 BK facts. To obtain probabilistic facts for the PBK, the
predicate interaction(gene1,gene2,type,strength) was adapted from the original meta-
bolism dataset. The fourth argument of this predicate indicates the strength of the
interaction between a pair of genes. This fact was converted to the probabilistic fact
p_strength::interaction(gene1,gene2,type), where p_strength was calculated from strength
interactions as follows:

p_strength = strength−minstrength

maxstrength −minstrength

2 http://www.cs.wisc.edu/~dpage/kddcup2001

ICLP 2018

http://www.cs.wisc.edu/~dpage/kddcup2001

6:8 Improving Candidate Quality of Probabilistic Logic Models

This resulted in about 3200 probabilistic facts in the PBK. 5 folds were generated from
this dataset, and each one of them is composed of 46 test examples selected randomly from
the main dataset (but keeping the same positive/negative ratio) and, for each fold, the 184
remaining examples are used for training.

The athletes dataset consists of a subset of facts regarding athletes and the sports they
play collected by the never-ending language learner NELL3. NELL iteratively reads the web,
gathering knowledge, and for each fact that it comes across it assigns a weight that can be
used as a probability. As NELL iterates, the weights of the facts in its database are updated,
and the dataset used for this experiment contains the facts and weights from iteration 850.
The dataset is composed of 720 probabilistic examples of athletes that play for a team, and
4294 probabilistic facts in the PBK pertaining to the origin of the player, his/her gender, the
city where a team plays, and so on. 5 folds were generated from this dataset, and each one
of them is composed of 144 test examples selected randomly from the main dataset and the
576 remaining examples are used for training. Because in this case examples do not clearly
belong to one of two classes, the test examples were randomly selected from the dataset
without taking their expected value into account.

The breast cancer dataset contains data from 130 biopsies dating from January 2006
to December 2011, which were prospectively given a non-definitive diagnosis at radiologic-
histologic correlation conferences. Twenty-one cases were determined to be malignant after
surgery, and the remaining 109 proved to be benign. The probabilities assigned to the
examples represent the chance of malignancy for each patient. A high probability indicates
the team of physicians thinks the case is most likely malignant, and conversely a low
probability indicates the case is most likely benign. Five folds were generated from this
dataset, and each one of them is composed of 26 test examples selected randomly from the
main dataset (but keeping the same positive/negative ratio) and the 104 remaining examples
are used for training.

4.1 Probabilistic Accuracy and Search Space Reduction
Baseline. Because exploring the search space exhaustively is computationally taxing, the
quality of candidate theories was assessed in a limited resource setting. Resources can be
limited in two ways: either a timeout is imposed or a maximum number of evaluations
is defined, which corresponds to using beam search (or the fitness pruning setting in the
case of the SkILL system). To this effect, the impact of prediction pruning was assessed by
comparing the AND and OR search spaces that are evaluated without pruning with those
which are evaluated in a pruning setting, given the same limitation of resources. In these
experiments, the default fitness pruning / beam search settings of both systems are used
(that is, for SkILL, primary and secondary population sizes of 25/20 for both AND and OR
space, and for ProbFOIL+, a beam size of 5 for the AND space and greedy search in the OR
space, as ProbFOIL+ only supports greedy search there).

Prediction Pruning. The use of prediction pruning enables PILP systems to focus their
(limited) resources on more promising candidates, when traversing the search space. Table 2
presents the results of applying prediction pruning in the AND search space in combination
with fitness pruning / beam search. It shows the execution time (in seconds), the number of
theories evaluated probabilistically and the probabilistic accuracy of the best theory found
for different pruning criteria (Safe, Soft and Hard), using the SkILL and ProbFOIL+ systems.
Please note that execution times between systems are not comparable.

3 http://rtw.ml.cmu.edu

http://rtw.ml.cmu.edu

J. Côrte-Real, A. Dries, I. Dutra, and R. Rocha 6:9

Table 2 Execution time in seconds, number of probabilistic evaluations performed and probabilistic
accuracy for datasets metabolism, athletes and breast cancer using the SkILL and ProbFOIL+
systems with prediction pruning for the AND search space. Standard deviation is presented in
brackets. Execution times between systems are not comparable.

(a) SkILL.

Baseline Safe Soft Hard

Execution Time (s)
metabolism 3353 (204) 2286 (185) 3216 (472) 1791 (37)

athletes 4610 (79) 4230 (582) 2322 (164) 2358 (73)
breast cancer 1449 (63) 616 (50) 636 (26) 353 (42)

No. Evaluations
metabolism 2151 (44) 2150 (44) 3234 (90) 2103 (37)

athletes 1852 (25) 1896 (18) 994 (3) 994 (3)
breast cancer 1235 (68) 1234 (67) 1306 (43) 941 (70)

Probabilistic Accuracy
metabolism 0.67 (0.05) 0.67 (0.05) 0.67 (0.05) 0.67 (0.05)

athletes 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)
breast cancer 0.86 (0.04) 0.86 (0.04) 0.84 (0.08) 0.86 (0.03)

(b) ProbFOIL+.

Baseline Safe Soft Hard

Execution Time (s)
metabolism 2008 (2016) 1999 (2019) 752 (215) 464 (71)

athletes 57 (5) 57 (5) 55 (4) 14 (0)
breast cancer 3890 (339) 3828 (302) 8093 (2101) 725 (38)

No. Evaluations
metabolism 3734 (2328) 4549 (3734) 4518 (1493) 2452 (492)

athletes 201 (43) 201 (43) 171 (21) 0 (0)
breast cancer 24290 (851) 24267 (828) 26495 (3542) 3532 (231)

Probabilistic Accuracy
metabolism 0.51 (0.04) 0.51 (0.03) 0.63 (0.11) 0.58 (0.07)

athletes 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)
breast cancer 0.85 (0.01) 0.85 (0.01) 0.85 (0.03) 0.87 (0.01)

Probabilistic Accuracy. Prediction pruning results in Table 2 show that applying the Soft
or Hard strategies leads to clear improvements in probabilistic accuracy for ProbFOIL+ and
does not lead to degradation in SkILL. The effect of prediction pruning is more evident
for ProbFOIL+ because it selects fewer candidates in each iteration, when compared to
the SkILL’s primary and secondary populations. It is therefore more important that bad
candidates are pruned such that the limited beam is filled with better candidates. The
prediction pruning strategy is thus particularly useful when traversing the search space with
a narrow beam, so that the candidates selected to populate it are of greater predictive value
when compared to using no prediction pruning. Safe pruning has no effect on these datasets
because its pruning power is too limited.

ICLP 2018

6:10 Improving Candidate Quality of Probabilistic Logic Models

N
o

S
af

e

S
of

t

0.48

0.50

0.52

0.54

(a) metabolism.

N
o

S
af

e

S
of

t

H
ar

d

0.3

0.4

0.5

0.6

0.7

(b) athletes.

N
o

S
af

e

S
of

t

H
ar

d

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) breast cancer.

Figure 2 Distribution of theories’ AUCs for the AND search space for datasets metabolism,
athletes and breast cancer using different prediction pruning settings in the SkILL system.

Search Space Reduction. Table 2 also shows that applying prediction pruning does not
necessarily reduce the search space. It can actually increase the number of rules evaluated
during the execution, and even the execution time in some cases. This happens because
prediction pruning provides a type of lookahead, that is, it makes an assessment of the
predictive power of a rule in future iterations. When no prediction pruning is used, the
algorithms have a strong bias toward rules that show good performance early on and the
best rule (in the limited search space) is found after a few iterations. Prediction pruning
counteracts this bias, and also allows candidates that only reach their full predictive accuracy
after a higher number of iterations to be explored. However, since the algorithm may take
more iterations, this can lead to more evaluations and longer rules that are harder to evaluate.

4.2 Search Space Quality
Each theory in the PILP search space can be thought of as a predictor, and for this reason
its predictive quality can be assessed using the area under the ROC curve (AUC). Since
prediction pruning removes theories from the search space based upon the operation that
is being performed (AND or OR), the distribution of the remaining candidate theories can
change (there may be cases where no candidate theories are left for the next iteration). As
such, comparing the two search spaces using the AUCs of the theories they contain shows
how the predictive quality of their candidates compares.

For the SkILL experiments, the AUC of all rules containing more than one literal (AND
search space) and all theories (OR search space) was calculated. The AUC of rules composed
of only one literal was not considered because prediction pruning has no effect on these rules,
which must always be evaluated. Analysing the distribution of the AUC values is relevant
because if the upper quartiles of the distribution are improved, this shows that there are
better candidate members selected to be explored given limited resources. Lower quartiles
will naturally be discarded by the PILP algorithm’s metric to select the best final theory.
The distribution of these values for each setting and search space are presented in Figures 2
and 3 for the AND and OR search spaces, respectively. Each box depicts percentiles 0 and
100 (the lower and upper whiskers, respectively), percentiles 25 and 75 (lower and upper box
boundaries, respectively), and the percentile 50 (median) using a bold line.

In Figs. 2–3, the higher the AUC value (y-axis), the greater the predictive power of the
theory. Each boxplot corresponds to a setting. In Fig. 2 (AND search space only), the
first boxplot corresponds to the rules generated using no prediction pruning, the second

J. Côrte-Real, A. Dries, I. Dutra, and R. Rocha 6:11

0.4

0.5

0.6

0.7

(N
o,N

o)

(N
o,S

afe
)

(S
afe

,N
o)

(S
afe

,S
afe

)

(N
o,S

of
t)

(N
o,H

ar
d)

(S
of

t,N
o)

(S
of

t,S
of

t)

(S
of

t,H
ar

d)

(H
ar

d,
No)

(H
ar

d,
Sof

t)

(H
ar

d,
Har

d)

(a) metabolism.

0.40

0.45

0.50

0.55

0.60

0.65

(N
o,

No)

(N
o,

Safe
)

(S
afe

, N
o)

(S
afe

, S
afe

)

(N
o,

Sof
t)

(N
o,

Har
d)

(S
of

t,
No)

(S
of

t,
Sof

t)

(S
of

t,
Har

d)

(H
ar

d,
 N

o)

(H
ar

d,
 S

of
t)

(H
ar

d,
 H

ar
d)

(b) athletes.

0.4

0.5

0.6

0.7

0.8

(N
o,N

o)

(N
o,S

afe
)

(S
afe

,N
o)

(S
afe

,S
afe

)

(N
o,S

of
t)

(S
of

t,N
o)

(S
of

t,S
of

t)

(H
ar

d,
No)

(H
ar

d,
Sof

t)

(c) breast cancer.

Figure 3 Distribution of theories’ AUCs for the OR search space, for datasets metabolism,
athletes and breast cancer using different prediction pruning settings in the SkILL system.

Table 3 Number of significant differences (left) for the number of tested folds (right) in the
AND and OR AUC distributions for datasets metabolism, athletes and breast cancer using different
prediction pruning settings in the SkILL system.

Setting metabolism athletes breast cancer
(AND,OR) AND OR AND OR AND OR

(No, No) 0/4 0/5 0/5 0/5 0/5 0/5
(No, Safe) 0/5 2/5 0/5
(Safe, No) 0/4 0/5 0/5 2/5 0/5 0/5

(Safe, Safe) 0/5 2/5 0/5
(No, Soft) 0/4 4/4 0/5 4/5 0/5 0/5

(No, Hard) 4/4 4/5 –
(Soft, No)

4/4
2/5

0/5
3/5

3/5
2/5

(Soft, Soft) 5/5 3/5 3/5
(Soft, Hard) 5/5 4/5 –
(Hard, No)

–
5/5

0/5
3/5

1/4
5/5

(Hard, Soft) 3/4 4/5 4/4
(Hard, Hard) 1/1 4/5 –

boxplot to the rules generated using safe prediction pruning, and so on. In Fig. 3 (AND
and OR search spaces), the pruning settings are reported as a tuple where the first value
is the AND prediction pruning option and the second is the OR prediction pruning option.
For example, the tuple (Soft,Hard) stands for soft AND prediction pruning and hard OR
prediction pruning, whilst the tuple (No,Safe) stands for no AND pruning and safe OR
prediction pruning.

For the AUC distributions, statistical significance is also calculated (using non-paired
two-tailed t-test) by comparing the distribution of AUCs fold to fold (e.g. fold 1 using soft
OR prediction pruning against fold 1 without pruning). Table 3 reports the number of folds
where the results were statistically significant for both the AND and the OR search spaces.
In some cases, some folds do not produce an AND or OR search space because all theories
are pruned away, and this is the cause for not always reporting five folds in comparison.

In Fig. 3, it is visible that prediction pruning can improve the general quality of the
evaluated theories, particularly in the case of the athletes and breast cancer datasets. In the
breast cancer dataset, the two upper quartiles of the AUC distribution are clearly improved

ICLP 2018

6:12 Improving Candidate Quality of Probabilistic Logic Models

in three settings. This trend is also clear in the athletes dataset, where again prediction
pruning significantly increases the predictive quality of the evaluated theories in three cases
(and slightly in two other settings). On the metabolism dataset, the improvements due to
prediction pruning are not as evident, but it is noteworthy that there is in fact a slight
increase in the maximum AUC value for the case of hard AND pruning and no OR pruning,
as well as in all safe pruning settings. The boxplots with range zero indicate that in those
settings the candidates that populate the beam do not have any predictive power in the test
set. However, this does not imply a loss in predictive accuracy of the optimal model since
rules of only one literal are not included in these boxplots because they are not affected by
prediction pruning.

Regarding the quality of the AND search space (Fig. 2), it is only significantly improved
in the breast cancer dataset, using soft prediction pruning. However, the candidate rules that
are selected for the AND search space impact the OR search space, since candidate theories
will be selected from the rules that were previously explored in the AND search space. As
such, even though the AND search space only shows direct impact from using prediction
pruning in the breast cancer dataset, it indirectly impacts the candidate theories available
for the OR search space in all datasets. This is particularly relevant for the athletes dataset,
where the quality of the OR search space is affected by soft and hard AND pruning. For
instance, setting (Soft, Soft) performs significantly better when compared to setting (No,
Soft), and setting (Hard, No)’s 50 and 100 percentiles are higher than its counterpart setting
(No, No). This effect is also visible in the breast cancer dataset, where the settings using soft
or hard AND prediction pruning present the greatest improvement. In most cases where
the quality of the OR search space increased, AND prediction pruning had previously been
applied to the AND search space.

Table 3 shows that the safe pruning criterion causes no significant difference in candidate
theory predictive quality, both for the AND and the OR operation (lines 2–4). This is due
to the fact that the safe pruning criterion is the least aggressive criterion and therefore
the proportion of candidates that are pruned in this setting is limited. On the other hand,
both soft and hard pruning criteria cause a significant difference in the AUC distribution
of candidates, in particular for the OR operation, where most folds present a significant
difference (lines 5–12 and columns 2, 4 and 6 in Table 3). However, for the AND operation,
aggressive criteria do not cause such a significant difference in the distribution, in particular
for the athletes dataset. This happens because the predictive power of rules in this dataset
is similar among candidates, and so even though different rules can be selected, this is not
reflected in the distribution of AUC values. In cases where aggressive pruning causes the
search space to be empty for all folds, there is no boxplot in Figs. 2–3, and no value reported
in Table 3.

Prediction pruning thus impacts the quality of the search space positively, allowing for
limited resources to be targeted towards better candidate theories. Furthermore, even though
in some cases the quality of the search space decreases (for instance the quality of the AND
search space using hard prediction pruning in the breast cancer dataset), the accuracy of the
best final theory found never decreases significantly, thus showing that prediction pruning
can be applied to better select candidate theories without risk of impacting the final test
accuracy.

J. Côrte-Real, A. Dries, I. Dutra, and R. Rocha 6:13

5 Conclusion

This work proposes a novel prediction pruning methodology whose aim is to improve the
quality of the explored candidate models in a PILP search space. Unlike previously proposed
pruning approaches, such as beam search and estimation pruning, prediction pruning focuses
on improving the quality of the search space. In doing so, it can direct the search towards
more promising candidates which can lead to a reduction in execution time or an increase in
predictive accuracy.

This work also introduces three pruning criteria, with increasing pruning power, which
can be used to decide which models should be pruned away during the prediction pruning
stage in the PILP algorithm. All pruning criteria are based on the probabilistic information of
candidate models and depend on which operation is being performed in the PILP algorithm:
logic conjunction (AND search space) or disjunction (OR search space). The safe pruning
criterion guarantees the safeness of the prediction pruning strategy, meaning that the optimal
model is never pruned away during the search, but experiments show that this criterion is
not very successful in pruning the search space significantly. The soft and hard pruning
criteria, however, do exhibit pruning power while not suffering from a reduction in predictive
performance.

Results also show that prediction pruning maintains the predictive quality of the generated
models. Prediction pruning impacts the distribution of the predictive quality of theories
and the use of prediction pruning can shift the maximum value and upper quartile of the
distribution upwards, thus indicating improved candidate theory quality. Deeper analysis of
the AUC of theories shows that all three criteria improve the quality of the OR search space.
AND prediction pruning, while not presenting a significant difference in all datasets, can
influence the OR search space quality, and so using prediction pruning for both operations
can increase the quality of the candidate theories while not sacrificing the final predictive
accuracy.

An interesting direction for future work is to study how to automatically adjust the
pruning criterion based on data characteristics of the dataset. Further work also includes
developing a search space traversal strategy combining several pruning strategies and, in
particular, study how prediction pruning interacts with beam search and estimation pruning.

References
1 E. Bellodi and F. Riguzzi. Learning the structure of probabilistic logic programs. In

Inductive Logic Programming, pages 61–75. Springer, 2012.
2 E. Bellodi and F. Riguzzi. Structure learning of probabilistic logic programs by searching

the clause space. Theory and Practice of Logic Programming, 15(02):169–212, 2015.
3 J. Chen, S. Muggleton, and J. Santos. Learning Probabilistic Logic Models from

Probabilistic Examples. Machine Learning, 73(1):55–85, October 2008. doi:10.1007/
s10994-008-5076-4.

4 J. Côrte-Real, I. Dutra, and R. Rocha. Estimation-Based Search Space Traversal in PILP
Environments. In A. Russo and J. Cussens, editors, Proceedings of the 26th International
Conference on Inductive Logic Programming (ILP 2016), LNAI, pages –, London, UK,
September 2016. Springer. Published in 2017.

5 J. Côrte-Real, T. Mantadelis, I. Dutra, R. Rocha, and E. Burnside. SkILL - a Stochastic In-
ductive Logic Learner. In International Conference on Machine Learning and Applications,
pages –, Miami, Florida, USA, December 2015.

6 V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog System. Journal of Theory
and Practice of Logic Programming, 12(1 & 2):5–34, 2012.

ICLP 2018

http://dx.doi.org/10.1007/s10994-008-5076-4
http://dx.doi.org/10.1007/s10994-008-5076-4

6:14 Improving Candidate Quality of Probabilistic Logic Models

7 L. De Raedt, A. Dries, I. Thon, G. Van den Broeck, and M. Verbeke. Inducing Probabil-
istic Relational Rules from Probabilistic Examples. In International Joint Conference on
Artificial Intelligence, pages 1835–1843. AAAI Press, 2015.

8 L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts. Machine Learn-
ing, 100(1):5–47, 2015. doi:10.1007/s10994-015-5494-z.

9 L. De Raedt and I. Thon. Probabilistic Rule Learning. In Inductive Logic Programming,
pages 47–58. Springer, 2011.

10 Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann,
Ingo Thon, Gerda Janssens, and Luc De Raedt. Inference and Learning in Probabilistic
Logic Programs using Weighted Boolean Formulas. Theory and Practice of Logic Program-
ming, 15(3):358–401, 2015.

11 J. Halpern. An Analysis of First-Order Logics of Probability. Artificial intelligence,
46(3):311–350, 1990.

12 K. Kersting, L. De Raedt, and S. Kramer. Interpreting Bayesian Logic Programs. In AAAI
Workshop on Learning Statistical Models from Relational Data, pages 29–35, 2000.

13 A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha. On the Implement-
ation of the Probabilistic Logic Programming Language ProbLog. Theory and Practice of
Logic Programming, 11(2 & 3):235–262, 2011.

14 S. Kok and P. Domingos. Learning the Structure of Markov Logic Networks. In Interna-
tional Conference on Machine learning, pages 441–448. ACM, 2005.

15 S. Muggleton. Stochastic Logic Programs. Advances in inductive logic programming, 32:254–
264, 1996.

16 S. Muggleton, J. Santos, C. Almeida, and A. Tamaddoni-Nezhad. TopLog: ILP Using a
Logic Program Declarative Bias. In International Conference on Logic Programming, pages
687–692. Springer, 2008.

17 D. Poole. The independent choice logic for modelling multiple agents under uncertainty.
Artificial intelligence, 94(1):7–56, 1997.

18 M. Richardson and P. Domingos. Markov Logic Networks. Machine learning, 62(1-2):107–
136, 2006.

19 V. Santos Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint Logic Program-
ming for Probabilistic Knowledge. In Conference on Uncertainty in Artificial Intelligence,
pages 517–524, 2002.

20 T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical modeling. In Inter-
national Joint Conference on Artificial Intelligence, volume 97, pages 1330–1339. Morgan
Kaufmann, 1997. URL: http://ijcai.org/Proceedings/97-2/Papers/078.pdf.

http://dx.doi.org/10.1007/s10994-015-5494-z
http://ijcai.org/Proceedings/97-2/Papers/078.pdf

Towards Incremental and Modular
Context-Sensitive Analysis
Isabel Garcia-Contreras
IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain and
Universidad Politécnica de Madrid (UPM)
isabel.garcia@imdea.org

https://orcid.org/0000-0001-6098-3895

José F. Morales
IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain
josef.morales@imdea.org

https://orcid.org/0000-0001-9782-8135

Manuel V. Hermenegildo
IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain and
Universidad Politécnica de Madrid (UPM)
manuel.hermenegildo@imdea.org

https://orcid.org/0000-0002-7583-323X

Abstract
This is an extended abstract of [1].

2012 ACM Subject Classification Theory of computation → Invariants, Theory of computation
→ Pre- and post-conditions, Theory of computation → Program analysis, Theory of computation
→ Program semantics, Theory of computation → Abstraction

Keywords and phrases Program Analysis, (Constraint) Logic Programming, Abstract Interpre-
tation, Fixpoint Algorithms, Incremental Analysis, Modular Analysis

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.7

Related Version https://arxiv.org/abs/1804.01839

Funding Research partially funded by Spanish MINECO grant TIN2015-67522-C3-1-R TRACES,
FPU grant 16/04811, and the Madrid M141047003 N-GREENS program.

Static program analysis (generally based on computing fixpoints using the technique
of abstract interpretation) is widely used for automatically inferring program properties
such as correctness, robustness, safety, cost, etc. Performing such analysis interactively
during software development allows early detection and reporting of bugs, such as, e.g.,
assertion violations, back to the programmer. This can be done as the program is being
edited by (re-)running the analysis in the background each time a set of changes is made,
e.g., when a file is saved, or a commit made in the version control system. However, real-life
programs are large, and, typically, have a complex structure combining a good number of
modules with other modules in system libraries. Global analysis of such large code bases
can be very expensive, and more so if context-sensitivity is supported for precision. This
renders triggering a complete reanalysis for each set of changes too costly. A key observation,
however, is that in practice each development or transformation iteration is normally formed
by relatively small modifications, which in turn are isolated inside a small number of modules.
This property can be taken advantage of in order to reduce the cost of re-analysis by reusing

© Isabel Garcia-Contreras, Jose F. Morales, and Manuel V. Hermenegildo;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 7; pp. 7:1–7:2

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:isabel.garcia@imdea.org
https://orcid.org/0000-0001-6098-3895
mailto:josef.morales@imdea.org
https://orcid.org/0000-0001-9782-8135
mailto:manuel.hermenegildo@imdea.org
https://orcid.org/0000-0002-7583-323X
https://doi.org/10.4230/OASIcs.ICLP.2018.7
https://arxiv.org/abs/1804.01839
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 Towards Incremental and Modular Context-Sensitive Analysis

as much information as possible from previous analyses. Such cost reductions have been
achieved to date at two different levels, using relatively different techniques:

Modular context-sensitive analyses obtain global information on the whole program by
performing local analyses one module at a time. They are typically aimed at reducing
memory consumption (working set size) but can also localize the (re)computation of the
analysis to the modules affected by changes, achieving some coarse-grained incrementality.
Context-sensitive (non-modular) incremental analyses identify, invalidate, and recompute
only those parts of the analysis results that are affected by fine-grain program changes.
These analyses have been shown to achieve very high levels of incrementality, at fine
levels of granularity (e.g., program line level).

The problem that we address is that while, as mentioned before, large programs are typically
highly modular, the context-sensitive, fine-grained incremental analysis techniques presented
to date are not easily applicable to the modular setting: The flow of analysis information
through the module interfaces requires iterations, since the analysis of a module depends on
the analysis of other modules in complex ways, through several paths to different versions of
the procedures.

In order to bridge the gap we propose a framework that analyzes separately the modules
of a modular program, using context-sensitive fixpoint analysis while achieving both inter-
modular (coarse-grain) and intra-modular (fine-grain) incrementality. The proposed analysis
algorithm assumes a setting in which we analyze successive “snapshots” of modular programs,
i.e., at each analysis iteration, a snapshot of the sources is taken and used to perform the
next analysis. Each time an analysis is started, the modules will be analyzed independently
and incrementally (possibly several times) until a global fixpoint is reached. The algorithm
is designed to work with any partition of the sources. The essential point of the algorithm is
that analysis results are represented in a way that allows to partially invalidate the results
that are no longer valid, correct, or accurate, while keeping the information that does not
need recomputation. The information of source changes is used to invalidate (if necessary),
and then decide which parts of the program (modules or predicates) need to be reanalyzed.
We solve the problems related to the propagation of the fine-grain change information across
module boundaries. We also work out the actions that need to be performed in order to
recompute the analysis fixpoint incrementally after multiple additions and deletions across
modules in the program. Finally, we prove that the analysis result is always correct and it is
the best (most accurate) over-approximation of the actual behavior of the program.

We have implemented the proposed approach within the Ciao/CiaoPP system [2]. Our
preliminary results show promising speedups for medium and large programs. The added
finer granularity (which allows reusing analysis information both at the intra- and inter-
modular levels) reduces significantly the cost with respect to modular analysis alone. The
advantages of fine-grain incremental analysis –making the cost ideally proportional to the
size of the changes– thus seem to carry over with our algorithm to the modular analysis case.
Furthermore, the fine-grained propagation of analysis information of our algorithm improves
performance with respect to traditional modular analysis even when analyzing from scratch.

References
1 I. Garcia-Contreras, J. F. Morales, and M. V. Hermenegildo. An Approach to Incremen-

tal and Modular Context-sensitive Analysis of Logic Programs. Technical Report CLIP-
2/2018.0, The CLIP Lab, April 2018. URL: https://arxiv.org/abs/1804.01839.

2 M.V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and G. Puebla.
An Overview of Ciao and its Design Philosophy. TPLP, 12(1–2):219–252, 2012.

https://arxiv.org/abs/1804.01839

MASP-Reduce: A Proposal for Distributed
Computation of Stable Models
Federico Igne
University of Udine, Udine, Italy and New Mexico State University, NM, USA
ignefederico@gmail.com

Agostino Dovier
University of Udine, Udine, Italy
agostino.dovier@uniud.it

Enrico Pontelli
New Mexico State University, NM, USA
epontell@cs.nmsu.edu

Abstract
There has been an increasing interest in recent years towards the development of efficient solvers
for Answer Set Programming (ASP) and towards the application of ASP to solve increasing more
challenging problems. In particular, several recent efforts have explored the issue of scalability
of ASP solvers when addressing the challenges caused by the need to ground the program be-
fore resolution. This paper offers an alternative solution to this challenge, focused on the use of
distributed programming techniques to reason about ASP programs whose grounding would be
prohibitive for mainstream ASP solvers. The work builds on a proposal of a characterization of
answer set solving as a form of non-standard graph coloring. The paper expands this characteri-
zation to include syntactic extensions used in modern ASP (e.g., choice rules, weight constraints).
We present an implementation of the solver using a distributed programming framework specif-
ically designed to manipulate very large graphs, as provided by Apache Spark, which in turn
builds on the MapReduce programming framework. Finally, we provide a few preliminary results
obtained from the first prototype implementation of this approach.

2012 ACM Subject Classification Computing methodologies→ Logic programming and answer
set programming, Software and its engineering → Massively parallel systems

Keywords and phrases ASP solving, Parallelism, Map-reduce

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.8

Funding A. Dovier is partially supported by UNIUD PRID “Encase” and by INdAM GNCS
projects. F. Igne benefited of a scholarship from the Scuola Superiore of the University of Udine.

Acknowledgements We thank Huiping Cao for the availability of the BigDat cluster (KDD lab).

The availability of efficient answer set solvers (e.g., clasp and its descendants [8, 2]) gave
Answer set programming (ASP) a leading role in languages for knowledge representation
and reasoning. The simple syntax is surely one of the main strengths of the paradigm;
moreover the stable models semantics intuitively resembles the human reasoning process in a
clean and logical way. ASP is regarded as the computational embodiment of non-monotonic
reasoning because of its simple syntax and elegant non-monotonic semantics. The popularity
of ASP is demonstrated by the increasing number of authors publishing ASP-based research
work in artificial intelligence as well as non-logic programming venues, and its use as a
natural alternative to other paradigms (e.g., SAT solving). Most of the answer set solvers

© Federico Igne, Agostino Dovier, and Enrico Pontelli;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 8; pp. 8:1–8:4

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ignefederico@gmail.com
mailto:agostino.dovier@uniud.it
mailto:epontell@cs.nmsu.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

8:2 MASP-Reduce

are currently developed as two-phases procedures (save some exceptions – e.g., [3, 11]) . The
first stage is called grounding and computes the equivalent propositional logic program of
an input logic program, instantiating each rule over the domain of its variables. Modern
solvers also apply some simplifications and heuristics to the program, in order to ease the
computation during the second stage. The computation of the answer sets of a logic program
is carried out by the solving stage, which also deals with the non-deterministic reasoning
involved in the model.

ASP encoding of sophisticated applications in real-world domains (e.g., planning, phy-
logenetic inference) highlighted the strengths and weaknesses of this paradigm. Most of
the times, the technology underlying the ASP solvers, lacks the ability to keep up with the
demand of complex applications. This has been, for example, highlighted in a study on the
use of ASP to address complex planning problems [13, 5, 6]. With respect to these studies,
it is clear that one of the main limitations of this paradigm resides in the grounding process
and the ability to compute the stable models of large ground programs. This limitation is
even more obvious when the whole computation is performed in-memory.

This work tries to partially solve the problem of processing large ground programs that
can exceed capabilities for in-memory computation – using parallelism and distributed
computing. We aim to study, analyse and develop a fully distributed answer set solver and
use a distributed environment to efficiently represent and reason over large programs whose
grounding would be prohibitive for a single general-purpose machine. We popose a solver
that uses MapReduce, a distributed programming paradigm, mainly used to work with huge
volumes of data on structured networks of computers (workers) [4]. Implementations of the
MapReduce model (e.g., [4]) are usually executed on clusters to take full advantage of the
parallel nature of the architecture. The paradigm provides a basic interface consisting of two
methods: map(·) that maps a function over a collection of objects and outputs a collection
of “key-value” tuples; reduce(·) that takes as input a collection of key-value pairs and merges
the values of all entries with the same key; the merging operation is user-defined.

An inspiration for the work proposed here comes from the proposal by Konczak et al. [9, 10],
which addresses the problem of finding the answer sets of a ground normal logic program by
means of computing the admissible colorings of the relative Rule Dependency Graph (RDG).
This is done by defining a set of operators on the RDG of a program. These operators deal
with the non-deterministic coloring of nodes and the deterministic propagation of colors. [1]
used this technique in the development of the NoMoRe (Non-monotonic Reasoning with
Logic Programs) solver. This implementation is purely sequential and in-memory.

In this research we investigate the above-mentioned graph coloring approach and extended
it so as to include weight constraint rules. We investigate its mapping to MapReduce and
other distributed programming paradigms that build over MapReduce. The solver we are
developing, called MASP-Reduce, is written in Scala [12, 7], it uses Apache Spark [14] as a
library for distributed computation, and it natively works on the Hadoop Distributed File
System (HDFS). The library gives access to a complete set of primitives for the MapReduce
programming paradigm, and on top of this, it implements GraphX, a distributed direct
multigraph with a complete and easy-to-use interface [14].

The development of MASP-Reduce is heavily based on the concept of rule dependency
graph of ASP programs. Graphs turn out to be a good data structure for distributed
programming, since they can directly exploit the underlying network configuration. Up to
now, the software is comprehensive of a solver and of a graph generator that converts a
ground program in a rule dependency graph (see Figure below). As a future work, we plan

F. Igne, A. Dovier, and E. Pontelli 8:3

to implement a distributed grounder taking full advantage of the MapReduce paradigm, so
that the Grounding block is incorporated into the Parallelization block.

Input
Program Grounding Parallelization Graph

Generation

Gringo

Coloring
Process

Answer
Sets

external call

in-memory
MapReduce

based
GraphX API

based

We tested the solver both in a local environment (a notebook) and in a distributed
environment, namely four nodes of a cluster, where each node is a 12-core Intel CPUs, with
each core dual hyperthreaded for a total of 48 OS-visible processors per node; each node has
256GB of RAM, ∼3TB of hard disk local storage and ∼512GB solid state local storage. The
implementation works on simple examples. However, during the development we encountered
a few challenges that prevented us from providing a full testing phase report. Spark is
presented as an easy and ready-to-use tool for distributed programming; this might be true
in a few cases, but most of the times one needs to fine-tune the system in order to reach an
optimal configuration; this tuning process takes into account a vast number of parameters,
and is mostly program-specific – and it is work in progress for our project.

As far as we know, this is the first work addressing the implementation of a distributed
answer set solver using MapReduce paradigm and non-standard graph coloring as answer set
characterization. This deeply influenced own roadmap, which couldn’t take advices from
previous works, leading to an incremental approach to development.

The system is still far from complete; we are planning on working on the development of a
distributed grounder in the next few months. We are also considering the implementation of
a few coloring heuristics and learning techniques to improve the performances of the solver.

References
1 C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub. The NoMoRe++ Sys-

tem. In Chitta Baral, Gianluigi Greco, Nicola Leone, and Giorgio Terracina, editors, Logic
Programming and Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005,
Diamante, Italy, September 5-8, 2005, Proceedings, volume 3662 of LNCS, pages 422–426.
Springer, 2005.

2 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski, and Torsten Schaub. Clingcon:
The next generation. TPLP, 17(4):408–461, 2017. doi:10.1017/S1471068417000138.

3 A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. GASP: Answer set programming with
lazy grounding. Fundam. Inform., 96(3):297–322, 2009.

4 J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters,
volume 51, pages 107–113. ACM, January 2008.

5 Agostino Dovier, Andrea Formisano, and Enrico Pontelli. An empirical study of constraint
logic programming and answer set programming solutions of combinatorial problems. J.
Exp. Theor. Artif. Intell., 21(2):79–121, 2009. doi:10.1080/09528130701538174.

6 Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Perspectives on Logic-Based Ap-
proaches for Reasoning about Actions and Change. In Marcello Balduccini and Tran Cao

ICLP 2018

http://dx.doi.org/10.1017/S1471068417000138
http://dx.doi.org/10.1080/09528130701538174

8:4 MASP-Reduce

Son, editors, Logic Programming, Knowledge Representation, and Nonmonotonic Reason-
ing, volume 6565 of Lecture Notes in Computer Science, pages 259–279. Springer, 2011.

7 École Polytechnique Fédérale. Scala — Object-Oriented Meets Functional (website), 2018.
[last accessed Feb. 2018] http://www.scala-lang.org/.

8 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo =
ASP + Control: Preliminary Report. CoRR, abs/1405.3694, 2014. arXiv:1405.3694.

9 K. Konczak, T. Linke, and T. Schaub. Graphs and Colorings for Answer Set Programming:
Abridged Report. In Vladimir Lifschitz and Ilkka Niemelä, editors, Logic Programming and
Nonmonotonic Reasoning: 7th International Conference, LPNMR 2004 Fort Lauderdale,
FL, USA, January 6-8, 2004 Proceedings, volume 2923 of Lecture Notes in Computer Sci-
ence, pages 127–140. Springer, 2004.

10 Kathrin Konczak, Thomas Linke, and Torsten Schaub. Graphs and colorings for answer
set programming. TPLP, 6(1-2):61–106, 2006. doi:10.1017/S1471068405002528.

11 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, and Laurent Garcia. ASPeRiX, a first-
order forward chaining approach for answer set computing. TPLP, 17(3):266–310, 2017.

12 Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: Updated for Scala
2.12. Artima Incorporation, USA, 3rd edition, 2016.

13 T. Son and E. Pontelli. Planning for biochemical pathways: A case study of answer set
planning in large planning problem instances. In Marina De Vos and Torsten Schaub,
editors, Proceedings of the First International SEA’07 Workshop, Tempe, Arizona, USA,
volume 281 of CEUR Workshop Proceedings, pages 116–130, January 2007.

14 The Apache Software Foundation. Apache Hadoop, Spark, and Graphx (websites), 2018.
[last accessed Feb. 2018] http://hadoop.apache.org/, https://spark.apache.org/,
https://spark.apache.org/docs/latest/graphx-programming-guide.html.

http://www.scala-lang.org/
http://arxiv.org/abs/1405.3694
http://dx.doi.org/10.1017/S1471068405002528
http://hadoop.apache.org/
https://spark.apache.org/
https://spark.apache.org/docs/latest/graphx-programming-guide.html

Declarative Algorithms in Datalog with Extrema:
Their Formal Semantics Simplified
Carlo Zaniolo
University of California, Los Angeles, USA
zaniolo@cs.ucla.edu

Mohan Yang
Google, USA
yang@cs.ucla.edu

Matteo Interlandi
Microsoft Corporation, USA
matteo.interlandi@microsoft.com

Ariyam Das
University of California, Los Angeles, USA
ariyamo@cs.ucla.edu

Alexander Shkapsky
University of California, Los Angeles, USA
shkapsky@gmail.com

Tyson Condie
University of California, Los Angeles, USA
tcondie@cs.ucla.edu

Abstract
Recent advances are making possible the use of aggregates in recursive queries thus enabling the
declarative expression classic algorithms and their efficient and scalable implementation. These
advances rely the notion of Pre-Mappability (PreM) of constraints that, along with the seminaive-
fixpoint operational semantics, guarantees formal non-monotonic semantics for recursive pro-
grams with min and max constraints. In this extended abstract, we introduce basic templates to
simplify and automate task of proving PreM.

2012 ACM Subject Classification Information systems → Query languages

Keywords and phrases Recursive Queries

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.9

1 Pre-Mappable Extrema constraints in Recursive Rules
Pre-mappable (PreM) extrema constraints in recursive Datalog programs enable concise
declarative formulations for classical algorithms [3]. The programs expressing these algorithms
have formal non-monotonic semantics [1, 2]. For instance, a classical recursive application
for traditional databases is Bill of Materials (BOM), where we have a Directed Acyclic
Graph (DAG) of parts-subparts, assbl(Part, Subpart, Qty) describing how a given part
is assembled using various subparts, each in a given quantity. Not all subparts are assembled,
since basic parts are instead supplied by external suppliers in a given number of days, as per
the facts basic(Part, Days). Simple assemblies, such as bicycles, can be put together the
very same day in which the last basic part arrives. Thus, the time needed to produce the

© Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky, and Tyson
Condie;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 9; pp. 9:1–9:3

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zaniolo@cs.ucla.edu
mailto:yang@cs.ucla.edu
mailto:matteo.interlandi@microsoft.com
mailto:ariyamo@cs.ucla.edu
mailto:shkapsky@gmail.com
mailto:tcondie@cs.ucla.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2 Datalog with Extrema

assembly is the maximum number of days required by the basic parts it uses. This can be
computed by the following stratified program:

I Example 1 (How many days till all the required parts arrive).

deliv(Part, Days)← basic(Part, Days), is_max(Part, Days).
deliv(Part, Days)← deliv(Sub, Days), assbl(Part, Sub).
actualDays(Part, Days)← deliv(Part, Days), is_max(Part, Days).

But the iterated fixpoint computation of the perfect model of this program can be very
inefficient. This problem is solved by transferring is_max((Part), Days), to the rules
defining deliv, whereby the rule defining actualDays now becomes a redundant copy rule.
Thus from the previous exo-max version of our program we obtain its endo-max version as
follows:

deliv(Part, Days)← basic(Part, Days), is_max((Part), Days).
deliv(Part, Days)← deliv(Sub, Days), assbl(Part, Sub), is_max((Part), Days).
actualDays(Part, Days)← deliv(Part, Days).

The questions we need to answer about our exo2endo transformation are the following two:
(i) is this a valid optimization inasmuch as the fixpoint computation of the endo-max

program delivers the same model as the iterated fixpoint of the original exo-max program
(and still allows recursive optimizations such as seminaive-fixpoint and magic-sets)?

(ii) once we re-express is_max using negation, does the transformed program has a unique
stable model semantics, efficiently computed as described jn (i).

The notion of PreM [3] provides provides a formal answer to both these questions?

I Definition 2 (The PreM Property). In a given Datalog program, let P be the rules defining
a (set of mutually) recursive predicate(s). Also let T be the ICO defined by P . Then, the
constraint γ will be said to be PreM to T (and to P) when, for every interpretation I of P ,
we have that: γ(T (I)) = γ(T (γ(I))).

The importance of this property follows from the fact that if I = T (I) is a fixpoint for T ,
then we also have that γ(I) = γ(T (I)), and when γ is PreM to T then: γ(I) = γ(T (I)) =
γ(T (γ(I))). Now, let Tγ denote the application of T followed by γ, i.e., Tγ(I) = γ(T (I)). If
I is a fixpoint for T and I ′ = γ(I), then the above equality can be rewritten as: I ′ = γ(I) =
γ(T (γ(I))) = Tγ(I ′). Thus, when γ is PreM , the fact that I is a fixpoint for T implies that
I ′ = γ(I) is a fixpoint for Tγ(I). In many programs of practical interest, the transfer of
constraints under PreM produces optimized programs for the naive fixpoint computation
that are safe and terminating even when the original programs were not. Thus we focus on
programs where, for some integer n, T ↑n

γ (∅) = T ↑n+1
γ (∅), i.e., the fixpoint iteration converges

after a finite number of steps n. As proven in [3], the fixpoint T ↑n
γ (∅) so obtained is in fact a

minimal fixpoint for Tγ , where γ denotes a min or max constraint:

I Theorem 3. If γ is PreM to a positive program P with ICO T and, for some integer n,
T ↑n
γ (∅) = T ↑n+1

γ (∅), then:
(i) T ↑n

γ (∅) = T ↑n+1
γ (∅) is a minimal fixpoint for Tγ , and

(ii) T ↑n
γ (∅) = γ(T ↑ω(∅)).

Therefore, when the PreM holds, declarative exo-min (or exo-max) programs are transformed
into endo-min (or endo-max) programs having highly optimized operational semantics that
computes the perfect model of the former and the unique stable modelof the latter.

C. Zaniolo, M. Yang, M. Interlandi, A. Das, A. Shkapsky, and T. Condie 9:3

2 Proving Premappability
The application of a min or max constraint to the ICO of a rule r can be expressed by the
addition of a min or max goal to r, whereby PreM holds if this insertion of a new goal does
not change the mapping defined by the rule. For the example at hand, we have:

deliv(Part, Days)←
deliv(Sub, Days),\is_max((Sub),Days)/, assbl(Part, Sub), is_max((Part), Days).

Thus, we must prove that the insertion\is_max((Sub),Days)/does not change the mapping defined
by our rule–a property that is guaranteed to hold if can prove that the original mapping
already satisfies this constraint. We next define the concept of min- and max-constraints for
individual tuples:

I Definition 4. We will say that a tuple t ∈ R satisfies the min-constraint is_min((X), A)
and write X−min−→ A when R contains no tuple having the same X-value and a smaller A-value.
Symmetrically, we say that the tuple t ∈ R satisfies the max-constraint is_max((X), A)
and write X−max−→ A when R contains no tuple with the same X-value and a larger A-value.

Thus in our example we have Part−max−→ Days and must prove that Sub−max−→ Days. Toward
that goal, we observe that X−min−→ A and X−max−→ A can be informally viewed as “half
functional dependencies (FDs)”, since both must hold before we can conclude that X → A.
In fact, although min- and max-constraints on single tuples are much weaker than regular
FDs, they preserve some of their important formal properties including those involving
multivalued dependencies (MVDs) that result from the natural joins in the recursive rules –
e.g. Sub →−→ Days and Sub →−→ Part, in our example.

Therefore, the following properties, proven in [4], hold for tuple for min-constraints,
max-constraints, and MVDs, and also illustrate the appeal of the arrow-based notation:
Min/Max Augmentation: If X−min−→ A and Z ⊆ Ω, then X ∪ Z−min−→ A.

If X−max−→ A and Z ⊆ Ω, then X ∪ Z−max−→ A.
MVD Augmentation: If X →−→ Y , Z ⊆ Ω and Z ⊆W , then X ∪W →−→ Y ∪ Z.
Mixed Transitivity: If Y →−→ Z and Z−min−→ A , with A /∈ Z, then Y−min−→ A.

If Y →−→ Z and Z−max−→ A, with A /∈ Z, then Y−max−→ A.

For the example at hand, Sub →−→ Part and Part−max−→ Days implies Sub−max−→ Days, by mixed
transitivity. Since this constraint holds, the additional goal\is_max((Sub),Days)/enforcing thus
max constraint does not change it. Q.E.D.

References
1 Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and

Carlo Zaniolo. Big Data Analytics with Datalog Queries on Spark. In SIGMOD, pages
1135–1149. ACM, 2016.

2 Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Scaling up the performance of more
powerful Datalog systems on multicore machines. The VLDB Journal, 26(2):229–248, 2017.

3 Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson Condie, and Mat-
teo Interlandi. Fixpoint semantics and optimization of recursive Datalog programs with
aggregates. TPLP, 17(5-6):1048–1065, 2017.

4 Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky, and
Tyson Condie. Declarative Algorithms by Aggregates in Recursive Queries: their Formal
Semantics Simplified. Report no. 180001, Computer Science Department, UCLA, April,
2018.

ICLP 2018

Towards Static Performance Guarantees for
Programs with Run-Time Checks
Maximiliano Klemen
IMDEA Software Institute and Universidad Politécnica de Madrid (UPM), Spain
maximiliano.klemen@imdea.org

https://orcid.org/0000-0002-8503-8379

Nataliia Stulova
IMDEA Software Institute and Universidad Politécnica de Madrid (UPM), Spain
nataliia.stulova@imdea.org

https://orcid.org/0000-0002-6804-2253

Pedro Lopez-Garcia
IMDEA Software Institute and Spanish Council for Scientific Research (CSIC), Spain
pedro.lopez@imdea.org

https://orcid.org/0000-0002-1092-2071

José F. Morales
IMDEA Software Institute, Spain
josef.morales@imdea.org

https://orcid.org/0000-0001-9782-8135

Manuel V. Hermenegildo
IMDEA Software Institute and Universidad Politécnica de Madrid (UPM), Spain
manuel.hermenegildo@imdea.org

https://orcid.org/0000-0002-7583-323X

Abstract
This document is an extended abstract of the Technical Report CLIP-1/2018.0.

2012 ACM Subject Classification Theory of computation → Program semantics, Theory of
computation → Program analysis, Theory of computation → Pre- and post-conditions, Theory
of computation → Invariants

Keywords and phrases Run-time Checks, Assertions, Abstract Interpretation, Resource Usage
Analysis

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.10

Category Extended Abstract

Related Version Technical Report CLIP-1/2018.0 [2], https://arxiv.org/abs/1804.02380.

Funding Research partially funded by EU FP7 ENTRA agreement no 318337, Spanish MINECO
TIN2015-67522-C3-1-R TRACES project, and Madrid M141047003 N-GREENS program.

Dynamic programming languages, such as Prolog, are a popular programming tool for
many applications (e.g., web programming, prototyping, and scripting) due to their flexibility.
The lack of inherent mechanisms for ensuring program data manipulation correctness (e.g.,
via full static typing or other forms of full static built-in verification) has sparked the evolution
of flexible solutions, including assertion-based approaches in (constraint) logic languages, soft-

© Maximiliano Klemen, Nataliia Stulova, Pedro Lopez-Garcia, José F. Morales, and
Manuel V. Hermenegildo;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 10; pp. 10:1–10:2

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maximiliano.klemen@imdea.org
https://orcid.org/0000-0002-8503-8379
mailto:nataliia.stulova@imdea.org
https://orcid.org/0000-0002-6804-2253
mailto:pedro.lopez@imdea.org
https://orcid.org/0000-0002-1092-2071
mailto:josef.morales@imdea.org
https://orcid.org/0000-0001-9782-8135
mailto:manuel.hermenegildo@imdea.org
https://orcid.org/0000-0002-7583-323X
https://doi.org/10.4230/OASIcs.ICLP.2018.10
https://arxiv.org/abs/1804.02380
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

10:2 Towards Static Performance Guarantees for Programs with Run-Time Checks

and gradual- typing in functional languages, and contract-based approaches in imperative
languages. A trait that many of these approaches share is that some parts of the specifications
may be the subject of run-time checking (e.g., those that cannot be discharged statically
in systems that support this functionality). However, such run-time checking comes at the
price of overhead during program execution, that can affect execution time, memory use,
energy consumption, etc., often in a significant way.

Reducing run-time checking overhead is a challenging problem. Proposed approaches
include discharging as many checks as possible via static analysis, optimizing the dynamic
checks themselves, or limiting run-time checking points. Nevertheless, there are cases in
which a number of checks cannot be optimized away and must remain in place, because of
software architecture choices (e.g., the case of the external interfaces of reusable libraries or
servers), the need to ensure a high level of safety (e.g., in safety-critical systems), etc.

At the same time, low program performance may not always be due to the run-time
checks. A technique that can help in this context is profiling, often used to detect performance
“hot spots” and guide program optimization. Prior work on using profiling in the context
of optimizing the performance of programs with run-time checks clearly demonstrates the
benefits of this approach. Still, profiling infers information that is valid only for some
particular input data values, and thus the results obtained may not be valid for other inputs,
and thus detecting the worst cases can take a long time, and is impossible in general.

We propose a method that uses static cost analysis (instead of – or as a complement to –
dynamic profiling) to infer upper and lower bounds (guarantees) on the costs introduced by
the run-time checks in a program (i.e., on the run-time checking overhead). Such bounds
are safe, in the sense that are guaranteed to never be violated in actual executions. Since
such costs are data-dependent, these bounds take the form of functions that depend on
certain characteristics (generally, data sizes) of the program inputs. Our method provides
the programmer with feedback and guarantees at compile-time regarding the overhead
that run-time checking will introduce. Unlike profiling, the bounds provided hold for all
possible execution traces, and allow assessing how such overhead varies with the size of the
input. We also propose an assertion-based mechanism (as an extension to the Ciao assertion
verification framework [1]) that allows programmers to specify bounds on the admissible
overhead introduced by run-time checking. Our method then statically and automatically
compares the inferred run-time checking overhead against the admissible levels and provides
guarantees on whether the instrumented program conforms with the specifications.

We formalize and implement the method in the context of the Ciao assertion language
and the CiaoPP verification framework, and present results from its experimental evaluation.
Such results suggest that our method is feasible and also promising in providing bounds that
help the programmer understand at the algorithmic level the overheads introduced by the
run-time checking required for the assertions in the program, in different scenarios, such as
performing full run-time checking or checking only the module interfaces.

References
1 M.V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and G. Puebla.

An Overview of Ciao and its Design Philosophy. TPLP, 12(1–2):219–252, 2012.
2 M. Klemen, N. Stulova, P. Lopez-Garcia, J. F. Morales, and M. V. Hermenegildo. An

Approach to Static Performance Guarantees for Programs with Run-time Checks. Technical
Report CLIP-1/2018.0, The CLIP Lab, IMDEA Software Institute and T.U. Madrid, April
2018. arXiv:1804.02380.

http://arxiv.org/abs/1804.02380

SMT-Based Answer Set Solver CMODELS(DIFF)
(System Description)
Da Shen
Department of Computer Science, University of Nebraska at Omaha
South 67th Street, Omaha, NE 68182, USA
dashen@unomaha.edu

Yuliya Lierler
Department of Computer Science, University of Nebraska at Omaha
South 67th Street, Omaha, NE 68182, USA
ylierler@unomaha.edu

https://orcid.org/0000-0002-6146-623X

Abstract
Many answer set solvers utilize Satisfiability solvers for search. Satisfiability Modulo Theory
solvers extend Satisfiability solvers. This paper presents the CMODELS(DIFF) system that
uses Satisfiability Modulo Theory solvers to find answer sets of a logic program. Its theoretical
foundation is based on Niemala’s characterization of answer sets of a logic program via so called
level rankings. The comparative experimental analysis demonstrates that CMODELS(DIFF) is
a viable answer set solver.

2012 ACM Subject Classification Computing methodologies→ Logic programming and answer
set programming, Software and its engineering → Constraint and logic languages, Theory of
computation → Constraint and logic programming

Keywords and phrases answer set programming, satisfiability modulo theories, constraint satis-
faction processing

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.11

Acknowledgements We are grateful to Cesare Tinelli for valuable discussions on the subject of
the paper and for the insights on the cvc4 system. We are also thankful to Ben Susman. Da
Shen was supported by the 2017-FUSE (Fund for Undergraduate Scholarly Experiences) Grant
from the University of Nebraska at Omaha. Yuliya Lierler was partially supported by the NSF
1707371 grant.

1 Introduction

This paper describes a new answer set solver cmodels(diff). Its theoretical foundation lies
on the generalizations of Niemela’s ideas. Niemela [19] characterized answer sets of a normal
logic program as models of a propositional formula called program’s completion that satisfy
“level ranking” requirements. In this sense, this system is a close relative of an earlier answer
set solver lp2diff developed by Janhunen et al. [10]. Yet, lp2diff only accepts programs
of a very restricted form. For example, neither choice rules nor aggregate expressions are
allowed. Solver cmodels(diff) permits such important modeling constructs in its input.
Also, unlike lp2diff, the cmodels(diff) system is able to generate multiple solutions.

The cmodels(diff) system follows the tradition of answer set solvers such as assat [16]
and cmodels [11]. In place of designing specialized search procedures targeting logic
programs, these tools compute a program’s completion and utilize Satisfiability solvers [9]
– systems for finding satisfying assignments for propositional formulas – for search. Since

© Da Shen and Yuliya Lierler;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 11; pp. 11:1–11:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dashen@unomaha.edu
mailto:ylierler@unomaha.edu
https://orcid.org/0000-0002-6146-623X
https://doi.org/10.4230/OASIcs.ICLP.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

11:2 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

not all models of a program’s completion are answer sets of a program, both assat and
cmodels implement specialized procedures (based on loop formulas [16]) to weed out such
models. Satisfiability Modulo Theory (SMT) solvers [2] extend Satisfiability solvers. They
process formulas that go beyond propositional logic and may contain, for example, integer
linear expressions. The cmodels(diff) system utilizes this fact and translates a logic
program into an SMT formula so that any model of this formula corresponds to an answer
set of the program. It then uses SMT solvers for search. Unlike cmodels or assat, the
cmodels(diff) system does not need an additional step to weed out unwanted models. Also,
it utilizes smt-lib – a standard input language of SMT solvers [1] – to interface with these
systems. This makes its architecture open towards new developments in the realm of SMT
solving. There is practically no effort involved in incorporating a new SMT system into the
cmodels(diff) implementation.

Creation of the cmodels(diff) system was inspired by the development of recent
constraint answer set programming solver ezsmt [21] that utilizes SMT solvers for finding
solutions for “tight” constraint answer set programs. On the one hand, cmodels(diff)
restricts its attention to pure answer set programs. On the other hand, it goes beyond
tight programs. In the future, we will extend cmodels(diff) to accept non-tight constraint
answer set programs. The theory developed in this work paves the way for such an extension.

Lierler and Susman [13] demonstrate that SMT formulas are strongly related to constraint
programs [17]. Many efficient constraint solvers1 exist. Majority of these systems focus
on finite-domain constraint problems. The theoretical contributions of this work provide a
foundation for developing a novel constraint-solver-based method in processing logic programs.
Currently, cmodels(diff) utilizes SMT-LIB to interface with SMT solvers. By producing
output in minizinc – a standard input language of constraint solvers [18] – in place of
smt-lib, cmodels(diff) will become a constraint-based answer set solver. This is another
direction of future work.

The outline of the paper is as follows. We start by reviewing the concepts of a logic
program, a completion, tightness and an SMT logic smt(il). We then present a key concept
of this work, namely, a level ranking; and state theoretical results. Section 4 presents
transformations from logic programs to smt(il) by means of variants of level rankings.
After that, we introduce the architecture of the cmodels(diff) system and conclude with
comparative experimental analysis.

2 Preliminaries

A vocabulary is a finite set of propositional symbols also called atoms. As customary, a literal
is an atom a or its negation, denoted ¬a. A (propositional) logic program, denoted by Π,
over vocabulary σ is a finite set of rules of the form

a← b1, . . . , b`, not b`+1, . . . , not bm, not not bm+1, . . . , not not bn (1)

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ n, is an atom or symbol > and ⊥ in σ.
Sometimes we use the abbreviated form of rule (1)

a← B (2)

1 http://www.minizinc.org/

http://www.minizinc.org/

D. Shen and Y. Lierler 11:3

Π1 Π2
{c}. {c}.
a← c. a← c.

a← b.

b← a.

Comp(Π1) Comp(Π2)
¬¬c→ c. ¬¬c→ c.

c→ a. c→ a.

c→ ¬¬c. b→ a.

a→ c. a→ b.

c→ ¬¬c.
a→ c ∨ b.

Figure 1 Sample programs and their completions.

where B stands for the right hand side of an arrow in (1) and is also called a body. We
identify rule (1) with the propositional formula

b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn → a (3)

and B with the propositional formula

b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn. (4)

Note that (i) the order of terms in (4) is immaterial, (ii) not is replaced with classical
negation (¬), and (iii) comma is replaced with conjunction (∧). When the body is empty it
corresponds to the empty conjunction or >. Expression b1 ∧ . . .∧ b` in formula (4) is referred
to as the positive part of the body and the remainder of (4) as the negative part of the body.

The expression a is the head of the rule. When a is ⊥, we often omit it and say that the
head is empty. We denote the set of nonempty heads of rules in Π by hd(Π). We call a rule
whose body is empty a fact. In such cases, we drop the arrow. We sometimes may identify a
set X of atoms with the set of facts {a. | a ∈ X}.

We say that a set X of atoms satisfies a rule (1) if X satisfies a formula (3). The reduct
ΠX of a program Π relative to a set X of atoms is obtained by first removing all rules (1)
such that X does not satisfy its negative part ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn and
replacing all of its remaining rules with a← b1, . . . , b`. A set X of atoms is an answer set, if
it is a minimal set that satisfies all rules of ΠX [15].

Ferraris and Lifschitz [6] show that a choice rule {a} ← B can be seen as an abbreviation
for a rule a← not not a,B. We adopt this abbreviation here. Choice rules were introduced
in [20] and are commonly used in answer set programming languages.

It is customary for a given vocabulary σ, to identify a set X of atoms over σ with (i)
a complete and consistent set of literals over σ constructed as X ∪ {¬a | a ∈ σ \X}, and
respectively with (ii) an assignment function or interpretation that assigns truth value true
to every atom in X and false to every atom in σ \X.

Consider sample programs listed in Figure 1. Program Π1 has two answer sets, namely,
{a, c} and an empty set. Program Π2 has two answer sets: {a, b, c} and an empty set.

Completion and Tightness

Let σ be a vocabulary and Π be a program over σ. For every atom a in Π, by Bodies(Π, a)
we denote the set composed of the bodies B appearing in the rules of the form a← B in Π.
The completion of Π [3], denoted by Comp(Π), is the set of classical formulas that consists of
the rules (1) in Π (recall that we identify rule (1) with implication (3)) and the implications

a→
∨

a←B∈Π
B (5)

ICLP 2018

11:4 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

for all atoms a in σ. When set Bodies(Π, a) is empty, the implication (5) has the form
a→ ⊥. When a rule (2) is a fact a. , then we identify this rule with the unit clause a.

For example, completions of programs Π1 and Π2 are presented in Figure 1.
For the large class of logic programs, called tight, their answer sets coincide with models

of their completion [5, 4]. This is the case for program Π1 (we illustrate that Π1 is tight,
shortly). Yet, for non-tight programs, every answer set is a model of completion but not
necessarily the other way around. For instance, set {a, b} is a model of Comp(Π2), but not
an answer set of Π2. It turns out that Π2 is not tight.

Tightness is a syntactic condition on a program that can be verified by means of program’s
dependency graph. The dependency graph of Π is the directed graph G such that

the nodes of G are the atoms occurring in Π, and
for every rule (1) in Π whose head is an atom, G has an edge from atom a to each atom
b1, . . . , b`.

A program is called tight if its dependency graph is acyclic.
For example, the dependency graph of program Π1 consists of two nodes, namely, a and

c, and a single edge from a to c . This graph is acyclic and hence Π1 is tight. On the other
hand, it is easy to see that the graph of Π2 is not acyclic.

Logic SMT(IL)

We now introduce the notion of Satisfiability Modulo Theory (SMT) [2] for the case when
Linear Integer Arithmetic is a considered theory. We denote this SMT instance by smt(il).

Let σ be a vocabulary and χ be a finite set of integer variables. The set of atomic formulas
of smt(il) consists of propositions in σ and linear constraints of the form

a1x1 ± · · · ± anxn ./ an+1 (6)

where a1, . . . , an+1 are integers and x1, . . . , xn are variables in χ, ± stands for + or −, and ./
belongs to {<,>,≤,≥,=, 6=}. When ai = 1 (1 ≤ i ≤ n) we may omit it from the expression.
The set of smt(il) formulas is the smallest set that contains the atomic formulas and is
closed under ¬ and conjunction ∧. Other connectives such as >, ⊥, ∨, →, and ↔ can be
defined in terms of ¬ and ∧ as customary.

A valuation τ consists of a pair of functions
τσ : σ → {true, false} and
τχ : χ→ Z, where Z is the set of integers.

A valuation interprets all smt(il) formulas by defining
τ(p) = τσ(p) when p ∈ σ,
τ(a1x1 ± · · · ± anxn ./ an+1) = true iff a1τχ(x1)± · · · ± anτχ(xn) ./ an+1 holds,

and applying the usual rules for the Boolean connectives.
We say that an smt(il) formula Φ is satisfied by a valuation τ when τ(Φ) = true. A set

of smt(il) formulas is satisfied by a valuation when every formula in the set is satisfied by
this valuation. We call a valuation that satisfies an smt(il) formula a model.

3 Level Rankings

Niemela [19] characterized answer sets of “normal” logic programs in terms of “level rankings”.
Normal programs consist of rules of the form (1), where n = m and a is an atom. Lierler and
Susman [13] generalized the concept of level ranking to programs considered in this paper
that include choice rules and denials (rules with empty head).

D. Shen and Y. Lierler 11:5

By N we denote the set of natural numbers. For a rule (2), by B+ we denote its positive
part and sometimes identify it with the set of atoms that occur in it, i.e., {b1, . . . , bl}. For a
program Π, by At(Π) we denote the set of atoms occurring in it.

I Definition 1. For a logic program Π and a set X of atoms over At(Π), a function lr:
X → N is a level ranking of X for Π when for each a ∈ X, there is B in Bodies(Π, a) such
that X satisfies B and for every b ∈ B+ it holds that lr(a)− 1 ≥ lr(b).

Niemela [19] observed that for a normal logic program, a model X of its completion is also
its answer set when there is a level ranking of X for the program. Lierler and Susman [13]
generalized this result to programs with double negation not not:

I Theorem 2 (Theorem 1 [13]). For a program Π and a set X of atoms that is a model of
its completion Comp(Π), X is an answer set of Π if and only if there is a level ranking of X
for Π.

The nature of a level ranking is such that there is an infinite number of level rankings for
the same answer set of a program. Theorem below illustrates that we can add a single linear
constraint to limit the number of level rankings by utilizing the size of a program.

I Theorem 3. For a logic program Π and its answer set X, we can always construct a level
ranking of X for Π such that, for every a ∈ X, lr(a) ≤ |At(Π)|.

Proof. Since there is an answer set X, by Theorem 2 there exists some level ranking lr′ of
X for Π. Then, we can always use the level ranking lr′ to construct a level ranking lr of X
for Π such that, for every a ∈ X, lr(a) ≤ |At(Π)|. Below we describe the method.

For an integer y, by s(y) we denote the following set of atoms

{a | a ∈ X, lr′(a) = y}.

Let Y be the set of integers so that

{y | a ∈ X, lr′(a) = y}.

Let Y s denote the sorted list [y1, . . . , yk] constructed from all integers of Y , such that
y1 < y2 < ... < yk. Note that yi > yj if and only if i > j. Obviously, |Y | ≤ |At(Π)|. Thus,
k ≤ |At(Π)|. For every element yi in Y s and every atom a ∈ s(yi), we assign lr(a) = i.
Consequently, lr(a) ≤ |At(Π)|.

Now we prove that lr is indeed a level ranking. According to the definition of lr′, for each
atom a ∈ X, there exists B in Bodies(Π, a) such that X satisfies B and for every b ∈ B+

it holds that lr′(a)− 1 ≥ lr′(b). We show that lr(a)− 1 ≥ lr(b) also holds for each b in this
B+. Atoms a, b belong to some sets s(yka

) and s(ykb
) respectively, where ka, kb ≤ k. By

the definition of s(·), yka
= lr′(a) and ykb

= lr′(b). Since lr′(a) > lr′(b), yka
> ykb

. Since
for any i and j, yi > yj if and only if i > j, we derive that ka > kb. By the construction of
lr, lr(a) = ka and lr(b) = kb. Consequently, lr(a)− 1 ≥ lr(b) also holds. Thus, lr is a level
ranking by definition. J

Strong level ranking

Niemela [19] introduced the concept of a strong level ranking so that only one strong level
ranking exists for an answer set. It is obviously stricter than the condition captured in
Theorem 3. Yet, the number of linear constraints in formulating the conditions of strong
level ranking is substantially greater. We now generalize the concept of a strong level ranking
to the case of logic programs considered here and then state the formal result on the relation
of answer sets and strong level rankings.

ICLP 2018

11:6 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

I Definition 4. For a logic program Π and a set X of atoms over At(Π), a function lr:
X → N is a strong level ranking of X for Π when lr is a level ranking and for each a ∈ X the
following conditions hold:
1. If there is B in Bodies(Π, a) such that X satisfies B and B+ is empty, then lr(a) = 1.
2. For every B in Bodies(Π, a) such that X satisfies B and B+ is not empty, there is at

least one b ∈ B+ such that lr(b) + 1 ≥ lr(a).

I Theorem 5. For a program Π and a set X of atoms that is a model of its completion
Comp(Π), X is an answer set of Π if and only if there is a strong level ranking of X for Π.

Proof. This proof follows the argument provided for Theorem 2 in [19], but respects the
terminology used here. We start by defining an operator TΠ(I) for a program Π and a set I
over At(Π) ∪ ⊥ as follows:

TΠ(I) = {a | a← B ∈ Π, I satisfies B}.

For this operator we define

TΠ ↑ 0 = ∅,

and for i= 0,1,2, ...

TΠ ↑ (i+ 1) = TΠ(TΠ ↑ i).

Left-to-right: Assume X is an answer set of Π. We can construct a strong level ranking lr
of X for Π using the TΠX (·) operator. As X is an answer set of Π, we know that X = TΠX ↑ ω
and for each a ∈ X there is a unique i such that a ∈ TΠX ↑ i, but a /∈ TΠX ↑ (i − 1). Let
lr(a) = i. We now illustrate that lr is indeed a strong level ranking.

First, we illustrate that lr is a level ranking. For a ∈ X there is a rule a ← B of the
form (1) such that a← b1, . . . , bl ∈ ΠX and TΠX ↑ (i− 1) satisfies b1 ∧ · · · ∧ bl. Consequently,
for every bj in {b1, . . . , bl}, lr(bj) ≤ i− 1. Thus, lr(a)− 1 ≥ lr(bj). Also, from the way the
reduct is constructed, it follows that X satisfies body B of rule a← B.

Second, we show that Condition 1 of the definition of strong level ranking holds for lr.
If there is a← B ∈ Π such that X satisfies B and B+ is empty, then a← > is in ΠX . By
definition of the TΠX (·) operator, a ∈ TΠX ↑ 1. Consequently, lr(a) = 1 holds.

Third, we demonstrate that Condition 2 holds for lr. For a ∈ X, by the construction of lr
using the TΠX (·) operator we know that there is a unique i such that lr(a) = i, a ∈ TΠX ↑ i,
but a /∈ TΠX ↑ (i − 1). Proof by contradiction. Assume that there is a rule a ← B ∈ Π
such that X satisfies B and B+ is not empty, but for all b ∈ B+, lr(b) + 1 < lr(a) holds.
Then for all b ∈ B+, lr(b) < lr(a) − 1. Thus, lr(b) < i − 1. It follows that all b ∈ B+

belong to TΠX ↑ (i − 2). Hence, by the definition of TΠX (·) operator, a ∈ TΠX ↑ (i − 1),
which contradicts that a /∈ TΠX ↑ (i − 1). Thus, there is at least one b ∈ B+ such that
lr(b) + 1 ≥ lr(a).

Right-to-left: Assume that there is a strong level ranking of X for Π. By the definition,
it is also a level ranking. Recall that X is a model of Comp(Π). By Theorem 2, X is an
answer set of Π. J

SCC level ranking

Niemela [19] illustrated how one can utilize the structure of the dependency graph correspond-
ing to a normal program to reduce the number of linear constraints in capturing conditions
similar to these of level ranking. We now generalize these results to logic programs with
doubly negated atoms and denials.

D. Shen and Y. Lierler 11:7

Recall that a strongly connected component of a directed graph is a maximal set V of
nodes such that each pair of nodes in V is reachable from each other. We call a set of atoms
in a program Π a strongly connected component (SCC) of Π when it is a strongly connected
component in the dependency graph of Π. The SCC including an atom a is denoted by
SCC(a). A non-trivial SCC is an SCC that consists of at least two atoms. We denote the
set of atoms in all non-trivial SCCs of Π by NT (Π).

I Definition 6. For a logic program Π and a set X of atoms over At(Π), a function lr:
X ∩NT (Π) → N is a SCC level ranking of X for Π when for each a ∈ X ∩NT (Π), there
is B in Bodies(Π, a) such that X satisfies B and for every b ∈ B+ ∩ SCC(a) it holds that
lr(a)− 1 ≥ lr(b).

The byproduct of the definition of SCC level rankings is that for tight programs SCC
level ranking trivially exists since it is a function whose domain is empty. Thus no linear
constraints are produced.

I Theorem 7. For a program Π and a set X of atoms that is a model of its completion
Comp(Π), X is an answer set of Π if and only if there is an SCC level ranking of X for Π.

This is a generalization of Theorem 4 in [19]. Its proof follows the lines of the proof presented
there with the reference to Theorem 2.

I Theorem 8. For a satisfiable logic program Π and its answer set X, we can always
construct an SCC level ranking of X for Π such that, for every a ∈ X, lr(a) ≤ |SCC(a)|.

This theorem can be proved by applying the similar argument as in the proof of Theorem 3
to each SCC. This result allows us to set minimal upper bounds for lr(a) in order to reduce
search space.

Further, Niemela [19] introduces the concept of strong SCC level ranking and states a
similar result to Theorem 7 for that concept. It is straightforward to generalize these results
to logic programs considered here.

4 From Logic Programs to SMT(IL)

In this section we present a mapping from a logic program to smt(il) such that the models
of a constructed smt(il) theory are in one-to-one correspondence with answer sets of the
program. Thus, any SMT solver capable of processing smt(il) expressions can be used to
find answer sets of logic programs. The developed mappings generalize the ones presented by
Niemela [19].

For a rule a← B of the form (1), the auxiliary atom βB , equivalent to its body, is defined
as

βB ↔ b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ bm+1 ∧ . . . ∧ bn (7)

When the body of a rule consist of a single element, no auxiliary atom is introduced (the
single element itself serves the role of an auxiliary atom).

Let Π be a program. We say that an atom a is a head atom in Π if it is the head of some
rule. Any atom a in Π such that

it is a head atom, or
it occurs in some positive part of the body of some rule whose head is an atom,

ICLP 2018

11:8 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

we associate with an integer variable denoted by lra. We call such variables level ranking
variables. For each head atom a in Π, we construct an smt(il) formula

a→
∨

a←B∈Π
(βB ∧

∧
b∈B+

lra − 1 ≥ lrb). (8)

We call the conjunction of formulas (8) for the head atoms in program Π a level ranking
formula of Π.

For example, the level ranking formula of program Π2 in Figure 1 follows(
c→ ¬¬c

)
∧
(
a→ (c∧ lra− 1 ≥ lrc)∨ (b∧ lra− 1 ≥ lrb)

)
∧
(
b→ a∧ lrb− 1 ≥ lra

)
. (9)

I Theorem 9. For a logic program Π and the set F of smt(il) formulas composed of
Comp(Π) and a level ranking formula of Π
1. If a set X of atoms is an answer set of Π, then there is a satisfying valuation τ for F

such that X = {a | a ∈ At(Π) and τ(a) = true}.
2. If valuation τ is satisfying for F , then the set {a | a ∈ At(Π) and τ(a) = true} is an

answer set for Π.
This is a generalization of Theorem 6 in [19]. Its proof follows the lines of the proof presented
there with the reference to Theorem 2.

SCC level ranking

For each atom a in the set NT (Π), we introduce an auxiliary atom exta. If there exists some
rule a← B in Π such that B+ ∩ SCC(a) = ∅, then we construct an smt(il) formula

exta ↔
∨

a←B∈Π and B+∩SCC(a)=∅

βB ; (10)

otherwise, we construct a formula

¬exta. (11)

We also introduce an smt(il) formula:

a→ exta ∨
∨

a←B∈Π and B+∩SCC(a)6=∅

(βB ∧
∧

b∈B+∩SCC(a)

lra − 1 ≥ lrb). (12)

We call the conjunction of formulas (10), (11) and (12) a SCC level ranking formula of Π.
For instance, NT (Π1) is empty, so we introduce no SCC level ranking formula for program

Π1. The SCC level ranking formula of program Π2 follows(
exta ↔ c

)
∧ ¬extb ∧

(
a→ exta∨(b∧lra−1 ≥ lrb)

)
∧
(
b→ extb∨(a∧lrb−1 ≥ lra)

)
. (13)

The claim of Theorem 9 holds also when we replace a level ranking formula of Π with
an SCC level ranking formula of Π in its statement.

Strong level ranking

For each rule a← B in program Π we construct an smt(il) formula

a ∧ βB → lra = 1 when B+ = ∅,
a ∧ βB →

∨
b∈B+

lrb + 1 ≥ lra otherwise. (14)

D. Shen and Y. Lierler 11:9

We call the conjunction of formulas (8) and (14) a strong level ranking formula of Π.
For example, the strong level ranking formula of program Π2 is a conjunction of formula (9)

and formula(
c ∧ ¬¬c→ lrc = 1

)
∧
(
a ∧ c→ lrc + 1 ≥ lra

)
∧(

a ∧ b→ lrb + 1 ≥ lra
)
∧
(
b ∧ a→ lra + 1 ≥ lrb

)
.

We now state a similar result to Theorem 9 that makes an additional claim on one-to-one
correspondence between the models of a constructed smt(il) formula with the use of strong
level ranking formula and answer sets of a program.

I Theorem 10. For a logic program Π and the set F of smt(il) formulas composed of
Comp(Π) and a strong level ranking formula of Π
1. If a set X of atoms is an answer set of Π, then there is a satisfying valuation τ for F

such that X = {a | a ∈ At(Π) and τ(a) = true}.
2. If valuation τ is satisfying for F , then the set {a | a ∈ At(Π) and τ(a) = true} is an

answer set for Π.
3. If valuations τ and τ ′ satisfy F and are distinct, then

{a | a ∈ At(Π) and τ(a) = true} 6= {a | a ∈ At(Π) and τ ′(a) = true}.

Strong SCC level ranking

For each atom a ∈ NT (Π), we construct a formula

exta → lra = 1, (15)

and for each rule a← B such that B+ ∩ SCC(a) 6= ∅, we introduce a formula

a ∧ βB →
∨

b∈B+∩SCC(a)

lrb + 1 ≥ lra. (16)

We call the conjunction of formulas (10), (11), (12), (15) and (16) a strong SCC level ranking
formulas of Π.

For instance, NT (Π1) is empty, so we introduce no strong SCC level ranking formula
for program Π1. The strong SCC level ranking formula of program Π2 is a conjunction of
formula (13) and formula(

exta → lra = 1
)
∧
(
extb → lrb = 1

)
∧
(
a ∧ b→ lrb + 1 ≥ lra

)
∧
(
b ∧ a→ lra + 1 ≥ lrb

)
.

The claim of Theorem 10 holds also when we replace a strong level ranking formula of Π
with a strong SCC level ranking formula of Π in its statement.

5 The CMODELS(DIFF) system

We are now ready to describe the the cmodels(diff)2 system in detail. It is an extension of
the cmodels [11] system. Figure 2 illustrates the pipeline architecture of cmodels(diff).
This system takes an arbitrary (tight or non-tight) logic program in the language supported

2 cmodels(diff) is posted at https://www.unomaha.edu/college-of-information-science-and-
technology/natural-language-processing-and-knowledge-representation-lab/software/
cmodels-diff.php

ICLP 2018

https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/cmodels-diff.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/cmodels-diff.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/cmodels-diff.php

11:10 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

Figure 2 cmodels(diff) Pipeline.

by cmodels as an input. These logic programs may contain such features as choice rules
and aggregate expressions. The rules with these features are translated by cmodels [11]
into rules considered here. The cmodels(diff) system translates a logic program into
smt(il) formulas, after which an SMT solver is called to find models of these formulas (that
correspond to answer sets).

(1, 2) Computing Completion and Level Ranking Formulas

The cmodels(diff) system utilizes the original algorithm of cmodels to compute comple-
tion, during which cmodels determines whether the program is tight or not. If the program
is not tight, the corresponding level ranking formula is added.

Flags -levelRanking, -levelRankingStrong, -SCClevelRanking, and
-SCClevelRankingStrong instruct cmodels(diff) to construct a level ranking formula,
a strong level ranking formula, a SCC level ranking formula, and a strong SCC level ranking
formula, respectively. And, -SCClevelRanking is chosen by default. Finally, completion
and the level ranking formula are clausified using the same technique as in original cmodels.
The cmodels(diff) system outputs the resulting clauses into a text file in semi-Dimacs
format [21].

(3, 4) Transformation and Solving

The transformer is taken from ezsmt v1.1. It converts the semi- Dimacs output from step (2)
into smt-lib syntax (smt-lib is a standard input language for SMT solvers [1]). By default,
the smt-lib output contains an instruction that sets the logic of SMT solvers to Linear
Integer Arithmetic. If the transformer is invoked with the parameter difference-logic,
then the smt-lib output sets the logic of SMT solvers to Difference Logic instead.

Finally, one of the SMT solvers cvc4, z3, or yices is called to compute models by using
flags -cvc4, -z3, or -yices. (In fact, any other SMT solver supporting SMT-LIB can
be utilized.) The cmodels(diff) system post-processes the output of the SMT solvers

D. Shen and Y. Lierler 11:11

mentioned above to produce answer sets in a typical format disregarding any auxiliary atoms
or integer variables that are created during the system’s execution.

The cmodels(diff) system allows us to compute multiple answer sets. Currently, SMT
solvers typically find only a single model. We design a process to enumerate all models.
For a logic program Π, after an SMT solver finds a model and exits, the cmodels(diff)
system constructs a clause that consists of (i) atoms in At(Π) that are assigned false by the
model and (i) negations of atoms in At(Π) that are assigned true by the model. This clause
is added into the smt-lib formula previously computed. Then, the SMT solver is called
again taking the new input. The process is performed repeatedly, until the smt-lib formula
becomes unsatisfiable.

In summary, cmodels(diff) has eight possible configurations. We can choose one from
the four variants of level ranking formulas, and choose a logic from either Linear Integer
Arithmetic or Difference Logic for the invoked SMT solver.

6 Experiments

We benchmark cmodels(diff) on seven problems, to compare its performance with that of
other ASP solvers, namely cmodels and clasp [7]. All considered benchmarks are non-tight
programs. The first two benchmarks are Labyrinth and Connected Still Life, which are
obtained from the Fifth Answer Set Programming Competition3. We note that the original
encoding of Still Life is an optimization problem, and we turn it into a decision one. The next
three benchmarks originate from Asparagus4. The selected problems are RandomNonTight,
Hamiltonian Cycle and Wire Routing. We also consider five instances of Wire Routing
from RST Construction5. Then, we use Bounded Models as the sixth benchmark6. Our
last benchmark, Mutual Exclusion, comes from Synthesis Benchmarks7. We rewrite the
seven encodings to fit the syntax of gringo 4, and call gringo v. 4.5.38 to produce ground
programs serving as input to all benchmarked systems. All benchmarks are posted at the
cmodels(diff) website provided at Footnote 2.

All benchmarks are run on an Ubuntu 16.04.1 LTS (64-bit) system with an Intel core
i5-4250U processor. The resource allocated for each benchmark is limited to one cpu core
and 4GB RAM. We set a timeout of 1800 seconds. No problems are solved simultaneously.

Numbers of instances are shown in parentheses after names of benchmarks. We present
cumulative time of all instances for each benchmark with numbers of unsolved instances
due to timeout or insufficient memory inside parentheses. All the steps involved, including
grounding and transformation, are reported as parts of solving time.

Five distinct solvers are benchmarked: (1) cmodels(diff) invoking SMT solver cvc4 v.
1.4; (2) cmodels(diff) invoking SMT solver z3 v. 4.5.1; (3) cmodels(diff) invoking SMT
solver yices v. 2.5.4; (4) clasp v. 3.1.3; (5) cmodels v. 3.86.1 with Satisfiability solver
Minisat v. 2.0 beta. We use diff-cvc4, diff-z3, and diff-yices to denote three variants of
cmodels(diff) used in the experiments.

3 https://www.mat.unical.it/aspcomp2014/
4 https://asp.haiti.cs.uni-potsdam.de/
5 http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/rst-basic.html
6 http://users.ics.aalto.fi/~kepa/experiments/boundsmodels/
7 http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/

benchmarks030923.html
8 http://potassco.sourceforge.net/

ICLP 2018

https://www.mat.unical.it/aspcomp2014/
https://asp.haiti.cs.uni-potsdam.de/
http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/rst-basic.html
http://users.ics.aalto.fi/~kepa/experiments/boundsmodels/
http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/benchmarks030923.html
http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/benchmarks030923.html
http://potassco.sourceforge.net/

11:12 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

Table 1 Experimental Summary.

Benchmark diff-cvc4 diff-z3 diff-yices diff-z3 diff-yices cmodels clasp
LIA LIA LIA DL DL

Still Life (26) 731 5423(1) 203 899 194 647 10.8
Ham. Cycl. (50) 15.39 9.78 4.54 6.61 3.57 1.19 0.53
Wire Rout. (10) 1378 562.36 1562 2983(1) 2089(1) 409 12.5

Bound. Mod. (8) 6.08 4.30 2.34 2.93 2.20 1.59 1.38
Labyrinth (30) 19543(8) 27794(12) 20425(10) 22023(9) 21836(9) 16408(7) 5826(2)

Rand. Nont. (20) 27.8 8.65 6.84 7.72 6.47 1.39 3.52
Mut. Excl. (5) 5.26 2.72 1.70 2.28 1.50 0.30 0.13

Table 1 summarizes main results. Under the name of variants of the cmodels(diff)
systems, we state the configuration used for this solver. Namely, “LIA” and “DL” denote that
the logic of SMT solvers is set to Linear Integer Arithmetic and Difference Logic, respectively.
All diff systems in the table are invoked with flag -SCClevelRanking. Systems clasp
and cmodels are run with default settings. We benchmarked cmodels(diff) with all
eight possible configurations. Yet, we do not present all of the data here. cmodels(diff)
invoked with -levelRanking and -levelRankingStrong flags shows worse performance than
settings -SCClevelRanking and -SCClevelRankingStrong, respectively. That is why we
avoid presenting the results on configurations -levelRanking and -levelRankingStrong.
Also, adding constraints for strong level ranking typically slightly degrades the performance so
we do not present the results for the -SCClevelRankingStrong configuration. We note that
SMT solver cvc4 implements the same procedure for processing Difference Logic statement
and Linear Integer Arithmetic statements.

Observations

We observe that system clasp almost always displays the best results. This is not surprising
as this is one of the best native answer set solvers currently available. Its search method is
attuned towards processing logic programs. Given that SMT solvers are agnostic towards
specifics of logic programs it is remarkable how good the performance of cmodels(diff) is.
In some cases it is comparable to that of clasp.

It is the case that many Satisfiability solvers and answer set solvers share a lot in com-
mon [12]. For example, answer set solver clasp starts by computing clausified programs
completion and then later applies to it Unit propagator search technique stemming from
Satisfiability solving. That is reminiscent of the process that system cmodels(diff) un-
dertakes. It also computes program’s completion so that Unit propagator of SMT solvers is
applicable to it.

We conjecture that the greatest difference between cmodels(diff) and clasp lies in the
fact that

in cmodels(diff) integer linear constraints encode the conditions to weed out unwanted
models of completion; SMT solvers implement search techniques/propagators to target
these integer linear constraint;
in clasp the structure of the program is taken into account by the so called Unfounded
propagator for this task.

In case of Still Life, Hamiltonian Cycle, Wire Routing, and Bounded Models benchmarks
(marked in bold in Table 1) there is one more substantial difference. These encodings contain
aggregates. clasp implements specialized search techniques to benefit from the compact

D. Shen and Y. Lierler 11:13

representations that aggregates provide. System cmodels(diff) translates aggregates
away, which often results in a bigger problem encoding that the system has to deal with.
System cmodels also translates aggregates away. This is why we underline the solving
times of cmodels, as it is insightful to compare the performance of cmodels to that
of cmodels(diff) alone. Indeed, cmodels(diff) utilizes the routines of cmodels for
eliminating aggregates and computing the completion of the resulting program. Thus, the
only difference between these systems is in how they eliminate models of completion that are
not answer sets. System cmodels(diff) utilizes level rankings for that. System cmodels
implements a propagator in spirit of Unfounded propagator of clasp, but the propagator of
cmodels is only used when a model of completion is found; clasp utilizes this propagator
as frequently as it utilizes Unit propagator [14, Section 5]. We believe that when we observe
a big difference in performance of cmodels(diff) and clasp, this attributes to the benefits
gained by the utilization of specialized Unfounded and “aggregate” propagators by clasp.
Yet, level ranking formulas seem to provide a viable alternative to Unfounded propagator
and open a door for utilization of SMT solvers for dealing with non-tight programs. This
gives us grounds to believe that the future work on extending constraint answer set solver
ezsmt to accept non-tight programs is a viable direction.

As we noted earlier SCC level rankings yield best performance among the four variants
of level rankings. Furthermore, Table 1 illustrates the following. The logic of SMT solvers
does not make an essential difference. Overall, cmodels(diff)-yices with Linear Integer
Arithmetic logic performs best within the presented cmodels(diff) configurations. Obvi-
ously, utilizing better SMT solvers can improve the performance of cmodels(diff) in the
future. Notably, this does not require modifications to cmodels(diff), since smt-lib used
by cmodels(diff) is a standard input language of SMT solvers.

7 Conclusion

In this paper we presents the cmodels(diff) system that takes a logic program and translates
it into an smt-lib formula which is then solved by an SMT solver to find answer sets of the
given program. Our work parallels the efforts of an earlier answer set solver lp2diff [10]. The
cmodels(diff) system allows richer syntax such as choice rules and aggregate expressions,
and enables computation of multiple solutions. (In this work we extended the theory of
level rankings to the case of programs with choice rules and denials.) We note that the
lp2normal9 tool can be used as a preprocessor for lp2diff in order to enable this system
to process logic programs with richer syntax. In the future, we will compare performance of
cmodels(diff) and lp2diff experimentally. Yet, we do not expect to see great difference
in their performance when the same SMT solver is used as a backend. Also, we would like to
conduct more extensive experimental analysis to support our conjecture on the benefits of
specialized “aggregate” propagator and Unfounded propagator employed by clasp.

The technique implemented by cmodels(diff) for enumerating multiple answer sets of
a program is basic. In the future we would like to adopt the nontrivial methods for model
enumeration discussed in [8] to our settings. The theory developed in this paper provides
a foundation to extend the recent constraint answer set programming solver ezsmt [21] to
accept non-tight constraint answer set programs. The contributions of this work also open a
door to the development of a novel constraint-based method in processing logic programs

9 https://research.ics.aalto.fi/software/asp/lp2normal/

ICLP 2018

https://research.ics.aalto.fi/software/asp/lp2normal/

11:14 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

by producing intermediate output in minizinc [18] in place of smt-lib. We believe our
work will boost the cross-fertilization between the three areas: SMT, constraint answer set
programming, and constraint programming.

References
1 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5.

Technical report, Department of Computer Science, The University of Iowa, 2015.
2 Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories. In Edmund Clarke, Tom

Henzinger, and Helmut Veith, editors, Handbook of Model Checking. Springer, 2014.
3 Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic and

Data Bases, pages 293–322. Plenum Press, New York, 1978.
4 Esra Erdem and Vladimir Lifschitz. Fages’ theorem for programs with nested expressions.

In Proceedings of International Conference on Logic Programming (ICLP), pages 242–254,
2001.

5 François Fages. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

6 Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory
and Practice of Logic Programming, 5:45–74, 2005.

7 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten
Schaub. Progress in clasp Series 3. In Proceedings of the Thirteenth International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’15), 2015.

8 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven Answer Set Enumeration. In Proceedings of the 9th International Conference on
Logic Programming and Nonmonotonic Reasoning, LPNMR’07, pages 136–148, Berlin, Hei-
delberg, 2007. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1758481.
1758496.

9 Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability Solvers.
In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowl-
edge Representation, pages 89–134. Elsevier, 2008.

10 Tomi Janhunen, Ilkka Niemelä, and Mark Sevalnev. Computing Stable Models via Re-
ductions to Difference Logic. In Logic Programming and Nonmonotonic Reasoning, pages
142–154. Springer Berlin Heidelberg, 2009.

11 Yuliya Lierler. SAT-based Answer Set Programming. PhD thesis, University of Texas at
Austin, 2010.

12 Yuliya Lierler. What is answer set programming to propositional satisfiability. Constraints,
pages 1–31, 2016. doi:10.1007/s10601-016-9257-7.

13 Yuliya Lierler and Benjamin Susman. On relation between constraint answer set pro-
gramming and satisfiability modulo theories. Theory and Practice of Logic Programming,
17(4):559–590, 2017.

14 Yuliya Lierler and Miroslaw Truszczyński. Transition Systems for Model Generators — A
Unifying Approach. Theory and Practice of Logic Programming, 27th Int’l. Conference on
Logic Programming (ICLP) Special Issue, 11(4-5):629–646, 2011.

15 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence, 25:369–389, 1999.

16 Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic program by
SAT solvers. Artificial Intelligence, 157:115–137, 2004.

17 Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction. MIT
Press, 1998.

http://dl.acm.org/citation.cfm?id=1758481.1758496
http://dl.acm.org/citation.cfm?id=1758481.1758496
http://dx.doi.org/10.1007/s10601-016-9257-7

D. Shen and Y. Lierler 11:15

18 N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, , and G. Tack. MiniZinc:
Towards a standard CP modelling language. In Proceedings of the 13th International Con-
ference on Principles and Practice of Constraint Programming, page 529–543, 2007.

19 Ilkka Niemela. Stable models and difference logic. Annals of Mathematics and Artificial
Intelligence, 53:313–329, 2008.

20 Ilkka Niemelä and Patrik Simons. Extending the Smodels System with Cardinality and
Weight Constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 491–
521. Kluwer, 2000.

21 Benjamin Susman and Yuliya Lierler. SMT-Based Constraint Answer Set Solver EZSMT
(System Description). In Technical Communications of the 32nd International Conference
on Logic Programming (ICLP 2016), volume 52, pages 1:1–1:15, 2016.

ICLP 2018

Learning Commonsense Knowledge Through
Interactive Dialogue
Benjamin Wu
Imperial College London
Department of Computing, Imperial College London, SW7 2AZ, UK
benjamin.wu16@imperial.ac.uk

Alessandra Russo
Imperial College London
Department of Computing, Imperial College London, SW7 2AZ, UK
a.russo@imperial.ac.uk

Mark Law
Imperial College London
Department of Computing, Imperial College London, SW7 2AZ, UK
mark.law09@imperial.ac.uk

Katsumi Inoue
National Institute of Informatics
2 Chome-1-2 Hitotsubashi, Chiyoda, Tokyo
inoue@nii.ac.jp

Abstract
One of the most difficult problems in Artificial Intelligence is related to acquiring commonsense
knowledge – to create a collection of facts and information that an ordinary person should know.
In this work, we present a system that, from a limited background knowledge, is able to learn to
form simple concepts through interactive dialogue with a user. We approach the problem using
a syntactic parser, along with a mechanism to check for synonymy, to translate sentences into
logical formulas represented in Event Calculus using Answer Set Programming (ASP). Reasoning
and learning tasks are then automatically generated for the translated text, with learning being
initiated through question and answering. The system is capable of learning with no contextual
knowledge prior to the dialogue. The system has been evaluated on stories inspired by the
Facebook’s bAbI’s question-answering tasks, and through appropriate question and answering is
able to respond accurately to these dialogues.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases Commonsense Reasoning, Answer Set Programming, Event Calculus,
Inductive Logic Programming

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.12

1 Introduction

Learning commonsense knowledge is one of the major long-term goals in the research of
Artificial Intelligence [6]. In recent years, there have been major developments in the
area of Natural Language Processing, particularly in the automation of linguistic structure
analysis [10], however the challenge of disambiguation and learning commonsense still remains
[26]. Consider the sentence, “I pulled the pin out of the apple and there was a hole in it.”
Immediately we understand that the “it” in the sentence is referring to the apple and not

© Benjamin Wu, Alessandra Russo, Mark Law, and Katsumi Inoue;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 12; pp. 12:1–12:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.wu16@imperial.ac.uk
mailto:a.russo@imperial.ac.uk
mailto:mark.law09@imperial.ac.uk
mailto:inoue@nii.ac.jp
https://doi.org/10.4230/OASIcs.ICLP.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 Learning Commonsense Knowledge Through Dialogue

the pin. Consider another example, “I saw a bird flying with binoculars.” This could be
interpreted in two different ways: either I used the binoculars to see the bird; or the bird
was in possession of the binoculars while flying. These are examples of some of the current
difficulties and challenges faced by computers in text comprehension and is what motivates
our research.

Research into the problem of Commonsense reasoning is divided mainly into knowledge-
based approaches and statistical machine learning approaches that use large corpora of
data. Some of these approaches include: Word Sense Disambiguation using Topic Models [4];
Learning Common Sense through Visual Abstraction [28]; Representation Learning for
Predicting Commonsense Ontologies [19]; and Commonsense Knowledge Base Completion [18]
amongst others. For humans, learning commonsense through dialogue is a very natural
thing to do. In fact, students who are placed in a learning environment may very well
need to interact with a teacher or some learning facilitator in order to receive feedback and
guidance [5]. Just as it is natural for humans to learn through dialogue, this paper presents
a system that is able to automatically acquire common-sense knowledge through dialogic
interaction.

There are two main aspects to the system: the knowledge representation, reasoning
and inductive learning; and understanding and conversion from text to logic. For the first
aspect, we use Answer Set Programming (ASP) in combination with a suitable form of Event
Calculus [14] to represent the knowledge, along with ILASP [15] [16] [17] and clingo [8] as
our main systems for reasoning and learning commonsense knowledge; and for the second,
we use spaCy [11] as the syntactic parser along with WordNet [23] to help with checking
synonymy for the translation from text to logic. The project uses stories as inspired by those
from the Facebook’s bAbI dataset [29] to see if the system can understand simple sentences
with little ambiguity and develop the system’s ability to gradually learn from and form valid
hypotheses about such stories.

In Section 2 of this paper we will first discuss some background knowledge required to
understand the tools used in our system. Following this in Section 3 we overview and explain
the approach taken towards solving the problem at hand. Section 4 then discusses how
we have evaluated the system and its capabilities and Section 5 touches briefly upon other
related works that have been done on machine learning from dialogues. The paper is then
concluded in Section 6 with remarks about potential areas for future work followed by the
Appendix which contains examples of interactive dialogues between a user and our system.

2 Background

2.1 Answer Set Programs
Answer Set Programming (ASP) is a form of declarative programming directed at complex
search problems [20]. ASP is based on stable model semantics of logic programming [9] and
the search problems in ASP are reduced to computing such stable models using solvers that
perform such search tasks. For the purposes of this paper, we will assume the following
subset of the ASP language:

A literal can be either an atom p or its default negation, not p. A normal rule is of
the form h← b1, ..., bn, not c1, ..., not cm where h is the head and b1, ..., bn, not c1, ..., not cm

collectively is the body of the rule, where bi and cj are atoms. A constraint is a rule with
an empty head and is of the form ← b1, ..., bn, not c1, ..., not cm. An expression of the form
l{h1, ..., hk}u is called an aggregate, where hi are atoms for 1 ≤ i ≤ k, and l and u are
integers such that 0 ≤ l ≤ u ≤ k. A variable V that occurs in a rule R is considered safe if it
occurs in at least one positive body literal of R.

B. Wu, A. Russo, M. Law, and K. Inoue 12:3

An Answer Set Program P is a finite set of normal rules and constraints. Given an
ASP program P , the Herbrand Base of P, denoted as HBP , is the set of all ground atoms
that can be formed from the predicates and constants that appear in P . When P includes
only normal rules, a set A ⊆ HBP is an Answer Set of P iff it is the minimal model of the
reduct PA. The reduct PA is constructed from the grounding of P by removing any rule
whose body contains a literal not ci where ci ∈ A, and removing any negative literals in the
remaining rules. Given an Answer Set Program P , we denote the set of all Answer Sets of P
as AS(P). A partial interpretation e is a pair e = 〈einc, eexc〉 of sets of ground atoms, called
the inclusions and exclusions respectively. An Answer Set A extends e = 〈einc, eexc〉 if and
only if (einc ⊆ A) ∧ (eexc ∩A = ∅).

2.2 ILASP
ILASP [15] is an ILP algorithm targeted at learning answer set programs. In this paper,
we consider a simplification of ILASP’s full learning framework presented in [17], called
Context-Dependent Learning from Answer Sets. In this framework, examples are context-
dependent partial interpretations, which each consist of a partial interpretation and an ASP
program called the context of the example. Contexts allow the expression of background
concepts that only apply to specific examples. They can also be used to further structure the
background knowledge in an example-specific manner, thus bringing about improvements in
the performance of the learning algorithm [17].

I Definition 1. A context-dependent partial interpretation is a tuple 〈e, C〉, where e =
〈einc, eexc〉 is a partial interpretation and C is an ASP program called the context.

The hypothesis space is defined by M = 〈Mh,Mb〉 called the language bias of the task
which is made up of a set of head mode declarations (Mh) and a set of body mode declarations
(Mb). A rule h← b1, ..., bn, not c1, ..., not cm is contained within the search space SM if and
only if it satisfies the following:
1. The head is empty; or h is an atom compatible with a mode declaration in Mh.
2. The atoms bi and cj are all compatible with mode declarations in Mb, ∀i ∈ [1, n] and
∀j ∈ [1,m].

3. All variables in the rule are safe.
Each rule R in SM is given a unique identifier Rid.

I Example 2. Consider the mode declarations M = 〈Mh,Mb〉 with Mh = {is_in(v, v),
is_holding(v, v)} and Mb = {went_to(v, v), picked_up(v, v)}, and where v denotes that the
arguments of the predicates are variables. Some of the possible rules that are contained in
the hypothesis space SM include:

is_in(V 0, V 1)← went_to(V 0, V 1)
is_holding(V 0, V 1)← picked_up(V 0, V 1)
← went_to(V 0, V 0)

Examples of rules that are not in SM are:

is_in(V 0, V 1)← is_holding(V 0, V 1)
went_to(V 0, V 1)← picked_up(V 0, V 1)

ICLP 2018

12:4 Learning Commonsense Knowledge Through Dialogue

I Definition 3. A Context-Dependent Learning from Answer Sets task is a tuple T =
〈B,SM , E+, E−〉 where B is the background knowledge, SM is the hypothesis space defined
by a language bias M , E+ is a set of context-dependent partial interpretations, called the
positive examples and E− is a set of context-dependent partial interpretations called the
negative examples. An hypothesis H is an inductive solution of T if and only if:
1. H ⊆ SM

2. ∀〈e, C〉 ∈ E+ ∃A ∈ AS(B ∪H ∪ C) such that A extends e
3. ∀〈e, C〉 ∈ E− @A ∈ AS(B ∪H ∪ C) such that A extends e
Such a solution is written as H ∈ ILP context

LAS (T).

I Example 4. An example of a Context-Dependent Learning from Answer Sets (ILP context
LAS)

task can be represented in the following manner:

% Background Knowledge
picked_up (john , football).

% Context dependent partial interpretations
% positive examples have the form:
% #pos(id , inclusions , exclusions , Context).
#pos(p1 , { is_in(mary , garden), is_holding (john , football) },

{ is_in(john , garden) },
{ went_to (mary , garden). }).

#pos(p2 , { is_in(john , garden), is_holding (john , football) },
{ is_holding (mary , football) },
{ went_to (john , garden). }).

% Mode declarations
#modeh(is_in(var(person),var(location))).
#modeh(is_holding (var(person),var(object))).
#modeb (1, went_to (var(person),var(location))).
#modeb (1, picked_up (var(person),var(object))).

In this example, the Context-Dependent Learning from Answer Sets task includes a single
fact in the Background Knowledge and two positive examples with no negative examples.
The mode head (#modeh) and mode body (#modeb) declarations here generate the same
hypothesis space as discussed in Example 2. Here both the positive examples share the
background knowledge that John picked up the football, however the contexts of each example
differs in that Mary went to the garden in the first positive example and John in the second.
The above learning task would produce as optimal solution the following hypothesis, H:

is_in(V0 ,V1) :- went_to (V0 ,V1).
is_holding (V0 ,V1) :- picked_up (V0 ,V1).

The Answer Set produced by AS(B ∪H ∪C1) extends the first example and AS(B ∪H ∪C2)
extends the second positive example. This illustrates how Context-Dependent Learning by
Answer Sets allows for consistent hypotheses to be learned even in the presence of conflicting
facts from different contexts. If both contexts were added directly to the background
knowledge, the learning task would have no solution for the given examples.

B. Wu, A. Russo, M. Law, and K. Inoue 12:5

2.3 Event Calculus
With the comprehension of stories involving agents and their actions, there needs to be some
logic-based formalism to represent actions and effects of actions. Such formalisms include
event calculus [14] and situation calculus [22] among others. Even among the formalisms of
Event Calculus there exists multiple variants but for the purposes of this paper, we will look
at a particular variant developed for the use in Inductive Logic Programming from [13].

For our use of Event Calculus in this paper, we introduce the following predicates.

initiatedAt(F ,T) terminatedAt(F ,T) holdsAt(F ,T) happensAt(E,T)

The variable F represents a fluent, E represents an event and T represents a time point.
Along with these predicates we add the following axioms.

holdsAt(F,T+1) :- initiatedAt(F,T).
holdsAt(F,T+1) :- holdsAt(F,T), not terminatedAt(F,T).

These axioms basically mean that if a fluent is initiated at a time point, then the fluent
will hold at the next time point, and if a fluent holds at a particular time point and is not
terminated at that time, it will continue to hold.

3 Learning Commonsense Knowledge

In this section, we present our system for learning commonsense rules by interacting with a
user through simple dialogue. The system starts with a very limited background knowledge
that includes only the domain-independent axioms of Event Calculus given in the previous
section. The user inputs a series of sentences and responses through the keyboard to
the system in a simulated conversation. Through a mixture of story telling and question-
answering, the system remembers facts about the narrative being told by the user and learns
to form rules and relations that are consistent with the responses given by the user about
the questions that have been asked.

An illustration of the overall structure and pipeline for the system can be seen in Figure 1.
There are two main components to this system: the translation module and the reasoning
module, which are described in detail in the following sections. The system was coded in
python 2.7 using spaCy [11] as the syntactic parser, WordNet [23] for the synonym database,
clingo5 [8] as the ASP solver, and ILASP [17] for the learning tasks.

3.1 Translation
Each sentence that passes through the translation module is parsed and its dependency tree
is generated. Each word is tokenised and tagged with their part-of-speech (POS) tag, their
dependency tag and their parent node in the tree.

After a sentence is parsed we need to generate the predicate symbol for the sentence.
Firstly, the “ROOT” of the sentence is taken and put through WordNet to find the closest
general synonym. We then append any adpositions (ADP), adjectives (ADJ) or auxiliary
verbs (aux / VERB) to the root verb to complete the predicate symbol. Then the sentence
is scanned through for nouns (NOUN), pronouns (PRON) and proper nouns (PROPN). The
lemmas of the n-number of nouns are then added to the predicate symbol to form an n-ary
predicate. This is illustrated in Figure 2. For the rest of this paper we will refer to this
translated predicate as the logical representation of the sentence.

ICLP 2018

12:6 Learning Commonsense Knowledge Through Dialogue

Figure 1 The general work pipeline of the system.

To complete the conversion of the sentence into its representation in ASP for the system,
the logical representation of the sentence is wrapped with the appropriate predicate of Event
Calculus. The system has an internal counter that begins at “1” for each story and increments
after each sentence/question that is input by the user. This counter is used to determine the
time stamp for each predicate of Event Calculus while the logical representations form the
events/fluents. With the exception of sentences that contain the root verb translating to “be”
and sentences that contain negation, all facts are wrapped with the “happensAt” predicate.
These sentences are all treated as events that happen at that particular time stamp. For
sentences with the root verb “be”, these are wrapped with the “holdsAt” predicate as they
are concerned with the state something is in rather than a particular event.

Some additional rules for translation have been added to deal with sentences that include
negation, conjunctions, disjunctions and coreferencing. These rules have been constructed
to be general in nature however they are only applicable to sentences of relatively simple
structures. If a negation modifier (neg) is found linked directly to the root verb, then
the resulting logical representation is wrapped in the “terminatedAt” predicate for Event
Calculus. This stops the fluent from holding from that time point onwards, regardless of if it
were true or not beforehand. For conjunctions and disjunctions, the noun that is tagged as
the conjunct (conj) is stored and a predicate is formed whilst disregarding the conjunct. A
second predicate is then formed by substituting in the conjunct in the place of the noun it
is linked to. In the case of conjunctions (sentences involving “and”) the extra predicate is
added on as an additional fact. In the case of disjunctions (sentences involving “or”) the two
predicates are combined into an aggregate where only one may be chosen, thus creating an
exclusive or.

B. Wu, A. Russo, M. Law, and K. Inoue 12:7

Figure 2 Illustration of how a sentence is generally translated into its logical representation.

For all inputs that are not questions, the sentences are translated, stored into the context
of the story, then the system waits for the next input. When the translation module notices
that the input sentence is a question, the reasoning module will be called.

3.2 Reasoning
The reasoning module deals with a variety of types of questions, however the most important
type of question for this system are “yes/no” questions. Questions that ask “who”, “what”,
“where” and “why” will only generate a response that the system can give using its current
knowledge, whereas asking “yes/no” questions may initiate learning tasks depending on the
user’s feedback.

“Yes/No” Questions
All of the learning that happens in the system is through the interactions that result from
“yes/no” questions. All our reasoning tasks are run using clingo5 with the files created
dynamically during the conversations. The system begins with only the axioms of Event
Calculus as described from Section 2.3 except with an added predicate for time.

holdsAt(F,T+1) :- initiatesAt(F,T), time(T).
holdsAt(F,T+1) :- holdsAt(F,T), not terminatedAt(F,T), time(T).

The type predicate for time is used here to limit the relevant grounding of the reasoning
tasks. Without specifying this type predicate, our ASP solver will continue to generate
“holdsAt” predicates indefinitely.

ICLP 2018

12:8 Learning Commonsense Knowledge Through Dialogue

All the sentences that are not questions pass through the translation module and are
stored directly into the context of the story without interacting with the reasoning module.
When a “yes/no” question is asked, the background knowldge axioms, the context up to that
time and the current hypothesis is written into a “.lp” file along with the translated query as
the goal. The ASP solver will try to satisfy the goal using the given context with the current
hypothesis. If the result of the reasoning task comes back as “UNSATISFIABLE” then the
system will respond “No” to the question; otherwise it will respond “Yes” or “Maybe” in
some exceptions. The user will then tell the system if its conclusion was correct or not.
After the user responds, the query is stored as a positive example if it is supposed to true, a
negative example if it is supposed to be false, and if the system is told that it was incorrect
a learning task will be initiated.

In the case where a disjunction was present in the context, a second reasoning task is run
alongside the original except with the negation of the query as the goal. If the results of
running both reasoning tasks returns “SATISFIABLE” (i.e. the query can be considered
both true or false with respect to the context), then the system responds with “Maybe”. If
the response of “Maybe” is deemed correct by the user, then the query is not stored in the
examples, however if “Maybe” is incorrect, then the query is added to the negative examples.
For example, if in the story we have “John went to either the hallway or the garden.” then
we ask “Is John in the hallway?”, two reasoning tasks will be run trying to satisfy John being
in the hallway and John not being in the hallway. In this case, both cases are satisfiable and
therefore the system would respond with “Maybe”.

Learning
When a learning task is triggered, the system will construct an ILP context

LAS task that contains
the background knowledge, bias constraints, the context-dependent partial interpretations
and the mode declarations. We use ILASP here to run the learning task from the generated
file. The background knowledge added to the task is the axioms of Event Calculus as it
is for the reasoning tasks. The context-dependent partial interpretations are generated by
using the positive and negative examples that were stored from the “yes/no” questions in
the dialogue, along with the context of the story thus far.

The mode declarations are automatically generated for each learning task. To generate
the mode declarations, for each logical representation that is seen throughout the story,
the original nouns in the arguments are replaced with variable types. With the current
implementation, variable types are given as inputs by the user; when the system encounters
a noun that it has not yet seen, it will prompt the user to enter the noun’s variable type. For
each type of predicate that occurs in the context, a corresponding mode body declaration is
created. For each type of logical representation that occurs as an example, additional mode
head declarations are made using both “initiatedAt” and “terminatedAt” wrappers, along
with a mode body declaration using the “holdsAt” wrapper if it is not already present.

Additional bias constraints are used to help decrease the size of the hypothesis search
space by restricting ILASP to only searching for hypotheses about a single time point rather
than multiple. As all of the hypotheses that we are currently aiming to learn consist of rules
that are each triggered by events that happen at one specific time point, this constraint does
not negatively impact our system’s ability to learn.

The ILP context
LAS task is solved with the maximum number of variables of possible hypo-

theses set to three. The resulting hypothesis is stored and added to subsequent reasoning
tasks as the current hypothesis. The current hypothesis is continually overwritten with each

B. Wu, A. Russo, M. Law, and K. Inoue 12:9

Table 1 List of special inputs and their functions.

Input Description
end ends the current session and exits the program

new story starts a new story with empty context
save hypothesis stores the current hypothesis into the Background Knowledge
check hypothesis prints the stored and current hypothesis

learning task. If ILASP is unable to find a suitable hypothesis, the maximum number of
variables is incremented and the task is run again. The system halts if it still fails to find an
inductive solution with the maximum number of variables set to five.

Other Questions

With questions starting with “What”, “Where” or “Who”, a slightly different reasoning task
to the one generated for “yes/no” questions is created. We create a file for the reasoning task
with the background knowledge axioms, the context of the story and the current hypothesis,
however we do not add in a goal to this ASP program. Rather than add the translation of
the query as the goal, we generate a pattern from the translation and see what positive atoms
match this pattern in the resulting answer set. From those atoms we extract the variables
that have been matched and output them to the screen. For questions that start with ‘How
many’, the same task as what has just been described is generated but rather than return
the strings that result from pattern matching, it returns the number of items matched.

For questions that ask “Why”, a different type of reasoning task is generated. The
background knowledge and learned hypothesis are written into the “.lp” file along with the
translated query as the goal, and the facts from the context of the story are written into an
aggregate. For each fact in the aggregate, a weight is applied so that when the ASP program
is then run, only the minimum number of facts from the story will be chosen to make the
goal “SATISFIABLE”. This in essence is an abductive task where we look for the causal
relationship between what events have happened and how the goal has been reached. This
differs to the type of “why” questions asked in Facebook bAbI’s task 20 where it asks for the
motivation of the agent in question, which is outside the scope of the story.

3.3 Special inputs

This system runs in a constant loop where it will keep waiting for the user’s next input.
Whenever a new sentence is expected by the system, there are a few specific inputs that are
recognised by the system as different function calls. These special inputs are described in
Table 1.

One thing to note is that when “new story” is called, the context and examples up until
that point all get stored as a context-dependent partial interpretation which is still used
for subsequent learning tasks so that what has been learned previously is not forgotten,
however the reasoning tasks will not be affected by facts from previous stories. By checking
and saving the hypothesis, the user can also choose to keep rules that they consider to be
desirable. The “save hypothesis” function also clears all mode head declarations up to that
point; this aids the systems scalability and helps when learning more difficult concepts.

ICLP 2018

12:10 Learning Commonsense Knowledge Through Dialogue

4 Evaluation

The system was tested with various stories that draw inspiration from the themes of those
seen in Facebook bAbI’s question-answering data set [29]. Many of these stories are to do with
a number of people moving to different locations and then asking about their whereabouts
or about objects that they are or were carrying. By the nature of our system, our results are
more qualitative than quantitative, and so it is easier for us to demonstrate the capabilities
of the system via an example.

I Example 5. For this example, consider Listings 1, 2 and 3 (the Listings are found in the
Appendix). This story is inspired by tasks 1, 2, 6, 7, 8, 11 and 12 of Facebook bAbI’s QA
dataset.

In Listing 1 it can be seen how initially when the system is asked about the location
of “Mary” from the story, it cannot answer correctly. It then forms a concept to initiate
the state of Mary being in the location due to travelling there. However with what it had
first learned, it did not understand that if Mary moved to a different location, she would no
longer be in the previous location. This is then corrected after making its second mistake,
which results in learning the correct hypothesis, which is displayed after the input ’check
hypothesis’.

Following the story from Listing 1 we look at the dialogue from Listing 2. Here we can
see that initially when asked about the items that Mary is carrying, the system responds
incorrectly as it has not learned anything about the concept of “carrying” yet. So then the
concept of carrying is then taught to the system as a result of picking up or dropping objects
through additional questioning and the system is then able to answer the questions correctly.
By further interactions with the system through dialogue, the system is able to learn more
interesting and complex concepts, such as what is displayed in Listing 3. Here the system is
able to answer questions that require two supporting facts, this being equivalent to questions
from task 2 of the bAbI dataset. More specifically, in Listing 3, it has learned that objects
will be in the locations they are picked up in or will move to new locations with the person
who is carrying them, and that they will no longer be in previous locations if the person
carrying them has moved.

Using Facebook bAbI’s QA dataset as a means for comparison, the presented system is
able to learn concepts that are able to deal with dialogues that are equivalent to eleven of
the bAbI tasks. The tasks that can be solved are shown in Table 2. However due to some
limitations in our system with translation, some of these tasks need to be slightly adapted for
our system. For questions such as “Where is the apple?”, our system needs the question to be
phrased using the same language as what was used to teach it. Since the concept determining
the location of an object or person would have been translated as something “being in” a
location, we would need to change the question to “Where is the apple in?” for the system
to be able to correctly understand and answer the question. Another translation limitation
that has been found during various tests is that some names are not always recognised as
proper nouns by the spaCy parser. Names such as Emily and Will are sometimes tagged as
adverbs or verbs by the parser. To deal with this problem, it is sufficient to replace these
names in the tasks with other less ambiguous names such as Emma and Brian. With these
minor changes to the eleven bAbI tasks, after appropriate questioning and answering, this
system is able to learn to solve them completely.

The number of questions required to learn each concept correctly is also difficult to
quantify as it can vary greatly depending on the complexity of the concept, the context of
the story, the types of questions you ask and the order in which you ask them. Some of these

B. Wu, A. Russo, M. Law, and K. Inoue 12:11

Table 2 The Facebook bAbI question-answering tasks that are able to be solved by the system.

Task Description Examples of sentences that feature in the task
1 single supporting fact Where is Mary? (see Listing 1)
2 two supporting facts Where is the apple? (see Listing 3)
6 yes/no questions Is Mary in the kitchen?
7 counting How many objects is Mary carrying?
8 lists / sets What is Mary carrying?
9 simple negation Sandra is no longer in the bedroom.
10 indefinite knowledge John is either in the office or the bathroom.
11 basic coreference Then he moved to the hallway.
12 conjunctions Mary and Sandra journeyed to the garden.
13 compound coreference After that they went back to the kitchen.
15 basic deduction What is gertrude afraid of? (see Listing 4)

concepts can be learned in as few as two or three questions as can be seen from Listings 1
and 2, however the same concepts can also take much longer to learn if not questioned
appropriately. To minimise the number of questions required to learn a concept, questions
should be directed towards the gaps of any incomplete learned hypothesis. Since learning is
only initiated when a “yes/no” question is answered incorrectly, actively trying to increase
the number of mistakes the system makes will allow the learning to progress much faster.

We have yet to implement a way for dialogue with the system to be automated and allow
for quantitative analyses to be generated. With the current interactive approach, to do a
quantitative analysis over a large dataset is impractical. Due to the size of these data sets, it
is likely that many examples will be covered by the same hypotheses. Since ILASP2i [16]
iteratively computes a subset of the examples which are relevant to the search, the size of
which generally being much smaller than the entire set of examples, we may be able to take
advantage of this capability when automating the process to scale on entire bAbI datasets.
This could potentially scale better compared to other batch learning systems, however this
has yet to be tested.

Limitations
For the majority of the other tasks in the bAbI dataset, the reason why the tasks are
unable to be completed is because of the limitations of the translation module. Some of
these troubles are to do with inconsistent parsing of sentences with similar structure and
some are to do with the challenges in representing sentences with multiple arguments. For
instance, take the sentences “Fred gave John the football.”, “Who gave the football to John?”
and “Who did Fred give the football to?”. By using the current method of translation, the
logical representation of the first sentence would be “give(Fred, John, football)”, and the two
questions would ideally translate to “give(?, John, football)” and “give(Fred, ?, football)”.
However, rules that determine the order in which the multiple arguments are put into the
predicate, and also the position of the missing argument that needs to be found, are very
hard to generalise without programming it for a specific sentence structure. Currently the
system is unable to translate these types of sentences well enough.

Another challenge this system faces is a problem with scalability. As stories get more
involved and new types of predicates get introduced, the hypothesis space gets exponentially
larger and can expand to the point where learning takes too long to be considered reasonable

ICLP 2018

12:12 Learning Commonsense Knowledge Through Dialogue

for dialogue. Although this problem arises from our choice of automating the generation of
mode declarations, we believe that this does not outweigh the benefits we gain from being
able to generalise with no prior knowledge of the contexts. An example of encountering
scalability problems can be seen when trying to solve task 2 (two supporting facts) of the
bAbI dataset. This task is currently solvable by using the “save hypothesis” functionality
that can be used to clear the old mode head declarations. By being a bit more strategic with
the order in which you ask questions and help the system learn, concepts that otherwise
would be too difficult for it to learn in one go can be broken down into manageable steps for
incremental learning.

5 Related Work

To our knowledge, the problem of learning commonsense knowledge through a dialogic
interaction is a novel task. However there has been significant research done on solving
Facebook bAbI’s question-answering tasks.

Mitra and Baral [24] developed a system to solve the toy tasks from Facebook’s bAbI
dataset. In their work, they describe an agent architecture that works with a formal reasoning
model together with a statistical inference based model in tandem, to face the task of question
answering. There are three layers to their implementation: the Statistical Inference Layer,
the Formal Reasoning Layer and the Translation Layer. The Statistical Inference Layer
contains the statistical NLP models which uses an Abstract Meaning Representation (AMR)
Parser [1] [7]. The Formal Reasoning Layer uses a modified version of the ILP algorithm
XHAIL [25] to learn the knowledge for reasoning in ASP. The Translation Layer encodes the
sentences from the text into the syntax of Event Calculus with the help of the AMR Parser.
This layer enables the communication between the two aforementioned layers and allows
information to be passed from one to the other. Their system achieved a mean accuracy of
99.68% over the entire bAbI dataset and shows that with the addition of a formal reasoning
layer, the reasoning capability of an agent increases significantly. With this approach, mode
declarations had to be manually defined for each task, and some tasks had hypotheses learned
from previous tasks added to the background knowledge of other more complex tasks. This
differs to our approach as mode declarations are automatically defined during the dialogue
and we do not augment our background knowledge.

An approach to the problem of machine comprehension of text has recently been developed
by Chabierski [3]. The approach here utilises Combinatory Categorial Grammar [27] and
Montague-style semantics [12] to perform a semantic analysis of text to derive Answer Set
Program representations expressed in the form of λ-ASP calculus [2]. These representations
are used to automatically derive the mode declarations for the generation of ILP tasks to be
computed by the ILASP algorithm. To evaluate the performance of this approach, the system
was tested using a subset of the bAbI question-answering tasks. Using only 25 training
examples for each task, the system is able to fully solve six of the twenty QA tasks from
the bAbI dataset, namely tasks 1, 6, 8, 9, 12 and 15. This approach also automatically
derives its mode declarations from the task context and background knowledge, however
the background knowledge is manually added for each task to increase the capability of the
learner.

B. Wu, A. Russo, M. Law, and K. Inoue 12:13

6 Conclusion and future work

What distinguishes our presented work from others is the interactive nature of our system and
its ability to be able to learn from dialogues without having any prior knowledge about the
contexts of their stories. More specifically, our system has the ability to automatically define
the mode declarations for each task without the need to manually augment the system’s
background knowledge. This allows our system to be more flexible and able to understand
contexts outside the scope of stories in the bAbI tasks. Although interactions with the system
are limited to relatively simple sentences, these sentences are not confined to a preset type of
contexts. Another strength of our system is that it is able to learn concepts with relatively
few questions; it does not require large datasets for it to be trained on.

To expand the scope of what the system is able to understand and learn from, the
translation module needs to be improved. It is very hard to define general rules that would
allow for accurate translations of all the complexities in the English language, therefore it
would probably be better to use statistical methods of machine learning to train the translation
module instead. Many measures have already been taken to improve the scalability of the
system but further improvements should be looked into as well. Allowing the user to define
the variable types is one such measure taken to improve the scalability. This is not a very
elegant implementation and ideally the system would be able to accurately define the variable
types itself in a way which is not too specific to the point where the system is unable
to generalise, yet not too general so that the scalability is affected. It may be possible
to introduce some way of using ontologies or by using other relational databases such as
ConceptNet [21] to map these variables to similar types.

References
1 Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Herm-

jakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract
Meaning Representation for Sembanking. In Proceedings of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse, pages 178–186, Sofia, Bulgaria, August 2013.
Association for Computational Linguistics. URL: http://www.aclweb.org/anthology/
W13-2322.

2 Chita Baral, Juraj Dzifcak, and Tran Cao Son. Using Answer Set Programming and
Lambda Calculus to Characterize Natural Language Sentences with Normatives and Ex-
ceptions. In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume
2, AAAI’08, pages 818–823. AAAI Press, 2008. URL: http://dl.acm.org/citation.cfm?
id=1620163.1620199.

3 Piotr Chabierski, Alessandra Russo, Mark Law, and Krysia Broda. Machine Compre-
hension of Text Using Combinatory Categorial Grammar and Answer Set Programs. In
COMMONSENSE, 2017.

4 Devendra Singh Chaplot and Ruslan Salakhutdinov. Knowledge-based Word Sense Disam-
biguation using Topic Models. CoRR, abs/1801.01900, 2018. arXiv:1801.01900.

5 John Cook. Dialogue in Learning: Implications for the Design of Computer-based Educa-
tional Systems. In ICCE, pages 987–991, 2002. doi:10.1109/CIE.2002.1186131.

6 Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in
artificial intelligence. Communications of the ACM, 58(9):92–103, September 2015. doi:
10.1145/2701413.

7 Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A. Smith. A Dis-
criminative Graph-Based Parser for the Abstract Meaning Representation. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:

ICLP 2018

http://www.aclweb.org/anthology/W13-2322
http://www.aclweb.org/anthology/W13-2322
http://dl.acm.org/citation.cfm?id=1620163.1620199
http://dl.acm.org/citation.cfm?id=1620163.1620199
http://arxiv.org/abs/1801.01900
http://dx.doi.org/10.1109/CIE.2002.1186131
http://dx.doi.org/10.1145/2701413
http://dx.doi.org/10.1145/2701413

12:14 Learning Commonsense Knowledge Through Dialogue

Long Papers), pages 1426–1436, Baltimore, Maryland, June 2014. Association for Compu-
tational Linguistics. URL: http://www.aclweb.org/anthology/P14-1134.

8 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + Control: Prelim-
inary Report. In M. Leuschel and T. Schrijvers, editors, Technical Communications of the
Thirtieth International Conference on Logic Programming (ICLP’14), volume 14 (4-5), 2014.
Theory and Practice of Logic Programming, Online Supplement. arXiv:1405.3694v1.

9 M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
ICLP ’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.

10 Julia Hirschberg and Christopher D. Manning. Advances in natural language processing.
Science, 349(6245):261–266, 2015. doi:10.1126/science.aaa8685.

11 Matthew Honnibal and Mark Johnson. An Improved Non-monotonic Transition System for
Dependency Parsing. In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1373–1378, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. URL: https://aclweb.org/anthology/D/D15/D15-1162.

12 Theo M. V. Janssen. Montague Semantics. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2017
edition, 2017.

13 Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event
definitions with Inductive Logic Programming. Machine Learning, 100(2-3):555–585, 2015.
doi:10.1007/s10994-015-5512-1.

14 Robert Kowalski and Marek Sergot. A Logic-Based Calculus of Events. New Generation
Computing, 4:67–95, 1986.

15 Mark Law, Alessandra Russo, and Krysia Broda. Inductive Learning of Answer Set Pro-
grams. In Eduardo Fermé and João Leite, editors, JELIA, volume 8761 of Lecture Notes in
Computer Science, pages 311–325. Springer, 2014. doi:10.1007/978-3-319-11558-0_22.

16 Mark Law, Alessandra Russo, and Krysia Broda. Learning weak constraints in answer set
programming. TPLP, 15(4-5):511–525, 2015. doi:10.1017/S1471068415000198.

17 Mark Law, Alessandra Russo, and Krysia Broda. Iterative Learning of Answer Set Pro-
grams from Context Dependent Examples. TPLP, 16(5-6):834–848, 2016. doi:10.1017/
S1471068416000351.

18 Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel. Commonsense Knowledge Base
Completion. In ACL (1). The Association for Computer Linguistics, 2016. URL: http:
//aclweb.org/anthology/P/P16/P16-1137.pdf.

19 Xiang Li, Luke Vilnis, and Andrew McCallum. Improved Representation Learning for
Predicting Commonsense Ontologies. CoRR, abs/1708.00549, 2017. arXiv:1708.00549.

20 Vladimir Lifschitz. What is answer set programming? In 23rd AAAI Press Conference on
Artificial Intelligence (AAAI 2008), pages 1594–1597, Menlo Park, CA, USA, 2008. AAAI
Press. URL: http://www.cs.utexas.edu/~vl/papers/wiasp.pdf.

21 H. Liu and P. Singh. ConceptNet &Mdash; A Practical Commonsense Reasoning Tool-Kit.
BT Technology Journal, 22(4):211–226, October 2004. doi:10.1023/B:BTTJ.0000047600.
45421.6d.

22 J. McCarthy and P. Hayes. Some Philosophical Problems from the Standpoint of Artificial
Intelligence. Machine Intelligence, 4:463–502, 1969.

23 George Miller. WordNet A Lexical Database for English. Communications of ACM,
38(11):39–41, 1995.

24 Arindam Mitra and Chitta Baral. Addressing a Question Answering Challenge by Com-
bining Statistical Methods with Inductive Rule Learning and Reasoning. In Dale Schuur-
mans and Michael P. Wellman, editors, AAAI, pages 2779–2785. AAAI Press, 2016. URL:
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12345.

http://www.aclweb.org/anthology/P14-1134
http://arxiv.org/abs/1405.3694v1
http://dx.doi.org/10.1126/science.aaa8685
https://aclweb.org/anthology/D/D15/D15-1162
http://dx.doi.org/10.1007/s10994-015-5512-1
http://dx.doi.org/10.1007/978-3-319-11558-0_22
http://dx.doi.org/10.1017/S1471068415000198
http://dx.doi.org/10.1017/S1471068416000351
http://dx.doi.org/10.1017/S1471068416000351
http://aclweb.org/anthology/P/P16/P16-1137.pdf
http://aclweb.org/anthology/P/P16/P16-1137.pdf
http://arxiv.org/abs/1708.00549
http://www.cs.utexas.edu/~vl/papers/wiasp.pdf
http://dx.doi.org/10.1023/B:BTTJ.0000047600.45421.6d
http://dx.doi.org/10.1023/B:BTTJ.0000047600.45421.6d
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12345

B. Wu, A. Russo, M. Law, and K. Inoue 12:15

25 Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3),
September 2009. Other identifier: 2001069. doi:10.1016/j.jal.2008.10.007.

26 D. Singh Chaplot and R. Salakhutdinov. Knowledge-based Word Sense Disambiguation
using Topic Models. ArXiv e-prints, January 2018. arXiv:1801.01900.

27 Mark Steedman. The Syntactic Process. MIT Press, Cambridge, MA, USA, 2000.
28 Ramakrishna Vedantam, Xiao Lin, Tanmay Batra, C. Lawrence Zitnick, and Devi Parikh.

Learning Common Sense through Visual Abstraction. In ICCV, pages 2542–2550. IEEE
Computer Society, 2015. doi:10.1109/ICCV.2015.292.

29 Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards AI-Complete
Question Answering: A Set of Prerequisite Toy Tasks. CoRR, abs/1502.05698, 2015. arXiv:
1502.05698.

A Demonstrations

The following listings here in the Appendix show examples of dialogue between a user and
the system during a session. For clarity, the dialogues have been annotated with “U:” for
what the user has input and “S:” to signify the system’s responses.

Listing 1 An example of a dialogue between the system and a user showing how the concept of
people being or not being in locations as a result of travelling is formed.
System : Tell me a story:
User: Mary went to the bathroom .
System : What is "mary" a type of? User: person
S: What is " bathroom " a type of? U: location

U: Is Mary in the bathroom ?
S: No.
S: Am I right? U: No.
S: Alright , please continue .

U: Mary moved to the kitchen .
S: What is " kitchen " a type of? U: location

U: John journeyed to the kitchen .
S: What is "john" a type of? U: person

U: Is Mary in the kitchen ?
S: Yes.
S: Am I right? U: Yes.
S: Alright , please continue .

U: Is Mary in the bathroom ?
S: Yes.
S: Am I right? U: No.
S: Alright , please continue .

U: check hypothesis

S: initiatedAt (be_in(V0 ,V1),V2) :- happensAt (travel_to (V0 ,V1),V2).
S: terminatedAt (be_in(V0 ,V1),V2) :- holdsAt (be_in(V0 ,V1),V2),

happensAt (travel_to (V0 ,V3),V2).

S: Please continue with the story:

ICLP 2018

http://dx.doi.org/10.1016/j.jal.2008.10.007
http://arxiv.org/abs/1801.01900
http://dx.doi.org/10.1109/ICCV.2015.292
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698

12:16 Learning Commonsense Knowledge Through Dialogue

U: Mary and John travelled to the garden .
S: What is " garden " a type of? U: location

U: Where is John in?
S: garden

U: Who is in the garden ?
S: john
S: mary

Listing 2 A continuation of the dialogue from Listing 1, this time showing the concept of carrying
objects being learned.
User: Mary picked up the apple and the milk.
System : What is "apple" a type of? U: object
S: What is "milk" a type of? U: object

U: How many objects is Mary carrying ?
S: 0

U: Is Mary carrying the apple?
S: No.
S: Am I right? U: No.
S: Alright , please continue .

U: How many objects is Mary carrying ?
S: 2

U: What is Mary carrying ?
S: milk
S: apple

U: Mary dropped the milk.

U: Is Mary carrying the milk?
S: Yes.
S: Am I right? U: No.
S: Alright , please continue .

U: What is Mary carrying ?
S: apple

U: check hypothesis

S: initiatedAt (be_in(V0 ,V1),V2) :- happensAt (travel_to (V0 ,V1),V2).
S: terminatedAt (be_in(V0 ,V1),V2) :- holdsAt (be_in(V0 ,V1),V2),

happensAt (travel_to (V0 ,V3),V2).

S: initiatedAt (be_transport (V0 ,V1),V2) :- happensAt (pick(V0 ,V1),V2).
S: terminatedAt (be_transport (V0 ,V1),V2) :- happensAt (drop(V0 ,V1),V2).

S: Please continue with the story:

B. Wu, A. Russo, M. Law, and K. Inoue 12:17

Listing 3 A demonstration of further concepts that can be learned through more questioning
and answering (equivalent to task 2 - two-supporting facts from the bAbI dataset).
S: initiatedAt (be_in(V0 ,V1),V2) :- happensAt (travel_to (V0 ,V1),V2).
S: terminatedAt (be_in(V0 ,V1),V2) :- holdsAt (be_in(V0 ,V1),V2),

happensAt (travel_to (V0 ,V3),V2).

S: initiatedAt (be_transport (V0 ,V1),V2) :- happensAt (pick(V0 ,V1),V2).
S: terminatedAt (be_transport (V0 ,V1),V2) :- happensAt (drop(V0 ,V1),V2).

S: initiatedAt (be_in(V1 ,V3),V2) :- holdsAt (be_transport (V0 ,V1),V2),
happensAt (travel_to (V0 ,V3),V2).

S: initiatedAt (be_in(V1 ,V3),V2) :- happensAt (pick(V0 ,V1),V2),
holdsAt (be_in(V0 ,V3),V2).

S: terminatedAt (be_in(V1 ,V3),V2) :- holdsAt (be_transport (V0 ,V1),V2),
holdsAt (be_in(V0 ,V3),V2), happensAt (travel_to (V0 ,V4),V2).

S: Please continue with the story:
U: new story
S: Tell me a new story:
U: Mary went to the kitchen .

U: She picked up the apple and the milk.

U: John moved to the hallway .

U: He picked up the football .

U: What is in the kitchen ?
S: milk
S: mary
S: apple

U: Mary dropped the apple.

U: Then she travelled to the garden .

U: Where is the apple in?
S: kitchen

U: Where is the milk in?
S: garden

U: Where is the football in?
S: hallway

ICLP 2018

12:18 Learning Commonsense Knowledge Through Dialogue

Listing 4 Running example of a dialogue inspired by bAbI task 15 that learns an extended
concept.
System : Tell me a story:
User: Tom is a cat.
S: What is "tom" a type of? U: name
S: What is "cat" a type of? U: animal

U: Jerry is a mouse.
S: What is "jerry" a type of? U: name
S: What is "mouse" a type of? U: animal

U: Mice are afraid of cats.

U: Is Jerry afraid of cats?
S: No.
S: Am I right? U: No.
S: Alright , please continue .

U: Is Jerry afraid of Tom?
S: No.
S: Am I right? U: No.
S: Alright , please continue .

U: Is Tom afraid of mice?
S: No.
S: Am I right? U: Yes.
S: Alright , please continue .

U: Is Tom afraid of Jerry?
S: No.
S: Am I right? U: Yes.
S: Alright , please continue .

U: check hypothesis

S: initiatedAt (be_afraid_of (V3 ,V0),V2) :- holdsAt (be(V0 ,V1),V2),
holdsAt (be_afraid_of (V3 ,V1),V2).

S: initiatedAt (be_afraid_of (V0 ,V3),V2) :- holdsAt (be(V0 ,V1),V2),
holdsAt (be_afraid_of (V1 ,V3),V2).

B. Wu, A. Russo, M. Law, and K. Inoue 12:19

Listing 5 Continuation of the dialogue seen from Listing 4 that tests the learned hypothesis.
System : Please continue with the story:
User: Gertrude is a wolf.
S: What is " gertrude " a type of? U: name
S: What is "wolf" a type of? U: animal

U: Cats are afraid of wolves .

U: Is Tom afraid of wolves ?
S: Yes.
S: Am I right? U: Yes.
S: Alright , please continue .

U: Is Tom afraid of Gertrude ?
S: Yes.
S: Am I right? U: Yes.
S: Alright , please continue .

U: What is Gertrude afraid of?
S: Nothing

U: Mary is a sheep.
S: What is "mary" a type of? U: name
S: What is "sheep" a type of? U: animal

U: Sheep are afraid of mice.

U: Sheep are afraid of wolves .

U: What is Mary afraid of?
S: wolf
S: mouse
S: jerry
S: gertrude

ICLP 2018

Application of Logic-Based Methods to Machine
Component Design
Bram Aerts
EAVISE
Technology Campus De Nayer, KU Leuven, Belgium
b.aerts@kuleuven.be

Joost Vennekens
EAVISE
Technology Campus De Nayer, KU Leuven, Belgium
joost.vennekens@kuleuven.be

Abstract
This paper describes an application worked out in collaboration with a company that produces
made-to-order machine components. The goal of the project is to develop a system that can
support the company’s engineers by automating parts of their component design process. We
propose a knowledge extraction methodology based on the recent DMN (Decision Model and
Notation) standard and compare a rule-based and a constraint-based method for representing
the resulting knowledge. We study the advantages and disadvantages of both approaches in the
context of the company’s real-life application.

2012 ACM Subject Classification Applied computing → Engineering

Keywords and phrases Application, Expert Systems, Constraint Solving, Rule-based Systems,
Decision Modelling, DMN, Product Configuration

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.13

1 Introduction

This research is conducted in collaboration with a company that has engineering and
manufacturing offices all over the world. To protect its trade secrets, the company wishes
to remain anonymous and they have also requested that we avoid providing too much
information about its products. In certain branches of its activities, the company specialises
in producing made-to-order components, designed specifically to meet a customer’s particular
requirements. Like many such companies, it has significantly automated its manufacturing
activities, but the design activities of its engineers are still performed “manually”. That
is to say, the engineers of course make use of computers to perform calculations or create
3D models of the components they design, but there is no software support for the crux of
their activity, namely the actual design process itself. To perform this task, the engineers
follow an ad hoc process, based on past experience, talks with their colleagues, their own
preferences, etc.

This way of working is still common in industry. However, it has several downsides. First,
the lack of standardisation means that different engineers at different locations may come
up with different designs for the same set of requirements, some of which may be worse
than others. Second, the company also depends to a large extent on the expertise of some
of its key senior engineers. If these should suddenly leave the company, a great deal of the
knowledge they have built up over the years would leave with them, significantly reducing

© Bram Aerts and Joost Vennekens;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 13; pp. 13:1–13:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.aerts@kuleuven.be
mailto:joost.vennekens@kuleuven.be
https://doi.org/10.4230/OASIcs.ICLP.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

13:2 Application of Logic-Based Methods to Machine Component Design

the efficacy of the engineering department. Finally, the lack of software support also means
that – in particular, for less challenging design tasks – the engineers often have to spend
time carrying out the same routine tasks, reducing their efficiency.

The goal of this research is to develop a system to assist the engineers in their design
process. We focus specifically on the design of one particular type of component. This type
of component consists of a number of different subparts, each of which exists in a number of
different variants and sizes, and which can be produced from different kinds of materials.
Customers request components for a specific set of requirements, including a temperature
range under which the component should function, pressures the component should be able
to withstand, the size that the component should have, etc. The engineers then decide which
combination of subparts should be used, which variants of these subparts should be chosen,
how big each subpart should be and out of which material it should be made. It is with this
task that we want to assist them.

We follow a knowledge-based approach, in we represent the engineers’ knowledge in a
suitable formal language, and then apply logical inference to this representation in order to
provide suggestions to the engineers. This approach starts with a knowledge extraction step
in which a knowledge engineer works together with a number of domain experts, in this case
the company’s design engineers, in order to construct the formal model of their knowledge.
Typically, this knowledge extraction is a challenging task, because the knowledge engineers
are not familiar with the problem domain, while the domain experts are not familiar with
the idea knowledge representation. Good communication between the parties is therefore
very important.

In addition to providing automated support, the knowledge extraction process also
has the benefit of producing a standardised formal description of the company’s design
knowledge, thereby eliminating personal preferences of each engineer, regional differences,
out-dated habits, and of course human mistakes. For this process to be successful, we believe
that it is crucial that the formal specification is not only executable, but that it is also
understandable by the engineers. This helps to avoid misunderstandings and errors in the
knowledge extraction process. Moreover, it will also allow the engineers to get a better
understanding of what is going on inside the decision support system, it will help them to
adopt and evaluate the standardised procedure, and it will allow the knowledge base to be
maintained after completion of the project.

In [24], the ability to extract knowledge in a format readable by domain expert was
identified as a weakness of current product configuration methods. In order to achieve
our stated goals, we therefore propose a novel method, consisting of a two-step knowledge
extraction methodology. First, we focus on representing the decision process that the
engineers follow when making a new design. For this, we make use of the recent Decision
Model and Notation (DMN) [13] standard, which has been developed with the specific aim
of being usable by domain experts, without help from a knowledge engineer or software
developer. Using an off-the-shelf implementation of the standard, such as that provided by
the OpenRules system [14], this DMN model is already fully executable, which allows it to
be used by the engineers and validated w.r.t. a batch of test cases.

As we will discuss below, the DMN model by itself is not expressive enough to achieve all
of the project’s goals. We therefore propose a second knowledge extraction step, in which the
DMN model is further analysed together with the design engineers. Having the DMN model
already available in this step provides a way of focusing the discussion, ensuring that all the
relevant questions end up being discussed, and avoiding misunderstandings. The result of

B. Aerts and J. Vennekens 13:3

this second step is a logical specification, written in classical first-order logic – which can be
used by an automated reasoning system – in our case the IDP system [3]. This specification
can then be validated by comparing its conclusions to those of the original DMN models.

In the following sections, we first provide some more details on the context and goals of
the project. We then discuss the first step of the knowledge extraction methodology, using
DMN, together with its implementation and limitations. We then present the second step,
using the IDP system, again also discussing implementation and limitations. We discuss the
validation efforts that were made and finally also related work.

2 Problem Description

The company designs and produces components based on specific customer requests. These
customers typically are engineerings from other production companies, who want a specific
part to be manufactured according to a detailed set of requirements. In contrast to typical
configuration problems, understanding and explicitating the customers’ needs is therefore
not an issue in this application.

Incoming requests are initially handled by the sales staff. If the customer’s requirements
can be met by one of the companies standard solutions, the sales staff autonomously handles
the request. They are supported in this by a Visual Basic tool that inspects a Microsoft
Access database to select the appropriate standard design for a particular request. Requests
that fall outside the scope of this tool are forwarded to the engineering department. Here,
one of the engineers analyses the requirements and proposes a suitable component design. A
distinction is made between requests that fall within known application areas and those that
do not. Handling the first kind of requests is a routine job for the engineers and they always
follow roughly the same procedure when doing so. The second kind of requests are more
challenging and may require a significant amount of creativity from the engineers.

Our project has three main goals. First, the company has noted that is quite difficult and
time-consuming to extend the scope of the tool that is used by the sales staff and they are
looking for a more maintainable solution. Second, the “routine” work done by the engineers
for known applications should be standardised and automated as much as possible. Third,
the company also wishes to develop a decision support system that the engineers can use
when handling the more challenging requests.

3 Knowledge extraction of the design process

The engineers have a “standard” decision process that they use to handle routine requests.
However, this process is not explicitly standardised and different engineers at different
locations may do certain things somewhat differently. To fully standardize this process and to
be able to automate it, the engineers’ detailed technical knowledge needs to be represented in a
formal and structured manner. This section describes the knowledge extraction methodology
that we have followed.

Because the design process had not yet been internally standardised, we chose to start
from a series of brainstorming workshops with all of the involved parties. Each workshop
takes a couple of days and results in an initial representation of the design process for a
specifically delineated application area. The involved parties are a number of design engineers
(representing each of the locations worldwide that are involved in the particular application
area), a manager and one external knowledge engineer to guide the workshop. This approach
offers a number of advantages.

ICLP 2018

13:4 Application of Logic-Based Methods to Machine Component Design

Since multiple participants are involved, we do not blindly adopt the approach of one
engineer or one particular location.
The face-to-face time allows intensive discussion about why certain decisions are taken,
which is often necessary when different engineers are used to follow different approaches.
During one multiple-day workshop, all parties focus solely on one specific application,
which helps to keep the discussion focused.
The knowledge engineer not only helps with technical issues concerning the representation,
but he also assists the engineers in clarifying their design process: as a non-expert in the
domain, he is able to ask “trivial” questions that help to ensure that all the engineers are
on the same page and that nothing is being overlooked.

Such a workshop results in a formal representation of the engineers’ relevant knowledge,
which is then used to build an initial prototype of a decision support system for that particular
application area. This prototype is then presented to the design engineers for evaluation.
The evaluation can be done briefly by e-mail or in another workshop, depending on how
close to reality the preliminary model is. Based on the feedback, the model is refined. This
process is repeated until all parties agree that the model is correct.

To support this knowledge extraction process, we need a notation that allows all aspects of
the decision process to be expressed. In addition, the notation should not only be readable by
the knowledge engineer, but also by the domain experts, who have no background in computer
science or logic. This will allow the notation to be used as an effective communication tool
throughout the brainstorming workshops and will also give the domain experts confidence in
the correctness of the automated system. After surveying the different possibilities, we have
decided to use the DMN standard that is explained in the following section.

3.1 The Decision Model and Notation (DMN)
The Decision Model and Notation (DMN) is a relative new standard [13], which is best
known for also being responsible for the widely used UML standard. This standard was
developed specifically for describing and modeling repeatable decision processes. In addition,
it is especially designed to be usable by “business users”, without involvement of IT personnel.
These two properties make it uniquely well-suited for our purposes. In addition, as an open
standard from a well-known organisation, it enjoys tool-support from multiple vendors, which
means that it can be adopted without running the risk of vendor lock-in.

In general, a DMN model consists of two components. The first is a Decision Requirement
Diagram (DRD). This is a tree-like graph which specifies dependencies between different
(sub-) decisions. Figure 1 displays a fragment of the complete DRD representing the decision
procedure used in our application.

The other part of a DMN model consists a number of in-depth decision tables, one for each
decision in the DRD. An example can be found in Table 1. The purpose of this table is to
decide whether the chosen design should contain a wiper, a bent piece of plastic that protects
the component from environmental factors, such as dirt or reverse pressure (i.e., pressure
from the outside to the inside, instead of the other way around). Each column of such a
table corresponds to either an input variable (Dirty Environment and Reverse Pressure, in
this case) or an output variable (Wiper). In this example, all variables are boolean, but in
general DMN also allows other data types. A row in a decision table specifies that if the row
is applicable (i.e., all of the input variables satisfy the conditions given by this row) then all
of the output variables must have the values given by this row. For instance, the first row of
Table 1 states that a wiper must be used whenever the environment is dirty (regardless of

B. Aerts and J. Vennekens 13:5

Figure 1 Fragment of the Decision Requirement Diagram.

Table 1 Decision table describing whether or not to use a wiper.

Any Input Output
Dirty Environment Reverse Pressure Wiper

1 True - True
2 - True True
3 False False False

whether there is reverse pressure); the second row states that if there is reverse pressure, a
wiper must also be used; finally, the third row states that if the environment is not dirty and
there is no reverse pressure, a wiper should not be used.

The entries in the table are written in a syntax called the Friendly Enough Expression
Language (FEEL), which is also part of the DMN standard. In addition to simple values (as
used in Table 1), FEEL also allows numerical comparisons, ranges of values and calculations
to be expressed.

If multiple rows in a table might be applicable for some combination of input values,
then the table’s so-called hit policy determines how this should be handled. Table 1 has the
hit policy Any, as can be seen in its upper left cell. This means that different rows may be
applicable for a given input (e.g., the first two rows are applicable in a dirty environment
with reverse pressure), but that all applicable rows have the same output, so that it does not
matter which row is applied. Other hit policies are Unique (only one row may be applicable)
and First (when multiple rows are applicable, only the top one is considered). In addition,
there are also multiple hit policies that allow, e.g., the output of all applicable rows to be
gathered into a list.

Another, more advanced example is the following. In the design of a component, a spring
is used to keep it in place. The type of this spring is determined by two decision nodes in
the DRD. First, the general shape of spring is determined (whether to use a stiffer closed
spring or a weaker open spring). This influences the overall form of the design. Later, the

ICLP 2018

13:6 Application of Logic-Based Methods to Machine Component Design

Table 2 Decision table for Spring Shape.

First Input Output
Orientation Reverse Pressure Location Pressure Temperature Spring Shape

1
Radial True

Pressure Accumulating - - Open
2 Bi-directional - - Open
3 - ≤ 100 - Open
4 - - - - - Closed

Table 3 Decision table for Use Of Spacer.

Unique Input Output
Spring Shape Use Spacer

1 Closed False
2 Open True

specific spring is selected, based on how much the component would shrink in the given
circumstances. Table 2 shows how the general shape of the spring is decided, based on the
reverse pressure and various other inputs.

Another part of the design is a spacer, whose purpose is to keep the component in place,
even when there is a high pressure from the backside of the seal. Based on the spring shape,
the need for a spacer is decided in Table 3.

3.2 Results
Following the methodology outlined above, we have extracted the knowledge of the routine
design process in six different application fields. A total of 75 decision tables were constructed.
In each of the applications, one or two tables were pure data tables, consisting of all numerical
data for dimensioning the component. Since the discussed applications are more or less
similar, some of the already constructed data and decision tables from one application could
be reused in another. The extracted tables had an average size of approximately 5 rows
and 3 input conditions.

Each workshop started with a brief introduction to DMN, after which the knowledge
engineer started to guide the domain experts through the modelling process. We typically
started by constructing a DRD to get a general overview of the structure of the design process,
and then proceeded to construct detailed decision tables for each of the decisions. The
company’s engineers found the DMN format quite intuitive and after some initial questions,
they were typically able to easily interpret and reason about the knowledge in the tables.
Our experiences therefore indeed confirm that DMN’s readability for domain experts is a big
advantage of this standard.

A small exception to our normal way of working occurred when representing the design
process for applications that fall within the scope of the Visual Basic tool that had already
been developed for the sales staff. Here, we simply started from the existing VB code and
transformed this into a DMN model, which proved to be significantly shorter (360 lines of
VB code were reduced to 80 table rows) and easier to maintain.

Overall, the DMN representation seemed to fit well with the engineers’ own way of
thinking about their design process. However, there were some exceptions. In a few limited
cases, the engineers themselves do not follow a strict bottom-up decision procedure when
making their design. For instance, in certain circumstances, it is necessary to ensure that the
component stays in place. This can be done by using a stiffer spring than usual to prevent

B. Aerts and J. Vennekens 13:7

the component from sliding in the wrong direction. Adding a spacer and keeping the normal
shape of spring is the preferred approach, but this is not always feasible. In particular, in
cold circumstances, the component may shrink to such an extent that the normal spring
would fail. However, to know whether this is the case, the shrinkage of the component has to
be computed. Because this depends on the materials being used and the precise layout of the
different parts of the component, this computation can only be done at the very end of the
design process. Therefore, what the engineers currently do is they assume that the spacer
option will work, completely design the component based on this assumption, compute the
shrinkage and then backtrack over their initial choice if it turns out that the shrinkage is
too big. Such a “guess and check” procedure cannot be elegantly represented in DMN. In
Section 4 we discuss the work-around that we have used for this.

In general, we perceived the use of a formal representation in the workshop as a significant
added value. The precision of the notation allowed us to quickly detect inconsistencies and
missing cases in the information that the domain experts were providing. In addition, once
they had gotten used to the notation, also the design engineers themselves started to notice
flaws in the decision tables, such as implementation mistakes from our side or previously
unnoticed exceptions in their own design process. Towards the end of a workshop, the design
engineers were comfortable enough with the notation that we could leave certain decision
tables to be constructed as “homework” after the end of the workshop.

Based on our experiences, we are confident that the design engineers will be able to
maintain the existing decision tables and, with a bit more experience, would be able to
construct additional DMN models for new application areas.

4 Direct implementation of the design process

DMN is designed to be a fully executable specification and is currently supported by a number
of different tools, both commercial and open source. By providing it with the constructed
DMN tables, we have implemented an automated design system in the OpenRules [14] system,
currently for two of the six application areas for which the DMN knowledge extraction has
been performed.

This direct encoding of the design engineers’ design process has the advantage that it
is easy to implement, and that is easy to understand for the engineers what is going on.
However, there are also downsides to this approach.

First, as mentioned in Section 3.2, a few aspects of the design process do not fit readily
into the DMN model. Currently, we have worked around this problem by an “err on the
side of safety” approach: for the example given Section 3.2, the engineers have determined
a set of parameters within which it is always safe to use the preferred solution of adding a
spacer; whenever the input falls outside of this safe range, the alternative option of using a
stiffer spring is always chosen. While this solution is suboptimal (in the sense that sometimes
a stiffer spring is used when the combination of a weaker spring and a spacer would have
sufficed), it avoids the risk of suggesting faulty designs in a way that does not introduce
complicated decision structures, which would reduce the legibility of the DMN model.

Second, the DMN representation forces one to mix different kinds of knowledge within
a single table, which reduces the maintainability. For instance, Table 2 is based on both
physical constraints and preferences of the company. However, the actual constraints and
preferences cannot be deduced from this table alone. For instance, the decisions could be
explained in any of the following three ways:

ICLP 2018

13:8 Application of Logic-Based Methods to Machine Component Design

A closed spring is always preferred, but it is unusable in situations 1, 2 and 3;
An open spring is always preferred, but it can only be used in situations 1, 2 and 3;
An open spring is preferred if there is reverse pressure, while closed springs are preferred
in all situations when there is no reverse pressure.

Now, suppose that a supplier changes the price of the closed spring. This will have an
impact on which shape of spring is preferred, but it is impossible to judge the impact of this
change on Table 2, without knowing the underlying reason for why this table is as it is. A
representation that separates preferences from constraints would not have this problem.

Third, all of the currently available DMN rule engines support only a single inference
task, namely that of computing the “output” decision variables given values for all the input
variables. In a system that is used interactively by a design engineer, however, we may also
envisage other useful inference tasks. For instance, after filling out only a subset of the input
variables, the engineer may be interested in knowing whether a design with a closed spring is
still possible. Or, in discussions with a customer, he may interested in knowing which values
of the input variables would have allowed such a spring to be used if one cannot be used now.

Fourth, DMN keeps the complexity of the decision process manageable by splitting it
into different decision tables. A downside of this approach is that it is not possible to talk
about global properties of the design. For instance, we may be interested in selecting the
cheapest possible design. The cost of a design depends on which parts are included in the
design and on which materials are used to make these parts. Both of these decisions influence
each other: certain parts can only be made out of certain materials, while the use of a better
material might eliminate the need for a particular additional part. This interdependency
means that we cannot hope to always find the cheapest global design by making a sequential
series of local decisions.

Finally, the entire DMN approach of course assumes that there is a decision procedure to
model. If we want to develop a system that could provide some assistance to engineers in
those challenging new application areas where they themselves do no yet know how precisely
a new design should be made, then there is no decision procedure and the DMN approach
will be of no use at all.

5 A Constraint-Based Approach

As discussed in the previous section, we cannot hope to achieve all of our stated goals by
an approach in which we simply use a direct implementation of the design procedure as the
engineers follow it. We will need to take into account also the underlying physical constraints
that have led the engineers to adopt this procedure in the first place.

In general, the design process followed by the engineers is governed by a number of
physical constraints (e.g., a material M1 can only be used in temperatures < 100◦C) and
preferences (e.g., material M2 is preferred over material M1, perhaps because it is cheaper
or more durable). In order to develop a decision support system that can also provide
useful information for challenging new application areas, we need to make direct use of these
underlying constraints and preferences, rather than of the engineers’ existing design process.
These constraints provide more information than is explicitly present in the design procedure,
because they also explain why certain designs are impossible. Therefore, it is not possible to
automatically deduce these constraints from the design procedure. Instead, coming up with
them requires additional discussions with the design engineers.

To illustrate the constraint-based approach, we return to the running examples of
Section 3.1. First, we consider Table 1. The engineers explain the contents of this table as
follows: they prefer not to include a wiper unless one is necessary, and a wiper is required

B. Aerts and J. Vennekens 13:9

to cope with either reverse pressure or a dirty environment. In other words, this table can
be explained as the combination of a preference for not having a wiper, together with two
constraints: ReversePressure⇒Wiper and DirtyEnvironment⇒Wiper.

The underlying reasons for Tables 2 and 3 are more complex. Discussions with the
engineers have revealed that these tables can be explained as follows:
1. Only open springs are able to release reverse pressure.

SpringShape = ”Open”⇔ AbleToReleaseBP.

2. It is impossible to use a spacer in combination with a closed spring.
SpringShape = ”Closed”⇒ SpacerDesign = ”null”.

3. When the component should be placed in a pressure accumulating location, it should be
able to release reverse pressure.
Location = ”PressureAccumulating”⇒ AbleToReleaseBP.

4. A spacer is needed (in radial applications) if the reverse pressure is bigger than 100 bar.
ReversePressure ∧ Pclass > 100⇒ SpacerDesign 6= ”null”.

5. In the bi-directional location, the component tends to move back and forth excessively,
so in order to avoid damage, a spacer is always needed.
Location = ”Bi− directional”⇒ SpacerDesign 6= ”null”.

6. Lastly, closed springs tend to be cheaper and outperform open springs, so they are the
preferred type of spring.

Notice that 1–5 are constraints, while 6 is a preference.
The first line in Table 2 is a result of combining constraint 1 and 3. The component

should be able to release reverse pressure and since closed spring designs cannot do that,
an open spring design is the only option. The second row is a combination of constraint 2
and constraint 5. In the “Bi-directional” location a spacer is always needed, and since it
is impossible to have a spacer in closed spring designs, the only remaining possibility is to
go for an open spring design. Analogously, the third line in the decision procedure can be
obtained from combining constraint 4 and 2. In all other situations, both closed and open
spring designs are possible, but closed designs are preferred, which explains the last row in
the decision procedure.

5.1 Knowledge extraction of the physical constraints and preferences

In order to use the physical constraints, we must of course again first elicitate them from the
design engineers. In our experience, it was difficult to do this directly. The engineers often
did not know quite where to start and discussions tended to be chaotic and unstructured. For
this reason, we have chosen to base the knowledge extraction of the constraints on the DMN
models. We again organise a discussion with the engineers who were originally involved in
the construction of these models and then go over each row of each table and ask them why
this row produces that particular output. Unlike the workshops in which the DMN models
are initially constructed, here it is less crucial to involve different engineers: even though
different engineers may disagree on the best solution for a given problem, they tend to all
agree on the reason why certain solutions might or might not work.

This use of the DMN tables provides a structured way of working, in which different topics
are addressed in a meaningful order and we can be sure that all of the relevant constraints
will eventually be mentioned. Moreover, because the engineers know and understand the
DMN model, there is never any confusion about which particular question is being discussed
at any particular point in time.

ICLP 2018

13:10 Application of Logic-Based Methods to Machine Component Design

To reduce the time investment required from the engineers, it is useful to carefully
prepare these discussions in advance. Often, the form in which a particular table has been
written down already suggests a certain underlying reason (e.g., the “default” row at the
bottom of Table 2 suggests that the closed spring is the preferred choice, with the other rows
describing circumstances in which this preferred choice is not possible). In addition, general
knowledge about how the components function or considerations that were mentioned during
the workshops that constructed the DMN models may provide further clues. In practice, we
have found that we can construct most of the constraints without help of the engineers and
only need them to verify and help us revise our initial guesses.

Most of the decision tables can be discussed independently. However, certain constraints
influence multiple tables. Section 5 handles a detailed example of this.

The preferences we have encountered so far have been quite simple: when a particular
part exists in a number of different variants or can be made from a number of different
materials, the engineers have been able to rank the variants/materials in an absolute order
of preference, typically based on cost and reliability. There has been no need to handle more
complex issues such as conditional preferences.

6 Implementation of a constraint-based approach

We have used the knowledge based IDP system [3] to implement a prototype of a constraint-
based design system. IDP allows constraints to be expressed in a rich extension of classical
first-order logic. Some examples of constraints used, are:

∀s[Subpart] : SubpartUsed(s)⇒ ∃ 1 m[Material] : Material(s, m).

This IDP formula states that for each subpart it holds that if the subpart is used, there
exists exactly one material for that subpart.

sum{s[Subpart] : SubpartUsed(s) ∧ Length(s, l) : l} < AvailableSpace.

This formula states that the length of the component, computed as the sum of the lengths of
all its subparts, must fit in the available space.

The IDP system offers a number of different algorithms, implementing a number of logical
inference tasks, based on Answer Set Programming (ASP), Logic Programming (LP) and
SAT solving technology. In recent editions of the ASP Competition [1], it was shown to be
competitive with other state-of-the-art ASP systems, though typically somewhat slower than
systems such as Clasp.

Our main reason for using IDP is its use of classical logic as an input language. This
allows individual constraints to be represented in a modular way, which can typically
be reasonably well explained to the company’s design engineers without requiring much
additional background. While the engineers would probably not be able to write down
constraints correctly, they are able to read them pretty well. We suspect that for instance
ASP specifications would have been harder for the engineers to read, due to the presence of
non-classical connectives such as negation-as-failure. A second advantage of IDP is that it
provides support for different logic inference tasks. Our current prototype only offers the
functionality of generating design proposals, but IDP’s different logic inference methods may
prove useful if we would want to extend this to other functionalities in the future. This is
one potential advantage that IDP offers over the use of constraint-programming languages
such as MiniZinc [12].

B. Aerts and J. Vennekens 13:11

Our input for IDP consists of six theories: one theory expresses the constraints about
the general design of the component; another describes the material choice of each of the
parts; the third defines how the component shrinks in low temperatures; a fourth theory
describes whether the component will remain in place also in cold environments; the fifth
defines whether the complete component fits in the available space; the final theory expresses
the preferences by assigning a cost to the design, based on price, durability, availability, etc.

In order to use these theories to compute a design, we can apply the logical inference task
of Model Expansion [11]. This takes as input a theory T and a structure Sin for part of the
vocabulary of T , and the goal is to produce a structure Sout for the remaining part of the
vocabulary such that Sin ∪ Sout |= T . In our case, the structure Sin describes the problem
specification, by providing an interpretation for predicates such as Temperature, Pressure

and Location (giving the temperature and pressure ranges and the location in which the
component should function); the structure Sout then describes a design, by providing an
interpretation for predicates such as SpringShape and functions such as Material, which
maps each component used in the design to the material it should be made from.

However, rather than just computing any model expansion, we make use of IDP’s
optimisation functionality. This allows us to specify a numerical term t for a model expansion
problem (T, Sin). IDP will then compute not just any solution to the model expansion problem,
but the solution Sout that, in addition to being such that Sin ∪ Sout |= T also minimizes
the value tSin∪Sout of this term. In our case, the term t is of the form sum{p[Penalty] :
V iolation(p) : p}, i.e., we associate to each violation of a preference a certain penalty and
the goal is to compute the design for which the sum of all incurred penalties is minimal. IDP
implements this inference task by an optimisation loop, which iteratively produces better
solutions by each time adding as a new constraint that the next solution must have a lower
score than the previous solution. This is the same method as is typically used in, e.g., ASP
solvers.

As an implementation of the knowledge base paradigm [5], IDP allows different inference
tasks to be performed on the same knowledge base in order to provide different functionalities.
Currently, our focus lies on generating designs using the inference task of model expan-
sion. However, in the future, other inference tasks may prove useful for offering additional
functionalities, such as explaining why a certain design is not feasible.

6.1 Limitations
Even though using the constraint representation has a lot of interesting advantages, there
are also a few downsides to it. The main disadvantage is that it is harder for the domain
experts to understand. On the one hand, the syntax for writing down individual constraints
is more complex. While we have used IDP because we believe it is quite understandable for
untrained experts, it is still much more complex that the simple table-based DMN format.
On the other hand, also the constraint-based approach itself seems inherently more difficult
for the domain experts. In a DMN decision model, there is always a clear link between input
and output, which makes the model easy to interpret and inspect by a domain expert. When
using constraints to express design knowledge, a single decision may be affected by numerous
constraints. For example in Section 5, the spring design is influenced by a multitude of
constraints. Finding out which constraints influence a particular aspect of the design and
determining their joint outcome is not a straightforward task and we find this often confuses
the domain experts.

A second downside is tied to the particular technology used in the IDP system. IDP’s
model expansion algorithm follows a ground-and-solve strategy (similar to, e.g., ASP solvers),
in which all variables are first translated away, by replacing them with all of their possible

ICLP 2018

13:12 Application of Logic-Based Methods to Machine Component Design

values. However, this requires that each variable must have a finite domain, such that the
grounding phase can enumerate all of its possible values. Moreover, in order for the grounding
to be computed in reasonable time, these domains should be relatively small. Because our
application requires some calculations with floating point numbers (e.g., when calculating
the shrinkage in cold circumstances), we have had to implement a work-around to perform
these calculations outside of the normal ground-and-solve workflow.

7 Validation and Experimental Results

The DMN model. Starting from a direct formalisation of the engineers’ design process
proved noticeably useful. Not only did the engineers appreciate the intuitive way of reasoning
in the DMN standard, it made them think about how they come to a design in a given
situation and about why certain design decisions are made. Moreover, when transforming the
Visual Basic tool developed for the sales staff into a DMN model, a number of irregularities
surfaced. Without a formal representation of this knowledge, it would have been a far more
difficult and time consuming task to detect these faults.

To ensure correctness of the DMN model, the engineers not only inspected the decision
tables in detail, but also provided us with ten test cases that represent both normal sets of
requirements and a number of edge cases. Our OpenRules implementation using the DMN
model generates the correct design in all of the test cases. Computing a design takes about
0.3 seconds single core on an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.

The IDP model. While it proved relatively easy to construct the DMN model in collabora-
tion with the engineers, constructing the more expressive IDP constraint-based model was
more significantly more challenging. We therefore want to use to former to validate the latter.
In particular, we want to check two correspondences between the output D(I) of the DMN
model D for a given input I and the solutions Sout of the model expansion problem (T, SI)
for the IDP constraint theory T . The vocabulary of the theory T was chosen such that the
DMN input I and output D(I) can be easily translated into structures SI and SD(I).

The first property to check is that the constraints should not be too strict: for each
possible set of inputs I, the design D(I) that would be constructed by the DMN model D(I)
should satisfy the constraints in theory T , i.e., SI ∪ SD(I) |= T or in other words, SD(I) is a
solution the model expansion problem (T, SI).

Second, to verify that the constraints are not too weak, we also check that the design
D(I) proposed by the DMN model D is among the optimal solutions of this model expansion
problem, i.e., that tSI∪SD(I) ≤ tSI∪S′ for any other solution S′ to the model expansion
problem (T, SI), where t is the optimisation term that should be minimised. This both
checks that the constraints do not fail to rule out designs with a higher score that are in fact
impossible and that the weights used in the optimisation criterion are assigned correctly.

We implement both of these checks using IDP. We first transform the DMN model to
IDP syntax as described in [4]. We can then use IDP to perform the required checks on
relation between the IDP theory derived directly from the DMN model and the IDP theory
that represents the constraints.

The first check initially revealed a small number of errors in the constraint-based repres-
entation. After minor fixes to the constraints, the first check was concluded successfully. The
second check then revealed that, in a number of cases, the constraint-based model produced
more optimal designs than the DMN model. While we initially thought that this was due to
more errors in the constraints, an analysis together with the design engineers revealed that
the outcome of the constraint-based model was in fact correct and that their own design

B. Aerts and J. Vennekens 13:13

process was in these cases non-optimal. This non-optimality turned out to be caused by the
difficulty of making the decisions in a fixed order. When using the constraint-based method,
no fixed decision order is needed, so a better scoring global optimum can be found.

The IDP system typically finds the optimal design in about 3.15 seconds on one core of
an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.

8 Related Work

A large body of research has been conducted on the topic of automatic product configuration,
typically defined as the task of automatically constructing a design from a set of pre-defined
components, considering several constraints and some optimisation criteria [2]. Research
shows that product configurators have a positive impact on lead time [8, 6] and quotation
time [10]. Other comparison studies [18] investigate the effect of configuration systems on
product quality, also showing promising results.

A thorough literature review on product configuration was performed by [24]. Their
findings reveal that, despite the wide range of existing research, several topics still require
further exploration. First, although knowledge acquisition from historical data has been
extensively studied, less research has been done on extracting knowledge from domain experts.
Moreover, knowledge representation research typically focusses on methods that are intended
to be used by knowledge engineers. Little attention has been paid to representations that
are usable by domain experts. Our work examines the use of DMN to address these issues in
the context of one concrete application domain.

A second aspect which according to [24] has not yet received much attention is the ability
to suggest new designs. The majority of existing product configuration approaches focus on
selecting the most appropriate option among a fixed range of possibilities. By contrast, our
constraint-based approach is also able to provide useful information to the engineers in cases
that fall outside the scope of existing solutions.

Third, [24] also identifies several ways in which additional forms of inference might be
useful to provide functionality other than suggesting a design. For example, she identifies such
tasks as explaining which conflicting constraints have led to a rejected design or reconfiguring
an existing design to cope with changed requirements. The IDP system has been developed
according to the knowledge base paradigm [5], in which different logical inference methods
can be applied to the same knowledge base in order to implement different functionalities.
Both of the tasks of explaining conflicts and of reconfiguration have already been considered
in the context of this system [19, 22]. The IDP system therefore provides a suitable formalism
to express the design knowledge.

9 Conclusions and future work

In this paper, we have presented an approach to develop a decision support system for the
design of mechanical components. This research was conducted in collaboration with a
multinational company that wants to standardise and partially automate its design process,
both for “routine” applications and challenging new application areas.

This project’s main challenge is that there are two potentially contradictory requirements.
On the one hand, a flexible and powerful knowledge representation is needed that will allow
useful conclusions to be provided to the engineers even in circumstances that fall outside of
their designs’ usual scope. On the other hand, the engineers need to be closely involved in
the formal specification since they are expected to agree on and understand the model, and
to help maintain it.

ICLP 2018

13:14 Application of Logic-Based Methods to Machine Component Design

To cope with these two requirements, we propose a two-step methodology. First, we use
the new DMN standard to extract the “routine” design process into an executable formal
model, which can already by automatically validated. We then use this DMN model as
a basis to perform a second knowledge extraction step, which results in a first-order logic
representation that can be given to the state-of-the-art IDP knowledge base system in order
to also perform useful inferences in circumstances that fall outside the scope of the routine
design process. This IDP model can then be automatically validated w.r.t. the DMN model.

In future work, we plan to examine the possibility of extending the expressivity of DMN
to reduce the gap between DMN and IDP, without sacrificing the ease of understanding for
the domain experts. Moreover, we also plan to examine the use of IDP’s different inference
algorithms to address some of the issues highlighting by [24]. Finally, we also wish to develop
a method that would allow the more general knowledge expressed in the IDP model to
automatically derive DMN design procedures for new application areas.

References

1 Mario Alviano, Francesco Calimeri, Günther Charwat, Minh Dao-Tran, Carmine Dodaro,
Giovambattista Ianni, Thomas Krennwallner, Martin Kronegger, Johannes Oetsch, An-
dreas Pfandler, et al. The fourth answer set programming competition: Preliminary report.
In Logic Programming and Nonmonotonic Reasoning, pages 42–53. Springer, 2013.

2 David C Brown. Defining configuring. Artificial Intelligence for Engineering Design, Ana-
lysis and Manufacturing, 12(4):301–305, 1998. doi:10.1017/S0890060498124034.

3 M. Bruynooghe, H. Blockeel, B. Bogaerts, B. De Cat, S. De Pooter, J. Jansen, A. Labarre,
J. Ramon, M. Denecker, and S. Verwer. Predicate logic as a modeling language: Modeling
and solving some machine learning and data mining problems with IDP3. Theory and
Practice of Logic Programming, 15(6):783–817, 2015. doi:10.1017/S147106841400009X.

4 Ingmar Dasseville, Laurent Janssens, Gerda Janssens, Jan Vanthienen, and Marc Denecker.
Combining DMN and the knowledge base paradigm for flexible decision enactment. In
Tara Athan, Adrian Giurca, Rolf Grütter, Marc Proctor, Kia Teymourian, and William
Van Woensel, editors, Supplementary Proceedings of the RuleML 2016 Challenge, RuleML,
Stony Brook, 6-9 July 2016. CEUR-WS.org, 2016. URL: https://lirias.kuleuven.be/
handle/123456789/546123.

5 Marc Denecker and Joost Vennekens. Building a knowledge base system for an integ-
ration of logic programming and classical logic. In Maria Garcia de la Banda and En-
rico Pontelli, editors, Lecture Notes in Computer Science, International Conference on
Logic Programming, ICLP, Udine, Italy, 9-13 December 2008, pages 71–76. Springer, 2008.
doi:10.1007/978-3-540-89982-2_12.

6 C. Forza and F. Salvador. Product configuration and inter-firm co-ordination: An innov-
ative solution from a small manufacturing enterprise. Computers in Industry, 49(1):37–46,
2002. doi:10.1016/S0166-3615(02)00057-X.

7 Anders Haug, Lars Hvam, and Niels Henrik Mortensen. A layout technique for class dia-
grams to be used in product configuration projects. Computers in Industry, 61(5):409–418,
2010. doi:10.1016/j.compind.2009.10.002.

8 Anders Haug, Lars Hvam, and Niels Henrik Mortensen. The impact of product config-
urators on lead times in engineering-oriented companies. Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing: AIEDAM, 25(2):197–206, 2011. doi:
10.1017/S0890060410000636.

9 Lars Hvam, Anders Haug, Niels Henrik Mortensen, Christian Thuesen, Relationship Man-
agement, and Product Architecture Group. observed benefits from product configuration
systems (Hvam) 2011. International Journal of Industrial Engineering, 2013.

http://dx.doi.org/10.1017/S0890060498124034
http://dx.doi.org/10.1017/S147106841400009X
https://lirias.kuleuven.be/handle/123456789/546123
https://lirias.kuleuven.be/handle/123456789/546123
http://dx.doi.org/10.1007/978-3-540-89982-2_12
http://dx.doi.org/10.1016/S0166-3615(02)00057-X
http://dx.doi.org/10.1016/j.compind.2009.10.002
http://dx.doi.org/10.1017/S0890060410000636
http://dx.doi.org/10.1017/S0890060410000636

B. Aerts and J. Vennekens 13:15

10 Lars Hvam, Martin Malis, Benjamin Hansen, and Jesper Riis. Reengineering of the quo-
tation process: application of knowledge based systems. Business Process Management
Journal, 10(2):200–213, 2004. doi:10.1108/14637150410530262.

11 David Mitchell, Eugenia Ternovska, Faraz Hach, and Raheleh Mohebali. Model expansion
as a framework for modelling and solving search problems. Technical report, Technical
Report TR 2006-24, School of Computing Science, Simon Fraser University, 2006.

12 N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. MiniZinc:
Towards a standard CP modelling language. In Proceedings of the 13th International Con-
ference on Principles and Practice of Constraint Programming, volume 4741 of LNCS, 2007.

13 Object Modelling Group. Decision Model and Notation, 2016. Version 1.1. URL: http:
//www.omg.org/spec/DMN/.

14 OpenRules, Inc. OpenRules, 2017. Version 6.4.2. URL: http://openrules.com.
15 F. Salvador and C. Forza. Configuring products to address the customization-responsiveness

squeeze: A survey of management issues and opportunities. International Journal of Pro-
duction Economics, 91(3):273–291, 2004. doi:10.1016/j.ijpe.2003.09.003.

16 Fabrizio Salvador, Aravind Chandrasekaran, and Tashfeen Sohail. Product configuration,
ambidexterity and firm performance in the context of industrial equipment manufacturing.
Journal of Operations Management, 32(4):138–153, 2014. doi:10.1016/j.jom.2014.02.
001.

17 Alessio Trentin, Elisa Perin, and Cipriano Forza. Overcoming the customization-
responsiveness squeeze by using product configurators : Beyond anecdotal evidence. Com-
puters in Industry, 62(3):260–268, 2011. doi:10.1016/j.compind.2010.09.002.

18 Alessio Trentin, Elisa Perin, and Cipriano Forza. Product configurator impact on product
quality. International Journal of Production Economics, 135(2):850–859, 2012. doi:10.
1016/j.ijpe.2011.10.023.

19 Hanne Vlaeminck, Joost Vennekens, and Marc Denecker. A logical framework for con-
figuration software. In Proceedings of the 11th ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming PPDP ’09, Principles and Practice of De-
clarative Programming, Coimbra, Portugal, 7-9 September, 2009. ACM, September 2009.
doi:10.1145/1599410.1599428.

20 Bob Wielinga and Guus Schreiber. Configuration-design problem solving. IEEE Expert-
Intelligent Systems and their Applications, 12(2):49–56, 1997. doi:10.1109/64.585104.

21 Olga Willner, Jonathan Gosling, and Paul Schönsleben. Establishing a maturity model for
design automation in sales-delivery processes of ETO products. Computers in Industry,
82:57–68, 2016. doi:10.1016/j.compind.2016.05.003.

22 Johan Wittocx, Broes De Cat, and Marc Denecker. Towards computing revised models
for FO theories. In Salvador Abreu and Dietmar Seipel, editors, Proceedings of the In-
ternational Conference on Applications of Declarative Programming and Knowledge Man-
agement 2009, International Conference on Applications of Declarative Programming and
Knowledge Management, Evora, Portugal, 5-7 November 2009, pages 199–211, November
2009. doi:10.1007/978-3-642-20589-7_6.

23 Dong Yang, Ming Dong, and Rui Miao. Development of a product configuration system
with an ontology-based approach. CAD Computer Aided Design, 40(8):863–878, 2008.
doi:10.1016/j.cad.2008.05.004.

24 Linda L. Zhang. Product configuration: A review of the state-of-the-art and future
research. International Journal of Production Research, 52(21):6381–6398, 2014. doi:
10.1080/00207543.2014.942012.

25 Linda L. Zhang, Petri T. Helo, Arun Kumar, and Xiao You. Implications of product con-
figurator applications: An empirical study. IEEE International Conference on Industrial
Engineering and Engineering Management, 2016-Janua(i):57–61, 2016. doi:10.1109/IEEM.
2015.7385608.

ICLP 2018

http://dx.doi.org/10.1108/14637150410530262
http://www.omg.org/spec/DMN/
http://www.omg.org/spec/DMN/
http://openrules.com
http://dx.doi.org/10.1016/j.ijpe.2003.09.003
http://dx.doi.org/10.1016/j.jom.2014.02.001
http://dx.doi.org/10.1016/j.jom.2014.02.001
http://dx.doi.org/10.1016/j.compind.2010.09.002
http://dx.doi.org/10.1016/j.ijpe.2011.10.023
http://dx.doi.org/10.1016/j.ijpe.2011.10.023
http://dx.doi.org/10.1145/1599410.1599428
http://dx.doi.org/10.1109/64.585104
http://dx.doi.org/10.1016/j.compind.2016.05.003
http://dx.doi.org/10.1007/978-3-642-20589-7_6
http://dx.doi.org/10.1016/j.cad.2008.05.004
http://dx.doi.org/10.1080/00207543.2014.942012
http://dx.doi.org/10.1080/00207543.2014.942012
http://dx.doi.org/10.1109/IEEM.2015.7385608
http://dx.doi.org/10.1109/IEEM.2015.7385608

Explanations Generation For Web Service
Workflow
Van Duc Nguyen
Computer Science Department
New Mexico State University, USA
vnguyen@cs.nmsu.edu

Son Cao Tran
Computer Science Department
New Mexico State University, USA
tson@cs.nmsu.edu

Enrico Pontelli
Computer Science Department
New Mexico State University, USA
epontell@cs.nmsu.edu

Abstract
The motivation for the work is the challenge of providing textual explanations of automatically
generated scientific workflows (e.g., paragraphs that scientists can include in their publications).
The extended abstract presents a system which generates explanations for a web service work-
flow from sets of atoms derived from a collection of ontologies. The system, called nlgPhylogeny,
demonstrates the feasibility of the task in the Phylotastic project, that aims at providing evol-
utionary biologists with a platform for automatic generation of phylogenetic trees given some
suitable inputs.

2012 ACM Subject Classification Computing methodologies → Logic programming and answer
set programming, Information systems → Web services, Computing methodologies → Natural
language generation

Keywords and phrases Phylotastic, Grammatical Framework

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.14

1 Introduction

The Phylotastic1 project is an attempt for making use of phylogeny trees in education or
for researching in biology. To perform a phylogeny tree extraction, the project involves in a
series of tasks which is invisible to users. From the need of verification that the phylogeny
tree is correctly extracted, some method of describing how the phylogeny tree is delivered to
user are provided. One popular way is to describe the progress by natural language. The
problem of generating natural language explanations has been explored in several research
efforts. For example, the problem has been studied in the context of question-answering
systems2, providing recommendations3, etc.

In this paper, we describe a system called nlgPhylogenyfor generating natural language
explanations for Phylotastic project. The system is powered by Grammatical Framework.

1 http://phylotastic.org
2 http://coherentknowledge.com
3 http://gem.med.yale.edu/ergo/default.htm

© Van Duc Nguyen, Son Cao Tran, and Enrico Pontelli;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 14; pp. 14:1–14:3

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vnguyen@cs.nmsu.edu
mailto:tson@cs.nmsu.edu
mailto:epontell@cs.nmsu.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.14
http://phylotastic.org
http://coherentknowledge.com
http://gem.med.yale.edu/ergo/default.htm
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 Explanations Generation For Web Service Workflow

Ontology Linearization Pre-defined
Conjunctive

Pre-defined
Vocabulary

GF GeneratorAdapter

Portable
grammar

format

Sentence
Model

English concrete
syntax

Abstract
syntax

Workflow Atoms English
Description

GF Runtime API

Sentence generator

Figure 1 Overview of nlgPhylogeny.

2 Methodology

In this section, we describe the nlgPhylogeny system. Figure 1 shows the overall architecture
of nlgPhylogeny. The main component of the system is the GF generator whose inputs are
the ontology and the elements necessary for the NLG task (i.e., the set of linearizations,
the set of pre-define conjunctives, the set of vocabularies, and the set of sentence models)
and whose output is a GF program, i.e., a pair of GF abstract and concrete syntax. This
GF program is used for generating the descriptions of workflows via the GF runtime API.
The adapter provides the GF generator with the information from the ontology, such as the
classes, instances, and relations.

2.1 Web Service Ontology (WSO)
Phylotastic uses web service composition to generate workflows for the extraction/construction
of phylogenetic trees. It makes use of two ontologies: WSO and PO. WSO encodes information
about registered web services and their abstract classes. In the following discussion, we
refer to a simplified version of the ASP encoding of the ontologies used in [2], to facilitate
readability. In WSO, a service has a name and is associated with a list of inputs and a list of
outputs.

2.2 GF generator
Each Phylotastic workflow is an acyclic directed graph, where the nodes are web services,
each consumes some resources (inputs) and produces some resources (outputs). The GF
generator produces a portable grammar format (pgf) file [1]. This file is able to encode and
generate sentences by using GF Runtime API. The GF generator (see Figure 1) accepts two
flows of input data:

The flow of data from the ontology which is maintained by an adapter. The adapter is
the glue code that connects the ontology to the GF generator. Its main function is to
extract classes and properties from the ontology.
The flow of data from predefined resources that cannot be automatically obtained from
the ontology – instead they require manual effort from both ontology experts and linguistic
developers;

V.D. Nguyen, S. C. Tran, and E. Pontelli 14:3

A list of linearizations; these are essentially the translations of names of ontology
entities into linguistic terms. This translation is performed by experts who have
knowledge of the ontology domain. An important reason for the existence of this
component is that some classes or terms used in the ontology might not be directly
understandable by the end user. This may be the result of very specialized strings
used in the encoding of the ontology by the ontology engineer (e.g., abbreviations), or
the use of URIs for the representation of certain concepts.
Some model sentences which are principally Grammatical Framework syntax trees
with meta-information. The meta-information denotes which part of syntax tree can
be replaced by some vocabulary or linearization.
A list of pre-defined vocabularies which are domain-specific for the ontology. A pre-
defined vocabulary is different from linearizations, in the sense that some lexicon may
not be present in the ontology but might be needed in the sentence construction; the
predefined vocabulary is also useful to bring variety in word choices when parts of a
model sentence are replaced by the GF generator.
A configuration of pre-defined conjunctives which depend on the document planning
result. Basically, this configuration defines which sentences accept a conjunctive adverb
in order to provide generated text transition and smoothness.

Based on the number of inputs and outputs of a service, the GF generator determines
how many parameters will be included in the GF abstraction function corresponding to the
service. Furthermore, for each input or output of a service, the GF generator includes an
Input or Output in the GF abstract function.

Next, the GF generator looks up in the sentence models a model syntax tree whose
structure is suitable for the number of inputs and outputs of the service. If such syntax tree
exists, the GF generator will replace parts of the syntax tree with the GF service input and
output functions, to create a new GF syntax tree which can be appended in the GF concrete
function.

From the abstract and concrete syntax built by GF generator, it is possible to generate
the sentence

The input of service phylotastic_FindScientificNamesFromWeb_GET is a
web link and its outputs are a set of species names and a set of scientific
names.

for the atom occur_concrete(phylotastic_FindScientificNamesFromWeb_GET,1). We use the same
technique to encode the other types of sentences to describe a full workflow.

References
1 Krasimir Angelov, Björn Bringert, and Aarne Ranta. PGF: A Portable Run-time Format

for Type-theoretical Grammars. Journal of Logic, Language and Information, 19:201–228,
2010.

2 Thanh H. Nguyen, Tran Cao Son, and Enrico Pontelli. Automatic Web Services Compos-
ition for Phylotastic. In Practical Aspects of Declarative Languages - 20th International
Symposium, pages 186–202, 2018. doi:10.1007/978-3-319-73305-0_13.

ICLP 2018

http://dx.doi.org/10.1007/978-3-319-73305-0_13

Probabilistic Action Language pBC+

Yi Wang
Arizona State University
School of Computing, Informatics, and Decision Systems Engineering
Fulton Schools of Engineering, Arizona State University
P.O. Box 878809, Tempe, AZ 85287-8809, United States
ywang485@asu.edu

Abstract
We present an ongoing research on a probabilistic extension of action language BC+. Just like
BC+ is defined as a high-level notation of answer set programs for describing transition systems,
the proposed language, which we call pBC+, is defined as a high-level notation of LPMLN programs
– a probabilistic extension of answer set programs.

As preliminary results accomplished, we illustrate how probabilistic reasoning about trans-
ition systems, such as prediction, postdiction, and planning problems, as well as probabilistic
diagnosis for dynamic domains, can be modeled in pBC+ and computed using an implementa-
tion of LPMLN.

For future work, we plan to develop a compiler that automatically translates pBC+ descrip-
tion into LPMLN programs, as well as parameter learning in probabilistic action domains through
LPMLN weight learning. We will work on defining useful extensions of pBC+ to facilitate hypo-
thetical/counterfactual reasoning. We will also find real-world applications, possibly in robotic
domains, to empirically study the performance of this approach to probabilistic reasoning in
action domains.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases action language, probabilistic reasoning, LPMLN

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.15

Acknowledgements We are grateful to the anonymous referees for their useful comments. This
work was partially supported by the National Science Foundation under Grant IIS-1526301.

1 Introduction and Problem Description

Action languages, such as A [9], B [10], C [12], C+ [11], and BC [15], are formalisms for
describing actions and their effects. Many of these languages can be viewed as high-level
notations of answer set programs structured to represent transition systems. The expressive
possibility of action languages, such as indirect effects, triggered actions, and additive fluents,
has been one of the main research topics. Most of the extensions accounting for that are logic-
oriented, and less attention has been paid to probabilistic reasoning, with a few exceptions
such as [6, 8], let alone automating such probabilistic reasoning and learning parameters of
an action description.

Action language BC+ [2], one of the most recent additions to the family of action languages,
is no exception. While the language is highly expressive to embed other action languages,
such as C+ [11] and BC [14], it does not have a natural way to express the likelihood of
histories (i.e., a sequence of transitions).

© Yi Wang;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 15; pp. 15:1–15:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ywang485@asu.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Probabilistic Action Language pBC+

I Example 1. Consider an extension of the robot example from [13]: A robot and a book
that can be picked up are located in a building with 2 rooms r1 and r2. The robot can move
to rooms, pick up the book and put down the book. There is 0.1 chance that it fails when it
tries to enter a room, a 0.2 chance that the robot drops the book when it has the book, and
0.3 chance that the robot fails when it tries to pick up the book. The robot, as well as the
book, was initially at r1. It executed the following actions to deliver the book from r1 to r2:
pick up the book; go to r2; put down the book. However, after the execution, it observes
that the book is not at r2. What was the problem?

To answer the above query, an action language needs the capabilities of not only probab-
ilistic reasoning, but also abductive reasoning in a probabilistic setting. In my research, we
are working on a probabilistic extension of BC+, which we call pBC+, with the expressivity
to answer queries such as the one in Example 1. Just like BC+ is defined as a high-level
notation of answer set programs for describing transition systems, pBC+ is defined as a
high-level notation of LPMLN programs – a probabilistic extension of answer set programs.
Language pBC+ inherits expressive logical modeling capabilities of BC+ but also allows us
to assign a probability to a sequence of transitions so that we may distinguish more probable
histories.

In this paper, as preliminary results accomplished, we will show how probabilistic reasoning
about transition systems, such as prediction, postdiction, and planning problems, can be
modeled in pBC+ and computed using an implementation of LPMLN[16]. Further, we will
show that it can be used for probabilistic abductive reasoning about dynamic domains, where
the likelihood of the abductive explanation is derived from the parameters manually specified
or automatically learned from the data.

For future work, we plan to develop a compiler that automatically translates pBC+
description into LPMLN programs, as well as parameter learning in probabilistic action
domains through LPMLN weight learning. We will work on defining useful extensions of pBC+
to facilitate hypothetical/counterfactual reasoning. We will also find real-world applications,
possibly in robotic domains, to empirically study the performance of this approach to
probabilistic reasoning in action domains.

This paper will give a summary of my research on pBC+, including the background and
some review of existing literature (Section 2), goal of the research (Section 3), the current
status of the research (Section 4), preliminary results accomplished (Section 5) as well as
issues and expected achievements (Section 6).

2 Background and Overview of Existing Literature

2.1 Probabilistic Reasoning and Diagnosis in the Context of Action
Languages

There are various formalisms for reasoning in probabilistic action domains. PC+ [8] is a
generalization of the action language C+ that allows for expressing probabilistic information.
PC+ expresses probabilistic transition of states through so-called context variables, which
are exogenous variables associated with predefined probability distributions. PC+ allows
for expressing qualitative and quantitative uncertainty about actions by referring to the
sequence of “belief” states – possible sets of states together with probabilistic information.
On the other hand, the semantics is highly complex and there is no implementation of PC+
as far as we know.

Y. Wang 15:3

[20] defined a probabilistic action language called NB, which is an extension of the
(deterministic) action language B. NB can be translated into P-log [4] and since there exists
a system for computing P-log, reasoning in NB action descriptions can be automated. Like
PC+, probabilistic transitions are expressed through dynamic causal laws with random
variables associated with predefined probability distribution. In NB, however, these random
variables are hidden from the action description and are only visible in the translated P-
log representation. In order to translate NB into executable low-level logic programming
languages, some semantical assumptions have to be made in NB, such as all actions have to
be always executable and nondeterminism can only be caused by random variables.

Probabilistic action domains, especially in terms of probabilistic effects of actions, can
be formalized as Markov Decision Process (MDP). The language proposed in [6] aims
at facilitating elaboration tolerant representations of MDPs. The syntax is similar to
NB and PC+. The semantics is more complex as it allows preconditions of actions and
imposes less semantical assumption. The concept of unknown variables associated with
probability distributions is similar to random variables in NB. There is, as far as we know,
no implementation of the language. There is no discussion about probabilistic diagnosis
in the context of the language. PPDDL [19] is a probabilistic extension of the planning
definition language PDDL. Like NB, the nondeterminism that PPDDL considers is only the
probabilistic effect of actions. The semantics of PDDL is defined in terms of MDP. There
are also probabilistic extensions of the Event Calculus such as [7] and [18].

In the above formalisms, the problem of probabilistic diagnosis is only discussed in
[20]. [3] and [5] studied the problem of diagnosis. However, they are focused on diagnosis
in deterministic and static domains. [13] has proposed a method for diagnosis in action
domains with situation calculus. Again, the diagnosis considered there does not involve any
probabilistic measure.

2.2 Review: Language LPMLN

We review the definition of LPMLN from [17]. An LPMLN program is a finite set of weighted
rules w : R where R is a rule and w is a real number (in which case, the weighted rule is
called soft) or α for denoting the infinite weight (in which case, the weighted rule is called
hard). An LPMLN program is called ground if its rules contain no variables. We assume a
finite Herbrand Universe so that the ground program is finite. Each ground instance of a
non-ground rule receives the same weight as the original non-ground formula.

For any ground LPMLN program Π and any interpretation I, Π denotes the usual
(unweighted) ASP program obtained from Π by dropping the weights, ΠI denotes the set of
w : R in Π such that I |= R, and SM[Π] denotes the set {I | I is a stable model of ΠI}. The
unnormalized weight of an interpretation I under Π is defined as

WΠ(I) =

exp
(∑
w:R ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.

The normalized weight (a.k.a. probability) of an interpretation I under Π is defined as

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]

WΠ(J) .

Interpretation I is called a (probabilistic) stable model of Π if PΠ(I) 6= 0. The most probable
stable models of Π are the stable models with the highest probability.

ICLP 2018

15:4 Probabilistic Action Language pBC+

2.3 Review: Multi-Valued Probabilistic Programs
Multi-valued probabilistic programs [17] are a simple fragment of LPMLN that allows us to
represent probability more naturally.

We assume that the propositional signature σ is constructed from “constants” and their
“values.” A constant c is a symbol that is associated with a finite set Dom(c), called the
domain. The signature σ is constructed from a finite set of constants, consisting of atoms
c=v 1 for every constant c and every element v in Dom(c). If the domain of c is {f, t} then
we say that c is Boolean, and abbreviate c=t as c and c= f as ∼c.

We assume that constants are divided into probabilistic constants and non-probabilistic
constants. A multi-valued probabilistic program Π is a tuple 〈PF ,Π〉, where

PF contains probabilistic constant declarations of the following form:

p1 :: c=v1 | · · · | pn :: c=vn (1)

one for each probabilistic constant c, where {v1, . . . , vn} = Dom(c), vi 6= vj , 0 ≤
p1, . . . , pn ≤ 1 and

∑n
i=1 pi = 1. We use MΠ(c = vi) to denote pi. In other words, PF

describes the probability distribution over each “random variable” c.
Π is a set of rules such that the head contains no probabilistic constants.

The semantics of such a program Π is defined as a shorthand for LPMLN program T (Π)
of the same signature as follows.

For each probabilistic constant declaration (1), T (Π) contains, for each i = 1, . . . , n, (i)
ln(pi) : c=vi if 0 < pi < 1; (ii) α : c=vi if pi = 1; (iii) α : ⊥ ← c=vi if pi = 0.
For each rule Head ← Body in Π, T (Π) contains α : Head ← Body.
For each constant c, T (Π) contains the uniqueness of value constraints

α : ⊥ ← c=v1 ∧ c = v2 (2)

for all v1, v2 ∈ Dom(c) such that v1 6= v2, and the existence of value constraint

α : ⊥ ← ¬
∨

v∈Dom(c)
c=v . (3)

In the presence of the constraints (2) and (3), assuming T (Π) has at least one (probabil-
istic) stable model that satisfies all the hard rules, a (probabilistic) stable model I satisfies
c = v for exactly one value v, so we may identify I with the value assignment that assigns v
to c.

3 Goal of the Research

The following are our research objectives.
Designing Probabilistic Action Language on the Foundation of LPMLN. We
design the syntax and semantics of the language pBC+ to allow for commonsense reasoning,
probabilistic inference and statistical learning. Furthermore, we study the theoretical
properties of the action language to establish its relation with probabilistic transition
systems.

1 Note that here “=” is just a part of the symbol for propositional atoms, and is not equality in first-order
logic.

Y. Wang 15:5

Defining the Extension of the Action Language to Explain the Reason of
Failure in Dynamic Domains. We extend the probabilistic action language to
account for diagnostic reasoning when the observation conflicts with the way the system
is supposed to behave. This will be in contrast with diagnostic reasoning in other action
languages, which is logical and does not distinguish which diagnosis is more probable.
Extending the Action Language For Hypothetical/Counterfactual Reasoning.
We extend the probabilistic action language to answer queries involving hypothetical/-
counterfactual reasoning, where the diagnosis or observation is given, we are interested in
how the outcome would have been affected if some action happened instead.
Implementing a Compiler that Automatically Translates pBC+ Descriptions
to LPMLN Programs. Since pBC+ can be executable through translation to LPMLN, it
is desirable to have a compiler that automates this translation. We plan to develop such
a compiler.
Empirically Studying the Performance of pBC+ with Real-World Applications.
After we have the implementation for inference and learning on pBC+ action descriptions,
we will apply pBC+ on reasoning and learning tasks in real-world applications, possibly
robotic domains.

4 Current Status of the Research

This research is at its starting phase. In our recent paper accepted by ICLP 2018, we have
defined the syntax and semantics of pBC+, and experimented with several examples through
manual translation to LPMLN. We have also defined the extension that allows diagnostic
reasoning in probabilistic action domains.

Currently we are investigating on parameter learning of pBC+ through LPMLN weight
learning. We are developing a prototype system for LPMLN weight learning, and several
examples of parameter learning of pBC+ descriptions are part of the benchmarks we use for
the prototype system.

5 Preliminary Results Accomplished

In this section, we will present the syntax and semantics of pBC+, and illustrate how various
reasoning tasks involving probabilistic inference can be automated in this language, through
translation to LPMLN.

5.1 Syntax of pBC+
We assume a propositional signature σ as defined in Section 2.3. We further assume that
the signature of an action description is divided into four groups: fluent constants, action
constants, pf (probability fact) constants and initpf (initial probability fact) constants. Fluent
constants are further divided into regular and statically determined. The domain of every
action constant is Boolean. A fluent formula is a formula such that all constants occurring
in it are fluent constants.

The following definition of pBC+ is based on the definition of BC+ language.
A static law is an expression of the form

caused F if G (4)

where F and G are fluent formulas.

ICLP 2018

15:6 Probabilistic Action Language pBC+

A fluent dynamic law is an expression of the form

caused F if G after H (5)

where F and G are fluent formulas and H is a formula, provided that F does not contain
statically determined constants and H does not contain initpf constants.

A pf constant declaration is an expression of the form

caused pf = {v1 : p1, . . . , vn : pn} (6)

where pf is a pf constant with domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n}2, and
p1 + · · ·+ pn = 1. In other words, (6) describes the probability distribution of pf .

An initpf constant declaration is an expression of the form (6) where pf is an initpf
constant.

An initial static law is an expression of the form

initially F if G (7)

where F is a fluent formula and G is a formula that contains neither action constant nor pf
constant.

A causal law is a static law, a fluent dynamic law, a pf constant declaration, an initpf
constant declaration, or an initial static law. An action description is a finite set of causal
laws.

We use σfl to denote the set of fluent constants, σact to denote the set of action constants,
σpf to denote the set of pf constants, and σinitpf to denote the set of initpf constants in D.
For any signature σ′ and any i ∈ {0, . . . ,m}, we use i : σ′ to denote the set {i : a | a ∈ σ′}.

By i : F we denote the result of inserting i : in front of every occurrence of every constant
in formula F . This notation is straightforwardly extended when F is a set of formulas.

I Example 2. The following is an action description in pBC+ for the transition system
shown in Figure 1, P is a Boolean regular fluent constant, and A is an action constant.
Action A toggles the value of P with probability 0.8. Initially, P is true with probability
0.6 and false with probability 0.4. We call this action description PSD. (x is a schematic
variable that ranges over {t, f}.)

caused P if > after ∼P ∧A ∧ Pf ,
caused ∼P if > after P ∧A ∧ Pf ,
caused {P}ch if > after P,
caused {∼P}ch if > after ∼P,

caused Pf = {t : 0.8, f : 0.2},
caused Init_P = {t : 0.6, f : 0.4},
initially P = x if Init_P = x.

({P}ch is a choice formula standing for P ∨ ¬P .)

5.2 Semantics of pBC+
Given a non-negative integer m denoting the maximum length of histories, the semantics
of an action description D in pBC+ is defined by a reduction to multi-valued probabilistic
program Tr(D,m), which is the union of two subprograms Dm and Dinit as defined below.

2 We require 0 < pi < 1 for each i ∈ {1, . . . , n} for the sake of simplicity. On the other hand, if pi = 0 or
pi = 1 for some i, that means either vi can be removed from the domain of pf or there is not really a
need to introduce pf as a pf constant. So this assumption does not really sacrifice expressivity.

Y. Wang 15:7

P = t P = f

A: 0.8

A: 0.8

~A: 1; A: 0.2 ~A: 1; A: 0.2

Figure 1 A transition system with probabilistic transitions.

For an action description D of a signature σ, we define a sequence of multi-valued
probabilistic program D0, D1, . . . , Dm so that the stable models of Dm can be identified
with the paths in the transition system described by D. The signature σm of Dm consists of
atoms of the form i : c = v such that

for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c),
for each action constant or pf constant c of D, i ∈ {0, . . . ,m− 1} and v ∈ Dom(c).

We use σxm, where x ∈ {act, fl, pf}, to denote the subset of σm

{i : c = v | i : c = v ∈ σm and c ∈ σx}.

We define Dm to be the multi-valued probabilistic program 〈PF,Π〉, where Π is the
conjunction of

i : F ← i : G (8)

for every static law (4) in D and every i ∈ {0, . . . ,m};

i+1 : F ← (i+1 : G) ∧ (i : H) (9)

for every fluent dynamic law (5) in D and every i ∈ {0, . . . ,m− 1};

{0:c = v}ch (10)

for every regular fluent constant c and every v ∈ Dom(c);

{i : c = t}ch, {i : c = f}ch (11)

for every action constant c; and PF consists of

p1 :: i : pf = v1 | · · · | pn :: i : pf = vn (12)

(i = 0, . . . ,m− 1) for each pf constant declaration (6) in D that describes the probability
distribution of pf .

In addition, we define the program Dinit, whose signature is 0:σinitpf ∪ 0:σfl. Dinit is
the multi-valued probabilistic program

Dinit = 〈PF init,Πinit〉

where Πinit consists of the rule

⊥ ← ¬(0 :F) ∧ 0:G

ICLP 2018

15:8 Probabilistic Action Language pBC+

for each initial static law (7), and PF init consists of

p1 :: 0 :c = v1 | · · · | pn :: 0 :c = vn

for each initpf constant declaration (6).
We define Tr(D,m) to be the union of the two multi-valued probabilistic program

〈PF ∪ PF init,Π ∪Πinit〉.

I Example 3. For the action description PSD in Example 2, PSDinit is the following
multi-valued probabilistic program (x ∈ {t, f}):

0.6 :: 0 :Init_P | 0.4 :: 0 :∼Init_P
⊥ ← ¬(0 :P =x) ∧ 0 : Init_P=x.

and PSDm is the following multi-valued probabilistic program (i is a schematic variable that
ranges over {1, . . . ,m− 1}):

0.8 :: i : Pf | 0.2 :: i :∼Pf
i+1 : P ← i :∼P ∧ i : A ∧ i : Pf
i+1 :∼P ← i : P ∧ i : A ∧ i : Pf

{i+1 : P}ch ← i : P
{i+1 :∼P}ch ← i :∼P
{i : A}ch {i :∼A}ch
{0:P}ch {0:∼P}ch

5.3 pBC+ Action Descriptions and Probabilistic Reasoning
In this section, we illustrate how the probabilistic extension of the reasoning tasks discussed in
[11], i.e., prediction, postdiction and planning, can be represented in pBC+ and automatically
computed using lpmln2asp [16]. Consider the following probabilistic variation of the well-
known Yale Shooting Problem: There are two (deaf) turkeys: a fat turkey and a slim turkey.
Shooting at a turkey may fail to kill the turkey. Normally, shooting at the slim turkey has
0.6 chance to kill it, and shooting at the fat turkey has 0.9 chance. However, when a turkey
is dead, the other turkey becomes alert, which decreases the success probability of shooting.
For the slim turkey, the probability drops to 0.3, whereas for the fat turkey, the probability
drops to 0.7.

The example can be modeled in pBC+ as follows:

Notation: t range over {SlimTurkey,FatTurkey}.
Regular fluent constants: Domains:

Alive(t), Loaded Boolean
Statically determined fluent constants: Domains:

Alert(t) Boolean
Action constants: Domains:

Load , Fire(t) Boolean
Pf constants: Domains:

Pf_Killed(t), Pf_Killed_Allert(t) Boolean
InitPf constants:

Init_Alive(t), Init_Loaded Boolean

caused Loaded if > after Load
caused Pf_Killed(SlimTurkey) = {t : 0.6, f : 0.4}
caused Pf_Killed_Alert(SlimTurkey) = {t : 0.3, f : 0.7}
caused Pf_Killed(FatTurkey) = {t : 0.9, f : 0.1}

Y. Wang 15:9

caused Pf_Killed_Alert(FatTurkey) = {t : 0.7, f : 0.3}
caused ∼Alive(t) if > after Loaded ∧ Fire(t)∧ ∼Alert(t) ∧ Pf_Killed(t)
caused ∼Alive(t) if > after Loaded ∧ Fire(t) ∧Alert(t) ∧ Pf_Killed_Alert(t)
caused ∼Loaded if > after Fire(t)
default ∼Alert(t)
caused Alert(t1) if ∼Alive(t2) ∧Alive(t1) ∧ t1 6= t2
caused {Alive(t)}ch if > after Alive(t),
caused {Loaded}ch if > after Loaded
caused {∼Alive(t)}ch if > after ∼Alive(t)
caused {∼Loaded}ch if > after ∼Loaded
caused ⊥ after a1 ∧ a2
caused Init_Alive(t) = {t : 0.5, f : 0.5} initially Alive(t) = b if Init_Alive(t) = b

caused Init_Loaded = {t : 0.5, f : 0.5} initially Loaded = b if Init_Loaded = b

We translate the action description into an LPMLN program and use lpmln2asp to
answer various queries about transition systems, such as prediction, postdiction and planning
queries.

Prediction. For a prediction query, we are given a sequence of actions and observations
that occurred in the past, and we are interested in the probability of a certain proposition
describing the result of the history, or the most probable result of the history. Formally,
we are interested in the conditional probability PrTr(D,m)(Result | Act,Obs) or the MAP
inference argmax

Result
PrTr(D,m)(Result | Act,Obs), where Result is a proposition describing a

possible outcome, Act is a set of facts of the form i : a or i :∼a for a ∈ σact, and Obs is a set
of facts of the form i : c = v for c ∈ σfl and v ∈ Dom(c).

For example, in the Yale shooting example, such a query could be “Given that only the
fat turkey is alive and the gun is loaded at the beginning, what is the probability that the
fat turkey died after shooting is executed?”. To answer this query, we manually translate the
action description above into the input language of lpmln2asp and add the following action
and observation as constraints:

:- not alive("slimTurkey", "f", 0). :- not alive("fatTurkey", "t", 0).
:- not loaded("t", 0). :- not fire("fatTurkey", "t", 0).

Executing the command
lpmln2asp -i yale-shooting.lpmln -q alive

yields
alive(’fatTurkey’, ’f’, 1) 0.700000449318

Postdiction. In the case of postdiction, we infer a condition about the initial state given the
history. Formally, we are interested in the conditional probability PrTr(D,m)(Initial_State |
Act,Obs) or the MAP inference argmax

Initial_State
PrTr(D,m)(Initial_State | Act,Obs), where

Initial_State is a proposition about the initial state; Act and Obs are defined as above.
For example, in the Yale shooting example, such a query could be “Given that the slim

turkey was alive and the gun was loaded at the beginning, the person shot at the slim turkey
and it died, what is the probability that the fat turkey was alive at the beginning?”

Formalizing the query and executing the command

ICLP 2018

15:10 Probabilistic Action Language pBC+

lpmln2asp -i yale-shooting.lpmln -q alive

yields
alive(’fatTurkey’, ’t’, 1) 0.666661211973

Planning. In this case, we are interested in a sequence of actions that would result in the
highest probability of a certain goal. Formally, we are interested in

argmax
Act

PrTr(D,m)(Goal | Initial_State,Act)

where Goal is a condition for a goal state, and Act is a sequence of actions a ∈ σact specifying
actions executed at each timestep.

For example, in the Yale shooting example, such query can be “given that both the
turkeys are alive and the gun is not loaded at the beginning, generate a plan that gives best
chance to kill both the turkeys with 4 actions”.

Formalizing the query and executing the command

lpmln2asp -i yale-shooting.lpmln

finds the most probable stable model, which yields
load("t",0) fire("slimTurkey","t",1) load("t",2) fire("fatTurkey","t",3)

which suggests to first kill the slim turkey and then the fat turkey.

5.4 Extending pBC+ to Allow Diagnosis
We define the following new constructs to allow probabilistic diagnosis in action domains.
Note that these constructs are simply syntactic sugar that does not change the actual
expressivity of the language.

We introduce a subclass of regular fluent constants called abnormal fluents.
When the action domain contains at least one abnormal fluent, we introduce a special
statically determined fluent constant ab with Boolean domain, and we add
default ∼ab.
We introduce the expression

caused_ab F if G after H

where F and G are fluent formulas and H is a formula, provided that F does not contain
statically determined constants and H does not contain initpf constants. This expression
is treated as an abbreviation of

caused F if ab ∧G after H.

Once we have defined abnormalities and how they affect the system, we can use

caused ab

to enable taking abnormalities into account in reasoning.
We can answer the query in Example 1 by modeling the action domain with this extension.

Due to lack of space, we skip the details.

Y. Wang 15:11

6 Open Issues and Expected Achievements

The main open issue is that we do not have a compiler that automates the translation
from pBC+ to LPMLN. As illustrated in Section 5.3, the action language pBC+ can be
executable through translation to LPMLN. It is desirable to have a compiler that automates
this translation, so that the user can directly write pBC+ descriptions and does not need
to worry about the translation detail. We plan to develop a compiler that translates action
descriptions in pBC+ into LPMLN programs automatically.

The interface and usage of the compiler will be similar to the system cplus2asp [1],
which translates the action language C+ to ASP.

Other future works include extending pBC+ for hypothetical/counterfactual reasoning,
exploring parameter learning in the setting of probabilistic action language, and empirically
studying the performance of pBC+ with weal-world applications.

References

1 Joseph Babb and Joohyung Lee. Cplus 2ASP: Computing Action Language C+ in Answer
Set Programming. In LPNMR, 2013.

2 Joseph Babb and Joohyung Lee. Action language BC+. Journal of Logic and Computation,
page exv062, 2015. doi:10.1093/logcom/exv062.

3 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog. Theory
and Practice of Logic Programming, 3:425–461, 2003.

4 Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic Reasoning With Answer
Sets. In Logic Programming and Nonmonotonic Reasoning, pages 21–33, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

5 Chitta Baral, Sheila Mcilraith, and Tran Son. Formulating Diagnostic Problem Solving
Using an Action Language With Narratives and Sensing. In KR 2000, Principles of Know-
ledge Representation and Reasoning Proceedings of the Seventh International Conference,
Breckenridge, Colorado, USA, April 11-15, 2000., pages 311–322, April 2000.

6 Chitta Baral, Nam Tran, and Le-Chi Tuan. Reasoning about actions in a probabilistic
setting. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
507–512, 2002.

7 Fabio Aurelio D’Asaro, Antonis Bikakis, Luke Dickens, and Rob Miller. Foundations for a
Probabilistic Event Calculus. CoRR, abs/1703.06815, 2017. arXiv:1703.06815.

8 Thomas Eiter and Thomas Lukasiewicz. Probabilistic Reasoning about Actions in Non-
monotonic Causal Theories. In Proceedings Nineteenth Conference on Uncertainty in Arti-
ficial Intelligence (UAI-2003), pages 192–199. Morgan Kaufmann Publishers, 2003.

9 Michael Gelfond and Vladimir Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

10 Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions on
Artificial Intelligence, 3:195–210, 1998. URL: http://www.ep.liu.se/ea/cis/1998/016/.

11 Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson
Turner. Nonmonotonic causal theories. Artificial Intelligence, 153(1–2):49–104, 2004.

12 Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explanation:
Preliminary report. In Proceedings of National Conference on Artificial Intelligence (AAAI),
pages 623–630. AAAI Press, 1998.

13 Gero Iwan. History-based diagnosis templates in the framework of the situation calculus.
AI Communications, 15(1):31–45, 2002.

ICLP 2018

http://dx.doi.org/10.1093/logcom/exv062
http://arxiv.org/abs/1703.06815
http://www.ep.liu.se/ea/cis/1998/016/

15:12 Probabilistic Action Language pBC+

14 Joohyung Lee, Vladimir Lifschitz, and Fangkai Yang. Action Language BC: Preliminary
Report. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
2013.

15 Joohyung Lee and Yunsong Meng. Answer Set Programming Modulo Theories and Reas-
oning about Continuous Changes. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), 2013.

16 Joohyung Lee, Samidh Talsania, and Yi Wang. Computing LPMLN using ASP
and MLN solvers. Theory and Practice of Logic Programming, 2017. doi:10.1017/
S1471068417000400.

17 Joohyung Lee and Yi Wang. Weighted Rules under the Stable Model Semantics. In
Proceedings of International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 145–154, 2016.

18 Anastasios Skarlatidis, Georgios Paliouras, George A Vouros, and Alexander Artikis. Prob-
abilistic event calculus based on markov logic networks. In Rule-Based Modeling and Com-
puting on the Semantic Web, pages 155–170. Springer, 2011.

19 Håkan LS Younes and Michael L Littman. PPDDL1. 0: An extension to PDDL for ex-
pressing planning domains with probabilistic effects, 2004.

20 Weijun Zhu. PLOG: Its Algorithms and Applications. PhD thesis, Texas Tech University,
2012.

http://dx.doi.org/10.1017/S1471068417000400
http://dx.doi.org/10.1017/S1471068417000400

Explaining Actual Causation via Reasoning About
Actions and Change
Emily C. LeBlanc
College of Computing and Informatics
Drexel University
Philadelphia, PA
leblanc@drexel.edu

Abstract
In causality, an actual cause is often defined as an event responsible for bringing about a given
outcome in a scenario. In practice, however, identifying this event alone is not always sufficient
to provide a satisfactory explanation of how the outcome came to be. In this paper, we motivate
this claim using well-known examples and present a novel framework for reasoning more deeply
about actual causation. The framework reasons over a scenario and domain knowledge to identify
additional events that helped to “set the stage” for the outcome. By leveraging techniques from
Reasoning about Actions and Change, the approach supports reasoning over domains in which
the evolution of the state of the world over time plays a critical role and enables one to identify
and explain the circumstances that led to an outcome of interest. We utilize action language
AL for defining the constructs of the framework. This language lends itself quite naturally to an
automated translation to Answer Set Programming, using which, reasoning tasks of considerable
complexity can be specified and executed. We speculate that a similar approach can also lead to
the development of algorithms for our framework.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning, Computing methodologies → Causal reasoning and diagnostics, Computing methodo-
logies → Temporal reasoning

Keywords and phrases Actual Cause, Explanation, Reasoning about Actions and Change, Action
Language, Answer Set Programming, Knowledge Representation and Reasoning

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.16

1 Introduction and Problem Description

The comprehensive goal of this research has been to design, evaluate, and implement a novel
causal reasoning framework to discover causal explanations that are in closer agreement
with what common sense might lead one to conclude. Identifying actual causation concerns
determining how a specified consequence came to be in a given scenario and has long been
studied in a diversity of fields, including law, philosophy, and, more recently, computer science.
Also referred to as causation in fact, actual causation is a broad term that encompasses all
possible antecedents that have played a meaningful role in producing the consequence [5].
Consider the well-known Yale Shooting problem [16]:

Shooting a turkey with a loaded gun will kill it. Suzy loads the gun and then shoots
the turkey. Why is the turkey dead?

Intuition tells us that Suzy’s shooting of the turkey is the actual cause of its death. However,
if we know for certain that the gun was not loaded at the start of the story, then it is also
important to recognize that Suzy’s loading the gun played a key role in producing this
consequence. On the other hand, if the gun was loaded from the start, then this point may

© Emily C. LeBlanc;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 16; pp. 16:1–16:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leblanc@drexel.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

16:2 Explaining Actual Causation

not be as significant. Moreover, if we build upon this example to say that Tommy handed
Suzy the gun at the start of the scenario, then surely we want to identify Tommy’s action as
a contributory cause of the turkey’s death. Hall [11] gives another classic example of actual
causation in which two actors have each thrown a rock at a bottle and we wish to determine
which actor’s throw caused the bottle to break. It is easy to imagine similar extensions to the
example that require deeper reasoning about causation to properly explain how the bottle
broke – for example, did a third actor instruct the original two to throw their rocks in the first
place? Literature examples aside, sophisticated actual causal reasoning has been prevalent in
human society and continues to have an undeniable impact on the advancement of science,
technology, medicine, and other important fields. From the development of ancient tools to
modern root cause analysis in business and industry, reasoning about causal influence in a
historical sequence of events enables us to diagnose the cause of an outcome of interest and
gives us insight into how to bring about, or even prevent, similar outcomes in future scenarios.
Consider problems such as explaining the occurrence of a set of suspicious observations in a
monitoring system, reasoning about the efficiency actions taken in an emergency evacuation
scenario, or verifying how an automatically generated workflow produces the expected results.
It is easy to imagine that in cases such as these, determining surface-level causation (e.g.,
Suzy shot the turkey) may not be sufficient to provide a satisfactory explanation of how an
outcome of interest to be.

In this dissertation work, we claim that reasoning about actual causation in complex
scenarios requires the ability to identify more than the existence of a causal relationship.
We may want a deeper understanding of the causal mechanism – was the outcome caused
directly or indirectly? Did previously occurring events somehow support the causing event or
the outcome’s ability to be caused? To this end, the overall goal of the dissertation work is to
investigate and demonstrate the suitability of action language and answer set programming
to design and realize a novel approach to automated reasoning about actual causation as
described above. The framework leverages techniques from Reasoning about Actions and
Change (RAC) to support reasoning over domains that change over time in response to a
sequence of events, as well as to answer queries for detailed causal explanations of an outcome
of interest in a specific scenario. The language of choice for the formalization of knowledge
is action language AL [2] which enables us to represent our knowledge of the direct and
indirect effects of actions in a domain.

In the remainder of this summary, we present background on the action language AL
and its semantics, provide an overview of the framework and its behavior on a novel actual
causation scenario, survey existing literature, and finally discuss open issues and expected
achievements for the dissertation.

2 Preliminaries

As we have already described, this work leverages techniques from Reasoning about Actions
and Change [20] to support reasoning over domains that change over time. We assume that
knowledge of a domain exists as a set of causal laws called an action description describing
direct and indirect effects of actions using the action language AL [2]. These causal laws
embody a transition diagram describing all possible world states of the domain and the
events that trigger transitions between them. In the thesis investigation, we assume the
existence of knowledge in this form, and while the work describes the formalization of the
domain descriptions, the matter of the origin of knowledge is beyond the scope of the thesis.

E. C. LeBlanc 16:3

The syntax of AL builds upon an alphabet consisting of a set F of symbols for fluents and
a set E of symbols for events1. The AL is centered around a discrete-state-based representation
of the evolution of the domain.

Fluents are boolean properties of the domain whose truth value may change over time. A
(fluent) literal is a fluent f or its negation ¬f . Additionally, we define f = ¬f and ¬f = f .
A statement of the form

e causes l0 if l1, l2, . . . , ln (1)

is called dynamic causal law, and intuitively states that, if event e in E occurs in a state in
which literals l1, . . . , ln hold, then l0, the consequence of the law, will hold in the next state.
A statement

l0 if l1, . . . , ln (2)

is called state constraint and says that, in any state in which l1, . . . , ln hold, l0 also holds.
This second kind of statement allows for an elegant and concise representation of indirect
effects, which increases the flexibility of the language. Finally, an executability condition is a
statement of the form:

e impossible_if l1, . . . , ln (3)

where e and l1, . . . , ln are as above. (3) states that e cannot occur if l1, . . . , ln hold. A set of
statements of AL is called an action description. The semantics of an action description AD
is defined by its transition diagram τ(AD), a directed graph 〈N,E〉 such that:
1. N is the collection of all states of AD;
2. E is the set of all triples 〈σ, e, σ′〉 where σ, σ′ are states, e is an event executable in σ,

and σ, e, σ′ satisfy the successor state equation [17]:

σ′ = CnZ(E(e, σ) ∪ (σ ∩ σ′)) (4)

where Z is the set of all state constraints of AD.

The argument of CnZ in (4) is the union of the set of direct effects E(e, σ) of e, with the
set σ∩σ′ of the facts “preserved by inertia”. The application of CnZ adds the “indirect effects”
to this union. A triple 〈σ, e, σ′〉 ∈ E is called a transition of τ(AD) and σ′ is a successor
state of σ (under e). A sequence 〈σ1, α1, σ2, . . . , αk, σk+1〉 is a path of τ(D) of length k if
every 〈σi, αi, σi+1〉 is a transition in τ(D). We refer to state σ1 of a path p as the initial
state of p. A path of length 0 contains only an initial state. In the next section, we build
upon this formalization to define a query to our framework for representing and reasoning
about actual cause.

3 Framework Overview and Foundational Example

In this section, we provide an overview of the causal reasoning framework alongside a novel
foundational example that showcases the reasoning capabilities and explanatory power of
the framework. It is a straightforward scenario in which an outcome of interest, say θE , is
not satisfied at the start of the scenario. After the occurrence of three events, say e1, e2,

1 For convenience and compatibility with the terminology from RAC, in this paper we use action and
event as synonyms.

ICLP 2018

16:4 Explaining Actual Causation

and e3, the outcome has been caused. Given the outcome of interest, the sequence of events,
and knowledge of the domain in which they have occurred, our framework identifies causal
explanations for how θE may have come to be. In order to explain actual causation, we will
aim to characterize transition events which tell us the primary cause of an outcome and
whether or not it was caused directly or indirectly, as well as outcome and supporting events
which tell us which prior occurring events have contributed to causing the outcome.

Query
A query consists of an action description, a sequence of events, and the outcome of interest.
The sequence of three scenario events and the outcome of interest for our example are
represented by vE = 〈e1, e2, e3〉, and θE = {A,B,C,D,E, F}, respectively. The following
action description ADE characterizes events in the scenario’s domain:

e1 impossible_if A
e1 causes E if ¬ E
e2 causes D if ¬D
e3 causes A if ¬A
e3 causes C if ¬ C
e3 impossible_if ¬ E
e3 impossible_if ¬ F
B if C

(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)

Laws (5) and (6) describe event e1, telling us that e1 can only occur when A does not
hold and e1 will cause E if it does not already hold. Law (7) states that e2 will cause D to
hold if it does not already hold. Similar to causal laws (6) and (7), laws (8) and (9) tell us
that e3 will cause A and C to hold if they do not hold. The executability conditions (10) and
(11) state that e3 can only occur when both E and F hold. Finally, the state constraint (12)
tells us that B holds whenever C holds. Given the action description ADE , the sequence of
events vE , and the outcome of interest θE , the triple QE = 〈ADE , vE , θE〉 is the query for
our example. Next, we introduce the concept of a scenario path, a unique mapping of the
scenario described by a query to a representation of how the state of the world has changed
in response to the events.

Scenario Path
Scenario paths represent a unique unfolding of a scenario and provide a convenient represent-
ation of how the domain changes over time in response to the events of the scenario. We
reason over these paths to explain actual causation.

IDefinition 1. Given a queryQ = 〈AD, v, θ〉, a scenario path is a path ρ = 〈σ1, α1, σ2, ..., αk,

σk+1〉 of τ(AD) satisfying the following conditions:
1. ∀i, 1 ≤ i ≤ k, αi = ei
2. θ 6⊆ σ1
3. ∃i, 1 < i ≤ k + 1, θ ⊆ σi

Condition 1 requires that the events in ρ correspond to the events of v, capturing the
idea that each event of v represents a transition between states in ρ. Condition 2 requires
that the set of fluent literals θ is not satisfied by the initial state of ρ, ensuring that the

E. C. LeBlanc 16:5

Table 1 Tabular representation of the scenario path ρE ∈ P (QE).

State Event State Affecting Law(s)
σ1 = {¬A,¬B,¬C,¬D,¬ E, F} α1 = e1 e1 causes E if ¬E
σ2 = {¬A,¬B,¬C,¬D, E, F} α2 = e2 e2 causes D if ¬D
σ3 = {¬A,¬B,¬C, D, E, F} α3 = e3 e3 causes A if ¬A, e3 causes C if ¬C, B if C
σ4 = {A, B, C, D, E, F} – –

outcome has not already been caused prior to the known events of the story. Condition 3
requires that θ is satisfied in at least one state after the initial state in ρ. Conditions 2 and 3
together ensure that at least one event is responsible for causing θ to hold in ρ. The successor
state equation (4) tells us some event in the scenario path must have directly or indirectly
caused θ to be satisfied at some point after the initial state. The set of all scenario paths
with respect to the query Q is denoted by P (Q) = {ρ1, ρ2, . . . , ρm}.

It is clear that there are multiple valid scenario paths in the set P (QE), each representing
a valid evolution of state in response to the scenario’s events in the domain given by ADE .
For the purposes of this discussion, we choose a path with a complex causal mechanism that
will exercise the causal reasoning framework. We will refer to this path as ρE . Table 1 shows
the evolution of state in ρE in response to the events of vE . The first column lists each state
σi of ρE , and the second column gives the event αi that caused a transition to the state
σi+1. It is easy to see that ρE satisfies the conditions of Definition 1 with respect to ADE ,
vE , and θE .

Transition Event
A transition event is an event in a scenario path that causes a transition from a state of the
world where the outcome θ is not satisfied to a state of the world where θ is satisfied. In this
section, we identify transition events and their direct and indirect effects on the outcome.

I Definition 2. Given a scenario path ρ = 〈σ1, α1, σ2, . . . , αk, σk+1〉 and an outcome θ, event
αj , where 1 ≤ j ≤ k, is a transition event of θ in ρ if the following conditions are satisfied by
the transition 〈σj , αj , σj+1〉 of ρ:
1. θ 6⊆ σj
2. θ ⊆ σj+1

Intuitively, event αj is a transition event of outcome θ if the outcome was not satisfied
when αj occurred but was satisfied after its occurrence. Note that we have defined transition
events in such a way that there can be multiple transition events for θ in ρ. Using Table 1, it
is straightforward to verify that event e3 is the only transition event of θE in the example
scenario path ρE , clearly satisfying Conditions 1 and 2 of Definition 2.

Given a query Q = 〈AD, v, θ〉, a scenario path ρ = 〈σ1, α1, σ1, . . . , αk, αk+1〉 in P (Q),
and a transition event αj for θ, the set of direct effects of αj in θ is dθ(αj , ρ) = θ∩E(αj , σj).
Recall that E(αj , σj) is the set of all direct effects of event αj given that it occurs in state
σj . The set of all direct effects of e3 with respect to σ3, then, is E(e3, σ3) = {A,C}, in
accordance with laws (8) and (9) in ADE . The direct effects of e3 in θE , then, is given by
dθE

(e3, ρE) = θE ∩ E(e3, σ3) = {A,B,C,D,E, F} ∩ {A,C} = {A,C}.
To determine the indirect effects of an event with respect to the outcome, first let

S = E(αj , σj) ∪ (σj ∩ σj+1) represent the set of all literals directly caused by the transition
event αj and those preserved by inertia. Given a query Q = 〈AD, v, θ〉, a scenario path

ICLP 2018

16:6 Explaining Actual Causation

ρ = 〈σ1, α1, σ1, . . . , αk, αk+1〉 in P (Q), and a transition event αj for θ, the set of indirect
effects of αj in θ is iθ(αj , ρ) = θ ∩ (σj+1 \ S). Given the set SE = E(e3, σ3) ∪ (σ3 ∩ σ4) =
{A,C} ∪ {D,E, F} = {A,C,D,E, F} representing the direct effects of e3 and the literals
preserved by inertia, the indirect effects of e3 in θE is

iθE
(e3, ρE) =θE ∩ (σ4 \ SE)

={A,B,C,D,E, F} ∩ ({A,B,C,D,E, F} \ {A,C,D,E, F})
={A,B,C,D,E, F} ∩ {B}
={B}

This result is intuitive because e3 directly caused C to hold by law (9) and we know from
law (12) that whenever C holds in a certain state, then B holds. We claim that under these
conditions, it must be the case the e3 caused B indirectly.

First Causal Explanation
Both the knowledge of the transition event and its effects on the outcome are represented
by the first causal explanation. Given the query QE = 〈ADE , vE , θE〉, the scenario path
ρE ∈ P (QE), the transition event e3 in ρE , and e3’s direct and indirect effects, dθE

(ρE , θE)
and iθE

(ρE , θE), respectively, the first causal explanation for θE in ρE is the tuple

C1
E = 〈ρE , e3, dθE

(ρE , θE), iθE
(ρE , θE)〉

= 〈ρE , e3, {A,C}, {B}〉

Explanation C1
E summarizes our initial findings – the event e3 caused a transition from a

state where the outcome {A,B,C,D,E, F} did not hold to a state where it did hold in the
scenario path ρE . Specifically, literals A and C were direct effects of e3’s occurrence while e3
caused B indirectly.

While C1
E tells us how the set of literals {A,B,C} of θE were made to hold in scenario

path ρE , we are still missing information about which, if any, events prior to e3 caused the
remaining literals {D,E, F} to hold in state σ4. We also do not know if any prior occurring
events influenced e3’s ability to be a transition event of θE . In this work, supporting events
are events that have occurred prior to a transition event αj that enable αj to be a transition
event for the outcome θ. We identify two types of supporting events, outcome supporting
event (OSEs) and transition supporting events (TSEs), both which are presented in the
following sections. In order to identify both OSEs and TSEs in a scenario path ρ, we must
first introduce the notion that an event αi ensures that a literal l will hold in a specified
state σj if it is the most recent transition event for l.

I Definition 3. Given a scenario path ρ = 〈σ1, α1, σ2, . . . , αk, αk+1〉, event αi is an ensuring
event of l ∈ σj in ρ if:
1. αi is a transition event of {l} in ρ
2. i < j

3. j − i is minimal

Condition 1 leverages Definition 2 to require that event αi responsible for l holding in
some state of ρ. Condition 2 requires that αi occurs before αj in ρ. Condition 3 requires
that αi is the most recent transition event of l in ρ. We claim that if no event ensures l ∈ σj
for a path ρ, this implies that l holds in every state of ρ because there exists no transition
〈σi, αi, σi+1〉 in the path such that l 6∈ σi. Therefore, l must have held in the initial state and

E. C. LeBlanc 16:7

was never changed by a subsequent event prior to αj ’s occurrence. Note that because ensuring
events are also transition events, it is straightforward to leverage the characterizations of
direct and indirect effects of transition events from Section 3 to learn if events ensured l in
some state σ due to its direct or indirect effects.

Outcome Supporting Events
In the case where αj does not set all of the literals of θ, OSEs can be responsible for ensuring
that these remaining literals hold by the time αj occurs in ρ. Finding OSEs requires first
identifying if any literals in θ were not set as an effect of the transition event αj . The set of
remaining literals of an outcome θ is given by Rθ = θ \ (dθ(αj , ρ) ∪ iθ(αj , ρ)). If |Rθ| > 0,
then a previously occurring event may have supported the outcome θ by ensuring that the
remaining literals held in state σj+1.

I Definition 4. Given a query Q, a factual path ρ ∈ P (Q), a transition event αj of θ, and a
literal l ∈ Rθ, αi is an outcome supporting event (OSE) via l if αi ensures l ∈ σj+1.

We denote by Osupp the set of OSEs and the literals they ensure. Formally, the tuple
〈αi, l〉 ∈ Osupp if αi is a OSE via l. We denote by Oinit the set of literals in Rθ that were
not ensured by an event in ρ. Given a literal l ∈ Rθ, l ∈ Oinit if:

¬∃〈α, l′〉 ∈ Osupp s.t. l′ = l

Intuitively, a literal l is in Oinit when l has is no outcome supporting event in Osupp. In
our example, we already know that we require additional causal information about the set of
remaining outcome literals D, E, and F . Formally, the following literals in the outcome θE
have not been explained by C1

E :

RθE
=θE \ (dθE

(e3, ρE) ∪ iθE
(e3, ρE))

={A,B,C,D,E, F} \ ({A,C} ∪ {B})
={A,B,C,D,E, F} \ {A,C,B}
={D,E, F}

Because |RθE
| > 0, there is more causal information to uncover. As covered in the earlier

discussion on ensuring events, each literal in RθE
must either be ensured to hold in state

σ4 by an outcome supporting event or the literal has held consistently from the start of the
scenario. Event e2 is an outcome supporting event because it ensures that literal D held in
σ4. This event meets the three conditions of ensuring D ∈ σ4. First, it is a transition event of
{D} because the literal D did not hold in state σ2 but it did hold in σ3 after e2’s occurrence.
It clearly satisfies Conditions 2 because here i = 2 and j = 4, and so i < j. Finally, it
satisfies Condition 3 because event ei is the most recent transition event of {D}, and so
j − i is minimal. Similarly, it is straightforward to verify that e1 is an outcome supporting
event by ensuring that E holds in state σ4. The set of outcome supporting events is given
by OsuppE = {〈e2, D〉, 〈e1, E〉}. Finally, the set OsuppE = {F} because there exists no tuple
〈α, F 〉 ∈ OsuppE , and so F must have held in the initial state of ρE and never changed value.

Second Causal Explanation

Knowledge of outcome supporting events and remaining outcome literals that held from the
start is represented by the second causal explanation. Given the query QE = 〈ADE , vE , θE〉,

ICLP 2018

16:8 Explaining Actual Causation

the scenario path ρE ∈ P (QE), and the transition event e3 for θE , the second causal
explanation for θE in ρE is

C2
E =〈OsuppE , OinitE 〉

=〈{〈e2, D〉, 〈e1, E〉}, {F}〉

Explanation C2
E provides us with information about how the remaining outcome literals

{D,E, F} ∈ θE came to hold in the state σ4. Of these remaining literals, D and E were
ensured by events e2 and e1, respectively. The remaining literal F held in the initial state
and was not ensured in σ4 by any event prior to e1.

C2
E tells us how the remaining outcome literals came to hold in σ4, but there is even

more causal information to be revealed in this example. Next, we discuss an approach to
determining if any other events in scenario path ρE contributed to e3’s ability to be a
transition event of θE .

Transition Supporting Events
TSEs ensure that the preconditions of αj are satisfied in state σj so that αj could occur and
cause θ to be satisfied in σj+1. The approach to identifying TSEs is conveniently similar to
identifying outcome supporting events, and so we will omit the majority of technical details
in favor of working out the example in the interest of space. To determine whether or not
any prior events supported the transition event e3, we begin by identifying all preconditions
for e3’s occurrence and its ability to produce its effects in ρE . We obtain αj ’s preconditions
in ρ by reasoning over the of laws in AD. In the dissertation work, we introduce notation to
allow reasoning over the components of laws in an action description AD. For example, given
a dynamic causal law λ in AD of form (1), let e(λ) = e, c(λ) = l0, and p(λ) = {l1, l2, . . . , ln}.
We denote by D(AD) the set of all dynamic causal laws in AD. We use a similar representation
for executability conditions, and we introduce a set of conditions under which preconditions
can be extracted from these laws. In our example, the literals ¬A and ¬C are in prec(e3, ρE)
because of laws (8) and (9) in the action description ADE . By our definition of precondition,
the literals E and F are also in prec(e3, ρE) because of laws (10) and (11) in ADE . Therefore,
the set of preconditions of e3 in ρE is prec(e3, ρE) = {¬A,¬C,E, F}.

Similar to our definition of outcome supporting events, a transition supporting event is the
most recent transition event for a precondition of the transition event. It is straightforward
to verify that the set of transition supporting events is given by T suppE = 〈e1, E〉 and the set
of initially set literals is T initE = {¬A,¬C,F}.

Third Causal Explanation
Knowledge of transition supporting events and precondition literals that held from the start
is represented by the third causal explanation. Given the scenario path ρE ∈ P (QE), the
transition event e3, the set of transition supporting events T suppE , and the set of uncaused
literals T initE the third causal explanation for θE in ρE is

C3
E =〈T suppE , T initE 〉

=〈{〈e1, E〉}, {¬A,¬C,F}〉

Explanation C3
E tells us about the transition event e3’s preconditions and how they were

met by state σ3. The preconditions literals of event e3 were ¬A, ¬C, E, and F . Of these
precondition literals, E was ensured in σ3 by the occurrence of event e1. The remaining

E. C. LeBlanc 16:9

literals ¬A, ¬C, and F were not ensured in σ3 by any scenario event. For relative brevity,
we will not query further for details about the outcome and transition supporting events. It
is easy to see, however, that the framework could tell us that the precondition literal E for
e3 was made to hold as a direct effect of e1’s occurrence.

Actual Causal Explanation

As the research intends to prove, there exists a space of possible structures for causal
explanation. Recall that when there are remaining outcome literals to explain, there is
a second causal explanation. However, if a transition event has no preconditions in the
scenario path, then there is no third causal explanation. This implies that the structure of
the explanation depends on the information encoded by the corresponding scenario path.
We intend to characterize this space of structures in the dissertation. The framework can
identify all three causal explanations in our example (i.e., C1

E , C2
E , and C3

E). To summarize,
the framework has explained that e3 was a transition event for θE through both direct and
indirect effects, e1 and e2 were outcome supporting events, and e1 was a transition supporting
event in the scenario path ρE .

4 Overview of Existing Literature

While actual causation has been treated in numerous ways in the Artificial Intelligence
literature, the most relevant of which we will cover briefly in this section, existing approaches
do not possess the fine-granularity of reasoning and explanation required to meet the reasoning
needs of the examples discussed here. Many approaches to reasoning about actual cause have
been inspired by the human intuition that cause can be determined by hypothesizing about
whether or not a removing X from a scenario would prevent Y from being true [19]. Attempts
to mathematically characterize actual causation have largely pursued counterfactual analysis
of structural equations [22, 13, 15], neuron diagrams [12], and other logical formalisms
[18, 23, 4]. It has been widely documented, however, that the counterfactual criteria alone
is problematic and fails to recognize causation in some common cases such as preemption,
overdetermination, and contributory cause [21, 10]. More recent approaches such as [14] have
addressed some of these shortcomings by modifying the existing definitions of actual cause or
by modeling change over time with some improved results. However, there is still no widely
agreed upon counterfactual definition of actual cause in spite of a considerably large body of
work aiming to find one.

The work of [3] departs from the counterfactual approach, using a similar insight to our
own that actual causation can be determined by inspecting a specific scenario. Leveraging the
Situation Calculus (SC) to formalize knowledge, the approach uses a single step regression
approach to identify events deemed relevant to a logical statement becoming true. Although
the conceptual approach is similar to our own, the technical approaches differ significantly.
For example, [3] identifies a single sequence of causal events without explanation. There
are also ramifications due to the choices for the formalization of the domain. Compared to
AL formalizations, SC formalizations incur limitations when it comes to the representations
of indirect effects of actions, which play an essential role in our work, and the elaboration
tolerance of the formalization. Additionally, SC relies on First-Order Logic, while AL features
an independent and arguably simpler semantics.

ICLP 2018

16:10 Explaining Actual Causation

5 Open Issues and Expected Achievements

While the core of this framework is fairly well-developed at this stage, there remain some
open issues that will be addressed in the dissertation. Evaluation of the framework is
a crucial next step, and meaningful progress has been made towards demonstrating the
framework’s reasoning process when solving examples from causality literature in addition
to novel scenarios. We expect to demonstrate that the framework can solve numerous
classic examples with finer-grained causal explanations than the current state of the art.
Moreover, the dissertation will present a number of empirical studies to compare and evaluate
the ability of related approaches to solve the novel example presented in this paper. We
expect that related approaches will not be able to explain the causal mechanism of our
example in comparable detail. The dissertation will also present a novel set of identified open
problems whose investigation can advance the capabilities of the causal reasoning framework.
Regarding implementation, the choice of AL as the underlying formalism has useful practical
implications. As demonstrated by a substantial body of literature (see, e.g., [1]), AL lends
itself quite naturally to an automated translation to Answer Set Programming [8, 9], using
which, complex reasoning tasks can be specified and executed (see, e.g., [6, 7]). We speculate
that a similar approach can also lead to the development of algorithms for our framework,
and have begun translating AL queries, scenario paths, and transition events to ASP.

References
1 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog. arXiv

preprint cs/0312040, 2003.
2 Chitta Baral and Michael Gelfond. Reasoning agents in dynamic domains. In Logic-based

artificial intelligence, pages 257–279. Springer, 2000.
3 Vitaliy Batusov and Mikhail Soutchanski. Situation calculus semantics for actual causality.

In 13th International Symposium on Commonsense Reasoning. University College London,
UK. Monday, November, volume 6, 2017.

4 Sander Beckers and Joost Vennekens. A general framework for defining and extending
actual causation using CP-logic. International Journal of Approximate Reasoning, 77:105–
126, 2016.

5 Charles E Carpenter. Concurrent Causation. University of Pennsylvania Law Review and
American Law Register, 83(8):941–952, 1935.

6 Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. Answer
set planning under action costs. Journal of Artificial Intelligence Research, 19:25–71, 2003.

7 Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of Answer Set Programming.
AI Magazine, 37(3), 2016.

8 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In ICLP/SLP, volume 88, pages 1070–1080, 1988.

9 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunct-
ive databases. New generation computing, 9(3-4):365–385, 1991.

10 Clark Glymour and David Danks. Actual causation: a stone soup essay. Synthese,
175(2):169–192, 2010.

11 Ned Hall. Two concepts of causation. Causation and counterfactuals, pages 225–276, 2004.
12 Ned Hall. Structural equations and causation. Philosophical Studies, 132(1):109–136, 2007.
13 Joseph Y Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Re-

search, 12:317–337, 2000.
14 Joseph Y Halpern. Actual causality. MIT Press, 2016.

E. C. LeBlanc 16:11

15 Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model approach.
Part I: Causes. The British journal for the philosophy of science, 56(4):843–887, 2005.

16 Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projection. Artificial
intelligence, 33(3):379–412, 1987.

17 Patrick J. Hayes and John McCarthy. Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages
463–502. Edinburgh University Press, 1969.

18 Mark Hopkins and Judea Pearl. Causality and counterfactuals in the situation calculus.
Journal of Logic and Computation, 17(5):939–953, 2007.

19 David Lewis. Causation. The journal of philosophy, 70(17):556–567, 1974.
20 J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. Readings in artificial intelligence, pages 431–450, 1969.
21 Peter Menzies. Counterfactual theories of causation. The Stanford Encyclopedia of Philo-

sophy, 2001.
22 Judea Pearl. On the definition of actual cause, 1998.
23 Joost Vennekens. Actual causation in CP-logic. Theory and Practice of Logic Programming,

11(4-5):647–662, 2011.

ICLP 2018

Translating P-log, LP MLN , LPOD, and
CR-Prolog2 into Standard Answer Set Programs
Zhun Yang
School of Computing, Informatics, and Decision Systems Engineering, Arizona State University
Arizona State University, P.O. Box 878809, Tempe, AZ 85287, United States
zyang90@asu.edu

Abstract
Answer set programming (ASP) is a particularly useful approach for nonmonotonic reasoning in
knowledge representation. In order to handle quantitative and qualitative reasoning, a number
of different extensions of ASP have been invented, such as quantitative extensions LPMLN and
P-log, and qualitative extensions LPOD, and CR-Prolog2.

Although each of these formalisms introduced some new and unique concepts, we present
reductions of each of these languages into the standard ASP language, which not only gives us an
alternative insight into the semantics of these extensions in terms of the standard ASP language,
but also shows that the standard ASP is capable of representing quantitative uncertainty and
qualitative uncertainty. What’s more, our translations yield a way to tune the semantics of
LPOD and CR-Prolog2. Since the semantics of each formalism is represented in ASP rules, we
can modify their semantics by modifying the corresponding ASP rules.

For future work, we plan to create a new formalism that is capable of representing quantitative
and qualitative uncertainty at the same time. Since LPOD rules are simple and informative, we
will first try to include quantitative preference into LPOD by adding the concept of weight and
tune the semantics of LPOD by modifying the translated standard ASP rules.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases answer set programming, preference, LPOD, CR-Prolog

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.17

Acknowledgements This work was partially supported by the National Science Foundation un-
der IIS-1526301.

1 Introduction and Problem Description

In answer set programming, each answer set encodes a solution to the problem that is being
modeled. There is often a need to express how likely a solution is, so several extensions of
answer set programs, such as LPMLN [19] and P-log [7], were made to express a quantitative
uncertainty for each answer set. LPMLN extends answer set programs by adopting the
log-linear weight scheme of Markov Logic. P-log is a probabilistic extension of ASP with
sophisticated semantics. Similarly, since there is often a need to express that one solution is
preferable to another, several extensions of answer set programs, such as Logic Programs
with Ordered Disjunction (LPOD) [8], CR-Prolog [5], and CR-Prolog2 [6], were made to
express a qualitative preference over answer sets. In LPOD, the qualitative preference is
introduced by the construct of ordered disjunction in the head of a rule: A × B ← Body

intuitively means, when Body is true, if possible then A, but if A is not possible, then at
least B. CR-Prolog2 also has order rules as in LPOD, and it introduces consistency-restoring
rules – rules that can be added only when they can make an inconsistent program consistent.

© Zhun Yang;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 17; pp. 17:1–17:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zyang90@asu.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

17:2 Translating P-log, LP MLN , LPOD, and CR-Prolog2 into Standard Answer Set Prog.

It remains an open question whether these formalisms can be reduced back to standard
answer set programs. In other words, whether ASP is expressive enough to express the
semantics of all these extensions? There were few attentions to this question where no
positive answer had been proposed. Lee et al. [19] showed that a subset of P-log can be
represented by LPMLN , which is very similar to ASP except the introducing of weight for
each rule. However, the feature of dynamic probability assignment in P-log is not preserved,
and the reduction from LPMLN to ASP was still unclear. Proposition 2 from [8] states that
there is no reduction of LPOD to disjunctive logic programs [17] based on the fact that the
answer sets of disjunctive logic programs are subset-minimal whereas LPOD answer sets are
not necessarily so. However, this justification is limited to translations that preserve the
underlying signature. Indeed, our paper “LPMLN , Weak Constraints, and P-log” [20] and
our ICLP paper that is being evaluated provides a positive answer to this question.

We present a reduction of P-log to LPMLN and a reduction of LPMLN to answer
set programs with weak constraints. These translations show how the weights in the
weak constraints can be used to denote quantitative uncertainty and, further, to represent
probabilities. We also present a reduction of LPOD and CR-Prolog2 to standard answer set
programs by compiling away ordered disjunctions and consistency-restoring rules. These
translations show how qualitative uncertainty is handled by the “definition” rules in ASP.

Since our research shows that ASP is capable of representing quantitative and qualitative
uncertainty, it naturally follows a question that: can we combine quantitative uncertainty
and qualitative preference in a single formalism? We are looking forward to answering this
question in our future work.

The paper will give a summary of my research, including some background knowledge
and reviews of existing literature (Section 2), goal of my research (Section 3), the current
status of my research (Section 4), the preliminary results we accomplished (Section 5), and
some open issues and expected achievements (Section 6).

2 Background and Overview of the Existing Literature

We only review the syntax and semantics of LPMLN and LPOD. Please refer to [7] and [6]
for the syntax and semantics of P-log and CR-Prolog2, whose semantics are all based on a
long translation to answer set programs.

2.1 Review: LP MLN

We review the definition of LPMLN from [19]. In fact, we consider a more general syntax of
programs than the one from [19], but this is not an essential extension. We follow the view
of [15] by identifying logic program rules as a special case of first-order formulas under the
stable model semantics. For example, rule r(x)← p(x),not q(x) is identified with formula
∀x(p(x)∧¬q(x)→ r(x)). An LPMLN program is a finite set of weighted first-order formulas
w : F where w is a real number (in which case the weighted formula is called soft) or α
for denoting the infinite weight (in which case it is called hard). An LPMLN program is
called ground if its formulas contain no variables. We assume a finite Herbrand Universe.
Any LPMLN program can be turned into a ground program by replacing the quantifiers
with multiple conjunctions and disjunctions over the Herbrand Universe. Each of the ground
instances of a formula with free variables receives the same weight as the original formula.

For any ground LPMLN program Π and any interpretation I, Π denotes the unweighted
formula obtained from Π, and ΠI denotes the set of w : F in Π such that I |= F , and SM[Π]
denotes the set {I | I is a stable model of ΠI} (We refer the reader to the stable model

Z.Yang 17:3

semantics of first-order formulas in [15]). The unnormalized weight of an interpretation I
under Π is defined as LPMLN

WΠ(I) =

exp

(∑
w:F ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.

The normalized weight (a.k.a. probability) of an interpretation I under Π is defined as

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]

WΠ(J) .

I is called a (probabilistic) stable model of Π if PΠ(I) 6= 0.

2.2 Review LPOD
We review the definition of LPOD from [8], which assumes propositional programs.

Syntax. A (propositional) LPOD Π is Πreg ∪Πod, where its regular part Πreg consists of
usual ASP rules Head ← Body, and its ordered disjunction part Πod consists of LPOD rules
of the form

C1 × · · · × Cn ← Body (1)

in which Ci are atoms, n is at least 2, and Body is a conjunction of atoms possibly preceded
by not.1 Rule (1) says “when Body is true, if possible then C1; if C1 is not possible then C2;
. . . ; if all of C1, . . . , Cn−1 are not possible then Cn”.

Semantics. For an LPOD rule (1), its i-th option, where i ∈ {1, . . . , n}, is defined as
Ci ← Body,not C1, . . . ,not Ci−1.

Let Π be an LPOD. A split program of Π is obtained from Π by replacing each rule in Πod

by one of its options. A set S of atoms is a candidate answer set of Π if it is an answer set of
a split program of Π. A split program of Π may be inconsistent (i.e., may not necessarily
have an answer set).

A candidate answer set S of Π is said to satisfy rule (1)
to degree 1 if S does not satisfy Body;
to degree j (1 ≤ j ≤ n) if S satisfies Body and j = min{k | Ck ∈ S}.

For a set S of atoms, let Si(Π) denote the set of rules in Πod satisfied by S to degree
i. For candidate answer sets S1 and S2 of Π, [9] introduces the following four preference
criteria.
1. Cardinality-Preferred: S1 is cardinality-preferred to S2 (S1 >c S2) if there is a

positive integer i such that |Si1(Π)| > |Si2(Π)|, and |Sj1(Π)| = |Sj2(Π)| for all j < i.
2. Inclusion-Preferred: S1 is inclusion-preferred to S2 (S1 >

i S2) if there is a positive
integer i such that Si2(Π) ⊂ Si1(Π), and Sj1(Π) = Sj2(Π) for all j < i.

1 In [8], a usual ASP rule is viewed as a special case of a rule with ordered disjunction when n = 1 but in
this paper, we distinguish them. This simplifies the presentation of the translation and also allows us to
consider LPOD programs that are more general than the original definition by allowing modern ASP
constructs such as aggregates.

ICLP 2018

17:4 Translating P-log, LP MLN , LPOD, and CR-Prolog2 into Standard Answer Set Prog.

3. Pareto-Preferred: S1 is pareto-preferred to S2 (S1 >
p S2) if there is a rule that is

satisfied to a lower degree in S1 than in S2, and there is no rule that is satisfied to a
lower degree in S2 than in S1.

4. Penalty-Sum-Preferred: S1 is penalty-sum-preferred to S2 (S1 >
ps S2) if the sum of

the satisfaction degrees of all rules is smaller in S1 than in S2.

A set S of atoms is a k-preferred (k ∈ {c, i, p, ps}) answer set of an LPOD Π if S is a
candidate answer set of Π and there is no candidate answer set S′ of Π such that S′ >k S.

2.3 Existing Literature

There are quite a lot of formalisms made to represent quantitative uncertainty.
LPMLN [19] is a probabilistic logic programming language that extends answer set

programs [16] with the concept of weighted rules, whose weight scheme is adopted from that
of Markov Logic [23], a probablistic extension of SAT. It is shown in [19, 18] that LPMLN is
expressive enough to embed Markov Logic and several other probabilistic logic languages,
such as ProbLog [13], Pearls’ Causal Models [22], and a fragment of P-log [7]. On the other
hand, [2] proposed an embedding from LPMLN into P-log.

Another famous quantitative extension of ASP are weak constraints [12], which are to
assign a quantitative preference over the stable models of non-weak constraint rules: weak
constraints cannot be used for deriving stable models.

Many formalisms are made to represent qualitative uncertainty. Most of them are
extensions of ASP, where their semantics or implementations are also based on answer set
programs.

In [11], LPOD is implemented using smodels. The implementation interleaves the
execution of two programs–a generator which produces candidate answer sets and a tester
which checks whether a given candidate answer set is maximally preferred or produces a
more preferred candidate if it is not. An implementation of CR-Prolog reported in [3] uses a
similar algorithm.

[14] finds the “order preserving answer sets” of an ordered logic program (where a strict
partial order is assigned among some rules) by meta-programming. Our translations are
similar to the meta-programming approach to handle preference in ASP in that we turn
LPOD and CR-Prolog2 into answer set programs that do not have the built-in notion of
preference.

In contrast, the reductions shown in this paper can be computed by calling an answer set
solver one time without the need for iterating the generator and the tester. This feature may
be useful for debugging LPOD and CR-Prolog2 programs because it allows us to compare all
candidate and preferred answer sets globally.

Asprin [10] provides a flexible way to express various preference relations over answer
sets and is implemented in clingo. Similar to the existing LPOD solvers, clingo makes
iterative calls to find preferred answer sets, unlike the one-shot execution as we do.

In [1], Asuncion et al. extended propositional LPODs to the first order case, where the
candidate answer sets of a first order LPOD can be obtained by finding the models of a
second-order formula.

Z.Yang 17:5

3 Goal of the Research

The following are our research objectives.
Find a translation plog2asp from P-log to answer set programs. We design a
one-time translation plog2asp such that for any P-log Π, the answer sets of the answer
set program plog2asp(Π) agree with (i.e., their explanation to the domain are the same)
the possible worlds of Π.
Find a translation lpmln2asp from LP MLN to answer set programs. We design
a one-time translation lpmln2asp such that for any LPMLN program Π, the answer sets
of the answer set program lpmln2asp(Π) agree with the probabilistic answer sets of Π.
Analyze how quantitative uncertainty can be expressed in standard answer
set programs. We compare the two translations plog2asp and lpmln2asp, and analyze
how quantitative uncertainty represented by weight (in LPMLN) and sophisticated
probability assignment (in P-log) can be expressed in standard answer set programs.
Find a translation lpod2asp from LPOD to answer set programs. We design a
one-time translation lpod2asp such that for any LPOD Π, the optimal answer sets of the
answer set program lpod2asp(Π) “report” all the candidate answer sets of Π in different
name spaces and whether each of them is a preferred answer set.
Find a translation crpt2asp from CR-Prolog2 to answer set programs. We
design a one-time translation crpt2asp such that for any CR-Prolog2 program Π, the
optimal answer sets of the answer set program crpt2asp(Π) “report” all the generalized
answer sets of Π in different name spaces and whether each of them is also a candidate
answer sets or a preferred answer sets.
Analyze how qualitative uncertainty can be expressed in standard answer set
programs. We compare the two translations lpod2asp and crpt2asp, and analyze how
qualitative preference represented by ordered disjunction and consistency-restoring rules
can be expressed in standard answer set programs.
Design a single formalism to represent both quantitative and qualitative un-
certainty. We design a new formalism that can be used to represent quantitative and
qualitative uncertainty at the same time. The semantics of the new formalism is defined
as a reduction to standard answer set programs as we did for those four formalisms.

4 Current Status of the Research

This research is at a middle phase.
The first 2 bullets of our goals are done in our paper accepted by AAAI 2017 [20], where

we proposed a translation plog2lpmln from P-log to LPMLN , and a translation lpmln2wc
from LPMLN to answer set programs with weak constraints. The translations lpod2asp and
crpt2asp are also completed in our paper accepted by ICLP 2018 [21]. We also compared all
these four translations and have some ideas about how standard answer set programs handle
quantitative and qualitative uncertainty.

Currently, we are testing our ideas by introducing quantitative uncertainty into LPOD.
The experiments are based on our reduction from LPOD to answer set programs. We are
tuning the semantics of LPOD by modifying on the translated rules.

ICLP 2018

17:6 Translating P-log, LP MLN , LPOD, and CR-Prolog2 into Standard Answer Set Prog.

5 Preliminary Results Accomplished

In this section, we will present our main theorems, along with some examples to illustrate
how our translations work.

5.1 From LP MLN to Answer Set Programs

I Theorem 1. (from [20]) For any LPMLN program Π, the most probable stable models (i.e.,
the stable models with the highest probability) of Π are precisely the optimal stable models of
the program with weak constraints lpmln2wc(Π).

I Example 2. Consider the LPMLN program Π1 in Example 1 from [19].

α : Bird(Jo)← ResidentBird(Jo) (r1)
α : Bird(Jo)← MigratoryBird(Jo) (r2)
α : ⊥ ← ResidentBird(Jo),MigratoryBird(Jo) (r3)
2 : ResidentBird(Jo) (r4)
1 : MigratoryBird(Jo) (r5)

The (simplified) translation lpmln2wc(Π1) is as follows, which simply removes α from each
hard rule and turns each soft rule into a choice rule and a weak constraint.

Bird(Jo)← ResidentBird(Jo)
Bird(Jo)← MigratoryBird(Jo)
⊥ ← ResidentBird(Jo),MigratoryBird(Jo)
{ResidentBird(Jo)}ch
{MigratoryBird(Jo)}ch

:∼ ResidentBird(Jo) [−2@0]
:∼ MigratoryBird(Jo) [−1@0]

There are three probabilistic stable models of Π1: ∅, {Bird(Jo),ResidentBird(Jo)}, and
{Bird(Jo),MigratoryBird(Jo)}. Among them, {Bird(Jo),ResidentBird(Jo)} is the most
probable stable model of Π1 since it is associated with a highest weight. It is also an optimal
stable model of lpmln2wc(Π1) since it has the least penalty −2 at level 0.

5.2 From P-log to LP MLN

I Theorem 3. (from [20]) Let Π be a consistent P-log program. There is a 1-1 correspondence
φ between the set of the possible worlds of Π with non-zero probabilities and the set of
probabilistic stable models of plog2lpmln(Π).

I Example 4. Consider a variant of the Monty Hall Problem encoding in P-log from [7] to
illustrate the probabilistic nonmonotonicity in the presence of assigned probabilities. There
are four doors, behind which are three goats and one car. The guest picks door 1, and Monty,
the show host who always opens one of the doors with a goat, opens door 2. Further, while
the guest and Monty are unaware, the statistics is that in the past, with 30% chance the
prize was behind door 1, and with 20% chance, the prize was behind door 3. Is it still better
to switch to another door? This example can be formalized in P-log program Π2, using both

Z.Yang 17:7

assigned probability and default probability, as

∼CanOpen(d)← Selected=d. (d ∈ {1, 2, 3, 4})
∼CanOpen(d)← Prize=d.

CanOpen(d)← not ∼CanOpen(d).
random(Prize). random(Selected).
random(Open : {x : CanOpen(x)}).
pr(Prize=1) = 0.3. pr(Prize=3) = 0.2.
Obs(Selected=1). Obs(Open=2). Obs(Prize 6= 2).

Intuitively, the translation plog2lpmln(Π2) (i) reifies each atom c = v in Π2 into a form of
Poss(c = v), PossWithAssPr(c = v), and PossWithDefPr(c = v); (ii) defines each of these
reified atoms by hard rules, e.g., α : Poss(Prize = d)← not Intervene(Prize) ; and (iii)
assigns the probabilities by soft rules, e.g., ln(0.3) : ⊥ ← not AssPr(Prize = 1) . The full
translation is too long to be put here, please refer to Example 3 in [20] for details.

5.3 From LPOD to Answer Set Programs
I Theorem 5. (from [21]) Under any of the four preference criteria, the preferred answer
sets of an LPOD Π of signature σ are exactly the preferred answer sets on σ of lpod2asp(Π).

I Example 6. Consider the following LPOD Π3 about picking a hotel near the Grand
Canyon. hotel(1) is a 2-star hotel but is close to the Grand Canyon, hotel(2) is a 3-star hotel
and the distance is medium, and hotel(3) is a 4-star hotel but is too far.

close×med× far × tooFar.
star4× star3× star2.
1{hotel(X) : X = 1..3}1.
← hotel(1), not close.
← hotel(1), not star2.

← hotel(2), not med.
← hotel(2), not star3.
← hotel(3), not tooFar.
← hotel(3), not star4.

The translation lpod2asp(Π3) is based on the definition of the assumption program,
AP (x1, x2), where x1 ∈ {0, . . . , 4} and x2 ∈ {0, . . . , 3}. Intuitively, the value of xi denotes
an assumption about LPOD rule i: if xi = 0, the body of rule i is false, thus no atom will
be derived by rule i; if xi > 0, the boy of rule i is true, and the xi-th atom will be derived
by rule i (which requires that all atoms in the head of rule i with a index lower than xi
must be false). An assumption program AP (x1, x2) is initialized by a choice rule and a weak
constraint (which makes sure that all consistent assumption programs are considered).

{ap(X1 ,X2): X1 =0..4 , X2 =0..3}. :~ ap(X1 ,X2). [-1, X1 , X2]

The assumption programs include all regular rules in Π. Note that (i) we turn each atom
a in Π into a(X1, X2) so that the answer sets of assumption program AP (x1, x2) are in its
own name space (x1, x2); (ii) we add ap(X1, X2) in the body of each rule so that these rules
will not be “effective” if the assumption program AP (X1, X2) is inconsistent.

1{ hotel(H,X1 ,X2): H =1..3}1 :- ap(X1 ,X2).
:- ap(X1 ,X2), hotel (1,X1 ,X2), not close(X1 ,X2).
:- ap(X1 ,X2), hotel (1,X1 ,X2), not star2(X1 ,X2).
:- ap(X1 ,X2), hotel (2,X1 ,X2), not med(X1 ,X2).
:- ap(X1 ,X2), hotel (2,X1 ,X2), not star3(X1 ,X2).
:- ap(X1 ,X2), hotel (3,X1 ,X2), not tooFar (X1 ,X2).
:- ap(X1 ,X2), hotel (3,X1 ,X2), not star4(X1 ,X2).

Besides, the assumption programs include all assumptions that we record in (x1, x2).

ICLP 2018

17:8 Translating P-log, LP MLN , LPOD, and CR-Prolog2 into Standard Answer Set Prog.

% close * med * far * tooFar .
body_1 (X1 ,X2) :- ap(X1 ,X2).
:- ap(X1 ,X2), X1=0, body_1 (X1 ,X2).
:- ap(X1 ,X2), X1 >0, not body_1 (X1 ,X2).

close(X1 ,X2) :- body_1 (X1 ,X2), X1 =1.
med(X1 ,X2) :- body_1 (X1 ,X2), X1 =2.
far(X1 ,X2) :- body_1 (X1 ,X2), X1 =3.
tooFar (X1 ,X2) :- body_1 (X1 ,X2), X1 =4.

X1=1 :- body_1 (X1 ,X2), close(X1 ,X2).
X1=2 :- body_1 (X1 ,X2), med(X1 ,X2), not close(X1 ,X2).
X1=3 :- body_1 (X1 ,X2), far(X1 ,X2), not close(X1 ,X2), not med(X1 ,X2).
X1=4 :- body_1 (X1 ,X2), tooFar (X1 ,X2), not close(X1 ,X2),

not med(X1 ,X2), not far(X1 ,X2).

% star4 * star3 * star2.
body_2 (X1 ,X2) :- ap(X1 ,X2).

:- ap(X1 ,X2), X2=0, body_2 (X1 ,X2).
:- ap(X1 ,X2), X2 >0, not body_2 (X1 ,X2).

star4(X1 ,X2) :- body_1 (X1 ,X2), X2 =1.
star3(X1 ,X2) :- body_1 (X1 ,X2), X2 =2.
star2(X1 ,X2) :- body_1 (X1 ,X2), X2 =3.

X2=1 :- body_1 (X1 ,X2), star4(X1 ,X2).
X2=2 :- body_1 (X1 ,X2), star3(X1 ,X2), not star4(X1 ,X2).
X2=3 :- body_1 (X1 ,X2), star2(X1 ,X2), not star4(X1 ,X2),

not star3(X1 ,X2).

To calculate the satisfaction degrees D1, D2 of two LPOD rules, lpod2asp(Π3) contains
degree (ap(X1 ,X2), D1 , D2) :- ap(X1 ,X2), D1=# max {1; X1}, D2=# max {1; X2}.

Note that all answer sets of AP (x1, x2) will have a same satisfaction degree for each LPOD
rule. Thus we also use ap(x1, x2) to denote an answer set of AP (x1, x2) in the following set
of rules. To compare two candidate answer set S1 and S2 according to, say, Pareto-preference,
and to determine whether an answer set of AP (x1, x2) is a Pareto-preferred answer set,
lpod2asp(Π3) contains
equ(S1 ,S2) :- degree (S1 ,D1 ,D2), degree (S2 ,D1 ,D2).

prf(S1 ,S2) :- degree (S1 ,D11 ,D12), degree (S2 ,D21 ,D22), not equ(S1 ,S2),
D11 <=D21 , D12 <= D22.

pAS(X1 , X2) :- ap(X1 , X2), {prf(S, ap(X1 ,X2))}0.

5.4 From CR-Prolog2 to Answer Set Programs
I Theorem 7. (from [21]) For any CR-Prolog2 program Π of signature σ, (a) the projections
of the generalized answer sets of Π onto σ are exactly the generalized answer sets on σ of
crp2asp(Π). (b) the projections of the candidate answer sets of Π onto σ are exactly the
candidate answer sets on σ of crp2asp(Π). (c) the preferred answer sets of Π are exactly the
preferred answer sets on σ of crp2asp(Π).

Z.Yang 17:9

I Example 8. (From [4]) Consider the following CR-Prolog2 program Π4:

q ← t.

s← t.

p← not q.
r ← not s.
← p, r.

1 : t
+← .

2 : q × s +← .

The idea behind crp2asp is similar to that for lpod2asp. crp2asp(Π4) consists of
(i) all consistent assumption programs

{ap(X1 ,X2): X1 =0..1 , X2 =0..2}. :~ ap(X1 ,X2). [-1,X1 ,X2]

q(X1 ,X2) :- ap(X1 ,X2), t(X1 ,X2).
s(X1 ,X2) :- ap(X1 ,X2), t(X1 ,X2).
p(X1 ,X2) :- ap(X1 ,X2), not q(X1 ,X2).
r(X1 ,X2) :- ap(X1 ,X2), not s(X1 ,X2).
:- ap(X1 ,X2), p(X1 ,X2), r(X1 ,X2).

% 1: t <+-.
t(X1 ,X2) :- ap(X1 ,X2), X1 =1.

% 2: q*s <+-.
q(X1 ,X2) :- ap(X1 ,X2), X2 =1.
s(X1 ,X2) :- ap(X1 ,X2), X2 =2.

(ii) the definition of dominate as well as the definition of candidate answer set

dominate (ap(X1 ,X2), ap(Y1 ,Y2)) :- ap(X1 ,X2), ap(Y1 ,Y2), 0<X1 , X1 <Y1.
dominate (ap(X1 ,X2), ap(Y1 ,Y2)) :- ap(X1 ,X2), ap(Y1 ,Y2), 0<X2 , X2 <Y2.

candidate (X1 ,X2) :- ap(X1 ,X2), { dominate (SP ,ap(X1 ,X2))}0.

(iii) the definition of lessCrRuleApplied as well as the definition of preferred answer set

lessCrRuleApplied (ap(X1 ,X2), ap(Y1 ,Y2)) :- candidate (X1 ,X2),
candidate (Y1 ,Y2), 1{X1!=Y1;X2!=Y2}, X1 <=Y1 , X2 <=Y2.

pAS(X1 ,X2) :- candidate (X1 ,X2), { lessCrRule (SP ,ap(X1 ,X2))}0.

6 Open Issues and Expected Achievements

One issue is that, among the 4 translations, only lpmln2wc has an implemented compiler.
So, for now, most translations must be done manually. However, we may not implement
the compilers for the translations lpod2asp and crpt2asp, since they are exponential to the
number of non-regular rules.

Another issue is, currently, we are working on combining quantitative and qualitative
uncertainty in a single formalism, but it is still not clear how these two kinds of uncertainty
merge together. For example, if there is a preference rule saying “football > ping-pong >
basketball” with a quantitative confidence 5, and there is another preference rule saying
“indoor game > outdoor game” with confidence 10, what should be the order of these
activities? To answer this question, we should first answer “how should the confidence
be arranged in a rule without loss of generality?” The follow-up question is “what is the
confidence of basketball if there is a probability of 70% that it is an indoor game?”

ICLP 2018

17:10 Translating P-log, LP MLN , LPOD, and CR-Prolog2 into Standard Answer Set Prog.

As for the future work, we will check whether the recent approach, Asprin [10], can be
used to implement LPOD, CR-Prolog2, LPMLN , and even P-log. At the meantime, we
will start to combine quantitative and qualitative uncertainty from tuning the semantics of
LPOD to include quantitative uncertainty in its syntax and semantics. After the formalism
is created and well defined, we will prove its expressivity and implement a compiler for it.

References

1 Vernon Asuncion, Yan Zhang, and Heng Zhang. Logic programs with ordered disjunction:
first-order semantics and expressiveness. In Proceedings of the Fourteenth International
Conference on Principles of Knowledge Representation and Reasoning, pages 2–11. AAAI
Press, 2014.

2 Evgenii Balai and Michael Gelfond. On the Relationship between P-log and LPMLN. In
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 915–
921, 2016.

3 Marcello Balduccini. CR-MODELS: an inference engine for CR-Prolog. In Proceedings
of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning,
pages 18–30. Springer-Verlag, 2007.

4 Marcello Balduccini, Marcello Balduccini, and Veena Mellarkod. CR-Prolog with Ordered
Disjunction. In In ASP03 Answer Set Programming: Advances in Theory and Implement-
ation, volume 78 of CEUR Workshop proceedings, 2003.

5 Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-Restoring
Rules. In International Symposium on Logical Formalization of Commonsense Reasoning,
AAAI 2003 Spring Symposium Series, pages 9–18, 2003.

6 Marcello Balduccini and Veena Mellarkod. A-prolog with cr-rules and ordered disjunc-
tion. In Intelligent Sensing and Information Processing, 2004. Proceedings of International
Conference on, pages 1–6. IEEE, 2004.

7 Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning with answer
sets. Theory and Practice of Logic Programming, 9(1):57–144, 2009.

8 Gerhard Brewka. Logic programming with ordered disjunction. In AAAI/IAAI, pages
100–105, 2002.

9 Gerhard Brewka. Preferences in answer set programming. In CAEPIA, volume 4177, pages
1–10. Springer, 2005.

10 Gerhard Brewka, James P Delgrande, Javier Romero, and Torsten Schaub. asprin: Cus-
tomizing Answer Set Preferences without a Headache. In AAAI, pages 1467–1474, 2015.

11 Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Implementing ordered disjunction
using answer set solvers for normal programs. In European Workshop on Logics in Artificial
Intelligence, pages 444–456. Springer, 2002.

12 Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing disjunctive datalog by
constraints. IEEE Transactions on Knowledge and Data Engineering, 12(5):845–860, 2000.

13 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog
and its application in link discovery. In IJCAI, volume 7, pages 2462–2467, 2007.

14 James P Delgrande, Torsten Schaub, and Hans Tompits. A framework for compiling pref-
erences in logic programs. Theory and Practice of Logic Programming, 3(2):129–187, 2003.

15 Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and circumscription.
Artificial Intelligence, 175:236–263, 2011.

16 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Robert Kowalski and Kenneth Bowen, editors, Proceedings of International Logic
Programming Conference and Symposium, pages 1070–1080. MIT Press, 1988.

Z.Yang 17:11

17 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunct-
ive databases. New Generation Computing, 9:365–385, 1991.

18 Joohyung Lee, Yunsong Meng, and Yi Wang. Markov Logic Style Weighted Rules under the
Stable Model Semantics. In Technical Communications of the 31st International Conference
on Logic Programming, 2015.

19 Joohyung Lee and Yi Wang. Weighted Rules under the Stable Model Semantics. In
Proceedings of International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 145–154, 2016.

20 Joohyung Lee and Zhun Yang. LPMLN, weak constraints, and P-log. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pages 1170–1177, 2017.

21 Joohyung Lee and Zhun Yang. Translating LPOD and CR-Prolog2 into Standard Answer
Set Programs. arXiv preprint arXiv:1805.00643, 2018. arXiv:1805.00643.

22 Judea Pearl. Causality: models, reasoning and inference, volume 29. Cambridge Univ
Press, 2000.

23 Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, 2006.

ICLP 2018

http://arxiv.org/abs/1805.00643

Proof-Relevant Resolution for Elaboration of
Programming Languages
František Farka
University of St Andrews, UK, and
Heriot-Watt University, Edinburgh, UK
ff32@st-andrews.ac.uk

https://orcid.org/0000-0001-8177-1322

Abstract
Proof-relevant resolution is a new variant of resolution in Horn-clause logic and its extensions.
We propose proof-relevant resolution as a systematic approach to elaboration in programming
languages that is close to formal specification and hence allows for analysis of semantics of the
language. We demonstrate the approach on two case studies; we describe a novel, proof-relevant
approach to type inference and term synthesis in dependently types languages and we show how
proof-relevant resolution allows for analysis of inductive and coinductive soundness of type class
resolution. We conclude by a discussion of overall contributions of our current work.

2012 ACM Subject Classification Theory of computation→ Constraint and logic programming

Keywords and phrases resolution, elaboration, proof-relevant, dependent types, type classes

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.18

Acknowledgements This thesis abstract is based on published joint work with Ekaterina Ko-
mendatskaya and Kevin Hammond.

1 Introduction

First order resolution is a widely utilised technique in type inference. Hindley and Milner [13]
were the first to notice that type inference in simply typed lambda calculus can be expressed
as a first-order unification problem. This general scheme allows a multitude of extensions. For
example, Hindley-Milner type system can be extended to constrained types system. For this
extension, a constraint logic programming [15], was suggested, in which constraint solving over
a certain domain was added to the existing first-order unification and resolution algorithms.
Haskell type classes are another example of the application of logic programming. It is widely
understood that type class resolution is in fact implemented as first-order resolution on Horn
clauses. However, there is a caveat with respect to the traditional logic programming – a
dictionary (that is, a proof term) needs to be constructed [14]. The research in the area
of type classes is on-going: various extensions to the syntax of type classes are still being
investigated [10].

Fu and Komendantskaya analysed type class resolution and proposed proof-relevant Horn
clause logic [5] as the appropriate formalism. In this logic, Horn clauses are seen as types
and proof witnesses as terms inhabiting the types. Given a proposition – a goal – and a set
of Horn clauses – a logic program – the resolution process is captured by an explicit proof
term construction. To briefly illustrate the proof-relevant approach, let us state the usual
(generalised) modus ponens inference rule in a proof-relevant way:

P ` δ1 : θB1 . . . P ` δn : θBnκ : A← B1, . . . , Bn ∈ P P ` κδ1 . . . δn : θA
© František Farka;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 18; pp. 18:1–18:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ff32@st-andrews.ac.uk
https://orcid.org/0000-0001-8177-1322
https://doi.org/10.4230/OASIcs.ICLP.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

18:2 Proof-Relevant Resolution for Elaboration of Programming Languages

That is, for a substitution θ and an atom A, an instance θA can deduced in a program
P assuming that there is a Horn clause A ← B1, . . . , Bn in P and that each θ-instance of
the atom Bi in the body of the clause can deduced in P. Moreover, the clause is equipped
with an atomic symbol κ (which is unique for each clause in the program). Assuming that
deduction of the instance θBi is witnessed by a proof term δi the overall deduction of θA is
witnessed by a compound proof-term κδ1 . . . δn.

In our work, we investigate proof-relevant resolution and we propose it as a systematic
approach to elaboration of programming languages. In order to avoid an excessive technical
detail, in this short paper we focus on demonstrating assets of proof-relevant resolution by
means of an example. In particular, in Section 2 we show that proof-relevant resolution is a
convenient calculus to formulate type inference and term synthesis for dependently typed
languages, and in Section 3 we build on such treatment of type-class resolution and show
that such approach is convenient for working with the semantics of the language as well;
namely we show that proof-relevant treatment of type classes is sound both inductively and
coinductively. We refer the reader to our published work [3, 4] for technical details.

2 Type Inference and Term Synthesis

In the last decade, dependent types [17, 1] have gained popularity in the programming
language community. They allow reasoning about program values within the types, and
thus give more general, powerful and flexible mechanisms to enable verification of code.
However, such verification comes for a price. There are many proof obligations in form of
computationally irrelevant terms that manifest that the code has properties that are stated in
types, that themselves beige a specification become very complicated. Extensive automation
of type inference and term (proof obligation) synthesis is a necessity for any system that
aims to be usable in practice. We propose a novel approach for such automation. We use the
notion refinement to refer to the combined problem of type inference and term synthesis.

Using an abstract syntax that closely resembles existing functional programming language
we define maybeA, an option type over a fixed type A, indexed by a Boolean:

I Example 1.

data maybeA (a : A) : bool→ type where
nothing : maybeA ff

just : A→ maybeA tt

Here, nothing and just are the two constructors of the maybe type. The type is indexed
by ff when the nothing constructor is used, and by tt when the just constructor is used
(ff and tt are constructors of bool). A function fromJust extracts the value from the just
constructor:

fromJust : maybeA tt→ A

fromJust (just x) = x

Note that the value tt appears within the type maybeA tt → A of this function (the type
depends on the value), allowing for a more precise function definition that omits the redundant
case when the constructor of type maybeA is nothing. The challenge for the type checker is
to determine that the missing case fromJust nothing is contradictory (rather than being
omitted by mistake). Indeed, the type of nothing is maybeA ff. However, the function
specifies its argument to be of type maybeA tt.

F. Farka 18:3

A : type
bool : type
ff tt : bool

(≡bool) : bool → bool → type
refl : Π(b:bool). b ≡bool b

elim≡bool : tt ≡bool ff → A

maybe A : bool → type
nothing : maybe A ff
just : A → maybe A tt
elim maybeA : Π(b:bool). maybe A b

→ (b ≡bool ff → A)
→ (b ≡bool tt → A → A)
→ A

Figure 1 Signature of tfromJust.

To type check such functions, the compiler translates them into terms in an internal,
type-theoretic calculus. We rely on the calculus LF [9], a standard and well-understood
first-order dependent type theory as a choice of such internal calculus. A signature that we
use to encode our example in LF is give in Figure 1. We employ A→ B as an abbreviation
for Π(a : A).B where a does not occur free in B. The final goal of type checking of the
function fromJust in the programming language is to obtain the following encoding in the
internal calculus:

I Example 2.

t fromJust := λ (m:maybe A tt). elim maybeA tt m

(λ (w:tt≡bool ff). elim≡bool w)
(λ (w:tt≡bool tt).λ (x:A).x)

The missing case for nothing must be accounted for (cf. the line (λ (w:tt≡boolff).elim≡bool w)
above). In this example (as is generally the case), only partial information is given in the
programming language. To address this problem, we extend the internal language with term
level metavariables, denoted by ?a, and type level metavariables, denoted by ?A. These stand
for the parts of a term in the internal language that are not yet known. Using metavariables,
the term that directly corresponds to fromJust is:

I Example 3.

t fromJust := λ (m:maybe A tt). elim maybeA ?a m
(λ (w: ?A). ?b)
(λ (w: ?B).λ (x:A).x)

The missing information comprises the two types ?A and ?B and the term ?b for the constructor
nothing. Obtaining types ?A, ?B amounts to type inference whereas obtaining the term
?b amounts to term synthesis. We translate refinement problems into the syntax of logic
programs. The refinement algorithm that we propose takes a signature and a term with
metavariables in the extended internal calculus to a logic program and a goal in proof-relevant
Horn clause logic. The unifiers that are computed by resolution give an assignment of types

ICLP 2018

18:4 Proof-Relevant Resolution for Elaboration of Programming Languages

to type-level metavariables. At the same time, the computed proof terms are interpreted as
an assignment of terms to term-level metavariables. We illustrate the process in the following
paragraphs.

Consider the inference rule Π-t-Elim in LF for application of a dependent function to
an argument:

Γ `M : Πx : A.B Γ ` N : A Π-t-ElimΓ `MN : B[N/x]

When type checking the term tfromJust an application of elimmaybeA tt m to the term
λ(w :?A).?b in the context m : maybeA tt needs to be type checked. This amounts to
providing a derivation of the typing judgement that contains the following instance of the
rule Π-t-Elim:

m : maybeA tt ` elimmaybeA tt m

: (tt≡bool ff→ A)→ · · · → A m : maybeA tt ` λ(w :?A).?b :?A →?B
m : maybeA tt ` (elimmaybeA tt m) (λ(w :?A).?b) : (tt≡bool tt→ A→ A)→ A

For the above inference step to be a valid instance of the inference rule Π-t-Elim, it is
necessary that (tt≡bool ff) = ?A and A = ?B . This is reflected in the following goal:

((tt≡bool ff) = ?A) ∧ (A = ?B) ∧G(elimmaybeA tt m) ∧Gλ(w:?A).?b) (1)

The additional goals G(elimmaybeA tt m) and Gλ(w:?A).?b
are recursively generated by the al-

gorithm for the terms elimmaybeA tt m and λ(w :?A).?b, respectively. Similarly, assuming
the term λ(w :?A).?b is of type (tt≡bool ff)→ A, type checking places restrictions on the
term ?b:

m : maybeA tt ` tt≡bool ff : type m : maybeA tt, w : tt≡bool ff `?b : A
m : maybeA tt ` λ(w : tt≡bool ff).?b : tt≡bool ff→ A

That is, ?b needs to be a well-typed term of type A in a context consisting of m and w. Recall
that in the signature there is a constant elim≡bool of type tt ≡bool ff→ A. Our translation
will turn this constant into a clause in the generated logic program. There will be a clause
that corresponds to the inference rule for elimination of a Π type as well:

κelim≡bool
: term(elim≡bool ,Πx : tt≡bool ff . A, ?Γ)←

κelim : term(?M?N , ?B , ?Γ)← term(?M ,Πx :?A.?B′ , ?Γ) ∧ term(?N , ?A, ?Γ)∧?B′ [?N/x] ≡?B

The above clauses are written in the proof-relevant Horn clause logic, and thus κelim≡bool
and

κelim now play the role of proof-term symbols (“witnesses” for the clauses). In this clause,
?M , ?N , ?A, ?B, ?B′ and ?Γ are logic variables, i.e. variables of the first-order logic. By an
abuse of notation, we use the same symbols for metavariables of the internal calculus and
logic variables in the logic programs generated by the refinement algorithm. We also use the
same notation for objects of the internal language and terms of the logic programs. This is
possible since we represent variables using de Bruijn indices.

The presence of w : tt≡bool ff in the context allows us to use the clause elim≡bool to
resolve the goal term(?M?N , A, [m : maybeA tt, w : tt≡bool ff]):

term(?M?N , A, [m : maybeA, w : tt≡bool ff]) κelim

term(?M ,Πx :?A. A, [. . .]) ∧ term(?N , ?A, [. . . , w : tt≡bool ff]) ∧ A[?N/x] ≡?B κelim≡bool

term(?N , tt≡bool ff, [. . . , w : tt≡bool ff]) ∧ A[?N/x] ≡?B κprojw

A[?N/x] ≡?B κsubstA
⊥ (2)

F. Farka 18:5

The resolution steps are denoted by . Each step is indexed by the name of the clause that was
used. First, the goal is resolved in one step using the clause κelim. A clause κprojw

is used to
project the variable w from the context. We omit a discussion of the exact shape of the clauses
since it depends on the representation we use. In this presentation, we are just interested in
composing the proof terms occurring in these resolution steps into one composite proof term:
κelim κelim≡bool

κprojw
κsubstA . Note that, by resolving the goal (1), we obtain a substitution θ

that assigns the type A to the logic variable ?B , i.e. θ(?B) = A. At the same time, the proof
term computed by the the derivation (2) is interpreted as a solution (elim≡bool w) for the
term-level metavariable ?b. However, the proof term can be used to reconstruct the derivation
of well-typedness of the judgement m : maybeA tt, w : tt≡bool ff ` elim≡bool w : A as well.
In general, a substitution is interpreted as a solution to a type-level metavariable and a proof
term as a solution to a term-level metavariable. The remaining solution for ?A is computed
using similar methodology, and we omit the details here. Thus, we have computed values for
all metavariables in Example 3, i.e. we inferred all types and synthesised all terms.

3 Type Class Resolution

Type classes are a versatile language construct for implementing ad-hoc polymorphism and
overloading in functional languages. The approach originated in Haskell [16, 8] and has
been further developed in dependently typed languages [7, 2]. For example, it is convenient
to define equality for all data structures in a uniform way. In Haskell, this is achieved by
introducing the equality class Eq:

I Example 4.

class Eq x where
eq :: Eq x ⇒ x → x → Bool

and then declaring any necessary instances of the class, e.g. for pairs and integers:

instance (Eq x, Eq y) ⇒ Eq (x, y) where
eq (x1 , y1) (x2 , y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

Type class resolution is performed by the Haskell compiler and involves checking whether all
the instance declarations are valid. For example, the following function triggers a check that
Eq (Int, Int) is a valid instance of type class Eq:

test :: Eq (Int , Int) ⇒ Bool
test = eq (1 ,2) (1 ,2)

It is folklore that type class instance resolution resembles SLD-resolution from logic pro-
gramming. The type class instance declarations above could, for example, be viewed as the
following two Horn clauses:

I Example 5 (Logic program PPair).
κpair : eq(x), eq(y) ⇒ eq(pair(x, y))
κint : ⇒ eq(int)

ICLP 2018

18:6 Proof-Relevant Resolution for Elaboration of Programming Languages

Then, given the query eq(pair(int, int)), resolution terminates successfully with the follow-
ing sequence of inference steps:

eq(pair(int, int))→κpair eq(int), eq(int)→κint eq(int)→κint ∅

The proof witness κpairκintκint (called a “dictionary”) is constructed by the compiler. This
is treated internally as an executable function.

Despite the apparent similarity of type class syntax and type class resolution to Horn
clause resolution they are not, however, identical. At a syntactic level, type class instance
declarations correspond to a restricted form of Horn clauses, namely ones that:
(i) do not overlap (i.e. whose heads do not unify); and that
(ii) do not contain existential variables (i.e. variables that occur in the bodies but not in

the heads of the clauses). At an algorithmic level,
(iii) type class resolution corresponds to Horn-clause resolution in which unification is

restricted to term-matching.
Assuming there is a clause B1, . . . Bn ⇒ A′, then a query ? A′ can be resolved with this
clause only if A can be matched against A′, i.e. if a substitution σ exists such that A = σA′.
In comparison, Horn-clause resolution incorporates unifiers, as well as matchers, i.e. it also
proceeds to resolve the above query and clause in all the cases where σA = σA′ holds.

These restrictions guarantee that type class inference computes the principal (most
general) type. Restrictions (i) and (ii) amount to deterministic inference by resolution,
in which only one derivation is possible for every query. Restriction (iii) means that no
substitution is applied to a query during inference, i.e. we prove the query in an implicitly
universally quantified form. It is common knowledge that (as with Horn-clause resolution)
type class resolution is inductively sound, i.e. that it is sound relative to the least Herbrand
models of logic programs [12]. Moreover we established [3], for the first time, that it is also
universally inductively sound, i.e. that if a formula A is proved by type class resolution,
every ground instance of A is in the least Herbrand model of the given program. In contrast
to Horn-clause resolution, however, type class resolution is inductively incomplete, i.e. it
is incomplete relative to least Herbrand models, even for the class of Horn clauses that is
restricted by conditions i and ii. For example, given a clause ⇒ q(f(x)) and a query ? q(x),
Horn-clause resolution is able to find a proof (by instantiating x with f(x)), but type class
resolution fails. Lämmel and Peyton Jones have suggested [11] an extension to type class
resolution that accounts for some non-terminating cases of type class resolution. Consider,
for example, the following mutually defined data structures:

I Example 6.

data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

which give rise to the following instance declarations for the Eq class:

instance (Eq a, Eq (EvenList a)) ⇒ Eq (OddList a) where
eq (OCons x xs) (OCons y ys) = eq x y && eq xs ys

instance (Eq a, Eq (OddList a)) ⇒ Eq (EvenList a) where
eq Nil Nil = True
eq (ECons x xs) (ECons y ys) = eq x y && eq xs ys
eq _ _ = False

F. Farka 18:7

The test function below triggers type class resolution in the Haskell compiler:
test :: Eq (EvenList Int) ⇒ Bool
test = eq Nil Nil

However, inference by resolution does not terminate in this case. Consider the Horn clause
representation of the type class instance declarations:

I Example 7 (Logic program PEvenOdd).

κodd : eq(x), eq(evenList(x)) ⇒ eq(oddList(x))
κeven : eq(x), eq(oddList(x)) ⇒ eq(evenList(x))
κint : ⇒ eq(int)

The non-terminating resolution trace is given by:

eq(evenList(int))→κeven eq(int), eq(oddList(int))→κint eq(oddList(int))

→κint eq(int), eq(evenList(int))→κint eq(evenList(int))→κeven . . .

A goal eq(evenList(int)) is simplified using the clause κeven to two new goals eq(int) and
eq(oddList(int)). The first of these is discarded using the clause κint. Resolution continues
using κodd and κint, resulting in the original goal eq(evenList(int)). It is easy to see that
such a process could continue infinitely and that this goal constitutes a cycle (underlined
above). As suggested by Lämmel and Peyton Jones [11], the compiler can terminate the
infinite inference process as soon as it detects the underlined cycle. Moreover, it can also
construct the corresponding proof witness in a form of a recursive function. For the example
above, such a function is given by the fixed point term να.κevenκint(κoddκintα), where ν is a
fixed point operator. The intuitive reading of such a proof is that an infinite proof of the
query eq (evenList(int)) exists, and that its shape is fully specified by the recursive proof
witness function above. We say that the proof is given by corecursive type class resolution.

Corecursive type class resolution is not inductively sound. For example, the formula
eq(evenList(int)) is not in the least Herbrand model of the corresponding logic program.
However, we proved [3] that it is (universally) coinductively sound, i.e. it is sound relative to
the greatest Herbrand models. For example, eq(evenList(int)) is in the greatest Herbrand
model of the program PEvenOdd. Similarly to the inductive case, corecursive type class
resolution is coinductively incomplete. Consider the clause κinf : p(x) ⇒ p(f(x)). This
clause may be given an interpretation by the greatest (complete) Herbrand models. However,
corecursive type class resolution does not yield infinite proofs.

Unfortunately, this simple method of cycle detection does not work for all non-terminating
programs. Consider the following example, which defines a data type Bush (for bush trees),
and its corresponding instance for Eq:

data Bush a = Nil | Cons a (Bush (Bush a))
instance Eq a, Eq (Bush (Bush a)) ⇒ Eq (Bush a) where { ... }

Here, type class resolution does not terminate. However, it does not exhibit cycles either.
Consider the Horn clause translation of the problem:

I Example 8 (Logic program PBush).

κint : ⇒ eq(int)
κbush : eq(x), eq(bush(bush(x)))⇒ eq(bush(x))

ICLP 2018

18:8 Proof-Relevant Resolution for Elaboration of Programming Languages

The derivation below shows that no cycles arise when we resolve the query ? eq(bush(int))
against the program PBush:

eq(bush(int))→κbush eq(int), eq(bush(bush(int))→κint . . .→κbush

eq(bush(int)), eq(bush(bush(bush(int)))→κint . . .

Fu et al. [6] have introduced an extension to corecursive type class resolution that allows im-
plicative queries to be proved by corecursion and uses the recursive proof witness construction.
Implicative queries require the language of proof terms to be extended with λ-abstraction. For
example, in the above program the Horn formula eq(x)⇒ eq(bush(x)) can be (coinductively)
proven with the recursive proof witness κnew = να.λβ.κbushβ(α(αβ)). If we add this Horn
clause as a third clause to our program, we obtain a proof of eq(bush(int)) by applying κnew
to κint. In this case, it is even more challenging to understand whether the proof κnewκint
of eq(bush(int)) is indeed sound: whether inductively, coinductively or in any other sense.
We established [3], for the first time, coinductive soundness for proofs of such implicative
queries, relative to the greatest Herbrand models of logic programs. Namely, we determined
that proofs that are obtained by extending the proof context with coinductively proven Horn
clauses (such as κnew above) are coinductively sound but inductively unsound. This result
demonstrates feasibility of proof-relevant approach for study of the semantic properties of
elaboration of programming language constructs.

4 Contributions

In our work, we study proof-relevant resolution as a systematic approach to elaboration in
programming languages. We argue that proof-relevant resolution is an appropriate technique
for elaboration while it stays very close to formal specification and allows for analysis of
semantics. In this short paper, we demonstrate this claim on two examples. We discuss
refinement if dependently typed languages and soundness of type class resolution.

The main contributions of our work are:
1. We present a novel approach to refinement for a first-order type theory with dependent

types;
2. we prove that our approach (i.e. generation of goals and logic programs) is decidable and

hence can serve as a basis for a verified implementation;
3. we show that proof-relevant first-order Horn clause resolution gives an appropriate

inference mechanism for dependently typed languages: firstly, it is sound with respect to
type checking in LF; secondly, the proof term construction alongside the resolution trace
allows to reconstruct the derivation of well-typedness judgement.

4. We show that proof-relevant approach to type class resolution and its two recent corecursive
extensions [6, 11] are sound relative to the standard (Herbrand model) semantics of logic
programming; and

5. we show that these new extensions are indeed “corecursive”, i.e. that they are modelled
by the greatest Herbrand model semantics rather than by the least Herbrand model
semantics.

References
1 Edwin Brady. Idris, a general-purpose dependently typed programming language:

Design and implementation. J. Funct. Program., 23(5):552–593, 2013. doi:10.1017/
S095679681300018X.

http://dx.doi.org/10.1017/S095679681300018X
http://dx.doi.org/10.1017/S095679681300018X

F. Farka 18:9

2 Dominique Devriese and Frank Piessens. On the bright side of type classes: instance
arguments in Agda. In Proc. of ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages
143–155, 2011. doi:10.1145/2034773.2034796.

3 Frantisek Farka, Ekaterina Komendantskaya, and Kevin Hammond. Coinductive Sound-
ness of Corecursive Type Class Resolution. In Manuel V. Hermenegildo and Pedro López-
García, editors, Logic-Based Program Synthesis and Transformation - 26th International
Symposium, LOPSTR 2016, Edinburgh, UK, September 6-8, 2016, Revised Selected Pa-
pers, volume 10184 of Lecture Notes in Computer Science, pages 311–327. Springer, 2016.
doi:10.1007/978-3-319-63139-4_18.

4 František Farka, Ekaterina Komendantskaya, and Kevin Hammond. Proof-relevant Horn
Clauses for Dependent Type Inference and Term Synthesis. In accepted to ICLP 2018,
2018.

5 Peng Fu and Ekaterina Komendantskaya. Operational semantics of resolution and pro-
ductivity in Horn clause logic. Formal Asp. Comput., 29(3):453–474, 2017. doi:10.1007/
s00165-016-0403-1.

6 Peng Fu, Ekaterina Komendantskaya, Tom Schrijvers, and Andrew Pond. Proof Relevant
Corecursive Resolution. In Oleg Kiselyov and Andy King, editors, Functional and Logic
Programming - 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6,
2016, Proceedings, volume 9613 of Lecture Notes in Computer Science, pages 126–143.
Springer, 2016. doi:10.1007/978-3-319-29604-3_9.

7 Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. How to make ad
hoc proof automation less ad hoc. In Proc. of ICFP 2011, Tokyo, Japan, September 19-21,
2011, pages 163–175, 2011. doi:10.1145/2034773.2034798.

8 Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip Wadler. Type
Classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, 1996. doi:10.1145/
227699.227700.

9 Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type
theory. ACM Trans. Comput. Log., 6(1):61–101, 2005. doi:10.1145/1042038.1042041.

10 Georgios Karachalias and Tom Schrijvers. Elaboration on functional dependencies: func-
tional dependencies are dead, long live functional dependencies! In Iavor S. Diatchki,
editor, Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell, Ox-
ford, United Kingdom, September 7-8, 2017, pages 133–147. ACM, 2017. doi:10.1145/
3122955.3122966.

11 Ralf Lämmel and Simon L. Peyton Jones. Scrap your boilerplate with class: extensible
generic functions. In Proc. of ICFP 2005, Tallinn, Estonia, September 26-28, 2005, pages
204–215, 2005. doi:10.1145/1086365.1086391.

12 John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.
13 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and

System Sciences, 17:348–375, 1978.
14 Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an ex-

ploration of the design space. In Haskell workshop, Amsterdam, Janu-
ary 1997. URL: https://www.microsoft.com/en-us/research/publication/
type-classes-an-exploration-of-the-design-space/.

15 Martin Sulzmann and Peter J. Stuckey. HM(X) type inference is CLP(X) solving. J. Funct.
Program., 18(2):251–283, 2008. doi:10.1017/S0956796807006569.

16 P. Wadler and S. Blott. How to Make Ad-hoc Polymorphism Less Ad Hoc. In Proc. of
POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM. doi:10.1145/75277.75283.

17 Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A.
Eisenberg. A specification for dependent types in Haskell. PACMPL, 1(ICFP):31:1–31:29,
2017. doi:10.1145/3110275.

ICLP 2018

http://dx.doi.org/10.1145/2034773.2034796
http://dx.doi.org/10.1007/978-3-319-63139-4_18
http://dx.doi.org/10.1007/s00165-016-0403-1
http://dx.doi.org/10.1007/s00165-016-0403-1
http://dx.doi.org/10.1007/978-3-319-29604-3_9
http://dx.doi.org/10.1145/2034773.2034798
http://dx.doi.org/10.1145/227699.227700
http://dx.doi.org/10.1145/227699.227700
http://dx.doi.org/10.1145/1042038.1042041
http://dx.doi.org/10.1145/3122955.3122966
http://dx.doi.org/10.1145/3122955.3122966
http://dx.doi.org/10.1145/1086365.1086391
https://www.microsoft.com/en-us/research/publication/type-classes-an-exploration-of-the-design-space/
https://www.microsoft.com/en-us/research/publication/type-classes-an-exploration-of-the-design-space/
http://dx.doi.org/10.1017/S0956796807006569
http://dx.doi.org/10.1145/75277.75283
http://dx.doi.org/10.1145/3110275

The Learning-Knowledge-Reasoning Paradigm for
Natural Language Understanding and Question
Answering
Arindam Mitra1

Arizona State University
Tempe, USA
amitra7@asu.edu

https://orcid.org/0000-0003-0089-510X

Abstract
Given a text, several questions can be asked. For some of these questions, the answer can be
directly looked up from the text. However for several other questions, one might need to use
additional knowledge and sophisticated reasoning to find the answer. Developing AI agents that
can answer these kinds of questions and can also justify their answer is the focus of this research.
Towards this goal, we use the language of Answer Set Programming as the knowledge repres-
entation and reasoning language for the agent. The question then arises, is how to obtain the
additional knowledge? In this work we show that using existing Natural Language Processing
parsers and a scalable Inductive Logic Programming algorithm it is possible to learn this addi-
tional knowledge (containing mostly commonsense knowledge) from question-answering datasets
which then can be used for inference.

2012 ACM Subject Classification Computing methodologies → Natural language processing,
Computing methodologies → Knowledge representation and reasoning

Keywords and phrases Natural Language Understanding, Question Answering, Knowledge Ac-
quisition, Inductive Logic Programming, Knowledge Representation and Reasoning

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.19

1 Introduction

Developing agents that can understand text is one of the long term goals of Artificial
Intelligence. To track the progress towards this goal, several question-answering challenges
have been proposed, such as, the science question answering challenge aristo [1], project
euclid’s math word problem solving [3, 4] and facebook research’s bAbI question answering
challenge [9]. In all these challenges, a small text is provided describing a scenario and one or
more questions based on that scenario. Table 1 shows an example from each of these three
tasks.

It should be noted that answering these questions (Table 1) requires knowledge that goes
beyond the text. For example, to answer the questions from the bAbI task (Table 1) one
needs to know the effect of certain actions. Similarly, answering the math question requires
the knowledge that the games one has won or lost is a subset of the games one has played
and also that the value of a whole is equal to the sum of its parts. The later is popularly
known as the part-whole formula. The science question on the other hand requires one to
know the dynamics of predator-prey population. Some of this knowledge such as the math

1 The author is advised by Dr. Chitta Baral from Arizona State University.

© Arindam Mitra;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 19; pp. 19:1–19:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amitra7@asu.edu
https://orcid.org/0000-0003-0089-510X
https://doi.org/10.4230/OASIcs.ICLP.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

19:2 The LKR Paradigm for NLU and QA

Table 1 shows an example problem from the datasets of bAbI, word math problems and Aristo.

Mary grabbed the football.
Mary traveled to the office.
Mary took the apple there.
What is Mary carrying? A:football,apple
Mary left the football.
Daniel went back to the bedroom.
What is Mary carrying? A:apple

(a) An example from a bAbI challenge.

Sara’s high school played 12
basketball games this year.
The team won most of their
games. They were defeated
during 4 games. How many
games did they win ?

(b) An example of a word arith-
metic problem.

In one area, a large source of prey for eagles is rabbits. If the number of
rabbits suddenly decreases, what effect will it most likely have on the eagles?
(A) Their numbers will increase. (B) Their numbers will decrease. (C) They
will adapt new behaviors. (D) They will migrate to new locations.

(c) An example of a science question.

formula or the prey-predator population dynamics, can be easily collected from books and
can be provided to the agent as a background knowledge. However, some types of knowledge
such as the affect of the actions or the commonsense knowledge about part whole relations
between verbs might be difficult to write down manually as there exists a vast amount of such
knowledge. In this research, thus we aim to learn such knowledge from question-answering
dataset.

The proposed QA-architecture namely the Learning-Knowledge-Reasoning paradigm,
has three components: 1) A semantic parser, T that converts the text into the required
logical form, 2) An Inductive Logic Programming module, L that learns missing knowledge
from the training data and 3) A reasoning engine, R which computes the answer given the
query. In the training phase, given some background knowledge B and a training dataset D

the Inductive Logic Programming module uses the semantic parser T and a rule learning
algorithm to learn the necessary knowledge H from D. In the test phase, both B and H are
used to answer a given question. We have used the language of Answer Set Programming for
the purpose of knowledge representation and reasoning.

2 Background

2.1 Answer Set Programming

An answer set program is a collection of rules of the form,

L0 ← L1, ..., Lm, not Lm+1, ..., not Ln

where each of the Li’s is a literal in the sense of a classical logic. Intuitively, the above rule
means that if L1, ..., Lm are true and if Lm+1, ..., Ln can be safely assumed to be false then
L0 must be true. The left-hand side of an ASP rule is called the head and the right-hand
side is called the body. Predicates and ground terms in a rule start with a lower case letter,
while variable terms start with a capital letter. We will follow this convention throughout the
paper. A rule with no head is called a constraint. A rule with empty body is referred to as a
fact. The semantics of ASP is based on the stable model semantics of logic programming [2].

A. Mitra 19:3

Table 2 The basic predicates and axioms of Simple Discrete Event Calculus (SDEC).

Predicate Meaning
happensAt(F, T) Event E occurs at time T

initiatedAt(F, T) At time T a period of time
for which fluent F holds is
initiated

terminatedAt(F, T) At time T a period of time
for which fluent F holds is
terminated

holdsAt(F, T) Fluent F holds at time T
Axioms

holdsAt(F, T + 1)
← initiatedAt(F, T).

holdsAt(F, T + 1)←
holdsAt(F, T),
not terminatedAt(F, T).

In this work, both the background knowledge B and the learned knowledge H are a collection
of such ASP rules.

2.2 Event Calculus

Event calculus is a temporal logic for reasoning about the events and their effects. The
ontology of the Event calculus comprises of time points, fluents (i.e. properties which have
certain values at a time point) and events (i.e. occurrences in time that may affect fluents
and alter their value). The formalism also contains two domain-independent axioms to
incorporate the commonsense law of inertia, according to which fluents persist over time
unless they are affected by an event. The building blocks of Event calculus and its domain
independent axioms are presented in Table 2.

3 Inductive Logic Programming for Mutually Distinct Examples

Inductive Logic Programming (ILP) [7] is a subfield of Machine learning that is focused
on learning logic programs. Given a set of positive examples E+, negative examples E−

and some background knowledge B, an ILP algorithm finds an Hypothesis H (answer set
program) such that B ∪ H |= E+ and B ∪ H 6|= E−. The possible hypothesis space is often
restricted with a language bias that is specified by a series of mode declarationsM [8].

This definition however does not consider the fact that a statistical machine learning
dataset contains several context dependent examples. We recently proposed a variation of the
standard ILP task namely, Inductive Logic Programming for “mutually Distinct Examples”
[6] which is more suitable for working with this machine learning datasets. An ILP task for
“mutually Distinct Examples” [6] (denoted as ILP DE) is defined as follows:

I Definition 1 (Inductive Logic Programming for Mutually Distinct Examples). An ILP
task for Distinct Examples (denoted as ILP DE) is a tuple 〈B, M, D〉, where B is an Answer Set
Program, called the background knowledge, M defines the set of rules allowed in hypotheses
(the hypothesis space) and D is the dataset containing a series of mutually distinct examples
〈E1, E2, ..., En〉. Here each Ei is a tuple 〈Oi, E+

i , E−
i 〉 where, Oi is a logic program, called

observation, E+ is a set of positive ground literals and E− is a set of negative ground literals.

ICLP 2018

19:4 The LKR Paradigm for NLU and QA

Figure 1 AMR representation of “Mary
grabbed the football.”

Figure 2 AMR representation of “What
is Mary carrying?”

A hypothesis H is an inductive solution of T (written as H ∈ ILP DE(B, M, D)) iff,

H ∪B ∪Oi ` E+
i , ∀i = 1...n

H ∪B ∪Oi 0 E−
i , ∀i = 1...n

An iterative and incremental algorithm, has also been developed [6] to compute the
solution of an ILP DE task.

4 Learning Knowledge from dataset

To learn the missing knowledge H from the training dataset D, first an instance of the
ILP DE task is created. The iterative and incremental algorithm for ILP DE in [6] is then
used which outputs the desired H. In this section we describe this procedure with the
example of the bAbI question answering challenge.

Background Knowledge B

The background knowledge contains the two commonsense laws of inertia from Event calculus,
according to which fluents persist over time unless they are affected by an event.

Mapping an bABI Example to an ILP DE Example

The bAbI challenge contains 20 different question answering tasks. One of such task is about
reasoning with sets. An example of that which is shown in table 1. The training dataset
for each tasks contains 1000 of such examples. Each of such example is translated into an
ILP DE example Ei =< Oi, E+

i , E−
i > in the following manner.

Given a question-answer text such as the one shown in Table 1(a), the translation module
first converts the natural language sentences to the syntax of Event calculus. While doing so,
it first obtains the Abstract Meaning Representation (AMR) of the sentence from the AMR
parser in the statistical NLP layer and then applies a rule-based procedure to convert the
AMR graph to the syntax of Event calculus. Figure 1 & 2 show two AMR representations
for the sentence “Mary grabbed the football.” and the question “What is Mary carrying?”.
The representation of the question-answer text in < Oi, E+

i , E−
i > form is shown in Table 3.

The narratives in Oi (Table 3) describe that the event of grabbing a football by Mary has
happened at time point 1, then another event named travel has happened at time point 2
and so on. The first two annotations in E+

i state that both the fluents specifying Mary is
carrying an apple and Mary is carrying a football holds at time point 4. The not holdsAt

annotation in E−
i states that at time point 7 Mary is not carrying a football.

A. Mitra 19:5

Table 3 Representation of the Example in Table 1(a) in ILP DE format.

happensAt(grab(mary, football), 1).
happensAt(travel(mary, office), 2).

Oi happensAt(take(mary, apple), 3).
happensAt(leave(mary, footbal;), 5).
happensAt(go_back(daniel, bedroom), 6).
holdsAt(carry(mary,football),4).

E+
i holdsAt(carry(mary,apple),4).

holdsAt(carry(mary,apple),7).
E−

i not holdsAt(carry(mary,football),7).

Table 4 Rules learned from the task 8 of bABI dataset.

initiatedAt(carry(P, O), T)← happensAt(get(P, O), T).
initiatedAt(carry(P, O), T)← happensAt(take(P, O), T).
terminatedAt(carry(P, O), T)← happensAt(drop(P, O), T).
initiatedAt(carry(P, O), T)← happensAt(pick_up(P, O), T).
initiatedAt(carry(P, O), T)← happensAt(grab(P, O), T).
terminatedAt(carry(P, O), T)← happensAt(discard(P, O), T).
terminatedAt(carry(P, O), T)← happensAt(put_down(P, O), T).
terminatedAt(carry(P, O), T)← happensAt(leave(P, O), T).

Computing the Inductive Solution

The algorithm [6] that computes the solution roughly works as follows: Given an instance of
the ILP DE task, it first finds a solution H1 of E1. Then it expands H1 minimally to solve
only E2 and obtains H2 . In the next iteration it again expands H2 minimally to solve E1
and it continues expanding until it finds a hypothesis that solves both E1 and E2. Next it
starts with a solution of 〈E1, E2〉 and tries to expand it iteratively until it solves all of E1, E2
and E3. The process continues until a hypothesis is found that explains all the examples.
The algorithm is shown to be sound and complete when H ∪ B ∪ Oi is stratified for all
i = 1, ..., n, [6]. Table 4 shows the 8 rules that are learned for this task. Our system following
this learning-knowledge-reasoning method outperforms all the deep learning systems for the
bAbI challenge. [5].

5 Current State of Research

Currently we are trying to apply this framework of learning-knowledge-reasoning to the task
of word arithmetic problem solving, where the goal is to learn human readable knowledge
which can help the question answering agent to decide which arithmetic formulas to apply
for a particular problem and in which order.

6 Conclusion

Earlier days of Artificial Intelligence have seen many handwritten rule based systems. Later
those were replaced by better performing machine learning based systems. With the advance-
ments of knowledge representation and reasoning languages, a natural question arises, “if
machines can learn logic programs, can they achieve better accuracy than existing statistical

ICLP 2018

19:6 The LKR Paradigm for NLU and QA

machine learning methods such neural networks?” It should be noted that the system of [5]
achieved better results than the existing deep learning models on the bAbI dataset. To
further explore this possibility we need to focus on the task of learning of logic programs
and need to develop systems that can learn from large datasets. In this research, we have
made an attempt towards that.

References
1 Peter Clark. Elementary school science and math tests as a driver for AI: take the aristo

challenge! Innovative Applications of Artificial Intelligence, 2015.
2 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.

In ICLP/SLP, volume 88, pages 1070–1080, 1988.
3 Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learn-

ing to solve arithmetic word problems with verb categorization. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 523–
533, 2014.

4 Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Si-
ena Dumas Ang. Parsing algebraic word problems into equations. Transactions of the
Association for Computational Linguistics, 3:585–597, 2015.

5 Arindam Mitra and Chitta Baral. Addressing a Question Answering Challenge by Com-
bining Statistical Methods with Inductive Rule Learning and Reasoning. In AAAI, pages
2779–2785, 2016.

6 Arindam Mitra and Chitta Baral. Incremental and Iterative Learning of Answer Set
Programs from Mutually Distinct Examples. CoRR, abs/1802.07966, 2018. arXiv:
1802.07966.

7 Stephen Muggleton. Inductive logic programming. New generation computing, 8(4):295–
318, 1991.

8 Stephen Muggleton. Inverse entailment and Progol. New generation computing, 13(3–
4):245–286, 1995.

9 Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards AI-complete
question answering: a set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.
arXiv:1502.05698.

http://arxiv.org/abs/1802.07966
http://arxiv.org/abs/1802.07966
http://arxiv.org/abs/1502.05698

Speeding up Lazy-Grounding Answer Set Solving
Richard Taupe
Alpen-Adria-Universität, Klagenfurt, Austria
Siemens AG Österreich, Vienna, Austria
rtaupe@edu.aau.at

https://orcid.org/0000-0001-7639-1616

Abstract
The grounding bottleneck is an important open issue in Answer Set Programming. Lazy ground-
ing addresses it by interleaving grounding and search. The performance of current lazy-grounding
solvers is not yet comparable to that of ground-and-solve systems, however. The aim of this
thesis is to extend prior work on lazy grounding by novel heuristics and other techniques like
non-ground conflict learning in order to speed up solving. Parts of expected results will be
beneficial for ground-and-solve systems as well.

2012 ACM Subject Classification Computing methodologies→ Logic programming and answer
set programming

Keywords and phrases answer set programming, lazy grounding, heuristics

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.20

Funding This work was partially conducted within the scope of DynaCon (FFG-PNr.: 861263),
which is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BM-
VIT) under the program “ICT of the Future” between November 2017 and April 2020.
More information: https://iktderzukunft.at/en/

Acknowledgements Thanks to my advisor Prof. Gerhard Friedrich, to my close collaborators
Andreas Falkner, Antonius Weinzierl, Gottfried Schenner, Konstantin Schekotihin, and Peter
Schüller (in alphabetical order), and to Herwig Schreiner for his comments on an earlier version
of this paper.

1 Introduction

Answer Set Programming (ASP) is an approach to declarative problem solving [3, 22], in
which problems to be solved by a computer are encoded as logic programs, which are sets of
rules that can contain variables. Most ASP systems follow the ground-and-solve paradigm
and split the solving process into two steps: First, a grounder transforms the input program
containing variables into a propositional encoding [4, 12, 14, 19]. Then, solutions for the
resulting variable-free program are found by a solver [16]. The grounding step can result in
an exponential blow-up in space in the worst case [10].

This grounding bottleneck is a major problem of traditional approaches to ASP. For
example, the rule

partnerunits(U,P)← unit2zone(U,Z), unit2sensor(P, S), zone2sensor(Z, S), U 6= P.

has to be replaced by up to |U | · |P | · |Z| · |S| ground rules, where |U |, |P |, |Z| and |S| are the
number of constants the respective variable may be substituted with. Many of these ground
rules may be irrelevant because they are not needed to build a specific answer set anyway.

© Richard Taupe;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 20; pp. 20:1–20:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rtaupe@edu.aau.at
https://orcid.org/0000-0001-7639-1616
https://doi.org/10.4230/OASIcs.ICLP.2018.20
https://iktderzukunft.at/en/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

20:2 Speeding up Lazy-Grounding Answer Set Solving

Problems that are actually easy to solve thus become prohibitive as soon as their grounding
ceases to fit into working memory. This makes ASP, an otherwise powerful and versatile
approach, unsuitable for large-scale problem instances frequently occurring in practice.

Lazy grounding interleaves grounding and solving to avoid storing the entire ground
program in memory. By this, lazy grounding addresses the limitations of state-of-the-art
grounders like gringo [14] and I-dlv [4,12]. These grounders employ sophisticated grounding
techniques to omit irrelevant ground rules, but these can only mitigate and not eliminate
the blow-up in space. Known approaches to lazy grounding are ASPeRiX [20], GASP [25],
OMiGA [7], and, most recently, Alpha [30]. Lazy grounding methods have also been
proposed for FO(·), a knowledge representation formalism whose foundations are similar
to those of ASP [8]. Also related, though not a lazy-grounding system as such, are lazy
constraints, a technique that removes constraints that consume much space in grounding
from the input program and adds only relevant ground ones again when a potential answer
set has been found that needs to be checked for constraint violations [6].

While lazy-grounding systems are able to limit their memory usage, their time consumption
is not yet comparable to that of state-of-the-art solvers. One reason for this is that most of
these systems do not exploit conflict-driven nogood learning (CDNL), which is a key success
factor of state-of-the-art ASP solvers. Alpha has been the first lazy-grounding system to
employ CDNL [30]. The system consists of a grounder and a solver which, however, do not
work in sequence (as in ground-and-solve), but interact cyclically. Still, Alpha also does not
reach the performance of traditional solvers yet. One reason for this is that Alpha (and all
other lazy-grounding systems) lack powerful search heuristics to guide the exploration of the
search space, which are another major success factor of traditional systems.

The remainder of this research summary is structured as follows: In section 2, we recall
preliminaries on ASP and lazy grounding. In section 3, we state the research questions
addressed by this thesis, after which we report on its current status in section 4. Preliminary
results are presented in section 5, before open issues and expected achievements are put
forward in section 6. This paper is then briefly concluded in section 7.

2 Preliminaries

In this section, we present a brief account of ASP syntax and semantics and of the general
idea of the lazy-grounding ASP solver Alpha.

2.1 Syntax
An answer-set program P is a finite set of rules of the form

h1; . . . ;hd ← b1, . . . , bm, not bm+1, . . . , not bn.

where h1, . . . , hd and b1, . . . , bm are positive literals (i.e. atoms) and not bm+1, . . . , not bn

are negative literals. An atom is either a classical atom or a cardinality atom1. A classical
atom is an expression p(t1, . . . , tn) where p is an n-ary predicate and t1, . . . , tn are terms. A
term is either a variable or a constant. A literal is either an atom a or its default negation
not a. Default negation refers to the absence of information, i.e. an atom is assumed to be
false as long as it is not proven to be true. A cardinality atom is of the form

l {a1 : l11 , . . . , l1m
; . . . ; an : ln1 , . . . , lno

} u

1 Other types of atoms are supported in the language standard ASP-Core-2 [2], but these are not needed
within the scope of this article.

R. Taupe 20:3

where each structure ai : li1 , . . . , lim is a conditional literal in which ai (the head of the
conditional literal) and all lij

are classical literals, and l and u are terms representing non-
negative integers indicating lower and upper bound. If one or both of the bounds are not
given, their defaults are used, which are 0 for l and ∞ for u.

H (r) = {h1, . . . , hd} is called the head, and B(r) = {b1, . . . , bm, not bm+1, . . . , not bn} the
body of the rule. A rule r with H (r) consisting of a cardinality atom is called choice rule. A
rule with a head consisting of more than one classical atom is called disjunctive rule. A rule
whose head consists of at most one classical atom is called a normal rule. A normal rule
with empty head, e.g. ← b., is called (integrity) constraint. A normal rule with empty body,
e.g. h← ., is called fact.

2.2 Semantics
There are several ways to define the semantics of an answer-set program, i.e. to define the
set of answer sets of an answer-set program. An overview is provided by [23]. Probably the
best-known semantics is based on the Gelfond-Lifschitz reduct [17]. A variant that applies to
choice rules also is presented in [5].

Informally, an answer set A of a program P is a subset-minimal model of P (i.e. a set
of atoms interpreted as true) which satisfies the following conditions: All rules in P are
satisfied by A; and all atoms in A are “derivable” by rules in P . A rule is satisfied if its head
is satisfied or its body is not. The disjunctive head of a rule is satisfied if at least one of its
atoms is. A cardinality atom is satisfied if l ≤ |C| ≤ u holds, where C is the set of head
atoms in the cardinality literal whose conditions (e.g. li1 , . . . , lim

for ai) are satisfied and
which are satisfied themselves. In the presence of choice rules, the semantics is adjusted to
allow non-minimal subsets satisfying the cardinality atom to appear in answer sets.

2.3 Lazy Grounding and Solving
ASP systems employing lazy grounding, such as Alpha, are based on so-called computation
sequences, which are sequences of firing rules. Starting from facts, rules are fired one after
the other by choosing in each step among the set of applicable rules, which are ground rules
whose positive body is already satisfied and whose negative body is false or unassigned. This
implies that the solver guesses whether an applicable rule fires, while traditional CDNL-based
search guesses whether an arbitrary atom is true or false. Lazy-grounding solvers need an
additional truth value must-be-true to distinguish whether an atom was derived by a firing
rule or by a constraint [30]. When a conflicting assignment is reached, the solver backtracks.
In this case, CDNL can learn new information from the conflict that is then used to avoid
encountering similar conflicts in the future [16].

3 Research Questions

The remaining performance issues in lazy-grounding ASP solving lead us to the central
research questions of this thesis:
1. How can lazy-grounding solvers be enabled to solve large-scale (industrial) problem

instances as efficiently as traditional solvers solve smaller instances?
2. How can conflict learning contribute to that goal, and can conflicts be reused across

problem instances?
3. How can various forms of heuristics, e.g. domain-independent or domain-specific search

heuristics, contribute to that goal?

ICLP 2018

20:4 Speeding up Lazy-Grounding Answer Set Solving

Within the scope of the DynaCon research project2, lazy grounding methods will be evaluated
on real-world industrial problem instances from domains like cyber-physical systems, road
traffic control, and railway operation [11].

4 Current Status of the Research

To date, our research efforts have focused on research question 3, i.e. on heuristics. Preliminary
results for domain-independent search heuristics have been reported at the 1st International
Workshop on Practical Aspects of Answer Set Programming [28] and at the LPNMR 2017
Doctoral Consortium [27]. Lazy grounding and other ASP-based approaches to large-
scale product configuration problems have been investigated in a contribution to the 19th
International Configuration Workshop [26]. Since then, our research focus has shifted to
domain-specific heuristics. A conference paper on this topic is currently being written.

5 Preliminary Results Accomplished

Source code has been contributed to Alpha, a lazy-grounding system introduced by Antonius
Weinzierl [30]. Contributions are made under an open-source license and are freely available
at https://github.com/alpha-asp.

While initial work aimed at comprehending the solver’s inner workings and making small
improvements and extensions on the go, our focus has soon shifted to the development of
novel search heuristics.

5.1 Heuristics for Lazy-Grounding ASP Solving
Alpha takes ideas from state-of-the-art ASP solvers that work on a full grounding. Therefore
it is natural to investigate heuristics from such systems and try to apply them in the
solver component of a lazy-grounding system like Alpha. Heuristics for answer-set solving
can roughly be classified into domain-independent heuristics, which are designed without
a concrete application domain in mind, and domain-specific heuristics, which have to be
tailored to a specific problem. For the class of domain-independent heuristics, two prominent
examples are VSIDS [24] and BerkMin [18], which have originally been developed for SAT but
are also successfully employed by ASP solvers (such as clasp [16] and wasp [1]). Both assign
a so-called activity counter to every variable that counts the number of clauses involving
this variable that are responsible for at least one conflict. These counters are divided by
a constant (“decayed”) periodically to reduce the influence of “aged” clauses. When the
heuristic is asked for an atom, it chooses the most active unassigned atom. This is done to
regard the fact that the set of variables responsible for conflicts may change very quickly.
BerkMin additionally organizes the set of conflict clauses as a chronologically ordered stack,
thereby preferring variables in recent conflicts. Other counters are maintained for picking
truth values.

A direct application of BerkMin or VSIDS to a lazy-grounding ASP system like Alpha
seems unnatural because such a solver differs in many important ways from a solver adhering
to the classical ground-and-solve paradigm. One major difference is that not all ground rules,
and consequently not all ground atoms, are known at any time to a lazy-grounding solver.
Because of this, a heuristic that applies ideas from BerkMin or VSIDS to lazy grounding can

2 Dynamic knowledge-based (re)configuration of cyber-physical systems, https://isbi.aau.at/dynacon

https://github.com/alpha-asp
https://isbi.aau.at/dynacon

R. Taupe 20:5

only incorporate atoms that are already grounded and thus known to the solver. Another
major difference lies in the solving mechanism: while a traditional ASP solver can choose
any atom to guess on, Alpha only guesses on atoms representing bodies of applicable rules
(cf. section 2.3).

5.2 Domain-Independent Heuristics
A set of domain-independent heuristics inspired by BerkMin and incorporating new ideas
has been developed for Alpha and is described in detail in [28], where the results of a basic
experimental evaluation on a number of benchmark problems can also be found. Although
the heuristics presented are still under development and only a brief experimental study was
conducted, promising results can be seen.

The novel family of “dependency-driven” heuristics was repeatedly able to outperform
Alpha’s naive heuristic as well as two BerkMin-inspired heuristics. It extends the latter by
expanding the scope of atoms considered by the heuristics: If the atom a chosen due to its
activity and recency is a choice point, i.e. it represents the body of an applicable rule, it
is immediately picked. If that is not the case, the set of choice points depending on a are
considered for selection, where a choice point representing the body of a ground rule rσ is
said to depend on all atoms occurring in H (rσ) ∪ B(rσ).

While our results are encouraging, there is obviously more work to be done to improve
the performance of these heuristics and the solver in general.

5.3 Domain-Specific Heuristics
Domain-specific heuristics have been proposed for pre-grounding solvers but are not directly
transferable to a lazy-grounding system for the same reasons that domain-independent
heuristics are not. hclasp [15] is an extension of the solver clasp that accepts heuristic
predicates as part of the declarative problem specification. These predicates allow to modify
priorities and truth preferences of atoms, i.e. the order in which atoms are guessed and
the truth values assigned to them during solving. These modifications can be mixed with
domain-independent heuristics like VSIDS. Heuristic predicates have since been replaced by
heuristic directives in clasp [13].

hwasp [9], on the other hand, is an extension of the solver wasp that facilitates the
integration of external heuristics implemented in a procedural language which are consulted
at specific points during the solving process via a prespecified API.

Our current efforts are directed at devising an extension of the ASP language by an-
notations or directives to specify heuristics declaratively within the input program. Our
preliminary proposal for such annotations is syntactically similar to optimize statements in
ASP-Core-2 [2] or weak constraints in DLV [21].

A rule to which an heuristic annotation is attached could be of the following form:

h1; . . . ;hd ← b1, . . . , bm, not bm+1, . . . , not bn. [w@l, s : c1, . . . , co]

Here, w and l are terms denoting weight and level of the heuristics (together called
priority, in which level is more important than weight), both defaulting to 1, and s is a sign
(true or false) stating if the rule shall fire or not fire when selected.

During solving, all rules that have already been grounded and whose condition c1, . . . , co

is satisfied by the current partial assignment3 are candidates for rule selection. From these

3 To be in line with semantics of default negation, atoms that are still unassigned are assumed false.

ICLP 2018

20:6 Speeding up Lazy-Grounding Answer Set Solving

candidates, the solver will choose the one with the highest priority w@l and assign s to the
atom representing its body. If multiple applicable rules have the same maximum priority, a
fallback heuristics like BerkMin or VSIDS is used to break ties. If s is not specified, the sign
is also determined by a fallback heuristics. If a condition is not satisfied, the corresponding
rule stays applicable but has default weight and level (1@1).

This syntax is still preliminary. We are currently working on extending it with ways to
specify preferences over disjunctive heads or elements of a choice head, and with support for
randomness and restarts. A full proposal together with example programs and a performance
study will form a forthcoming publication.

6 Open Issues and Expected Achievements

So far, we have concentrated on search heuristics, i.e. on branching strategies for the solver
component of a lazy-grounding ASP system. Several other procedures of such a system could
be equipped with heuristic decision-making as well. A prominent group of such heuristics is
formed by grounding heuristics, which are relevant for lazy-grounding systems only. They
deal with questions like how much to ground at a given point in time and when to save space
by forgetting grounded nogoods or doing a restart. Some work in this direction has already
been done for FO(·) [8]. Ways to adapt and extend this for use by a CDNL-based solver will
be explored.

Furthermore, we plan to explore other ways of modifying or enhancing the algorithms of a
lazy-grounding ASP system to improve performance by aiding heuristic decision-making. For
example, program analysis techniques (atom dependencies, strongly connected components,
etc.) could guide the selection or tuning of solver heuristics, and relaxing the restrictions
which atoms we can guess on could open up new ways towards finding answer sets quickly.
By these efforts, we expect the solver heuristics to have more information and operate on a
smaller search space – and thus to perform even better then currently is the case.

Also, our research will not be limited to heuristics but include other important issues of
lazy-grounding ASP systems as well. One such issue is to extend CDNL to generalise learnt
nogoods to the non-ground level and reuse such non-ground nogoods for future problem
instances. Preliminary work on non-ground rule learning has already been done in the scope
of OMiGA [29]. There, a technique called rule unfolding is proposed, which is based on
ideas from propositional resolution and derives new rules that are implied by the original
program. A new rule that is a constraint containing variables can be seen as a non-ground
nogood. To the best of our knowledge, non-ground rule learning has not yet been addressed in
conjunction with CDNL, and the question how such learnt rules can be utilised to accelerate
solving of future problem instances has also remained unstudied.

We expect that several aspects of our work will be beneficial not only for lazy-grounding
systems, but for ground-and-solve systems as well.

7 Conclusion

Lazy grounding is an approach to solve the grounding bottleneck in ASP by interleaving
grounding and solving. The performance of current lazy-grounding systems is not on par with
that of systems producing the full grounding upfront, however. The goal of this thesis is to
equip the lazy-grounding approach with novel heuristics and other techniques to make solving
faster. Preliminary results have been accomplished in the area of domain-independent and
domain-specific search heuristics. To the knowledge of the authors, this investigation of search
heuristics in lazy-grounding ASP systems is the first of its kind. Future achievements on
heuristics and conflict learning are expected to be transferable to ground-and-solve systems.

R. Taupe 20:7

References
1 Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco Ricca.

WASP: A native ASP solver based on constraint learning. In Pedro Cabalar and
Tran Cao Son, editors, Logic Programming and Nonmonotonic Reasoning, 12th Inter-
national Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceed-
ings, volume 8148 of Lecture Notes in Computer Science, pages 54–66. Springer, 2013.
doi:10.1007/978-3-642-40564-8_6.

2 ASP Standardization Working Group. ASP-Core-2 input language format, 2012-12-13.
URL: https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf.

3 Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at
a glance. Commun. ACM, 54(12):92–103, 2011. doi:10.1145/2043174.2043195.

4 Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari. I-dlv: The New
Intelligent Grounder of dlv. In Giovanni Adorni, Stefano Cagnoni, Marco Gori, and Marco
Maratea, editors, AI*IA 2016: Advances in Artificial Intelligence - XVth International
Conference of the Italian Association for Artificial Intelligence, Genova, Italy, November
29 - December 1, 2016, Proceedings, volume 10037 of Lecture Notes in Computer Science,
pages 192–207. Springer, 2016. doi:10.1007/978-3-319-49130-1_15.

5 Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco Ricca. Design and
results of the Fifth Answer Set Programming Competition. Artif. Intell., 231:151–181,
2016. doi:10.1016/j.artint.2015.09.008.

6 Bernardo Cuteri, Carmine Dodaro, Francesco Ricca, and Peter Schüller. Constraints, lazy
constraints, or propagators in ASP solving: An empirical analysis. TPLP, 17(5-6):780–799,
2017. doi:10.1017/S1471068417000254.

7 Minh Dao-Tran, Thomas Eiter, Michael Fink, Gerald Weidinger, and Antonius Weinzierl.
OMiGA : An open minded grounding on-the-fly answer set solver. In Luis Fariñas del
Cerro, Andreas Herzig, and Jérôme Mengin, editors, Logics in Artificial Intelligence - 13th
European Conference, JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings,
volume 7519 of Lecture Notes in Computer Science, pages 480–483. Springer, 2012. doi:
10.1007/978-3-642-33353-8_38.

8 Broes de Cat, Marc Denecker, Peter J. Stuckey, and Maurice Bruynooghe. Lazy Model
Expansion: Interleaving Grounding with Search. J. Artif. Intell. Res., 52:235–286, 2015.
doi:10.1613/jair.4591.

9 Carmine Dodaro, Philip Gasteiger, Nicola Leone, Benjamin Musitsch, Francesco Ricca,
and Konstantin Schekotihin. Combining Answer Set Programming and domain heuristics
for solving hard industrial problems (Application Paper). TPLP, 16(5-6):653–669, 2016.
doi:10.1017/S1471068416000284.

10 Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran. Complexity results
for answer set programming with bounded predicate arities and implications. Ann. Math.
Artif. Intell., 51(2-4):123–165, 2007. doi:10.1007/s10472-008-9086-5.

11 Thomas Eiter, Gerhard Friedrich, Richard Taupe, and Antonius Weinzierl. Lazy Ground-
ing for Dynamic Configuration. KI - Künstliche Intelligenz, May 2018. doi:10.1007/
s13218-018-0536-x.

12 Wolfgang Faber, Nicola Leone, and Simona Perri. The Intelligent Grounder of DLV. In
Esra Erdem, Joohyung Lee, Yuliya Lierler, and David Pearce, editors, Correct Reasoning -
Essays on Logic-Based AI in Honour of Vladimir Lifschitz, volume 7265 of Lecture Notes in
Computer Science, pages 247–264. Springer, 2012. doi:10.1007/978-3-642-30743-0_17.

13 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Philipp Wanko. Theory Solving Made Easy with Clingo 5. In Manuel Carro, Andy
King, Neda Saeedloei, and Marina De Vos, editors, Technical Communications of the 32nd
International Conference on Logic Programming, ICLP 2016 TCs, October 16-21, 2016,

ICLP 2018

http://dx.doi.org/10.1007/978-3-642-40564-8_6
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1007/978-3-319-49130-1_15
http://dx.doi.org/10.1016/j.artint.2015.09.008
http://dx.doi.org/10.1017/S1471068417000254
http://dx.doi.org/10.1007/978-3-642-33353-8_38
http://dx.doi.org/10.1007/978-3-642-33353-8_38
http://dx.doi.org/10.1613/jair.4591
http://dx.doi.org/10.1017/S1471068416000284
http://dx.doi.org/10.1007/s10472-008-9086-5
http://dx.doi.org/10.1007/s13218-018-0536-x
http://dx.doi.org/10.1007/s13218-018-0536-x
http://dx.doi.org/10.1007/978-3-642-30743-0_17

20:8 Speeding up Lazy-Grounding Answer Set Solving

New York City, USA, volume 52 of OASICS, pages 2:1–2:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/OASIcs.ICLP.2016.2.

14 Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub. Advances in gringo
Series 3. In James P. Delgrande and Wolfgang Faber, editors, Logic Programming and Non-
monotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada,
May 16-19, 2011. Proceedings, volume 6645 of Lecture Notes in Computer Science, pages
345–351. Springer, 2011. doi:10.1007/978-3-642-20895-9_39.

15 Martin Gebser, Benjamin Kaufmann, Ramón Otero, Javier Romero, Torsten Schaub, and
Philipp Wanko. Domain-Specific Heuristics in Answer Set Programming. In Marie des-
Jardins and Michael L. Littman, editors, Proceedings of the Twenty-Seventh AAAI Con-
ference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA., pages
350–356. AAAI Press, 2013. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI13/
paper/view/6278.

16 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artif. Intell., 187:52–89, 2012. doi:10.1016/j.artint.
2012.04.001.

17 Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Program-
ming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming, Pro-
ceedings of the Fifth International Conference and Symposium, Seattle, Washington, August
15-19, 1988 (2 Volumes), pages 1070–1080. MIT Press, 1988.

18 Evguenii I. Goldberg and Yakov Novikov. BerkMin: A Fast and Robust Sat-Solver. In
2002 Design, Automation and Test in Europe Conference and Exposition (DATE 2002),
4-8 March 2002, Paris, France, pages 142–149. IEEE Computer Society, 2002. doi:10.
1109/DATE.2002.998262.

19 Benjamin Kaufmann, Nicola Leone, Simona Perri, and Torsten Schaub. Grounding and
Solving in Answer Set Programming. AI Magazine, 37(3):25–32, 2016. URL: http://www.
aaai.org/ojs/index.php/aimagazine/article/view/2672.

20 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, and Laurent Garcia. ASPeRiX, a first-
order forward chaining approach for answer set computing. TPLP, 17(3):266–310, 2017.
doi:10.1017/S1471068416000569.

21 Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log., 7(3):499–562, 2006. doi:10.1145/1149114.1149117.

22 Vladimir Lifschitz. What Is Answer Set Programming? In Dieter Fox and Carla P. Gomes,
editors, Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, Chicago, Illinois, USA, July 13-17, 2008, pages 1594–1597. AAAI Press, 2008. URL:
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php.

23 Vladimir Lifschitz. Thirteen Definitions of a Stable Model. In Andreas Blass, Nachum Der-
showitz, and Wolfgang Reisig, editors, Fields of Logic and Computation, Essays Dedicated
to Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of Lecture Notes in
Computer Science, pages 488–503. Springer, 2010. doi:10.1007/978-3-642-15025-8_24.

24 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM,
2001. doi:10.1145/378239.379017.

25 Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. GASP:
answer set programming with lazy grounding. Fundam. Inform., 96(3):297–322, 2009. doi:
10.3233/FI-2009-180.

26 Gottfried Schenner and Richard Taupe. Techniques for Solving Large-Scale Product
Configuration Problems with ASP. In Linda L. Zhang and Albert Haag, edit-

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.2
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6278
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6278
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1109/DATE.2002.998262
http://dx.doi.org/10.1109/DATE.2002.998262
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672
http://dx.doi.org/10.1017/S1471068416000569
http://dx.doi.org/10.1145/1149114.1149117
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
http://dx.doi.org/10.1007/978-3-642-15025-8_24
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.3233/FI-2009-180
http://dx.doi.org/10.3233/FI-2009-180

R. Taupe 20:9

ors, Proceedings of the 19th International Configuration Workshop, pages 12–19, La
Défense, France, 2017. URL: https://www.ieseg.fr/wp-content/uploads/2017/01/
Proceedgins_FinalV2.pdf#page=12.

27 Richard Taupe. Lazy Grounding and Heuristic Solving in Answer Set Programming. In
Marina de Vos, editor, LPNMR 2017 Doctoral Consortium, Bath, 2017. URL: http://
lpnmr-dc.cs.bath.ac.uk/programme/Proceedings.pdf#page=41.

28 Richard Taupe, Antonius Weinzierl, and Gottfried Schenner. Introducing Heuristics for
Lazy-Grounding ASP Solving. In 1st International Workshop on Practical Aspects of
Answer Set Programming, 2017. URL: https://sites.google.com/site/paoasp2017/
Taupe-et-al.pdf.

29 Antonius Weinzierl. Learning Non-Ground Rules for Answer-Set Solving. In David Pearce,
Shahab Tasharrofi, Evgenia Ternovska, and Concepción Vidal, editors, 2nd Workshop on
Grounding and Transformations for Theories With Variables, pages 25–37, 2013. URL:
http://kr.irlab.org/sites/10.56.35.200.gttv13/files/gttv13.pdf#page=31.

30 Antonius Weinzierl. Blending Lazy-Grounding and CDNL Search for Answer-Set Solving.
In Marcello Balduccini and Tomi Janhunen, editors, Logic Programming and Nonmonotonic
Reasoning - 14th International Conference, LPNMR 2017, Espoo, Finland, July 3-6, 2017,
Proceedings, volume 10377 of Lecture Notes in Computer Science, pages 191–204. Springer,
2017. doi:10.1007/978-3-319-61660-5_17.

ICLP 2018

https://www.ieseg.fr/wp-content/uploads/2017/01/Proceedgins_FinalV2.pdf#page=12
https://www.ieseg.fr/wp-content/uploads/2017/01/Proceedgins_FinalV2.pdf#page=12
http://lpnmr-dc.cs.bath.ac.uk/programme/Proceedings.pdf#page=41
http://lpnmr-dc.cs.bath.ac.uk/programme/Proceedings.pdf#page=41
https://sites.google.com/site/paoasp2017/Taupe-et-al.pdf
https://sites.google.com/site/paoasp2017/Taupe-et-al.pdf
http://kr.irlab.org/sites/10.56.35.200.gttv13/files/gttv13.pdf#page=31
http://dx.doi.org/10.1007/978-3-319-61660-5_17

Knowledge Authoring and Question Answering via
Controlled Natural Language
Tiantian Gao
Department of Computer Science, Stony Brook University
Stony Brook, NY, USA
tiagao@cs.stonybrook.edu

Abstract
Knowledge acquisition from text is the process of automatically acquiring, organizing and struc-
turing knowledge from text which can be used to perform question answering or complex reas-
oning. However, current state-of-the-art systems are limited by the fact that they are not able
to construct the knowledge base with high quality as knowledge representation and reasoning
(KRR) has a keen requirement for the accuracy of data. Controlled Natural Languages (CNLs)
emerged as a technology to author knowledge using a restricted subset of English. However, they
still fail to do so as sentences that express the same information may be represented by different
forms. Current CNL systems have limited power to standardize sentences that express the same
meaning into the same logical form. We solved this problem by building the Knowledge Author-
ing Logic Machine (KALM), which is a technology for domain experts who are not familiar with
logic to author knowledge using CNL. The system performs semantic analysis of English sen-
tences and achieves superior accuracy of standardizing sentences that express the same meaning
to the same logical representation. Besides, we developed the query part of KALM to perform
question answering, which also achieves very high accuracy in query understanding.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning, Computing methodologies → Natural language processing

Keywords and phrases Knowledge Authoring, Question Answering, Controlled Natural Lan-
guage

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.21

1 Introduction

Knowledge acquisition is the process of extracting, organizing, and structuring knowledge
from data sources such that the constructed knowledge base can be used for question
answering or performing complex reasoning. Traditional ways of knowledge acquisition
largely reply on domain experts to encode the knowledge base in rule-based systems such
as XSB [12] and Clingo [4]. However, this requires too much domain specific knowledge
and eligible engineers are in very short supply. Information extraction systems emerged
as the tools to extract knowledge frame text (i.e., OpenIE [1], SEMAFOR [2], Stanford
CoreNLP/KBP [8], SLING [10]). They achieved admirable results in processing free text,
however, their accuracy is far from meeting the requirement of knowledge representation.
In addition, they are only designed to extract the knowledge from text, but not intended
to represent it in a way suitable for reasoning. Controlled Natural Languages (CNLs) [7]
emerged as a technology that bridges this gap. Representative systems include Attempto
Controlled English (ACE) [3] and Processable English (PENG) [11]. They are designed to
process English sentences with restricted grammar but unambiguous interpretations and
translate the sentences into logic for reasoning. The main issue with CNLs is that they have

© Tiantian Gao;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 21; pp. 21:1–21:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tiagao@cs.stonybrook.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

21:2 Knowledge Authoring and Question Answering via Controlled Natural Language

Figure 1 Pipeline for translating a sentence into ULR.

limited power of standardizing sentences that express the same information via different
syntactic forms into the same logical representation. For instance, the sentences a customer
buys a phone, a customer makes a purchase of a phone, a customer is a buyer of a phone
are mapped to different logical representations. Therefore, they are not suffice for question
answering or complex logical reasoning.

In this work, we build Knowledge Authoring Logic Machine (KALM), which conducts
semantic analysis of CNL sentences and achieves superior accuracy of standardizing English
sentences that express the same information via different forms to the same logical form.
The system is built based on utilizing linguistic knowledge bases (BabelNet [9] and FrameNet
[5]) and our frame-based parsing and disambiguation algorithms. Besides, we developed
the query part of KALM which supports high accuracy query parsing and answer retrieval.
The following is organized as follows: Section 2 describes the KALM system for knowledge
authoring, Section 3 describes the query part of KALM, Section 4 shows the evaluation
results of KALM, Section 5 discusses the next steps of work, Section 6 concludes the paper.

2 Knowledge Authoring Logic Machine (KALM)

Figure 1 shows the pipeline of KALM that translates a CNL sentence into unique logical
representation (ULR), the semantic form of CNL sentences. The KALM framework consists
of five components:

Syntactic Parsing. We use Attempto Parsing Engine (APE)1 to parse CNL sentences
and translate them into Discourse Representation Structure (DRS) [6], which represents
the syntactic and dependency information of the sentences. DRS relies on 7 predicates:
object/6, predicate/4, property/3, modifier_adv/3, modifier_pp/3, relation/3, and
has_part/2. For example, the object-predicate represents an entity which corresponds to
a noun word in the sentences. A predicate-predicate represents an event and the subject
and object of the events. predicate-predicate corresponds to a verb word in a sentence. For
example, given the sentence A customer buys a phone, it is parsed into DRS as

object(A,customer,countable,na,eq,1)
object(B,phone,countable,na,eq,1)
predicate(C,buy,A,B)

1 https://github.com/Attempto/APE

https://github.com/Attempto/APE

T. Gao 21:3

Frame-based Parsing. Based on the DRS, the frame-based parser generates a list of
candidate parses, which represent the frame-semantic relations the sentences entail. For
instance, given the sentence A customer buys a phone, the frame-based parser generates
the following parse result: Frame(Commerce_Buy, Roles: Buyer = customer, Goods =
phone). The parse says there are two entities: customer and phone, which are involved in
the Commerce_Buy relation. The customer serves as the Buyer role of this frame relation and
phone serves as the Goods role of the frame relation. The parser is constructed based on two
components: logical frames and logical valence patterns (lvps). The logical frames represent
the definition of the frame relations via Prolog facts. For instance, the Commerce_Buy2 frame
is represented as

fp(Commerce_Buy,[
role(Buyer, [bn:00014332n], []),
role(Seller, [bn:00053479n], []),
role(Goods, [bn:00006126n,bn:00021045n], []),
role(Recipient, [bn:00066495n],[]),
role(Money, [bn:00017803n], [currency])]).

where for each role-term, the first argument represents the name of the frame role, the
second argument represents the BabelNet synsets associated which capture the meaning of
the role, and the third argument specifies some data type constraints. The lvps represent
the grammatical context of a sentence that could potentially entail a frame. Consider the
following lvp for extracting an instance of the Commerce_Buy frame:

lvp(buy, v, Commerce_Buy, [
pattern(Buyer, verb->subject, required),
pattern(Goods, verb->object, required),
pattern(Recipient, verb->pp(for)->dep, optnl),
pattern(Money, verb->pp(for)->dep, optnl),
pattern(Seller, verb->pp(from)->dep, optnl)]).

The first and second arguments represents a lexical unit (a word + part-of-speech) that
could trigger an instance of the Commerce_Buy frame. Next, it comes with a list of pattern-
terms, each represents the syntactical context between the lexical unit, frame role, and
the actual role-filler word. The lvps are generated automatically by KALM based on the
annotated training sentences, which contains the frame name, lexical unit, and frame elements
information. When a new sentence comes, we check every word in the sentence and find
whether there exists any lvp whose lexical unit matches the chosen word. If so, we apply the
lvp to the sentence and extract an instance of the frame from the sentence.

Role-Filler Disambiguation. Doing frame-based parsing is not enough because the afore-
mentioned frame-based parsing only replies the grammatical information of the sentence.
This way of parsing may generate candidate parses that misidentify the frames, role-filler
words, or assign the wrong roles to the role-filler words. To rule out the wrong parses,
we perform role-filler disambiguation which checks whether the extracted role-filler words
are semantically compatible with the frame roles. For each role-filler and role pair, we
compute a semantic score. Based on the scores for the role-filler and role pairs, we score the

2 https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Commerce_buy.xml

ICLP 2018

https://framenet2.icsi.berkeley.edu/ fnReports/data/frame/Commerce_buy.xml

21:4 Knowledge Authoring and Question Answering via Controlled Natural Language

entire candidate parse and removes the ones that falls below a threshold. To compute the
semantic score, we first query the role-filler word against BabelNet and get a list of associated
BabelNet synsets (called candidate role-filler synsets). Then, we traverse BabelNet semantic
network and measure the semantic similarity between each candidate role-filler synset and
the corresponding role-synset. Basically, we consider all semantic paths that connect the
synset pair, and then use a heuristic scoring function to score the path. The candidate
role-filler synset which achieves the highest semantic score is chosen and assigned as the
disambiguated role-filler synset for the respective role-filler word.

Translating into ULR. Based on the disambiguated candidate parses generated from the
role-filler disambiguation step, we translate the parses into ULR. ULR uses frame/2 and
role/2 predicates to represent instances of frames and roles. ULR uses synset/2 and text/2
predicates to represent the synset and text information for the role-filler words. For example,
the sentence a customer buys a phone is translated into ULR as

frame(id_1, Commerce_buy).
role(id_1, Buyer, id_2).
role(id_1, Goods, id_3).
synset(id_2, bn:00022095n). % customer synset
text(id_2, customer).
synset(id_3, bn:00062020n). % phone synset
text(id_3, phone).

3 Question Answering

3.1 Issues in CNL-based Queries
The ACE query language3 supports two types of queries: true/false- and wh-queries where
the query words include who, where, what, and so on. A true/false-query is translated into
DRS the same way as a definite sentence does. For wh-queries, APE uses a special predicate
query/2 to represent the wh-words. For instance, the query who buys what? is represented
in DRS as

query(A,who)-1/1
query(B,what)-1/3
predicate(C,buy,A,B)-1/2

where the variables who and what are captured by the query-predicate.
However, APE only does shallow syntactic analysis of a query. There are a few issues

to solve before we can precisely capture the meaning of a query and acquire the intended
knowledge. Consider the following query sentences:
1. Mary buys which car?
2. Who buys IBM’s stocks?
3. Which person buys which car in which place at which price?
4. A $person buys a $car in a $place at a $price.

First of all, as a wh-variable is a placeholder for the entities to be shown in the output
result, the type of entities the variable represents must be disambiguated and also used for

3 http://attempto.ifi.uzh.ch/site/docs/ace/6.7/ace_constructionrules.html

http://attempto.ifi.uzh.ch/site/docs/ace/6.7/ace_constructionrules.html

T. Gao 21:5

Figure 2 Pipeline for translating a query into ULRQ and answer retrieval and filtering.

acquiring the related information. As shown in Sentence (1) in the above example, we need
to identify that the type of the entities associated with the which-variable is a car. Therefore,
if we know Mary buys both a Camry and a pen, only Camry should be returned.

Second, ACE’s query language has constrained power of denoting types in the query. As
shown in Sentence (2) in the above example, emphWho could refer to either a company or a
person. However, it is ambiguous whether the user intends to acquire company or person
entities or both. One solution to that is to use the query word which and rewrite the sentence
as Which person buys IBM’s stocks if the user intends to acquire person entities. However,
the sentence may become cumbersome when there are many such typed variables as shown
in Sentence (3). To solve this problem, we introduce typed output variables in the query
language as the form $type. Hence, Sentence (3) will be rewritten to Sentence (4) which is
expressed in a more precise and concise way.

Third, to acquire the associated instances of frames from the knowledge base which is
constructed in the knowledge authoring phase, we also need to perform frame-semantic
parsing based on queries. However, as shown in the previous example, the DRS for query is
not exactly the same as the DRS used to represent definite sentences. Therefore, the existing
lvps are not applicable for parsing queries. One way to solve this problem is to construct
an additional set of training sentences for queries. However, this will requires a lot of work.
Besides, since FrameNet doesn’t contain any sentences related to queries, it would require a
lot of manual work to construct CNL queries. To solve this issue, we perform a DRS rewrite
to queries such that we can reuse the existing lvps for definite sentences to parse queries.

3.2 Question Answering

Figure 2 shows the pipeline that translates a CNL query into the logical form, Unique Logical
Representation for Queries (ULRQ), which is used to query the knowledge base to retrieve
the answers. The question answering part consists of the following components:

Syntactic Parsing. This is the same as the knowledge authoring part.

Query Parsing. We also perform frame-based parsing to generate several candidate parses
which represent the frame relations the query belongs to. However, as mentioned in the
previous subsection, the DRS for queries are different from the DRS for definite sentences.
Therefore, we perform a DRS adaptation of the DRS corresponding to the query such that
the existing lvps for definite sentences can be reused to do frame-based parsing for queries.
Besides, we perform a syntactic analysis of the queries and identify the lexical types of the
query words (e.g., which).

ICLP 2018

21:6 Knowledge Authoring and Question Answering via Controlled Natural Language

Role-Filler Disambiguation. This is the same as the knowledge authoring part.

Translating Queries into ULRQ. Queries are represented in a similar way as definite
sentences except that we use logical variables to denote instances of frames and roles. For
instance, the query Who buys a phone? is translated into ULRQ as

?- frame(FrameV,’Commerce_Buy’),
role(FrameV,’Buyer’,BuyV), synset(BuyV,BuyerRoleFillerOutV),
role(FrameV,’Goods’,GoodV), synset(GoodV,GoodsRoleFillerOutV),
check_type(BuyerRoleFillerOutV,bn:00046516n), % person synset
check_type(GoodsRoleFillerOutV,bn:00062020n). % phone synset

Type Filtering of Query Results. As is shown from the ULRQ above, the clauses from
lines 1-3 retrieves all instances of frames and the associated roles from the knowledge base.
However, not all role-fillers for Buyer and Goods may be related to person and phone. To
rule out the unrelated ones, we perform type filtering of the query results, which calls the
check_type predicate in the above ULRQ.

4 Evaluation

At present, KALM contains 50 logical frames with 213 logical valance patterns. We use the
following metrics to measure the performance of the system:

FrSynC all frames, roles & output variables are identified correctly; all role-filler
words & variable types are disambiguated correctly

FrC all frames, roles and output variables are identified correctly, but some
disambiguation mistakes

Wrong some frames, roles or output variables are misidentified

For knowledge authoring, we achieve an accuracy of 95.6% (FrSynC). This accuracy is
far from the state-of-the-art information extraction systems including SEMAFOR, SLING,
and Stanford CoreNLP. For understanding of the queries, we achieve an accuracy of 94.49%
(FrSynC).

5 Next Steps

The current work focuses on authoring of definite knowledge from CNL sentences and question
answering. The next step is to acquire rules from CNL sentences and perform more complex
reasoning. This not only requires parsing individual sentences correctly, but also requires
multi-sentence parsing and information in different sentences must be related to each other
properly. This goes well beyond anaphora resolution, which ACE is already able to handle.
1. Every bird is an animal.
2. Every bird flies.
3. Stella is a sea eagle.
4. Penguins do not fly.
5. A violet is not an animal.
6. Sparrow Daffy doesn’t fly.

Consider the above example: Sentences (1) and (2) denote rules which say that if we know
there is a bird, we can infer the bird is an animal and flies. Therefore, based on Sentences (1),
(2) and (3), we can infer Stella is an animal and flies. However, this does’t hold for Tweety

T. Gao 21:7

because Sentence (4) is an exception to Sentence (2) and therefore refutes any conclusion
derived from Sentence (2). Moreover, based on Sentence (1) and (5), since a violet is not an
animal, we conclude that a violet is not a bird. But, this way of reasoning is not desired for
Sentence (2) and (6) because Daffy may be injured and therefore not being able to fly.

To precisely capture the meaning of rules in CNL and perform reasoning for the above
cases, the research issues are three-fold: the first issue is the development of CNL extensions
that are suitable for representing rules and inter-sentence dependencies/references. For
instance, in addition to the form “every . . .” as shown in Sentence (1) and (2), we can also
use an “if . . .then” statement to represent a rule. Besides, we need a mechanism to indicate
the inter-sentence dependencies as shown in Sentence (1) and (4) where Sentence (4) is an
exception case to Sentence (2). This could be done either by specifying the inter-sentence
dependencies explicitly or by an automatic mechanism to recognize these dependencies
without explicit mentioning.

The second issue is the actual nature of the logic to be used for capturing rules. As
shown in the above example, when there is a fact that a violet is not an animal, it is natural
to infer that it is not an animal. But, it is not reasonable to infer the Daffy is not a bird
if Daffy doesn’t fly. To distinguish the differences, we can use a first-order logic rule to
represent Sentence (1) where contrapositive inference is desired and use a Prolog rule to
represent Sentence (2) where contrapositive inference is not required. As to the inter-sentence
dependency between Sentence (2) and (4), we believe defeasible logic is a good fit. Basically,
rules have priories in defeasible logic where the rule with a higher priority can defeat a default
rule which has a lower priority. For the above example, we label Sentence (4) as a rule with
a higher priority than the rule corresponding Sentence (2) and also defeat the low priority
rule when incompatible conclusions are derived.

The third issue is standardization. Same as knowledge authoring for definite sentences and
queries, we will also standardize rules that express the same meaning via different syntactic
forms.

6 Conclusion

In this work, we described the KALM system, which achieves superior accuracy in knowledge
authoring and question answering. The system is built on our frame-based parsing and
disambiguation algorithms and the use of external linguistic knowledge bases including
BabelNet and FrameNet. As the next step, we plan to work on extracting rules from
sentences and perform common sense reasoning.

References

1 Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Leveraging
Linguistic Structure For Open Domain Information Extraction. In 53rd Annual Meeting of
the Association for Computational Linguistics, pages 344–354, Beijing, China, 2015.

2 Dipanjan Das, Desai Chen, André F. T. Martins, Nathan Schneider, and Noah A. Smith.
Frame-Semantic Parsing. Comp, Linguistics, 40(1):9–56, 2014. doi:10.1162/COLI_a_
00163.

3 Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled English for
Knowledge Representation. In Reasoning Web, 4th Intl. Summer School, Sept. 7-11, pages
104–124, Venice, Italy, 2008.

ICLP 2018

http://dx.doi.org/10.1162/COLI_a_00163
http://dx.doi.org/10.1162/COLI_a_00163

21:8 Knowledge Authoring and Question Answering via Controlled Natural Language

4 Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Thomas Schneider. Potassco: The Potsdam Answer Set Solving Collection. AI
Commun., 24(2):107–124, 2011.

5 Chrstopher R. Johnson, Charles J. Fillmore, Miriam R.L. Petruck, Collin F. Baker, Mi-
chael J. Ellsworth, Josef Ruppenhofer, and Esther J. Wood. FrameNet: Theory and Prac-
tice, 2002.

6 Hans Kamp and Uwe Reyle. From discourse to logic: Introduction to modeltheoretic se-
mantics of natural language, formal logic and discourse representation theory, volume 42.
Springer Science & Business Media, 2013.

7 Tobias Kuhn. A Survey and Classification of Controlled Natural Languages. Comp. Lin-
guistics, 40(1):121–170, 2014.

8 Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. The Stanford CoreNLP Natural Language Processing Toolkit. In
Association for Computational Linguistics (ACL) System Demonstrations, pages 55–60,
2014. URL: http://www.aclweb.org/anthology/P/P14/P14-5010.

9 Roberto Navigli and Simone Paolo Ponzetto. BabelNet: The automatic construction, eval-
uation and application of a wide-coverage multilingual semantic network. Artificial Intelli-
gence, 193:217–250, 2012.

10 Michael Ringgaard, Rahul Gupta, and Fernando C. N. Pereira. SLING: A framework for
frame semantic parsing. CoRR, 1710.07032:1–9, 2017. arXiv:1710.07032.

11 Rolf Schwitter. English as a Formal Specification Language. In 13th Intl. Workshop on
Database and Expert Systems Appl. (DEXA 2002), pages 228–232, Aix-en-Provence, France,
2002.

12 T. Swift and D.S. Warren. XSB: Extending the power of prolog using tabling. Theory and
Practice of Logic Programming, 2011.

http://www.aclweb.org/anthology/P/P14/P14-5010
http://arxiv.org/abs/1710.07032

Natural Language Generation From Ontologies
Using Grammatical Framework

Van Duc Nguyen
Computer Science Department
New Mexico State University, USA
vnguyen@cs.nmsu.edu

Abstract
The paper addresses the problem of automatic generation of natural language descriptions for
ontology-described artifacts. The motivation for the work is the challenge of providing textual
descriptions of automatically generated scientific workflows (e.g., paragraphs that scientists can
include in their publications). The extended abstract presents a system which generates descrip-
tions of sets of atoms derived from a collection of ontologies. The system, called nlgPhylogeny,
demonstrates the feasibility of the task in the Phylotastic project, that aims at providing evol-
utionary biologists with a platform for automatic generation of phylogenetic trees given some
suitable inputs. nlgPhylogeny utilizes the fact that the Grammatical Framework (GF) is suit-
able for the natural language generation (NLG) task; the abstract shows how elements of the
ontologies in Phylotastic, such as web services, inputs and outputs of web services, can be encoded
in GF for the NLG task.

2012 ACM Subject Classification Computing methodologies → Logic programming and answer
set programming, Information systems → Web services, Computing methodologies → Natural
language generation

Keywords and phrases Phylotastic, Grammatical Framework

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.22

1 Introduction

In many applications whose users are not proficient in computer programming, it is of the
utmost important to be able to communicate the results of a computation to the users in an
easily understandable way (e.g., text rather than a complex data structure). The problem
of generating natural language explanations has been explored in several research efforts.
For example, the problem has been studied in the context of question-answering systems1,
providing recommendations2, etc. With the proliferation of spoken dialogue systems and
conversational agents on mobile robots, phones, etc., verbal interfaces such as Amazon
Echo and Google Home for human-robot-interaction, and the availability of text-to-speech
programs such as the TTSReader Extension3, the application arena of systems capable of
generating natural language representation will just become larger.

In this paper, we describe a system called nlgPhylogenyfor generating natural language
descriptions of collections of atoms derived from a set of ontologies. The system is powered
by Grammatical Framework.

1 http://coherentknowledge.com
2 http://gem.med.yale.edu/ergo/default.htm
3 https://ttsreader.com

© Van D. Nguyen;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 22; pp. 22:1–22:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vnguyen@cs.nmsu.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.22
http://coherentknowledge.com
http://gem.med.yale.edu/ergo/default.htm
https://ttsreader.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

22:2 Natural Language Generation From Ontologies Using Grammatical Framework

Ontology Linearization Pre-defined
Conjunctive

Pre-defined
Vocabulary

GF GeneratorAdapter

Portable
grammar

format

Sentence
Model

English concrete
syntax

Abstract
syntax

Workflow Atoms English
Description

GF Runtime API

Sentence generator

Figure 1 Overview of nlgPhylogeny.

2 Methodology

In this section, we describe the nlgPhylogeny system. Figure 1 shows the overall architecture
of nlgPhylogeny. The main component of the system is the GF generator whose inputs are
the ontology and the elements necessary for the NLG task (i.e., the set of linearizations,
the set of pre-define conjunctives, the set of vocabularies, and the set of sentence models)
and whose output is a GF program, i.e., a pair of GF abstract and concrete syntax. This
GF program is used for generating the descriptions of workflows via the GF runtime API.
The adapter provides the GF generator with the information from the ontology, such as the
classes, instances, and relations.

2.1 Web Service Ontology (WSO)
Phylotastic uses web service composition to generate workflows for the extraction/con-
struction of phylogenetic trees. It makes use of two ontologies: WSO and PO. WSO
encodes information about registered web services and their abstract classes. In the fol-
lowing discussion, we refer to a simplified version of the ASP encoding of the ontologies
used in [3], to facilitate readability. In WSO, a service has a name and is associated
with a list of inputs and a list of outputs. For example, the service which is named
in ontology phylotastic_FindScientificNamesFromWeb_GET is an instance of the class
names_extraction_web. The data that phylotastic_FindScientificNamesFromWeb_GET
uses and produces are encoded by the following 3 atoms:

instance_operation_has_input_has_data_format(
phylotastic_FindScientificNamesFromWeb_GET,
resource_WebURL,
url_format).

instance_operation_has_output_has_data_format(
phylotastic_FindScientificNamesFromWeb_GET,
resource_SetOfSciName,
scientific_names_format).

instance_operation_has_output_has_data_format(

V.D. Nguyen 22:3

phylotastic_FindScientificNamesFromWeb_GET,
resource_SetOfNames,
list_of_strings).

In regard the above atoms, the first argument is the name of the service, the second argument
is the service input or output, and the last argument is the data type of the second argument.

The web service ontology of the Phylotastic project is exported to an ASP program (from
its original OWL encoding) and an inference engine is provided for reasoning about classes,
inheritance, etc. nlgPhylogeny employs this engine in identifying information related to the
set of atoms whose description is requested by a user (e.g., What are the inputs of a service?
What is the data type of an input x of a service y?).

2.2 GF generator

Each Phylotastic workflow is an acyclic directed graph, where the nodes are web services,
each consumes some resources (inputs) and produces some resources (outputs). An example
of the specification of workflow is as follows.4

occur_concrete(phylotastic_ExtractSpeciesNames_From_Gene_Tree_GET,1)
occur_concrete(phylotastic_ResolvedScientificNames_OT_TNRS_GET,3)
occur_concrete(phylotastic_GenerateGeneTree_From_Genes,0)
occur_concrete(phylotastic_GeneTree_Scaling,2)

This set of atoms is a partial description of the result of a web service composition process,
as described in [3]. Intuitively, this set of atoms represents a plan consisting of 4 steps. At
each step, a concrete instance of the service class named by the first argument of the atom
occur_concrete/2 is executed.

To generate the description of a workflow, we employ the framework described in [4].
This framework consists of three major processing phases: (1) document planning (content
determination), (2) microplanning, and (3) surface realization. The document planning
phase is used to determine the structure of the text to be generated. Based on the structure
determined in the document planning phase, the microplanner makes lexical/syntactic choices
to generate the content of the sentences, and the realization phase generates the actual
sentences. In our work, we combine the microplanning and surface realization phase into a
single phase due to the nature of the grammar definition and the capability of GF in sentence
generation.

In the document planning step, we create – for each occurrence atom – a sentence which
specifies the input(s) and output(s) of the service mentioned in the first argument of the
atom. Optionally, to describe the service in more details, one or two more sentences about
datatype of the service’s inputs or outputs can be included. As we have mentioned in the
previous subsection, the information about the inputs, outputs, and data types of the inputs
and outputs of a service can be obtained via the ASP reasoning engine of the Phylotastic
system. In general, we identify the following document planning structure:

4 For simplicity, we use examples which are linear sequences of services.

ICLP 2018

22:4 Natural Language Generation From Ontologies Using Grammatical Framework

relation: IDENTITY
argument_1: instance or class in ontology
argument_2: list of service inputs
argument_3: list of service outputs

(optional)
relation: IDENTITY

argument_1: name of input or output of service
argument_2: data type of argument_1

(optional)
relation: IDENTITY
argument: actual data involved in the workflow

The document planning phase determines three messages for the sentence generation phase.
In the microplanning step, we focus on developing a GF generator that can produce a

portable grammar format (pgf) file [1]. This file is able to encode and generate 3 types of
sentences as mentioned above. The GF generator (see Fig. 1) accepts two flows of input data:
The first one is the flow of data from the ontology which is maintained by an adapter. The
adapter is the glue code that connects the ontology to the GF generator. Its main function is
to extract classes and properties from the ontology. The second one is the flow of data from
predefined resources that cannot be automatically obtained from the ontology – instead they
require manual effort from both ontology experts and linguistic developers:

A list of linearizations; these are essentially the translations of names of ontology entities
into linguistic terms. This translation is performed by experts who have knowledge of
the ontology domain. An important reason for the existence of this component is that
some classes or terms used in the ontology might not be directly understandable by the
end user. This may be the result of very specialized strings used in the encoding of
the ontology by the ontology engineer (e.g., abbreviations), or the use of URIs for the
representation of certain concepts. For example, the class phylotastic_OTResolvedNames
can be meaningfully linearized to OpenTree Name Resolution service.
Some model sentences which are principally Grammatical Framework syntax trees with
meta-information. The meta-information denotes which part of syntax tree can be
replaced by some vocabulary or linearization. As indicated above, we decided that each
occurrence atom of a workflow will be described by at most three sentences. For example,
in regards to the first message in the document planning structure, the generated sentence
will have the inputs and the outputs of a service; the second message indicates a sentence
about the data type of its first argument (input or output); the third message is about
the actual data used during the execution of the workflow. However, the messages do not
specify how many inputs and outputs should be included in the generated sentence. The
structure of the sentence representing a service that requires one input and one output is
different from the structure of sentence representing that a service that does not require
any inputs. These variations in sentences are recorded in the model sentence component.
An example of a model sentence, for the case of a service that has a single input is as
follows:
{
"s": "mkS (mkCl subject_in p_in_1);",
"placeholder": {
"subject_in": ["input of subject", "subject’s input"]
}
}

V.D. Nguyen 22:5

A list of pre-defined vocabularies which are domain-specific for the ontology. A pre-defined
vocabulary is different from linearizations, in the sense that some lexicon may not be
present in the ontology but might be needed in the sentence construction; the predefined
vocabulary is also useful to bring variety in word choices when parts of a model sentence
are replaced by the GF generator.
A configuration of pre-defined conjunctives which depend on the document planning
result. Basically, this configuration defines which sentences accept a conjunctive adverb
in order to provide generated text transition and smoothness.

To encode sentences, the GF generator defines 3 categories: Input, Output and Format in
the abstract syntax.

abstract Phylo = {
flags startcat = Message;
cat
Message; Input; Output; Format;
...

}

and the corresponding English concrete syntax:

concrete PhyloEng of Phylo = open
SyntaxEng, ParadigmsEng, ConstructorsEng in {
lincat
Message = S; Input = NP; Output = NP; Format = NP;
...

}

SyntaxEng, ParadigmsEng, ConstructorsEng are GF Resources Grammar libraries which
provide some constructors for sentence components like Verb, Noun Phrase, etc.. in English.

The GF generator obtains information about the services (e.g., how many inputs/outputs
has the service? what are the data types of the inputs/outputs? etc.) by querying the
ontology (via the adapter). Each service will be mapped to several functions in GF:

A function which encodes the meaning of the sentence used for describing the service.
The GF generator will prefix the name of the service with f_ to create this kind of
function name.
A function which encodes the meaning of each input. The GF generator will prefix the
name of the input with i_.
A function which encodes the meaning of each output. The GF generator will prefix the
name of the output with o_.

Based on the number of inputs and outputs of a service, the GF generator determines how
many parameters will be included in the GF abstraction function corresponding to the service.
Furthermore, for each input or output of a service, the GF generator includes an Input or
Output in the GF abstract function. As an example, the result of the encoding of the atom

occur_concrete(phylotastic_FindScientificNamesFromWeb_GET,1)

in the GF abstract syntax is

ICLP 2018

22:6 Natural Language Generation From Ontologies Using Grammatical Framework

f_phylotastic_FindScientificNamesFromWeb_GET: Input -> Output -> Message;
i_resource_WebURL : Input;
o_resource_SetOfNames : Output;

Next, the GF generator looks up in the sentence models a model syntax tree whose structure
is suitable for the number of inputs and outputs of the service. If such syntax tree exists,
the GF generator will replace parts of the syntax tree with the GF service input and output
functions, to create a new GF syntax tree which can be appended in the GF concrete
function. The functions in the abstract syntax corresponds to the following functions in the
GF concrete syntax:

f_phylotastic_FindScientificNamesFromWeb_GET i_resource_WebURL
o_resource_SetOfNames =
mkS and_Conj
(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_in
(mkV2 "require")
i_resource_WebURL))
(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_out
(mkV2 "return")
o_resource_SetOfSciName));

i_resource_WebURL = mkNP(mkCN (mkN "webURL"));
i_resource_SetOfNames = mkNP(mkCN (mkN "asetof names"));

The above functions consist of several syntactic construction functions which are implemented
in the GF Resources Grammar library:

mkN which creates a noun from a string;
mkCN which creates a common noun from a noun;
mkNP which creates a noun phrase from a common noun;
mkV2 which creates a verb from a string;
mkCl which creates a clause. Clause can be constructed from sequence of a noun phrase,
a verb and another noun phrase (NP V2 NP);
mkS which creates a sentence. Sentence can be constructed from a clause (Cl) or from 2
other sentences and a conjunction word (and_Conj S S).

From the abstract and concrete syntax built by GF generator, the atom
occur_concrete(phylotastic_FindScientificNamesFromWeb_GET,1) is translated into the sen-
tence
The input of phylotastic_FindScientificNamesFromWeb_GET is a web link and its outputs
are a set of species names and a set of scientific names.
We use the same technique to encode the other types of sentences indicated by the document
planning structure.

3 Discussion and future works

To the best of our knowledge, we found the work in [2] that reports on generating natural
language text from class diagrams highly related to what we are doing. In [2], authors
developed a system to generate specifications for UML class design. The difference between
our work and [2] is the design of the system to employ automation on text generation for a
given ontology under some assumptions.

V.D. Nguyen 22:7

From our case study we have identified two directions of future work that we find interesting.
The first direction is to generate descriptions from annotations in ontology. We observe
that the annotations play an vital role in ontology development in the sense of recording
notes and explanations about concepts. Ontology developers usually use annotations to
define the concepts and to describe relations between the concepts in the ontology, so that
they employ reusablitity of the ontology. It is possible to apply natural language processing
techniques to extract information from the annotation and tie that information with which
concept or relation the annotation describes to re-generate text when needed. We believe
that extracting and re-generating process is useful for query-answer system and information
retrieval system since the process reduces the effort of system developers to create a module
to explain the result of query.
The second direction is to make more use of the Grammatical Framework. We also want
to make more of GF’s capacity for several concrete languages to share the same abstract
syntax. In other words, given an annotated ontology, we would like to generate explanations
in multiple languages for a query.

References
1 Krasimir Angelov, Björn Bringert, and Aarne Ranta. PGF: A Portable Run-time Format

for Type-theoretical Grammars. Journal of Logic, Language and Information, 19:201–228,
2010.

2 Hakan Burden and Rogardt Heldal. Natural Language Generation from Class Diagrams. In
Proceedings of the 8th International Workshop on Model-Driven Engineering, Verification
and Validation (MoDeVVa 2011), Wellington, New Zealand, ACM, 2011.

3 Thanh H. Nguyen, Tran Cao Son, and Enrico Pontelli. Automatic Web Services Compos-
ition for Phylotastic. In Practical Aspects of Declarative Languages - 20th International
Symposium, pages 186–202, 2018. doi:10.1007/978-3-319-73305-0_13.

4 Ehud Reiter and Robert Dale. Building natural language generation systems. Cambridge
university press, 2000.

ICLP 2018

http://dx.doi.org/10.1007/978-3-319-73305-0_13

Model Revision of Logical Regulatory Networks
Using Logic-Based Tools
Filipe Gouveia1

INESC-ID/Instituto Superior Técnico, Universidade de Lisboa
Rua Alves Redol 9, 1000-029, Lisboa, Portugal
filipe.gouveia@tecnico.ulisboa.pt

https://orcid.org/0000-0003-1852-2782

Inês Lynce2

INESC-ID/Instituto Superior Técnico, Universidade de Lisboa
Rua Alves Redol 9, 1000-029, Lisboa, Portugal
ines.lynce@tecnico.ulisboa.pt

https://orcid.org/0000-0003-4868-415X

Pedro T. Monteiro3

INESC-ID/Instituto Superior Técnico, Universidade de Lisboa
Rua Alves Redol 9, 1000-029, Lisboa, Portugal
pedro.tiago.monteiro@tecnico.ulisboa.pt

https://orcid.org/0000-0002-7934-5495

Abstract
Recently, biological data has been increasingly produced calling for the existence of computational
models able to organize and computationally reproduce existing observations. In particular,
biological regulatory networks have been modeled relying on the Sign Consistency Model or the
logical formalism. However, their construction still completely relies on a domain expert to choose
the best functions for every network component. Due to the number of possible functions for
k arguments, this is typically a process prone to error. Here, we propose to assist the modeler
using logic-based tools to verify the model, identifying crucial network components responsible
for model inconsistency. We intend to obtain a model building procedure capable of providing
the modeler with repaired models satisfying a set of pre-defined criteria, therefore minimizing
possible modeling errors.

2012 ACM Subject Classification Computing methodologies→ Logic programming and answer
set programming

Keywords and phrases Logical Regulatory Networks, Model Revision, Answer Set Programming,
Boolean Satisfiability, Logic-based tools

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.23

1 Introduction

Modeling biological regulatory networks is particularly useful to test hypotheses and to
identify predictions in silico. With this aim, different qualitative formalisms have been
introduced to model, analyze and simulate regulatory networks and their behaviors. However,

1 Fundação para a Ciência e a Tecnologia (FCT) PhD grant SFRH/BD/130253/2017.
2 National funds through Fundação para a Ciência e a Tecnologia (FCT) with reference

UID/CEC/50021/2013.
3 Fundação para a Ciência e a Tecnologia (FCT) project grant PTDC/EEI-CTP/2914/2014.

© Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 23; pp. 23:1–23:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:filipe.gouveia@tecnico.ulisboa.pt
https://orcid.org/0000-0003-1852-2782
mailto:ines.lynce@tecnico.ulisboa.pt
https://orcid.org/0000-0003-4868-415X
mailto:pedro.tiago.monteiro@tecnico.ulisboa.pt
https://orcid.org/0000-0002-7934-5495
https://doi.org/10.4230/OASIcs.ICLP.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

23:2 Logic-Based Approach for Model Revision

the simulation and analysis of such behaviors is hindered by the combinatorial explosion
of the qualitative state space. To tackle this problem, formal verification techniques have
been introduced in Systems Biology. These techniques include model-checking techniques to
automatically verify reachability properties [14], model reduction techniques to reduce the
size of the generated dynamics [15], SAT-based approaches to identify attractors [4], among
others [17].

Given a complete model of a regulatory network, newly acquired experimental data may
render it inconsistent, forcing the model to be revised and updated. The process of review
and update a model is called model revision, which is still mainly a manual task performed
by a modeler, typically an expert in the domain, and therefore prone to error.

Approaches to model revision relying on the Sign Consistency Model (SCM) have been
implemented using logic-based tools such as Answer Set Programming (ASP)[8] and Boolean
Satisfiability (SAT)[10]. However, the SCM lacks in expressiveness for regulatory functions,
as it is based in sign algebra. This work aims to extend current approaches for model
revision to the Logical formalism, and to provide a semi-automatic tool to assist the modeler
throughout the model definition process [21].

An overview of some of the key concepts of regulatory networks is given in Section 2. In
Section 3 it is mentioned some of the work done in System Biology, regarding regulatory
networks. Section 4 describes the logic-based approach for Model Revision. Section 5
concludes the document with an overview of the directions of the future work.

2 Regulatory Networks

A biological regulatory network is a set of proteins and genes, that interact with each other
or with other substances in the cell. Qualitative models have proven to be well adapted for
the modeling of systems where quantitative information is generally incomplete or noisy.
Typically, network components only affect other components above some concentration
level. In this way, it is possible to consider discrete variables to model regulatory networks,
corresponding to different levels of concentration, e.g. active/inactive.

2.1 Logical Model
Logical models where used to represent regulatory networks by Kauffman in 1969 [12], and
Thomas in 1973 [20].

In the Logical Model the components of the network are represented by Boolean variables.
A Boolean variable can either be True (1, on, active) or False (0, off, inactive). If a
component in a regulatory network is represented by a Boolean variable, then it has value
True if it is present (or activated), and it has value False if it is absent (or inhibited).

Moreover, the interactions between components are described as Boolean functions [20].
This will allow to determine the state of a component based on the presence or absence of
other components.

A Logical Model can be represented with a logical circuit since nodes have a Boolean
value and regulatory functions are Boolean functions, as shown in Figure 1.

Figure 1 illustrates an example of a logical model with the correspondent regulatory
functions. With this representation we can verify that, for example, component c is regulated
by components d and a, and its regulatory function is a logical AND from these two inputs.

The (Boolean) Logical Model can be generalized [21]. It is possible to consider more than
two values for each variable. For example, considering Figure 2, we can have a variable a that
affects b above a concentration level threshold t1, but only affects c above a concentration
level threshold t2 > t1. In this case variable a can have three possible values:

F. Gouveia, I. Lynce, and P. T. Monteiro 23:3

a

c b

d

Figure 1 Example of a Logical Model represented as a logical circuit.

a

b c

t1 t2

Figure 2 Example of a Generalization of the Logical Model.

0: concentration level below t1 (not affecting any other variable);
1: concentration level between t1 and t2 (only affecting variable b);
2: concentration level above t2 (affecting variables b and c);

Formally, we can define a Logical Model as a tuple (G,K) where:
G = {g1, g2, ..., gn} is the set of components of the network. Each gi is associated with
an integer value in {0, ...,maxi}, representing the concentration level of the component.
The state of the network is thus defined as a vector s ∈ S =

∏
gi∈G{0, ...,maxi}.

K = {K1,K2, ...,Kn} is the set of regulatory functions whereKi is the regulatory function
of gi and Ki : S → {0, ...,maxi}.

If all maxi = 1, then we have a Boolean Logical Model, since each gi ∈ {0, 1}.

2.2 Probabilistic Boolean Networks
In a logical model, each component regulated by k other components can have 22k possible
regulatory Boolean functions. Additionally, in some cases experimental data is insufficient
or there is incomplete knowledge to choose a single regulatory function, where several
candidates are possible. In other words, possibly several regulatory functions could explain
the experimental data. With this in mind, the logical model was extended in order to account
for the uncertainty of the regulatory functions [18].

In a Probabilistic Boolean Network (PBN), each component has several regulatory
functions, each with a given probability associated. These probabilities are determined based
on the data available, such that it is compatible with prior knowledge of the network. Then,
at each time step, and for each component, a regulatory function is selected according to the
correspondent probabilities, in order to determine its target value.

ICLP 2018

23:4 Logic-Based Approach for Model Revision

a

[+]

b

[+]

c

dε

+

-

+
-

-

+

Figure 3 Example of a Sign Consistency Model. Observed components a and b are labeled with
the correspondent observation. Component ε represents an external stimulus.

2.3 Sign Consistency Model
Siegel et al. proposed a Sign Consistency Model (SCM) [19]. In this approach, it is only
considered the difference in the expression levels between two situations: a value increase, or
decrease.

The SCM is usually represented by a graph where each node represents a biological
component, with a value + (increase of concentration) or − (decrease of concentration). The
edges in the graph represent interactions between components and can be labeled “+” or
“−”. An edge with label “+” (“−”) from a to b means that an increase of the concentration
of a increases (decreases) the concentration of b.

Also, a component can be considered an input, having a stimulation from the exterior
world (outside the regulatory network). If a node is an input then its regulatory function
can be ignored, as there is an exterior stimulation increasing its concentration. In some
representations, an extra generic node ε is added to represent the exterior world. For each
input node, an edge is added from ε to that node.

The regulatory functions are then based on the sign algebra, where the value of each com-
ponent is the sum of the products between the value of each regulator and the corresponding
edge.

Figure 3 illustrates an example of a Sign Consistency Model of a network, where node a
is an input, and therefore have an input edge from the generic node ε that represents the
exterior world. Nodes a and b are observed nodes, where an increase of concentration was
observed. In this example, node c is expected to have a negative (−) sign because it only
has one regulator b, which has a negative interaction with c (c = b× (b→ c) = (+)× (−) =
−). However in this example, node d receives a positive and a negative interaction. in this
case we say that we have a competition and d can assume either value.

3 Related Work

The analysis and verification of biological regulatory networks provide opportunities for
the application of several methodologies. From network identification and parametrization,
model verification, attractors determination or to model revision. In this section, some of
the main methods from the last decade are described, as well as the corresponding problem
and technology.

3.1 Network and Model Inference
Building computational models to correctly represent regulatory networks is of great import-
ance. In order to build such model, one first needs to infer the network topology from a
given set of experimental data. Some of the difficulties of this task relies on the few samples

F. Gouveia, I. Lynce, and P. T. Monteiro 23:5

of observational data and in the incompleteness and inaccuracy of the experimental data.
Then, one also needs to infer, for each component, the associated regulatory functions (model
inference).

In regulatory networks inference, several statistical learning techniques are commonly
used [2, 7]. Also, logic-based tools have been successfully used to learn biological models.
Caspo [11] is a tool to identify the complete family of feasible models from a training Boolean
logical model from prior knowledge and experimental data.

3.2 Reachability Verification

Given a model and a set of experimental data, it is interesting to verify if the model can
explain the results obtained in the experiment. In particular, one may verify if the model is
capable of generating behaviors from a set of initial states to a set of target states. These
behaviors are typically represented by a State Transition Graph (STG), where nodes represent
states of the network, and edges represent possible transitions between states. The generation
of this STG can be made synchronously or asynchronously. In the synchronous approach, in
a given state of the STG, all components can update their value simultaneously, i.e., each
state as a single successor. In the asynchronous approach, in a given state of the STG, only
one component can update their value to a successor state, i.e., each state has as many
successors as components changing their values.

Model checking consists in the verification if a model satisfies a given (set of) property [3],
and has been successfully used for the verification of regulatory networks. Here, biological
observations are encoded in temporal logic formulas, and a model checker is used to verify
the existence of particular behaviors [14].

Also of interest, is to know how can a system be influenced in order to avoid reaching unsafe
or undesired states. Recently, the work in [6] introduces the notion of bifurcation, transitions
after which a given goal is no longer reachable. This work presents a method using Answer
Set Programming, to identify bifurcations given a model represented as a discrete finite-state
of interacting components. However, since this method relies on under/over approximations,
is not complete, i.e., does not guarantee the identification of all the bifurcations.

3.3 Attractors Identification

A key property of the dynamics of a regulatory network are attractors, which typically denote
subsets of states of biological interest. There are two types of attractors: point attractors
and cycle attractors. A point attractor, or a stable state, is a state from which there is no
transition to any other state in the STG. A cycle attractor is a set of states, whose sequence
repeats over time, from which no transition can leave, i.e., a terminal strongly connected
component in the STG.

An efficient approach to determine point attractors in (multivalued) logical models
uses Multi-values Decision Diagrams (MDDs) [16]. Also, some approaches consider the
identification of point and cycle attractors in synchronous dynamics. The work in [5] uses
Answer Set Programming (ASP) and allows the determination of all attractors considering
a Markovian program in order to overcome the challenge of determining the number of
time-steps needed to achieve an attractor. The work in [4] uses a SAT based bounded model
checker to determine all the attractors of the network by incrementally determining the
attractors of a given length.

ICLP 2018

23:6 Logic-Based Approach for Model Revision

3.4 Reduction
It is often the case where the generation of the network dynamics is intractable for large
and complex regulatory networks, due to the state space combinatorial explosion. Reduction
techniques can then be applied in order to reduce the model, and therefore the generated
state space. It has been shown that reduction methods can be successfully applied preserving
some dynamical properties of the network, such as attractors [15].

4 Model Revision Approach

During the iterative model construction procedure, as new data is acquired, the current model
may not be able to explain the new data, and therefore need to be revised. Revision processes
capable of suggesting addition/removal of networks interactions, and changes to variable
values in order to make a model consistent with the available data have been proposed
[13]. An approach was proposed considering the SCM and developed using the Answer Set
Programming (ASP) paradigm [8]. Also, an approach was proposed using MaxSAT, a SAT
extension used to solve optimization problems [10]. However, the SCM formalism relies on a
simple rule regarding regulatory functions.

The logical formalism [20] has been widely used to model biological networks, and have
been successfully implemented using ASP [9] and SAT [1], allowing to model the regulatory
functions with increased expressiveness w.r.t. the SCM. Model repair usually operates under
a minimal assumption as there can be several ways to make a model consistent. Such
optimization criteria can be regarding the number of atomic repair operations [8, 10] or
considering some properties found in the literature [13]. Nevertheless, existing approaches
typically rely on repair operations that potentially change the topology of the network,
invalidating previous domain knowledge.

As mentioned in Section 2, there can be several regulatory functions that can explain the
experimental data. Avoiding changing the topology of the network and change regulatory
functions leads to a minimal impact on the truth table of the variables of the model, and
therefore a smaller impact on the associated dynamics.

Our idea is to develop a model revision procedure capable of building a consistent
model iteratively as new data is acquired, relying on the logical formalism. Moreover, it is
desired to avoid changing the topology of the network, and try to explain possible causes of
inconsistencies with regulatory functions.

On a first phase of the work, one should be able to verify the consistency of a given model
with a set of experimental data, i.e., if the model can explain the experimental data obtained.
Model checking techniques should be used for this purpose. It is intended to implement
this using different logic based tools, such as ASP, SAT and MaxSAT, in order to make a
comparison with respect to the easiness of representation and computational efficiency.

On a second phase, if a model is not consistent with the experimental data, the causes
of such inconsistencies must be identified. This is closely related to the identification of
Minimal Unsatisfiable Subsets (MUSes) in SAT formulas, and therefore SAT-based tools
should be used in the process. As there can be multiple concurrent reasons to explain the
existence of inconsistencies, a biological meaningful measure should be provided in order to
rank the possible explanations to be presented to a modeler.

On a final phase, considering the most plausible cause for inconsistency, a procedure for
model revision should be defined. For this, SAT-based tools for the identification of Minimal
Correction Subsets (MCSes) should be considered. This model revision process should be
iterative, considering that multiple reasons for inconsistency may exist. We will first try

F. Gouveia, I. Lynce, and P. T. Monteiro 23:7

Listing 1 Example of input.
edge(c1 ,c2 ,0). obs_vlabel (c1 ,1).
edge(c1 ,c3 ,1). obs_vlabel (c2 ,0).
edge(c2 ,c1 ,1). obs_vlabel (c3 ,0).
edge(c2 ,c3 ,1). obs_vlabel (c4 ,0).
edge(c4 ,c2 ,1).
edge(c4 ,c3 ,0).

functionOr (c1 ,1). functionOr (c3 ,1..2).
functionAnd (c1 ,1,c2). functionAnd (c3 ,1,c1).

functionAnd (c3 ,2,c2).
functionOr (c2 ,1). functionAnd (c3 ,2,c4).
functionAnd (c2 ,1,c1).
functionAnd (c2 ,1,c4).

to explain the causes of inconsistencies with regulatory functions. However, changing the
regulatory functions may not be sufficient, and therefore one may need to consider changing
the topology of the network. To achieve this, an iterative approach will be considered where
different causes of inconsistency are taken into account.

In the revision process, not only the model consistency must be taken into account, but
also other known properties about the network must hold, such as the existence of known
attractors and its reachability. As the number of possible states for a network increases
exponentially with the number of components, guaranteeing the existence of the known
attractors, for example, can be a difficult task. For this, model reduction techniques may be
necessary.

We start by considering only monotone non-degenerate functions. In a monotone function,
each regulator has only one role, i.e., it is either strictly positive or negative. In a non-
degenerate function, all regulators are functional, i.e., all regulators have an influence in the
regulatory function.

Currently, we have an Answer Set Programming approach implemented for the logical
formalism, and we are able to verify the consistency of a model given some experimental
data at steady state, i.e., without considering any dynamics. Moreover, we are able, in case
of inconsistency, to identify the regulatory functions that can explain such inconsistencies.
We are working on the process of repairing such functions in order to validate if the proposed
model solutions become consistent.

We represent the logical model as a directed graph and the regulatory functions in
disjunctive normal form (DNF). As we only consider monotone functions and, therefore, each
regulator only has one role (positive interaction or negative interaction), this role is defined
by the edge. A positive (negative) edge represents a positive (negative) interaction. An
example is presented in Listing 1 with the representation of the model and the observations.

The predicate edge(A,B,S) represents an edge from A to B with sign S. Predicate
functionOr(A,C) indicates the number of clauses (C) in the regulatory function of A in the
DNF. Predicate functionAnd(A,C,B) indicates that the clause C of the regulatory function
of A contains variable B. The observations are represented by the predicate obs_vlabel(A,S),
which means that value S was observed in node A.

ICLP 2018

23:8 Logic-Based Approach for Model Revision

Listing 2 Consistency check in Answer Set Programming.
sign (0;1). complement (T,S):- sign(S),sign(T),T!=S.

vertex (V):- edge(V,_,_). vertex (V):- edge(_,V,_).

% generate
1{ vlabel (V,S): sign(S)}1: - vertex (V).
{r_gen(V)} :- vertex (V). { r_part (V)} :- vertex (V).

:- vlabel (V,S), obs_vlabel (V,T), complement (S,T).

% functions
% one positive or negative contribution in a clause
onePositive (V,Id):- functionAnd (V,Id ,V2),edge(V2 ,V,S), vlabel (V2 ,S).
oneNegative (V,Id):- functionAnd (V,Id ,V2),edge(V2 ,V,S), vlabel (V2 ,T),

complement (S,T).

% none negative contribution in a clause
noneNegative (V,Id):- onePositive (V,Id),not oneNegative (V,Id).

vlabel (V ,1): -1{ noneNegative (V,Id): functionOr (V,Id)}, vertex (V),
not r_part (V).

vlabel (V ,0): -{ noneNegative (V,Id): functionOr (V,Id)}0, vertex (V),
not r_gen(V).

repair (f,V) :- r_gen(V). repair (f,V) :- r_part (V).
minimize {1,V : repair (_,V)}.

The main idea behind the encoding presented in Listing 2 is that each node of the network
(vertex) must have exactly one label that represents the expected value (vlabel), and it
is not possible to have a label different from the observation. Each label is determined
based on the contributions of each regulator in the associated regulatory function. To allow
determining possible causes of inconsistencies, we defined the predicates r_gen and r_part
indicating that a regulatory function should be generalized or particularized, respectively,
justifying the inconsistency of the model. In order to achieve this, we allow a label of a vertex
to be different than expected given the regulatory function, if that function is a possible
cause of inconsistency.

5 Conclusions and Future Work

Qualitative formalisms have been used whenever information is scarce. In particular, the
logical formalism has proved successful to model complex biological networks. Nevertheless,
the construction of such models is still mainly a manual task, and therefore prone to errors
and to interpretations of a specific modeler. Here, we focus on the problem of model revision,
i.e., to assist the modeler in the process of revising the model associated functions in order
to render the model consistent with the existing and new data.

Here, we propose to consider the logical formalism limiting to the set of monotone non-
degenerate functions. Also, we start by verifying the consistency of models at steady state,
i.e., without considering any dynamics. We consider an Answer Set Programming approach
to identify which nodes are the causes for model inconsistency.

F. Gouveia, I. Lynce, and P. T. Monteiro 23:9

We intend to follow the work plan described in the previous section, and be able to
present a procedure and corresponding tool capable of building a consistent model iteratively
as new data is acquired.

References
1 Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.

IOS press, 2009.
2 Atul J Butte and Isaac S Kohane. Mutual information relevance networks: functional

genomic clustering using pairwise entropy measurements. In Biocomputing 2000, pages
418–429. World Scientific, 1999.

3 Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999.
4 Elena Dubrova and Maxim Teslenko. A SAT-based algorithm for finding attractors in

synchronous boolean networks. IEEE/ACM transactions on computational biology and
bioinformatics, 8(5):1393–1399, 2011.

5 Timur Fayruzov, Jeroen Janssen, Dirk Vermeir, Chris Cornelis, and Martine De Cock. Mod-
elling gene and protein regulatory networks with answer set programming. International
journal of data mining and bioinformatics, 5(2):209–229, 2011.

6 Louis Fippo Fitime, Olivier Roux, Carito Guziolowski, and Loïc Paulevé. Identification
of bifurcation transitions in biological regulatory networks using Answer-Set Programming.
Algorithms for Molecular Biology, 12(1):19, 2017.

7 Nir Friedman. Inferring cellular networks using probabilistic graphical models. Science,
303(5659):799–805, 2004.

8 Martin Gebser, Carito Guziolowski, Mihail Ivanchev, Torsten Schaub, Anne Siegel, Sven
Thiele, and Philippe Veber. Repair and Prediction (under Inconsistency) in Large Biological
Networks with Answer Set Programming. In KR, 2010.

9 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer set
solving in practice. Synthesis Lectures on Artificial Intelligence and Machine Learning,
6(3):1–238, 2012.

10 João Guerra and Inês Lynce. Reasoning over biological networks using maximum satis-
fiability. In Principles and Practice of Constraint Programming, pages 941–956. Springer,
2012.

11 Carito Guziolowski, Santiago Videla, Federica Eduati, Sven Thiele, Thomas Cokelaer, Anne
Siegel, and Julio Saez-Rodriguez. Exhaustively characterizing feasible logic models of a
signaling network using answer set programming. Bioinformatics, page btt393, 2013.

12 Stuart Kauffman. Homeostasis and differentiation in random genetic control networks.
Nature, 224(5215):177, 1969.

13 Elie Merhej, Steven Schockaert, and Martine De Cock. Repairing inconsistent answer set
programs using rules of thumb: A gene regulatory networks case study. International
Journal of Approximate Reasoning, 83:243–264, 2017.

14 Pedro T Monteiro, Wassim Abou-Jaoudé, Denis Thieffry, and Claudine Chaouiya. Model
Checking Logical Regulatory Networks. IFAC Proceedings Volumes, 47(2):170–175, 2014.

15 Aurélien Naldi, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya. Dynamically con-
sistent reduction of logical regulatory graphs. Theoretical Computer Science, 412(21):2207–
2218, 2011.

16 Aurélien Naldi, Denis Thieffry, and Claudine Chaouiya. Decision diagrams for the repres-
entation and analysis of logical models of genetic networks. In CMSB, volume 7, pages
233–247. Springer, 2007.

17 Loïc Paulevé. Reduction of Qualitative Models of Biological Networks for Transient Dy-
namics Analysis. IEEE/ACM transactions on computational biology and bioinformatics,
2017.

ICLP 2018

23:10 Logic-Based Approach for Model Revision

18 Ilya Shmulevich, Edward R Dougherty, Seungchan Kim, and Wei Zhang. Probabilistic
Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioin-
formatics, 18(2):261–274, 2002.

19 Anne Siegel, Ovidiu Radulescu, Michel Le Borgne, Philippe Veber, Julien Ouy, and
Sandrine Lagarrigue. Qualitative analysis of the relation between DNA microarray data
and behavioral models of regulation networks. Biosystems, 84(2):153–174, 2006.

20 René Thomas. Boolean formalization of genetic control circuits. Journal of theoretical
biology, 42(3):563–585, 1973.

21 René Thomas. Regulatory networks seen as asynchronous automata: a logical description.
Journal of theoretical biology, 153(1):1–23, 1991.

Scalable Robotic Intra-Logistics with Answer Set
Programming
Philipp Obermeier
Institute of Computer Science, University of Potsdam
Germany
phil@cs.uni-potsdam.de

Abstract
Over time, Answer Set Programming (ASP) has gained traction as a versatile logic program-
ming semantics with performant processing systems, used by a growing number of significant
applications in academia and industry. However, this development is threatened by a lack of
commonly accepted design patterns and techniques for ASP to address dynamic application on
a real-world scale. To this end, we identified robotic intra-logistics as representative scenario, a
major domain of interest in the context of the fourth industrial revolution. For this setting, we
aim to provide a scalable and efficient ASP-based solutions by (1) stipulating a standardized test
and benchmark framework; (2) leveraging existing ASP techniques through new design patterns;
and (3) extending ASP with new functionalities. In this paper we will expand on the subject
matter as well as detail our current progress and future plans.

2012 ACM Subject Classification Computing methodologies → Logic programming and answer
set programming

Keywords and phrases Answer Set Programming, Logistics, Planning

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.24

Funding This research is partially supported by DFG (550/9).

1 Introduction

Answer Set Programming (ASP; [4]) has come a long way, starting as a semantics for
logic programming, over having increasingly performant systems, to a growing number of
significant applications in academia and industry. In contrast to other solver paragdims, ASP
offers an unprecedented degree of versatility and brevity, which is best put in perspective
by solving multi-faceted problems. However, this development is threatened by a lack of
commonly accepted design patterns and techniques for ASP to address dynamic application
on a real-world scale. In addition, many industrial applications require the integration
of multiple types of knowledge and forms of reasoning, a feature commonly neglected by
existing approaches. As a first step to overcome these problems, we have identified robotic
intra-logistics as representative scenario for our investigation. This domain is a major subject
of interest in the context of the fourth industrial revolution, as witnessed by Amazon’s Kiva,
GreyOrange’s Butler, and Swisslog’s CarryPick systems.1 All of them aim at automatizing
warehouse operations (illustrated by Figure 1) by using robot vehicles that drive underneath
mobile shelves and deliver them to picking stations. From there, workers pick and place the
requested items in shipping boxes. For this setting, we aim to provide scalable and efficient

1 www.amazonrobotics.com, www.greyorange.com/products/butler, www.swisslog.com/carrypick

© Philipp Obermeier;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 24; pp. 24:1–24:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phil@cs.uni-potsdam.de
https://doi.org/10.4230/OASIcs.ICLP.2018.24
www.amazonrobotics.com
www.greyorange.com/products/butler
www.swisslog.com/carrypick
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

24:2 Scalable Robotic Intra-Logistics with ASP

Optimal Target Assignment and Path Finding
for Teams of Agents

Hang Ma
Department of Computer Science
University of Southern California

hangma@usc.edu

Sven Koenig
Department of Computer Science
University of Southern California

skoenig@usc.edu

ABSTRACT
We study the TAPF (combined target-assignment and path-
finding) problem for teams of agents in known terrain, which
generalizes both the anonymous and non-anonymous multi-
agent path-finding problems. Each of the teams is given
the same number of targets as there are agents in the team.
Each agent has to move to exactly one target given to its
team such that all targets are visited. The TAPF problem
is to first assign agents to targets and then plan collision-
free paths for the agents to their targets in a way such that
the makespan is minimized. We present the CBM (Conflict-
Based Min-Cost-Flow) algorithm, a hierarchical algorithm
that solves TAPF instances optimally by combining ideas
from anonymous and non-anonymous multi-agent path-
finding algorithms. On the low level, CBM uses a min-
cost max-flow algorithm on a time-expanded network to
assign all agents in a single team to targets and plan
their paths. On the high level, CBM uses conflict-based
search to resolve collisions among agents in di↵erent teams.
Theoretically, we prove that CBM is correct, complete and
optimal. Experimentally, we show the scalability of CBM
to TAPF instances with dozens of teams and hundreds of
agents and adapt it to a simulated warehouse system.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—graph and tree search strategies,
heuristic methods; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—intelligent agents, multi-
agent systems

General Terms
Algorithms, Performance, Experimentation

Keywords
heuristic search; Kiva (Amazon Robotics) systems; multi-
agent path finding; multi-robot path finding; network flow;
path planning; robotics; target assignment; team work;
warehouse automation

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c� 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.

1755

Figure 1: A typical Kiva warehouse system [22].

1. INTRODUCTION
Teams of agents often have to assign targets among

themselves and then plan collision-free paths to their targets.
Examples include autonomous aircraft towing vehicles [12],
automated warehouse systems [22], o�ce robots [19] and
game characters in video games [15]. For example, in the
near future, autonomous aircraft towing vehicles might tow
aircraft all the way from the runways to their gates (and vice
versa), reducing pollution, energy consumption, congestion
and human workload. Today, autonomous warehouse robots
already move inventory pods all the way from their storage
locations to the inventory stations that need the products
they store (and vice versa), see Figure 1.

We therefore study the TAPF (combined target-
assignment and path-finding) problem for teams of
agents in known terrain. The agents are partitioned into
teams. Each team is given the same number of unique
targets (goal locations) as there are agents in the team.
The TAPF problem is to assign agents to targets and
plan collision-free paths for the agents from their current
locations to their targets in a way such that each agent moves
to exactly one target given to its team, all targets are visited
and the makespan (the earliest time step when all agents
have reached their targets and stop moving) is minimized.
Any agent in a team can be assigned to a target of the team,
and the agents in the same team are thus exchangeable.
However, agents in di↵erent teams are not exchangeable.

1.1 Related Work
The TAPF problem generalizes the anonymous and non-

anonymous MAPF (multi-agent path-finding) problems:

• The anonymous MAPF problem (sometimes called
goal-invariant MAPF problem) results from the TAPF
problem if only one team exists (that consists of all

Figure 1 Layout of an Autonomous Warehouse System [Wurman et al., 2008].

ASP-based solutions by (1) stipulating a standardized test and benchmark framework; (2)
leveraging existing ASP techniques through new design patterns; and (3) extending ASP
with new functionalities.

2 Related Work

What distinguishes robotic intra-logistics from other combinatorial problems is its multidi-
mensional nature that necessitates the integration of a great many of aspects, most notably
path finding and order fulfillment.

At the core of many path finding problems lies the search for a route for an agent
from an initial to a final location. The multi-agent path finding (MAPF) problem asks for
a collision-free route for each agent such that the total makespan is minimal. MAPF is
related to many real-world applications but already computationally intractable [8]. While
in MAPF each agent is assigned a unique destination, its anonymous variant requires no
assignment of agents to destinations [9]. The problem domains of asprilo are obviously
related to multi-agent path finding. More specifically, the asprilo domain M corresponds
to anonymous MAPF. Each order is uniquely associated with a destination shelf and there
is no pre-assignment of a robot to an order. Robots can freely reach any destination shelf.
Clearly, M is easily extended to cover non-anonymous MAPF by relating robots and orders.

Task assignment and path finding (TAPF; [5]) is a generalization of MAPF. TAPF
groups agents into teams. Although teams are (non-anonymously) pre-assigned to groups of
destinations, any robot in the team can be (anonymously) selected for a destination in the
assigned group. G-TAPF [7] is a generalization of TAPF aiming at more realistic settings
by allowing the number of tasks to be greater than the number of agents and considering
deadlines, orderings, and checkpoints. That is, deadlines are associated with order lines,
orders are completed in a pre-defined ordering and all lines in a single order need to be
fulfilled before any line of another order is completed, and while fulfilling an order, a robot is
required to go through a sequence of locations, called checkpoints. Regarding previous uses
of ASP, [1] address several aspects of multi-agent path finding problems.

[6] address an online version of path finding, where not all destination tasks2 are given
initially but may arrive over time.

2 Actually, this work also uses pick-up and delivery tasks to simulate a warehouse system.

P. Obermeier 24:3

Figure 2 Exemplary asprilo screenshot: The main window gives a warehouse layout; no plan
is loaded. Picking stations are represented by striped yellow squares, shelves by solid circles, and
robots by solid squares. Highways are brought out in purple. The side windows provide controls for
plan animation, and give details about the current orders and the warehouse inventory.

3 Current Research Progress

So far, we introduced a scalable approach for a generalized variant of TAPF, formally laid
out the problem domain, and conducted a real-life case study for car assembly:
asprilo: Robotic Intra-Logistics Benchmark Suite [2]. We introduce the asprilo3 frame-

work to facilitate experimental studies of approaches addressing complex dynamic applica-
tions. For this purpose, we have chosen the domain of robotic intra-logistics. This domain
is not only highly relevant in the context of today’s fourth industrial revolution but it
moreover combines a multitude of challenging issues within a single uniform framework.
This includes multi-agent planning, reasoning about action, change, resources, strategies,
etc. In return, asprilo allows users to study alternative solutions as regards effectiveness
and scalability. Although asprilo relies on Answer Set Programming and Python, it is
readily usable by any system complying with its fact-oriented interface format. This
makes it attractive for benchmarking and teaching well beyond logic programming. More
precisely, asprilo consists of a versatile benchmark generator, solution checker and vi-
sualizer (see Figure 2) as well as a bunch of reference encodings featuring various ASP
techniques. Importantly, the visualizer’s animation capabilities are indispensable for
complex scenarios like intra-logistics in order to inspect valid as well as invalid solution
candidates. Also, it allows for graphically editing benchmark layouts that can be used
as a basis for generating benchmark suites. The asprilo framework is freely available
at https://potassco.org/asprilo.

Generalized Target Assignment and Path Finding [7]. Both MAPF and TAPF models
suffer from their limiting assumption that the number of agents and targets are equal.
We propose the Generalized TAPF (G-TAPF) formulation that allows for (1) unequal

3 asprilo stands for Answer Set Programming for robotic intra-logistics.

ICLP 2018

https://potassco.org/asprilo

24:4 Scalable Robotic Intra-Logistics with ASP

Figure 3 Real-world factory layout with transport corridors and directions indicated by arrows.

number of agents and tasks; (2) tasks to have deadlines by which they must be completed;
(3) ordering of groups of tasks to be completed; and (4) tasks that are composed of a
sequence of checkpoints that must be visited in a specific order. As different G-TAPF
variants may be applicable in different domains, we model them using ASP, which allows
one to easily customize the desired variant by choosing appropriate combinations of rules
to enforce. Our experimental results show that the popular CBM (conflict-based min-flow)
algorithm is better in simple TAPF problems with few conflicts, but worse in difficult
problems with more conflicts. We also show that ASP technologies can easily exploit
domain-specific information to improve its scalability and efficiency. The contributions in
this paper thus make a notable jump towards deploying MAPF and TAPF algorithms in
practical applications.

Routing Driverless Transport Vehicles in Car Assembly [3]. Automated storage and re-
trieval systems are principal components of modern production and warehouse facilities.
In particular, automated guided vehicles nowadays substitute human-operated pallet
trucks in transporting production materials between storage locations and assembly
stations. While low-level control systems take care of navigating such driverless vehicles
along programmed routes and avoid collisions even under unforeseen circumstances, in
the common case of multiple vehicles sharing the same operation area, the problem
remains how to set up routes such that a collection of transport tasks is accomplished
most effectively. We address this prevalent problem in the context of car assembly (see
Figure 3) at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer of commercial
vehicles, where routes for automated guided vehicles used in the production process have
traditionally been hand-coded by human engineers. Such ad-hoc methods may suffice as
long as a running production process remains in place, while any change in the factory
layout or production targets necessitates tedious manual reconfiguration, not to mention
the missing portability between different production plants. Unlike this, we propose a
declarative approach based on Answer Set Programming to optimize the routes taken by
automated guided vehicles for accomplishing transport tasks. The advantages include a
transparent and executable problem formalization, provable optimality of routes relative
to objective criteria, as well as elaboration tolerance towards particular factory layouts
and production targets. Moreover, we demonstrate that our approach is efficient enough
to deal with the transport tasks evolving in realistic production processes at the car
factory of Mercedes-Benz Ludwigsfelde GmbH.

P. Obermeier 24:5

4 Open Issues and Expected Achievements

To sum up, we expect the following major achievements through our research:
1. A standardized framework for experimental studies of dynamic systems, specifically in

the intra-logistics domains
2. Novel ASP design patterns and extensions for solving various problems in dynamic

systems on an industrial scale

References

1 E. Erdem, D. Kisa, U. Öztok, and P. Schüller. A General Formal Framework for Pathfinding
Problems with Multiple Agents. In M. desJardins and M. Littman, editors, Proceedings
of the Twenty-Seventh National Conference on Artificial Intelligence (AAAI’13), pages
290–296. AAAI Press, 2013. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI13/
paper/view/6293.

2 M. Gebser, P. Obermeier, T. Otto, T. Schaub, O. Sabuncu, V. Nguyen, and T. Son. Exper-
imenting with robotic intra-logistics domains. Theory and Practice of Logic Programming,
2018. To appear. URL: http://arxiv.org/abs/1804.10247.

3 M. Gebser, P. Obermeier, M. Rasch-Heitmann, and T. Schaub. Routing Driverless Trans-
port Vehicles in Car Assembly with Answer Set Programming. Theory and Practice of
Logic Programming, 2018. To appear. URL: http://arxiv.org/abs/1804.10437.

4 V. Lifschitz. Answer set planning. In D. de Schreye, editor, Proceedings of the International
Conference on Logic Programming (ICLP’99), pages 23–37. MIT Press, 1999.

5 H. Ma and S. Koenig. Optimal Target Assignment and Path Finding for Teams of Agents. In
C. Jonker, S. Marsella, J. Thangarajah, and K. Tuyls, editors, Proceedings of the Fifteenth
International Conference on Autonomous Agents and Multiagent Systems (AAMAS’16),
pages 1144–1152. ACM Press, 2016.

6 H. Ma, J. Li, T. Kumar, and S. Koenig. Lifelong Multi-Agent Path Finding for Online
Pickup and Delivery Tasks. In Proceedings of the Sixteenth Conference on Autonomous
Agents and MultiAgent Systems (AAMAS’17), pages 837–845. ACM Press, 2017.

7 V. Nguyen, P. Obermeier, T. Son, T. Schaub, and W. Yeoh. Generalized Target Assignment
and Path Finding Using Answer Set Programming. In C. Sierra, editor, Proceedings of the
Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI’17), pages
1216–1223. IJCAI/AAAI Press, 2017.

8 P. Surynek. An Optimization Variant of Multi-Robot Path Planning Is Intractable. In
M. Fox and D. Poole, editors, Proceedings of the Twenty-fourth National Conference on
Artificial Intelligence (AAAI’10), pages 1261–1263. AAAI Press, 2010. URL: http://www.
aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1768.

9 J. Yu and S. LaValle. Multi-agent Path Planning and Network Flow. In E. Frazzoli,
T. Lozano-Pérez, N. Roy, and D. Rus, editors, Proceedings of the Tenth Workshop on the
Algorithmic Foundations of Robotics (WAFR’12), volume 86 of Springer Tracts in Advanced
Robotics, pages 157–173. Springer-Verlag, 2012. doi:10.1007/978-3-642-36279-8_10.

ICLP 2018

http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/ 6293
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/ 6293
http://arxiv.org/abs/1804.10247
http://arxiv.org/abs/1804.10437
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/ 1768
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/ 1768
http://dx.doi.org/10.1007/978-3-642-36279-8_10

	p000-frontmatter
	Preface

	p001-Kahl
	Introduction
	Background and Related Work
	Motivation for World View Constraints
	Syntax and Semantics
	Syntax [ES2014 and ES2016]
	Semantics
	World View Constraints and World View Rules
	World View Constraints
	World View Rules and World View Facts

	Grounding Concerns

	Examples and Simplifications
	Epistemic Conformant Planning Module
	Autonomous Control
	Subsumption and Simplification

	Algorithm for Computing World Views of an ELP with WVCs
	Conclusions and Future Work

	p002-Shakerin
	Introduction
	Background
	FOLD Algorithm
	The FOLD 2.0 Algorithm
	Cumulative Scoring Function
	Extending FOLD with Determinate Literals

	Experiments and results
	Related Work
	Conclusion and Future Work

	p003-Zhang
	Introduction
	Answer Set Programming
	The ASP^EP Language
	Syntax
	Semantics
	Satisfiability
	World Views

	Relation to Strong Introspection Specifications
	Relation to ASP^KM
	Relation to ASP^{NOT}

	Applications
	Describing the Principle of Majority
	Modeling the Monty Hall Problem

	Conclusion and Future Work

	p004-Stephan
	Introduction
	Background
	Linear logic
	CHR language and its semantics
	The syntax
	The operational omega_t semantics

	omega_l and omega^otimes_l sequent calculus
	omega_l and omega^otimes_l systems
	Translation from omega_l and omega^otimes_l systems into Linear Logic

	Discussion
	Conclusion
	Appendix

	p005-Sharaf
	Introduction
	Constraint Handling Rules
	Refined Operational Semantics omega_r

	CHR^{vis}: An Animation Extension for CHR
	Extended Programs
	Syntax of CHR^{vis}

	Animation Formalization

	Conclusions
	CHR^{vis} to CHR^{r} Transformation Approach
	Completeness Proof

	p006-Corte-Real
	Introduction
	Background
	Prediction Pruning
	Experiments
	Probabilistic Accuracy and Search Space Reduction
	Search Space Quality

	Conclusion

	p007-Garcia-Contreras
	p008-IGNE
	p009-Zaniolo
	Pre-Mappable Extrema constraints in Recursive Rules
	Proving Premappability

	p010-Klemen
	p011-Shen
	Introduction
	Preliminaries
	Level Rankings
	From Logic Programs to SMT(IL)
	The CMODELS(DIFF) system
	Experiments
	Conclusion

	p012-Wu
	Introduction
	Background
	Answer Set Programs
	ILASP
	Event Calculus

	Learning Commonsense Knowledge
	Translation
	Reasoning
	Special inputs

	Evaluation
	Related Work
	Conclusion and future work
	Demonstrations

	p013-Aerts
	Introduction
	Problem Description
	Knowledge extraction of the design process
	The Decision Model and Notation (DMN)
	Results

	Direct implementation of the design process
	A Constraint-Based Approach
	Knowledge extraction of the physical constraints and preferences

	Implementation of a constraint-based approach
	Limitations

	Validation and Experimental Results
	Related Work
	Conclusions and future work

	p014-Nguyen
	Introduction
	Methodology
	Web Service Ontology (WSO)
	GF generator

	p015-Wang
	Introduction and Problem Description
	Background and Overview of Existing Literature
	Probabilistic Reasoning and Diagnosis in the Context of Action Languages
	Review: Language LP^{MLN}
	Review: Multi-Valued Probabilistic Programs

	Goal of the Research
	Current Status of the Research
	Preliminary Results Accomplished
	Syntax of pBC+
	Semantics of pBC+
	pBC+ Action Descriptions and Probabilistic Reasoning
	Extending pBC+ to Allow Diagnosis

	Open Issues and Expected Achievements

	p016-LeBlanc
	Introduction and Problem Description
	Preliminaries
	Framework Overview and Foundational Example
	Overview of Existing Literature
	Open Issues and Expected Achievements

	p017-Yang
	Introduction and Problem Description
	Background and Overview of the Existing Literature
	Review: LPMLN
	Review LPOD
	Existing Literature

	Goal of the Research
	Current Status of the Research
	Preliminary Results Accomplished
	From LPMLN to Answer Set Programs
	From P-log to LPMLN
	From LPOD to Answer Set Programs
	From CR-Prolog2 to Answer Set Programs

	Open Issues and Expected Achievements

	p018-Farka
	Introduction
	Type Inference and Term Synthesis
	Type Class Resolution
	Contributions

	p019-Mitra
	Introduction
	Background
	Answer Set Programming
	Event Calculus

	Inductive Logic Programming for Mutually Distinct Examples
	Learning Knowledge from dataset
	Current State of Research
	Conclusion

	p020-Taupe
	Introduction
	Preliminaries
	Syntax
	Semantics
	Lazy Grounding and Solving

	Research Questions
	Current Status of the Research
	Preliminary Results Accomplished
	Heuristics for Lazy-Grounding ASP Solving
	Domain-Independent Heuristics
	Domain-Specific Heuristics

	Open Issues and Expected Achievements
	Conclusion

	p021-Gao
	Introduction
	Knowledge Authoring Logic Machine (KALM)
	Question Answering
	Issues in CNL-based Queries
	Question Answering

	Evaluation
	Next Steps
	Conclusion

	p022-Nguyen
	Introduction
	Methodology
	Web Service Ontology (WSO)
	GF generator

	Discussion and future works

	p023-Gouveia
	Introduction
	Regulatory Networks
	Logical Model
	Probabilistic Boolean Networks
	Sign Consistency Model

	Related Work
	Network and Model Inference
	Reachability Verification
	Attractors Identification
	Reduction

	Model Revision Approach
	Conclusions and Future Work

	p024-Obermeier
	Introduction
	Related Work
	Current Research Progress
	Open Issues and Expected Achievements

