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Abstract
A voting mechanism is a method for preference aggregation that takes as input preferences over
alternatives from voters, and selects an alternative, or a distribution over alternatives. While
preferences of voters are generally assumed to be cardinal utility functions that map each alterna-
tive to a real value, mechanisms typically studied assume coarser inputs, such as rankings of the
alternatives (called ordinal mechanisms). We study cardinal mechanisms, that take as input the
cardinal utilities of the voters, with the objective of minimizing the distortion – the worst-case
ratio of the best social welfare to that obtained by the mechanism.

For truthful cardinal mechanisms withm alternatives and n voters, we show bounds of Θ(mn),
Ω(m), and Ω(

√
m) for deterministic, unanimous, and randomized mechanisms respectively. This

shows, somewhat surprisingly, that even mechanisms that allow cardinal inputs have large dis-
tortion. There exist ordinal (and hence, cardinal) mechanisms with distortion O(

√
m logm),

and hence our lower bound for randomized mechanisms is nearly tight. In an effort to close
this gap, we give a class of truthful cardinal mechanisms that we call randomized hyperspher-
ical mechanisms that have O(

√
m logm) distortion. These are interesting because they violate

two properties – localization and non-perversity – that characterize truthful ordinal mechanisms,
demonstrating non-trivial mechanisms that differ significantly from ordinal mechanisms.

Given the strong lower bounds for truthful mechanisms, we then consider approximately
truthful mechanisms. We give a mechanism that is δ-truthful given δ ∈ (0, 1), and has distortion
close to 1. Finally, we consider the simple mechanism that selects the alternative that maximizes
social welfare. This mechanism is not truthful, and we study the distortion at equilibria for the
voters (equivalent to the Price of Anarchy, or PoA). While in general, the PoA is unbounded, we
show that for equilibria obtained from natural dynamics, the PoA is close to 1. Thus relaxing
the notion of truthfulness in both cases allows us to obtain near-optimal distortion.
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1 Introduction

A society or a group of people may have different views and preferences but want to make a
collective decision that will impact the entire group. For example, the people of India may
have conflicting opinions on which party should win the Lok Sabha elections, and who should
be the Prime Minister. This is the problem of preference aggregation, and the methods
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27:2 On the Welfare of Cardinal Voting Mechanisms

of achieving this aggregation are called voting mechanisms – functions that map the given
preferences of voters over a set of alternatives to a single alternative or a distribution over
alternatives, without money being exchanged.

Central to the question of preference aggregation is the question of how preferences
are perceived by the voters, and how they are expressed to the mechanism. In classical
social choice theory, particularly when a voting mechanism is randomized, i.e., can output a
distribution over the set of alternatives, voter preferences are assumed to be von Neumann-
Morgenstern utility functions, that map each alternative to a real-valued utility. We assume
that the total utility each voter has for the alternatives is 1. This is the unit-sum assumption,
though other normalizations such as unit-range are also studied. A voter then prefers
distributions over the alternatives that maximize her expected utility. These utility functions
may be latent and hidden from the mechanism but are required for the voter to rationally
compare distributions or lotteries over the set of outcomes. In contrast to these cardinal
utility functions of the voters, frequently the mechanisms studied in the literature, and used
in practice, have coarser inputs, such as a ranking of the alternatives, or simply a vote for
the alternative with the highest utility (called ordinal and plurality voting respectively).

If utility functions are cardinal, then an understanding of cardinal voting mechanisms,
where voters give as input their utility functions, seems fundamental to understanding the
problem of preference aggregation. Though less popular than other voting mechanisms owing
to their complexity, cardinal voting mechanisms find use in many areas. For example, they
are motivated by automated agents in recommender systems that use exact numeric values
for making decisions, and hence naturally have easily expressible cardinal utilities. The use of
these automated agents in a movie recommendation system is described by Ghosh et al. [14]
(cf. [24]). Hillinger further argues for the use of cardinal voting mechanisms, especially since
they do not artificially restrict the freedom of expression of voters [17].

Given an input format for voter preferences, how then should the mechanism choose an
alternative? A widely studied property is incentive compatibility or truthfulness – a voter
should maximize her expected utility by truthfully expressing her preferences, irrespective
of the votes of others. Truthful mechanisms are desirable since voters need not strategize
or seek information on the behavior of other voters. Other properties for mechanisms that
are studied include Pareto-efficiency and polynomial-time computation. A natural objective
for the voting mechanism, given the cardinal utilities of voters, is to maximize the social
welfare or the total utility of the voters. This has been a mechanism objective in a number
of recent papers (e.g., [7, 13]). The objective of social welfare assumes that the utilities allow
for interpersonal comparison: that a unit of voter 1’s utility is equivalent to a unit of agent
2’s utility. Such comparisons may not be generally applicable, but even then, aggregate
utility (or disutility) is frequently used as a quantitative measure, e.g., man-hours required
for a project, or total time spent in traffic. The motivation for studying social welfare from
classical economic theory, as well as further uses in modern recommendation systems, is also
described by Boutilier et al. [7].

The social welfare of a voting mechanism is measured by the distortion – the ratio of the
welfare of the best alternative to the expected welfare obtained by the mechanism, in the
worst case over all instances [24].2 Unfortunately, combined with the requirement that the

2 In their paper, Procaccia and Rosenschein use distortion to measure the loss due to the embedding of
cardinal utilities into the space ordinal preferences. However, they also define distortion as stated here.
Other papers use ‘approximation ratio’ for this quantity (e.g., [13]). We find the term distortion to be
more natural and descriptive, and hence use it here for cardinal mechanisms as well.
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mechanism be truthful, for the input formats typically studied, the distortion is known to be
large – for ordinal mechanisms, that take as input a ranking of the alternatives, the distortion
is Θ(

√
m logm) [5], where m is the number of alternatives. Even for ordinal mechanisms

that are not truthful, the distortion is Ω(
√
m) [7], suggesting that most of the loss in welfare

is caused by the incongruity between the cardinal utilities experienced by the voters, and
ordinal preferences given as input to the mechanism. This begs the question: for truthful,
cardinal mechanisms, where the input to the mechanisms are cardinal utility functions, how
large is the distortion? Note that in this case, there is no incongruity between the preferences
experienced and expressed: both are cardinal.

Our goal in this paper is to address this question, and to obtain bounds on the social
welfare obtainable by cardinal mechanisms. While cardinal mechanisms are less popular than
mechanisms with simpler input formats, we believe that an understanding of cardinal mecha-
nisms is crucial in many ways to understanding other preference aggregation mechanisms.
Firstly, lower bounds obtained for cardinal mechanisms are lower bounds for mechanisms
with other input formats as well. Secondly, studying cardinal mechanisms helps disentangle
the effects of various constraints on the mechanism, since the input format is no longer a
constraint. Thirdly, as noted above, particularly in the case of automated agents, cardinal
mechanisms are of practical use. Lastly, we note that cardinal mechanisms have received less
attention than ordinal mechanisms, and theoretically these present several challenging ques-
tions. For example, strong characterizations of truthful ordinal mechanisms are known [16, 1],
while truthful cardinal mechanisms are only partially characterized (e.g., [18, 3]). This is
a long-standing open question, and we hope that the perspective of distortion of cardinal
mechanisms may present useful insights for this question as well.

We study truthful, nearly-truthful, as well as manipulable cardinal mechanisms, and
provide bounds on the social welfare obtainable. In the last case, we study the social welfare
at equilibrium for the deterministic cardinal mechanism that simply returns the alternative
with maximum social welfare for the reported utility functions. While for truthful cardinal
mechanisms we show strong and nearly tight lower bounds, for the last two cases we are able
to show that with some reasonable restrictions, the distortion achieved is nearly 1, in sharp
contrast to the case of truthful cardinal mechanisms, where the distortion is Ω(

√
m).

Our Contribution. In this paper, we study the distortion of cardinal mechanisms with n
unit-sum voters and m ≥ 3 alternatives. Unit-sum assumes that the sum of utilities of
each voter for the alternatives is 1. This assumption implies that all the voters have equal
weight, and no voter is more important than the other in contributing to the social welfare.
We first focus on truthful cardinal mechanisms, and show that for deterministic cardinal
mechanisms, the distortion is Θ(mn). Note that the trivial randomized mechanism that
picks an alternative uniformly without looking at the utilities of the voters has distortion
O(m). A natural property for mechanisms is Pareto-optimality (e.g., [16]), which states
that for any alternative a chosen by the mechanism with positive probability, there is no
alternative b for which all voters have higher utility. A significantly weaker property is
unanimity, which states that if there is an alternative that has maximum utility for all voters,
then the mechanism should pick this with probability 1. Unfortunately, even for this weaker
property, we show that any truthful unanimous mechanism has distortion Ω(m). Underlying
our results are strong previous characterizations of unanimous mechanisms which show that
such mechanisms must be random dictatorships, which pick a voter at random and return
the maximum utility alternative for the voter [10, 18, 21].

FSTTCS 2018
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We then focus on truthful randomized mechanisms. There exist randomized ordinal
(and hence cardinal) mechanisms with distortion O(

√
m logm). We show that, perhaps

surprisingly, this is nearly the best possible for cardinal mechanisms as well, showing a bound
of Ω(

√
m) on the distortion of cardinal mechanisms. Note that if voters reported their utility

truthfully, a mechanism with distortion 1 is trivial. This implies that the loss in welfare due
to truthfulness is already large, apart from that caused by the information loss due to the
input format.3

We leave the problem of closing the gap between the upper and lower bounds (O(
√
m logm)

and Ω(
√
m)) open. We instead address the following question: can cardinal mechanisms with

low distortion be very different from ordinal mechanisms? In particular, the characterization
by Gibbard of truthful ordinal mechanisms requires such mechanisms to satisfy non-perversity
and localization (these are defined in the next section) [16]. Must mechanisms that violate
these properties be trivial, with large distortion, or do there exist cardinal mechanisms
that violate these properties, and yet have good distortion? We give a mechanism that
we call a randomized hyperspherical mechanism that violates these properties, but has
distortion O(

√
m logm), matching the best known upper bound. Spherical mechanisms were

previously studied by Feige and Tennenholtz [12], but these are much simpler mechanisms
with distortion Ω(m). We view our mechanism as a significant extension of these. The
mechanism we introduce may be of independent technical interest as well. One of the steps
involved in the mechanism is to project a point onto the intersection of the standard simplex
and a hypersphere of given radius, for which we give a polynomial time algorithm.

Given the strong lower bounds, we then consider two kinds of mechanisms that may
incentivize strategic behavior (called manipulable). We first study approximately-truthful
cardinal mechanisms, where a mechanism is δ-truthful if no voter can increase her expected
utility by more than δ by reporting her utilities untruthfully. Here we show surprisingly good
results: for any δ ∈ (0, 1), we give a cardinal mechanism that has distortion that approaches
1 as the number of voters increases, and is 2δ-truthful. Thus slightly relaxing the notion of
truthfulness allows us to obtain near optimal bounds on the distortion. It is instructive to
compare our results with those of Birrell and Pass, who show that approximately truthful
ordinal mechanisms can be used to approximate any deterministic ordinal mechanism, in a
formal sense [6]. However, the distortion of any deterministic ordinal mechanism is Ω(m) [24].

We lastly consider the natural, but manipulable, deterministic mechanism that for any
utilities given as input, simply returns the alternative that has maximum social welfare
according to these utilities. Since we can no longer rely on voters being truthful, we instead
consider the pure Nash equilibrium for this mechanism, i.e., utility profiles where no single
voter can report a different utility function and improve her utility. Here, the distortion
is equivalent to the Price of Anarchy (PoA), defined as the ratio of the welfare of the best
alternative to the expected welfare of the mechanism, in the worst case over all equilibria
and all instances. Simple examples show the PoA is in general unbounded, and even natural
refinements studied previously have unbounded PoA. Instead, we consider equilibria reachable
from natural iterative voting, where in each step, a voter changes her input to the mechanism
to improve her utility. Iterative voting has been considered in a number of previous papers
(e.g., [20, 25]), though usually for ordinal or other mechanisms with restricted input formats.
We show that under certain natural restrictions on the allowable deviations, iterative voting
converges, and the PoA approaches 1 as the number of voters increases.

3 Ariel Procaccia in a conversation mentioned that he had also obtained this bound independently, but
had not written it up.
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Related Work. We focus here on literature directly related to our work, and refer to the
book on computational social choice [8] and the survey by Barbera [2] for a wider discussion.
For voting mechanisms, truthfulness has been an important consideration, epitomized
by the well-known impossibility result by Gibbard and Satterthwaite for deterministic
ordinal voting mechanisms which states that any such truthful mechanism must be a
dictatorship [15, 27]. Allowing randomization alleviates this, and such mechanisms were
characterized by Gibbard [16] as being distributions over unilateral and duple mechanisms,
each of which must be localized and non-perverse. This characterization was further refined
by Barbera [1].

In comparison, for characterizing truthful cardinal mechanisms, only partial results are
known. Characterizations are known for twice-differentiable truthful cardinal mechanisms [3].
Further, truthful cardinal mechanisms which are unanimous are a convex combination of
dictatorial schemes [18, 10, 21].

The social welfare of voting mechanisms was explicitly studied by Boutilier et al. [7],
who showed that for randomized ordinal mechanisms, the distortion was O(

√
m log∗m)

and Θ(
√
m). The concept of distortion as a measure of loss of welfare by a mechanism

was introduced earlier and studied for many well-known deterministic voting mechanisms
including Borda, Plurality, and Veto [24]. In general, the distortion is shown to be unbounded.
For highly structured utility functions, the authors obtain positive results. The mechanisms
studied in these papers are not truthful. For truthful ordinal mechanisms for voters with
unit-sum utilities, the distortion is known to be Θ(

√
m logm) [5].

Filos-Ratsikas and Miltersen study the social welfare of truthful cardinal mechanisms
with voters that have unit-range utilities, i.e., for each voter i, maxa∈A ui(a) = 1 and
mina∈A ui(a) = 0 [13]. They obtain bounds of O(m3/4) and Ω(log logm/ logm) for truthful
cardinal mechanisms, and a bound of Ω(m2/3) for ordinal mechanisms and some generaliza-
tions.

Relaxing truthfulness, it is known that approximately truthful randomized ordinal mech-
anisms can approximate any deterministic ordinal voting rule, in that the output obtained
by the randomized mechanism could have been obtained by the deterministic ordinal voting
rule by changing a small number of votes [6]. This does not give us bounds on the distortion,
since any deterministic ordinal mechanism has distortion Ω(m) (e.g., [24]).

The social welfare at equilibrium – with the ratio well-known as the Price of Anarchy
(PoA) – is known to be bad if the set of equilibria is not restricted. Hence a number of papers
study equilibria reachable by natural best-response dynamics, called iterative voting. For
the plurality voting rule, best-response dynamics is shown to converge in O(mn) steps [20].
Convergence for Veto, Borda, and other voting rules is also studied [19, 26]. Further, the
social welfare for equilibria obtained through best-response dynamics for plurality is known
to be at most 1 less than the optimal, however, this can be small (and hence the PoA
can be large) for Veto and Borda. Finally, further restrictions on the class of equilibria
obtainable have also been studied for plurality voting, such as strong equilibria or equilibria
with truth-biased voters [11, 23]. In particular, Rabinovich et al. [25] characterize the set of
equilibria obtainable from plurality voting with truth-biased voters.

2 Preliminaries and Notation

A population of n voters (or agents) N = {1, 2, . . . , n} want to select an alternative (or
candidate) from a set A of size m. Each voter i has a utility function ui : A → [0, 1]. We
will sometimes abuse notation and think of ui as vector in Rm. We assume that the voters

FSTTCS 2018
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are unit-sum voters, i.e., the total utility of a voter is 1 (
∑
a∈A ui(a) = 1 for each voter

i). We will also assume that no two alternatives have the same utility for a voter, thus if
ui(a) = ui(b), then a = b. This is a mild technical assumption which allows us to obtain a
total order over alternatives for each voter, and simplify our proofs. Let ~u := (ui)i∈N be a
vector of utility functions, or a utility profile. Define ~u/iu′i to be the utility profile ~u with
the utility function for the ith voter replaced by u′i.

A (cardinal) mechanism µ is defined as a map, possibly randomized, from input utility
profiles to distributions over alternatives. For our lower bounds, we assume that the
mechanisms we study have at least 3 feasible alternatives, i.e., there exist three alternatives
each of which is chosen with positive probability for some input utility profile. We will
sometimes compare our mechanisms to ordinal mechanisms, which are similarly possibly
randomized maps from rankings over the set of alternatives provided by voters, to distributions
over the alternatives. A plurality mechanism is one where each voter selects a single
alternative, and the mechanism chooses an alternative that is selected by the maximum
number of voters. Given a distribution (pa)a∈A over the alternatives, the expected utility of
a voter is

∑
a∈A ui(a)pa. We assume that all voters are expected utility maximizers, and

note that to maximize her utility a voter i may report a different utility function u′i 6= ui
to the mechanism. For clarity, we call the input provided to a mechanism by a voter her
strategy, which may not be her true utility. A mechanism is truthful (more formally, truthful
in expectation) if each voter obtains maximum expected utility by reporting her true utility
profile ui, irrespective of the strategies of the other voters. Thus a cardinal mechanism
is truthful if for each voter i with utility ui, and each strategy profile ~u′, Ea∼µ(~u′)[ui(a)]
≤ Ea∼µ(~u′/iui)[ui(a)]. A mechanism is manipulable if it is not truthful. Further, relaxing
truthfulness, in a δ-truthful mechanism each voter can improve her expected utility by at
most δ by choosing a strategy that is not her true utility. In both these cases, we assume
that voters vote truthfully, since the incentive to misreport utility functions is small.

For an alternative a in an instance with utility profile ~u, the utilitarian social welfare (or
simply welfare) is sw(a) =

∑
i ui(a), the sum of utilities of all the voters for that alternative.

We study mechanisms that maximize welfare, and hence our primary measure of a mechanism
is its distortion, defined informally as the worst-case ratio of the maximum utility of an
alternative, to the expected utility obtained by the mechanism [4, 24]. The distortion of a
mechanism is thus at least 1. Under the assumption that voters choose their utility ui as
strategy, the distortion for a mechanism µ is defined formally as:

dist(µ) := sup
~u

maxa∈A sw(a)
Ea∼µ(~u)sw(a) .

In Section 5, we study the simple deterministic mechanism that chooses the alternative
with maximum welfare, for the strategy profile reported by the voters. This mechanism is
not truthful, and we will be interested in welfare at the pure Nash equilibrium for the voters.
In this case, the distortion is equivalent to the well-studied Price of Anarchy. Formally, let ~u
be the utility profile of the voters, and let ~u′ be a strategy profile. Then ~u′ is a pure Nash
equilibrium if for every voter i ∈ N and every strategy u′′i ,

Ea∼µ(~u′)ui(a) ≥ Ea∼µ(~u′/iu′′i )ui(a) .

The Price of Anarchy (PoA) of a mechanism µ is defined as the worst-case ratio over all
possible instances, of the maximum welfare of an alternative to the lowest welfare of an
alternative chosen by the mechanism at an equilibrium.

sup
~u

sup
equilibrium strategy profiles ~u′

maxa∈A
∑
i∈N ui(a)

Ea∼µ(~u′)
∑
i∈N ui(a)
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The following properties for ordinal mechanisms were introduced by Gibbard [16].

I Definition 1. An ordinal mechanism is non-perverse if increasing the ranking of an
alternative by a voter, while leaving the relative order of the other alternatives unchanged,
does not decrease the probability that the alternative is selected. An ordinal mechanism is
localized if, for two rankings by a voter where the set of top k alternatives are the same (but
individual rankings may not be preserved), the total probability mass on these k alternatives
is also unchanged.

We extend these properties to cardinal mechanisms as follows.

I Definition 2. Let utility functions v, v′ be such that v′(a) > v(a) for some alternative a,
and for all other alternatives b, c 6= a, v(b) ≥ v(c) iff v′(b) ≥ v′(c). That is, the relative order
of the other alternatives remains unchanged. Cardinal mechanism µ is non-perverse if for all
utility profiles ~u and voters i, µ(~u/iv′)(a) ≥ µ(~u/iv)(a).

I Definition 3. Given utility functions v, v′ and a permutation π so that v(a1) ≥ · · · ≥ v(am)
and v′(aπ(1)) ≥ · · · ≥ v′(aπ(m)), cardinal mechanism µ is localized if for every k ≤ m such
that (i) {a1, . . . , ak} = {aπ(1), . . . , aπ(k)} and (ii)

∑k
i=1 v(ai) =

∑k
i=1 v(aπ(i)), the probability

mass on these k alternatives remains unchanged. That is, for every utility profile ~u and voter
i,
∑k
i=1 µ(~u/iv)(ai) =

∑k
i=1 µ(~u/iv′)(aπ(i)).

All missing proofs are given in the appendix.

3 Truthful Mechanisms

In this section, we obtain bounds on the distortion of truthful mechanisms. Disappointingly,
but perhaps unsurprisingly, we first show that deterministic mechanisms have distortion
Θ(mn) (Theorem 7). Further, mechanisms that are unanimous – i.e., if there exists an
alternative that has maximum utility for each voter, then this alternative must be selected –
have distortion Ω(m) (Theorem 9).4 In fact, we show that truthfulness is in general expensive
– all truthful cardinal mechanisms, even randomized, have distortion Ω(

√
m) (Theorem 10).

The lower bound is disappointing, since it shows that even truthful mechanisms that do not
restrict the input format have large distortion. Our lower bound is nearly tight, since there
are truthful ordinal mechanisms that have distortion O(

√
m logm), implying that the loss

from restricting the input format does not impose a significant additional burden.
The gap between the upper and lower bounds (O(

√
m logm) and Ω(

√
m)) remains open.

However, the seminal work by Gibbard [16] shows that an ordinal mechanism is truthful iff
it is localized and non-perverse. An interesting question is if there exist mechanisms which
approach the distortion lower bound, and violate these properties, extended to cardinal
mechanisms. We show that indeed such mechanisms exist, and give one such mechanism
with distortion O(

√
m logm), matching the best known upper bound.

We will use the following definition and characterization for our proofs. Recall that we
assume that for each voter, no two alternatives have the same utility. Since we assume
truthfulness in this section, this extends to their strategies as well.

I Definition 4. A mechanism is a dictatorship if there exists voter i so that for any strategy
profile ~u, µ(~u) = arg maxa∈A ui(a). Voter i is said to decide the mechanism in this case.

4 A mechanism that is Pareto-optimal must be unanimous, hence the lower bound holds for all Pareto-
optimal mechanisms as well.

FSTTCS 2018



27:8 On the Welfare of Cardinal Voting Mechanisms

I Definition 5. Cardinal mechanism µ is unanimous if whenever there exists an alternative
a∗ ∈ A such that arg maxa∈A ui(a) = a∗ for all voters i, µ(~u) selects a∗ with probability 1.

I Theorem 6 ([18, 10]). A unanimous truthful cardinal mechanism is a randomization over
dictatorial mechanisms.

A similar result was also shown for ordinal mechanisms by Gibbard [16]. We first show
tight bounds for deterministic mechanisms.

I Theorem 7. Deterministic truthful cardinal mechanisms have distortion Θ(mn).

Proof. For the upper bound, consider the mechanism that picks the maximum utility
alternative for voter 1. This mechanism has welfare at least 1/m, while the maximum welfare
obtainable is n, giving us the upper bound.

For the lower bound, we first assume that for every a ∈ A, there is some strategy profile
for which the mechanism returns a. This is without loss of generality, since if there is some
alternative a that is never chosen, then when all agents have utility 1 for a and 0 for all other
alternatives, the distortion is infinite. We next show in the following claim that a truthful
deterministic cardinal mechanism must be unanimous.

I Claim 8. A truthful deterministic cardinal mechanism must be unanimous.

Proof. Suppose the truthful deterministic mechanism µ is not unanimous. Then for some
alternative a, ~u is a utility profile where the maximum utility alternative for every voter is
a, but the mechanism returns b 6= a. Since a is feasible, there exists ~u′ such that µ(~u′) = a.
Let the voters deviate, one by one, from their strategy in ~u to ~u′. For some voter i, the
mechanism chooses a after the player deviates, and not before. This player then has an
incentive to report her utility as in ~u′ when her actual utility is as in ~u, when the other
voters have utilities as in the utility profile before (and also after) the deviation by i. The
mechanism thus cannot be truthful. J

We can now complete the proof of the theorem. By Theorem 6 and Claim 8, any truthful
deterministic cardinal mechanism must be a dictatorship. For such a mechanism, let i be
the voter that decides the mechanism. Consider the utility profile where voter i has utility
1/m+ ε for candidate a and utility 1/m− ε/(m− 1) for the other alternatives. All the other
voters have utility 1 for some candidate b 6= a. Then the maximum welfare is about (n− 1)
while the mechanism obtains welfare 1/m+ ε, giving us the required distortion. J

I Theorem 9. Unanimous truthful cardinal mechanisms have distortion Ω(m).

Proof. Let the unanimous mechanism be µ, by Theorem 6 this must be a randomization over
dictatorships. Select a∗ ∈ A, and consider the utility profile ~u where all agents have utility
0.5− ε for a∗ and 0.5 + ε for some other alternative uniformly selected from A \ {a∗}. Then
µ(~u) selects a∗ with probability 0, and gets expected welfare n/2(m− 1), while alternative
a∗ has welfare n/2 (we assume ε→ 0), giving distortion Ω(m). J

We now show a lower bound for all truthful cardinal mechanisms.

I Theorem 10. Any truthful cardinal mechanism has distortion Ω(
√
m).

Proof. We will assume that
√
m is an integer and n is divisible by

√
m. This helps sim-

plify the proof but is not required for it to hold. Let µ be a truthful mechanism. Let
{a1, a2, . . . , a√m} = A∗ ⊆ A be a subset of alternatives of size

√
m. Partition the set of

agents N into
√
m sets of equal size n/

√
m, say N1, N2, . . . , N√m. Let n′ := n − (n/

√
m).
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Create a utility profile where for each i ∈ {1, 2, . . . ,
√
m}, the agents in set Ni have utility 1

for ai and utility 0 for the other alternatives. Call this profile ~u0. For this profile, at least
one of the alternatives in A∗ is selected by µ with probability ≤ 1/

√
m, say alternative a√m.

Let the probability it gets be p0 ≤ 1/
√
m.

Now, for all voters i ∈ N \N√m = {1, . . . , n′} we will make the utility uniform among the
alternatives in A\{a√m}, one voter at a time. Formally, let v be a utility function where a√m
has utility 0 and all other alternatives have utility 1/(m− 1). Let utility profile ~ui = ~ui−1/iv,
and let pi be the probability that alternative a√m gets for profile ~ui, for i ∈ {1, 2, . . . , n′}.

Observe that only the utility for the ith agent changes when we change the strategy profile
from ~ui−1 to ~ui. Suppose voter i has utility function v. Then the truthfulness condition
requires that the probability mass on alternatives other than a√m should be maximum when
it reports truthfully, and hence 1 − pi ≥ 1 − pi−1, or pi ≤ pi−1. Thus, pn′ ≤ p0 ≤ 1/

√
m.

Now for the bound on the distortion, for the last utility profile ~un′ when only voters in N√m
have positive utility 1 for a√m and all other voters divide their utility equally among the
other alternatives, a√m has maximum social welfare equal to n/

√
m, and this is picked with

probability at most 1/
√
m. The distortion bound follows from simple calculations. J

Randomized Hyperspherical Mechanisms
We now describe a truthful cardinal mechanism that has distortion O(

√
m logm), matching

the best known distortion upper bound, and which violates the properties of localization and
non-perversity. We first present the mechanism and its analysis, and then show an example
for which the mechanism violates these properties. For a dimension m, let 1 be the all-ones
vector. The standard (m − 1)-simplex {x ∈ Rm≥0 : ‖x‖1 = 1} is denoted 4m. Before we
describe our mechanism, for a fixed radius R ≥ 0 and dimension m, consider the following
sets:

S1
m(R) =

{
p ∈ Rm :

∥∥∥∥p− 1
m
1

∥∥∥∥
2
≤ R, ‖p‖1 = 1

}
, S2

m(R) = S1
m ∩ Rm≥0 .

S1
m(R) is the set of points in Rm whose coordinates (possibly negative) sum to 1, and are

at distance at most R from (1/m, . . . , 1/m). S2
m(R) is the set of points that lie in the

intersection of the standard simplex with the ball of radius R with center 1
m1. Note that

both sets are convex. Given x ∈ Rm, there is a boundary point p that maximizes pTx in
either of these sets, since the objective is linear.

We now describe our mechanism. Let ~u be the given strategy profile. Let µ1 be the
mechanism that picks an alternative with uniform probability and returns it. Let µ2 be the
mechanism that selects a radius R uniformly from the set

Γ =
{

1√
m(m− 1)

,
2√

m(m− 1)
,

4√
m(m− 1)

, . . . ,
m− 1√
m(m− 1)

}

and selects a voter i from N with uniform probability. Mechanism µ2 returns the point
p ∈ S2

m(R) that maximizes pTui. Since p lies in the standard simplex, it is a distribution.
Finally, our randomized hyperspherical mechanism runs µ1 with probability 1/2, and µ2
with probability 1/2.

Analysis. The truthfulness of the mechanism is evident since for µ2, the voter i and radius
R are chosen independently from the input ~u, and we choose p ∈ S2

m(R) that maximizes
the expected utility pTui for voter i. There are thus two things we need to show: that the
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Algorithm 1 Compute-p.
Input: Dimension m ∈ Z+, vector x ∈ 4m, radius R ≥ 0.
Output: Distribution p ∈ S2

m(R) that maximizes pTx.
1: p← 1

m 1+R
x− 1

m 1

‖x− 1
m1‖2

2: if p ≥ 0 then
3: return p

4: else
5: x′ ← x[1:m−1]∑m−1

i=1
xi
, R′ ←

√
R2 − 1

m(m−1) , m
′ ← m− 1.

6: p′ ← Compute-p(m′, x′, R′). return (p′ 0).

distribution p that maximizes pTui over S2
m(R) can be obtained efficiently, and that the

mechanism has distortion O(
√
m logm).

We first give an algorithm for computing p. Let x = ui be the utility for the voter chosen.
We reindex the alternatives so that x1 ≥ · · · ≥ xm. We use x[1 : k] = (x1, . . . , xk) to denote
the vector consisting of the first k components of x.

Theorem 11 shows that the algorithm finds the point p ∈ S2
m(R) that maximizes pTx,

as required. The algorithm first finds the point in p ∈ S1
m(R) that maximizes pTx. If p

is nonnegative, then p ∈ S2
m(R), and this is returned. If not, then we show that in the

optimal distribution, it must be the case that pm = 0. In this case, let x′ and R′ be x and R
as modified in Line 5. It can be checked that S2

m−1(R′) is the intersection of S2
m(R) with

the hyperplane pm = 0. In this case, we focus on the first m − 1 coordinates of x, and
recursively find the point in p′ in S2

m−1(R′) that maximizes p′Tx′. We show in the proof that
the distribution p = (p′ 0) is the point in S2

m(R) that maximizes pTx.

I Theorem 11. Algorithm 1 correctly returns p ∈ S2
m(R) that maximizes pTx.

Proof. The proof of the theorem follows from these claims.

I Claim 12. The point p obtained in Line 1 is the point q ∈ S1
m(R) that maximizes qTx.

Proof. It can be checked from the steps in the algorithm that
∑
i pi = 1, and ‖p−1/m‖2 = R,

hence p ∈ S1
m(R). Secondly, q ∈ S1

m(R) maximizes qTx iff q maximizes (q − 1/m)Tx
= ‖q− 1/m‖2‖x‖2 cos θ, where θ is the angle between q− 1/m and x. The point p is chosen
such that θ = 0 and ‖q − 1/m‖2 = R, hence it maximizes qTx. J

Clearly, if p ≥ 0, then p ∈ S2
m(R) and we are done. Else, since x1 > x2 > . . . > xm,

p1 ≥ p2 ≥ . . . ≥ pm (else permuting the coordinates of p to obtain these inequalities would
give us a point in S1

m(R) with higher value for pTx). Hence suppose pm < 0.

I Claim 13. If pm < 0, then there is a point p′ ∈ S2
m(R) that maximizes qTx over all points

q in S2
m(R), and has p′m = 0.

Proof. Let q′ be a point in S2
m(R) that maximizes qTx over such points, and suppose q′m > 0.

Then xT q′ ≤ xT p, and since q′m > 0, pm < 0, and the coordinates for each of these vectors
is nonincreasing in the indices, there is a point p′ on the line joining q′ and p that lies in
S1
m(R) (since both these points lie in S1

m(R), and this set is convex) so that xT p′ ≥ xT q′

and p′m = 0, and with coordinates nonincreasing in the indices. Hence p′ ≥ 0, and hence
p′ ∈ S2

m(R), which is the required point. J
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Now let λ =
∑m−1
i=1 xi, x′ = (x1, x2, . . . , xm−1)/λ, and R′ =

√
R2 − 1

m(m−1) , as we use in
Line 5. Let q′ be a point in S2

m−1(R′) that maximizes qTx[1 : m− 1] over all such points q.

I Claim 14. If pm < 0, then (q′ 0) ∈ S2
m(R) maximizes qTx over all such points q.

Proof. Since q′ ∈ S2
m−1(R′), (q′ 0) is in S2

m(R). For the second part, let p′ be as obtained
in Claim 13, and let q′′ = (p′1, . . . , p′m−1). Since p′m = 0, q′′ ∈ S2

m−1(R′). Then λq′
T
x′

= (q′ 0)Tx, and similarly λq′′
T
x′ = (q′′ 0)Tx = p′

T
x. Suppose for a contradiction that

(q′ 0)Tx = λq′
T
x′ < p′

T
x. Then λq′Tx′ < λq′′

T
x′, which contradicts the optimality of q′. J

Thus, if the point p ≥ 0, then this is a point in S2
m(R) that maximizes pTx, and is

correctly returned. If not, then pm < 0. In this case, by Claim 13, p′m = 0, and by Claim 14
it is sufficient to compute the point q′ ∈ S2

m−1(R′) that maximizes qTx over all such points
q, and return the vector (q′ 0), which is the iterative step in our algorithm as well. J

We now show the bound on the distortion.

I Theorem 15. The randomized hyperspherical mechanism has distortion O(
√
m logm).

Proof. Let a∗ ∈ A be the alternative with maximum social welfare. Observe that mechanism
µ1, that picks an alternative with uniform probability, has expected welfare of n/m. If
sw(a∗) ≤ n

√
logm
m , then since µ1 is picked w.p. 1/2, dist(µ) ≤ 2 dist(µ1) ≤ 2

√
m logm.

Else, assume µ2 is the mechanism picked. Let p(a) be the probability that alternative
a is picked, and pi(a) be the probability that agent i and alternative a are picked. Then
p(a) =

∑
i∈N pi(a). For any i ∈ N and corresponding utility function ui, there is hypersphere

with radius R between ‖ui − 1/m‖2 and ‖ui − 1/m‖/2. The point p on this hypersphere
that maximizes pTui is the point on the line joining 1/m with ui, which clearly lies in the
simplex. Since this point is at least halfway to ui, the coordinate corresponding to alternative
a has value λui(a) + (1− λ) 1

m for λ ≥ 1/2, and hence

pi(a) ≥ 1
n

1
logm

ui(a)
2

and hence p(a) ≥
∑
i pi(a) ≥ sw(a)/(2n logm). Since sw(a∗) ≥ n

√
logm
m , the distortion is

dist(µ) ≤ 2 dist(µ2) ≤ 2sw(a∗)
sw(a∗)p(a∗) ≤

4n logm
sw(a∗) ≤

4n logm
n
√

logm/m
= 4
√
m logm. J

We now show that the randomized hyperspherical mechanism violates the properties
of non-perversity and locality. Let there be 3 alternatives and 1 voter. The mechanism
randomizes over hyperspheres with radii 1/

√
6 and 2/

√
6 with probability 1/4 each, and

selects an alternative uniformly with probability 1/2.

Perverse. Consider the utility profiles u = (1/4− ε, 1/2, 1/4 + ε) and u′ = (0, 3/4, 1/4),
where ε → 0+. The relative ordering of the alternatives for both the profiles is same.
Running the mechanism returns the distributions p ≈ (0.208, 0.584, 0.208) and p′ ≈
(0.187, 0.579, 0.234) for u and u′, respectively. The mechanism is perverse, since the
probability of the second alternative decreases, despite its utility increasing and the
ordering of the alternatives remaining unchanged.
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Figure 1 The hyperspherical mechanism for a single sphere of radius 1/
√

6, with three alternatives.

Not localized. Consider the utility profiles u = (1− ε, ε, 0) and u′ = (3/4, 1/4, 0), where
ε → 0+. The total utility for the first two alternatives is same for both profiles and is
equal to 1. Running the mechanism returns the distributions p ≈ (0.584, 0.208, 0.208)
and p′ ≈ (0.579, 0.234, 0.187) for u and u′ respectively. The mechanism is not localized,
since the total probability given to the first two alternatives is different: 0.792 and 0.813,
despite having the same total utility.

Figure 1 shows the projection of the two utility vectors in the first example onto the
second hypersphere of radius 1/

√
6.

4 Approximately Truthful Mechanisms

Given the strong lower bounds on distortion with truthful mechanisms, we now consider
approximately truthful mechanisms. A mechanism is δ-truthful if no voter can increase
her expected utility by more than an additive δ by misreporting her utilities. In this case,
perhaps surprisingly, we are able to show mechanisms that obtain near-optimal distortion.
Our mechanism takes a parameter δ ∈ (0, 1) as input. The resulting mechanism is 2δ-
truthful, and has distortion that goes to 1 as the number of voters increases. In particular, if
δ = 25m/n < 1, then the mechanism has distortion almost 1.01.

The mechanism proceeds as follows. It first elicits the strategy profile ~u of the voters.
For alternative j ∈ [m], define sj = sw(j) =

∑
i∈N ui(j). Assume (or re-index the set of

alternatives) that s1 ≥ s2 ≥ · · · ≥ sm. Define

λ := max
{
k ∈ [m] :

k∑
i=1

(si − sk) < 1
δ

}
. (1)

Note that λ ≥ 1. Then the mechanism returns the probability distribution defined as follows:

pk =
{

1
λ

(
1− δ

∑λ
i=1(si − sk)

)
for k ≤ λ

0 for k > λ
(2)

Since
∑λ
k=1

∑λ
i=1(si − sk) = 0, the sum of probabilities

∑m
i=1 pi =

∑λ
i=1 pi = 1. Further,
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for all k ≤ λ the sum

λ∑
i=1

(si − sk) =
k∑
i=1

(si − sk) +
λ∑

i=k+1
(si − sk) ≤

k∑
i=1

(si − sk) ≤ 1/δ ,

where the first inequality is by the indexing of the alternatives and the second is by definition
of λ. Hence all the probabilities are non-negative. It can also be shown by a quick calculation
that the probability distribution returned by the mechanism can also be written as:

pk =
{
p1 − δ(s1 − sk) for k ≤ λ
0 for k > λ

(3)

with p1 chosen so that the sum of the probabilities is 1. We now show the required properties
for this mechanism.

I Theorem 16. Given parameter δ ∈ (0, 1), the described mechanism has distortion < s1
s1− 1

4δ
.

Proof. Clearly, the maximum welfare obtainable is s1. The expected welfare obtained by the
mechanism is

∑m
j=1 pjsj , and replacing for sj from (3), this gives us s1 − (p1 −

∑λ
j=1 p

2
j )/δ.

Optimizing over the pj ’s, we find that the worst social welfare is obtained when p1 =
(1 + 1/λ)/2, pj = 1/(2λ) for 2 ≤ j ≤ λ, and the expected welfare in this case is at least
s1 − (1/4δ). The bound on the distortion follows immediately. J

I Theorem 17. Given parameter δ ∈ (0, 1), the described mechanism is 2δ-truthful.

Proof. We show the following stronger property: give two strategy profiles ~u, ~u′, let ~s :=
(
∑
i∈N ui(a))a∈A and ~s′ := (

∑
i∈N u

′
i(a))a∈A be the respective social welfare vectors. Let

α := ‖~s− ~s′‖1 be the L1 distance between the two welfare vectors. Then the distributions
returned by the mechanism given inputs ~u and ~u′ differs in any component by at most αδ.
The theorem then follows, since by deviating, a single player can change the total welfare by
at most 2, and hence the distribution changes in any component by at most 2δ. We first state
the following claim, which states that if λ remains unchanged for ~s and ~s′, then the property
described holds. Let p and p′ be the probability distributions returned by the mechanism
for ~u and ~u′ (with welfare vectors ~s and ~s′ respectively). The proof follows immediately
from (2).

I Claim 18. If λ is the same for ~s and ~s′, then the distributions p and p′ differ in each
component by at most δ‖~s− ~s′‖1.

The next claim shows that if there exists an index k so that
∑k
i=1(si − sk) = 1

δ , then
including this in λ does not change the distribution. Another way of viewing the claim is
that it shows that the probability distribution changes continuously with s. In particular,
the strict inequality in the definition of λ can be replaced by an inequality without changing
the distribution.

I Claim 19. Given a strategy profile ~u, let ~s :=
∑
i∈N ui. Let λ be as defined previously,

and define λ′ as any index k so that
∑k
i=1(si − sk) = 1

δ (if it exists). Then the distribution p
is unchanged if we replace λ by λ′ in (2).

Proof. Assume λ′ exists, else the claim is trivially true. Let p be as defined in (2), and p′
be the distribution obtained from (2) with λ replaced by λ′. By definition, λ′ > λ. Let
r := λ′ − λ. Then since 1/δ =

∑λ+k
i=1 (si − sλ+k) for all k ∈ {1, . . . , r}, it must be true that
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sλ+1 = · · · = sλ′ . Hence, it must also be true that
∑λ
i=1(si − sλ′) =

∑λ′

i=1(si − sλ′). We will
use this last equality later in the proof. For any k ≤ λ′, we get the probability distribution

p′k = 1
λ′

1− δ
λ′∑
i=1

(si − sk)


= 1
λ′

1− δ
λ′∑
i=1

(si − sλ′)− δλ′(sλ′ − sk)


= 1
λ′

(δλ′(sk − sλ′)) = δ(sk − sλ′)

Note that (i) for λ < k ≤ λ′, since sk = sλ′ as discussed above, p′k = 0 = pk, and similarly for
k > λ′, by definition p′k = 0 = pk. Hence it remains to show that for k ≤ λ, pk = δ(sk − sλ′).
Simple calculations yield that for k ≤ λ,

pk − δ(sk − sλ′) = 1
λ

(
1− δ

λ∑
i=1

(si − sλ′)
)

= 0 ,

where the last equality follows from the discussion in the first paragraph. J

We now complete the proof of the theorem. Instead of the strategy profiles, we consider
directly the resulting welfare vectors. Consider the straight line from ~s to ~s′. Let λ and λ′
be defined as in (1) for s and s′ respectively. If λ = λ′, then by Claim 18, the theorem holds.
Suppose instead that λ′ = λ+r, for some r ≥ 1. Let ~s0 = ~s and ~sr = ~s′. We segment the path
from ~s to ~s′ into r segments [~s0, ~s1), [~s1, ~s2), . . . , [ ~sr−1, ~sr] so that (i) λ remains unchanged
at each point within a segment, and (ii) at the ith breakpoint ~si, 1/δ =

∑λ+i
j=1(sj − sλ+i). It

follows from the previous claims that for any component, the change in probability between
~s and ~s′ is at most δ

∑r
i=1 ‖~si − ~si−1‖1 = δ‖~s′ − ~s‖1, as required to complete the proof. J

5 Convergence and Price of Anarchy in Iterative Voting

In this section, we focus on the deterministic mechanism µ that given a strategy profile
~u′, chooses the alternative that maximizes the reported social welfare

∑
i∈N u

′
i(a). The

alternatives are indexed, and ties are resolved in favour of the alternative with lower index.
All results are presented for this mechanism. It is easily seen that even for two voters, this
mechanism is not truthful. Hence we focus on the stable outcomes of strategic voting, in
particular strategy profiles that are at a pure Nash equilibrium. As before, we are concerned
with the social welfare of the alternative chosen by the mechanism at equilibrium. The
distortion in this case is equivalent to the Price of Anarchy, and we refer to it as such here.
The PoA is in general unbounded, and so are certain refinements. Instead, we consider
equilibria which arise as a result of iterative voting dynamics, when starting from the initial
truthful utility profile, a voter deviates at each step in a manner that improves her utility,
until the voters reach an equilibrium. In contrast to truthful mechanisms, we show a strong
positive result. We show that a particular and natural class of iterative voting dynamics
converges quickly to an equilibrium. Further, the price of anarchy for the class of equilibria
thus obtained is close to 1, as the number of voters increases. We note that while previous
papers have studied either the convergence of iterative voting (e.g., [19, 22, 25]) or the PoA
obtained for mechanisms such as plurality and veto (e.g., [9]), ours is the first to obtain results
for the PoA of outcomes obtained by iterative voting for a natural cardinal mechanism.
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The PoA over all equilibria is unbounded; consider a simple example where all voters
have utility 1 for candidate a and 0 for candidate b, but all choose the strategy with utility 1
for b. This is clearly an odd example, and there seem to be two possible remedies. Firstly,
we could consider strong equilibria, where ~u′ is a strong equilibrium if no set (or coalition) of
players can deviate to improve the expected utility of all the players in the set. Secondly, we
could consider truth-biased agents, who prefer to vote truthfully if it does not reduce their
utility (for which positive results are known in some cases, see [20, 23]). Unfortunately, in
both cases we show that the PoA continues to be unbounded.

I Theorem 20. The PoA with truth-biased agents is unbounded. Further, an equilibrium
may not exist.

I Theorem 21. The PoA of strong Nash equilibria is unbounded.

Given these negative results, we focus on equilibrium outcomes that are obtained as a
result of iterative voting. As stated, we fix the mechanism µ that given a strategy profile
~u′, chooses the alternative that maximizes the reported social welfare

∑
i∈N u

′
i(a). The

alternatives are indexed, and ties are resolved in favour of the alternative with lower index.
We assume that initially, all voters report their utilities truthfully. At each step, a single
voter chooses a different strategy that improves her utility. We say that a particular iterative
voting dynamics converges if in finite time, the strategy profile is an equilibrium. We are
interested in the PoA of equilibria that are obtained as a result of iterative voting.

Again, we show in the appendix that without further restrictions, the PoA for equilibria
obtained can be unbounded, even if the deviating player at each step strictly improves her
utility. Let us instead consider the iterative voting process where the deviation by the player
at each step satisfies the following properties:
(A) The utility of the deviating player must strictly increase after the deviation.
(B) The deviating player can increase the reported utility for a single alternative, and this

alternative must be chosen by the mechanism after the deviation.
With these restrictions, the PoA for the class of equilibria obtained is nearly 1.

I Theorem 22. The PoA for iterative voting with restrictions (A) and (B) is
maxa∈A sw(a)

maxa∈A sw(a)−2 log2 m
.

Proof. Let ~vt be the strategy profile in the tth time step. Then ~v0 = ~u, where ~u is the utility
profile for the voters. We define swt(a) :=

∑
i∈N u

t
i(a) as the welfare of alternative a according

to the strategy profile at step t. Then sw0(a) = sw(a) since iterative voting starts with the
true utility as strategy, and we index the alternatives so that sw(a1) ≥ sw(a2) ≥ · · · ≥ sw(am).
In particular, the maximum-welfare candidate is a1. We say an alternative wins at time t if
it maximizes swt(a), and among all such alternatives, has the lowest index.

Fix any j ∈ {2, . . . ,m}, and let t be the first time that an alternative ak with k ≥ j wins,
hence sw(aj) ≥ sw(ak) by our indexing. Further, since this is the first time that ak wins, it
is also the first time that any voter raises its utility for ak, and hence sw(ak) ≥ swt−1(ak).
Lastly, since the voter that deviates at time t changes it’s utility by at most 1 for any
alternative, and ak wins at time t, it must be true that swt−1(ak) ≥ maxr≤m swt−1(ar)− 2.
Putting these together,

sw(aj) ≥ sw(ak) ≥ swt−1(ak) ≥ max
r≤m

swt−1(ar)− 2 ≥ 1
j − 1

j−1∑
r=1

swt−1(ar)− 2

where the last inequality is simply because the maximum of set of numbers is at least its
average. Now observe that step t is the first step when an alternative with index at least j
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has won, and hence by the dynamics restriction, this is the first step when an alternative with
index at least j had its utility increased. Hence

∑
r≥j swt−1(ar) ≤

∑
r≥j sw(ar). Since the

sum of utilities of a strategy profile is always n,
∑
r<j swt−1(ar) ≥

∑
r<j sw(ar). Plugging

this into the previous inequality yields

sw(aj) ≥
1

j − 1

j−1∑
r=1

sw(ar)− 2

Let aj be the highest indexed alternative to win during the dynamics. Then the above
inequality is valid for all k ∈ {2, . . . , j}, giving us a recurrence relation. To solve this
recurrence, we can check that the hypothesis that sw(aj) ≥ sw(a1)− 2 log2 j is correct. Our
proof thus shows the stronger property that if alternative a wins at any time step in the
dynamics, then sw(a) ≥ sw(a1)− 2 log2 m. J

Unfortunately, it turns out that iterative voting even with these restrictions may not
converge (Theorem 24, in the Appendix). However, with one further restriction on the
allowable deviations, we can prove convergence.
(C) The deviating player can decrease the reported utility for a single alternative, and this

alternative must be chosen by the mechanism before the deviation.

It is not hard to see that the number of steps required for convergence depends upon the
least value by which a voter can change her score. As an example, consider two alternatives
and two voters with utilities (0.5− ε, 0.5 + ε) and (0.5 + ε, 0.5− ε). Let δ be the least value
by which an voter can change her utility. Then each time a voter increases the reported
utility of her preferred alternative by δ, the alternative chosen by the mechanism changes,
and hence convergence takes Ω(1/δ) steps. In fact, a convergence bound of O(mn/δ) for
iterative voting with restrictions (A), (B) and (C) can easily be shown, by observing that
in each move a voter shifts her stated utility from a less preferred alternative to a more
preferred alternative by at least δ. A voter can thus move at most m

δ times, and hence after
mn
δ steps the iterative voting process must reach a Nash equilibrium.
We can obtain even better convergence bounds for iterative voting, where apart from

the initial votes, in all subsequent strategies of a voter, exactly one alternative is given
utility 1. These subsequent votes are then plurality votes, for which Meir et al. [20] show a
bound of O(mn) on the convergence. Hence every O(mn) steps a new voter must change to
plurality voting from her initial utility, and hence this iterative voting process must converge
in O(mn2) steps. If the dynamics also satisfies restrictions (A) and (B), then the equilibrium
obtained has PoA as shown in Theorem 22.

References

1 Salvador Barbera. Nice decision schemes. In Decision theory and social ethics, pages
101–117. Springer, 1978.

2 Salvador Barbera. An introduction to strategy-proof social choice functions. Soc Choice
Welfare 18, pages 619–653, 2001.

3 Salvador Barbera, Anna Bogomolnaia, and Hans Van Der Stel. Strategy-proof probabilistic
rules for expected utility maximizers. Mathematical Social Sciences, 35(2):89–103, 1998.

4 Gerdus Benade, Swaprava Nath, Ariel D. Procaccia, and Nisarg Shah. Preference Elicita-
tion For Participatory Budgeting. In Association for Advancement of Artificial Intelligence
(AAAI), February 4 - 9, 2017, San Francisco, California, USA, 2017. Forthcoming.



U. Bhaskar and A. Ghosh 27:17

5 Umang Bhaskar, Varsha Dani, and Abheek Ghosh. Truthful and Near-Optimal Mechanisms
for Welfare Maximization in Multi-Winner Elections. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7,
2018, 2018.

6 Eleanor Birrell and Rafael Pass. Approximately strategy-proof voting. In IJCAI, pages
67–72, 2011.

7 Craig Boutilier, Ioannis Caragiannis, Simi Haber, Tyler Lu, Ariel D. Procaccia, and Or Shef-
fet. Optimal social choice functions: A utilitarian view. Artif. Intell., 227:190–213, 2015.
doi:10.1016/j.artint.2015.06.003.

8 Felix Brandt, Vincent Conitzer, Ulle Endriss, Ariel D Procaccia, and Jérôme Lang. Hand-
book of computational social choice. Cambridge University Press, 2016.

9 Simina Brânzei, Ioannis Caragiannis, Jamie Morgenstern, and Ariel D Procaccia. How bad
is selfish voting? In AAAI, volume 13, pages 138–144, 2013.

10 Bhaskar Dutta, Hans Peters, and Arunava Sen. Strategy-proof cardinal decision schemes.
Social Choice Welfare, 28:163–179, 2007.

11 Edith Elkind, Evangelos Markakis, Svetlana Obraztsova, and Piotr Skowron. Equilibria of
plurality voting: Lazy and truth-biased voters. In International Symposium on Algorithmic
Game Theory, pages 110–122. Springer, 2015.

12 Uriel Feige and Moshe Tennenholtz. Responsive Lotteries. In Algorithmic Game The-
ory - Third International Symposium, SAGT 2010, Athens, Greece, October 18-20, 2010.
Proceedings, pages 150–161, 2010.

13 Aris Filos-Ratsikas and Peter Bro Miltersen. Truthful approximations to range voting.
International Conference on Web and Internet Economics, pages 175–188, 2014.

14 Sumit Ghosh, Manisha Mundhe, Karina Hernandez, and Sandip Sen. Voting for movies:
the anatomy of a recommender system. In Proceedings of the third annual conference on
Autonomous Agents, pages 434–435. ACM, 1999.

15 Allan Gibbard. Manipulation of voting schemes: a general result. Econometrica: journal
of the Econometric Society, pages 587–601, 1973.

16 Allan Gibbard. Manipulation of schemes that mix voting with chance. Econometrica:
Journal of the Econometric Society, pages 665–681, 1977.

17 Claude Hillinger. The case for utilitarian voting. SSRN, 2005. doi:10.2139/ssrn.732285.
18 Aanund Hylland. Strategy proofness of voting procedures with lotteries as outcomes and

infinite sets of strategies. Unpublished paper, University of Oslo.[341, 349], 1980.
19 Omer Lev and Jeffrey S Rosenschein. Convergence of iterative voting. In Proceedings of the

11th International Conference on Autonomous Agents and Multiagent Systems-Volume 2,
pages 611–618. International Foundation for Autonomous Agents and Multiagent Systems,
2012.

20 Reshef Meir, Maria Polukarov, Jeffrey S Rosenschein, and Nicholas R Jennings. Conver-
gence to Equilibria in Plurality Voting. In AAAI, volume 10, pages 823–828, 2010.

21 Shasikanta Nandeibam. An alternative proof of Gibbard’s random dictatorship result. So-
cial Choice and Welfare, 15(4):509–519, 1998.

22 Svetlana Obraztsova, Evangelos Markakis, Maria Polukarov, Zinovi Rabinovich, and
Nicholas R. Jennings. On the Convergence of Iterative Voting: How Restrictive Should
Restricted Dynamics Be? In Proceedings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 993–999, 2015.

23 Svetlana Obraztsova, Evangelos Markakis, and David RM Thompson. Plurality voting
with truth-biased agents. In International Symposium on Algorithmic Game Theory, pages
26–37. Springer, 2013.

FSTTCS 2018

http://dx.doi.org/10.1016/j.artint.2015.06.003
http://dx.doi.org/10.2139/ssrn.732285


27:18 On the Welfare of Cardinal Voting Mechanisms

24 Ariel D Procaccia and Jeffrey S Rosenschein. The distortion of cardinal preferences in
voting. In International Workshop on Cooperative Information Agents, pages 317–331.
Springer, 2006.

25 Zinovi Rabinovich, Svetlana Obraztsova, Omer Lev, Evangelos Markakis, and Jeffrey S.
Rosenschein. Analysis of Equilibria in Iterative Voting Schemes. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA., pages 1007–1013, 2015.

26 Reyhaneh Reyhani and Mark Wilson. Best-reply dynamics for scoring rules. In 20th
European Conference on Artificial Intelligence. IOS Press, 2012.

27 Mark Allen Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and corre-
spondence theorems for voting procedures and social welfare functions. Journal of economic
theory, 10(2):187–217, 1975.

6 Appendix

In the appendix, we give the missing proofs from Section 5. We first prove that the PoA
with truth-biased voters is unbounded, and in fact a pure Nash equilibrium may not exist.

Proof of Theorem 20. We will give an example for which the price of anarchy →∞. There
are 3 alternatives {a, b, c} and 2n+ 1 agents. The utility profile is:

Agents a b c

1, . . . , n 1 0 0
n+ 1, . . . , 2n+ 1 0 1− ε ε

Social Welfare n (n+ 1)(1− ε) (n+ 1)ε

The strategy profile in Nash equilibrium:

Agents a b c

1, . . . , n 1 0 0
n+ 1 0 1− ε ε

n+ 2, . . . , 2n+ 1 0 0 1

Total n 1− ε n+ ε

The winner is alternative c. Observe that no agent can increase her utility by deviating.
The PoA is (n+1)(1−ε)

(n+1)ε = 1−ε
ε →∞ as ε→ 0.

We now give an example for which there is no PNE. There are 2 alternatives {a, b} and 2
agents. The mechanism is deterministic and ties are broken in favour of a. The utility profile
is given below:

Agents a b

1 0.75 0.25
2 0.25 0.75

None of the three exhaustive cases below allow an equilibrium.

If u1(a) < u2(b) then b is the winner. For voter 1, this is not an equilibrium because she
can increase her utility for a and make a win.
If 1 > u1(a) ≥ u2(b) then a is the winner. Now, for voter 2 this is not an equilibrium
because she can increase her utility for b and make b win.
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If u1(a) = 1 then a is the winner. Voter 2 cannot make b win, and as voters are truth-
biased she will give her true input. Now, voter 1 is also truth-biased, and will give her
true input, and a will remain the winner. This puts us in the second case above. J

We now show that the PoA even restricted to strong Nash equilibria is unbounded.

Proof of Theorem 21. We will give an example for which the price of anarchy →∞. There
are 4 alternatives and 4n− 1 agents. Ties are broken lexicographically. The utility profile is
given below:

Agents → a b c d

1, . . . , 2n− 1 1 0 0 0
2n, . . . , 3n− 1 0 1− ε 0 ε

3n, . . . , 4n− 1 0 0 1− ε ε

Social Welfare 2n− 1 n(1− ε) n(1− ε) 2nε

The strong pure Nash equilibrium strategy profile is:

Agents a b c d

1, . . . , 2n− 1 1 0 0 0
2n, . . . , 3n− 1 0 0 0 1
3n, . . . , 4n− 2 0 0 0 1

4n− 1 0 0 1− ε ε

Total 2n− 1 0 1− ε 2n− 1 + ε

The winner is alternative d. Observe that no agent can increase her utility by deviating.
The PoA is 2n−1

2nε →∞ as ε→ 0. J

Iterative Voting
We give the proofs related to the PoA and convergence of iterative voting dynamics. We
first restate the restrictions on dynamics from the main paper.

(A) The utility of the deviating player must strictly increase after the deviation.
(B) The deviating player can increase the reported utility for a single alternative, and this

alternative must be chosen by the mechanism after the deviation.
(C) The deviating player can decrease the reported utility for a single alternative, and this

alternative must be chosen by the mechanism before the deviation.

We first show that just restriction (A) is insufficient to ensure bounded PoA.

I Theorem 23. The price of anarchy of iterative voting with restriction (A) is unbounded.

Proof. There are 5 alternatives {a, b, c, d, e}, and 2n+4 agents. Ties broken lexicographically.
ε→ 0 is much smaller than 1/n. The utility profile is as given.

Agents a b c d e

A: 1, . . . , n 0.5 0.5− ε ε 0 0
B: n+ 1, . . . , 2n 0.5− ε 0.5 0 ε 0
2n+ 1, 2n+ 2 0 0 ε 0 1− ε
2n+ 3, 2n+ 4 0 0 0 ε 1− ε

Social Welfare n− nε n− nε (n+ 2)ε (n+ 2)ε 4− 4ε
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Initially, alternative a is the winner. But an agent in B, say agent n+ 1, can deviate and
make b win. Say the agent deviates to: 0.5 + ε to b, 0.5− ε to d, and 0 to others. Now, an
agent in a, say agent 1, deviates and gives input: 0.5 + ε to a, 0.5− ε to c, and 0 to others.
Now, alternative a wins again. Repeating this for all agents in A and B, after n steps the
strategy profile is given below. Currently, a is the winner.

Agents a b c d e

1, . . . , n 0.5 + ε 0 0.5− ε 0 0
n+ 1, . . . , 2n 0 0.5 + ε 0 0.5− ε 0
2n+ 1, 2n+ 2 0 0 ε 0 1− ε
2n+ 3, 2n+ 4 0 0 0 ε 1− ε

Total n(0.5 + ε) n(0.5 + ε) n(0.5− ε) + 2ε n(0.5− ε) + 2ε 4− 4ε

Now, the agent 2n+ 3 makes a move and sets d’s score to 1, then the agent 2n+ 1 makes a
move and sets c’s score to 1. The same moves are then repeated by agents 2n+ 4 and 2n+ 2.
This makes c the current winner. The strategy profile after these deviations is given below.

Agents a b c d e

1, . . . , n 0.5 + ε 0 0.5− ε 0 0
n+ 1, . . . , 2n 0 0.5 + ε 0 0.5− ε 0
2n+ 1, 2n+ 2 0 0 1 0 0
2n+ 3, 2n+ 4 0 0 0 1 0

Total n(0.5 + ε) n(0.5 + ε) n(0.5− ε) + 2 n(0.5− ε) + 2 0

Alternatives a and b cannot win the election by a deviation by the agents in A or B, so
the agents in A and B start competing for c and d to reach the final equilibrium strategy
profile given below. Alternative c is the final winner.

Agents a b c d e

1, . . . , n 0 0 1 0 0
n+ 1, . . . , 2n 0 0 0 1 0
2n+ 1, 2n+ 2 0 0 1 0 0
2n+ 3, 2n+ 4 0 0 0 1 0

Total 0 0 n+ 2 n+ 2 0

No agent has a move that can increase her utility, and hence this is an equilibrium. The
PoA is n(1−ε)

(n+2)ε →∞. Observe that this proof works even for best response iterative voting
dynamics: The deviating agent plays a move that makes the most preferred alternative win
the election, among the alternatives that can win the election after a move by the agent. J

With just restriction (A), as shown, we obtain unbounded PoA. Theorem 22 shows that
with both (A) and (B) we get a near-optimal bound on the PoA. We now show, however,
that the two restrictions (A) and (B) that ensured small PoA are not enough to ensure
convergence to a Nash equilibrium.

I Theorem 24. Iterative voting with restrictions (A) and (B) may not converge to a PNE.

Proof. We will give a utility profile with 4 alternatives A = {a, b, c, d} and 4 agents N =
{1, 2, 3, 4}, and a sequence of steps taken by the agents that will create a cycle. For ease
of writing, we normalize the utilities to sum up to 6 rather than 1. In the tables below the
winner is denoted by ∗. The steps are:
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1. Utility profile is

Alternatives → a∗ b c d

Agent 1 1 1 0 4
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 4 0 2 0

2. Agent 1 plays. Utility increases from 1 to 4.

Alternatives → a b c d∗

Agent 1 0 0 0 6
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 4 0 2 0

3. Agent 4 plays. Utility increases from 0 to 2.

Alternatives → a b c∗ d

Agent 1 0 0 0 6
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 0 0 6 0

4. Agent 1 plays. Utility increases from 0 to 1.

Alternatives → a b∗ c d

Agent 1 0 5 0 1
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 0 0 6 0

5. Agent 3 plays. Utility increases from 2 to 3.

Alternatives → a b c∗ d

Agent 1 0 5 0 1
Agent 2 2 2 0 2
Agent 3 0 0 5 1
Agent 4 0 0 6 0

6. Agent 4 plays. Utility increases from 2 to 4.

Alternatives → a∗ b c d

Agent 1 0 5 0 1
Agent 2 2 2 0 2
Agent 3 0 0 5 1
Agent 4 6 0 0 0

7. Agent 3 plays. Utility increases from 0 to 2.

Alternatives → a b∗ c d

Agent 1 0 5 0 1
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 6 0 0 0
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8. Agent 1 plays. Utility increases from 1 to 4.
Alternatives → a b c d∗

Agent 1 0 0 0 6
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 6 0 0 0

9. Agent 4 plays. Utility increases from 0 to 2.
Alternatives → a b c∗ d

Agent 1 0 0 0 6
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 0 0 6 0

Observe that the strategy profile in 3 and 9 are same, giving us a cycle. This proof also
works for best-response dynamics. J
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