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Abstract
In this paper, we give the first constant factor approximation algorithm for capacitated knapsack
median problem (CKnM) for hard uniform capacities, violating the budget by a factor of 1 + ε

and capacities by a 2 + ε factor. To the best of our knowledge, no constant factor approximation
is known for the problem even with capacity/budget/both violations. Even for the uncapacitated
variant of the problem, the natural LP is known to have an unbounded integrality gap even after
adding the covering inequalities to strengthen the LP. Our techniques for CKnM provide two
types of results for the capacitated k-facility location problem. We present an O(1/ε2) factor
approximation for the problem, violating capacities by (2+ ε). Another result is an O(1/ε) factor
approximation, violating the capacities by a factor of at most (1+ε) using at most 2k facilities for
a fixed ε > 0. As a by-product, a constant factor approximation algorithm for capacitated facility
location problem with uniform capacities is presented, violating the capacities by (1 + ε) factor.
Though constant factor results are known for the problem without violating the capacities, the
result is interesting as it is obtained by rounding the solution to the natural LP, which is known
to have an unbounded integrality gap without violating the capacities. Thus, we achieve the best
possible from the natural LP for the problem. The result shows that the natural LP is not too
bad.
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1 Introduction

Facility location and k-median problems are well studied in the literature. In this paper,
we study some of their generalizations. In particular, we study capacitated variants of the
knapsack median problem (KnM) and the k facility location problem (kFLP). Knapsack
median problem is a generalization of the k-median problem, in which we are given a set C
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of clients with demands, a set F of facility locations and a budget B. Setting up a facility
at location i incurs cost fi (called the facility opening cost or simply the facility cost ) and
servicing a client j by a facility i incurs cost c(i, j) (called the service cost). We assume that
the costs are metric i.e., they satisfy the triangle inequality. The goal is to select the locations
to install facilities, so that the total cost for setting up the facilities does not exceed B and
the cost of servicing all the clients by the opened facilities is minimized. When fi = 1 ∀i ∈ F
and B = k, it reduces to the k-median problem. In the capacitated version of the problem,
we are also given a bound ui on the maximum number of clients that facility i can serve.
Given a set of open facilities, an assignment problem is solved to determine the best way of
servicing the clients. Thus any solution is completely determined by the set of open facilities.
In this paper, we address the capacitated knapsack median (CKnM) problem with uniform
capacities i.e., ui = u ∀i ∈ F and clients with unit demands. In particular, we present the
following result:

I Theorem 1. There is a polynomial time algorithm that approximates hard uniform capa-
citated knapsack median problem within a constant factor violating the capacity by a factor
of at most (2 + ε) and budget by a factor of at most (1 + ε), for every fixed ε > 0.

Our result is nearly the best achievable from rounding the natural LP: we cannot expect
to get rid of the violation in the budget as it would imply a constant factor integrality gap
for the uncapacitated case which is known to have an unbounded integrality gap. Even with
budget violation, capacity violation cannot be reduced to below 2 as it would imply less than
2 factor capacity violation for k-median problem with k+ 1 facilities. The natural LP has an
unbounded integrality gap for this scenario as well1 2.

The k-facility location problem (kFLP) is a common generalization of the facility location
problem and the k-median problem. In kFLP, we are given a bound k on the maximum
number of facilities that can be opened (instead of a budget on the total facility opening cost)
and the objective is to minimize the total of facility opening cost and the cost of servicing
the clients by the opened facilities. In particular we present the following two results:

I Theorem 2. There is a polynomial time algorithm that approximates hard uniform capa-
citated k-facility location problem within a constant factor (O(1/ε2)) violating the capacities
by a factor of at most (2 + ε) for every fixed ε > 0.

I Theorem 3. There is a polynomial time algorithm that approximates hard uniform
capacitated k-facility location problem within a constant factor (O(1/ε)) violating the capacity
by a factor of at most (1 + ε) using at most 2k facilities for every fixed ε > 0.

As a particular case of CkFLP, we obtain the following interesting result for the capacitated
facility location problem (CFLP):

1 Let M be a large integer, ui = M and k = 2M − 2. There are M groups of locations; distance between
locations within a group is 0 and distance between locations in two different groups is 1. Each group has
2M − 2 facilities and 2M − 2 clients, all co-located. In an optimal LP solution each facility is opened to
an extent of 1/M thereby creating a capacity of 2M − 2 within each group. In an integer solution, if at
most k + 1 = 2M − 1 facilities are allowed to be opened then there is at least one group with only one
facility opened in it. Thus capacity in the group is M whereas the demand is 2M − 2. Thus the blowup
in capacity is (2M − 2)/M .

2 We thank Moses Charikar for providing the above example where violation in one of the parameters is
less than 2 factor and no violation in the other. The example was subsequently modified by us to allow
k + 1 facilities.
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I Corollary 4. There is a polynomial time algorithm that approximates hard uniform capa-
citated facility location problem within a constant factor (O(1/ε)) violating the capacity by a
factor of at most (1 + ε) for every fixed ε > 0.

The standard LP is known to have an unbounded integrality gap for CFLP even with
uniform capacities. Though constant factor results are known for the problem without
violating the capacities [2, 4], our result is interesting as it is obtained by rounding the
solution to the natural LP. Our result shows that the natural LP is not too bad.

1.1 Motivation and Challenges
The natural LP for KnM is known to have an unbounded integrality gap [10] even for
the uncapacitated case. Obtaining a constant factor approximation for the (capacitated)
k-median (CkM) problem is still open, let alone the CKnM problem. Existing solutions
giving constant-factor approximation for CkM violate at least one of the two (cardinality
and capacity) constraints. Natural LP is known to have an unbounded integrality gap when
any one of the two constraints is allowed to be violated by a factor of less than 2 without
violating the other.

Several results [9, 11, 6, 21, 16, 1] have been obtained for CkM that violate either the
capacities or the cardinality by a factor of 2 or more. The techniques used for CkM cannot
be used for CKnM as they work by transferring the opening from one facility to another
(ensuring bounded service cost) facility thereby maintaining the cardinality within claimed
bounds. This works well when there are no facility opening costs or the (facility opening)
costs are uniform. For the general opening costs, this is a challenge as a facility, good for
bounded service cost, may lead to budget violation. To the best of our knowledge, capacitated
knapsack median problem has not been addressed earlier.

CkFLP is NP-hard even when there is only one client and there are no facility costs [1].
The hardness results for CkM hold for CkFLP as well. On the other hand, standard LP
for capacitated facility location problem (CFLP) has an unbounded integrality gap, thereby
implying that constant integrality ratio can not be obtained for CkFLP without violating
the capacities even if k = n. Byrka et al. [6] gave an O(1/ε2) algorithm for CkFLP when
the capacities are uniform (UCkFLP) violating the capacities by a factor of 2 + ε. They use
randomized rounding to bound the expected cost. It can be shown that deterministic pipage
rounding cannot be used here. The strength of our techniques is demonstrated in obtaining
the first deterministic constant factor approximation with the same capacity violation. The
primary source of inspiration for our result in Theorem 3 comes from its corollary.

1.2 Related Work
Capacitated k-median problem has been studied extensively in the literature. For the case of
uniform capacities, several results [6, 9, 11, 21, 16] have been obtained that violate either
the capacities or the cardinality by a factor of 2 or more. In case of non-uniform capacities,
a (7 + ε) algorithm was given by Aardal et al. [1] violating the cardinality constraint by a
factor of 2 as a special case of Capacitated k-FLP when the facility costs are all zero. Byrka
et al. [6] gave an O(1/ε) approximation result violating capacities by a factor of (3 + ε).

Li [22] broke the barrier of 2 in cardinality and gave an exp(O(1/ε2)) approximation
using at most (1 + ε)k facilities for uniform capacities. Li gave a sophisticated algorithm
using a novel linear program which he calls the rectangle LP. The result was extended to
non-uniform capacities by the same author using a new LP called configuration LP [23]. The
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approximation ratio was also improved from exp(O(1/ε2)) to (O(1/ε2 log(1/ε))). Though
the algorithm violates the cardinality only by 1 + ε, it introduces a softness bounded by a
factor of 2. The running time of the algorithm is nO(1/ε).

Byrka et al. [8] broke the barrier of 2 in capacities and gave an O(1/ε2) approximation
violating capacities by a factor of (1 + ε) factor for uniform capacities. The algorithm uses
randomized rounding to round a fractional solution to the configuration LP. For non-uniform
capacities, a similar result has been obtained by Demirci et al. [14]. The paper presents an
O(1/ε5) approximation algorithm with capacity violation by a factor of at most (1 + ε). The
running time of the algorithm is nO(1/ε).

Another closely related problem to Capacitated k-median problem is the Capacitated
k-center problem, where-in we have to minimize the maximum distance of a client to a facility.
A 6 factor approximation algorithm was given by Khuller and Sussmann [15] for the case of
uniform hard capacities (5 factor for soft capacitated case). For non-uniform hard capacities,
Cygan et al. [13] gave the first constant approximation algorithm for the problem, which was
further improved by An et al. in [3] to 9 factor.

Though the knapsack median problem (a.k.a. weighted W -median) is a well motivated
problem and occurs naturally in practice, not much work has been done on the problem.
Krishnaswamy et al. [17] showed that the integrality gap, for the uncapacitated case, holds
even on adding the covering inequalities to strengthen the LP, and gave a 16 factor approx-
imation that violates the budget constraint by a factor of (1 + ε). Kumar [19] strengthened
the natural LP by obtaining a bound on the maximum distance a client can travel and gave
first constant factor approximation without violating the budget constraint. Charikar and Li
[12] reduced the large constant obtained by Kumar to 34 which was further improved to 32
by Swamy [26]. Byrka et al. [7] extended the work of Swamy and applied sparsification as a
pre-processing step to obtain a factor of 17.46. The result was further improed to 7.081(1 + ε)
very recently by Krishnaswamy et al. [18] using iterative rounding technique, with a running
time of nO(1/ε2).

For CkFLP, Aardal et al. [1] extended the FPTAS for knapsack problem to give an FPTAS
for single client CkFLP. They also extend an α− approximation algorithm for (uncapacitated)
k-median to give a (2α+ 1)− approximation for CkFLP with uniform opening costs using at
most 2k for non-uniform and 2k − 1 for uniform capacities. Byrka et al. [6] gave an O(1/ε2)
factor approximation violating the capacities by a factor of (2 + ε) using dependent rounding.

For CFLP, An, Singh and Svensson [4] gave the first LP-based constant factor approxima-
tion by strengthening the natural LP. Other LP-based algorithms known for the problem are
due to Byrka et al. and Levi et al. ([6, 20]). The local search technique has been particularly
useful to deal with capacities. The approach provides 3 factor for uniform capacities [2] and
5 factor for the non-uniform case [5].

1.3 Our techniques
We extend the work of Krishnaswamy et al. [17] to capacitated case. The major challenge is
in writing the LP which opens sufficient number of facilities for us in bounded cost.

Filtering and clustering techniques [24, 11, 20, 25, 6, 17, 1] are used to partition the set
of facilities and demands. Routing trees are used to bound the assignment costs. Main
contribution of this work is a new LP and an iterative rounding algorithm to obtain a solution
with at most two fractionally opened facilities.

High Level Ideas. We first use the filtering and clustering techniques to partition the set of
facilities and demands. Each partition (called cluster) has sufficient opening (≥ 1−1/` ≥ 1/2)
for a fixed parameter ` ≥ 2 in it. An integrally open solution is obtained where-in some
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clusters have at least 1 integrally opened facility and some do not have any facility opened in
them. To assign the demand of the cluster that cannot be satisfied locally within the cluster,
a (directed) rooted binary routing tree is constructed, on the cluster centers. If (s, t) is an
edge in the routing tree then the cost of sending the unmet demand of the cluster centered
at s to t is bounded. The edges of the tree have non-increasing costs as we go up the tree,
with the root being at the top. Hence the cost of sending the unmet demand of the cluster
centered at s to any node r up in the tree at a constant number of edges away from s is
bounded.

In order to decide which facilities to open integrally, clusters are grouped into meta-
clusters of size (the number of clusters in it) ` so as to have at least `− 1 opening in it. The
routing tree is used to group the clusters into meta-clusters (MCs) in a top-down greedy
manner, i.e., starting from the root, a meta-cluster grows by including the cluster (center)
that connects to it by the cheapest edge. A MC grows until its size reaches `. We then
proceed to make a new MC from the tree with the remaining nodes in the same greedy
manner. This imposes a natural directed (not necessarily binary) rooted tree structure on the
meta-clusters with the property that the edge going out of a MC is cheaper than the edges
inside the MC which are further cheaper than the edges coming into the MC. Out-degree of
a MC is 1 whereas the in-degree is at most q + 1 where q is the number of clusters in a MC.

Next, we write a new LP to open sufficient number of facilities within each cluster and
each MC. We also give an iterative rounding algorithm to solve the LP, removing the integral
variables and updating the constraints accordingly in each iteration until either all the
variables are fractional or all are integral. In case all the variables are fractional, we use the
property of extreme point solutions to claim that the number of non-integral variables is
at most two. Thus we obtain a solution to the LP with at most two fractional openings.
Both the fractionally opened facilities are opened integrally at a loss of additive fmax in the
budget where fmax is the maximum facility opening cost 3.

Finally a min-cost flow problem is solved with capacities scaled up by a factor of (2+ ε) to
obtain an integral assignment. A feasible solution to the min-cost flow problem of bounded
cost is obtained as follows: consider a scenario in which the demand accumulated within
each cluster is less than u (we call such clusters as sparse). For the sake of easy exposition of
the ideas, let each MC be of size exactly `. The LP solution opens at least `− 1 facilities
integrally in each MC, with at least one facility in each cluster except for one cluster. If
the cluster with unmet demand is at the root of the induced subgraph of the MC, then its
demand cannot be met within the MC. We make sure that such a demand is served in the
parent MC. Total demand to be served by the facilities in a MC is at most `u plus at most
(`+ 1)u coming from the children of the MC. Thus (`− 1) facilities have to serve at most
(2`+ 1)u demand leading to a violation of (2 +O(1/`)) in capacity. Demands have to travel
O(`) edges upwards (at most ` within its own MC and at most ` in the parent MC), and
hence the cost of serving them is bounded.

The situation becomes a little tricky when there are clusters with more than u demand
(we call such clusters as dense). One way to deal with dense clusters is to open bdemand/uc
facilities integrally within such a cluster and assign the residual demand to one of them at
a capacity violation of 2. But if this cluster also has to serve u units of unmet demand of
one of its children (we will see later that a dense cluster has at most one child), the capacity
violation could blow upto 3 in case bdemand/uc = 1. We deal with this scenario carefully.

3 Let F ′ be the set of facilities i with fi > ε · B. Enumerate all possible subsets of F ′ of size <= 1/ε.
There are at most nO(1/ε) such sets. For each such set S, solve the LP with yi = 1 ∀ i ∈ S and
yi = 0 ∀ i ∈ F ′ \ S. The additive fmax (which comes from the fractionally opened facilities) is <= ε · B.
Choose the best solution and hence theorem 1 follows.
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Algorithm 1 Cluster Formation.
1: C′ ← ∅, S ← C, ctr(j) = ∅ ∀j ∈ S.
2: while S 6= ∅ do
3: Pick j′ ∈ S with the smallest radius Rj′ in S, breaking ties arbitrarily.
4: S ← S \ {j′}, C′ ← C′ ∪ {j′}
5: while ∃j ∈ S: c(j′, j) ≤ 2`Ĉj do
6: S ← S \ {j}, ctr(j) = j′

7: end while
8: end while
9: ∀j′ ∈ C′: let Nj′ = {i ∈ F | ∀k′ ∈ C′ : j′ 6= k′ ⇒ c(i, j′) < c(i, k′)}

2 Capacitated Knapsack Median Problem

In this section, we consider the capacitated knapsack median problem. CKnM can be
formulated as the following integer program (IP):

Minimize CostKnM(x, y) =
∑
j∈C

∑
i∈F c(i, j)xij

subject to
∑
i∈F xij = 1 ∀ j ∈ C (1)∑

j∈C xij ≤ u yi ∀ i ∈ F (2)
xij ≤ yi ∀ i ∈ F , j ∈ C (3)∑
i∈F fiyi ≤ B (4)

yi, xij ∈ {0, 1} (5)

LP-Relaxation of the problem is obtained by allowing the variables yi, xij ∈ [0, 1]. Call it
LP1. To begin with, we guess the facility with maximum opening cost, f∗max, in the optimal
solution and remove all the facilities with facility cost > f∗max before applying the algorithm.
For the easy exposition of ideas, we will give a weaker result, in section 2.4, in which we
violate capacities by a factor of 3. Most of the ideas are captured in this section.

2.1 Simplifying the problem instance
We first simplify the problem instance by partitioning the sets of facilities and clients into
clusters. This is achieved using the filtering technique of Lin and Vitter [24]. For an LP
solution ρ =< x, y > and a subset T of facilities, let size(y, T ) =

∑
i∈T yi denote the total

extent up to which facilities are opened in T under ρ.

Partitioning the set of facilities into clusters and sparsifying the client set. Let ρ∗ =<
x∗, y∗ > denote the optimal LP solution. Let Ĉj denote the average connection cost of a
client j in ρ∗ i.e., Ĉj =

∑
i∈F x

∗
ijc(i, j). Let ` ≥ 2 be a fixed parameter and ball(j) be the set

of facilities within a distance of `Ĉj of j i.e., ball(j) = {i ∈ F : c(i, j) ≤ `Ĉj} (Figure 1(a)).
Then, size(y∗, ball(j)) ≥ 1− 1

` . Let Rj = `Ĉj denote the radius of ball(j). We identify a
set C′ of clients ( Figure 1(b)) which will serve as the centers of the clusters using Algorithm
1. Note that ball(j′) ⊆ Nj′ and the sets Nj′ partition F . (Figure 2(b)).

Partitioning the demands. Let li denote the total demand of clients in C serviced by facility
i i.e., li =

∑
j∈C x

∗
ij and, dj′ =

∑
i∈Nj′

li for j′ ∈ C′. Move the demand dj′ to the center j′ of
the cluster (Figures 1-(b) and 2-(a)). For j ∈ C, let Aρ∗(j,Nj′) denote the total extent upto
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(a) (b)

Figure 1 (a) The balls around the clients. (b) Reduced set of clients and assignment by LP
solution.

(a) (b)

Figure 2 (a) Partitioning of demand. (b) Partition of F .

which j is served by the facilities in Nj′ . Then, we can also write dj′ =
∑
j∈C Aρ∗(j,Nj′).

Thus, after this step, unit demand of any j ∈ C, is distributed to centers of all the clusters
whose facilities serve j. In particular, it takes care of the demand of the clients that were
removed during sparsification. Each cluster center is then responsible for the portion of
demand of j ∈ C served by the facilities in its cluster.

The cost of moving the demand dj′ to j′ is bounded by 2(` + 1)LPopt as shown in
Corollary 6. Also, any two cluster centers j′ and k′ satisfy the separation property: c(j′, k′) >
2` max{Ĉj′ , Ĉk′}. In addition, they satisfy Lemmas (5), (7) and (8).

I Lemma 5. Let j′ ∈ C′ and i ∈ Nj′ then, (i) For k′ ∈ C′, c(j′, k′) ≤ 2c(i, k′), (ii) For
j ∈ C \ C′, c(j′, j) ≤ 2c(i, j) + 2`Ĉj and (iii) For j ∈ C, c(i, j′) ≤ c(i, j) + 2`Ĉj.

Proof.
i) By triangle inequality, c(j′, k′) ≤ c(i, j′) + c(i, k′). Since i ∈ Nj′ ⇒ c(i, j′) ≤ c(i, k′) and

hence c(j′, k′) ≤ 2c(i, k′).
ii) Since j /∈ C′, there exist a client k′ ∈ C′ such that ctr(j) = k′ and c(j, k′) ≤ 2`Ĉj . Also,

If k′ = j′ then c(i, j′) = c(i, k′) else c(i, j′) ≤ c(i, k′) because i ∈ Nj′ and not Nk′ .
Then, by triangle inequality, c(i, k′) ≤ c(i, j) + c(j, k′) ≤ c(i, j) + 2`Ĉj = c(i, j) + 2Rj .
Therefore, c(j′, j) ≤ c(i, j′) + c(i, j) ≤ 2c(i, j) + 2Rj .

iii) Consider two cases: j ∈ C′ and j /∈ C′. In the first case, c(i, j′) ≤ c(i, j) because
i ∈ Nj′ and not Nj and hence c(i, j′) ≤ c(i, j) + 2`Ĉj . In the latter case, by triangle

FSTTCS 2018
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inequality we have, c(i, j′) ≤ c(i, j) + c(j′, j). Since j /∈ C′ ⇒ c(j′, j) ≤ 2`Ĉj . Thus,
c(i, j′) ≤ c(i, j) + 2`Ĉj . J

I Corollary 6.
∑
j∈C

∑
j′∈C′ c(j′, j)Aρ∗(j,Nj′) ≤ 2(`+ 1)LPopt.

I Lemma 7. Let j ∈ C \ C′ and j′ ∈ C′ such that c(j′, j) ≤ Rj′ , then Rj′ ≤ 2Rj.

Proof. Suppose, if possible, Rj′ > 2Rj . Let ctr(j) = k′. Then, c(j, k′) ≤ 2Rj . And,
c(k′, j′) ≤ c(k′, j) + c(j, j′) ≤ 2Rj + Rj′ < 2Rj′ = 2`Ĉj′ , which is a contradiction to
separation property. J

I Lemma 8.
∑
j′∈C′ dj′

∑
i∈F c(i, j′)x∗ij′ ≤ 3

∑
j∈C

∑
i∈F c(i, j)x∗ij = 3LPopt.

Proof.
∑
j′∈C′ dj′

∑
i∈F c(i, j′)x∗ij′ =

∑
j′∈C′

(∑
j∈C Aρ∗(j,Nj′)

)
Ĉj′

=
∑
j′∈C′

(∑
j∈C:c(j′,j)≤Rj′

Aρ∗(j,Nj′)Ĉj′ +
∑
j∈C:c(j′,j)>Rj′

Aρ∗(j,Nj′)Ĉj′
)

Second term in the sum on RHS < 1
`

∑
j′∈C′

∑
j∈C:c(j′,j)>Rj′

Aρ∗(j,Nj′)c(j′, j)
≤ 1

`

∑
j∈C

∑
j′∈C′:c(j′,j)>Rj′

∑
i∈Nj′

x∗ij(2c(i, j) + 2`Ĉj) as c(j′, j) ≤ 2c(i, j) + 2`Ĉj by
Lemma 5
≤
∑
j∈C

∑
j′∈C′:c(j′,j)>Rj′

∑
i∈Nj′

x∗ij(c(i, j) + 2Ĉj). Thus the claim follows. J

Let CS be the set of cluster centers j′ ∈ C′ for which dj′ < u and CD be the set of
remaining centers in C′. The clusters centered at j′ ∈ CS are called sparse and those centered
at j′ ∈ CD dense. For j′ ∈ CD, sufficient facilities are opened in Nj′ so that its entire demand
is served within the cluster itself and we say that j′ is self-sufficient. Unfortunately, the
same claim cannot be made for the sparse clusters i.e., we cannot guarantee to open even
one facility in each sparse cluster (since dj′ < u, we need only one facility in each sparse
cluster j′). Thus, in the next section, we define a routing tree that is used to route the unmet
demand of a cluster to another cluster in bounded cost.

2.2 Constructing the Binary Routing Tree
First, we define a dependency graph G = (V,E), similar to the one defined by Krishnaswamy
et al [17], on cluster centers, i.e., V = C′. For brevity of notation, we use j′ to refer to the
node corresponding to cluster center j′ as well as to refer to the cluster center j′ itself. For
j′ ∈ CS , let η(j′) be the nearest other cluster center in C′ of j′ i.e., η(j′) = k′( 6= j′) ∈ C′ : k′′ ∈
C′ ⇒ c(j′, k′) ≤ c(j′, k′′) and for j′ ∈ CD, η(j′) = j′. The dependency graph consists of
directed edges c(j′, η(j′)). Each connected component of the graph is a tree except possibly
for a 2-cycle at the root. We remove any edge arbitrarily from the two cycle. The resulting
graph is then a forest. Note that, there is at most one dense cluster in a component and if
present, it must be the root of the tree. The following lemma will be useful to bound the
cost of sending the unserved demand of j′ ∈ CS to η(j′).

I Lemma 9.
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, η(j′))(1−
∑
i∈Nj′

x∗ij′)) ≤ 6LPopt.

Proof. The second term of LHS =
∑
j′∈CS

dj′
(∑

i/∈Nj′
c(j′, η(j′))x∗ij′

)
≤
∑
j′∈CS

dj′
(∑

k′∈C′:k′ 6=j′
∑
i∈Nk′

c(j′, k′)x∗ij′
)

≤
∑
j′∈CS

dj′
(∑

k′∈C′:k′ 6=j′
∑
i∈Nk′

2c(i, j′)x∗ij′
)
. J

Unfortunately, the in-degree of a node in a tree may be unbounded and hence arbitrarily
large amount of demand may accumulate at a cluster center, which may further lead to
unbounded capacity violation at the facilities in its cluster.
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(a) (b) (c)

Figure 3 (a) A Tree T of unbounded in-degree. a < b < d < h , a < c < g , b < e. (b) A Binary
Tree T ′ where each node has in-degree at most 2. (c) Formation of meta-clusters for ` = 3.

Bounding the in-degree of a node in the dependency graph. We convert the dependency
graph G into another graph G′ where-in the in-degree of each node is bounded by 2 with
in-degree of the root being 1. This is done as follows (Figure 3(a)-(b)): let T be a tree in G.
T is converted into a binary tree using the standard procedure after sorting the children of
node j′ from left to right in non-decreasing order of distance from j′ i.e., for each child k′
(except for the nearest child) of j′, add an edge to its left sibling with weight 2c(k′, η(k′))
and remove the edge (k′, j′). There is no change in the outgoing edge of the leftmost child of
j′. Let ψ(j′) be the parent of node j′ in G′. Its easy to see that c(j′, ψ(j′)) ≤ 2c(j′, η(j′)).
Henceforth whenever we refer to distances, we mean the new edge weights. Hence, we have
the following:∑

j′∈CS

dj′
( ∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, ψ(j′))(1−
∑
i∈Nj′

x∗ij′)
)
≤ 12LPopt (6)

2.3 Constructing the Meta-clusters
If we could ensure that for every j′ ∈ CS for which no facility is opened in Nj′ , a facility is
opened in ψ(j′), we are done (with 3 factor loss in capacities). But we do not know how to
do that. However, for every such cluster center j′, we will identify a set of centers which
will be able to take care of the demand of j′ and each one of them is within a distance of
O(`)c(j′, ψ(j′)) from j′.

We exploit the following observation to make groups of ` clusters: each cluster has
facilities opened in it to an extent of at least (1− 1/`). Hence, every collection of ` clusters,
has at least `− 1 facilities opened in it. Thus, we make groups (called meta-clusters), each
consisting of ` clusters, if possible. For every tree T in G′, MCs are formed by processing the
nodes of T in a top-down greedy manner starting from the root as described in Algorithm 2.
(Also see Figure 3(c)). There may be some MCs of size less than `, towards the leaves of the
tree.

Let Gr denote a MC with r being the root cluster of it. With a slight abuse of notation,
we will use Gr to denote the collection of centers of the clusters in it as well as the set of
clusters themselves. Let H(Gr) denote the subgraph of T induced by the nodes in Gr. H(Gr)
is clearly a tree. We say that Gr is responsible for serving the demand in its clusters.
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Algorithm 2 Meta-cluster Formation.
1: Meta-cluster(Tree T )
2: N ← set of nodes in T .
3: while there are non-grouped nodes in N do
4: Pick a topmost non-grouped node, say k of N : form a new MC, Gk.
5: while Gk has fewer than ` nodes do
6: If N = ∅ then break and stop.
7: Let j = argminu∈N {c(u, v) : (u, v) ∈ T , v ∈ Gk}, set Gk = Gk∪{j}. N ← N \{j}.
8: end while
9: end while

With the guarantee of only ` − 1 opening amongst ` clusters, there may be a cluster
with no facility opened in it. If this cluster happens to be a sparse cluster at the root, its
demand cannot be served within the MC. Thus we define a (routing) tree structure on MCs
as follows: a tree consists of MCs as nodes and there is an edge from a MC Gr to another
MC Gs if there is a directed edge from root r of Gr to some node s′ ∈ Gs, Gs is then called
the parent meta-cluster of Gr, Gr a child meta-cluster of Gs and the edge (r, s′) is called
the connecting edge of the child MC Gr. If Gr is a root MC, add an edge to itself with cost
c(r, ψ(r)). This edge is then called the connecting edge of Gr. Note that the cost of any
edge in Gs is less than the cost of the connecting edge of Gr which is further less than the
cost of any edge in Gr. Further, a dense cluster, if present, is always the root cluster of a
root MC. We guarantee that the unmet demand of a MC is served in its parent MC.

2.4 3-factor capacity violation
In this section, we present the main contribution of our work. Inspired by the LP of
Krishnaswamy et al. [17], we formulate a new LP and present an iterative rounding algorithm
to obtain a solution with at most two fractionally opened facilities. Such a solution is called
pseudo-integral solution. Modifying the LP of Krishnaswamy et al. [17] and obtaining a
feasible solution of bounded cost for the capacitated scenario is non-trivial. The rounding
algorithm is also non-trivial.

2.4.1 Formulating the new LP and obtaining a pseudo-integral solution
Sparse clusters have the nice property that they need to take care of small demand (< u

each) and dense clusters have the nice property that the total opening within each cluster is
at least 1. These properties are exploited to define a new LP that opens sufficient number of
facilities in each MC such that the opened facilities are well spread out amongst the clusters
(we make sure that at most 1 (sparse) cluster has no facility opened in it) and demand of
a dense cluster is satisfied within the cluster itself. We then present an iterative rounding
algorithm that provides us with a solution having at most two fractionally opened facilities.

Let δr be the number of dense clusters and σr be the number of sparse clusters in a
MC Gr. With at least 1 − 1/` opening in each sparse cluster, observing the fact that
σr ≤ `, we have at least σr(1 − 1/`) ≥ σr − 1 total opening in σr sparse clusters of
Gr. Also, at least bdjd

/uc opening is there in a dense cluster centered at jd in Gr. Let
αr = max{0, σr − 1}. LP is defined so as to open at least bdjd

/uc+ αr facilities in Gr. Let
τ(j′) = {i ∈ Nj′ : c(i, j′) ≤ c(j′, ψ(j′))} if j′ ∈ CS (recall that ψ(j′) is the parent of j′ in
binary tree) and τ(j′) = Nj′ if j′ ∈ CD. Also, let Sr = Gr ∩ CS and sr = αr for all MCs Gr,
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F̃ = F , B̃ = B, rj′ = bdj′/uc ∀j′ ∈ CD and τ̂(j′) = τ(j′) ∀j′ ∈ C′. These sets are updated as
we go from one iteration to the next iteration in our rounding algorithm, thereby giving a new
(reduced) LP in each iteration. Let wi denote whether facility i is opened in the solution or
not. We now write an LP, called LP2 with the objective of minimising the following function:
CostKM(w) =

∑
j′∈CS

dj′ [
∑
i∈Nj′

c(i, j′)wi + c(j′, ψ(j′))(1−
∑
i∈Nj′

wi)] + u
∑
j′∈CD

∑
i∈Nj′

c(i, j′)wi

s.t.
∑
i∈τ̂(j′) wi ≤ 1 ∀ j′ ∈ CS (7)∑
i∈τ̂(j′) wi = rj′ ∀ j′ ∈ CD (8)∑

j′∈Sr

∑
i∈τ̂(j′) wi ≥ sr ∀ r : Gr is a MC (9)∑

i∈F̃ fiwi ≤ B̃ (10)
0 ≤ wi ≤ 1 ∀ i ∈ F̃ (11)

Constraints (8) and (9) ensure that sufficient number of facilities are opened in a meta-
cluster. Constraints (7) and (8) ensure that the opened facilities are well spread out amongst
the clusters as no more than 1 and bdj′

u c facilities are opened in a sparse and dense cluster
respectively. Constraint (8) also ensures that at least bdj′

u c facilities are opened in a dense
cluster. This requirement is essential to make sure that the demand of a dense cluster is
served within the cluster only. Hence, equality in constraint (8) is important.

I Lemma 10. A feasible solution w′ to LP2 can be obtained such that CostKM(w′) ≤
(2`+ 13)LPopt.

Proof. Refer to Appendix 5.1. J

For a vector w ∈ R|F| and F ′ ⊆ F , let wF ′ denote the vector ‘w restricted to F ′’. Also,
let s =< sr >, S =< Sr > and R =< rj′ >j′∈CD

. Algorithm 3 presents an iterative rounding
algorithm that solves LP2 and returns a pseudo-integral solution w̃. A sparse cluster is
removed from the scenario for the next iteration as and when a facility is integrally opened
in it (lines 11, 12). In a dense cluster centered at j′, the number of facilities to be opened by
the LP (rj′) is decremented by the number of integrally opened facilities in it (line 15) at
every iteration and the cluster is removed when it becomes 0 (line 16). Similar treatment is
done for Gr ∩ CS (line 12, 14)

I Lemma 11. The solution w̃ given by Iterative Rounding Algorithm satisfies the following: i)
w̃ is feasible, ii) w̃ has at most two fractional facilities and iii) CostKM(w̃) ≤ (2`+13)LPopt.

Proof. Refer to Appendix 5.2. J

2.4.2 Obtaining an integrally open solution
The two fractionally opened facilities obtained in Section 2.4.1, if any, are opened integrally
at a loss of additive fmax in the budget. Let ŵ denote the solution obtained. Next lemma
shows that ŵ has sufficient number of facilities opened in each MC to serve the demand the
MC is responsible for, except possibly for u units. Lemma (12) presents the assignments
done within a MC and discusses their impact on the capacity and the cost bounds.

I Lemma 12. Consider a meta-cluster Gr. Suppose the capacities are scaled up by a factor
of max{3, 2 + 4

`−1} for ` ≥ 2. Then, i) the dense cluster in Gr (if any) is self-sufficient i.e.,
its demand can be completely assigned within the cluster itself at a loss of at most factor 2 in
cost. ii) There is at most one cluster with no facility opened in it and it is a sparse cluster.
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Algorithm 3 Obtaining a pseudo-integral solution.
1: pseudo-integral(F̃ , B̃, s, S, τ̂(), R)
2: w̃F

i = 0 ∀i ∈ F
3: while F̃ 6= ∅ do
4: Compute an extreme point solution w̃F̃ to LP2.
5: F̃0 ← {i ∈ F̃ : w̃F̃

i = 0}, F̃1 ← {i ∈ F̃ : w̃F̃
i = 1}.

6: if |F̃0|= 0 and |F̃1|= 0 then
7: Return w̃F . \∗ exit when all variables are fractionally opened∗\
8: else
9: For all MCs Gr{
10: while ∃j′ ∈ Sr such that constraint (7) is tight over F̃1 i.e.,

∑
i∈τ̂(j′)∩F̃1

w̃F̃
i = 1 do

11: Remove the constraint corresponding to j′ from (7). \∗ a facility in τ(j′) has been opened∗\
12: set Sr = Sr \ {j′}, sr = max{0, sr − 1}. \∗ delete the contribution of j′ in constraint (9)∗\
13: end while
14: If sr = 0, remove the constraint corresponding to Sr from (9). \∗ σr − 1 facilities have been

opened in Gr ∩ CS ∗\
15: If ∃j′ ∈ Gr ∩ CD, set rj′ ← rj′ − |τ̂(j′) ∩ F̃1|. \∗ decrement rj′ by the number of integrally

opened facilities in τ̂(j′) ∗\
16: If rj′ = 0, remove the constraint corresponding to j′ from (8). \∗ bdj′/uc facilities have been

integrally opened in τ(j′) ∗\ }
17: end if
18: F̃ ← F̃ \ (F̃0 ∪ F̃1), B̃ ← B̃ −

∑
i∈F̃1

fiw̃
F̃
i , τ̂(j′)← τ̂(j′) \ (F̃1 ∪ F̃0) ∀j′ ∈ C′.

19: end while
20: Return w̃F

iii) Any (cluster) center responsible for the unserved demand of j′ ∈ C′ is an ancestor of j′
in H(Gr). iv) At most u units of demand in Gr remain un-assigned and it must be in the
root cluster of Gr. Such a MC cannot be a root MC. v) Let βr = bdjd

/uc+ max{0, σr − 1},
where jd is the center of the dense root cluster (if any) in Gr. Then, at least βr facilities
are opened in Gr. (vi) Total distance traveled by demand dj′ of j′( 6= r) ∈ Gr to reach the
centers of the clusters in which they are served is bounded by dj′c(j′, ψ(j′)).

Proof. Refer to Appendix 5.3. J

Lemma (13) deals with the remaining demand that we fail to assign within a MC.
Such demand is assigned in the parent MC. Lemma (13) discusses the cost bound for such
assignments and the impact of the demand coming onto Gr from the children MCs along
with the demand within Gr on capacity.

I Lemma 13. Consider a meta-cluster Gr. The demand of Gr and the demand coming onto
Gr from the children meta-clusters can be assigned to the facilities opened in Gr such that:
i) capacities are violated at most by a factor of max{3, 2 + 4

`−1} for ` ≥ 2. ii) Total distance
traveled by demand dj′ of j′ ∈ C′ to reach the centers of the clusters in which they are served
is bounded by `dj′c(j′, ψ(j′)).

Proof. Refer to Appendix 5.4. J

Choosing ` ≥ 2 such that 2+ 4
(`−1) = 3⇒ ` = 5. Lemma (14) bounds the cost of assigning

the demands collected at the centers to the facilities opened in their respective clusters.

I Lemma 14. The cost of assigning the demands collected at the centers to the facilities
opened in their respective clusters is bounded by O(1)LPopt.

Proof. The proof follows from the observation that if dj′ is served by a facility in τ(j′′), j′′ ∈
CS then c(j′′, i) ≤ c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)). This was the motivation to define τ(j′) the
way it was, while defining LP2. For details, refer to Appendix 5.5. J
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2.5 (2 + ε) factor capacity violation
There is only one scenario in which we violate the capacities by a factor of 3 in the previous
section. In all other scenarios capacities scaled up by a factor of (2 + ε) are sufficient even
to accommodate the demand of the children MCs. Consider this special scenario. Let jd
be the center of the dense cluster and js be its only child (sparse) cluster in the routing
tree. Further let, djd

= 1.99u and djs
= .99u. Then, we must have a total opening of more

than 2 in the clusters of jd and js taken together whereas LP2 opens only 1. In such a
scenario, if we treat js with jd instead of considering it with the remaining sparse clusters
of Gr, we can open 2 facilities in τ(jd) ∪ τ(js) and they have to serve a total demand of at
most 4u (1.99u+ .99u+ at most u of the remaining sparse clusters) within the MC, thereby
violating the capacities by a factor of at most 2. On the other hand, if djd

= 1.01u and
djs = .98u, then we cannot guarantee to open 2 facilities in τ(jd) ∪ τ(js). In this case, if we
treated js with jd and only 1 facility is opened in τ(jd) ∪ τ(js), it will have to serve a total
demand of (close to) 3u (1.01u+ .98u+ at most u of the remaining sparse clusters) leading to
violation of 3 in capacity. Note that first case corresponds to the scenario when the residual
demand of jd (viz. .99u here) is large (close to u) and the second case corresponds to the
scenario when the residual demand of jd (viz. .01u here) is small (close to 0). In the first
case we treat js with jd whereas in the second case, we treat it with the remaining sparse
clusters. In Section 2.4, one can imagine that a MC Gr is partitioned into G1

r and G2
r where

G1
r contained only the dense cluster of Gr and G2

r contained all the sparse clusters of Gr.
We modify the partitions as follows: let res(jd) = djd

/u − bdjd
/uc: (i) if res(jd) < ε: set

G1
r = Gr ∩CD, G2

r = Gr ∩CS , γr = bdjd
/uc, σ′r = σr. (This is same as above.) (ii) otherwise,

ε ≤ res(jd) < 1: set G1
r = (Gr ∩ CD) ∪ {js}, G2

r = (Gr ∩ CS) \ {js}, γr = bdjd
/uc+ |{js}| 4,

σ′r = max{0, σr − 1}.
We modify our LP accordingly so as to open at least γr facilities in G1

r and αr =
max{0, σ′r−1} facilities in G2

r. Let S1
r = G1

r, s
1
r = γr and S2

r = G2
r, s

2
r = αr, τ̂(j′) = τ(j′) ∀j′.

For j′ ∈ CD, let rj′ = bdj′/uc. Also, let F̃ = F and B̃ = B. Let wi denote whether facility i
is opened in the solution or not. LP2 is modified as follows:
LP3 : Min. CostKM(w)

subject to
∑
i∈τ̂(j′) wi ≤ 1 ∀ j′ ∈ CS (12)∑

j′∈S1
r

∑
i∈τ̂(j′) wi ≥ s1

r ∀ G1
r : s1

r 6= 0 (13)∑
j′∈S2

r

∑
i∈τ̂(j′) wi ≥ s2

r ∀ G2
r : s2

r 6= 0 (14)∑
i∈F̃ fiwi ≤ B̃ (15)
0 ≤ wi ≤ 1 ∀i ∈ F̃ (16)

I Lemma 15. A feasible solution w′ to LP3 can be obtained such that CostKM(w′) ≤
(2`+ 13)LPopt.

Proof. Proof is similar to the proof of Lemma (10). J

Algorithm 3 can be modified to obtain Algorithm 4 as follows: whenever a constraint
corresponding to (12) gets tight over integrally opened facilities, it is removed from S1

r or S2
r

wherever it belongs, in the same manner as line 12 of Algorithm 3.

4 In case a component of dependency graph consists of a singleton dense cluster, js may not exist. This
case causes no problem even if res(jd) is large as it must be a leaf MC in this case.

FSTTCS 2018



23:14 Constant Factor Approximation for Uniform Hard Capacitated Knapsack Median

Algorithm 4 Obtaining a pseudo-integral solution.
1: pseudo-integral(F̃ , B̃, s1, s2, S1, S2, τ̂(), R′ )
2: w̃F

i = 0 ∀i ∈ F
3: while F̃ 6= ∅ do
4: Compute an extreme point solution w̃F̃ to LP3.
5: F̃0 ← {i ∈ F̃ : w̃F̃

i = 0}, F̃1 ← {i ∈ F̃ : w̃F̃
i = 1}.

6: if |F̃0|= 0 and |F̃1|= 0 then
7: Return w̃F .
8: else
9: For all MCs Gr{
10: while ∃j′ ∈ Gr ∩ CS such that constraint (12) is tight over F̃1 i.e.,

∑
i∈τ̂(j′)∩F̃1

w̃F̃
i = 1 do

11: Remove the constraint corresponding to j′ from (12). \∗ a facility in τ(j′) has been opened∗\
12: If j′ ∈ S1

r , set S1
r = S1

r \ {j′}, s1
r = max{0, s1

r − 1}. \∗ delete the contribution of j′ in
constraint (13) ∗\

13: If j′ ∈ S2
r , set S2

r = S2
r \{j′}, s2

r = max{0, s2
r−1}.\∗ delete the contribution of j′ in constraint

(14) ∗\
14: If s2

r = 0, remove the constraint corresponding to the MC from (14).\∗ αr facilities have been
opened in Gr ∩ CS ∗\

15: end while
16: If ∃j′ ∈ Gr ∩ CD, set s1

r = s1
r − |τ̂(j′)∩ F̃1|. \∗ decrement s1

r by the number of integrally opened
facilities in τ̂(j′) ∗\

17: If s1
r = 0, remove the constraint corresponding to the MC from (13). \∗ γr facilities have been

opened in G1
r ∗\

18: end if
19: F̃ ← F̃ \ (F̃0 ∪ F̃1), B̃ ← B̃ −

∑
i∈F̃1

fiw̃
F̃
i , τ̂(j′)← τ̂(j′) \ (F̃1 ∪ F̃0) ∀j′ ∈ C′.

20: end while
21: Return w̃F .

I Lemma 16. The solution w̃ given by Iterative Rounding Algorithm satisfies the following: i)
w̃ is feasible, ii) w̃ has at most two fractional facilities and iii) CostKM(w̃) ≤ (2`+13)LPopt.

Proof. Proof is similar to the proof of Lemma (11). J

The two fractionally opened facilities, if any, are opened integrally as in Section 2.4.2 at
a loss of additive fmax in the budget. Let ŵ denote the integrally open solution.

In the next lemma, we show that ŵ has sufficient number of facilities opened in each MC
to serve the demand the MC is responsible for, except possibly for u units. Let M be the set
of all meta clusters and M1 be the set of meta clusters, each consisting of exactly one dense
and one sparse cluster. MCs in M1 need special treatment and will be considered separately.
Lemma (17) presents the assignments done within a MC and discusses their impact on the
capacity and the cost bounds.

I Lemma 17. Consider a meta-cluster Gr. Suppose the capacities are scaled up by a factor
of 2 + ε for ` ≥ 1/ε. Then, (i) G1

r is self-sufficient i.e., its demand can be completely assigned
within the cluster itself. (ii) There are at most two clusters, one in G1

r and one in G2
r, with

no facility opened in them and these clusters are sparse. (iii) Any (cluster) center responsible
for the unserved demand of j′ is an ancestor of j′ in H(Gr). (iv) At most u units of demand
in Gr remain un-assigned and it must be in the root cluster of Gr. Such a MC cannot be a
root MC. (v) For Gr ∈M \M1, let βr = bdjd

/uc+ max{0, σr − 1}, where jd is the center of
the dense root cluster in Gr. Then, at least βr facilities are opened in Gr. (vi) For Gr ∈M1,
let βr = bdjd

/uc if res(jd) < ε and = bdjd
/uc + 1 otherwise. Then, at least βr facilities

are opened in Gr. (vii) Total distance traveled by demand dj′ of j′( 6= r) ∈ Gr to reach the
centers of the clusters in which they are served is bounded by 2dj′c(j′, ψ(j′)).

Proof. Refer to Appendix 5.6. J
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Lemma (18) deals with the remaining demand that we fail to assign within the MC.
Such demand is assigned in the parent MC. Lemma (18) discusses the cost bound for such
assignments and the impact of the demand coming onto Gr from the children MCs along
with the demand within Gr on capacity.

I Lemma 18. Consider a meta-cluster Gr. The demand of Gr and the demand coming onto
Gr from the children meta-clusters can be assigned to the facilities opened in Gr such that:
(i) capacities are violated at most by a factor of (2 + 4

`−1) for ` ≥ 1/ε and, (ii) Total distance
traveled by demand dj′ of j′ ∈ C′ to reach the centers of the clusters in which they are served
is bounded by `dj′c(j′, ψ(j′)).

Proof. Proof is similar to the proof of Lemma (13). J

I Lemma 19. The cost of assigning the demands collected at the centers to the facilities
opened in their respective clusters is bounded by (2 + ε)(2`+ 1)LPopt.

Proof. Proof is similar to the proof of Lemma (14). J

3 Capacitated k Facility Location Problem

Standard LP-Relaxation of the CkFLP can be found in Aardal et al. [1]. When fi = 0,
the problem reduces to the k-median problem and when k = |F| it reduces to the facility
location problem. Our techniques for CKnM provide similar results for CkFLP in a straight
forward manner i.e., O(1/ε2) factor approximation, violating the capacities by a factor of
(2 + ε) and cardinality by plus 1. The violation of cardinality can be avoided by opening
the facility with larger opening integrally while converting a pseudo integral solution into an
integrally open solution. Thus, we obtain Theorem 2.

Proof of Theorem 3. Let ρ∗ =< x∗, y∗ > denote the optimal LP solution. For sparse
clusters, we open the cheapest facility i∗ in ball(j), close all facilities in the cluster and shift
their demands to i∗. Let ρ̂ =< x̂, ŷ > be the solution so obtained. It is easy to see that we
loose at most a factor of 2 in cardinality, and CostkFLP (x̂, ŷ) is within O(1)LPopt.

To handle dense clusters, we introduce the notion of cluster instances. For each cluster
center j′ ∈ CD, let bfj′ =

∑
i∈Nj′

fiy
∗
i and bcj′ =

∑
i∈Nj′

∑
j∈C x

∗
ij [c(i, j) + 4Ĉj ]. We define

a cluster instance Sj′(j′, Nj′ , dj′ , bcj′ , b
f
j′) as follows: Minimize CostCI(z) =

∑
i∈Nj′

(fi +
uc(i, j′))zi s.t. u

∑
i∈Nj′

zi ≥ dj′ and zi ∈ [0, 1]. It can be shown that zi =
∑
j∈C x

∗
ij/u =

li/u ≤ y∗i ∀i ∈ Nj′ is a feasible solution with cost at most bfj′ + bcj′ . An almost integral
solution z′ is obtained by arranging the fractionally opened facilities in z in non-decreasing
order of fi + c(i, j′)u and greedily transferring the total opening size(z, Nj′) to them. Let
l′i = z′iu. For a fixed ε > 0, an integrally open solution ẑ and assignment l̂ (possibly fractional)
is obtained as follows: let i1 be the fractionally opened facility, if any. If z′i1 < ε, close i1 and
shift its demand to another integrally opened facility at a loss of factor (1 + ε) in its capacity.
Else (z′i1 ≥ ε), open i1, at a loss of factor 2 in cardinality and 1/ε in facility cost. The
solution ẑ satisfies the following: l̂i ≤ (1 + ε)ẑiu ∀i ∈ Nj′ ,

∑
i∈Nj′

ẑi ≤ 2
∑
i∈Nj′

z′i ∀j′ ∈ CD
and CostCI(ẑ) ≤ max{1/ε, 1 + ε}CostCI(ẑ). J

4 Conclusion

In this work, we presented the first constant factor approximation algorithm for uniform hard
capacitated knapsack median problem violating the budget by a factor of (1 + ε) and capacity
by (2 + ε). Two variety of results were presented for capacitated k-facility location problem
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with a trade-off between capacity and cardinality violation: an O(1/ε2) factor approximation
violating capacities by (2 + ε) and a O(1/ε) factor approximation, violating the capacity by a
factor of at most (1 + ε) using at most 2k facilities. As a by-product, we also gave a constant
factor approximation for uniform capacitated facility location at a loss of (1 + ε) in capacity
from the natural LP. The result shows that the natural LP is not too bad.

It would be interesting to see if the capacity violation can be reduced to (1 + ε) using the
techniques of Byrka et al. [8]. Avoiding violation of budget will require strengthening the LP
in a non-trivial way. Another direction for future work would be to extend our results to
non-uniform capacities. Conflicting requirement of facility costs and capacities makes the
problem challenging.
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5 Appendix

5.1 Proof of Lemma 10
Define a feasible solution to the LP2 as follows: let j′ ∈ CD, i ∈ τ(j′), set w′i = li

dj′
bdj′/uc =

li
u
bdj′/uc
dj′/u

≤ li
u ≤ y∗i . For j′ ∈ CS , we set w′i = min{x∗ij′ , y∗i } = x∗ij′ ≤ y∗i for i ∈ τ(j′) and

w′i = 0 for i ∈ Nj′ \ τ(j′). We will next show that the solution is feasible.

For j′ ∈ CS ,
∑

i∈τ(j′)

w′i ≤
∑
i∈Nj′

w′i =
∑
i∈Nj′

x∗ij′ ≤ 1.

Next, let j′ ∈ CD, then
∑

i∈τ(j′)

w′i =
∑
i∈Nj′

li
u
bdj′/uc
dj′/u

= bdj′/uc as
∑
i∈Nj′

li = dj′ . Note that

∑
i∈τ(j′)

w′i ≥ 1 as dj′ ≥ u.

For a meta-cluster Gr, we have
∑
j′∈Gr

∑
i∈τ(j′)

w′i =
∑

j′∈Gr∩CS

∑
i∈τ(j′)

x∗ij′ ≥
∑

j′∈Gr∩CS

(1 −

1/l) = max{0, σr − 1} = αr.

Since for each i ∈ F we have w′i ≤ y∗i ⇒
∑
i∈F

fiw
′
i ≤

∑
i∈F

fiy
∗
i ≤ B.

Next, consider the objective function. For j′ ∈ CD, we have
∑

i∈τ(j′)

u c(i, j′)w′i =

u
∑
i∈Nj′

c(i, j′)(
∑
j∈C x

∗
ij

u ) =
∑
i∈Nj′

∑
j∈C

c(i, j′)x∗ij ≤
∑
i∈Nj′

∑
j∈C

(
c(i, j) + 2`Ĉj

)
x∗ij . Summing

over all j′ ∈ CD we get,
∑
j′∈CD

∑
i∈Nj′

∑
j∈C

x∗ij [c(i, j) + 2`Ĉj ] ≤ (2`+ 1)LPopt.

Now consider the part of objective function for CS .
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)w′i +
c(j′, ψ(j′))(1 −

∑
i∈Nj′

w′i)) =
∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)w′i +

∑
i∈Nj′\τ(j′) c(i, j′)w′i +

c(j′, ψ(j′))(1−
∑
i∈τ(j′) w

′
i−
∑
i∈Nj′\τ(j′) w

′
i)) =

∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)x∗ij′+c(j′, ψ(j′))

(1−
∑
i∈τ(j′) x

∗
ij′))

<
∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)x∗ij′ + c(j′, ψ(j′))(1 −

∑
i∈τ(j′) x

∗
ij′))

+
∑
j′∈CS

dj′(
∑
i∈Nj′\τ(j′) (c(i, j′)−c(j′, ψ(j′)))x∗ij′) as c(i, j′) > c(j′, ψ(j′)) ∀i ∈ Nj′ \τ(j′)

=
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, ψ(j′))(1−
∑
i∈Nj′

x∗ij′)). Thus, by equation (6),
we get

∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)w′i + c(j′, ψ(j′))(1−
∑
i∈Nj′

w′i)) ≤ 12LPopt.
Thus, the solution w′ is feasible and CostKM(w′),∑

j′∈CS

dj′

 ∑
i∈Nj′

c(i, j′)w′i + c(j′, ψ(j′))

1−
∑
i∈Nj′

w′i

 + u
∑
j′∈CD

∑
i∈Nj′

c(i, j′)w′i ≤ (2` +

13)LPopt.

5.2 Proof of Lemma 11
i) We will prove the claim by induction. Let LP (t) denote the LP at the beginning of the
tth iteration and w̃(t) denote the solution at the end of the tth iteration. We will show
that if w̃(t) is a feasible solution to LP2, then w̃(t+1) is also a feasible solution to LP2.
Since w̃(1) is feasible (extreme point solution), the feasibility of the solution follows. Let
F̃ (t), B̃(t), s(t), S(t), τ̂()(t), R(t) denote the values at the beginning of the tth iteration.
Then, w̃(t+1)

i = w̃
(t)
i ∀i ∈ F \ F̃ (t+1).
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Consider a constraint that was not present in LP (t+1). In any iteration, we remove a
constraint only when none of the facilities in its corresponding clusters is fractionally
opened. That is all the facilities in τ(j′) appearing on the left hand side of a constraint
are integral. Thus w̃(t+1)

i = w̃
(t)
i for all such facilities. Hence if they are satisfied by

w̃(t) then they are satisfied by w̃(t+1). So, we consider only those constraints that
were present in LP (t+1). For j′ ∈ CS , since τ̂(j′)(t+1) = τ(j′) \ F̃ (t)

0 ∀t, therefore,∑
i∈τ̂(j′)(t+1) w̃

(t+1)
i =

∑
i∈τ(j′) w̃

(t+1)
i ∀t. Thus, we will omit (t) and use τ() instead of

τ̂() for brevity of notation.
Consider constraints (7) that were not removed in tth iteration. Since τ(j′) ⊆ F̃ (t+1) for
j′ ∈ CS , the feasibility of the constraint follows as w̃(t+1) is an extreme point solution of
the reduced LP over the set F̃ (t+1).
Next, consider constraints (8). Let F (t)

1 denote the set of facilities that are opened
integrally in w̃(t) i.e., w̃(t)

i = 1 ∀i ∈ F (t)
1 then the corresponding constraint in LP (t+1) is∑

i∈τ(j′)\F(t)
1
wi = bdj′

u c− |F
(t)
1 |. Since w̃(t+1) is an extreme point solution of LP (t+1), it

satisfies this constraint i.e.,
∑
i∈τ̂(j′)\F(t)

1
w̃

(t+1)
i = bdj′

u c − |F
(t)
1 |. Since w

(t+1)
i = w

(t)
i =

1 ∀i ∈ F (t)
1 , adding F (t)

1 on both the sides, we get the desired feasibility.
Consider constraints (9). Since w̃(t) is feasible for LP2, we have

∑
j′∈Gr∩CS

∑
i∈τ(j′) w̃

(t)
i

≥ αr and since w̃(t+1) is feasible for LP (t+1), we have
∑
j′∈S(t+1)

r

∑
i∈τ(j′) w̃

(t+1)
i ≥ s(t+1)

r .
Then,

∑
j′∈Gr∩CS

∑
i∈τ(j′) w̃

(t+1)
i =

∑
j′∈(Gr∩CS)\S(t+1)

r

∑
i∈τ(j′) w̃

(t+1)
i +∑

j′∈S(t+1)
r

∑
i∈τ(j′) w̃

(t+1)
i ≥

∑
j′∈(Gr∩CS)\S(t+1)

r

∑
i∈τ(j′) w̃

(t)
i + s

(t+1)
r

=
∑
j′∈(Gr∩CS)\S(t+1)

r
1 + s

(t+1)
r (as these clusters must have been removed as they got

tight) = |(Gr ∩ CS) \ S(t+1)
r |+ s

(t+1)
r = αr.

Next, consider constraint (10). Since w̃(t) is feasible for LP2, we have
∑
i∈F fiw̃

(t)
i ≤ B

and since w̃(t+1) is feasible for LP (t+1), we have
∑
i∈F̃(t+1) fiw̃

(t+1)
i ≤ B̃(t+1). Also, we

have w(t+1)
i = w

(t)
i ∀i ∈ F \ F̃ (t+1). Consider

∑
i∈F fiw̃

(t+1)
i =

∑
i∈F\F̃(t+1) fiw̃

(t+1)
i +∑

i∈F̃(t+1) fiw̃
(t+1)
i ≤

∑
i∈F\F̃(t+1) fiw̃

(t)
i + B̃(t+1).

And since B̃(t+1) = B −
∑
i∈F\F̃(t+1) fiw̃

(t)
i , we have

∑
i∈F fiw̃

(t+1)
i ≤ B. Thus, the

solution w̃(t+1) is feasible.
ii) Consider the last iteration of the algorithm. The iteration ends either at step (3− 4)

or at step (9− 10). In the former case, the solution clearly has no fractionally opened
facility. Suppose we are in the latter case. Let the linearly independent tight constraints
corresponding to (7), (8) and (9) be denoted as X , Y and Z respectively. Let A and
B be set of variables corresponding to some constraint in X and Z respectively such
that A ∩B 6= ∅. Then, A ⊆ B. Imagine deleting A from B and subtracting 1 from sr.
Repeat the process with another such constraint in X until there is no more constraint in
X whose variable set has a non-empty intersection with B. At this point, sr ≥ 1 and the
number of variables in B is at least 2. Number of variables in any set corresponding to a
tight constraint in X (or Y) is also at least 2. Thus, the total number of variables is at
least 2|X |+ 2|Y|+ 2|Z| and the number of tight constraints is at most |X |+ |Y|+ |Z|+ 1.
Thus, we get |X |+ |Y|+ |Z| ≤ 1 and hence there at most two (fractional) variables.

iii) Note that no facility is opened in Nj′ \ τ(j′) : j′ ∈ CS for if i ∈ Nj′ \ τ(j′) : j′ ∈ CS
is opened, then it can be shut down and the demand dj′w̃i, can be shipped to ψ(j′),
decreasing the cost as c(j′, ψ(j′)) < c(i, j′). Then, the claim follows as we compute
extreme point solution in step (7) in the first iteration and the cost never increases in
subsequent calls.

FSTTCS 2018
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5.3 Proof of Lemma 12
i) Let jd ∈ CD ∩ Gr. Total demand djd

of jd can be distributed to the opened facilities
(≥ bdjd

/uc) at a loss of factor 2 in capacity and cost both, as djd
/u − bdjd

/uc < 1 ≤
bdjd

/uc.
For σr = 0, (ii) - (v) hold vacuously. So, let σr ≥ 1.

ii) LP2 opens αr = max{0, σr − 1} facilities in Gr ∩ CS . Constraint (7) ensures that at
most one facility is opened in each sparse cluster. Thus, there is at most one cluster in
Gr ∩ CS with no facility opened in it.

iii) and iv) Let j′ ∈ Gr ∩ CS such that no facility is opened in τ(j′). If j′ is not the root of
Gr or Gr is a root MC, then LP2 must have opened a facility in τ(ψ(j′)). Demand of j′
is assigned to this facility at a loss of maximum 2 factor in capacity if ψ(j′) ∈ CS and 3
if ψ(j′) ∈ CD: dψ(j′) = 1.99u and dj′ = .99u. Otherwise (if j′ is the root of Gr and Gr is
not a root MC), at most u units of demand of Gr remain unassigned within Gr. (v) holds
asbdjd

/uc facilities are opened in the cluster centered at jd and αr = max{0, σr − 1}
facilities are opened in Gr ∩ CS by constraints (8) and (9) respectively. (vi) Since the
demand dj′ of j′ ∈ Gr is served either within its own cluster or in the cluster centered
at ψ(j′), total distance traveled by demand dj′ of j′ to reach the centers of the clusters
in which they are served is bounded by dj′c(j′, ψ(j′)).

5.4 Proof of Lemma 13
After assigning the demands of the clusters within Gr as explained in Lemma (12), demand
coming from all the children meta-clusters are distributed proportionately to facilities within
Gr utilizing the remaining capacities. Next, we will show that this can be done within the
claimed capacity bound.

i) Let Gr be a non leaf meta-cluster with a dense cluster j′ ∈ CD at the root, if any. Also,
let tr be the total number of clusters in Gr, i.e., tr = δr + σr. The total demand to
be served in Gr is at most u(bdj′/uc + 1 + σr) + u(tr + 1) ≤ (βr + 2)u + (tr + 1)u
whereas the total available capacity is at least βru by Lemma (12). Thus, the capacity
violation is bounded by (βr+2)u+(tr+1)u

βru
≤ (βr+2)u+(βr+2)u

βru
= 2 + 4/βr ≤ 2 + 4/(`− 1)

(as bdj′/uc ≥ δr we have βr ≥ σr − 1 + δr = tr − 1 = `− 1 for a non-leaf MC).
The capacity violation of factor 3 can happen in the case when no facility is opened in
τ(j′) for j′ ∈ CS and ψ(j′) ∈ CD as explained in Lemma (12).
Leaf meta-clusters may have length less than l but they do not have any demand coming
onto them from the children meta-cluster, thus capacity violation is bounded as explained
in Lemma (12).

ii) Let j′ belongs to a MC Gr such that its demand is not served within Gr. Then, j′ must
be the root of Gr and its demand is served by facilities in clusters of the parent MC, say
Gs. Since the edges in Gs are no costlier than the connecting edge (j′, ψ(j′)) of Gr and
there are at most `− 1 edges in Gs, the total distance traveled by demand dj′ of j′ to
reach the centers of the clusters in which they are served is bounded by `dj′c(j′, ψ(j′)).

5.5 Proof of Lemma 14
Let j′ ∈ C′. Let λ(j′) be the set of centers j′′ such that facilities in τ(j′′) serve the demand
of j′. Note that if some facility is opened in τ(j′), then λ(j′) is {j′} itself and if no facility is
opened in τ(j′), then λ(j′) = {j′′ : ∃i ∈ τ(j′′) such that demand of j′ is served by i as per
the assignments done in Lemmas (12) and (13)}.
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The cost of assigning a part of the demand dj′ to a facility opened in λ(j′)∩CS is bounded
differently from the part assigned to facilities in λ(j′) ∩ CD.

Let j′′ ∈ CS ∩ λ(j′), i ∈ τ(j′′). Then, c(j′′, i) ≤ c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)). Last
inequality follows as: either j′′ is above j′ in the same MC (say Gr) (by Lemma (12.3)) or
j′′ is in the parent MC (say Gs) of Gr. In the first case, the edge (j′′, ψ(j′′)) is either in Gr
or is the connecting edge of Gr. The inequality follows as edge costs are non-increasing as
we go up the tree. In the latter case, edge (j′′, ψ(j′′)) is either in Gs or it is the connecting
edge of Gs: in either case, c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)) as the connecting edge of Gs is no
costlier than the edges in Gs which are no costlier than the connecting edge of Gr (possibly
c(j′, ψ(j′))) which are no costlier than the edges in Gr. Summing over all j′, j′′ ∈ CS , we
see that this cost is bounded by O(1)LPopt.

Next, let j′′ ∈ CD ∩λ(j′), i ∈ Nj′′ . Further, let gi be the total demand served by a facility
i. Since gi ≤ 3u, the cost of transporting 3u units of demand from j′′ to i is 3uŵic(i, j′′).
Summing it over all i ∈ Nj′′ , j′′ ∈ CD, and then over all j′ ∈ C′, we get that the total cost
for CD is bounded by O(1)LPopt.

5.6 Proof of Lemma 17
i) Let jd ∈ CD ∩G1

r. Consider the case when res(jd) < ε. The total demand (bdjd
/uc+

res(jd))u ≤ (bdjd
/uc+ ε)u of G1

r can be distributed to the opened facilities (≥ bdjd
/uc)

at a loss of factor 2 in capacity as bdjd
/uc ≥ 1.

When ε ≤ res(jd) < 1, the demand of G1
r is at most (bdjd

/uc + res(jd) + 1)u ≤
(bdjd

/uc+ 2)u. The available opening is bdjd
/uc+ 1. Thus, the capacity violation is at

most (bdjd
/uc+ 2)u/(bdjd

/uc+ 1)u < 2 as bdjd
/uc ≥ 1. Hence G1

r is self-sufficient.
For σr = 0, (ii) - (vi) hold vacuously. Thus, now onwards we assume that σr ≥ 1.

ii) LP2 opens max{0, σ′r − 1} facilities in G2
r where σ′r is the number of clusters in G2

r.
Constraint (12) ensures that at most one facility is opened in each cluster. Thus, there
is at most one cluster in G2

r with no facility opened in it and it is a sparse cluster. Next
consider G1

r with a sparse cluster in it, i.e., G1
r = {jd, js}, it is possible that all the γr

facilities are opened in τ(jd) and no facility is opened in τ(js). Thus, there are at most
two clusters with no facility opened in them and these clusters are sparse.

iii) and iv) Let j′ ∈ G2
r such that no facility is opened in τ(j′). If ψ(j′) ∈ G2

r, then LP2
must have opened a facility in τ(ψ(j′)). Demand of j′ is assigned to this facility at a loss
of maximum 2 factor in capacity. If ψ(j′) /∈ G2

r then either G1
r is empty or ψ(j′) ∈ G1

r.
In the former case j′ must be the root of Gr and Gr cannot be the root MC. Clearly,
at most u units of demand of Gr remain unassigned within Gr. In the latter case
i.e., ψ(j′) ∈ G1

r, then ψ(j′) is either jd or js.
v) and vi) We will next show that demand of j′ will be absorbed in τ(jd) ∪ τ(js) in the

claimed bounds along with claims (v) and (vi) of the lemma.

1. res(jd) < ε, we have G1
r = {jd}, γr = bdjd

/uc, G2
r = Gr ∩ CS , σ′r = σr, and

βr = bdjd
/uc+σr − 1. In this case, j′ = js and ψ(j′) = jd. LP2 must have opened at

least bdjd
/uc ≥ 1 facilities in τ(jd) Total demand (bdjd

/uc+ res(jd) + 1))u of jd and
j′ can be distributed to the facilities opened in τ(jd) (≥ bdjd

/uc) at a loss of factor
2 + ε in capacity, as res(jd) < ε and 1 ≤ bdjd

/uc.
2. ε ≤ res(jd) < 1, we have G1

r = {jd, js}, γr = bdjd
/uc + 1, G2

r = Gr ∩ CS \ {js},
σ′r = σr − 1 and βr = bdjd

/uc + σr − 1 if σr ≥ 2 and = bdjd
/uc + 1 if σr = 1.

In this case, ψ(j′) = js. In the worst case, no facility is opened in τ(js). LP2
must have opened at least bdjd

/uc+ 1 ≥ 2 facilities in τ(jd) ∪ τ(js). Total demand
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(bdjd
/uc+ res(jd) + 1 + 1))u of jd, js and j′ can be distributed to the facilities opened

in τ(jd) ∪ τ(js) (≥ bdjd
/uc+ 1) at a loss of factor 2 in capacity, as bdjd

/uc+ 1 ≥ 2.

vii) Clearly, c(j′, jd) ≤ 2c(j′, ψ(j′)). (2) above also handles the case when no facility is
opened in a sparse cluster in G1

r.
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