
Graph Pattern Polynomials
Markus Bläser
Department of Computer Science, Saarland University, Saarland Informatics Campus,
Saarbrücken, Germany
mblaeser@cs.uni-saarland.de

Balagopal Komarath
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
bkomarath@cs.uni-saarland.de

Karteek Sreenivasaiah1

Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad,
India
karteek@iith.ac.in

Abstract
Given a host graph G and a pattern graph H, the induced subgraph isomorphism problem is to
decide whether G contains an induced subgraph that is isomorphic to H. We study the time com-
plexity of induced subgraph isomorphism problems when the pattern graph is fixed. Nešetřil and
Poljak gave an O(nkω) time algorithm that decides the induced subgraph isomorphism problem
for any 3k vertex pattern graph (the universal algorithm), where ω is the matrix multiplication
exponent. Improvements are not known for any infinite pattern family.

Algorithms faster than the universal algorithm are known only for a finite number of pattern
graphs. In this paper, we show that there exists infinitely many pattern graphs for which the
induced subgraph isomorphism problem has algorithms faster than the universal algorithm.

Our algorithm works by reducing the pattern detection problem into a multilinear term
detection problem on special classes of polynomials called graph pattern polynomials. We show
that many of the existing algorithms including the universal algorithm can also be described
in terms of such a reduction. We formalize this class of algorithms by defining graph pattern
polynomial families and defining a notion of reduction between these polynomial families. The
reduction also allows us to argue about relative hardness of various graph pattern detection
problems within this framework. We show that solving the induced subgraph isomorphism for
any pattern graph that contains a k-clique is at least as hard detecting k-cliques. An equivalent
theorem is not known in the general case.

In the full version of this paper, we obtain new algorithms for P5 and C5 that are optimal
under reasonable hardness assumptions. We also use this method to derive new combinatorial
algorithms – algorithms that do not use fast matrix multiplication – for paths and cycles. We
also show why graph homomorphisms play a major role in algorithms for subgraph isomorphism
problems. Using this, we show that the arithmetic circuit complexity of the graph homomorphism
polynomial for Kk − e (The k-clique with an edge removed) is related to the complexity of many
subgraph isomorphism problems. This generalizes and unifies many existing results.

2012 ACM Subject Classification Theory of computation→ Probabilistic computation, Theory
of computation → Problems, reductions and completeness

Keywords and phrases algorithms, induced subgraph detection, algebraic framework

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.18

1 Part of this work was done while the author was at Saarland University, Saarbrücken, Germany.

© Markus Bläser, Balagopal Komarath, and Karteek Sreenivasaiah;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 18; pp. 18:1–18:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mblaeser@cs.uni-saarland.de
mailto:bkomarath@cs.uni-saarland.de
mailto:karteek@iith.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Graph Pattern Polynomials

Related Version The full version of this paper is available on arXiv: https://arxiv.org/abs/
1809.08858.

Acknowledgements The authors thank Cornelius Brand and Holger Dell for helpful discussions
during the early parts of this work. The authors also thank the anonymous reviewers for com-
ments that helped improve the presentation in the paper.

1 Introduction

The induced subgraph isomorphism problem asks, given simple and undirected graphs G and
H, whether there is an induced subgraph of G that is isomorphic to H. The graph G is called
the host graph and the graph H is called the pattern graph. This problem is NP-complete
(See [8], problem [GT21]). If the pattern graph H is fixed, there is a simple O(n|V (H)|) time
algorithm to decide the induced subgraph isomorphism problem for H. We study the time
complexity of the induced subgraph isomorphism problem for fixed pattern graphs on the
Word-RAM model.

The earliest non-trivial algorithm for this problem was given by Itai and Rodeh [9]
who showed that the number of triangles can be computed in O(nω) time on n-vertex
graphs, where ω is the exponent of matrix multiplication. Later, Nešetřil and Poljak[11]
generalized this algorithm to count K3k in O(nkω) time, where K3k is the clique on 3k
vertices. Eisenbrand and Grandoni [3] extended this algorithm further to count K3k+j for
j ∈ {0, 1, 2} using rectangular matrix multiplication in O(nω(k+dj/2e,k,k+bj/2c)) time. Here
ω(i, j, k) denotes the exponent of the running time of matrix multiplication when multiplying
an i× j matrix with a j×k matrix. It is known that detecting/counting any k-vertex pattern
is easier than detecting/counting Kk. Therefore, these algorithms are called “universal”
algorithms.

Our Contributions

Algorithms that improve the universal algorithm for specific pattern graphs are only known
for small fixed values of k. For example, the induced subgraph isomorphism problem for P4
can be solved in O(n+m) time [1] and all 4-vertex graphs other than K4 can be detected
in O(nω) time [14]. In Section 5, we give the first algorithm that detects infinitely many
pattern graphs faster than the universal algorithm.

Our algorithm works by reducing the induced subgraph isomorphism problem into
detecting multilinear terms in a related polynomial. This idea has been previously used
by many authors (See [13], [10], [5], and [7] for its application to subgraph isomorphism
problems) to solve combinatorial problems efficiently. A major contribution of our work is a
general framework that can describe many existing algorithms for subgraph isomorphism
problems. We show that graph pattern2 detection problems can be reformulated as the
problem of detecting multilinear terms in special classes of polynomials called graph pattern
polynomials (Defined in Section 4).

We also define a notion of reduction between these polynomials that allows us to argue
about the relative hardness of the graph pattern detection problems. It is known that
detecting an induced path on 2k vertices is at least as hard as detecting a Kk [6]. Intuitively,

2 Examples of graph patterns include subgraph isomorphisms, induced subgraph isomorphisms, and graph
homomorphisms

https://arxiv.org/abs/1809.08858
https://arxiv.org/abs/1809.08858

M. Bläser, B. Komarath, and K. Sreenivasaiah 18:3

any pattern graph H that contains a Kk (or equivalently, an independent set on k vertices)
should be as hard to detect as a Kk. But this is not known. In Section 6, we show that the
graph pattern polynomial for Kk can be reduced to the polynomial that corresponds to the
induced subgraph isomorphism problem for H for any H that contains a Kk. This shows
that if we can obtain better algorithms for H using our framework, then we obtain better
algorithms for Kk. We show that all existing algorithms for induced subgraph isomorphism
problems can be either described using our framework or we can obtain algorithms with
matching running times using our framework. Therefore, these reductions can be viewed as
showing the limitations of current methods for solving subgraph isomorphism problems.

In Section 7, we discuss the results in the full version of this paper. In Section 3, we show
how to use graph pattern polynomials to obtain a linear-time algorithm for detecting paths
on four vertices.

2 Preliminaries

For a polynomial f , we use deg(f) to denote the degree of f . A monomial is called multilinear,
if every variable in it has degree at most one. We use ML(f) to denote the multilinear part
of f , that is, the sum of all multilinear monomials in f . An arithmetic circuit computing
a polynomial P ∈ K[x1, . . . , xn] is a circuit with +, × gates where the input gates are
labelled by variables or constants from the underlying field and one gate is designated as
the output gate. The size of an arithmetic circuit is the number of wires in the circuit. For
indeterminates x1, . . . , xn and a set S = {s1, . . . , sp} ⊆ {1, . . . , n} of indices, we write xS to
denote the product xs1 · · ·xsp

.

An induced subgraph isomorphism from H to G is an injective function φ : V (H) ind7→
V (G) such that {u, v} ∈ E(H) ⇐⇒ {φ(u), φ(v)} ∈ E(G). Any function from V (H) to
V (G) can be extended to unordered pairs of vertices of H as φ({u, v}) = {φ(u), φ(v)}.
A subgraph isomorphism from H to G is an injective function φ : V (H) sub7→ V (G) such
that {u, v} ∈ E(H) =⇒ {φ(u), φ(v)} ∈ E(G). Two subgraph isomorphisms or induced
subgraph isomorphisms are considered different only if the set of edges in the image are
different. A graph homomorphism from H to G is a function φ : V (H) hom7→ V (G) such that
{u, v} ∈ E(H) =⇒ {φ(u), φ(v)} ∈ E(G). Unlike isomorphisms, we consider two distinct
functions that yield the same set of edges in the image as distinct graph homomorphisms.
We define φ(S) = {φ(s) : s ∈ S}.

We write H v H ′ (H w H ′) to specify that H is a subgraph (supergraph) of H ′. The
number tw(H) stands for the treewidth of H. We denote the number of automorphisms of H
by #aut(H). The graph Kn is the complete graph on n vertices labelled using [n]. We use
the fact that #aut(H) = 1 for almost all graphs in many of our results. In this paper, we
will frequently consider graphs where vertices are labelled by tuples. A vertex (i, p) is said to
have label i and colour p. An edge {(i1, p1), (i2, p2)} has label {i1, i2} and colour {p1, p2}.
We will sometimes write this edge as ({i1, i2}, {p1, p2}). Note that both {(i1, p1), (i2, p2)}
and {(i2, p1), (i1, p2)} are written as ({i1, i2}, {p1, p2}). But the context should make it clear
which edge is being rewritten.

We will often use the following short forms to denote specific pattern graphs:
K` : A clique on ` vertices I` : An independent set on ` vertices
K` − e : A K` with an edge removed K` + e : A K` and one more edge on ` + 1 vertices
P` : A Path on ` vertices C` : A cycle on ` vertices

FSTTCS 2018

18:4 Graph Pattern Polynomials

3 A Motivating Example: Induced-P4 Isomorphism

In this section, we sketch a one-sided error, randomized O(n2) time algorithm for the induced
subgraph isomorphism problem for P4 to illustrate the techniques used to derive algorithms
in this paper.

We start by giving an algorithm for the subgraph isomorphism problem for P4. Consider
the following polynomial:

NP4,n =
∑

(p,q,r,s):p<s

ypyqyrysx{p,q}x{q,r}x{r,s}

where the summation is over all quadruples over [n] where all four elements are distinct.
Each of the y variables corresponds to a vertex of a possible P4 and the x variables correspond
to the edges. Hence each monomial in the above polynomial corresponds naturally to a P4
on the vertices p, q, r, s chosen in the summation. The condition p < s ensures that each
path has exactly one monomial corresponding to it.

Given an n-vertex host graph G and an arithmetic circuit for NP4,n, we can construct an
arithmetic circuit for the polynomial NP4,n(G) on the y variables obtained by substituting
xe = 0 when e 6∈ E(G) and xe = 1 when e ∈ E(G). The polynomial NP4,n(G) can be written
as
∑
X aXyX where the summation is over all four vertex subsets X of V (G) and aX is the

number of P4s in the induced subgraph G[X]. Therefore, we can decide whether G has a
subgraph isomorphic to P4 by testing whether NP4,n(G) is identically 0. Since the degree of
this polynomial is a constant k, this can be done in time linear in the size of the arithmetic
circuit computing NP4,n.

However, we do not know how to construct a O(n2) size arithmetic circuit for NP4,n.
Instead, we construct a O(n2) size arithmetic circuit for the following polynomial called the
walk polynomial:

HomP4,n =
∑

φ:P4
hom7→Kn

∏
v∈V (P4)

zv,φ(v)yφ(v)
∏

e∈E(P4)

xφ(e)

Similar to NP4,n, the y and x variables correspond to vertices and edges respectively. The
z variables play the role of fixing the mapping from P4 to Kn that is chosen in the summation.
This polynomial is also called the homomorphism polynomial for P4 because its terms are in
one-to-one correspondence with graph homomorphisms from P4 to Kn. As before, we consider
the polynomial HomP4,n(G) obtained by substituting for the x variables appropriately. The
crucial observation is that HomP4,n(G) contains a multilinear term if and only if NP4,n(G)
is not identically zero. This is because the multilinear terms of HomP4,n correspond to
injective homomorphisms from P4 which in turn correspond to subgraph isomorphisms from
P4. More specifically, each P4 corresponds to two injective homomorphisms from P4 since P4
has two automorphisms. Therefore, we can test whether G has a subgraph isomorphic to
P4 by testing whether HomP4,n(G) has a multilinear term. It is known that the polynomial
p4 = HomP4,n has O(n2) size circuits using the following inductive construction:

p1,v = yv, v ∈ [n]

pi+1,v = zi+1,v
∑
u∈[n]

pi,uyvx{u,v}, v ∈ [n], i ≥ 1

p4 =
∑
v∈[n]

p4,v

M. Bläser, B. Komarath, and K. Sreenivasaiah 18:5

The above construction can be extended to construct pk for any k and not just k = 4.
This method is used in [13] to obtain an O(2k(n + m)) time algorithm for the subgraph
isomorphism problem for Pk.

In fact, the above method works for any pattern graph H. Extend the definitions above
to define NH,n and HomH,n in the natural fashion. Then, we can test whether an n-vertex
graph G has a subgraph isomorphic to H by testing whether NH,n(G) is identically zero
which in turn can be done by testing whether HomH,n(G) has a multilinear term. Therefore,
the complexity of subgraph isomorphism problem for any pattern H is as easy as constructing
the homomophism polynomial for H. This method is used by Fomin et. al. [7] to obtain
efficient algorithms for subgraph isomorphism problems.

We now turn our attention to the induced subgraph isomorphism problem for P4. We note
that the induced subgraph isomorphism problem for Pk is much harder than the subgraph
isomorphism problem for Pk. The subgraph isomorphism problem for Pk has a linear time
algorithm as seen above but the induced subgraph isomorphism problem for Pk cannot have
no(k) time algorithms unless FPT = W[1]. We start by considering the polynomial:

IP4,n =
∑

(p,q,r,s):p<s

ypyqyrysx{p,q}x{q,r}x{r,s}(1− x{p,r})(1− x{p,s})(1− x{q,s})

The polynomial IP4,n(G) can be written as
∑
X yX where the summation is over all four

vertex subsets of V (G) that induces a P4. Notice that all coefficents are 1 because there can
be at most 1 induced-P4 on any four vertex subset. By expanding terms of the form 1− x∗
in the above polynomial, we observe that we can rewrite IP4,n as follows:

IP4,n = NP4,n − 4NC4,n − 2NK3+e,n + 6NK4−e,n + 12NK4,n

Since the coefficients in IP4,n(G) are all 0 or 1, it is sufficient to check whether IP4,n(G)
(mod 2) is non-zero to test whether IP4,n(G) is non-zero. From the above equation, we can
see that IP4,n = NP4,n (mod 2). Therefore, instead of working with IP4,n (mod 2), we can
work with NP4,n (mod 2). We have already seen that we can use HomP4,n(G) to test whether
NP4,n(G) is non-zero. However, this is not sufficient to solve induced subgraph isomorphism.
We want to detect whether NP4,n(G) is non-zero modulo 2. Therefore, the multilinear terms
of HomP4,n(G) has to be in one-to-one correspondence with the terms of NP4,n(G). We have
to divide the polynomial HomP4,n(G) by 2 before testing for the existence of multilinear
terms modulo 2. However, since we are working over a field of characteristic 2, this division
is not possible. We work around this problem by starting with HomP4,n′ for n′ slightly larger
than n and we show that this enables the “division” by 2.

The reader may have observed that instead of the homomorphism polynomial, we could
have taken any polynomial f for which the multilinear terms of f(G) are in one-to-one
correspondence with NP4,n(G). This observation leads to the definition of a notion of
reduction between polynomials. Informally, f � g if detecting multilinear terms in f(G) is
as easy as detecting multilinear terms in g(G). Additionally, for the evaluation f(G) to be
well-defined, the polynomial f must have some special structure. We call such polynomials
graph pattern polynomials.

On first glance, it appears hard to generalize this algorithm for P4 to sparse pattern
graphs on an arbitrary number of vertices (For example, Pk) because we have to argue
about the coefficients of many N∗ polynomials in the expansion. On the other hand, if we
consider the pattern graph Kk, we have IKk

= HomKk
. In this paper, we show that for

many graph patterns sparser than Kk, the induced subgraph isomorphism problem is as easy
as constructing arithmetic circuits for homomorphism polynomials for those patterns (or
patterns that are only slightly denser).

FSTTCS 2018

18:6 Graph Pattern Polynomials

4 Graph pattern polynomial families

We will consider polynomial families f = (fn) of the following form: Each fn will be a
polynomial in variables y1, . . . , yn, the vertex variables, and variables x1, . . . , x(n

2), the edge
variables, and at most linear in n number of additional variables.The degree of each fn will
usually be constant.

The (not necessarily induced) subgraph isomorphism polynomial family NH = (NH,n)n≥0
for a fixed pattern graph H on k vertices and ` edges is a family of multilinear polynomials
of degree k + `. The nth polynomial in the family, defined over the vertex set [n], is the
polynomial on n+

(
n
2
)
variables given by (1):

NH,n =
∑

φ:V (H)sub7→V (Kn)

yφ(V (H))xφ(E(H)) (1)

When context is clear, we will often omit the subscript n and simply write NH . Given
a (host) graph G on n vertices, we can substitute values for the edge variables of NH,n
depending on the edges of G (xe = 1 if e ∈ E(G) and xe = 0 otherwise) to obtain a
polynomial NH,n(G) on the vertex variables. The monomials of this polynomial are in
one-to-one correspondence with the H-subgraphs of G. i.e., a term ayv1 · · · yvk

, where a is a
positive integer, indicates that there are a subgraphs isomorphic to H in G on the vertices
v1, . . . , vk. Therefore, to detect if there is an H-subgraph in G, we only have to test whether
NH,n(G) has a multilinear term.

The induced subgraph isomorphism polynomial family IH = (IH,n)n≥0 for a pattern
graph H over the vertex set [n] is defined in (2).

IH,n =
∑

φ:V (H)ind7→V (Kn)

yφ(V (H))xφ(E(H))
∏

e 6∈E(H)

(1− xφ(e)) (2)

If we substitute the edge variables of IH,n using a host graph G on n vertices, then the
monomials of the resulting polynomial IH,n(G) on the vertex variables are in one-to-one
correspondence with the induced H-subgraphs of G. In particular, all monomials have
coefficient 0 or 1 because there can be at most one induced copy of H on a set of k vertices.
This implies that to test if there is an induced H-subgraph in G, we only have to test whether
IH,n(G) has a multilinear term and we can even do this modulo p for any prime p. Also,
note that IH is simply IH where all the edge variables xe are replaced by 1− xe.

The homomorphism polynomial family HomH = (HomH,n)n≥0 for pattern graph H over
the vertex set [n] is defined in (3).

HomH,n =
∑

φ:V (H)hom7→ V (Kn)

∏
v∈V (H)

zv,φ(v)yφ(v)
∏

e∈E(H)

xφ(e) (3)

The variables za,v’s are called the homomorphism variables. They keep track how the
vertices of H are mapped by the different homomorphisms in the summation. We note
that the size of the arithmetic circuit computing HomH,n is independent of the labelling
chosen to define the homomorphism polynomial. The arithmetic circuit complexity of such
homomorphism polynomials, with respect to properties of the pattern graph, has been studied
in [4].

The induced subgraph isomorphism polynomial for any graph H and subgraph isomorph-
ism polynomials for supergraphs of H are related as follows:

IH,n =
∑
H′wH

(−1)e(H′)−e(H)#sub(H,H ′)NH′,n (4)

M. Bläser, B. Komarath, and K. Sreenivasaiah 18:7

Here e(H) is the number of edges in H and #sub(H,H ′) is the number of times H
appears as a subgraph in H ′. The sum is taken over all supergraphs H ′ of H having the
same vertex set as H. Equation 4 is used by Curticapean, Dell, and Marx [2] in the context
of counting subgraph isomorphisms.

For any fixed pattern graph H, the degree of polynomial families NH , IH , and HomH

are bounded by a constant depending only on the size of H. Such polynomial families are
called constant-degree polynomial families.

I Definition 4.1. A constant-degree polynomial family f = (fn) is called a graph pattern
polynomial family if the nth polynomial in the family has n vertex variables,

(
n
2
)
edge

variables, and at most cn other variables, where c is a constant, and every non-multilinear
term of fn has at least one non-edge variable of degree greater than 1.

It is easy to verify that IH , NH , and HomH are all graph pattern polynomial families. For
a graph pattern polynomial f , we denote by f(G) the polynomial obtained by substituting
xe = 0 if e 6∈ E(G) and xe = 1 if e ∈ E(G) for all edge variables xe. Note that for any graph
pattern polynomial f , we have ML(f(G)) = ML(f)(G). This is because any non-multilinear
term in f has to remain non-multilinear or become 0 after this substitution.

I Definition 4.2.
1. A constant degree polynomial family f = (fn) has circuits of size s(n) if there is a

sequence of arithmetic circuits (Cn) such that Cn computes fn and has size at most s(n).
2. f has uniform s(n)-size circuits, if on input n, we can construct Cn in time O(s(n)) on a

Word-RAM.3

We now define a notion of reducibility among graph pattern polynomials. Informally, if
f � g, then we detecting whether fn(G) has a multilinear term is as easy as constructing
an arithmetic circuit for gn for all n. First, we define a notion of substitution families that
preserves the semantic structure of graph pattern polynomials.

I Definition 4.3. A substitution family σ = (σn) is a family of mappings

σn : {y1, . . . , yn, x1, . . . , x(n
2), u1, . . . , um(n)} → K[y1, . . . , yn′ , x1, . . . , x(n′

2), v1, . . . , vr(n)]

mapping variables to polynomials such that:
1. σ maps vertex variables to constant-degree monomials containing one or more vertex

variables or other variables, and no edge variables.
2. σ maps edge variables to polynomials with constant-size circuits containing at most one

edge variable and no vertex variables.
3. σ maps other variables to constant-degree monomials containing no vertex or edge

variables and at least one other variable.
σn naturally extends to K[y1, . . . , yn, x1, . . . , x(n

2), u1, . . . , um(n)].

For the reduction to be useful in deriving algorithms, the substitution has to be easily
computable. This leads us to the following definition.

I Definition 4.4. A substitution family σ = (σn) is constant-time computable if given n and
a variable z in the domain of σn, we can compute σn(z) in constant-time on a Word-RAM.
(Note that an encoding of any z fits into on cell of memory.)

3 Since we are dealing with fine-grained complexity, we have to be precise with the encoding of the circuit.
We assume an encoding such that evaluating the circuit is linear time and substituting for variables
with polynomials represented by circuits is constant-time.

FSTTCS 2018

18:8 Graph Pattern Polynomials

Finally, we define our notion of reduction.

I Definition 4.5. Let f = (fn) and g = (gn) be graph pattern polynomial families. Then f
is reducible to g, denoted f � g, via a constant time computable substitution family σ = (σn)
if for all n there is an m = O(n) and q = O(1) such that
1. σm(ML(gm)) is a graph pattern polynomial and
2. ML(σm(gm)) = v[q]ML(fn). (Recall that v[q] = v1 · · · vq.)
For any prime p, we say that f � g (mod p) if there exists an f ′ = f (mod p) such that
f ′ � g.

Property 1 of Definition 4.5 and Properties 1 and 3 of Definition 4.3 imply that σm(gm)
is a graph pattern polynomial because Properties 1 and 3 of Definition 4.3 ensure that
non-multilinear terms remain so after the substitution. It is easy to see that � is reflexive
via the identity substitution. We can also assume w.l.o.g. that the variables v1, . . . , vq are
fresh variables introduced by the substitution family σ.

What is the difference between σm(ML(gm)) and ML(σm(gm)) in the Definition 4.5?
Every monomial in ML(σm(gm)) also appears in σm(ML(gm)), however, the latter may
contain further monomials that are not multilinear.

It is easy to see that � is reflexive via the identity substitution. It can be shown that �
is transitive by composing substitutions.

We conclude this section by mentioning how to obtain efficient algorithms using �.
Efficient algorithms are known (See [10]) for detecting multilinear terms of small degree with
non-zero coefficient modulo primes.

I Theorem 4.6. Let k be any constant and let p be any prime. Given an arithmetic circuit
of size s, there is a randomized, one-sided error O(s)-time algorithm to detect whether the
polynomial computed by the circuit has a multilinear term of degree at most k with non-zero
modulo p coefficient.

An important algorithmic consequence of reducibility is stated in Proposition 4.7. This
proposition is used to derive algorithms for induced subgraph isomorphism problems in this
paper.

I Proposition 4.7. Let p be any prime. Let f and g be graph pattern polynomial families.
Let s(n) be a polynomially-bounded function. If f � g (mod p) and g has size uniform
s(n)-size arithmetic circuits, then we can test whether fn(G) has a multilinear term with
non-zero coefficient modulo p in O(s(n)) (randomized one-sided error) time for any n-vertex
graph G.

5 Pattern graphs easier than cliques

In this section, we describe a family H3k of pattern graphs such that the induced subgraph
isomorphism problem for H3k has an O(nω(k,k−1,k)) time algorithm when k = 2`, ` ≥ 1.
Note that for the currently known best algorithms for fast matrix multiplication, we have
ω(k, k − 1, k) < kω. Therefore, these pattern graphs are strictly easier to detect than cliques.

The pattern graph H3k is defined on 3k vertices and we consider the canonical labelling of
H3k where there is a (3k− 1)-clique on vertices {1, . . . , 3k− 1} and the vertex 3k is adjacent
to the vertices {1, . . . , 2k − 1}.

I Lemma 5.1. IH3k
= NH3k

(mod 2) when k = 2`, ` ≥ 1

M. Bläser, B. Komarath, and K. Sreenivasaiah 18:9

Proof. We show that the number of times H3k is contained in any of its proper supergraphs
is even if k is a power of 2. The graph K3k contains 3k

(3k−1
2k−1

)
copies of H3k. This number is

even when k is even. The graph K3k − e contains 2
(3k−2

2k−1
)
copies of H3k. This number is

always even. The remaining proper supergraphs of H3k are the graphs K3k−1 + (2k + i)e,
i.e., a (3k − 1)-clique with 2k + i edges to a single vertex, for 0 ≤ i < k − 2. There are
mi =

(2k+i
2k−1

)
copies of the graph H3k in these supergraphs. We observe that the numbers

mi are even when k = 2`, ` ≥ 1 by Lucas’ theorem. Lucas’ theorem states that
(
p
q

)
is even

if and only if in the binary representation of p and q, there exists some bit position i such
that qi = 1 and pi = 0. To see why mi is even, observe that in the binary representation of
2k − 1, all bits 0 through ` are 1 and in the binary representation of 2k + i, 0 ≤ i < k − 2, at
least one of those bits is 0. J

I Lemma 5.2. NH3k
� HomH3k

Proof. We start with HomH3k
over the vertex set [n]× [3k] and apply the following substi-

tution.

σ(za,(v,a)) = za (1)
σ(za,(v,b)) = z2

a, a 6= b (2)
σ(y(v,a)) = yv (3)

σ(x(u,a),(v,b)) = 0, if a, b ∈ {1, . . . , 2k − 1} and a < b and u > v (4)
σ(x(u,a),(v,b)) = 0, if a, b ∈ {2k, . . . , 3k − 1} and a < b and u > v (5)
σ(x(u,a),(v,b)) = x{u,v}, otherwise (6)

Rule 3 ensures that in any surviving monomial, all vertices have distinct labels. Rule 4
ensures that the vertices coloured 1, . . . , 2k − 1 are in increasing order and Rule 5 ensures
that the vertices coloured 2k, . . . , 3k − 1 are in increasing order.

Consider an H3k labelled using [n] where the vertices in the (3k − 1)-clique are labelled
v1, . . . , v3k−1 and the remaining vertex is labelled v3k which is connected to v1 < . . . < v2k−1.
Also, v2k < . . . < v3k−1. We claim that the monomial corresponding to this labelled H3k
(say m) is uniquely generated by the monomial m′ =

∏
1≤i≤3k zi,(vi,i)w in HomH3k

. Note
that the vertices and edges in the image of the homomorphism is determined by the map
i 7→ (vi, i). The monomial w is simply the product of these vertex and edge variables. It is
easy to see that this monomial yields the required monomial under the above substitution.
The uniqueness is proved as follows: observe that in any monomial m′′ in HomH3k

that
generates m, the vertex coloured 3k must be v3k. This implies that the vertices coloured
1, . . . , 2k − 1 must be the set {v1, . . . , v2k−1}. Rule 4 ensures that vertex coloured i must
be vi for 1 ≤ i ≤ 2k − 1. Similarly, the vertices coloured 2k, . . . , 3k − 1 must be the set
{v2k, . . . , v3k−1} and Rule 5 ensures that vertex coloured i must be vi for 2k ≤ i ≤ 3k − 1 as
well. But then the monomials m′ and m′′ are the same. J

I Lemma 5.3. HomH3k
can be computed by arithmetic circuits of size O(nω(k,k−1,k)) for

k > 1.

Proof. Consider H3k labelled as before. We define the sets S1,k,2k,3k−1 = {1, . . . , k, 2k . . . ,
3k − 1}, Sk+1,3k−1 = {k + 1, . . . , 3k − 1}, Sk+1,2k−1 = {k + 1, . . . , 2k − 1}, and S1,2k−1 =
{1, . . . , 2k−1}. We also define the tuples V1,k = (v1, . . . , vk), V2k,3k−1 = (v2k, . . . , v3k−1), and
Vk+1,2k−1 = (vk+1, . . . , v2k−1) for any set vi of 3k − 1 distinct vertex labels. The algorithm

FSTTCS 2018

18:10 Graph Pattern Polynomials

also uses the matrices defined below. The dimensions of each matrix are specified as the
superscript. All other entries of the matrix are 0. Notice that all entries are constant-sized
monomials.

An
k×nk

V1,k,V2k,3k−1
=
(∏
i∈S1,k,2k,3k−1

zi,vi
yvi

)(∏
i,j∈S1,k,2k,3k−1

i 6=j

x{vi,vj}

)

Bn
k×nk−1

V2k,3k−1,Vk+1,2k−1
=
(∏
i∈Sk+1,2k−1

zi,viyvi

)(∏
i∈Sk+1,3k−1
j∈Sk+1,2k−1

i 6=j

x{vi,vj}

)

Cn
k−1×nk

Vk+1,2k−1,V1,k
= x{(vi,i)i∈S1,2k−1

}
∏

i∈Sk+1,2k−1
j∈[k]
i 6=j

x{vi,vj}

Dnk×n
V1,k,v3k

= z3k,v3k
yv3k

∏
i∈[k]

x{vi,v3k}

En×n
k−1

v3k,Vk+1,2k−1
=

∏
i∈Sk+1,2k−1

x{vi,v3k}

Compute the matrix products ABC and DE. Replace the n2k−1 variables x{(vi,i)i∈S3
}

with (DE)V1,k,Vk+1,2k−1
. The required polynomial is then just

HomH3k
=

∑
(v1,...,vk)

(ABC)(v1,...,vk),(v1,...,vk)

Consider a homomorphism of H3k defined as φ : i 7→ ui. The monomial corresponding
to this homomorphism is uniquely generated as follows. Let U∗ be defined similarly to the
tuples V∗. Set vi = ui for i ∈ [k] in the summation and consider the monomial generated
by the product AU1,k,U2k,3k−1BU2k,3k−1,Uk+1,2k−1CUk+1,2k−1,U1,k

after replacing the variable
x{(ui,i)i∈S3

} by (DE)U1,k,Uk+1,2k−1
taking the monomial DU1,k,u3k

Eu3k,Uk+1,2k−1 from that
entry. It is easy to verify that this generates the required monomial. For uniqueness, observe
that this is the only way to generate the required product of the homomorphism variables.

Computing ABC can be done using O(nω(k,k−1,k)) size circuits. Computing DE can be
done using O(nω(k,1,k−1)) size circuits. The top level sum contributes O(nk) gates. This
proves the lemma. J

We conclude this section by stating our main theorem.

I Theorem 5.4. The induced subgraph isomorphism problem for H3k has an O(nω(k,k−1,k))
time algorithm when k = 2`, ` ≥ 1.

6 Lower Bounds for Pattern Graphs with Cliques

Since we can obtain algorithms for induced subgraph isomorphism problems that match
the known best algorithms using reductions between graph pattern polynomials, we can
interpret the reduction f � g as evidence that detecting the graph pattern corresponding to
g is harder than detecting f . It is known that the induced subgraph isomorphism problem
for P2k is harder than that for Kk. In general, one would think that detecting any graph H

M. Bläser, B. Komarath, and K. Sreenivasaiah 18:11

that contains Kk as a subgraph would be at least as hard as detecting Kk. However, this is
known only when H has a Kk that is vertex disjoint from all other Kk in H. The following
theorem shows that we can drop this restriction when working with pattern polynomials.

I Theorem 6.1. If H contains a k-clique or a k-independent set, then IKk
� IH .

Proof. We will prove the statement when H contains a k-clique. The other part follows
because if H contains a k-independent set, then the graph H contains a k-clique and
IKk
� IH � IH .
Fix a labelling of H where the vertices of a k-clique are labelled using [k] and the

remaining vertices are labelled k + 1, . . . , k + `. Consider the polynomial IH over the vertex
set ([n]× [k]) ∪ {(n+ i, k + i) : 1 ≤ i ≤ `} and apply the following substitution.

σ(y(i,p)) =
{
yiup if i ∈ [n] and p ∈ [k]
up otherwise

(1)

σ(x{(i1,p1),(i2,p2)}) =


x{i1,i2} if {p1, p2} ∈ E(Kk) and p1 < p2 and i1 < i2

1 if {p1, p2} ∈ E(H) \ E(Kk)
0 otherwise

(2)

Consider a k-clique on the vertices i1, . . . , ik ∈ [n] on an n-vertex graph where i1 < · · · < ik.
The monomial in IKk

corresponding to this clique is generated uniquely from the monomial
y(i1,1) . . . y(ik,k)

∏
i y(n+i,k+i)x{(i1,1),(i2,2)}. . . x{(ik−1,k−1),(ik,k)}w in IH , where w is the product

of all edge variables corresponding to edges in H but not in Kk. Note that Rules 1 and 2
ensure that in any surviving monomial, the labels and colours of all vertices are distinct
and the colours of the edges must be the same as E(H). The product w is determined
by i1, . . . , ik. This proves that ML(σ(IH)) = u[k+`]ML(IKk

). It is easy to verify that the
substitution satisfies the other properties. J

Using reductions between graph pattern polynomial families, it is possible to give evidence
for many “natural” relative hardness results. We see these hardness results as showing the
limitations of current methods for solving induced subgraph isomorphism problems.

7 Discussion

Are there patterns other than the pattern in Theorem 5.4 for which we can use homomorphism
polynomials of graphs sparser thanKk for solving the induced subgraph isomorphism problem?
In the full version of this paper, we show that we can obtain better algorithms for paths and
cycles using our method. More specifically, we show that the induced subgraph isomorphism
problems for P5 and C5 can be done in O(nω) time which is optimal assuming the optimality
of triangle detection. We also show how to speed up algorithms for Pk and Ck when k ≤ 9.

An interesting class of algorithms for induced subgraph isomorphism problems are the
so called combinatorial algorithms – algorithms that do not use fast matrix multiplication.
The best combinatorial algorithm known for k-cliques is the trivial O(nk) time algorithm.
Contrary to general algorithms, we know that many patterns have improved combinatorial
algorithms. For example, Virginia Williams [12] showed that there is a O(nk−1) time
combinatorial algorithm for the induced subgraph isomorphism problem for Kk − e. In fact,
we show that ,from existing results, one can obtain combinatorial algorithms running in time
O(nk−1) for all patterns except Kk and Ik. Furthermore, for Pk and Ck we show that we
can obtain new combinatorial algorithms running in time O(nk−2).

FSTTCS 2018

18:12 Graph Pattern Polynomials

In the full version of the paper, we show that the complexity of many pattern detection
and counting problems can be linked to the circuit complexity of homomorphism polynomials
for Kk − e. We show that if there are O(nf(k)) size circuits for HomKk−e, then:
1. The induced subgraph isomorphism problem for any k-vertex pattern other than Kk,

Ik can be solved in O(nf(k)) time. This shows that the induced subgraph isomorphism
problem for any k-vertex pattern has a O(nk−1) time combinatorial algorithm. This also
shows that when k ≤ 9, all patterns other than Kk, Ik have faster algorithms.

2. The number of subgraphs isomorphic to any k-vertex pattern can be counted in O(nf(k))
time.

3. If we can count the number of induced subgraphs isomorphic to some k-vertex pattern
in O(t(n)) time, then we can count all k-vertex patterns in O(nf(k) + t(n)) time. This
implies that for k ≤ 9, improved algorithms for counting any k-vertex pattern will improve
algorithms for counting k-cliques.

We also explain why homomorphism polynomials feature prominently in many results
related to subgraph isomorphism. We show that for any pattern H, if there exists a family
of polynomials such that NH � f , then the size complexity of HomH is at most the size
complexity of f . Therefore, in a concrete sense, homomorphism polynomials are the best
graph pattern polynomial families for subgraph isomorphism problems.

We also use reductions between graph pattern polynomial families similar to Theorem 6.1
to show many lower bounds that seem natural but are not known for general algorithms.

1. For almost all pattern graphs H, the induced subgraph isomorphism problem for H is
harder than the subgraph isomorphism problem for H (A randomized reduction is to just
randomly delete edges from the graph).

2. For almost all pattern graphs H, the subgraph isomorphism problem for H is easier than
subgraph isomorphism problems for any supergraph of H.

Note however that we do not know whether these lower bounds imply general algorithmic
hardness. But we believe that these results show the limitations of existing methods for
solving subgraph isomorphism problems.

References

1 D. Corneil, Y. Perl, and L. Stewart. A Linear Recognition Algorithm for Cographs. SIAM
Journal on Computing, 14(4):926–934, 1985. doi:10.1137/0214065.

2 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017. doi:10.1145/
3055399.3055502.

3 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique
and dominating set. Theoretical Computer Science, 326(1):57–67, 2004. doi:10.1016/j.
tcs.2004.05.009.

4 Christian Engels. Dichotomy Theorems for Homomorphism Polynomials of Graph Classes.
J. Graph Algorithms Appl., 20(1):3–22, 2016.

5 Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting
and Counting Small Pattern Graphs. SIAM J. Discrete Math., 29(3):1322–1339, 2015.
doi:10.1137/140978211.

http://dx.doi.org/10.1137/0214065
http://dx.doi.org/10.1145/3055399.3055502
http://dx.doi.org/10.1145/3055399.3055502
http://dx.doi.org/10.1016/j.tcs.2004.05.009
http://dx.doi.org/10.1016/j.tcs.2004.05.009
http://dx.doi.org/10.1137/140978211

M. Bläser, B. Komarath, and K. Sreenivasaiah 18:13

6 Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Induced sub-
graph isomorphism: Are some patterns substantially easier than others? Theor. Comput.
Sci., 605:119–128, 2015. doi:10.1016/j.tcs.2015.09.001.

7 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghav-
endra Rao. Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci.,
78(3):698–706, 2012. doi:10.1016/j.jcss.2011.10.001.

8 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

9 Alon Itai and Michael Rodeh. Finding a Minimum Circuit in a Graph. SIAM Journal on
Computing, 7(4):413–423, 1978. doi:10.1137/0207033.

10 Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for paramet-
erized problems. ACM Trans. Algorithms, 12(3):31:1–31:18, 2016. doi:10.1145/2885499.

11 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae, 026(2):415–419, 1985. URL: http:
//eudml.org/doc/17394.

12 Virginia Vassilevska. Efficient Algorithms for Path Problems in Weighted Graphs. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,
August 2008.

13 Ryan Williams. Finding paths of length k in O*(2k) time. Inf. Process. Lett., 109(6):315–
318, 2009. doi:10.1016/j.ipl.2008.11.004.

14 Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng
Yu. Finding Four-Node Subgraphs in Triangle Time. In Piotr Indyk, editor, Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 1671–1680. SIAM, 2015. doi:10.1137/1.
9781611973730.111.

FSTTCS 2018

http://dx.doi.org/10.1016/j.tcs.2015.09.001
http://dx.doi.org/10.1016/j.jcss.2011.10.001
http://dx.doi.org/10.1137/0207033
http://dx.doi.org/10.1145/2885499
http://eudml.org/doc/17394
http://eudml.org/doc/17394
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1137/1.9781611973730.111
http://dx.doi.org/10.1137/1.9781611973730.111

	Introduction
	Preliminaries
	A Motivating Example: Induced-P_4 Isomorphism
	Graph pattern polynomial families
	Pattern graphs easier than cliques
	Lower Bounds for Pattern Graphs with Cliques
	Discussion

