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—— Abstract

We study the oritatami model for molecular co-transcriptional folding. In oritatami systems, the
transcript (the “molecule”) folds as it is synthesized (transcribed), according to a local energy
optimisation process, which is similar to how actual biomolecules such as RNA fold into com-
plex shapes and functions as they are transcribed. We prove that there is an oritatami system
embedding universal computation in the folding process itself.

Our result relies on the development of a generic toolbox, which is easily reusable for future
work to design complex functions in oritatami systems. We develop “low-level” tools that allow
to easily spread apart the encoding of different “functions” in the transcript, even if they are
required to be applied at the same geometrical location in the folding. We build upon these
low-level tools, a programming framework with increasing levels of abstraction, from encoding of
instructions into the transcript to logical analysis. This framework is similar to the hardware-to-
algorithm levels of abstractions in standard algorithm theory. These various levels of abstractions
allow to separate the proof of correctness of the global behavior of our system, from the proof of
correctness of its implementation. Thanks to this framework, we were able to computerise the
proof of correctness of its implementation and produce certificates, in the form of a relatively small
number of proof trees, compact and easily readable/checkable by human, while encapsulating
huge case enumerations. We believe this particular type of certificates can be generalised to
other discrete dynamical systems, where proofs involve large case enumerations as well.
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Proving the Turing Universality of Oritatami Co-Transcriptional Folding

1 Introduction

Oritatami model was introduced in [6] to try to understand the kinetics of co-transcriptional
folding. This process has been shown to play an important role in the final shape of
biomolecules [1], especially in the case of RNA [4]. The rationale of this choice is that the
wetlab version of Oritatami already exists, and has been successfully used to engineer shapes
with RNA in the wetlab [8].

In oritatami, we consider a finite set of bead types, and a periodic sequence of beads, each
of a specific bead type. Beads are attracted to each other according to a fixed symmetric
relation, and in any folding (a folding is also called a configuration), whenever two beads
attracted to each other are found at adjacent positions, a bond is formed between them.

At each step, the latest few beads in the sequence are allowed to explore all possible
positions, and we keep only those positions that minimise the energy, or otherwise put, those
positions that maximise the number of bonds in the folding. “Beads” are a metaphor for
domains, i.e. subsequences, in RNA and DNA.

Previous work on oritatami includes the implementation of a binary counter [6], the Heigh-
way dragon fractal [12], folding of shapes at small scale [3], and NP-hardness of the rule
minimization [15, 9] and of the equivalence of non-deterministic oritatami systems [10].

Main result. In this paper, we construct a “universal” set of 542 bead types, along with a
single universal attraction rule for these bead types, with which we can simulate any tag
system, and therefore any Turing machine M, within a polynomial factor of the running
time M. The reduction proceeds as follows:

Turing machine M Cyclic tag system M Skipping cyclic tag system m Oritatami system
Our result relies on the development of a generic toolbox, which is easily reusable for future
work to design complex functions in oritatami systems.

Proving our designs. The main challenge we faced in this paper was the size of our
constructions: indeed, while we developed higher-level geometric constructs to program
useful shapes, there is a large number of possible interactions between all different parts
of the sequence. Getting solid proofs on large objects is a common problem in discrete
dynamical systems, for instance on cellular automata [5, 2] or tile assembly systems [11]. In
this paper, we introduce a general framework to deal with that complexity, and prove our
constructions rigorously. This method proceeds by decomposing the sequence into different
modules, and the space into different areas: blocks, where exactly one step of the simulation
is performed, which are composed of bricks, where exactly one module grows. We can then
reason on the modules separately, and only deal with interactions at the border between all
possible modules that can have a common border.

2 Definitions and Main results

2.1 Oritatami Systems

Let B be a finite set of bead types. A configuration c of a bead type sequence p € B* U BY is
a directed self-avoiding path in the triangular lattice T, where for all integer 4, vertex ¢; of ¢

3 The triangular lattice is defined as T = (Z? ~), where (z,y) ~ (u,v) if and only if (u,v) €
Ue=+1{(z + €,9), (z,y + €), (x + €,y + €)}. Every position (z,y) in T is mapped in the euclidean plane

to - E +y- SW using the vector basis E = (1,0) and SW = RotateClockwise (E, 1200) = (-1, 7§)
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is labelled by p;. ¢; is the position in T of the (i + 1)th bead, of type p;, in configuration c.

A partial configuration of a sequence p is a configuration of a prefix of p.

For any partial configuration ¢ of some sequence p, an elongation of ¢ by k beads (or
k-elongation) is a partial configuration of p of length |c| + k extending by k positions the
self-avoiding path of c. We denote by C, the set of all partial configurations of p (the index p
will be omitted when the context is clear). We denote by c>* the set of all k-elongations of a
partial configuration ¢ of sequence p.

Oritatami systems. An oritatami system O = (p,#,9) is composed of (1) a (possibly
infinite) bead type sequence p, called the transcript, (2) an attraction rule, which is a
symmetric relation @ C B2, and (3) a parameter  called the delay. O is said periodic
if p is infinite and periodic. Periodicity ensures that the “program” p embedded in the
oritatami system is finite (does not hardcode any specific behavior) and at the same time
allows arbitrary long computation.

We say that two bead types a and b attract each other when a @ b. Furthermore, given
a (partial) configuration ¢ of a bead type sequence ¢, we say that there is a bond between
two adjacent positions ¢; and ¢; of ¢ in T if ¢; ®¢; and |i — j| > 1. The number of bonds of
configuration ¢ of ¢ is denoted by H(c) = [{(4,7) : ¢; ~¢j, j >i+1, and ¢; #¢;}|.

Oritatami dynamics. The folding of an oritatami system is controlled by the delay .
Informally, the configuration grows from a seed configuration (the input), one bead at a time.

This new bead adopts the position(s) that maximise(s) the potential number of bonds the
configuration can make when elongated by ¢ beads in total. This dynamics is oblivious as it
keeps no memory of the previously preferred positions; it differs thus slightly from the hasty
dynamics studied in [6]; it might also be considered as closer to experimental conditions such
as in [8].

Formally, given an oritatami system O = (p,®, ) and a seed configuration o of a seed
bead type sequence s, we denote by C, ) the set of all partial configurations of the sequence
s - p elongating the seed configuration o. The considered dynamics & : 2¢o» — 2Co.» maps
every subset S of partial configurations of length ¢ elongating o of the sequence s - p to the
subset Z(S) of partial configurations of length £+ 1 of s - p as follows:

2(5) = U arg max ( max H(n))
ces yedt \neyt oy
The possible configurations at time ¢ of the oritatami system O are the elongations of the
seed configuration ¢ by ¢ beads in the set 2*({c}).

We say that the oritatami system is deterministic if at all time ¢, 2'({c}) is either a
singleton or the empty set. In this case, we denote by ¢! the configuration at time ¢, such
that: ¢ = ¢ and 2'({c}) = {c'} for all ¢ > 0; we say that the partial configuration ¢! folds
(co-transcriptionally) into the partial configuration c¢'*! deterministically. In this case, at
time ¢, the (¢ + 1)-th bead of p is placed in ¢!T! at the position that maximises the number
of bonds that can be made in a §-elongation of c.

We say that the oritatami system halts at time # if ¢ is the first time for which 2'({¢'}) = @.
The folding process may only stop because of a geometric obstruction (no more elongation is
possible because the configuration is trapped in a closed area).

Please refer to Fig. 1(d) and 1(e) for examples of the dynamical folding of a transcript.
Observe that a given transcript may fold (deterministically) into different paths because of
its interactions with its local environment (see section 2.3 for more details).

23:3
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2.2 Main result

Our main result consists in proving the following theorem that demonstrates that oritatami
systems are able to complete arbitrary Turing computation. It shows in particular that
deciding whether a given oritatami system folds into a finite size shape for a given seed is
undecidable.

» Theorem 1 (Main result). There is a fived set B of 542 bead types with a fixed attraction
rule @ on B, together with two encodings:
7w that maps in polynomial time, any single tape Turing machine M to a bead type
sequence Taq € BY;
(s,0) that maps in polynomial-time, any single-tape Turing machine M and any input x
of M to a seed configuration o (x) of a bead type sequence spy(z) of length Orq(|x]),
linear in the size of the input x (and polynomial in |M|);
such that: For any single tape Turing machine M and every input © of M, the deterministic
and periodic oritatami system Oxng = ((mag)%°, %, 3) whose transcript has period waq and
whose delay is 6 = 3, halts its folding from the seed configuration o (z) if and only if M
halts on input x. Furthermore, for all t and all input x of M, if M halts on = after t steps,
then, the folding of O from seed configuration o (z) halts after folding O aq(t* log® t) beads.

There is one Turing-universal periodic transcript. Note that if we apply this theorem to
an intrinsically universal single tape Turing machine U (see [14]), then we obtain one single
absolutely fixed transcript my such that the deterministic and periodic oritatami system
Oy = ((my)>°, %, 3) with 542 bead types can simulate efficiently the halting of any Turing
machine M on any input x using a suitable seed configuration obtained via the encoding of
M and x in U. It follows that this absolutely fixed oritatami system consisting of one single
periodic transcript is able of arbitrary Turing computation.

From now on, we only consider deterministic periodic oritatami systems with delay 6 = 3.

2.3 Basic design tool: Glider/Switchback

As a warm-up, let us introduce a special type of bead sequence (see Fig. 1) that, depending on
the initial context of its folding, either folds as a glider (a long and thin self-supported shape
heading in a fixed direction) or as switchbacks (a narrow and high shape allowing compact
storage). This only requires a small number of distinct beads types (12 per switchbacks, that
can be repeated every 4 switchbacks). This is achieved by designing a rule with minimum
interactions ensuring minimum interferences between both folding patterns. Compatibility
between the glider and the turns in switchbacks is ensured by aligning the switchback turns
with the turns of the glider, exploiting thus the similarity of their finger-like shape there.

This glider/switchback sequence will be used to store (as switchbacks) and expose (as
glider) specific information encoded in the transcript when needed.

2.4 Skipping Cyclic Tag Systems and Turing-Universality

Our proof of the Turing-universality of oritatami systems consists in simulating a special
kind of cyclic tag systems (CTS), called skipping cyclic tag system. Cook introduced CTS in
[2] and proved that they combined the tremendous advantage of simulating efficiently any
Turing machines, while not requiring a random access lookup table, which makes simulation
a lot easier.
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(a) Glider ©OL -
7 @®@@@ (c) Glider/Switchback turn folding compatibil-
ity.

(e) from left to right: the folding of the subsequence as a switchback.

Figure 1 Glider/switchback subsequence. The folding path of the transcript is represented
as the thick colorful line and the @-bonds between beads are represented as dashed lines. The
bond-maximizing path for the § = 3 lastly produced beads is represented by a thick black line,
possibly terminated by several colorful paths if several paths realize the maximum of number of
bonds.

A skipping cyclic tag system (SCTS). consists of a cyclic list of n words e = (a?, ..., a7 1)

€ {0,1}*, called appendants, and an initial dataword u® € {0,1}*. Intuitively, o encodes
the program and u” encodes the input. Its configuration at time ¢ consists of a marker
m!, recording the index of the current appendant at time ¢, and a dataword u!. Initially,
m® = 0 and the dataword is u®. At each time step ¢, the SCTS acts deterministically on
configuration (m?, u') in one of three ways:

(Halt step) If u? is the empty word €, then the SCTS halts;*
(Nop step) If the first letter u} of u* is 0, then uf is deleted and the marker moves to the

next appendant cyclically: i.e., m!* = (m! + 1) modn and u'** = uf - -- “|tut\—15

Skip-append step) If ut = 1, then uf is deleted, the next appendant o(m'+1 med n) jg
(Skip-app p o 0 pp
appended onto the right end of u!, and the marker moves to the second next appendant:
fe, utt =wf -l a(m'+1mod n) ang i+l = (m! + 2) mod n.

For example, consider the SCTS € = ({110, ¢,11,0);u® = 010). Its execution (I™lu?), is:

0 1 Append 3 0 Append 2 Append 0 1
0010 — M0 S Blo11 — 011 i 2] 50 o — MHalt

4 Note that SCTS halting condition requires the dataword to be empty as opposed to [2, 16] where the
computation of a cyclic tag system is said to end also if it repeats a configuration.

ISAAC 2018
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Turing universality. A sequence of articles and thesis by Cook [2], and Neary and Woods [16,
13], allows to show that SCTS are able to simulate any Turing machine efficiently in the
following sense: (proof omitted see [7])

» Proposition 2 ([16, 13]). Let M be a deterministic Turing machine using a single tape.
There is a polynomial algorithm that computes a skipping cyclic tag system Spq, together
with a linear-time encoding uaq(x) of the input x of M as an input dataword for Sy, such
that for all input x: Spq halts on input dataword ua(x) if and only if M halts on input
x. Furthermore, for all t, if M halts after t steps, then S halts after O (t?logt) steps.
Moreover, the number of appendants of S is a multiple of 4.

In order to prove Theorem 1, we are thus left with proving that there is an oritatami
system that simulates in quadratic time any SCTS system (see Theorem 6 in [7] for a precise
statement).

3 The block simulation of SCTS: Proving the correctness of local
folding is enough

Given a SCTS S, we design an oritatami system Og that folds into a version, at a larger
scale, of the annotated trimmed space-time diagram of S (or trimmed diagram for short)
defined as follows:

Trimmed diagram of SCTS. Any SCTS proceeds as follows: it trims all the leading Os in
the dataword and then appends the currently marked appendant when it reads the first 1
(if any; otherwise it halts). It is thus natural to group all these steps (trim leading 0s and
process the leading 1) as one single macro step. This motivates the following representation.
Given a SCTS (a?,...,a" 1 u®), we denote by 0 < t; <ty < --- all the times ¢ such that the
dataword u! starts with letter 1 and set ¢y = —1 by convention. Let us now group all deletion
steps occurring during steps t; +1 to ;1 — 1 by simply indicating in exponent the marker m?

before each letter read. In the case of our STCS &, we have tg = —1,¢t1 = 1,t5 = 3,3 = 4 and
Append Append Append
its execution is now represented as: (201110 % BloloT11 }Ej (214 E’E 0ol Halt.

Now, let’s align the resulting datawords in a 2D diagram according to their common parts:

to t1 ta  t3

4 4 L
Olo|l1] o — Append [2:11]
Blo|l0l1| 1 — Append [1:¢€]
211 — Append [3:0]
%[1] — Halt [l:¢]

This defines the annotated trimmed space-time diagram for the SCTS €. We refer to Lemma 4
in [7] for the formal definition for an arbitrary SCTS.

The transcript. The proof of Theorem 1 (see Theorem 6 in [7]) relies on constructing

a transcript (and a fixed rule) that will reproduce faithfully the trimmed diagram of the

simulated STCS. Figure 2 illustrates the folded configuration of the transcript corresponding

to SCTS £. Macroscopically, the transcript folds into a zig-zag sequence of blocks, each

performing a specific operation.

The current dataword is encoded at the bottom of each row of blocks: Os are encoded by a
spike, and 1s are encoded by a flat surface.
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The seed configuration encodes the initial dataword and opens the first zig row at which
the folding of the transcript starts. Letters 0 and 1 are encoded by a spike (see Fig. 3(a))
and a flat surface (see Fig. 3(b)) respectively.

In each zig row (left to right), the transcript folds into a series of ReadO» blocks (trimming
the leading Os from the dataword encoded above), and then into a Read1» block, if the
dataword contains a 1, or into a Halt block terminating the folding, otherwise; this is the
zitg-up phase. Then, the transcript starts the zig-down phase which consists in folding
into Copy» block copying the remaining letters of the dataword encoded above to the
bottom of the row; once the end of the dataword is reached, the transcript folds into an
Append%Return block which encodes, at the bottom of the row, the currently marked
appendant, and finally, opens the next zag row.

In each zag row (right to left), the transcript folds into Copy< blocks copying the new
dataword encoded above to the bottom of the row. For the leftmost letter, the transcript
folds into the special Copy®LineFeed block which also opens the next zig row.

The transcript is a periodic sequence whose period is the concatenation of n bead type

sequences |Appendant o°|, ... ,|Appendant o"~'| called segments, each encoding one appendant.

Encoding of the marker. Read» and Append%Return blocks consist of the folding of ezactly
one segment, whereas Copy», Copy<« and Copy¥LineFeed consist of the folding of exactly
n segments. It follows that the appendant encoded in the leading segment folded inside
each block corresponds to the currently marked appendant in the simulated SCTS. As a
consequence, the appendant contained in the folded Append%Return block is indeed the
appendant to be appended to the dataword.

The segment sequence. FEach segment encodes the appendant o’ as a se-
quence of 6 + |a’| modules: one of each module [A], [B], and [C], then |a!| of module |D],
then one of each module |E|, and [G]. Each module is a bead type sequence that plays a
particular role in the design:

Module [A] folds into the initial scaffold upon which the next modules rely.

Module detects if the dataword is empty: if so, it folds to the left so as the folding
gets trapped in a closed space and halts; otherwise, it folds to the right and the folding
continues.

Module |C| detects the end of the dataword and triggers the appending of the marked
appendant accordingly.

Module D] encodes each letter of the appendant: its two variants Do and |D1| encode
respectively 0s and 1s .

Module |E| ensures by padding that all appendant sequences have the same length when
folded (even if the appendant have different length). It serves two other purposes: Module
senses its presence to detect if the dataword is empty; and its folding initiates the
opening of the zag row once the marked appendant has been appended to the dataword.

Module is the scaffold upon which module [G] folds. It is specially designed to induce
two very distinct shapes on [G] depending on the initial shift of [G]. Furthermore, when
module [F] is exposed, module [C]| folds along [F] which triggers the appending of the
marked appendant encoded by the modules |D| following |C|.

Module is the “logical unit” of the transcript. It implements three distinct functions
which are triggered by its interactions with its environment: (1) reading the 0*(1|e) prefix
of the dataword, (2) copying a letter of the dataword, and (3) opening the next zig row
at the leftmost end of each zag row.

23:7
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[ ZOOM IN FOR DETAILS |

Seed[010]

Append|2:11]&Return

APPEND1,,

APPEND1,

<)

Append[1:c|Return

Append[3:0]%Return

to ty ty  t3 APPENDO, ;
+ +od
‘[U]O‘Mi 0 — Append [2: @
Blo|lol1| 1 — Append [1:¢]
1211 — Append [3:0]
Olo|l —  Halt [l:¢]

(a) Folding of the oritatami system simulating the STCS &.

ReadO» Read1p CopyO»-Unit Copy1»Unit Halt
i;,\/ Cr 7 'j;,\/ (o3 DDU%\ >
7 / \,\

Ar 7 Ax
Py A Y
/; / \
V) Vi 3\
D[:)I;/ D?)lf/ s Ne
Ne
E< DO0<
. AT
\ /
A\ Append%Return
A A \ £ A<
\\ 7 . / /
B N DI Y \";;

LineFeed®Unit

(b) Exploded view of the bricks and modules inside the blocks involved in the simulation above.

Figure 2 Folding of the transcript simulating the STCS £, and some block internal structures.

We call bricks the folding of each of these modules. The blocks into which the transcript
folds, depend on the bricks in which its modules fold, as illustrated in Fig. 2(b). We refer
to sections C to F in [7] for the description of blocks in terms of bricks and of how they
articulate with each other to produce the desired macroscopic folding pattern.

The full description of each of these sequences is given in Section F in [7].

Let S = (% al,...,a" 1 u%) be a SCTS, and, as before, let for all integer i > 0, t; be
the i step where u! starts with 1 (starting from 0, i.e. tg is the first step where u'c starts
with 1). The following lemma shows that the transcript described above folds indeed into
blocks that simulate the trimmed diagram of S. Proposition 2 and Theorem 1 are direct
corollaries of this lemma.



C. Geary, P.-E. Meunier, N. Schabanel, and S. Seki 23:9

» Lemma 3 (Key lemma). There is a bead type set B and a rule @ such that: for every SCTS
S, there are s and (os, ss) defined as in Theorem 1 such that, for every initial dataword
u®, the (possibly infinite) final folded path of the oritatami system Os = ((75)>, %, 6 = 3)
from the seed configuration (o(u®),s(u®)) is exactly structured as the following sequence of
blocks organized in zig and zag rows as follows: (recall Fig. 2(a))

First, the block Seed(u") ending at coordinates (—1,0).
Then, for i > 0, the i-th row consists of a zig row located between y = 2(i — 1)h + 1 and
y = 2ih, and a zag row located between y = 2ih + 1 and y = 2(i + 1)h, composed as
follows:
e (Compute) if ultt = 071 - s and if s # € or a'Tittits £ e: then
r = ti+1 — ti — 1 and:
the i-th zig-row consists from left to right of the following sequence of blocks whose
origins are located at the following coordinates:

Yy 2ih (2 —1)h+1

S it (AW o bt (g — DWW bt bW bt (L4 )W 1 e bt (8| 4 )W — 1kt (14 [s| + )W — 1
Blocks Reado» e Readop Read1» Copy(so)» e Copy(s(s/—1)» Append[a!tittici [ %Return
Marker — i+14t; - it it [T P14t i1+t

This row ends at position ((i + 1)h + (1 + |s| + [a T4t | ¢, )W — 7,2ih + 2).
the i-th zag-row consists from right to left of the following sequence of blocks whose
origins are located at the following coordinates:

Y 2ih + 1
=z (i+1Dh+ Q2+t )W -8 (i+1Dh+ @B+t )W -8 - (i+1)h+ (14 v]+t;41)W -8
Blocks Copy(vo) ¥LineFeed Copy(v1)« e Copy(v}y|-1)«
Marker i+ 2+t i+ 2+t e T4+ 2+t

where v =u'T+ = s p14y, # € (as s and oI are not both €). This row
ends at position ((i + 1)h 4 (1 4+ t;41)W — 1,2(i + 1)h).
e (Halt 1) if u'™t = 071 and o' Titt+1 = e: thenr =t;11 —t; — 1 and the last rows
of the configuration consists from left to right of the following sequence of blocks located
at the following coordinates:

'y 2ih (20— Dh+1 2(i + 1)h

—a  th+ (1 +t)W - ih 4 (b — D)W th+ i W ih+ (14t )W -1 (i+1)h+ 1 +ti)W
Blocks Reado» e Reado» Read1p CarriageReturn&LineFeeds Halt
Marker i+ 1+t T4t —1 i+ tig P41+t P4 24t

e finally, (Halt 2) if u'*% = 0" for some r > 0: then the i-th zig-row is last row of
the configuration and consists of the following sequence of blocks located at the following

coordinates:
Y 2ih
—ax  th+A+t)W - th+ @ +t)W ith+ (1 +r+t;)W
Blocks Reado» o Reado» Halt
Marker i+ 1+t i+r+t; i+r+14+1;

The following sections are dedicated to the proof of Key Lemma 3.

4 Advanced Design Tool box

In this section, we present several key tools to program Oritatami design and which we
believe to be generic as they allowed us to get a lot of freedom in our design.

ISAAC 2018
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4.1 Implementing the logic

As in [6], the internal state of our “molecular computing machinery” consists essentially of
two parameters: 1) the position inside the transcript of the part currently folding; and 2) the
entry point of transcript inside the environment. Indeed, depending on the entry point or
the position inside the transcript, different beads will be in contact with the environment
and thus different functions will be applied as a result of their interactions. This happens
during the zig phase: in the first (zig-up) part, the transcript starts folding at the bottom,
forcing the modules [G] to fold into bricks; whereas during the second (zig-down)
part, the transcript starts folding at the top, forcing the modules [G] to fold into
bricks instead. Similarly, the memory of the system consists of the beads already placed
on the surrounding of the area currently visited (the environment). This happens in every
row of the folding: depending on the letter encoded at the bottom of the row above, the
modules [G] fold into |G»Reado| or |G Read1| bricks (zig-up phase), |G» Copyo| or |G» Copy1|
bricks (zig-down phase), and |G < Copyo| or |G < Copy1| bricks (zag phase).

At different places, we need the transcript to read information from the environment and
trigger the appropriate folding. This is obtained through different mechanisms.

Default folding. By default, during the zig-up phase, is attracted to the left by [F| and
folds to the right only in presence of |E| above. This allows to continue the folding only if
the tape word is not empty or to halt it otherwise (see Figure 27 in [7]).

Geometry obstruction. A typical example is illustrated by [G]. During the zig-up phase
where the absence of environment below the block Read» allows [G] to fold downward
at the beginning (see Figure 41 in [7]) which shift the transcript by 7 beads along [F]
resulting in to adopt the glider-shape (more details on this mechanism in the next
section). Whereas during the zig-down phase, [G] cannot make this loop because it is
occupied by a previously placed [G]. This results in a perfect alignment of [G] with [F]
whose strong attraction forces [G| to adopt the switchback shape (see Figure 43 in [7]).

Geometry of the environment. Figure 3 shows how the shape of the environment is used
to change the direction of |G| in glider-shape. This results in modifying the entry point
in the environment and allows the Oritatami system to trim the leading Os in the tape
word by going back to the same entry point (Fig. 3(a)), switch from zip-up to zig-down
phase when reading a 1 by opening the next block from the top (Fig. 3(b)), and from zag
to zig-up phase when it has rewound to the beginning of the tape word, by getting down
to the bottom of the next zig row (Fig. 3(c)).

4.2 Easing the design: getting the freedom you need

Several key tools allowed to ease considerably our design, and even in some cases to make
it feasible. These tools are generic enough to be considered as programming paradigms.
One main difficulty we faced is that the different functions one wants to implement tend to
concentrate at the same “hot-spots” in the transcript. A typical example is the midpoint
of where one wants to implement all the functions: Read, Copy and Line Feed. The
following powerful tools allow to overcome these difficulties:

Socks work by letting a glider /switchback module fold into a switchback turn conformation
for some time when it would otherwise fold into a glider. Examples are given in Figure 4.
They are easy to implement: indeed, the socks naturally adopt the same shape as the
corresponding switchback turn and require thus no extra interfering bonds. They allow a
lot of freedom in the design, for several reasons:
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(a) [G] bounces southeastward in
presence of a siike encoding a 0 surface encoding a 1, and folds ward in absence of obstacle, and

and folds into |G» Reado . into [ G»> Readt |. folds into |G # LineFeed .

Figure 3 The interactions of module @ in “glider”-mode with different environments result in
heading to different entry points to the next area of the folding.

module

(b) Delaying gliders. (c) Confinement.

Figure 4 Different uses of socks: (a) Easing the design of switchback/glider by letting the
switchback (in green) folds into its natural shape at its extremities even in “glider”-mode.; (b)
Module E': Realigning a pattern by slowing its folding down at the end to compensate speeding it
at the beginning.; (¢) Module [D]: Preventing unwanted interactions between the beads outlined in
red and the ones below, by concealing the red ones on top of the glider.

= First, they simplify the design of important switchback part by lifting the need for
implementing the glider configuration for that part, as shown in Figure 4(a).

= Second, a glider naturally progresses at speed 1/3. Adding a sock allows us to slow its
progression down to speed 1/5 for some time (see Fig. 4(b)) and therefore to realign
them. We used that feature repeatedly to “shift” some modules: starting the folding
at an initial speed-1 (i.e. straight line) and then compensating for that speed later on
by introducing socks (see Fig. 4(b)). This is a key point in our design, as it allowed us
to spread apart the Read and Copy functions into different subsequences of module [G],
and therefore to get less constraints on our rule design. In the specific case of module
[G], the Copy-function occurs at the center of the module, while the Read-function is
implemented earlier in module! (see section F.10 in [7] for full details)

= Finally, socks allow to prevent unwanted interactions between beads by concealing
potentially harmful beads in an unreachable area as in Figure 4(c).

Exponential bead type coloring is a key tool to allow module [G] to fold into different
shapes, glider or switchback, along module E|, when folding in the Read» configuration.
The problem it solves is that in order for [G] to fold into switchbacks, we need strong
interactions between [G] and its neighboring module [F] (see Fig. 41 in [7]), whereas in
order for [G] to fold as glider, we want to avoid those interactions (see Fig. 43 in [7]).
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| ZOOM IN FOR DETAILS

(a) Proof tree for the glider turn in . (b) Proof tree for the glider turn in .

Figure 5 Two examples of proof trees for the same subsequence in two different environements.
The number at the upper-left corner of every ball stands for the number of bonds for the path inside
the ball. The number at the lower right corner of each ball stands for the number of paths grouped
in the ball, allowing to check that no path was omitted. Balls highlighted in black bold contain the
bonds-maximizing paths. Balls highlighted in grey bold contain the paths that places the bead at
the same location as the bonds-maximizing paths, and which must thus be considered in the next
level as well.

This is made possible because gliders progress at speed 1/3 while switchbacks progress at
speed 1. Using a power-of-3 coloring, we manage to easily achieve these contradicting
goals altogether (the construction is analysed in Lemma 11 in Section G.1 in [7]).

5 Correctness of local folding: Proof tree certificates

The goal of this section is to conclude the proof of our design by proving Key Lemma 3. The
proof works by induction, assuming that the preceding beads of the transcript fold at the
locations claimed by the lemma. We proceed in 3 steps:

We first enumerate all the possible environments for every part of the transcript. As,
we carefully aligned our design, most of the beads only see a small number of different
environments.

For the few cases (three in total) where the number of environments is unbounded, we
give an explicit proof of correctness of their folding (Lemmas 9-11 in section G.1 in [7]).
This is where the concealing feature of socks and the exponential bead type coloring play
a crucial role.

For all the other cases, we designed human-checkable computer-generated certificates,
called proof trees. It consists in listing in a compact but readable manner all the
possible paths for the transcript in every possible environment. In order to match
human readability, paths with identical bonding patterns are grouped into one single ball.
Balls containing the paths maximizing the number of bonds are highlighted in bold and
organized in a tree. This reduces the number of cases to less than 5 balls in most of the
levels of the tree, achieving human-checkability of the computed certificate (see Fig. 5).
Proof trees are available at https://www.irif.fr/~nschaban/oritatami/.
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