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Abstract

König-Egerváry graphs form an important graph class which has been studied extensively in
graph theory. Much attention has also been paid on König-Egerváry subgraphs and König-
Egerváry graph modification problems. In this paper, we focus on one König-Egerváry subgraph
problem, called the Maximum Edge Induced König Subgraph problem. By exploiting the
classical Gallai-Edmonds decomposition, we establish connections between minimum vertex cover,
Gallai-Edmonds decomposition structure, maximum matching, maximum bisection, and König-
Egerváry subgraph structure. We obtain a new structural property of König-Egerváry subgraph:
every graph G = (V,E) has an edge induced König-Egerváry subgraph with at least 2|E|/3
edges. Based on the new structural property proposed, an approximation algorithm with ratio
10/7 for the Maximum Edge Induced König Subgraph problem is presented, improving the
current best ratio of 5/3. To the best of our knowledge, this paper is the first one establishing the
connection between Gallai-Edmonds decomposition and König-Egerváry graphs. Using 2|E|/3 as
a lower bound, we define the Edge Induced König Subgraph above lower bound problem,
and give a kernel of at most 30k edges for the problem.
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1 Introduction

Given a graph G, a matching M in G is a set of vertex-disjoint edges. Matching problem is
one of the fundamental problems in combinatorial optimization, and has wide applications
in many fields. For several decades, much attention has been paid on matching and related
problems.

The Vertex Cover problem is closely related to the matching problem, which is to
decide, for a given graph G = (V,E), whether there exists a subset V ′ ⊆ V of at most k
vertices such that each edge in G has at least one endpoint in V ′. The Vertex Cover
problem is one of the 21 NP-complete problems [19], and has been extensively studied in
the field of parameterized complexity [8, 15, 22, 32, 36]. The current best parameterized
algorithm for the Vertex Cover problem is of running time O∗(1.2738k) [8], where k is the
size of vertex cover in given graph. Matching methods can also be applied to deal with the
Vertex Cover problem. For the bipartite graphs, it is proved that the size of a minimum
vertex cover is equal to the size of a maximum matching [1]. Thus, the Vertex Cover
problem on bipartite graphs can be solved in polynomial time based on the algorithms of
getting a maximum matching. For general graphs, based on the maximum matching, an
approximation algorithm with ratio 2 can be obtained for the Vertex Cover problem,
which is still the current best approximation ratio for the problem. By using matching number
as a lower bound, a variant of the Vertex Cover problem, called Above-Guarantee
Vertex Cover problem (given a graph G and parameter k, decide whether G has a vertex
cover of size at most |M |+ k, where M is a maximum matching in G) was first studied in
[40]. Thereafter, several interesting results for the Above-Guarantee Vertex Cover
problem have been obtained [9, 15, 25, 36, 37, 34].

The classical Gallai-Edmonds decomposition method provides an elegant structure for
graphs based on matching. For any graph G, a Gallai-Edmonds decomposition of graph G can
be obtained in polynomial time [27], which is a tuple (X,Y, Z), where X is the set of vertices
in G which are not covered by at least one maximum matching of G, Y is N(X) (N(X)
is the set of neighbors of the vertices in X with N(X) ∩X = ∅), and Z = V (G)\(X ∪ Y ).
The application of Gallai-Edmonds decomposition has been paid lots of attention, and many
problems were studied by applying Gallai-Edmonds decomposition from approximation
algorithms and parameterized complexity points of view, such as approximation algorihtms
[14, 28, 35], kernelizations [13, 21, 33], parameterized algorithms [7, 11, 15], etc. Gallai-
Edmonds decomposition has also been applied to solve problems in many other fields
[2, 3, 18, 38].

A graph G is a König-Egerváry graph (in short, König graph) if the size of a minimum
vertex cover of G is equal to the size of a maximum matching of G. The structural properties
of König graphs have been studied for a long time. Deming [10] studied the characterizations
of König graphs through independence number of graphs, and proved that the König graphs
can be recognized in polynomial time. Stersoul [39] studied the characterizations of König
graphs through the structure of matchings in graphs. Lovász [26] studied König graphs with
perfect matching, and gave the excluded subgraphs characterizations through matching-
covered graphs. Bourjolly and Pulleyblank [5] studied the relation between König graphs
and 2-bicritical graphs, and showed that the characterizations of König graphs can be used
to obtain a structural characterization of 2-bicritical graphs. Korach, Nguyen, and Peis
[20] studied subgraph characterizations of Red/Blue-Split graphs and König graphs, where
Red/Blue-Split graphs are the generalizations of König graphs and Split graphs. Levit and
Mandrescu [23] studied the relation between critical independent sets and König graphs.
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Levit and Mandrescu [24] studied maximum matchings in König graphs, and gave a new
characterization through maximum matching. Bonomo et al. [4] presented a characterization
of König graphs by forbidden subgraphs. Jarden et al. [17] further studied the relation
between maximum independent sets, maximum matching, and König graphs, and gave two
characterizations of König graphs. Cardoso et al. [6] gave some combinatorial and spectral
properties of König graphs through Laplacian eigenvalues.

In this paper, we focus on the König-Egerváry subgraph problem, and study the problem
from approximation algorithm and parameterized complexity points of view. For a graph
G = (V,E) and a subset E′ ⊆ E, the subgraph induced by edges in E′, denoted by G[E′], is
the one that contains the endpoints of the edges in E′, and contains the edges in E′. If the
size of a minimum vertex cover is equal to the size of a maximum matching in G[E′], then
G[E′] is called a König subgraph. We now give the definitions of the related problems.

Maximum Edge Induced König Subgraph:
Given a graph G = (V,E), find a set E′ ⊆ E with maximum number of edges such
that the edges in E′ induce a König subgraph.

Edge Induced König Subgraph:
Given a graph G = (V,E) and non-negative integer k, find a set E′ of at least k edges
in E such that the edges in E′ induce a König subgraph, or report that no such set
exists.

The Edge Induced König Subgraph problem is closely related to a graph modification
problem, called König Edge Deletion problem, which is to delete at most k edges to turn
a given graph into a König graph. For the NP-completeness, the Edge Induced König
Subgraph problem and the König Edge Deletion problem are equivalent. However, the
approximability and parameterized complexity of those two problems are totally different.
For the Edge Induced König Subgraph problem, Mishra et al. [32] presented an
approximation algorithm with ratio 5/3, and gave a parameterized algorithm of running
time O∗(2k). For the König Edge Deletion problem, Mishra et al. [32] proved that this
problem does not admit any constant-factor approximation algorithm unless UGC fails. As
pointed out in [30, 31, 32], the parameterized complexity of the König Edge Deletion
problem is still open. On the other hand, many other König subgraph and König graph
problems have also been studied. Mishra et al. [30, 32] studied the Vertex Induced König
Subgraph problem (given a graph G and non-negative integer k, decide whether there
exists a set of at least k vertices that induces a König subgraph) and the König Vertex
Deletion problem (given a graph G and non-negative integer k, decide whether there exists
a set of at most k vertices whose deletion results in a König subgraph). For the Vertex
Induced König Subgraph problem, Mishra et al. [32] proved that it is W [1]-hard. For the
König Vertex Deletion problem, a series of parameterized algorithms have been proposed
[9, 25, 30, 32]. As the generalizations of König graphs and Split graphs, Red/Blue-Split
graph modification problems have also been studied [20, 29, 30].

In this paper, we study the Edge Induced König Subgraph problem from approxim-
aition and parameterized algorithms points of view. The main contribution of this paper
is that we present structural connections between minimum vertex cover, Gallai-Edmonds
decomposition, maximum bisection, and König subgraphs, get a new structural property for
the König subgraph of a given graph, and propose an improved approximation algorithm
for the Edge Induced König Subgraph problem. To the best of our knowledge, this
paper is the first one to establish connection between Gallai-Edmonds decomposition and
the structures of König graphs.
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We now point out the differences of our techniques and results in this paper with the
ones in [31, 32].
(1) The 5/3-approximation algorithm for the Maximum Edge Induced König Subgraph

problem in [31, 32] is based on an important property of König subgraph: every graph
G has an edge induced König subgraph of at least 3m/5 edges, where m is the number
of edges in G, which is obtained in [31, 32] based on the maximum matching in G. In
this paper, we exploit the connection between Gallai-Edmonds decomposition and König
subgraphs, and present a new structural property of König subgraphs: every G has
an edge induced König subgraph of at least 2m/3 edges, which results in an improved
approximation algorithm with ratio 10/7.

(2) For a Gallai-Edmonds decomposition (X,Y, Z) of given graph G, instead of directly
applying the matching structure in the decomposition, we study the roles of factor-critical
connected components of G[X] to derive a König subgraph of G. For the connected
components in G[X], we use the “matching switching” strategy to analyze the number of
edges from the connected components contained in the König subgraph, which is another
key point to get the improved approximation algorithm for the problem.

(3) In this paper, we exploit a connection between structures of the König subgraphs and the
properties of the Maximum Bisection above tight lower bound problem (given a
graph G = (V,E) and a parameter k, decide whether V can be divided into two parts
V1, V2 such that ||V1| − |V2|| ≤ 1, and the number of edges with one endpoint in V1
and the other endpoint in V2 is at least d|E|/2e+ k). The kernelization results of the
Maximum Bisection above tight lower bound problem are applied to analyze the
size of the König subgraphs.

(4) For the parameterized algorithm of the Edge Induced König Subgraph problem,
since we can get that every graph has an edge induced König subgraph of at leat 2m/3
edges, the parameter k in the given instance of the Edge Induced König Subgraph
problem is large. By using 2m/3 as a lower bound, we propose a variant of the Edge
Induced König Subgraph problem, called Edge Induced König Subgraph above
lower bound problem, and give a kernel of at most 30k edges for the problem.

2 Preliminaries

Given a graph G = (V,E), for two vertices u, v in G, the edge between u and v if exists
is denoted by uv. We say that edge uv is incident to u and v. For a vertex v in G, the
degree of v denoted by d(v) is the number of edges incident to v. For a subset X ⊆ V , G[X]
denotes the subgraph induced by the vertices in X. For a vertex v in X, dX(v) denotes the
degree of v in the induced subgraph G[X]. For a matching M in G, let V (M) be the set
of vertices contained in M . The vertices in V (M) are the vertices matched by M , and it is
also called that the vertices in V (M) are saturated by M . The vertices in V − V (M) are
called unmatched vertices, and the edges in M are called matched edges. A matching M in
G is a perfect matching if all the vertices in V are matched vertices. For a graph G with n
vertices, if every (vertex) induced subgraph with n− 1 vertices has a perfect matching, then
G is called a factor-critical graph. For a matching M in graph G = (V,E), if V (M) contains
|V | − 1 vertices, then M is called a near-perfect matching of G. A chord is an edge incident
to two nonadjacent vertices in a cycle. A chordless cycle with at least four vertices is called
a hole. For a subgraph C in G, let V (C) and E(C) denote the sets of vertices and edges
contained in C, respectively. For two subsets A,B ⊆ V , E(A,B) is the set of edges, each
of which has one endpoint in A and the other endpoint in B. For a vertex u and a subset
B ⊆ V , for simplicity, let E(u,B) = E({u}, B). For a partition (V1, V2) of V , (V1, V2) is
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called a cut in G, and an edge with one endpoint in V1 and the other endpoint in V2 is called
a cut edge of (V1, V2). The size of cut (V1, V2) is the number of cut edges in E(V1, V2). A cut
(V1, V2) is called a bisection of G if ||V1| − |V2|| ≤ 1. A bisection with maximum number of
cut edges is called a maximum bisection. A triangle is called a C3.

I Lemma 1 ([12, 27]). For a given graph G, the Gallai-Edmonds decomposition (X,Y, Z)
of G has the following properties:
1. the components of the subgraph induced by X are factor-critical,
2. the subgraph induced by Z has a perfect matching,
3. if M is any maximum matching of G, it contains a near-perfect matching of each

component of G[X], a perfect matching of each component of G[Z], and matches all
vertices of Y with vertices in distinct components of G[X],

4. the size of a maximum matching is 1
2 (|V | − δ(G[X]) + |Y |), where δ(G[X]) is the number

of connected components in G[X].

3 New algorithms for Edge Induced König Subgraph

In this section, we give new structural properties of König subgraphs, and present an improved
approximation algorithm for the Edge Induced König Subgraph problem. For a graph
G, whether G is a König graph or not can be decided by the following lemma.

I Lemma 2 ([30, 31, 32]). A graph G = (V,E) is a König graph if and only if there exists a
cut (V1, V2) of V such that: (1) V1 is a vertex cover of G; (2) there exists a matching across
(V1, V2) saturating each vertex in V1.

We now give the relation between graphs with perfect matching and König graphs.

I Lemma 3 ([31, 32]). Let G = (V,E) be a graph with a perfect matching M , where
|V | = n, |E| = m. Then a König subgraph G′ of G with at least 3m/4 + n/8 edges can be
found in O(mn) time such that |M ′| = |M |, where M ′ is a maximum matching in G′.

Given an instance (G, k) of the Edge Induced König Subgraph problem, let (X,Y, Z)
be a Gallai-Edmonds decomposition of G. By Lemma 3, we get the following result.

I Lemma 4. Let G1 be the subgraph induced by vertices in Z, and M be a maximum matching
in G. Then, there exists a König subgraph G′1 in G1 such that |M ′| = |E(G1) ∩M |, and
|E(G′1)| ≥ 3|E(G1)|/4, where M ′ is a maximum matching in G′1.

Since each connected component C of G[X] is factor-critical, C contains an odd number
of vertices. Based on the degrees of the vertices in X and a maximum matching M , we
divide the vertices in X into the following groups.

X1 = {v ∈ X | dX(v) = 0},
X2 = {v ∈ X | dX(v) ≥ 1,∃u ∈ Y, uv ∈M},
X3 = {v ∈ X | dX(v) ≥ 1, v /∈ V (M)}.

Based on X1, X2, and X3, we divide the connected components of G[X] into the following
types.
(1) B1: each connected component of B1 is an isolated vertex from X1;
(2) B2: each connected component of B2 contains a vertex from X2;
(3) B3: each connected component of B3 contains a vertex from X3, and has exactly three

vertices;
(4) B5: each connected component of B5 contains a vertex from X3, and has at least five

vertices.
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For each Bi (i = 1, 2, 3, 5), let V (Bi) and E(Bi) be the sets of vertices and edges of Bi,
respectively. For each connected component C of B3, let a, b, and c be the three vertices
contained in C. By the definition of factor-critical, any two vertices from {a, b, c} are adjacent.
If E(C, Y ) is not empty, then arbitrarily choose any edge from E(Y,C) (without loss of
generality, assume that edge ua is chosen). Then, edge ua is called a special edge. Remark
that any edge in E(Y,C) can be viewed as special edge and only one edge from E(Y,C)
can be a special edge. For this case, if edge bc is in maximum matching M , then a is an
unmatched vertex in C. We apply the strategy, called “matching switching”, to deal with
the edges in M ∩ E(C), i.e., we delete bc from M and add edge ab or ac to M . It is easy
to see that the new M is still a maximum matching in G. After doing that, edge bc is not
an edge in M , which is called a candidate deleted edge. Let SE be the set of special edges
obtained by considering all connected components in B3.

Given a graph G, we first give the relation between bisections and matchings in G.

I Lemma 5. [16] Let G be a graph and M be a matching in G. Then G has a bisection
of size at least dm/2e+ b|M |/2c, which can be found in O(m+ n) time, where m,n are the
number of edges and vertices in G, respectively.

For simplicity, we assume that all the numbers in the following are divisible, without any
floor and ceiling notations.

We now analyze the relation between subgraph G[Y ∪V (B1)∪V (B2)] and König subgraphs.

I Lemma 6. Let G2 be the graph constructed by the subgraph G[Y ∪ V (B1) ∪ V (B2)] and
edges in E(Y,Z), E(Y, V (B3) ∪ V (B5))\SE. Then, there exists a König subgraph G′2 in G2
such that |M ′| = |M ∩E(G2)| = |Y |+ |M ∩E(B2)|, and |E(G′2)| ≥ 11|E(G2)|/15, where M ′
is a maximum matching in G′2.

Proof. Assume that B2 is not empty. Let B2 = {b2
1, . . . , b

2
h2
}. For each connected component

b2
i (1 ≤ i ≤ h2), there must exist two vertices u ∈ Y and v ∈ V (b2

i ) such that edge uv is in
M . Add u to a set U , which is initialized as an empty set. We need to consider the edges in
E(b2

i ), E(u, Z), E(u,X)\SE, and E(u, Y ). It is noted that for edges in E(u, Y ), there may
exist another vertex u′ in Y such that E(u, Y ) ∩ E(u′, Y ) 6= ∅. Therefore, in the process
of analyzing the relation between G[Y ∪ V (B1) ∪ V (B2)] and König subgraphs, we need to
guarantee that each edge in E(G[Y ]) can only be dealt with one time.

Since b2
i is factor-critical, subgraph G[V (b2

i )\{v}] has a perfect matching, and the number
of edges of G[V (b2

i )\{v}] contained in M is (|V (b2
i )| − 1)/2. After dealing with all the

connected components in B2, U contains h2 vertices. For each vertex u in U , there exists
a connected component b2

i (1 ≤ i ≤ h2) in B2 and a vertex v in b2
i such that uv is in

M . Let Q0
i = E(u, Z) ∪ E(u, Y \U) ∪ E(u,X\V (b2

i ))\SE, Q1
i = E(v, V (b2

i )\{v}), and
Q2

i = E(G[V (b2
i )\{v}])\M .

Based on the analysis of the edges in b2
i and by Lemma 5, a bisection (A1, A2) of size

at least m′/2 + (E(b2
i ) ∩M)/2 in graph G[V (b2

i )\{v}] can be found in O(m′ + |V (b2
i )\{v}|)

time, where m′ is the number of edges in G[V (b2
i )\{v}]. Since m′ = |E(b2

i ) ∩M |+ |Q2
i |, we

get that the number of cut edges of bisection (A1, A2) is at least |E(b2
i ) ∩M |+ |Q2

i |/2. It
is easy to get that |E(G[A1])|+ |E(G[A2])| ≤ |Q2

i |/2. Based on the sizes of Q0
i and Q1

i , we
now discuss how to delete edges to turn subgraph G[V (b2

i ) ∪ {u}] into a König subgraph.

Case 1. |Q0
i | ≥ 3|Q1

i |/8. For this case, we put u into the minimum vertex cover of G.
We will delete some edges in Q1

i and Q2
i to make G[V (b2

i ) ∪ {u}] be a König subgraph.
We compare |E(v,A1)| + |E(G[A1])| with |E(v,A2)| + |E(G[A2])|. Since |E(v,A1)| +
|E(G[A1])|+ |E(v,A2)|+ |E(G[A2])| ≤ |Q1

i |+ |Q2
i |/2, one value of |E(v,A1)|+ |E(G[A1])|
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and |E(v,A2)| + |E(G[A2])| is at most (|Q1
i | + |Q2

i |/2)/2. Without loss of generality,
assume that |E(v,A2)| + |E(G[A2])| ≤ (|Q1

i | + |Q2
i |/2)/2. We put the vertices in A1

into the minimum vertex cover of G, and delete the edges in E(v,A2) ∪ E(G[A2]) from
subgraph G[V (b2

i ) ∪ {u}], and let G′ be the resulted subgraph. Since uv ∈ M and
|M ∩ E(G[V (b2

i ) ∪ {u}])| = (V (b2
i )− 1)/2 + 1, in the subgraph G′, the size of minimum

vertex cover is |A1| + 1 = (V (b2
i ) − 1)/2 + 1. Thus, subgraph G′ is a König subgraph.

We now analyze the proportion of the deleted edges in Q0
i and G[V (b2

i ) ∪ {u}]. Because
vertex u is contained in the minimum vertex cover, all the edges incident to u are covered,
i.e., the edges in Q0

i are covered by u. We get that

|E(v,A2)|+ |E(G[A2])|
|Q0

i |+ |Q1
i |+ |Q2

i |+ |M ∩ E(b2
i )|+ 1

≤ (|Q1
i |+ |Q2

i |/2)/2
|Q0

i |+ |Q1
i |+ |Q2

i |+ |M ∩ E(b2
i )| (1)

Since b2
i is factor-critical, we have |M ∩ E(b2

i )| ≥ |Q1
i |/2. Therefore, for inequality 1, we

get that

(|Q1
i |+ |Q2

i |/2)/2
|Q0

i |+ |Q1
i |+ |Q2

i |+ |M ∩ E(b2
i )|

≤ (|Q1
i |+ |Q2

i |/2)/2
|Q0

i |+ |Q1
i |+ |Q2

i |+ |Q1
i |/2

(2)

≤ (|Q1
i |+ |Q2

i |/2)/2
3|Q1

i |/8 + |Q1
i |+ |Q2

i |+ |Q1
i |/2

(3)

≤ (|Q1
i |+ |Q2

i |/2)/2
15|Q1

i |/8 + |Q2
i |

= 4|Q1
i |+ 2|Q2

i |
15|Q1

i |+ 8|Q2
i |

≤ 4/15.

From inequality 2 to inequality 3, we use the fact that |Q0
i | ≥ 3|Q1

i |/8.
Case 2. |Q0

i | < 3|Q1
i |/8. For this case, we put v into the minimum vertex cover of G.

We will delete all edges in Q0
i and some edges in Q2

i to make G[V (b2
i ) ∪ {u})] be a

König subgraph. Since |E(G[A1])|+ |E(G[A2])| ≤ |Q2
i |/2, one value of |E(G[A1])| and

|E(G[A2])| is at most |Q2
i |/4. Without loss of generality, assume that |E(G[A1])| ≤ |Q2

i |/4.
We put the vertices in A2 into the minimum vertex cover of G, delete all the edges in
Q0

i , and delete the edges in E(G[A1]) from subgraph G[V (b2
i ) ∪ {u}]. Let G′ be the

new subgraph obtained. It is easy to see that the size of minimum vertex cover in G′ is
|A2|+1 = (V (b2

i )−1)/2+1. Since uv ∈M and |M∩E(G[V (b2
i )∪{u}])| = (V (b2

i )−1)/2+1,
subgraph G′ is a König subgraph. We now analyze the proportion of the deleted edges in
Q0

i and G[V (b2
i ) ∪ {u}].

|Q0
i |+ |E(G[A1])|

|Q0
i |+ |Q1

i |+ |Q2
i |+ |M ∩ E(b2

i )|+ 1

≤ |Q0
i |+ |Q2

i |/4
|Q0

i |+ |Q1
i |+ |Q2

i |+ |Q1
i |/2

(4)

<
3|Q1

i |/8 + |Q2
i |/4

3|Q1
i |/2 + |Q2

i |
(5)

= 1/4.
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From inequality 4 to inequality 5, we use the fact that |Q0
i | < 3|Q1

i |/8.
If Y \U is not an empty set, then for any vertex u′ in Y \U , an isolated vertex b1 in B1
can be found such that the edge formed by u′ and b1 is in maximum matching M . For
this case, we put the vertices in Y \U into the minimum vertex cover. It is easy to get
that the subgraph G[V (B1) ∪ (Y \U)] is a König subgraph.
For the case when B2 is an empty set, it is obvious to get that Y \U is not empty, which
can be handled as above.
Therefore, after dealing with all connected components of B2 and B1, a König subgraph
G′2 in G2 can be found such that |M ′| = |M ∩ E(G2)| = |Y | + |M ∩ E(B2)|, and
|E(G′2)| ≥ 11|E(G2)|/15. J

We now deal with the connected components of B3.

I Lemma 7. Let G3 be the graph constructed by the subgraph G[V (B3)] and edges in SE.
Then, a König subgraph G′3 can be obtained in G3 such that |M ′| = |E(G3) ∩ M |, and
|E(G′3)| ≥ 2|E(G3)|/3, where M ′ is a maximum matching in G′3. If graph G contains no C3
as connected component, then |E(G′3)| ≥ 3|E(G3)|/4.

Proof. For the case when B3 is an empty set, the correctness of the lemma is trivial. Assume
that B3 is not empty. Let B3 = {b3

1, . . . , b
3
h3
}. For each connected component b3

i (1 ≤ i ≤ h3)
in B3, if b3

i is a C3 and a connected component in graph G, then no vertex in b3
i is connected

to vertices in Y , and there exists a König subgraph in b3
i with 2|E(b3

i )|/3 number of edges.
On the other hand, if b3

i is a C3 in G[X] and not a connected component in graph G,
then there exists a special edge e in SE with one endpoint in b3

i , and a candidate deleted
edge is contained in b3

i . In the process of dealing with the connected components of B2,
all the edges in E(Y, b3

i ) except special edge e are handled, i.e., the edges in E(Y, b3
i )\{e}

are either covered by the vertices in Y , or not contained in the König subgraph. For this
case, we delete the candidate deleted edge in b3

i , and put the endpoint of special edge e
in b3

i into the minimum vertex cover. Let G3
i be the graph constructed by the subgraph

G[V (b3
i )] and special edge e. Thus, a König subgraph G′ of graph G3

i can be obtained. The
proportion of the deleted edges in G3

i to get the König subgraph G′ is 1/4. Thus, after
dealing with all connected components of B3, a König subgraph G′3 can be found in G3
such that |M ′| = |E(G3) ∩M |, and |E(G′3)| ≥ 2|E(G3)|/3. If graph G contains no C3 as
connected component, then |E(G′3)| ≥ 3|E(G3)|/4. J

For any connected component C of B3, assume that C is also a connected component in
G. Then, C is a triangle in G. It is easy to see that two edges of C can be in edge induced
König subgraph of C, and any edge of C can be deleted to get the edge induced König
subgraph. Therefore, for any given instance (G = (V,E), k) of the Edge Induced König
Subgraph problem, we can firstly deal with the C3s in graph G, without having any impact
on the approximation ratio of the problem. We now give a refined analysis for the results in
Lemma 7.

I Lemma 8. Let G3 be the graph constructed by the subgraph G[V (B3)] and edges in SE,
where no connected component in B3 is a connected component in G. Then, a König subgraph
G′3 can be obtained in G3 such that |M ′| = |E(G3) ∩M |, and |E(G′3)| ≥ 3|E(G3)|/4, where
M ′ is a maximum matching in G′3.

We now study the properties of the connected components of B5. Assume that B5 is not
empty, and let B5 = {b5

1, . . . , b
5
h5
}.

I Lemma 9. For any connected component b5
i (1 ≤ i ≤ h5) of B5, if b5

i is a hole, then a
König subgraph with at least 4|E(b5

i )|/5 edges can be obtained.
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Proof. Assume that b5
i is a hole. Since hole b5

i is factor-critical, it contains at least five edges.
By deleting any edge in b5

i , a König subgraph of b5
i can be obtained, and contains |E(b5

i )| − 1
edges. Thus, if b5

i is a hole, then a König subgraph with at least 4|E(b5
i )|/5 edges can be

obtained. J

I Lemma 10. For any subgraph C in G[X], if C is factor-critical, then each vertex in C

has degree at least two in C.

Proof. Assume that C is factor-critical. Then, for any vertex v in C, C\{v} has a perfect
matching. It is easy to see that C contains no isolated vertex. Assume that there exists a
vertex v with degree one, and u is the neighbor of v. If vertex u is deleted, then v becomes
an isolated vertex in C\{u}, contradicting with the fact that C\{u} has a perfect matching.
Thus, if C is factor-critical, then each vertex in C has degree at least two. J

For each connected component b5
i of B5, a vertex w with minimum degree in b5

i can be
found. Assume that M ′ ⊆M is a matching in b5

i . If w is a matched vertex, then we apply
“matching switching” strategy to deal with the edges in M ′. In other words, we find a perfect
matching M ′′ in G[V (b5

i )\{w}], and let M = (M −M ′) ∪M ′′. Let W 1
i = E(w, V (b5

i )\{w}),
and W 2

i = E(G[V (b5
i )\{w}]\M .

I Lemma 11. For each connected component b5
i (1 ≤ i ≤ h5) of B5, if b5

i is not a hole, then
|W 1

i | ≤ |W 2
i |.

I Lemma 12. Let G4 be the subgraph induced by vertices in B5. Then, there exists a König
subgraph G′4 such that |M ′| = |M ∩ E(G′4)|, and |E(G′4)| ≥ 7|E(G4)|/10, where M ′ is a
maximum matching in G′4.

Proof. For any connected component b5
i (1 ≤ i ≤ h5) of B5, if b5

i is a hole, then by
Lemma 9, there exists a König subgraph G′ in G[V (b5

i )] with |E(G′)| ≥ 4|E(b5
i )|/5. Now

assume that b5
i is not a hole. By Lemma 5, a bisection (A3, A4) of size at least m′′/2 +

|E(b5
i )∩M |/2 in subgraph G[V (b5

i )\{w}] can be found in O(m′′ + |V (b5
i )\{w}|) time, where

m′′ is the number of edges in G[V (b5
i )\{w}]. Since m′′ = |E(b5

i ) ∩ M | + |W 2
i |, we get

that the number of cut edges of bisection (A3, A4) is at least |E(b5
i ) ∩M | + |W 2

i |/2. It is
easy to get that |E(G[A3])| + |E(G[A4])| ≤ |W 2

i |/2. We have |E(w,A3)| + |E(G[A3])| +
|E(w,A4)| + |E(G[A4])| ≤ |W 1

i | + |W 2
i |/2, and one value of |E(w,A3)| + |E(G[A3])| and

|E(w,A4)|+ |E(G[A4])| is at most (|W 1
i |+ |W 2

i |/2)/2. Without loss of generality, assume that
|E(w,A4)|+ |E(G[A4])| ≤ (|W 1

i |+ |W 2
i |/2)/2. Delete the edges in E(w,A4)∪E(G[A4]) from

subgraph G[V (b5
i ) ∪ {w}], and let G′ be the resulted subgraph, which is a König subgraph

by Lemma 2. We now analyze the proportion of the deleted edges in b5
i .

|E(w,A4)|+ |E(G[A4])|
|E(b5

i )|

≤ (|W 1
i |+ |W 2

i |/2)/2
|W 1

i |+ |W 2
i |+ |M ∩ E(b5

i )| (6)

≤ (|W 1
i |+ |W 2

i |/2)/2
|W 1

i |+ |W 2
i |+ |W 1

i |/2
(7)

= |W 1
i |/2 + |W 2

i |/4
3|W 1

i |/2 + 3|W 2
i |/4 + |W 2

i |/6 + |W 2
i |/12 (8)

≤ |W 1
i |/2 + |W 2

i |/4
3|W 1

i |/2 + 3|W 2
i |/4 + |W 1

i |/6 + |W 2
i |/12 (9)

= 3/10.
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From inequality 6 to inequality 7, we use the fact that |M ∩E(b5
i )| ≥ |W 1

i |/2. Inequality 9 is
obtained from inequality 8 by Lemma 11. J

By Lemma 4, Lemma 6, Lemma 7, and Lemma 12, we get the following result.

I Theorem 13. For a given graph G = (V,E), there exists an edge induced König subgraph
G′ of G such that G′ contains at least 2|E|/3 edges.

By Lemma 4, Lemma 6, Lemma 12, and Lemma 8, we get the following result.

I Theorem 14. For the Edge Induced König Subgraph problem, an approximation
algorithm with ratio 10/7 can be obtained in polynomial time.

4 Kernelization for Edge Induced König Subgraph above Lower
Bound

For the Edge Induced König Subgraph problem, using the results in Theorem 13, it is
easy to get a kernel with at most 3k/2 edges for the problem. In other words, if 2m/3 > k,
then the given instance is a Yes-instance. Otherwise, we have m ≤ 3k/2. Under this
parameterization, k is not a small value. In this paper, we study the following problem.

Edge Induced König Subgraph above lower bound:
Given a graph G = (V,E) and non-negative integer k, find a set of at least d2m/3e+k

edges that induce a König subgraph, or report that no such set exists, where m is the
number of edges in G.

For a given instance (G, k) of the Edge Induced König Subgraph above lower
bound problem, we give the following two reduction rules.

Rule 1. For each connected component C of G, if C is a C3, then remove C from G.
Rule 2. For each connected component C of G, if C is a tree, then remove C, and

k = k − |E(C)|/3.

I Lemma 15. Rule 1 is correct and can be executed in polynomial time.

I Lemma 16. Rule 2 is correct and can be executed in polynomial time.

I Theorem 17. The Edge Induced König Subgraph above lower bound problem
admits a kernel of 30k edges.
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