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Abstract
Traversing game is a two-person game played on a connected undirected simple graph with a
source node and a destination node. A pebble is placed on the source node initially and then
moves autonomously according to some rules. Alice is the player who wants to set up rules for
each node to determine where to forward the pebble while the pebble reaches the node, so that
the pebble can reach the destination node. Bob is the second player who tries to deter Alice’s
effort by removing edges. Given access to Alice’s rules, Bob can remove as many edges as he
likes, while retaining the source and destination nodes connected. Under the guide of Alice’s
rules, if the pebble arrives at the destination node, then we say Alice wins the traversing game;
otherwise the pebble enters an endless loop without passing through the destination node, then
Bob wins. We assume that Alice and Bob both play optimally.

We study the problem: When will Alice have a winning strategy? This actually models a
routing recovery problem in Software Defined Networking in which some links may be broken. In
this paper, we prove a dichotomy result for certain traversing games, called cyclic-order traversing
games. We also give a linear-time algorithm to find the corresponding winning strategy, if
one exists.
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1 Introduction

Several mathematical models were proposed to forward packets in a routing network G,
such as the sink-tree routing model [9, 4, 7], v-acorn routing model [1], and the cyclic-order
routing model [17]. The cyclic-order routing model is fault-tolerant in the sense that packets
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Algorithm 1: The pebble-moving algorithm.
Input :A connected undirected simple graph G = (V ∪ {s, t}, E),

Alice’s strategy {πv→x, πx→v : (v, x) ∈ E},
Bob’s removal of edges EB so that G− EB remains st-connected.

1 pre← s, cur ← s;
2 while cur 6= t do
3 foreach (cur, u) in ordered list πpre→cur do
4 if (cur, u) /∈ EB then
5 pre← cur, cur ← u;
6 break;
7 end
8 end
9 end

10 return “Alice wins”;

can be forwarded from the source s to the destination t as long as s and t remain connected
under some link and node failures, which is the most reliable one among all routing models.
However, as noted in [17], the cyclic-order routing model does not apply to every network G,
but no exact graph characterization is known. In this paper, we will show the exact graph
class that admits the cyclic-order routing scheme, i.e. a dichotomy result. To simplify the
presentation, we formulate the cyclic-order routing scheme as follows.

We define traversing game to be a two-person game played on a connected undirected
simple graph G = (V ∪ {s, t}, E) with a pebble starting at node s. Alice is the player who
wants to set up rules for each node x ∈ V ∪ {s, t} that determines where to forward the
pebble while the pebble reaches x, so that the pebble can be moved autonomously from the
source node s to the destination node t. Bob is the second player who tries to deter Alice’s
effort by removing edges. Given access to Alice’s rules, Bob can remove as many edges as he
likes, while retaining s and t connected. We note that removing a node x is equivalent to
removing all the edges incident to x, and therefore it suffices to consider edge removals only.
More formally, Alice assigns an ordered list πv→x to each ordered pair of nodes v → x if
(v, x) ∈ E, where πv→x is a permutation of the edges incident to x with (x, v) as the last edge.
Note that for an undirected edge (x, v), there are two corresponding ordered lists, i.e. πv→x

and πx→v, indicating the pebble is moving in opposite direction. We say Alice’s strategy
is the set of ordered lists X = {πv→x, πx→v : (v, x) ∈ E}. Given access to X, Bob removes
some edges from E. Then the system simulates the tour of the pebble starting from node s.
When the pebble reaches node x from node v, the next edge for the pebble to traverse is
(x, u) where (x, u) is the first edge in πv→x not removed by Bob. Such an edge must exist
because (x, v) is one possible candidate. We assume that there is a self-loop at node s which
is the starting edge in the tour of the pebble. This edge is also associated with a permutation
πs→s and Bob is not allowed to remove it. If the pebble arrives the destination t at some
moment in the tour, then we say Alice wins the traversing game; otherwise the pebble enters
an endless loop without passing through t, then Bob wins. The pseudocode for the above
pebble moving is described in Algorithm 1. We assume further that Alice and Bob both play
optimally.

The traversing game actually models a link failure recovery mechanism of Software Defined
Network (SDN) with OpenFlow protocol [18, 19], whose network control plane is separated
from the packet forwarding plane, and whose switches have very limited computing capacity
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that may only support matching and forwarding packets. Software Defined Networking has
been a focus in network and communication research in recent years, since McKeown et al.
published their pioneering work [18]. Because an SDN controller needs to monitor multiple
OpenFlow switches and constant interaction between controller and switches may slow down
the network, some fast failover mechanism is devised [19], in particular the group table used
in the OpenFlow protocol. When a packet enters an OpenFlow switch, the flow rules will
match related fields in the packet to determine from which port the packet enters and then
go to the corresponding group table. Each group table has a bucket list to watch whether
the links are up or down. The bucket lists relate to the ordered lists πv→x for each ordered
pair of nodes v → x in the traversing game. When a link is down, the switch can quickly
select the next bucket in the link’s failover group table with a watch port that is up. It thus
can be used to reduce the interaction between controllers and switches when link failures
are detected, which is an important issue studied in SDN [19]. The traversing game is an
abstraction of the above protocol.

Deciding who wins the traversing game is a problem in Σp
2 [8, 2], which is the set of all

languages L for which there exists a polynomial time Turing machine M and a polynomial q
such that x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) ∀y ∈ {0, 1}q(|x|)M(x, u, y) = 1. We do not know whether
it can be solved in polynomial time, even with a nondeterministic Turing machine. We thus
impose a restriction on all the ordered lists πv→x in the traversing game, which makes the
traversing game solvable in linear time. Let πx be a cyclic order of the edges incident to
x. The restriction is, for each node x ∈ V ∪ {s, t}, there exists a cyclic order πx so that for
every ordered pair of nodes v → x, the ordered list πv→x is equal to the segment of πx that
starts from the successor of (x, v) and finishes at (x, v). We say a traversing game with the
above restriction cyclic-order traversing game. In [17], the authors show that Alice has
a winning strategy for a cyclic-order traversing game if the underlying graph G is comprised
of (hierarchical) node-disjoint paths. We will show how to generalize this finding.

We need some notions to state our main result. st-planar graphs were first introduced
by Lempel et al. [16], which are acyclic planar digraphs with exactly one source node s and
exactly one sink node t and can be embedded in the plane so that s, t are both on the outer
face. This definition was later adapted, for example in [3], to be such undirected graphs that
have a planar embedding with s and t on the same face, or equivalently both on the outer
face. We use the latter definition of st-planar graphs in this paper.

The st-biconnected component Bst(G) of an undirected graph G is defined to be the
subgraph of G induced by the nodes in the biconnected component of G ∪ {(s, t)} that
contains (s, t). Or equivalently, as shown in Lemma 2, Bst(G) is the node-induced subgraph
of G with the removal of all the nodes that are not on any simple path in G from node
s to node t, i.e. ignorable nodes. It is clear that the removal of ignorable nodes cannot
make the status of other nodes changed from unignorable to ignorable, so Bst(G) is a unique
subgraph of G, regardless of the sequence of node removals.

Our main result is:

I Theorem 1. For a cyclic-order traversing game with underlying graph G = (V ∪ {s, t}, E),
Alice has a winning strategy if and only if Bst(G) is st-planar. In addition, there exists an
O(|V |+ |E|)-time algorithm that either outputs Alice’s winning strategy or determines that
there is none.

ISAAC 2018
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Related Work

Annexstein et al. [1] also proposed a mathematical model for fault-tolerant routing. In
their routing scheme, they need to assign an acyclic orientation to the underlying graph
G = (V ∪ {s, t}, E) so that every node other than t (the sink node) has at least k out-going
directed edges and k is the maximum possible among all acyclic orientations. Given the
acyclic orientation, packets at node x are forwarded to any available out-going edge of x. As
long as t is functioning and fewer than k nodes malfunction, packets can arrive t from nodes
other than t. The orientation can be found in linear time.

The routing scheme by Annexstein et al. has no re-routing, so it is efficient to forward
packets. It is clear that our routing scheme covers all the cases that Annexstein et al.’s model
can handle if the st-biconnected component Bst(G) of the underlying graph G is st-planar,
so it is more fault-tolerant for such graphs, in tradeoff of the cost to re-route packets. Our
routing strategy can be found in linear time as well.

Organization

The rest of the paper is organized as follows. In Section 2, we show some graph properties
for st-biconnected components, which are used as building blocks for the proofs in the
subsequent sections. In Section 3, we show that Alice has a winning strategy for any cyclic-
order traversing game when the Bst(G) of the underlying graph G = (V ∪ {s, t}) is st-planar.
In Section 4, we show that the graph class studied in Section 3 is the exact graph class that
Alice has a winning strategy for cyclic-order traversing games, by studying the situations
that Bob has a winning strategy. Finally, in Section 5, a linear-time algorithm is given to
compute Alice’s winning strategy, if one exists.

2 Properties of st-Biconnected Components

In this section, we show some properties of st-biconnected components, which are used as
building blocks for the proofs in subsequent sections. Here are some notations to simplify
the presentation. By G− {x} (resp. G− {(x, y)}), we denote to remove node x (resp. edge
(x, y)) from G. By G ∪ {(x, y)}, we denote to add an edge (x, y), if not existing, to G. Let
st-path denote an undirected path from s to t. We say a graph is st-connected if it has an
st-path.

We begin with a proof showing that the two definitions of Bst(G) are equivalent.

I Lemma 2. For every connected undirected simple graph G = (V ∪ {s, t}, E), removing all
nodes that are not on any simple st-path in G yields Bst(G).

Proof. Let C be the graph obtained by removing all nodes that are not on any simple st-path
from G. Since G is connected, s and t are on a simple st-path, so s, t ∈ C. On the other
hand, s, t ∈ Bst(G) by the definition of st-biconnected component. We need to discuss for
those nodes other than s and t.

Let v be a node in Bst(G) other than s, t. Since Bst(G) ∪ {(s, t)} is biconnected, there
are two node-disjoint paths from {v} to {s, t} in Bst(G) ∪ {(s, t)} that have only node v in
common by Menger’s Theorem [14]. Joining these two paths gives a simple path from s to t
that passes through v, so v is a node in C.

Let v be a node in C other than s, t. Then there is a simple st-path that passes through
v. Together with the edge (s, t), this gives a simple cycle containing s, v, t, so v is a node in
Bst(G). J
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By Lemma 2 and the properties of block-cut trees [10, 13], we get:

I Corollary 3. For every node v in a connected undirected simple graph G = (V ∪ {s, t}, E),
v is not contained in Bst(G) if and only if v can be disconnected from s and t by removing
an articulation point x where x ∈ Bst(G) and x 6= v.

I Lemma 4. Given a connected undirected simple graph G = (V ∪ {s, t}, E), let H be any
subgraph of Bst(G) so that H has at least two nodes and one edge, then there exists a simple
st-path in Bst(G) that contains at least two nodes in H.

Proof. If both s and t are in H, then any simple path P in Bst(G) from s to t contains at
least two nodes in H, e.g. s and t. Such a simple path P must exist because G is connected.

If precisely one of s, t is in H, then H has a node v /∈ {s, t}. By the definition of
st-biconnected component, there exists a simple path P in Bst(G) from s to t that passes
through v. Hence, P contains at least two nodes in H.

The remaining case happens when none of s and t is in H, so H has an edge (u, v) where
u, v /∈ {s, t}. Let V1 be the node set {u, v} and V2 be the node set {s, t}. By the definition
of st-biconnected component, there is a simple path Pu (resp. Pv) in Bst(G) from s to t
that passes through u (resp. v). In the subgraph Pu ∪ Pv, to disconnect u (resp. v) from
V2 by removing a single node, u (resp. v) must be the node to be removed. Since u 6= v,
one cannot disconnect V1 from V2 by removing a single node. Thus by Menger’s Theorem,
there are two node-disjoint paths P1, P2 from V1 to V2. Joining P1, P2 with (u, v) yields the
desired path. J

I Lemma 5. For any cyclic-order traversing game, if the pebble-moving algorithm does not
stop, i.e. the pebble does not arrive t, then every possible move v → x either does not occur
or occur more than once.

Proof. If the pebble-moving algorithm does not stop, then the tour of the pebble can be
represented as an infinite sequence of moves v1 → x1, v2 → x2, . . . Let Si be the subsequence
of the moves after vi → xi, and let j be the smallest j ≥ i so that vj → xj occurs more than
once in Si. Such a move vj → xj must exist in Si because Si is an infinite sequence of moves
and the number of different moves is finite. We claim that j = i. Here is why. Suppose j > i,
then vj−1 → xj−1 is also a move repeated in Si because in a cyclic-order traversing game
the predecessor moves of each occurrence of vj → xj are the same, yielding a contradiction.
Therefore vi → xj is the first move repeats in Si. This fact holds for every single i ≥ 1, so
every move in the tour repeats more than once. J

We are ready to show that Alice can create a winning strategy by bypassing ignorable
nodes.

I Lemma 6. Alice has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if and only if Alice has a winning strategy for a cyclic-order
traversing game with underlying graph Bst(G).

Proof. (⇒) Let X = {πv→x, πx→v : (v, x) ∈ E} be Alice’s winning strategy on G. Then it
works for all st-connected subgraphs, in particular Bst(G). Then we let X ′ = X, and remove
all the edges in E(G)−E(Bst(G)) from these ordered lists in X ′, and therefore X ′ is a valid
strategy on Bst(G). Since X ′ has the same behavior as X on Bst(G) and its st-connected
subgraphs, X ′ is a winning strategy on Bst(G).

(⇐) We prove by induction on |V (G)| − |V (Bst(G))|. It is clear that the statement is
true when |V (G)| = |V (Bst(G))|. Assume |V (G)| − |V (Bst(G))| = k for some k ≥ 1, and the
statement holds up to k − 1. By Corollary 3, there is an articulation point u separating s, t

ISAAC 2018
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Figure 1 An illustration of the tour of the pebble, i.e. along the outer face.

from a node not in Bst(G). Let C be the subgraph of G− u obtained by removing all the
components of G− u that contains s or t. Because of the existence of u, all the nodes in C
are not in Bst(G) and thus Bst(G) = Bst(G−C). Then by the induction hypothesis, there is
a winning strategy Y = {πv→x, πx→v : (v, x) ∈ E(G− C)} on G− C, by which we construct
a winning strategy Y ′ = {π′v→x, π

′
x→v : (v, x) ∈ E} on G. Let y be any neighbor of u, and

z be the neighbor of u connected by πy→u(1), i.e. the first edge in the ordered list πy→u.
Set π′y→u as any ordered list of those edges connecting u to C followed by πy→u. For each
neighbor v of u other than y, set π′v→u as a circular shift of π′y→u so that the requirement of
cyclic-order strategy is satisfied. For each node x in Bst(G) − {u} and its neighbor v, set
π′v→x as πv→x. In this way, the neighbors of u in C are placed together. If the pebble moves
from y to u and then C, by Lemma 5 it will eventually leave C and u by traversing the
edge (u, z), i.e. it will move from u to z after several steps rather than loop in C endlessly.
Therefore, when applying Y ′ to G, the pebble moves exactly the same as applying Y to
G− C if we ignore the tour of the pebble outside G− C. Finally, to see that Y ′ is indeed a
winning strategy, consider any st-connected subgraph H of G. Let P be a simple st-path on
H. P does not pass through C and therefore H −C is st-connected. Then the pebble moves
to t when applying Y to H − C, as well as when applying Y ′ to H. J

3 Winning Strategies for Alice

In this section, we will show that Alice has a winning strategy for a cyclic-order traversing
game with underlying graph G = (V ∪ {s, t}, E) if Bst(G) is st-planar; that is, the direction
(⇐) in Theorem 1. Surprisingly, Alice has no winning strategy if the underlying graph is
outside the above graph class, as shown in Section 4. Hence we get a dichotomy result for
cyclic-order traversing games.

We begin with a proof showing a base case that the underlying graph G = (V ∪ {s, t}, E)
is st-planar.

I Lemma 7. Alice has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if G is st-planar.

Proof. Since G is st-planar, one can have a planar embedding for G so that s, t, (s, s) are
on the outer face. Given the planar embedding, for each node x ∈ V ∪ {s, t}, order the edges
incident to x clockwise with respect to x, which yields a cyclic order cx. We claim that Alice
has a winning strategy by setting πx = cx for each x ∈ V ∪ {s, t}. In the pebble-moving
algorithm, when the pebble is moved from node x to node y, the algorithm searches for the
next available edge in πx→y, say (y, z), then the pebble is moved along (y, z). Since we set
πy = cy, the transit from (x, y) to (y, z) acts like rotating clockwise with respect to y. As
noted in [20], such a sequence of moves makes the pebble traverse all the edges on a single
face if G is connected. Since the pebble starts the tour from the edge (s, s), an edge on the
outer face, it will visit all the nodes on the outer face, in particular s and t. We depict the
tour of the pebble in Figure 1.
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Figure 2 st-connected subgraphs of K5 ∪ {(s, s)}.

No matter how Bob removes edges from G, s and t still stay on the outer face. To see
why, imagine that for every point p on the outer face there is a curve from p to infinity
without crossing any node or edge in G. Clearly, removing any subset of edges in G cannot
cut the curve, a certificate that p is on the outer face. This yields that, the pebble always
visits s and t after any removal of edges, unless s and t are disconnected. In other words,
Alice has a winning strategy when the underlying graph is st-planar, as claimed. J

Together with Lemma 6, we get:

I Theorem 8. Alice has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if Bst(G) is st-planar.

We remark that, in the proof of Lemma 7, if all nodes in G are on the outer face in
the planar embedding, i.e. an outerplanar graph [5], then the pebble will visit all nodes
regardless of Bob’s removal of edges. This immediately yields that:

I Corollary 9. Alice has a fixed winning strategy for a cyclic-order traversing game with
underlying graph G = (V,E), if G is outerplanar and for all choices of s, t ∈ V .

4 Winning Strategies for Bob

In this section, we will show that Bob has a winning strategy for a cyclic-order traversing
game with underlying graph G = (V ∪ {s, t}, E) if Bst(G) is not st-planar; that is, the
contraposition of the direction (⇒) in Theorem 1. Together with the results shown in
Section 3, this gives a dichotomy result for cyclic-order traversing games.

We begin with proofs showing base cases where G is K5, K3,3, and their subdivisions.

I Lemma 10. Bob has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if G ∪ {(s, t)} is isomorphic to K5.3

Proof. We prove the case where (s, t) /∈ E, then the other case follows. The graphs in
Figure 2 are possible subgraphs of G after Bob’s removal of edges. We show that Alice
cannot assign an ordered list to each πv→x that simultaneously works for H1, H2, and H3.
Hence, Bob has a winning strategy on G.

To see why, Alice may set πs→s as any of the following six ordered lists.

list1: (s, v1), (s, v2), (s, v3), (s, s)
list2: (s, v1), (s, v3), (s, v2), (s, s)
list3: (s, v2), (s, v1), (s, v3), (s, s)

3 In Lemmas 10, 11, and 12, we ignore the self-loop (s, s) while deciding graph isomorphism.

ISAAC 2018
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Figure 3 st-connected subgraphs of K3,3 ∪ {(s, s)}.
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Figure 4 st-connected subgraphs of K3,3 ∪ {(s, s)}.

list4: (s, v2), (s, v3), (s, v1), (s, s)
list5: (s, v3), (s, v1), (s, v2), (s, s)
list6: (s, v3), (s, v2), (s, v1), (s, s)

However, if Alice sets πs→s = list2, then it does not work for H1, because πv2→s =
(s, s), (s, v1), (s, v3), (s, v2) and the pebble moves in the cycle s, s, v1, v2, s, s without passing
through t. Moreover, if Alice sets πs→s = list4, then it also does not work for H1, because
the pebble moves in the cycle s, s, v2, v1, s, s. By the same argument, one can show that
setting πs→s = list1 or list6 does not work for H2, and setting πs→s = list3 or list5 does
not work for H3. This already excludes all possibilities, thus completing the proof. J

I Lemma 11. Bob has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if G or G ∪ {(s, t)} is isomorphic to K3,3.

Proof. First we consider the case where s and t are in the same partition. The graphs in
Figure 3 are possible subgraphs of G after Bob’s removal of edges. Alice may set πs→s as
any of the following six ordered lists.

list1: (s, v2), (s, v3), (s, v4), (s, s)
list2: (s, v2), (s, v4), (s, v3), (s, s)
list3: (s, v3), (s, v2), (s, v4), (s, s)
list4: (s, v3), (s, v4), (s, v2), (s, s)
list5: (s, v4), (s, v2), (s, v3), (s, s)
list6: (s, v4), (s, v3), (s, v2), (s, s)

However, if Alice sets πs→s = list2, then it does not work for H1, because πv3→s =
(s, s), (s, v2), (s, v4), (s, v3) and the pebble moves in the cycle s, s, v2, v1, v3, s, s without passing
through t. Moreover, if Alice sets πs→s = list4, then it also does not work for H1, because
the pebble moves in the cycle s, s, v3, v1, v2, s, s. By the same argument, one can show that
setting πs→s = list1 or list6 does not work for H2, and setting πs→s = list3 or list5 does
not work for H3.
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Figure 5 Subdivisions of K5 and K3,3.

Next we consider the case where s and t are in different partitions, and prove the subcase
where (s, t) /∈ E, then the other subcase follows. Consider the graphs in Figure 4. Alice may
set πs→s as any of the following two ordered lists.

list1: (s, v3), (s, v4), (s, s)
list2: (s, v4), (s, v3), (s, s)

Alice may also set πs→v3 as any of the following two ordered lists.

list3: (v3, v1), (v3, v2), (v3, s)
list4: (v3, v2), (v3, v1), (v3, s)

However, if Alice sets πs→s = list1 and πs→v3 = list3, then it does not work for H4,
because the pebble moves in the cycle s, s, v3, v1, v4, s, s without passing through t. Moreover,
if Alice sets πs→s = list2 and πs→v3 = list4, then it also does not work for H4, because
the pebble moves in the cycle s, s, v4, v1, v3, s, s. By the same argument, one can show
that setting πs→s = list1 and πs→v3 = list4 does not work for H5. Setting πs→s = list2
and πs→v3 = list3 also does not work for H5. This already excludes all possibilities, thus
completing the proof. J

I Lemma 12. Bob has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if G or G ∪ {(s, t)} is isomorphic to a subdivision of K5 or K3,3.

Proof. Bob has a winning strategy if and only if he has one after removing a node with
degree one, except s and t. This is also true for smoothing out a node with degree two
or subdividing an edge, because removing an incident edge of a node with degree two is
equivalent to removing both. Therefore we first transform G or G ∪ {(s, t)} into one of the
graphs in Figure 5.

If both s and t belong to V (K5) or V (K3,3), by Lemma 10 and Lemma 11 the statement
is true. In what follows, we consider other choices of s and t.
Case 1: G or G ∪ {(s, t)} is isomorphic to G1.

Case 1(a): {s, t} = {v1, v6}, or s = v6 and t = v7. Note that (s, t) may or may not
belong to E(G). Assume (s, t) /∈ E(G), s = v6, and t = v1. By Lemma 10 Alice has
no winning strategy to move pebble from v2 to v1, and therefore from v6 to v1. The
remaining cases can be reduced to this one.

Case 1(b): s = v1 and t = v8. Note that G is isomorphic to G1 in this case. We first
smooth out nodes with degree two, i.e. v6, v7, and v9. Let D be the collection of
v1v2-connected subgraphs of K5−{(v1, v2)}. Let R be the collection of v1v8-connected
subgraphs of G that contains (v2, v8) but not (v1, v2). Define f : D → R to be the
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v1

v2

v3

v4v5

v6
v7

s

v9

(a) H1

v1

v2

v3

v4v5

v6
v7

s

v9

(b) H2

Figure 6 Subgraphs of G1 ∪ {(s, s)}.

bijection from D to R such that f(D) ∈ R is obtained from D ∈ D by adding (v2, v8)
and replacing (v2, v3) with (v8, v3) if it is in D. For any D ∈ D, the pebble moves
exactly the same on D and f(D). By Lemma 10, for each of Alice’s strategies, the
pebble cannot move from v1 to v2 for some D ∈ D, and also cannot move from v1 to
v8 for f(D).

Case 1(c): s = v7 and t = v8. Similar to the proof of Case 1(b), we let R be the
collection of v7v8-connected subgraphs of G that contains (v2, v8) and (v7, v1), but not
(v7, v2).

Case 1(d): s = v8 and t = v1, or s = v8 and t = v9. Consider the graphs in Figure 6.
Alice may set πs→s as any of the following two ordered lists.
list1: (s, v2), (s, v3), (s, s)
list2: (s, v3), (s, v2), (s, s)
Alice may also set πs→v2 as any of the following two ordered lists.
list3: (v2, v4), (v2, v5), (v2, s)
list4: (v2, v5), (v2, v4), (v2, s)
However, if Alice sets πs→s = list1 and πs→v2 = list3, then it does not work for H1,
because the pebble moves in the cycle s, s, v2, v4, v3, s, s without passing through t.
Moreover, if Alice sets πs→s = list2 and πs→v2 = list4, then it also does not work for
H1, because the pebble moves in the cycle s, s, v3, v4, v2, s, s. By the same argument,
one can show that setting πs→s = list1 and πs→v2 = list4 does not work for H2, and
setting πs→s = list2 and πs→v2 = list3 also does not work for H2.

Case 2: G or G ∪ {(s, t)} is isomorphic to G2.
Case 2(a): {s, t} = {v1, v7} or s = v7 and t = v8. Assume (s, t) /∈ E(G), s = v7,

and t = v1. By Lemma 11 Alice has no winning strategy to move pebble from v4 to
v1, and therefore from v7 to v1. The remaining cases can be reduced to this one.

Case 2(b): s = v1 and t = v9. Similar to the proof of Case 1(b), we let R be the
collection of v1v9-connected subgraphs of G that contains (v4, v9) but not (v1, v4).

Case 2(c): s = v8 and t = v9. Similar to the proof of Case 1(b), we let R be the
collection of v8v9-connected subgraphs of G that contains (v4, v9) and (v1, v8), but not
(v4, v8).

Case 2(d): s = v9 and t = v1, or s = v9 and t = v10. Consider the graphs in Fig-
ure 7. Alice may set πs→s as any of the following two ordered lists.
list1: (s, v2), (s, v4), (s, s)
list2: (s, v4), (s, v2), (s, s)
Alice may also set πs→v2 as any of the following two ordered lists.
list3: (v2, v5), (v2, v6), (v2, s)
list4: (v2, v6), (v2, v5), (v2, s)
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Figure 7 Subgraphs of G2 ∪ {(s, s)}.

However, if Alice sets πs→s = list1 and πs→v2 = list4, then it does not work for H3,
because the pebble moves in the cycle s, s, v2, v6, v3, v4, s, s without passing through t.
Moreover, if Alice sets πs→s = list2 and πs→v2 = list3, then it also does not work for
H3, because the pebble moves in the cycle s, s, v4, v3, v6, v2, s, s. By the same argument,
one can show that setting πs→s = list1 and πs→v2 = list3 does not work for H4, and
setting πs→s = list2 and πs→v2 = list4 also does not work for H4. J

I Theorem 13. Bob has a winning strategy for a cyclic-order traversing game with underlying
graph G = (V ∪ {s, t}, E) if Bst(G) is not st-planar.

Proof. Bst(G) is not st-planar implies that Bst(G)∪ {(s, t)} is non-planar. By Kuratowski’s
Theorem [15], Bst(G) ∪ {(s, t)} has a Kuratowski subgraph H, i.e. a subdivision of K5 or
K3,3. By Lemma 4, Bob can find a simple path P from s to t in Bst(G) that passes through
at least two nodes in H. Let P1 be the subpath starting from s and finishing at the first
node in P that is contained in H. Let P2 be the subpath starting from the last node in P
that is contained in H and finishing at t. Bob’s winning strategy is to remove all the edges
outside H − {(s, t)} ∪ P1 ∪ P2. By applying Lemma 12 and Lemma 6, we are done. J

5 Linear-Time Algorithm

Finally, we give a linear-time algorithm that either outputs Alice’s winning strategy or
outputs “Bob wins.” This completes the proof of Theorem 1.

I Theorem 14. For any cyclic-order traversing game, one can use Algorithm 2 to find a
winning strategy for Alice in linear time, if one exists.

Proof. By Lemma 2, Step 1 is equivalent to finding the biconnected component in G∪{(s, t)}
that contains s and t, which can be computed in linear time [11]. By Theorem 8, Step 2,
3, and 4 are equivalent to testing planarity and embedding Bst(G) ∪ {(s, t)} in the plane,
which also can be solved in linear time [6, 12, 21]. For Step 5, the conversion can be done by
bypassing ignorable nodes as shown in Lemma 6, which also takes linear time. In total, it
takes linear time to find a winning strategy for Alice. J

6 Conclusion

We identify an interesting traversal problem from a practical network paradigm– software
defined networking. We discover that for st-planar graphs we can always find a way in
linear time to set up the cyclic-order rules for autonomous re-routing. This can be useful
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Algorithm 2: Algorithm to find Alice’s winning strategy in linear time.
Input :G = (V ∪ {s, t}, E)
Output :Alice’s winning strategy if one exists, or determine that there is none.

1 Find the st-biconnected component Bst(G);
2 if Bst(G) is st-planar then
3 Embed Bst(G) ∪ {(s, t)} in the plane so that s, t, (s, s) are on the same face;
4 Find Alice’s winning strategy Y on Bst(G);
5 Convert Y to a winning strategy X on G;
6 return X;
7 else
8 return “Bob wins”;
9 end

for designing fault-tolerant network. However, if we allow different type of rules, instead of
cyclic ones, then it is not clear when Alice can have a winning strategy. We leave it as an
open problem. Meanwhile, we do not know the exact complexity class of the traversing game.
We conjecture that it can be Σp

2-complete.
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