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Abstract
We study an extension of propositional separation logic that can specify robustness properties,
such as acyclicity and garbage freedom, for automatic verification of stateful programs with
singly-linked lists. We show that its satisfiability problem is PSpace-complete, whereas modest
extensions of the logic are shown to be Tower-hard. As separating implication, reachability
predicates (under some syntactical restrictions) and a unique quantified variable are allowed,
this logic subsumes several PSpace-complete separation logics considered in previous works.
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1 Introduction

Separation Logic [26] is a well-known assertion logic providing a scalable solution for Hoare-
style verification of imperative, heap-manipulating programs [7, 16, 29]. To achieve scalability,
separation logic relies in two spatial connectives to represent memory regions: the separating
conjunction (∗) and the separating implication (−∗). These operators allow to express complex
properties of stateful programs, making this logic the core assertion language of many tools
[2, 3, 6, 14, 15, 18, 20, 23]. To achieve automation, the underlying Hoare-style proof system
requires these tools to check for the classical decision problems of satisfiability, validity and
entailment. The complexity of these problems have been quite studied:

PTime algorithms for satisfiability and entailment have been defined for the symbolic
heap fragment (the core logic of many tools) [9]. This complexity is achieved by removing
the separating implication from separation logic and heavily restricting the use of Boolean
connectives. Decidability results (the general lower-bound is ExpTime) for these problems
are also known when the fragment is enriched with inductive predicates [1, 17, 19, 21].
PSpace-completeness has been shown for propositional separation logic [8]. Its extension
with one quantified variable, denoted with 1SL(∗,−∗), was also found to be in PSpace [12].
However, adding a second quantified variable causes the logic to become undecidable [11].
In absence of the separating implication, PSpace-completeness has also been proved
for SL(∗, ls), i.e. the propositional fragment enriched with the list-segment predicate ls.
Here, adding the separating implication again leads to undecidability [13].

Besides these decision problems, in program analysis it is crucial to be able to check for
robustness properties such as garbage freedom and acyclicity (see Section 2 for precise
definitions). A recent work [19] tackles these problems for the symbolic heap fragment with
user-defined inductive predicates by introducing the framework of heap automata. Within
this framework, both garbage freedom and acyclicity are shown to be ExpTime-complete.
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42:2 Extending Propositional Separation Logic for Robustness Properties

A natural question is how to check the satisfaction of robustness properties for propos-
itional separation logic as they are not expressible in 1SL(∗,−∗) nor in SL(∗, ls). Indeed,
it would be nice to capture these problems directly in the logic, without introducing any
external framework, to then solve them using procedures for the classical decision problems.

Our contribution. In this paper we address this question by studying an extension of pro-
positional separation logic that captures both 1SL(∗,−∗) and SL(∗, ls) and whose expressive
power allows to directly reduce the robustness properties to entailment. This logic, herein
called 1SLR1

R2(∗,−∗, reach+), is defined from 1SL(∗,−∗) by adding reachability predicates under
some syntactical restrictions (the formal definition is given in Section 2). In Section 4 we show
that the satisfiability problem (and hence entailment, validity and robustness properties) of
this logic can be decided in PSpace. As far as we know, this makes 1SLR1

R2(∗,−∗, reach+)
the largest decidable fragment of separation logic including full Boolean connectives, spatial
connectives and reachability predicates and the first one where these predicates can be used
in the scope of −∗, albeit in a controlled way to retain decidability [13]. To show the PSpace
upper-bound we extend the widely used proof technique of test formulæ introduced in [22].

This complexity result is rather surprising as, besides subsuming the results in [12]
and [13], slightly extending the logic entails Tower-hardness (the complexity class Tower
has been introduced in [28] and sits between the class of elementary problems and the class
of primitive-recursive problems). Indeed, in Section 3 we show how weakening the syntactic
restrictions on reachability predicates allows the logic to capture a Tower-complete fragment
of Moszkowski’s propositional interval temporal logic (PITL) [25]. To better formalise this
result we first introduce an alternative semantics for PITL and reduce this logic to an
intermediate logic interpreted on trees (ALT). We then consider a modest extension of
1SLR1

R2(∗,−∗, reach+) and show that it captures ALT, proving its non-elementary complexity.

2 The separation logic 1SL(∗,−∗, reach+)

Let VAR be a countably infinite set of program variables and let LOC be a countably infinite
set of locations. A memory state is a pair (s, h) consisting of a variable valuation function (the
store) s : VAR→ LOC and a partial function with finite domain (the heap) h : LOC→fin LOC.
We denote with dom(h) the domain of definition of a heap h and with ran(h) its range. Each
element in dom(h) is understood as a memory cell of h. With hδ we denote δ ≥ 0 functional
composition(s) of h. Two heaps h1 and h2 are said to be disjoint, written h1⊥h2, whenever
dom(h1) ∩ dom(h2) = ∅. We define the union h1 + h2 of h1 and h2 as the standard sum of
two functions (h1 + h2)(`) def= if `∈dom(h1) : h1(`) else h2(`), defined only whenever h1⊥h2.

We extend propositional separation logic with reachability predicates and one quantified
variable denoted by u 6∈ VAR. We call this logic 1SL(∗,−∗, reach+). Its formulæ ϕ are from

ϕ := emp | e1 = e2 | e1 ↪→ e2 | reach+(e1, e2) | ϕ∧ϕ | ¬ϕ | ∃u ϕ | ϕ ∗ϕ | ϕ−∗ϕ

where e1, e2∈VAR∪{u}. We denote with fv(ϕ) the set of free variables in ϕ. 1SL(∗,−∗, reach+)
is interpreted on triples (s, h, l), where (s, h) is a memory state and l ∈ LOC is the current
assignment of the only quantified variable u. The satisfaction relation |= is defined as follows
(standard clauses for ¬ and ∧ are omitted throughout the paper)

(s, h, l) |= emp if and only if dom(h) = ∅.
(s, h, l) |= e1 =e2 if and only if [[e1]]=[[e2]], with [[u]] def= l and [[x]] def= s(x) for every x ∈ VAR.
(s, h, l) |= e1 ↪→ e2 if and only if s([[e1]]) = [[e2]].
(s, h, l) |= reach+(e1, e2) if and only if there is δ ≥ 1 such that hδ([[e1]]) = [[e2]].



A. Mansutti 42:3

(s, h, l) |= ∃u ϕ if and only if there is l′ ∈ LOC such that (s, h, l′) |= ϕ.
(s, h, l) |= ϕ1 ∗ ϕ2 iff h1 + h2 = h, (s, h1, l) |= ϕ1 and (s, h2, l) |= ϕ2, for some h1 and h2.
(s, h, l) |= ϕ1 −∗ ϕ2 iff for all h′, if h′⊥h and (s, h′, l) |= ϕ1 then (s, h+ h′, l) |= ϕ2.

Standard connectives ⇒, ⇔, ∨ and the universal quantification ∀ are derived as usual. We
denote with > the tautology emp ∨ ¬emp and with ⊥ its negation. alloc(e) stands for
e ↪→ e−∗ ⊥, the formula satisfied if and only if [[e]] ∈ dom(h). We recursively define the
formula size ≥ β as size ≥ 0 def= > and size ≥ β+1 def= ¬emp∗size ≥ β. size ≥ β is satisfied
if and only if card(dom(h)) ≥ β (we write card(.) to denote the cardinality of a set). We write
size = β for the formula size ≥ β ∧ ¬size ≥ β+1. For a complete description of separation
logic we refer the reader to the classical paper by Reynolds [26]. Note that the heap-precise
predicates defined in [26] can be retrieved in our logic. Indeed, the points-to relation e1 7→ e2
can be expressed as e1 ↪→e2 ∧ size = 1 whereas the list-segment relation ls(e1, e2) can be
defined as (e1 = e2 ∧ emp) ∨ (e1 6= e2 ∧ reach+(e1, e2) ∧ ¬(size = 1 ∗ reach+(e1, e2))).

Decision problems and robustness properties. The satisfiability problem takes as input a
formula ϕ and asks whether there is a model (s, h, l) such that (s, h, l) |= ϕ. The validity
problem asks whether ϕ is satisfied by every memory state. Given a second formula ψ, the
entailment problem ϕ |= ψ asks whether each memory state satisfying ϕ also satisfies ψ.

As advocated in [19], besides these decision problems, in program analysis we are also
interested in the robustness properties of acyclicity and garbage freedom. The acyclicity
property asks every model satisfying ϕ to be acyclic. Instead, garbage freedom holds whenever
in every model satisfying ϕ, each memory cell is reachable from a program variable of fv(ϕ).
In 1SL(∗,−∗, reach+) both problems can be reduced to entailment:

acyclicity requires us to be able to solve ϕ |= ∀u ¬reach+(u, u);
garbage freedom can be expressed as ϕ |= ∀u (alloc(u)⇒

∨
x∈fv(ϕ)(reach+(x, u)∨x = u)).

As our logic is closed under Boolean connectives, validity and entailment reduce to satisfiability.
The main purpose of this paper is then to study the complexity status of the latter problem
for fragments of 1SL(∗,−∗, reach+) that can still express both robustness properties.

Decidability status and restrictions. As shown in [13], extending propositional separation
logic so that it can express bounded reachability up to distance three leads to undecidabil-
ity. Unfortunately this makes the satisfiability problem of 1SL(∗,−∗, reach+) undecidable.
Indeed, two-steps reachability between two program variables x and y can be expressed as
∃u (x ↪→ u ∧ u ↪→ y ∧ u 6= x ∧ u 6= y) whereas three-steps reachability is captured with

(reach+(x, y) ∧ size = 3 ∧ ¬(size = 1 ∗ reach+(x, y))︸ ︷︷ ︸
isolating any memory cell makes impossible for s(x) to reach s(y)

)∗>

To retain decidability we propose to restrict the logic to those formulæ where each occurrence
of reach+(e1, e2) is constrained so that
(R1) it is not on the right side of its first −∗ ancestor (seeing the formula as a tree), and
(R2) if e1 = u then e2 = u.
For instance, given two formulæ ϕ and ψ satisfying these conditions, the formula reach+(u, x)∗
(ϕ−∗ψ) only satisfies R1, both conditions are satisfied in ϕ−∗ (reach+(x, y)−∗ψ) whereas the
formula ϕ−∗ (ψ ∗reach+(u, u)) only satisfies R2. A grammar of this logic is given in Section 4,
where we show that under these conditions the satisfiability problem of 1SL(∗,−∗, reach+)
can be decided in PSpace.

From the results in [13], weakening even slightly R1 seems to be a challenge. Indeed, after
enforcing R1 the logic can still freely express two-steps reachability between program variables
and it is unable to do the same for paths of length three only in positions of the formula where
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42:4 Extending Propositional Separation Logic for Robustness Properties

reach+ cannot occur. On these positions, even the modest addition of a second quantified
variable causes then undecidability (coherently with the results in [11]). We could hope for
the satisfiability problem to still be in PSpace without the R2 condition. In the next section
we show that this is not the case: without R2 the problem is Tower-hard. Nevertheless,
under these conditions the logic is still able to express both robustness properties.

3 Tower-hardness of 1SL(∗,−∗, reach+) under R1

In this section we show that 1SLR1(∗,−∗, reach+), i.e. the fragment of 1SL(∗,−∗, reach+)
formulæ satisfying the condition R1, is Tower-hard. To do so, we first introduce an auxiliary
logic (ALT) interpreted on trees. At its core, ALT is a simple logic whose formulæ can only
split a tree and check whether the only (quantified) variable points to a node in the tree or not.
In a way, ALT represents a small subset of the properties expressible in 1SLR1(∗,−∗, reach+)
that are sufficient to reach Tower-hardness. Indeed, despite its simplicity, we show that
ALT is Tower-complete. In particular, the hardness proof is achieved by reduction of
Moszkowski’s propositional interval temporal logic [25] with locality principle (PITL). This
reduction is done by first defining an alternative semantics for PITL based on marked words.

3.1 An auxiliary logic on trees ALT
To easily relate ALT with separation logic, finite trees are here defined using heaps encoding
the parent relation. We assume a location ρ ∈ LOC as the root of all trees. A heap T is
a tree whenever ρ 6∈ dom(T ) and for each ` ∈ dom(T ) there is δ ≥ 1 such that T δ(`) = ρ.
Then, ` is a descendant (resp. child) of `′ ∈ ran(T ) whenever there is δ ≥ 1 (resp. δ = 1)
such that T δ(`) = `′. It is straightforward to see that these definitions are equivalent to the
classical ones. As formally introduced below, ALT formulæ are able to chop a tree, preventing
some memory cells to reach ρ. These locations form a heap G, called garbage, such that
ρ 6∈ dom(G) ∪ ran(G).

ρ

T1 T2

⊆G2 ⊆G1

⊆G1+G2
G

G

We denote with T the domain of pairs (T ,G) where T and G are respectively a tree and a
garbage such that dom(T ) ∩ (dom(G) ∪ ran(G)) = ∅. The notions of disjointness (⊥) and
composition on disjoint heaps (+) are naturally extended to elements of T. (T1,G1) and
(T2,G2) are disjoint whenever (T1 +G1)⊥(T2 +G2). If they are disjoint then their composition
(T1,G1) + (T2,G2) (see picture on the left) is the pair (T1 + T2 + G,G) ∈ T such that G + G =
G1 + G2 and dom(G) = {` ∈ dom(G1 + G2) | (G1 + G2)δ(`) ∈ dom(T1 + T2) for some δ ≥ 1}.
ALT-formulæ ϕ are built from

ϕ := T(u) | G(u) | ϕ ∧ ϕ | ¬ϕ | ∃u ϕ | ϕ ∗ ϕ

and interpreted on states (T ,G, l) where (T ,G) ∈ T and l ∈ LOC \ {ρ} is the current
assignment of u. The satisfaction relation |= is defined as follows:

(T ,G, l) |= T(u) if only if l ∈ dom(T ).
(T ,G, l) |= G(u) if and only if l ∈ dom(G).



A. Mansutti 42:5

(T ,G, l) |= ∃u ϕ if and only if there is l′ ∈ LOC \ {ρ} such that (T ,G, l′) |= ϕ.
(T ,G, l) |= ϕ1∗ϕ2 iff (T1,G1, l) |=ϕ1 and (T2,G2, l) |=ϕ2 for some (T1,G1)+(T2,G2)=(T ,G).

The tautology > is defined as T(u)∨¬T(u). alloc(u) def= T(u)∨G(u) is the formula satisfied if
and only if l ∈ dom(T +G). The size |ϕ| of a formula ϕ is defined as: 1 for the atomic predicates
T(u) and G(u), |ϕ1 ∧ ϕ2| def= max(|ϕ1| , |ϕ2|), |¬ϕ| def= |∃u ϕ| def= |ϕ| and |ϕ1 ∗ ϕ2| def= |ϕ1|+ |ϕ2|.

Notice how the ∗ operator splits the model similarly to the separating conjunction in
separation logic. In Section 3.3 we explore the similarities between these two logics by
providing the formal translation from ALT to 1SLR1(∗,−∗, reach+). ALT is also reminiscent of
static ambient logic [5, 22], where the composition operator ϕ ψ cuts the tree into two parts.
However, differently from the ∗ operator of ALT, this operation preserves the parent relation.
Then, ϕ ψ holds on trees that can be divided into a tree satisfying ϕ, one satisfying ψ and
no garbage locations are generated by the split. Given a model (T ,G) ∈ T where G = ∅, this
semantics can be retrieved in ALT with the formula (ϕ ∧ ¬∃u G(u)) ∗ (ψ ∧ ¬∃u G(u)).

Expressive power: encoding words in ALT. Despite using one single variable, the ability
of splitting the model with a operator having the semantics of the separating conjunction
greatly increases the expressive power of ALT. In particular, we show that ALT is able to
characterise finite words. We first establish a correspondence between words and trees of
a particular shape. Let Σ = [1, n] be the alphabet of natural numbers between 1 and n.
Let w = a1·· ·ak be a k-letters word in Σ∗ and {`1,·· ·, `k} be a set of k locations. For every
i ∈ [1, k], let L(i) be a set of ai + 1 locations different from `1,·· ·, `k and so that for each
distinct i, j ∈ [1, k], L(i) ∩ L(j) = ∅. An encoding of w is a tree T defined on these sets as

T (`k) def= ρ; T (`i) def= `i+1 for each i∈ [1, k− 1]; T (`) def= `i for each i∈ [1, k] and `∈L(i)

`1

`2

`3

`4

ρ

1

1

2

1

The locations `1,·· ·, `k are the main path of T , where T (`i) = `i+1 for i ∈ [1, k − 1], and
T (`k) = ρ. These are the only locations in dom(T ) with at least one child, with `1 being the
only location with the same number of descendants and children. We say that a location
` ∈ dom(T ) encodes the symbol a ∈ Σ if it has exactly a + 1 children that are not in the
main path. Then the locations of the main path of T are the only ones encoding symbols,
where `i encodes ai for any i ∈ [1, k]. The tree on the left encodes the word 1121. We now
show how to capture these trees with a logical formula. As symbols in Σ are represented
using the number of children of elements in T , we need a formula that expresses this number
for the location assigned to u. We first define sizeT+G ≥ β and sizeG ≥ β, two formulæ
respectively stating that dom(T+G) and dom(G) have size at least β∈N. They are > for
β=0 and otherwise

sizeT+G ≥ β def= ∃u alloc(u) ∗ sizeT+G ≥ β − 1
sizeG ≥ β def= ∃u (G(u) ∧ ((alloc(u) ∧ sizeT+G = 1) ∗ sizeG ≥ β − 1)︸ ︷︷ ︸

by excluding a location in G, at least other β − 1 such locations can be found

)

where sizeT+G = β is sizeT+G ≥ β ∧ ¬sizeT+G ≥ β + 1, the formula that checks if T + G
has exactly β elements. In sizeG ≥ β, notice how the ∗ operator is used to isolate the
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42:6 Extending Propositional Separation Logic for Robustness Properties

memory cell of G corresponding to u from the remaining part of the model and then search
for other β − 1 elements of G. This “trick” is often used in our formulæ, including the one
that checks the number of descendants of a location l ∈ dom(T ) corresponding to u:

#desc(u) ≥ β def= > ∗ ((∀u ¬G(u))︸ ︷︷ ︸
G is empty

∧ ((alloc(u) ∧ sizeT+G = 1) ∗ sizeG ≥ β)︸ ︷︷ ︸
isolating l creates a garbage of at least β locations

)

I Proposition. l ∈ dom(T ) and has at least β descendants ⇐⇒ (T ,G, l) |= #desc(u) ≥ β.

#desc(u) ≥ β can then be used to define a formula that checks the number of children of
the location l corresponding to u: #child(u) ≥ 0 def= T(u), whereas #child(u) ≥ β + 1 is

> ∗ ((∀u ¬G(u))︸ ︷︷ ︸
G is empty

∧
l has at least β + 1 descendants︷ ︸︸ ︷

#desc(u) ≥ β + 1∧¬(sizeT+G = β ∗ (T(u) ∧ ¬#desc(u) ≥ 1))︸ ︷︷ ︸
isolating β memory cells makes impossible for l to reach ρ and have no descendants

)

I Proposition. l ∈ dom(T ) and has at least β children ⇐⇒ (T ,G, l) |= #child(u) ≥ β.

Notice that the size of every formula introduced above is linear with respect to β. We denote
with symbol(u) the formula #desc(u) ≥ 1, which in our encoding is satisfied if and only if u
is interpreted by a location in the main path. We define 1stS(u) as the formula that check if
u corresponds to the location that encodes the first letter of a word and that symbol is in
S ⊆ Σ. As stated above, this is the only location of the main path with the same number of
descendants and children. Then, 1stS(u) can be easily defined as follows:

1stS(u) def=
∨
β∈S

(#desc(u) = β + 1 ∧#child(u) = β + 1)

Lastly, we define a formula, linear in the size of Σ = [1, n], that characterises the family of
trees encoding a word by capturing the properties of the encoding. wordn

def= ψ ∧ χn where

ψ
def=

ρ has at most 1 child︷ ︸︸ ︷
¬(∃u T(u) ∗ ∃u T(u))∧

T is empty or it encodes symbols︷ ︸︸ ︷
(∃u symbol(u) ∨ ∀u ¬T(u))

χn
def= ∀u (symbol(u) =⇒ 1st[1,n](u) ∨ ((sizeT+G = 1 ∗ 1st[1,n](u)) ∧ ¬1st[1,n+1](u))︸ ︷︷ ︸

the location corresponding to u encodes a symbol in [1, n] and exactly one of its children encodes a letter

)

I Proposition. Let (T ,G, l) be a state. T encodes a word in [1, n]∗ ⇐⇒ (T ,G, l) |= wordn.

3.2 An alternative semantics for PITL
Propositional interval temporal logic (PITL) [25] was introduced for the verification of
hardware components. Similarly to separation logic, it contains an operator called chop that
splits the model into two parts. We refer the reader to [24] for a complete description of PITL
and consider here its interpretation under locality principle, known to be Tower-complete
(the full logic is undecidable). Every formula of PITL is built from

ϕ := a | pt | ϕ ∧ ϕ | ¬ϕ | ϕ ϕ

and is interpreted on a non-empty finite word w ∈ Σ+, where the satisfaction relation |= is
w |= a if and only if w is headed by the symbol a, i.e. there is w′ ∈ Σ∗ such that w = aw′.
w |= pt if and only if the length of w is 1, i.e. w ∈ Σ.
w |= ϕ1 ϕ2 iff there are a ∈ Σ and w′,w′′ ∈ Σ∗ s.t. w = w′aw′′, w′a |= ϕ1 and aw′′ |= ϕ2.
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PITL seems a good candidate for a reduction, since finite words and the predicates a, pt can
be easily encoded in it. Capturing ϕ1 ϕ2 seems however to be challenging. Let w = a1·· ·ak
be a non-empty word and let T be a tree encoding w. Let `1,·· ·, `k be the main path of
T . From the semantics of the chop operator, w |= ϕ1 ϕ2 if and only if there is a position
i ∈ [1, k] so that a1·· ·ai |= ϕ1 and ai·· ·ak |= ϕ2. Alternatively, we would like to split the
main path of T so that we are able to check that its prefix with main path `1,·· ·, `i encodes
a word satisfying ϕ1 whereas its suffix with main path `i,·· ·, `k encodes a word satisfying ϕ2.
However, using ∗ to naïvely cutting T causes the locations `1,·· ·, `i not to encode any word
(as they do not reach ρ anymore), making it impossible to check the satisfaction of ϕ1. To
solve this issue we define an equivalent interpretation of PITL based on marked symbols.

A marking of an alphabet Σ is a bijection (.) : Σ→ Σ, relating each symbol a ∈ Σ to its
marked representation a ∈ Σ. We denote with ΣI the extended alphabet Σ∪Σ. A word ΣI + is
marked if it has some symbols from Σ. The satisfaction relation |=• on a marked word w is

w |=• a iff w is headed by a or a.
w |=• pt iff w is headed by a marked symbol.
w |=• ϕ1 ϕ2 iff there are a ∈ Σ, b ∈ Σ, w′,w′1,w′2 ∈ Σ∗ and w′′ ∈ ΣI ∗ s.t. (w = w′aw′′,
w′aw′′ |=• ϕ1 and aw′′ |=• ϕ2) or (w′=w′1bw′2, w′1bw′2aw′′ |=• ϕ1 and bw′2aw′′ |=• ϕ2).

Here, the satisfaction of a formula is only checked on the prefix a1·· ·ai−1ai of w that ends
with the first marked letter. To check whether w |=• ϕ1 ϕ2 we search for a position j ∈ [1, i]
inside this prefix so that ϕ1 is satisfied by w updated so that its j-th letter is marked, and
ϕ2 is satisfied by the suffix of w starting in j. As shown in the next section, taking the suffix
of a word and marking a symbol can be simulated in ALT. As the two semantics of PITL are
shown to be equivalent (by induction on the structure of ϕ), this makes ALT capture PITL.

I Theorem 1 (|= equiv. |=•). Let w ∈ Σ+. Let w = w′aw′′ with w′ ∈ Σ∗, a ∈ Σ and
w′′ ∈ ΣI ∗. If w = w′a then for every PITL formula ϕ we have w |= ϕ ⇐⇒ w |=• ϕ.

3.3 Tower-completeness of ALT and other complexity results
We reduce the satisfiability problem of PITL on marked words to the satisfiability problem of
ALT. Let Σ = [1, n], ΣI = Σ ∪ Σ and let f : ΣI → [1, 2n] be the bijection f(a) def= 2a for a ∈ Σ
and f(a) def= 2a− 1 for a ∈ Σ. f(a1·· ·ak) denotes the translated word f(a1)·· ·f(ak). f maps ΣI
into the alphabet [1, 2n], whose words can be encoded into trees (as in Section 3.1). In these
trees each symbol a ∈ Σ (resp. a ∈ Σ) corresponds to a location ` in the main path having
2a + 1 (resp. 2a) children not in this path. Then, removing exactly one of these children is
equal to marking a symbol. We can check if the assignment of u encodes marked symbols:

markedn(u) def=
∨

i∈[1,n]

((#child(u) = 2i∧ 1st[1,2n](u))∨ (#child(u) = 2i+ 1︸ ︷︷ ︸
the location corresponding to u has 2i children not in the main path and one in it

∧¬1st[1,2n](u)))

As stated in Section 3.2, w |=• ϕ examine the prefix of w that ends with the first marked
symbol. In trees T encoding w, this corresponds to the locations that reach every encoding
of marked symbols. The idea is then to track the number of these symbols in T . The formula
marksn ≥ β, defined as > for β = 0, shown below is satisfied only by trees with at least β
marked symbols. Then, the formula #marksn(u) ≥ β checks if the current assignment of u
encodes a symbol that reaches at least (other) β marked locations.

marksn ≥ β def= ∃u (markedn(u) ∧
by excluding a marked location, at least other β − 1 such locations can be found︷ ︸︸ ︷

((sizeT+G = 1 ∧ alloc(u)) ∗ marksn ≥ β − 1))
#marksn(u) ≥ β def= symbol(u) ∧ ((sizeT+G = 1 ∧ alloc(u)) ∗ marksn ≥ β)
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42:8 Extending Propositional Separation Logic for Robustness Properties

At last, we define the translation ∇β(ϕ), parametrised on the number β≥1 of marked symbols,
of a PITL formula ϕ. ∇β(ϕ) is homomorphic for Boolean connectives, ∇β(a) and ∇β(pt) are
respectively ∃u 1st[2α−1,2α](u) and ∃u (1st[1,2n](u) ∧ markedn(u)), whereas ∇β(ϕ1 ϕ2) is

∃u
(

symbol(u) ∧
(
(1st[1,2n](u) ∧ markedn(u) ∧∇β(ϕ1) ∧∇β(ϕ2))∨

(1st[1,2n](u) ∧ ¬markedn(u) ∧ (sizeG =1 ∗ (markedn(u) ∧∇β+1(ϕ1))) ∧∇β(ϕ2))∨
(¬1st[1,2n](u) ∧ markedn(u) ∧#marksn(u) ≥ β − 1 ∧∇β(ϕ1) ∧ (sizeG =1 ∗ (1st[1,2n](u) ∧∇β(ϕ2))))∨

(¬1st[1,2n](u) ∧ ¬markedn(u) ∧#marksn(u) ≥ β ∧ (sizeG =1 ∗ (markedn(u) ∧∇β+1(ϕ1)))
∧(sizeG =1 ∗ (1st[1,2n](u) ∧∇β(ϕ2))))

))
.

The translation follows closely the relation |=•. The case for ∇β(ϕ1 ϕ2) is split into four
disjuncts, depending on whether or not u points to a location (1) encoding the first letter
of the word and (2) encoding the first marked symbol. For example, in the third disjunct
u points to a location l which is not the first in the main path but that encodes the first
marked symbol. ∇β(ϕ1) needs then to hold on the current state whereas ∇β(ϕ2) must be
checked with respect to the portion of tree where l encodes the same marked symbol but is
now the first location in the main path. To obtain this, the formula cuts the tree by only
removing the child of l that is in the main path. Lemma 2 (whose proof is by induction on
the structure of ϕ) ensures that the translation captures the semantics of the formula. The
reduction of PITL with the standard semantics (Theorem 3) then stems from Theorem 1.

I Lemma 2. Let w ∈ ΣI + be a marked word with β ≥ 1 marked symbols. Let (T ,G, l) be a
state such that T encodes f(w). For every PITL formula ϕ, w |=• ϕ ⇐⇒ (T ,G, l) |= ∇β(ϕ).

I Theorem 3 (PITL to ALT). Every PITL formula ϕ interpreted on |= is equisatisfiable with

word2n ∧ ∃u T(u)︸ ︷︷ ︸
T encodes a non-empty word

∧∀u (markedn(u)⇔ (T(u) ∧ ¬(> ∗ G(u)))︸ ︷︷ ︸
u is interpreted a child of ρ

) ∧∇1(ϕ).

Complexity results. Even though the translation from PITL to ALT is exponential, the
Tower-completeness of PITL [24] ensures that ALT is Tower-hard. It remains to show that
ALT is captured by 1SLR1(∗,−∗, reach+). The translation τx(ϕ) of an ALT formula ϕ provided
here is quite straightforward, with the only specificity being the role of x ∈ VAR as the
root of the tree. τx(ϕ) is homomorphic for Boolean connectives and ∗ operators, τx(T(u)) def=
reach+(u, x), τx(G(u)) def= alloc(u) ∧ ¬reach+(u, x) and τx(∃u ϕ) def= ∃u (u 6= x ∧ τx(ϕ)). Its
soundness is proved by induction on the structure of ϕ (Lemma 4) and implies Theorem 5.

I Lemma 4. Let ϕ be a ALT formula and let x ∈ VAR. Let (T ,G, l) be a state and let s be
a store such that s(x) = ρ. Then, (T ,G, l) |= ϕ if and only if (s, T + G, l) |= τx(ϕ).

I Theorem 5. Let x ∈ VAR. Every ALT formula ϕ is equisat. with u 6= x∧¬alloc(x)∧τx(ϕ).

As the separating implication only appears inside alloc predicates, the formula obtained
through the translation satisfies R1. This proves both that 1SLR1(∗,−∗, reach+) is Tower-
hard and that ALT is Tower-complete as it is captured by 1SL(∗, reach+, alloc), a fragment
of first-order separation logic without −∗ which is known to be Tower-complete [4].

4 PSpace-completeness of 1SL(∗,−∗, reach+) under R1 and R2

We now consider 1SLR1
R2(∗,−∗, reach+), the fragment of 1SL(∗,−∗, reach+) satisfying both R1

and R2. Formulæ of this fragment are built from the non-terminals of the following grammar.

C := e1 = e2 | e1 ↪→ e2 | emp | C ∧ C | ¬C | ∃u C | C ∗ C | A −∗ C
A := C | reach+(x, e1) | reach+(u, u) | A ∧ A | ¬A | ∃u A | A ∗ A
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where x ∈ VAR, e1, e2 ∈ VAR ∪ {u}. Notice how each antecedent of a separating implication
(−∗) is in A whereas its consequent is in C. We say that ϕ is a A-formula (resp. C-formula)
whenever it is in the language generated by A (resp. C). Every C-formula is thus a A-formula.

For this logic, we show that satisfiability can be solved in PSpace by proving a small
model property: every satisfiable formula has a polynomial size model. As far as we know,
this is the first fragment with reachability predicates in the scope of −∗ that is proved
decidable. Moreover, it subsumes the logics studied in [12] and [13] which were also found to
be PSpace-complete. The result is shown by extending the test formulæ technique introduced
by Lozes in [22]: we design a finite index equivalence relation on memory states based on
the satisfaction of atomic predicates (the test formulæ). Then, we show that any formula of
our logic can be expressed as a Boolean combination of test formulæ, effectively replacing
quantifiers and spatial connectives. A proof of small model property for Boolean combination
of test formulæ thus extends to 1SLR1

R2(∗,−∗, reach+). To handle the asymmetry of A−∗ C,
the technique is here extended by introducing two families of test formulæ, one for the C
fragment and one for the A fragment (i.e. respectively the set of every C-formula and the set
of every A-formula). The two families are then combined together in order to deduce the
complexity of 1SLR1

R2(∗,−∗, reach+) (as we show in Section 4.3).

4.1 A family of test formulæ capturing C

In order to define the set of test formulæ for the C fragment we proceed as follows:

(1) we introduce a set of syntactical terms and a partition of a memory state.

(2) We then highlight properties of these objects by introducing the set of test formulæ.

(3) Lastly, we show that the test formulæ internalise the semantics of separating conjunctions
and quantifications.

The same steps are carried out, in Section 4.2, for the test formulæ of the A fragment.
As we are interested in the satisfiability of a given formula, it is natural to consider only

the finite set X ⊆fin VAR of variables appearing in it. The syntactical terms CTermX are
defined as X∪CNextX, where CNextX

def= {n(x) | x ∈ X} is the set of next-point variables. Given
a memory state (s, h, l), we write [[x]]Xs,h for s(x) and [[n(x)]]Xs,h to denote (if it exists) the
location h(s(x)). The locations corresponding to terms are said to be labelled and their set
is denoted with CLabelsX

s,h. Labelled locations correspond to locations for which the logic
is able to express particular properties. As such, the test formulæ primarily speak about
relationships between these locations, as well as the following subsets of dom(h):

CPredX
s,h(`) def= {`′ ∈ dom(h) \ CLabelsX

s,h | h(`′) = `}, for every ` ∈ s(X), i.e. the set of
unlabelled predecessors of a location corresponding to a program variable.

CLoopX
s,h

def= {` ∈ dom(h) \ CLabelsX
s,h | h(`) = `}, i.e. the set of unlabelled self-loops.

CSizeX
s,h

def= dom(h) \ (CLabelsX
s,h ∪ CLoopX

s,h ∪
⋃
`∈s(X) CPredX

s,h(`)), i.e. the set of unlabelled
locations that do not self-loop and are not predecessors of program variables.

Notice how {dom(h) ∩ CLabelsX
s,h, CLoopX

s,h, CSizeX
s,h} ∪ {CPredX

s,h(`) | ` ∈ s(X)} partitions
dom(h). The test formulæ CTEST(X, α) are parametric on X and α ∈ N+. Here, α is a
quantity that roughly express upper-bounds on the capabilities of a C-formula ϕ to check the
sizes of the sets of the partition. In Section 4.3 we show how α is connected to the size of ϕ.
CTEST(X, α) is divided into two sets, a skeleton CSKEL(X, α) expressing structural properties
that do not depend on the assignment of u, and an observed set COBS(X, α) of relationships
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between the memory state and the location currently assigned to u.

CSKEL(X, α) def=
{

t1 = t2, alloc(t1), t1 ↪→ x, t1 ↪→ t1,

#predCX(x) ≥ β, #loop1
X ≥ β, sizeCX ≥ β

∣∣∣∣ x ∈ X, β ∈ [1, α]
and t1, t2 ∈ CTermX

}
COBS(X, α) def=

{
u = t, u∈predCX(x), u∈loop1

X, u∈sizeCX
∣∣ x ∈ X and t ∈ CTermX

}
The formal semantics of the test formulæ is provided below:

(s, h, l) |= t1 = t2 if and only if [[t1]]Xs,h and [[t2]]Xs,h are defined and [[t1]]Xs,h = [[t2]]Xs,h.
(s, h, l) |= alloc(t1) if and only if [[t1]]Xs,h is defined and [[t1]]Xs,h ∈ dom(h).
(s, h, l) |= t1 ↪→ x if and only if [[t1]]Xs,h is defined and h([[t1]]Xs,h) = s(x).
(s, h, l) |= t1 ↪→ t1 if and only if [[t1]]Xs,h is defined and h([[t1]]Xs,h) = [[t1]]Xs,h.
(s, h, l) |= #predCX(x) ≥ β if and only if card(CPredX

s,h(s(x))) ≥ β.
(s, h, l) |= #loop1

X ≥ β if and only if card(CLoopX
s,h) ≥ β.

(s, h, l) |= sizeCX ≥ β if and only if card(CSizeX
s,h) ≥ β.

(s, h, l) |= u = t if and only if [[t]]Xs,h is defined and l = [[t]]Xs,h.
(s, h, l) |= u∈predCX(x) if and only if l ∈ CPredX

s,h(s(x)).
(s, h, l) |= u∈loop1

X if and only if l ∈ CLoopX
s,h.

(s, h, l) |= u∈sizeCX if and only if l ∈ CSizeX
s,h.

In CTEST(X, α), the classical predicates =, ↪→ and alloc are extended to terms of CTermX. For
instance n(x) ↪→ y is satisfied by only those memory states (s, h, l) where h(h(s(x))) = s(y).
There are some restrictions: all program variables are from X and t2 ↪→ t1 is syntactically
constrained so that t2 is equal to t1 when the latter is a next-point variable (so for instance
n(x) ↪→ n(y) is not a test formula). The test formulæ #predCX(x) ≥ β, #loop1

X ≥ β and
sizeCX ≥ β are respectively satisfied whenever the sets CPredX

s,h(s(x)), CLoopX
s,h and CSizeX

s,h

have size at least β. As β is bounded by α, memory states having both at least α elements
in one of these sets satisfy the same test formulæ related to that set. Lastly, the formulæ
u ∈ predCX(x), u ∈ loop1

X and u ∈ sizeCX respectively check whether the location currently
assigned to u is in CPredX

s,h(s(x)), CLoopX
s,h or CSizeX

s,h.
It is possible to show that each test formula can be expressed with a C-formula. For

instance, u ∈ loop1
X is equivalent to u ↪→ u ∧

∧
x∈X(u 6= x ∧ ¬x ↪→ u) and the formula

#loop1
X ≥ β is equivalent to ∃u (u∈ loop1

X ∧ ((alloc(u) ∧ size = 1) ∗#loop1
X ≥ β − 1)),

where #loop1
X ≥ 0 def= >. Although this result ensures that the test formulæ are not more

expressive than the logic, we need to show the converse. To do so, we start by defining an
indistinguishability relation between memory states, denoted with (s, h, l) ≈CX,α (s′, h′, l′),
that holds if and only if for all ϕ ∈ CTEST(X, α) it holds (s, h, l) |= ϕ ⇐⇒ (s′, h′, l′) |= ϕ.

We then use this relation to show that the expressive power of the test formulæ allows
to mimic quantifiers and separating conjunctions, as done in [12] for separation logic with
one quantified variable. This result should not be surprising, as the equivalence relation 'α
defined in [12] (Def. 3.8) can be shown equivalent to ≈CX,α. We first handle the quantifiers.

I Lemma 6 (C:∃ indistinguishability). Assume (s, h, l)≈CX,α (s′, h′, l′). Let `∈ LOC\L with
L def=dom(h′)∪ran(h′)∪s′(X). For every l1∈LOC there is l′1∈L∪{`} s.t. (s, h, l1)≈CX,α (s′, h′, l′1).

This holds as we show that for every assignment l1 we can find a location l′1 so that the formulæ
in COBS(X, α) are equisatisfied by both memory states. Indeed, formulæ of CSKEL(X, α)
do not depend on the assignment of u but they are key to prove the result. For example,
suppose that l1 ∈ CLoopX

s,h. From the equisatisfaction of #loop1
X ≥ 1, CLoopX

s′,h′ is not empty
and we can choose l′1 to be in this set. Then, (s, h, l1) and (s′, h′, l′1) satisfy the same test
formulæ. Notice how l′1 is taken from a finite set. This is key to prove that the logic is in
PSpace (Theorem 15). Lemma 6 shows that two indistinguishable memory states cannot be
distinguished using quantifiers. We show that the same holds for separating conjunctions.
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I Lemma 7 (C:∗ indistinguishability). Let X ⊆fin VAR and α, α1, α2 ∈ N+ with α = α1 + α2.
Assume (s, h, l) ≈CX,α (s′, h′, l′). For all heaps h1, h2 such that h = h1 + h2 there are heaps
h′1, h′2 such that h′ = h′1 + h′2, (s, h1, l) ≈CX,α1

(s′, h′1, l′) and (s, h2, l) ≈CX,α2
(s′, h′2, l′).

This result can be proved by looking at (s, h1, l) and (s, h2, l) in terms of their partitions

{dom(hk) ∩ CLabelsX
s,hk

, CLoopX
s,hk

, CSizeX
s,hk
} ∪ {CPredX

s,hk
(`) | `∈s(X)}, k ∈ {1, 2}

and showing that it is possible to construct h′1 and h′2 by dividing h′ in such a way that
(s, h1, l) ≈CX,α1

(s′, h′1, l′) and (s, h2, l) ≈CX,α2
(s′, h′2, l′). For instance, let us consider the

case of unlabelled self-loops. In the following, the index k stands for 1 or 2. We define
Lk def= CLoopX

s,h∩dom(hk), i.e. the set of unlabelled self-loops of h assigned to hk. We partially
construct h′1 and h′2 by defining two disjoint sets L′1 ⊆ dom(h′1) and L′2 ⊆ dom(h′2) so that:

L′1 ∪ L′2 = CLoopX
s′,h′ min(αk, card(Lk)) = min(αk, card(L′k)) l ∈ Lk ⇔ l′ ∈ L′k

This can be done as, by (s, h, l) ≈CX,α (s′, h′, l′), it follows that l ∈ CLoopX
s,h ⇔ l′ ∈ CLoopX

s′,h′

and min(α, card(CLoopX
s,h)) = min(α, card(CLoopX

s′,h′)). The construction goes by cases:
if card(L1) < α1 then select card(L1) locations from CLoopX

s′,h′ . If l ∈ L1 then l′ is one of
the selected locations. These locations constitute L′1. Then, L′2 is the set L′ \ L′1;
else if card(L2) < α2 then select card(L2) locations from CLoopX

s′,h′ . If l ∈ L2 then l′ is
one of the selected locations. These locations constitute L′2. Then, L′1

def= L′ \ L′2;
otherwise card(L1) ≥ α1 and card(L2) ≥ α2. Select α1 locations from CLoopX

s′,h′ . If l ∈ L1

then l′ is one of the selected locations. These locations constitute L′1. Then, L′2
def= L′ \ L′1.

Suppose now that, by considering all the other elements of the partitions of h1 and h2, we
can complete the construction of h′1 and h′2 so that l∈CLoopX

s,hk
\Lk ⇔ l′∈CLoopX

s′,h′
k
\L′k and

min(αk, card(CLoopX
s,hk
\Lk)) = min(αk, card(CLoopX

s′,h′
k
\L′k)) holds. From the properties of

L′k ensured by construction it then holds that

l ∈ CLoopX
s,h ⇔ l′ ∈ CLoopX

s′,h′ min(αk, card(CLoopX
s,hk

)) = min(αk, card(CLoopX
s′,h′

k
))

By semantics of the test formulæ we then conclude the following equisatisfiability results:
(s, hk, l) |= u∈loop1

X if and only if (s′, h′k, l′) |= u∈loop1
X;

for each β ∈ [1, αk], (s, hk, l) |= #loop1
X ≥ β if and only if (s′, h′k, l′) |= #loop1

X ≥ β.
In order to complete the proof of Lemma 7, a reasoning similar to what we presented here
for unlabelled self-loops is applied to each element of the partition and every test formula.
This concludes the study of the family of test formulæ for the C fragment.

4.2 A family of test formulæ capturing A
We now consider the A fragment and follow the same steps of the last section. Let X ⊆fin VAR.
ATermX is the set of syntactical terms X∪AMeetX∪AEndX, whereAMeetX

def= {m(x, y) | x, y ∈ X}
and AEndX

def= {e(x) | x ∈ X} are respectively the set of meet-point and end-point variables.
The interpretation of terms [[.]]Xs,h of the last section is extended on the new terms:

[[m(x, y)]]Xs,h = ` def⇔ hδ1(s(x)) = hδ2(s(y)) = ` for some δ1, δ2 ≥ 1 and for each 0 ≤ δ′1 ≤ δ1,
0 ≤ δ′2 ≤ δ2, if δ′1 6= δ1 or δ′2 6= δ2 then hδ′1(s(x)) 6= hδ

′
2(s(y)). For every δ′ ≥ 1, hδ′(`) 6= `.

[[e(x)]]Xs,h = ` def⇔ there is δ ≥ 1 such that hδ(s(x)) = ` and if ` ∈ dom(h) then hδ′(`) = ` for
some δ′ ≥ 1 and for all 0 ≤ δ1 < δ there no δ2 ≥ 1 is such that hδ2(hδ1(s(x))) = hδ1(s(x)).
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e(x),e(y)
m(x,y)

x y

e(z)z

[[m(x, y)]]Xs,h is the first location ` that is reached by both s(x) and s(y). Moreover, for
[[m(x, y)]]Xs,h to be defined, s(x) and s(y) cannot reach each other and ` cannot be inside a
cycle. Instead, [[e(x)]]Xs,h is defined if s(x) is a memory cell that is not inside a loop, as the
first location reachable from s(x) that is inside a loop or is not in dom(h). We extend the
notion of labelled location to the locations corresponding to terms of ATermX and denote with
ALabelsX

s,h their set. The picture on the right provide an example of the labelled locations in
a memory state. As done for C, the test formulæ of the A fragment express conditions on
the labelled locations and on a specific partition of a memory state. Let α ∈ N+. We define,
APredX

s,h(`) def= {`′ ∈ dom(h) | h(`′) = ` and hδ(s(y)) 6= `′ for every y ∈ X and δ ≥ 0}
for each ` ∈ s(X), i.e. the set of predecessors of a location corresponding to a program
variable that are not reached by any location corresponding to a program variable;
APathX

s,h(`) def= {`′ ∈ dom(h) | ∃δ ≥ 0 hδ(`) = `′ and hδ
′(`) 6∈ ALabelsX

s,h for every
0 < δ′ ≤ δ} for each `∈ALabelsX

s,h. This is the set of memory cells that are reachable from
the labelled location ` without passing through any labelled location different from `;
ALoopX

s,h(β) def=
{
{`0,·· ·, `β−1} ⊆ dom(h) | h(`i) = `(i+1 mod β) and `i 6∈ ALabelsX

s,h, for
every i ∈ [0, β − 1]

}
for each β ∈ [1, α], i.e. the set of unlabelled cycles of size β;

ALoop⇑X
s,h(α) def=

{
{`0,·· ·, `γ} ⊆ dom(h) | (h(`i) = `(i+1 mod γ) and `i 6∈ ALabelsX

s,h), for
each i ∈ [0, γ − 1] with γ > α

}
, i.e. the set of unlabelled cycles of size at least α+ 1;

ASizeX
s,h(α) is the set of locations in dom(h) that are not in any of the sets defined above.

It is straightforward to see that these sets constitute a partition of dom(h). Notice that any
` ∈ ALabelsX

s,h is in dom(h) if and only if APathX
s,h(`) 6= ∅. From the interpretation of terms,

if APathX
s,h(`) 6= ∅ then there is exactly one location `′ in this set that points to a labelled

location. Then, we denote with AseenX
s,h(`) the location h(`′), i.e. the first labelled location

reachable from ` in at least one step. As in the previous section, the set of test formulæ
ATEST(X, α) is split into a skeleton ASKEL(X, α) and an observed set AOBS(X, α).

ASKEL(X, α) def=


t1 = t2, seesX(t1, t2) ≥ β

 

#loopX(β) ≥ β	, #loop⇑X ≥ β
	

#predAX (x) ≥ β, sizeAX ≥ β

∣∣∣∣∣∣∣∣
β

 

∈
[
1, 1

6 (α+ 1)(α+ 2)(α+ 3)
]

β	∈
[
1, 1

2α(α+ 3)− 1
]
, β ∈ [1, α]

x ∈ X, t1, t2 ∈ ATermX



AOBS(X, α) def=


u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β )

u = t1, u∈loopX(β), u∈loop⇑X
u∈predAX (x), u∈sizeAX

∣∣∣∣∣∣∣∣
←−
β ∈

[
1, 1

6α(α+ 1)(α+ 2) + 1
]

−→
β ∈

[
1, 1

2α(α+ 3)
]
, β ∈ [1, α]

x ∈ X, t1, t2 ∈ ATermX


The formal semantics of the test formulæ is provided below:
(s, h, l) |= t1 = t2 if and only if [[t1]]Xs,h and [[t2]]Xs,h are both defined, [[t1]]Xs,h = [[t2]]Xs,h.
(s, h, l) |= seesX(t1, t2) ≥ β iff card(APathX

s,h([[t1]]Xs,h)) ≥ β, [[t2]]Xs,h=AseenX
s,h([[t1]]Xs,h).

(s, h, l) |= #loopX(β1) ≥ β2 if and only if ALoopX
s,h(β1) has at least β2 cycles.

(s, h, l) |= #loop⇑X ≥ β if and only if ALoop⇑X
s,h(α) has at least β cycles.

(s, h, l) |= #predAX (x) ≥ β if and only if APredX(s(x)) has at least β elements.
(s, h, l) |= sizeAX ≥ β if and only if ASizeX

s,h(α) has at least β elements.
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(s, h, l) |= u = t if and only if l = [[t]]Xs,h;
(s, h, l) |= u∈seesX(t1, t2) ≥ (β1, β2) if and only if there are δ1 ≥ β1 and δ2 ≥ β2 such
that δ1 + δ2 = card(APathX

s,h([[t1]]Xs,h)) and hδ1([[t1]]Xs,h) = l and hδ2(l) = [[t2]]Xs,h;
(s, h, l) |= u∈loopX(β) if and only if there is a set L ∈ ALoopX

s,h(β) such that l ∈ L;
(s, h, l) |= u∈loop⇑X if and only if there is a set L ∈ ALoop⇑X

s,h(α) such that l ∈ L;
(s, h, l) |= u∈predAX (x) if and only if l ∈ APredX

s,h(s(x));
(s, h, l) |= u∈sizeAX if and only if l ∈ ASizeX

s,h(α).
As done for the C fragment, these test formulæ follow closely the partition defined above.
For example, seesX(t1, t2) ≥ β states that APathX

s,h([[t1]]Xs,h) describe a path of length at
least β from the location corresponding to t1 to its nearest labelled location [[t2]]Xs,h. Then,
formula u∈seesX(t1, t2) ≥ (β1, β2) state that the current assignment of u is in this path and
is reached from [[t1]]Xs,h after at least β1 steps whereas it reaches [[t2]]Xs,h in at least β2 steps.

The interesting aspect of ATEST(X, α) lies on the upper-bounds given to the formulæ, e.g.
the bound 1

2α(α+ 3)− 1 on β for #loop⇑X ≥ β formulaæ. These non-trivial upper-bounds
arise as we internalise the separating conjunction so that Lemma 8 (see below) holds. Since
these bounds are novelty in the test formulæ proof technique, as an example we informally
show how to derive the bound 1

2α(α+ 3)− 1 on β for #loop⇑X ≥ β formulæ. Let (s, h, l) be
a memory state, h1 + h2 = h and α, α1, α2 ∈ N+ so that α = α1 + α2 (as in Lemma 8) and
(w.l.o.g.) α1 ≥ α2. We study how the satisfaction of the test formulæ changes when the heap
h is split into h1 and h2 by looking at the possible partitions of these two heaps.

In our simple case, for each loop P ∈ ALoop⇑X
s,h(α) one of the following must hold:

P ⊆ dom(h1), P ⊆ dom(h2) or P is divided into two non-empty sets P1 ⊆ dom(h1) and
P2 ⊆ dom(h2). By definition of the partition, in the first two cases we have P∈ALoop⇑X

s,hk
(αk),

for k ∈ {1, 2}, whereas for the third case we have P1 ⊆ ASizeX
s,h1

(α1) and P2 ⊆ ASizeX
s,h2

(α2).
Then, these locations affects the formulæ #loop⇑X ≥ β1 and sizeAX ≥ β2 of ATEST(X, α1)
and ATEST(X, α2). For ATEST(X, α), we denote with L(α) the (desired) upper-bound on β
for #loop⇑X ≥ β formulæ and with S(α) the one for sizeAX ≥ β′ formulæ. For the sake of
brevity, suppose we derived S(α) = α with similar arguments to the ones herein described.
To effectively internalise the separating conjunct, L(α) must be at least the sum of the
upper-bounds L(α1) and L(α2) of ATEST(X, α1) and ATEST(X, α2) respectively, plus the
upper-bound S(α1) of ATEST(X, α1) (as α1 ≥ α2). Then, we need to satisfy the inequality
L(α) ≥ maxα=α1+α2(L(α1) + L(α2) + S(α1) + 1), where the last addend 1 is introduced to
handle the quantified variable u. As L(α1) + L(α2) + S(α1) + 1 is maximal for α1 = α− 1,
we solve the recurrence system {L(1) = 1, L(α+ 1) = L(α) + L(1) + α+ 1} (here, L(1) = 1
refers to the base-case of α = 1) and obtain the upper-bound L(α) = 1

2α(α + 3) − 1 that
satisfies the inequality above. Similarly, we derive all the upper-bounds of ATEST(X, α)
(Appendix A provides details of these derivations).

We say that two memory states are indistinguishable, written (s, h, l) ≈AX,α (s′, h′, l′), for
the A fragment if and only if for all ϕ ∈ ATEST(X, α) (s, h, l) |= ϕ ⇐⇒ (s′, h′, l′) |= ϕ. As
for the test formulæ of the C fragment (Lemma 7), we can show that two indistinguishable
memory states cannot be distinguished using separating conjunctions.

I Lemma 8 (A:∗ indistinguishability). Let X⊆fin VAR and α, α1, α2 ∈ N+ with α = α1 + α2.
Assume (s, h, l) ≈AX,α (s′, h′, l′). For all heaps h1, h2 such that h = h1 + h2 there are heaps
h′1, h′2 such that h′ = h′1 + h′2, (s, h1, l) ≈AX,α1

(s′, h′1, l′) and (s, h2, l) ≈AX,α2
(s′, h′2, l′).

As done for Lemma 7, this lemma can be proved by looking at (s, h1, l) and (s, h2, l) in terms
of their partitions and showing that it is possible to construct h′1 and h′2 by dividing h′ in
such a way that (s, h1, l) ≈AX,α1

(s′, h′1, l′) and (s, h2, l) ≈AX,α2
(s′, h′2, l′). In order to relate
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this result to the observations done for Lemma 7 and show the role of the upper-bounds
introduced in this section, let us consider the case of loops of size greater than α. In the
following, the index k stands for 1 or 2. For h1 and h2, we define the three following sets

L1
def= {P ∈ ALoop⇑X

s,h(α) | P ⊆ dom(h1)} L2
def= {P ∈ ALoop⇑X

s,h(α) | P ⊆ dom(h2)}

S def= {(P1,P2) | P1∪P2 ∈ ALoop⇑X
s,h(α), P1 6= ∅ 6= P2 and for each k ∈ {1, 2} Pk ⊆ dom(hk)}

Then, Lk is the set of loops in ALoop⇑X
s,h(α) that are completely assigned to hk whereas S

contains the loops of ALoop⇑X
s,h(α) that are split between h1 and h2. As introduced above, for

ATEST(X, α) we denote with L(α) def= 1
2α(α+3)−1 the upper-bound for #loop⇑X ≥ β formulæ

and with S(α) def= α the one for sizeAX ≥ β′ formulæ. Moreover, P(.) denotes the powerset op-
erator whereas πk(.) denotes the k-th projection of a tuple. We partially construct h′1 and h′2 by
defining three sets L′1 ⊆ P(dom(h′1)), L′2 ⊆ P(dom(h′2)) and S′ ⊆ P(dom(h′1))× P(dom(h′2))
satisfying the following properties:

L′k is the set of loops in ALoop⇑X
s′,h′(α) that are completely assigned to h′k

S′ contains the loops of ALoop⇑X
s′,h′(α) that are split between h′1 and h′2.

there is P ∈ Lk with l ∈ P if and only if there is P′ ∈ L′k with l′ ∈ P′;
there is P ∈ S with l ∈ πk(P) if and only if there is P′ ∈ S′ with l′ ∈ πk(P′);
min(L(αk), card(Lk)) = min(L(αk), card(L′k));
min(S(αk), card(

⋃
P∈S πk(P))) = min(S(αk), card(

⋃
P′∈S′ πk(P′))).

By (s, h, l) ≈AX,α (s′, h′, l′) we are guaranteed to find a construction satisfying all these prop-
erties, as it implies that min(L(α), card(ALoop⇑X

s,h(α))) = min(L(α), card(ALoop⇑X
s′,h′(α)))

and l ∈ ALoop⇑X
s,h(α)⇔ l′ ∈ ALoop⇑X

s′,h′(α). Recall that, by definition of the upper-bounds,
L(α) ≥ L(α1) + L(α2) + S(max(α1, α2)) + 1. Then, similarly to the proof of Lemma 7, the
construction goes by cases depending on whether or not the cardinalities of L1, L2 and S are
less than L(α1), L(α2) and S(max(α1, α2)) respectively and on whether or not l belongs to
a set in ALoop⇑X

s,h(α) (Appendix B provides the details of this step of the construction).
Suppose now that, by considering all the other elements of the partitions of h1 and h2, we

can complete the construction of h′1 and h′2 so that both heaps enjoy the following properties:

l∈ALoop⇑X
s,hk

(αk)\Lk ⇔ l′∈ALoop⇑X
s′,h′

k
(αk)\L′k

l∈ASizeX
s,h(αk)\

⋃
P∈S πk(P)⇔ l′∈ASizeX

s′,h′(αk)\
⋃

P′∈S′ πk(P′)

min(L(αk), card(ALoop⇑X
s,hk

(αk)\Lk)) = min(L(αk), card(ALoop⇑X
s′,h′

k
(αk)\L′k))

min(S(αk), card(ASizeX
s,hk

(αk)\
⋃
P∈S
πk(P))) = min(S(αk), card(ASizeX

s′,h′
k
(αk)\

⋃
P′∈S′

πk(P′)))

Then, as previously done for Lemma 7, by semantics of the test formulæ and from the prop-
erties of L′k and S′ ensured by construction we obtain the following equisatisfiability results:

(s, hk, l) |= u∈loop⇑X if and only if (s′, h′k, l′) |= u∈loop⇑X;
(s, hk, l) |= u∈sizeAX if and only if (s′, h′k, l′) |= u∈sizeAX ;
for each β ∈ [1,L(αk)], (s, hk, l) |= #loop⇑X ≥ β if and only if (s′, h′k, l′) |= #loop⇑X ≥ β.
for each β ∈ [1,S(αk)], (s, hk, l) |= sizeAX ≥ β if and only if (s′, h′k, l′) |= sizeAX ≥ β.

In order to complete the proof of Lemma 8, a similar reasoning is applied to each element of
the partition and every test formula. We conclude this section by showing that ATEST(X, α)
also enjoys quantification indistinguishability. The proof goes, as for Lemma 6, by checking
how the satisfaction of formulæ in AOBS(X, α) changes as the quantified variable is reassigned.

I Lemma 9 (A:∃ indistinguishability). Assume (s, h, l)≈AX,α (s′, h′, l′). Let `∈ LOC\L with
L def=dom(h′)∪ran(h′)∪s′(X). For every l1∈LOC there is l′1∈L∪{`} s.t. (s, h, l1)≈AX,α (s′, h′, l′1).
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4.3 Connecting the two families of test formulæ
We are now ready to show that the two indistinguishability relations introduced for the C
and A fragment allow us to mimic the A−∗ C separating implication using the test formulæ.

I Lemma 10 (A−∗C indistinguishability). Let (s, h, l) ≈CX,α+card(X) (s′, h′, l′) for some α ∈ N+

and X ⊆fin VAR. For all heaps h1 disjoint from h there exists h′1 disjoint from h′ such that:

1. card(dom(h′1)) is bounded by a polynomial P(card(X), α) in O(card(X)3α4),

2. (s, h1, l) ≈AX,α (s′, h′1, l′) and
3. (s, h+ h1, l) ≈CX,α (s′, h′ + h′1, l

′).
The proof is achieved by defining a “small” heap h′1 so that the first two points of the lemma
are guaranteed by construction. In doing so, we need to carefully handle the labelled locations
so that the third point also holds. For instance, suppose that in h1 there is a path from
s(x) to a location corresponding to the term t. Moreover, in this path the location h1(s(x))
corresponds to n(y) in h, as represented below (on the left). Then, (s, h+h1, l) |= n(x) = n(y).

x
[[n(y)]]X

s,h

y

· · ·
[[t]]X

s,h1

// ≈ x
[[n(y)]]X

s′,h′

y

[[t]]X
s′,h′1

(bounded)

We then construct (see the memory state on the right) h′1 so that there is a path from s′(x)
to a location corresponding to the term t where h′1(s′(x)) is the location corresponding to
the therm n(y) in h′. The hypothesis (s, h, l) ≈CX,α+card(X) (s′, h′, l′) guarantees that this can
always be done correctly. The third point of the lemma is then achieved by noticing that the
second point implies (s, h1, l) ≈CX,α (s′, h′, l′). Indeed this holds from the following result.

I Lemma 11. Let X ⊆fin VAR and α ∈ N+. It holds that ≈AX,α ⊆ ≈CX,α.

To relate the equisatisfaction of ϕ in 1SLR1
R2(∗,−∗, reach+) to the indistinguishability relations,

we define its memory size |ϕ|m as: 1 for atomic formulæ, |ϕ1∧ϕ2|m
def= max(|ϕ1|m, |ϕ2|m),

|¬ϕ|m
def= |ϕ|m, |ϕ1 ∗ ϕ2|m

def= |ϕ1|m+|ϕ2|m and |ϕ1−∗ϕ2|m
def= fv(ϕ1−∗ϕ2) + max(|ϕ1|m, |ϕ2|m).

I Lemma 12. Let ϕ be a A-formula such that fv(ϕ) ⊆ X ⊆fin VAR and |ϕ|m ≤ α ∈ N+. Let
(s, h, l), (s′, h′, l′) be two memory states. (s, h, l) |= ϕ ⇐⇒ (s′, h′, l′) |= ϕ whenever
1. (s, h, l) ≈AX,α (s′, h′, l′), or
2. (s, h, l) ≈CX,α (s′, h′, l′) and ϕ is a C-formula.
The proof is by structural induction on ϕ. The basic cases require to translate every atomic
C-formula and reach+(e1, e2) into a boolean combination of respectively CTEST(X, 1) and
ATEST(X, 1) formulæ. The inductive cases for Boolean connectives are immediate, whereas
for ∗, −∗, ∃ we use the various indistinguishability lemmata. Then, the following result holds.

I Theorem 13 (A captures the logic). Every 1SLR1
R2(∗,−∗, reach+) formula ϕ is logically

equivalent to a Boolean combination of test formulæ from ATEST(fv(ϕ), |ϕ|m).

For the proof, we first show that (s, h, l) ≈Afv(ϕ),|ϕ|m
(s′, h′, l′) and (s′, h′, l′) |=

∧
ψ∈LIT(s,h,l) ψ

are equivalent, where LIT(s, h, l) is the finite set of literals

{ψ ∈ ATEST(fv(ϕ), |ϕ|m) | (s, h, l) |= ψ}∪{¬ψ | (s, h, l) 6|= ψ and ψ ∈ ATEST(fv(ϕ), |ϕ|m)}

Then, the expression
∨

(s,h,l)|=ϕ
∧
ψ∈LIT(s,h,l) ψ is equivalent to a Boolean combination χ of

ATEST(fv(ϕ), |ϕ|m) formulæ. Using Lemma 12 we conclude thatϕ is logically equivalent toχ.
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Complexity upper bounds. Analogously to what is done in [12, 13], following Theorem 13 we
can establish a small model property for 1SLR1

R2(∗,−∗, reach+), whose proof relies on the upper-
bounds on ATEST(X, α) formulæ discussed in the previous section. Let |Xϕ| def= card(fv(ϕ)).

I Theorem 14 (small model). Every satisfiable ϕ in 1SLR1
R2(∗,−∗, reach+) is satisfied by a state

(s, h, l) such that card(dom(h)) is bounded by a polynomial Q(|Xϕ| , |ϕ|m) in O(|Xϕ|3 |ϕ|4m).

The satisfiability problem of 1SLR1
R2(∗,−∗, reach+) is then PSpace-complete (the hardness is

inherited from propositional separation logic [9]). Indeed, as |ϕ|m is at most |Xϕ|× |ϕ|, where
|ϕ| is the number of symbols in ϕ, Theorem 14 ensures a polynomial bound Q(|Xϕ| , |Xϕ|×|ϕ|)
on the heap of the smallest memory state that satisfies ϕ. Then, the non-deterministic
PSpace algorithm (leading to a PSpace upper-bound by Savitch Theorem [27]) first guess
a heap h, a store s restricted to fv(ϕ) and l∈LOC such that dom(h) ∪ ran(h) ∪ ran(s) ∪ {l}
has at most 2 × Q(|Xϕ| , |Xϕ| × |ϕ|) + |Xϕ| + 1 locations (in the worst case all these sets
are disjoint). It then checks that (s, h, l) |= ϕ by using a linear-depth recursive algorithm
that internalises the semantics of ϕ (see e.g. [8]). The various indistinguishability lemmata
ensure that only a polynomial amount of locations ever needs to be considered. For instance,
(s, h, l) 6|= ϕ1 −∗ ϕ2 if and only if we can guess h1 so that (s, h1, l) |= ϕ1, (s, h+ h1, l) 6|= ϕ2
and (by Lemma 10) dom(h1) ∪ ran(h2) has at most 2×P(|Xϕ| , |Xϕ| × |ϕ|) locations.

I Theorem 15. The satisfiability problem of 1SLR1
R2(∗,−∗, reach+) can be decided in PSpace.

5 Conclusions

We studied 1SLR1
R2(∗,−∗, reach+), an extension of propositional separation logic involving

one quantified variable and reachability predicates whose satisfiability problem is PSpace-
complete. We discussed how modest extensions of the logic entail Tower-hardness.

As far as we know, 1SLR1
R2(∗,−∗, reach+) is the largest decidable fragment in which

the separating implication cohabits with reachability predicates and quantified variables,
subsuming the logics introduced in [12] and [13] which were also found to be PSpace-complete.
Moreover, crucial robustness properties lying outside the expressive power of many fragments
of separation logic can be directly expressed in 1SLR1

R2(∗,−∗, reach+) and checked in PSpace.
Then, a procedure to decide robustness properties for this logic could perhaps be implemented
inside tools using any fragment of 1SLR1

R2(∗,−∗, reach+) as their assertion logic (see e.g. [15]).
To prove the PSpace upper-bound we relied on the widely used proof technique of the

test formulæ, here extended to capture asymmetric spatial connectives. The work presented
in [10] show a possible relation between test formulæ and games, paving a way toward better
understanding this technique and generalising it even further. In particular, by also using
the recurrence systems introduced here in Section 4.2, it seems possible to use this approach
to tackle in a new way extensions of separation logic with user-defined inductive predicates.
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A Details on the upper-bounds of ATEST(X,α) formulæ

In this section we provide the inequalities and recurrence systems that have been used to
compute the upper-bounds for the test formulæ ATEST(X, α) introduced in Section 4.2. Note
that the recurrence systems considered are generally more constrained that the inequalities
that we want to satisfy. This is however not a problem, as we just need to find a possible
solution to the inequalities, and our recurrence systems provide exactly that. For the cases
of #loopX(β1) ≥ β2 and #loop⇑X ≥ β2 we refer the reader to the body of the paper. Let
(s, h, l) be a memory state, h1 +h2 = h and α, α1, α2 ∈ N+ s.t. α = α1 +α2 (as in Lemma 8).

Bound for sizeAX ≥ β formulæ. For ATEST(X, α), let us call this upper-bound S(α), as
done in the body of the paper.

Inequality: S(α) ≥ maxα=α1+α2(S(α1) + S(α2)).
Recurrence system: {S(1) = 1, S(α+ 1) = S(α) + 1}.
Solution: S(α) = α.
Informal explanation: every location in ASizeX

s,h(α) can only appear in ASizeX
s,h1

(α1)
or ASizeX

s,h2
(α2).

Bound for #predAX ≥ β formulæ. For ATEST(X, α), let us call this upper-bound Pred(α).
Inequality: Pred(α) ≥ maxα=α1+α2(Pred(α1) + Pred(α2)).
Recurrence system: {Pred(1) = 1, Pred(α+ 1) = Pred(α) + 1}.
Solution: Pred(α) = α.
Informal explanation: similarly to the previous case, every location in APredX

s,h(α) can
only appear in APredX

s,h1
(α1) or APredX

s,h2
(α2).

Bound for
−→
β in u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β ) formulæ. For ATEST(X, α), let us call this

upper-bound Right(α).
Inequality: Right(α) ≥ maxα=α1+α2(Right(max(α1, α2)) + S(α1) + S(α2) + 1).
Recurrence system: {Right(1) = 2, Right(α+ 1) = Right(α) + (α+ 1) + 1}.
Solution: Right(α) = 1

2α(α+ 3).
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Informal explanation: the semantics of the formula u∈seesX(t1, t2) ≥ (
←−
β ,
−→
β ) implies

that there is a path from [[t1]]Xs,h to [[t2]]Xs,h that goes through l and is such that between
l and [[t2]]Xs,h there are at least

−→
β locations. Suppose α1 ≥ α2 (therefore, we focus our

attention on h1). Then, when the heap h is split into h1 and h2 it can hold that:
∗ [[t1]]Xs,h is a labelled location of (s, h1, l);
∗ in h1, the location l is still reachable from [[t1]]Xs,h, as shown in the picture below.

[[t1]]Xs,h l [[t2]]Xs,h

path preserved in h1 path preserved in h1

path split between h1 and h2

predecessor of [[t2]]Xs,h
↑

In this case, the set of locations that are reachable in h1 from l still counts for the
satisfaction of a u∈seesX(t1, t′) ≥ (

←−
β ,
−→
β ) predicate, again with respect to

−→
β . This

justifies Right(max(α1, α2)) addend of the inequality above. In the figure, notice how
there there is a part of the path whose locations are split between h1 and h2. These
locations can only appear in ASizeX

s,h1
(α1) or ASizeX

s,h2
(α2) and justify the addition of

S(α1) + S(α2) to the inequality. Lastly, if [[t2]]Xs,h corresponds to a program variable
in X then its predecessor appears in APredX

s,h1
([[t2]]Xs,h) or in APredX

s,h2
([[t2]]Xs,h). For

this reason, the inequality above contains a +1 addend. Then, the inequality is
maximal for α1 = α− 1 and α2 = 1 or vice-versa (recall that we do not admit α1 or
α2 to be equal to 0). From S(α) = α we obtain the recurrence system above with
solution Right(α) = 1

2α(α+ 3). Notice that the base case for the recurrence system
is Right(1) = 2. Under the condition that [[t2]]Xs,h = s(x) for some x ∈ X, the test
formulæ can always check if the path from l to s(x) has at least length 2 with the
conjunction u∈seesX(t1, x) ≥ (1, 1)∧¬u ∈ #predAX (x). We therefore require Right(1)
to be at least 2 so that the formula above can be simply expressed in ATEST(X, 1) as
u∈seesX(t1, x) ≥ (1, 2). This makes the proof of Lemma 8 easier as, with respect to
−→
β , we can handle the test formulæ u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β ) without looking at the

satisfaction of other test formulæ.
Bounds for seesX(t1, t2) ≥ β formulæ and

←−
β in u∈ seesX(t1, t2) ≥ (

←−
β ,
−→
β ) formulæ.

For ATEST(X, α), we denote the first upper-bound with Sees(α) whereas the second
upper-bound is called Left(α).

Inequalities: Sees(α) ≥ Left(α) + Right(α);
Left(α) + Right(α) ≥ max

α=α1+α2
(Sees(max(α1 + α2)) + 1 + S(α1) + S(α2) + 1)

Recurrence system: {
Left(1) = 2, Left(α+ 1) = Sees(α) + 1,
Sees(α) = Left(α) + Right(α)

}
Solution: Left(α) = 1

6α(α+ 1)(α+ 2) + 1 and Sees(α) = 1
6 (α+ 1)(α+ 2)(α+ 3).

Informal explanation: first of, it is easy to see that Sees(α) ≥ Left(α) + Right(α) must
hold. Indeed if a memory state satisfies the test formula u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β )

then by definition it also satisfies seesX(t1, t2) ≥
←−
β +

−→
β . Then, the latter formula

needs to be in ATEST(X, α) (otherwise, for instance, Lemma 9 does not hold). The
first inequality takes care of this. In the following, we strength this inequality to
Sees(α) = Left(α) + Right(α), as done for the recurrence system.
For the second inequality, the semantics of the formula u∈ seesX(t1, t2) ≥ (

←−
β ,
−→
β )

implies that there is a path from [[t1]]Xs,h to [[t2]]Xs,h that goes through l and is such that
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between [[t1]]Xs,h and l there are at least
←−
β locations. Suppose α1 ≥ α2 (therefore, we

focus our attention on h1). When the heap h is split into h1 and h2 it can hold that:
∗ [[t1]]Xs,h is a labelled location of (s, h1, l) and is such that [[t1]]Xs,h1

∈ dom(h1);
∗ in h1, l is no longer reachable from [[t1]]Xs,h, as shown in the picture below.

[[t1]]Xs,h l [[t2]]Xs,h

path preserved in h1 path split between h1 and h2 predecessor of [[t2]]Xs,h
↑

In this case, the set of locations that are reachable in h1 from [[t1]]Xs,h counts for
the satisfaction of a seesX(t1, t2) ≥ β predicate. This justifies Sees(max(α1, α2))
addend of the second inequality. In the figure, notice how there there is a part of the
path whose locations are split between h1 and h2. These locations can only appear
in ASizeX

s,h1
(α1) or ASizeX

s,h2
(α2) and justify the addition of S(α1) + S(α2) to the

inequality. If [[t2]]Xs,h corresponds to a program variable in X then its predecessor
appears in APredX

s,h1
([[t2]]Xs,h) or in APredX

s,h2
([[t2]]Xs,h). For this reason, the inequality

above contains a +1 addend. A last +1 is instead added to handle a corner case,
regarding l, in the proof of Lemma 8. Then, the second inequality is maximal for
α1 = α− 1 and α2 = 1 or vice versa (recall that we do not admit α1 or α2 to be equal
to 0). We then obtain

Left(α) + Right(α) ≥ Sees(α− 1) + 1 + S(α) + 1

As Right(α) ≥ S(α) + 1, to find a solution is then sufficient consider the recurrence
system above. Notice that the base case for the recurrence system is Left(1) = 2. As
for the previous case, this is done to ease the proof of Lemma 8, as we can then handle
the u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β ) formulæ without looking at the satisfaction of other

test formulæ.

B Lemma 8: the case of ALoop⇑X
s,h(α)

In this section we complete the construction started in Section 4.2. Let (s, h, l) and (s′, h′, l′)
be two memory states. Moreover let α, α1, α2 ∈ N+ so that α = α1 +α2 and h = h1 + h2. In
the following, the index k stands for 1 or 2. For h1 and h2, we define the three following sets

L1
def= {P ∈ ALoop⇑X

s,h(α) | P ⊆ dom(h1)} L2
def= {P ∈ ALoop⇑X

s,h(α) | P ⊆ dom(h2)}

S def= {(P1,P2) | P1∪P2 ∈ ALoop⇑X
s,h(α), P1 6= ∅ 6= P2 and for each k ∈ {1, 2} Pk ⊆ dom(hk)}

Then, Lk is the set of loops in ALoop⇑X
s,h(α) that are completely assigned to hk whereas S

contains the loops of ALoop⇑X
s,h(α) that are split between h1 and h2. Lastly, we denote with

L(α) def= 1
2α(α + 3) − 1 the upper-bound for #loop⇑X ≥ β formulæ and with S(α) def= α the

one for sizeAX ≥ β′ formulæ, as introduced in Section 4.2.
The result that we want to prove is the following:

Hypothesis:
H1. min(L(α), card(ALoop⇑X

s,h(α))) = min(L(α), card(ALoop⇑X
s′,h′(α)))

H2. l ∈ ALoop⇑X
s,h(α)⇔ l′ ∈ ALoop⇑X

s′,h′(α).
Thesis:

there are h′1, h′2 such that h′ = h′1 + h′2 such that it is possible to define three sets
L′1 ⊆ P(dom(h′1)), L′2 ⊆ P(dom(h′2)) and S′ ⊆ P(dom(h′1))× P(dom(h′2)) satisfying the
following properties:
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L′k is the set of loops in ALoop⇑X
s′,h′(α) that are completely assigned to h′k

S′ contains the loops of ALoop⇑X
s′,h′(α) that are split between h′1 and h′2.

there is P ∈ Lk with l ∈ P if and only if there is P′ ∈ L′k with l′ ∈ P′;
there is P ∈ S with l ∈ πk(P) if and only if there is P′ ∈ S′ with l′ ∈ πk(P′);
min(L(αk), card(Lk)) = min(L(αk), card(L′k));
min(S(αk), card(

⋃
P∈S πk(P))) = min(S(αk), card(

⋃
P′∈S′ πk(P′))).

Recall that, by definition of the upper-bounds, L(α) ≥ L(α1) + L(α2) + S(max(α1, α2)) + 1.
Moreover, note that from α = α1 + α2 with α1, α2 ∈ N+ we obtain that α ≥ 2 and every set
in ALoop⇑X

s,h(α) and ALoop⇑X
s′,h′(α) contains at least three locations. The construction goes

by cases depending on whether or not the cardinalities of L1, L2 and S are less than L(α1),
L(α2) and S(max(α1, α2)) respectively. For each case we also need to deal with whether
or not l belongs to a set in ALoop⇑X

s,h(α). When we define a set among L′1, L′2 and S′ we
implicitly assume that their locations are assigned to h′1 and h′2 accordingly to the definitions
of these sets (i.e. L′1 and π1(S′) only contain locations of h′1 whereas L′2 and π2(S′) only
contain locations of h′2).
1. Case: card(L1) < L(α1), card(L2) < L(α2) and card(S) < S(max(α1, α2)).

By hypothesis H1 and the definition of L(α), it holds that

card(ALoop⇑X
s,h(α)) = card(ALoop⇑X

s′,h′(α)).

Select card(L1) sets from ALoop⇑X
s′,h′(α). If l appears in one of the sets of L1, then by

hypothesis H2 l′ belongs to one the sets of ALoop⇑X
s′,h′(α) and we require that set to

be among the selected ones. These sets constitute L′1.
Select card(L2) sets from ALoop⇑X

s′,h′(α) \ L′1. If l appears in one of the sets of L2, then
by hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set
to be among the selected ones. These sets constitute L′2.
By card(ALoop⇑X

s,h(α)) = card(ALoop⇑X
s′,h′(α)) it follows that

card(ALoop⇑X
s′,h′(α) \ (L′1 ∪ L′2)) = card(S).

Let f be an injection between S and ALoop⇑X
s′,h′(α) \ (L′1 ∪ L′2) such that if there is

P ∈ S with l ∈ P then l′ ∈ f(P). This constraint on f can be always satisfied thanks to
H2. For each P ∈ S, divide f(P) into two sets P′1 and P′2, as follows:

if card(π1(P)) < S(α1) then select card(π1(P)) locations from f(P). If l ∈ π1(P) then
l′ is one of the selected locations. These locations form P′1. Then, P′2

def= f(P) \ P′1;
else if card(π2(P)) < S(α2) then select card(π2(P)) locations from f(P). If l ∈ π2(P)
then l′ is one of the selected locations. These locations form P′2. Then, P′1

def= f(P)\P′2;
otherwise card(π1(P)) ≥ S(α1) and card(π2(P)) ≥ S(α2). Select S(α1) locations
from f(P). If l ∈ π1(P) then l′ is one of the selected locations. These locations form
P′1. Then, P′2

def= f(P) \ P′1.
Iteratively add (P′1,P′2) to S′.

2. Case: card(L1) < L(α1), card(L2) < L(α2) and card(S) ≥ S(max(α1, α2)).
Select card(L1) sets from ALoop⇑X

s′,h′(α). If l appears in one of the sets of L1, then by
hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set to
be among the selected ones. These sets constitute L′1.
Select card(L2) sets from ALoop⇑X

s′,h′(α) \ L′1. If l appears in one of the sets of L2, then
by hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set
to be among the selected ones. These sets constitute L′2.
By H1, card(ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2)) ≥ S(max(α1, α2)). For each set {`1, `2,·· ·, `n}
of ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2), iteratively add ({`1}, {`2,·· ·, `n}) to S′ while being careful
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that if l′ is in the set then l′ = `1 if and only if there is P ∈ S such that l ∈ π1(P).
This constraint is always satisfiable thanks to H2. Notice how, after this step, S′ has
at least S(max(α1, α2)) elements.

3. Case: card(L1) < L(α1), card(L2) ≥ L(α2) and card(S) < S(max(α1, α2)).
Select card(L1) sets from ALoop⇑X

s′,h′(α). If l appears in one of the sets of L1, then by
hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set to
be among the selected ones. These sets constitute L′1.
Let f be an injection between S and ALoop⇑X

s′,h′(α) \ L′1 such that if there is P ∈ S
with l ∈ P then l′ ∈ f(P). This constraint on f can be always satisfied thanks to H2.
For each P ∈ S, divide f(P) into two sets P′1 and P′2 as shown in the third step of the
1st case of the construction. Iteratively add (P′1,P′2) to S′.
The set ALoop⇑X

s′,h′(α) \ (L′1 ∪ S′) constitutes L′2.
4. Case: card(L1) < L(α1), card(L2) ≥ L(α2) and card(S) ≥ S(max(α1, α2)).

Select card(L1) sets from ALoop⇑X
s′,h′(α). If l appears in one of the sets of L1, then by

hypothesis H2 l′ belongs to one the sets of ALoop⇑X
s′,h′(α) and we require that set to

be among the selected ones. These sets constitute L′1.
Select L(α2) sets from ALoop⇑X

s′,h′(α) \ L′1. If l appears in one of the sets of L2, then
by hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set
to be among the selected ones. These sets constitute L′2.
By H1, card(ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2)) ≥ S(max(α1, α2)). For each set {`1, `2,·· ·, `n}
of ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2), iteratively add ({`1}, {`2,·· ·, `n}) to S′ while being careful
that if l′ is in the set then l′ = `1 if and only if there is P ∈ S such that l ∈ π1(P).
This constraint is always satisfiable thanks to H2. Notice how, after this step, S′ has
at least S(max(α1, α2)) elements.

5. Case: card(L1) ≥ L(α1), card(L2) < L(α2) and card(S) < S(max(α1, α2)). Symmetrical
to the 3rd case with respect to the indexes 1 and 2.

6. Case: card(L1) ≥ L(α1), card(L2) < L(α2) and card(S) ≥ S(max(α1, α2)). Symmetrical
to the 4rd case with respect to the indexes 1 and 2.

7. Case: card(L1) ≥ L(α1), card(L2) ≥ L(α2) and card(S) < S(max(α1, α2)).
Select L(α1) sets from ALoop⇑X

s′,h′(α). If l appears in one of the sets of L1, then by
hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set to
be among the selected ones. These sets constitute L′1.
Let f be an injection between S and ALoop⇑X

s′,h′(α) \ L′1 such that if there is P ∈ S
with l ∈ P then l′ ∈ f(P). This constraint on f can be always satisfied thanks to H2.
For each P ∈ S, divide f(P) into two sets P′1 and P′2 as shown in the third step of the
1st case of the construction. Iteratively add (P′1,P′2) to S′.
The set ALoop⇑X

s′,h′(α) \ (L′1 ∪ S′) constitutes L′2.
8. Case: card(L1) ≥ L(α1), card(L2) ≥ L(α2) and card(S) ≥ S(max(α1, α2)).

Select L(α1) sets from ALoop⇑X
s′,h′(α). If l appears in one of the sets of L1, then by

hypothesis H2 l′ belongs to one the sets of ALoop⇑X
s′,h′(α) and we require that set to

be among the selected ones. These sets constitute L′1.
Select L(α2) sets from ALoop⇑X

s′,h′(α) \ L′1. If l appears in one of the sets of L2, then
by hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set
to be among the selected ones. These sets constitute L′2.
By H1, card(ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2)) ≥ S(max(α1, α2)). For each set {`1, `2,·· ·, `n}
of ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2), iteratively add ({`1}, {`2,·· ·, `n}) to S′ while being careful
that if l′ is in the set then l′ = `1 if and only if there is P ∈ S such that l ∈ π1(P).
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This constraint is always satisfiable thanks to H2. Notice how, after this step, S′ has
at least S(max(α1, α2)) elements.

It is easy to see that all the properties are always satisfied for any of the cases above. In
particular, for the cases where card(S) ≥ S(max(α1, α2)), i.e. cases 2, 4, 6 and 8, the property

min(S(αk), card(
⋃

P∈S πk(P))) = min(S(αk), card(
⋃

P′∈S′ πk(P′)))

is implied by card(S) ≥ S(max(α1, α2)) and card(S′) ≥ S(max(α1, α2)). To prove that
this property holds also for the cases where card(S) < S(max(α1, α2)), i.e. cases 1, 3,
5 and 7, we use the fact that, for every P ∈ S and k ∈ {1, 2}, πk(P) < S(αk) implies
π3−k(P) ≥ S(α3−k). Indeed, this holds as all the loops in ALoop⇑X

s,h(α) have size greater
than α = S(α) = S(α1) + S(α2).
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