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Preface

This volume is the post-proceedings of the 23rd International Conference on Types for Proofs
and Programs, TYPES 2017, which was held at E6tvos Lordnd University in Budapest,
Hungary, between the 24th of May and 1st of June in 2017.

The TYPES meetings are a forum to present new and on-going work in all aspects of type
theory and its applications, especially in formalized and computer assisted reasoning and
computer programming. The meetings from 1990 to 2008 were annual workshops of a sequence
of five EU funded networking projects. Since 2009, TYPES has been run as an independent
conference series. Prior to the 2017 meeting in Budapest, TYPES meetings took place in
Antibes (1990), Edinburgh (1991), Bastad (1992), Nijmegen (1993), Bastad (1994), Torino
(1995), Aussois (1996), Kloster Irsee (1998), Lokeberg (1999), Durham (2000), Berg en Dal
near Nijmegen (2002), Torino (2003), Jouy-en-Josas near Paris (2004), Nottingham (2006),
Cividale del Friuli (2007), Torino (2008), Aussois (2009), Warsaw (2010), Bergen (2011),
Toulouse (2013), Paris (2014), Tallinn (2015), and Novi Sad (2016), with post-proceedings
published in various outlets, with the last five in LIPIcs.

The TYPES areas of interest include, but are not limited to: foundations of type theory
and constructive mathematics; applications of type theory; dependently typed programming;
industrial uses of type theory technology; meta-theoretic studies of type systems; proof
assistants and proof technology; automation in computer-assisted reasoning; links between
type theory and functional programming; formalizing mathematics using type theory.

The TYPES conferences are traditionally of an open and informal character. Selection of
talks for presentation at the conference is based on short abstracts — reporting on work in
progress or work presented or published elsewhere is welcome. A formal, fully reviewed post-
proceedings volume of unpublished work is prepared after the conference. The programme
of TYPES 2017 included invited talks by Edwin Brady (University of St Andrews) on An
architecture for dependently typed applications in Idris and Jakob Rehof (Technical University
of Dortmund) on Bounding principles for decision problems with intersection types. The
contributed part of the programme consisted of 50 talks, and the conference was attended by
more than 82 researchers.

TYPES 2017 was sponsored by the COST Action EUTypes, supported by COST
(European Cooperation in Science and Technology) and by E6tvos Lordnd University.

The call for contributions to the post-proceedings of TYPES 2017 was open and not
restricted to the authors and presentations of the conference. Out of 13 submitted papers,
7 were selected after a reviewing process where each paper was reviewed by between two
and four referees; the final decisions were made by the editors. The papers span a wide
range of interesting topics: linear logic, decidability of Hilbert-style axiomatisations, natural
deduction, formalized proof systems, program verification for an ML-like language, a new
axiomatisation of homotopy type theory, and category theory in type theory. We thank both
the authors and the reviewers for their hard work.

Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi
Nottingham, October 2018
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Typing with Leftovers — A mechanization of
Intuitionistic Multiplicative-Additive Linear Logic

Guillaume Allais
iCIS, Radboud University Nijmegen, The Netherlands
gallais@cs.ru.nl

—— Abstract

We start from an untyped, well-scoped A-calculus and introduce a bidirectional typing relation
corresponding to a Multiplicative-Additive Intuitionistic Linear Logic. We depart from typical

presentations to adopt one that is well-suited to the intensional setting of Martin-Lof Type Theory.
This relation is based on the idea that a linear term consumes some of the resources available in
its context whilst leaving behind leftovers which can then be fed to another program.

Concretely, this means that typing derivations have both an input and an output context.
This leads to a notion of weakening (the extra resources added to the input context come out
unchanged in the output one), a rather direct proof of stability under substitution, an analogue
of the frame rule of separation logic showing that the state of unused resources can be safely
ignored, and a proof that typechecking is decidable. Finally, we demonstrate that this altern-
ative formalization is sound and complete with respect to a more traditional representation of
Intuitionistic Linear Logic.

The work has been fully formalised in Agda, commented source files are provided as additional
material available at https://github.com/gallais/typing-with-leftovers.

2012 ACM Subject Classification Theory of computation — Type theory, Theory of computa-
tion — Linear logic

Keywords and phrases Type System, Bidirectional, Linear Logic, Agda
Digital Object Identifier 10.4230/LIPIcs. TYPES.2017.1
Supplement Material https://github.com/gallais/typing-with-leftovers

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement nr. 320571

1 Introduction

The strongly-typed functional programming community has benefited from a wealth of
optimisations made possible precisely because the library author as well as the compiler are
aware of the type of the program they are working on. These optimisations have ranged from
Danvy’s type-directed partial evaluation [18] residualising specialised programs to erasure
mechanisms —be they user-guided like Coq’s extraction [27] which systematically removes all
the purely logical proofs put in Prop by the developer or automated like Brady and TejiScék’s
erased values [12, 13]- and including the library defining the State-Thread [25] monad which
relies on higher-rank polymorphism and parametricity to ensure the safety of using an actual
mutable object in a lazy, purely functional setting.

However, in the context of the rising development of dependently-typed programming
languages [11, 31] which, unlike ghc’s Haskell [36], incorporate a hierarchy of universes in
order to ensure that the underlying logic is consistent, some of these techniques are not
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37 licensed under Creative Commons License CC-BY
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Typing with Leftovers

applicable anymore. Indeed, the use of large quantification in the definition of the ST-monad
crucially relies on impredicativity. As a consequence, the specification of programs allowed
to update a mutable object in a safe way has to change. Idris has been extended with
experimental support for uniqueness types inspired by Clean’s [1] and Rust’s ownership
types [20], all of which stem from linear logic [22].

In order to be able to use type theory to formally study the meta-theory of the program-
ming languages whose type system includes notions of linearity, we need to have a good
representation of such constraints.

Section 2 introduces the well-scoped untyped A-calculus we are going to use as our language
of raw terms. Section 3 defines the linear typing rules for this language as relations which
record the resources consumed by a program. The next sections are dedicated to proving
properties of this type system: Section 4 proves that the status of unused variables rightfully
does not matter, Section 5 (and respectively Section 6) demonstrates that these typing
relations are stable under weakening (respectively substitution), Section 7 demonstrates that
these relations are functional, and Section 8 that they are decidable i.e. provides us with a
typechecking algorithm. Finally Section 9 goes back to a more traditional presentation of
Intuitionistic Multiplicative-Additive Linear Logic and demonstrates it is equivalent to our
type system.

Notations

This whole development has been fully formalised in Agda. Rather than using Agda’s
syntax, the results are reformulated in terms of definitions, lemmas, theorems, and examples.
However it is important to keep in mind the distinction between various kinds of objects.
Teletype is used to denote data constructors, SMALL CAPITALS are characteristic of defined
types. A type family’s index is written as a subscript e.g. VAR,,.

We use two kinds of inference rules to describe inductive families: double rules are used
to define types whilst simple ones correspond to constructors. In each case the premises
correspond to arguments (usually called parameters and indices for types) and the conclusion
shows the name of the constructor. A typical example is the inductively defined set of unary
natural numbers. The inductive type is called NAT and it has two constructors: 0 takes no
argument whilst 1+- takes a NAT n and represents its successor.

n : NAT

NAT : Set 0 : NAT 1#n : NAT

2 The Calculus of Raw Terms

The calculus we study in this paper is meant to be a core language, even though it will be
rather easy to write programs in it. As a consequence all the design choices have been guided
by the goal of facilitating its mechanical treatment in a dependently-typed language. That is
why we use de Bruijn indices to represent variable bindings. We demonstrate in the code
accompanying the paper how to combine a parser and a scope checker to turn a surface level
version of the language using strings as variable names into this representation.

Following Bird and Patterson [9] and Altenkirch and Reus [5], we define the raw terms of
our language not as an inductive type but rather as an inductive family [21]. This technique,
sometimes dubbed “type-level de Bruijn indices”, makes it possible to keep track, in the
index of the family, of the free variables currently in scope. As is nowadays folklore, instead
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(INFER,,) var (VAR,)

app (INFER,) (CHECK.,)

case (INFER,,) return (TYPE) of (CHECKun) % (CHECKn)
prji (INFER,) | prjz (INFER,)

exfalso (TYPE) (INFER,)

cut (CHECK,) (TYPE)

(CHECK,) == lam (CHECKu,)

let (PATTERN,,):= (INFER,)in (CHECK 4.
unit

inl (CHECK,) | inr (CHECK,)

prd (CHECK,) (CHECK,)

neu (INFER,)

Figure 1 Grammar of the Language of Raw Terms.

of using a set-indexed presentation where a closed terms is indexed by the empty set L and
fresh variables are introduced by wrapping the index in a Maybe type constructor®, we index
our terms by a natural number instead. The VAR type family? defined below represents the
de Bruijn indices [19] corresponding to the n free variables present in a scope n.

n : NAT k: VAR,

VAR, : Set Z : VAR, sk : VARup,

We present the calculus in a bidirectional fashion [32]. This definition style scales well to
more complex type theories where full type-inference is not tractable anymore whilst keeping
the type annotations the programmer needs to add to a minimum. The term constructors of
the calculus are split in two different syntactic categories corresponding to constructors of
canonical values on one hand and eliminators on the other. These categories characterise
the flow of information during typechecking: given a context assigning a type to each free
variable, canonical values (which we call CHECK) can be checked against a type whilst we
may infer the type of computations (which we call INFER). Each type is indexed by a scope:

n : NAT n : NAT

INFER,, : Set CHECK,, : Set

On top of the constructors one would expect for a usual definition of the untyped M-

calculus (var -, app - -, and lam -) we have constructors and eliminators for sums (inl -,
inr -, case - return - of - % -), products (prd -, let -:=-in-, prjj -, prjz -), unit (unit,
let -:=-in-) and void (exfalso - -). Two additional rules (neu - and cut - - respectively)

allow the embedding of INFER into CHECK and vice-versa. They make it possible to form
redexes by embedding canonical values into computations and then applying eliminators to
them. In terms of typechecking, they correspond to a change of direction between inferring
and checking.

1 The value nothing represents the fresh variable whilst the constructor just lifts the other ones in the
new scope.
2 It is also known as Fin (for “finite set”) in the dependently typed programming community.

1:3
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(TYPE) k(N) |01
(TYPE) — (TYPE) | (TYPE) ® (TYPE)

(TYPE) @ (TYPE) | (TYPE) & (TYPE)

Figure 2 Grammar of TYPE.

The constructors cut, case, and exfalso take an extra TYPE argument in order to
guarantee the success and uniqueness of type-inference for INFER terms.

A notable specificity of this language is the ability to use nested patterns in a let binder
rather than having to resort to cascading lets. This is achieved thanks to a rather simple
piece of kit: the PATTERN type family. A value of type PATTERN,, represents an irrefutable
pattern binding n variables. Because variables are represented as de Bruijn indices, the base
pattern does not need to be associated with a name, it simply is a constructor v binding
exactly one variable. The brackets pattern () matches unit values and binds nothing. The
comma pattern constructor (- , -) takes two nested patterns respectively binding m and n
variables and uses them to deeply match a pair thus binding (m + n) variables.

n : NAT p : PATTERN,, q : PATTERN,,

PATTERN,, : Set v :PATTERN; () : PATTERN, (p » q) : PATTERN, 4y,

The grammar of raw terms only guarantees that all expressions are well-scoped by
construction. It does not impose any other constraint, which means that a user may write
valid programs but also invalid ones as the following examples demonstrate:

» Example 1. swap is a closed, well-typed linear term taking a pair as an input and swapping
its components. It corresponds to the mathematical function (z,y) — (y, ).

swap = lam (let (v , v) := var z
in prd (mneu (var (s z))) (neu (var z)))

» Example 2. i11Typed is a closed linear term. However it is manifestly ill-typed: the
let-binding it uses tries to break down a function as if it were a pair.

illTyped = let (v , v) := cut (lam (neu (var z))) (a — a)
in prd (neu (var z)) (neu (var (s z)))

» Example 3. Finally, diagonal is a term typable in the simply-typed lambda calculus but
it is not linear: it duplicates its input just like & — (z,z) does.

diagonal = lam (prd (neu (var z)) (neu (var z)))

3 Linear Typing Rules

These examples demonstrate that we need to define a typing relation describing the rules
terms need to abide by in order to qualify as well-typed linear programs. We start by defining
the types our programs may have using the grammar in Figure 2. Apart from the usual
linear type formers, we have a constructor £ which makes it possible to have countably
many different base types.

A linear type system is characterised by the fact that all the resources available in the
context have to be used exactly once by the term being checked. In traditional presentations
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I'to AI—T® 'Fo AT I''A~06
LLAFo®T OFto®T

X

Figure 3 Introduction rules for tensor (left: usual presentation, right: with reordering on the fly).

of linear logic this is achieved by representing the context as a multiset and, in each rule,
cutting it up and distributing its parts among the premises. This is epitomised by the
introduction rule for tensor.

However, multisets are an intrinsically extensional notion and therefore quite arduous
to work with in an intensitonal type theory. Various strategies can be applied to tackle this
issue; most of them rely on using linked lists to represent contexts together with ways to
reorganise the context.

In Figure 3 we show two of the most common representations of the tensor rule. The
first one splits the context into I' and A and dispatches them into the subproofs; it relies on
the existence of structural rules which the user will be able to use to reorganise the context
appropriately. The second one is a combined rule letting the user re-arrange the context on
the fly by using the notion of “bag-equivalence” for lists denoted - ~ -.

In both of these cases, the user has to explicitly rearrange the context either by using
structural rules or proving that two distinct contexts are bag equivalent. Although one
can find coping mechanisms to handle such clunky systems (for instance using a solver for
bag-equivalence [17] based on the proof-by-reflection [10] approach to automation), we would
rather not.

All of these strategies are artefacts of the unfortunate mismatch between the ideal
mathematical objects one wishes to model and their internal representation in the proof
assistant. Short of having proper quotient types, this will continue to be an issue when
dealing with multisets. The solution described in the rest of this paper is syntax-directed;
it does not try to replicate a set-theoretic approach in intuitionistic type theory but rather

strives to find the type theoretical structures which can make the problem more tractable.

Indeed, given the right abstractions most proofs become direct structural inductions.

3.1 Usage Annotations

McBride’s recent work [29] on combining linear and dependent types highlights the distinction
one can make between referring to a resource and actually consuming it. In the same spirit,
rather than dispatching the available resources in the appropriate subderivations, we consider
that a term is checked in a given context on top of which usage annotations are super-imposed.
These usage annotations indicate whether resources have been consumed already or are still
available. Type-inference (resp. Type-checking) is then inferring (resp. checking) a term’s
type but also annotating the resources consumed by the term in question and returning the
leftovers which gave their name to this paper.

» Definition 4. A CONTEXT is a list of TYPEs indexed by its length. It can be formally
described by the following inference rules:

n : NAT v : CONTEXT,, o :TYPE

CONTEXT,, : Set [ : CONTEXT, v -0 : CONTEX T4y,

1:5
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» Definition 5. A USAGE is a predicate on a type o describing whether the resource
associated to it is available or not. We name the constructors describing these two states £
(for fresh) and s (for stale) respectively. These are naturally lifted to contexts in a pointwise
manner and we reuse the USAGE name and the £ and s names for the functions taking a
context and returning either a fully fresh or fully stale USAGE for it.

o : TYPE

USAGE, : Set f, : USAGE, S, : USAGE,

v : CONTEXT,, I' : USAGE, S : USAGE,

USAGE, : Set [] : USAGE|) -5 :USAGE,.,

3.2 Typing as Consumption Annotation

A Typing relation seen as a consumption annotation process describes what it means to
analyze a term in a scope of size n: given a context of types for these n variables, and a
usage annotation for that context, it ascribes a type to the term whilst crafting another
usage annotation containing all the leftover resources. Formally:

» Definition 6. A Typing Relation for 7' a NAT-indexed inductive family is an indexed
relation 7,, such that:

n : NAT v : CONTEXT,, I’ A : USAGE, t: T, o : TYPE
Tn(Tyt,0,A) @ Set

This definition clarifies the notion but also leads to more generic statements later on:
weakening, substitution, framing can all be expressed as properties a Typing Relation might
have. We can already list the typing relations introduced later on in this article which
fit this pattern. We have split their arguments into three columns depending on whether
they should be understood as either inputs (the known things), scrutinees (the things being
validated), or outputs (the things that we learn) and hint at what the flow of information in
the typechecker will be.

» Remark. The use of ® is meant to suggest that the input I' gets distributed between the
type o of the term and the leftovers A obtained as an output. Informally I' ~ o ® A, hence
the use of a tensor-like symbol.

3.2.1 Typing de Bruijn indices

The simplest instance of a Typing Relation is the one for de Bruijn indices: given an index k
and a usage annotation, it successfully associates a type o to that index if and only if the kth
resource in context is of type o and fresh (i.e. its USAGE, is £,). In the resulting leftovers,
this resource will have turned stale (s, ) because it has now been used:

» Definition 7. The typing relation for VAR is presented in a sequent-style: '+, k € c R A
means that starting from the usage annotation I', the de Bruijn index k is ascribed type o
with leftovers A. Tt is defined inductively by two constructors (cf. Figure 5).

» Remark. The careful reader will have noticed that there is precisely one typing rule for
each VAR constructor. It is not a coincidence. And if these typing rules are not named
it’s because in Agda, they can be given the same name as their VAR counterpart and the
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7y : CONTEXT,, o : TYPE
I' : USAGE, k : VAR, A : USAGE,
VAR
', ke oRA : Set
~ : CONTEXT,, o : TYPE
I' : USAGE, t : INFER,, A : USAGE,
INFER

I'FteoxA: Set

7 : CONTEXT,,
I': USAGE
K t: CHECK,, A :USAGE,
o : TYPE
CHECK
F'FostrA: Set
o : TYPE p : PATTERN,, v : CONTEXT,

PATTERN

o3p~y:Set

Figure 4 Typing relations for VAR, INFER, CHECK and PATTERN.

', keoxA
I'fohyz€oxl s, ' Ab,skeoxA-A

Figure 5 Typing rules for VAR.

typechecker will perform type-directed disambiguation. The same will be true for INFER,
CHECK and PATTERN which means that writing down a typable program could be seen as
either writing a raw term or the typing derivation associated to it depending on the author’s
intent.

» Example 8. The de Bruijn index 1 has type 7 in the context (v - 7 - o) with usage
annotation (I" - £, - f,), no matter what I" actually is:

I f,Fzerxl- s,
r-f, - foFszerxl- s, -f,

Or, as it would be written in Agda, taking advantage of the fact that the language constructs
and the typing rules about them have been given the same names:

one : I' - £f7.-fokFkszerrw - -s7t-fo
one = s z

3.2.2 Typing Terms

We now face compound untyped terms such as app f ¢ whose subterms f and ¢t have been
defined in the same scope of size n. Therefore the typing relation for these terms needs to

TYPES 2017
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', keoxA I'tteo—oTRA AFo>ux0O
I'kFvar ke orA 'HapptueTxO

FhicomrmA A-f,Fr3IxRO-s,

A-f,Frvorx0O- s, I'HteokrxA
I'Fcasetreturnvof [ frervx® F'FprjjteorA
FFteockrrA F'-tedxA F'Fo3trRA

PFprjsterTmA I'exfalsoot€eoRA lcuttoeomA

Figure 6 Typing rules for INFER.

use the same context of size n for both premises. Trying to cut up a CONTEXT,, in two just
like in Figure 3 would not only be cumbersome, it wouldn’t be type correct. This is where
usage annotations shine.

The key idea appearing in all the typing rules for compound expressions is to use the input
USAGE to type one of the sub-expressions, collect the leftovers from that typing derivation
and use them as the new input USAGE when typing the next sub-expression.

Another common pattern can be seen across all the rules involving binders, be they
A-abstractions, let-bindings or branches of a case. Typechecking the body of a binder involves
extending the input USAGE with fresh variables and observing that they have become stale
in the output one. This guarantees that these bound variables cannot escape their scope as
well as that they have indeed been used. Although not the focus of this paper, it is worth
noting that relaxing the staleness restriction would lead to an affine type system which would
be interesting in its own right.

» Definition 9. The Typing Relation for INFER is typeset in a fashion similar to the one for
VAR: in both cases the type is inferred. I' -t € 0 ® A means that given I' a USAGE,, and ¢
an INFER, the type o is inferred together with leftovers A, another USAGE,. The rules are
listed in Figure 6.

» Definition 10. For CHECK, the type o comes first: ' 0 3 t ® A means that given I" a
USAGE,, a type o, the CHECK ¢ can be checked to have type o with leftovers A. The rules
can be found in Figure 7.

We can see that both variants of a product type —tensor (®) and with (&)— use the
same surface language constructor but are disambiguated in a type-directed manner in the
checking relation. The premises are naturally widely different: With lets its user pick which
of the two available types they want and as a consequence both components have to be
proven using the same resources. Tensor on the other hand forces the user to use both so
the leftovers are threaded from one premise to the other.

» Definition 11. Finally, PATTERNs are checked against a type and a context of newly
bound variables is generated. If the variable pattern always succeeds, the pair constructor
pattern on the other hand only succeeds if the type it attempts to split is a tensor type.
The context of newly-bound variables is then the collection of the contexts associated to the
nested patterns. The rules are given in Figure 8.
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I f,FT732bRA - s, I'FosaxA AFT735bx0

o —o7>5lam bR A l'tro®7>prda brO
'FostrA F'Fr3txRA l'FosarA 'Fr735bRA
'ro®73inl tRA 'ro®72inr tRA I'-o&r>prdabx A

T'FteoxA oc3p~0
(A H£f5)FT2uR (O +H5s4) 'FteorA

I'F13unitxD 'F75>1let p:=tinux O I'Fo>neutxA

Figure 7 Typing rules for CHECK.

oOp -~y T3qg~0
c3v~[-o 13 ()~ [ o®7T3(p, q) ~ (d +7)

Figure 8 Typing rules for PATTERN.

» Example 12. Given these rules, we see that the identity function can be checked at type
(0 — ) in an empty context:

[ foFvz€oR] s,

[ foFvarze€o®] s,

H'fzﬂ_daneu(varz)gﬂ.so

[Fo — 0> lam (neu (var z))®|]

Or, as it would be written in Agda where the typing rules were given the same name as their
term constructor counterparts:

identity : [l F ¢ —o ¢ > lam (neu (var z)) ® []
identity = lam (neu (var z))

» Example 13. It is also possible to revisit Example 1 to prove that swap can be checked
against type (¢ ® 7) — (7 ® o) in an empty context. This gives the lengthy derivation
included in the appendix or the following one in Agda which is quite a lot more readable:

swapTyped : [l F (6 ® 7) — (7 ® 0) > swap & []
swapTyped = lam (let (v , v) := var z
in prd (neu (var (s z))) (neu (var z))

TYPES 2017
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4 Framing

The most basic property one can prove about this typing system is the fact that the state of
the resources which are not used by a lambda term is irrelevant. We call this property the
Framing Property because of the obvious analogy with the frame rule in separation logic.
This can be reformulated as the fact that as long as two pairs of an input and an output
USAGE exhibit the same consumption pattern then if a derivation uses one of these, it can
use the other one instead. Formally (postponing the definition of ' — A = 0 — =):

» Definition 14. A Typing Relation 7. for a NAT-indexed family T has the Framing
Property if for all k& a NAT, v a CONTEXTy, I', A, ©, Z four USAGE,, t an element of T},
and o a Type, if ' — A = 0 — = and Tx(T, t, 0, A) then T;(O, t, o, Z) also holds.

» Remark. This is purely a property of the type system as witnessed by the fact that the
term t is left unchanged wich won’t be the case when defining stability under Weakening or
Substitution for instance.

» Definition 15. Consumption Equivalence for a given CONTEXT -~ characterises the
pairs of an input and an output USAGE, which have the same consumption pattern. The
usages annotations for the empty context are trivially related. If the context is not empty,
then there are two cases: if the resource is left untouched on one side, then so should it on
the other side but the two annotations may be different (here denoted A and B respectively).
On the other hand, if the resource has been consumed on one side then it has to be on the
other side too.

I''A, 0,5 : USAGE,

I'-A=06-Z=: Set NI-0=0-1

r-A=0-2 r-A=06-E

T-A)—(A-A)=(© B —(Z-B) ([-£,)—(A-s,)=(0£,)—(Z-5,)

» Remark. Two pairs of usages which are consumption equivalent are defined over the
same context (and thus scope). Stability of a typing rule with respect to consumption
equivalence will not be sufficient to introduce new variables. This will be dealth with by
defining weakening in Section 5.

» Definition 16. The Consumption Partial Order I' C A is definedasI' — A =T — A.
It orders USAGE from least consumed to maximally consumed.

» Lemma 17. The following properties on the Consumption relations hold:

1. The consumption equivalence is a partial equivalence [30].

2. The consumption partial order is a partial order.

3. If there is a USAGE Z “in between” two others T' and A according to the consumption
partial order (i.e. T CZ and Z C A), then any pair of USAGE ©, Q consumption equal
toT and A (i.e. T — A =0 —Q) can be split in a manner compatible with =. In other
words: one can find Z such thatI' —E=0 —Z and = — A =7 — Q.

» Lemma 18 (Consumption). The Typing Relations for VAR, INFER and CHECK all imply
that if a typing derivation exists with input USAGE annotation I' and output USAGE annotation
A then T' C A.



G. Allais

» Theorem 19. The Typing Relation for VAR has the Framing Property. So do the ones for
INFER and CHECK.

Proof. The proofs are by structural induction on the typing derivations. They rely on the
previous lemmas to, when faced with a rule with multiple premises and leftover threading,
generate the inclusion evidence (Lemma 18) and use it to split up the witness of consumption
equivalence (Lemma 17:3) and distribute it appropriately in the induction hypotheses. <

» Example 20. Coming back to the typing derivation for the de Bruijn index 1 in Example 8,
we can use the Framing theorem to transport the proof that I'- £, - f, F, sz€ 7RI - s, - £,
to a proof that A-f, s, F, 82 € TRA - s, - s, for any A. Indeed, we can see that these
two pairs of USAGE are consumption equivalent (I' — I' = A — A holds by induction):

I'r-T'=A-A
- f,.-TI''s,=A-f,—A-s,
r-f.-f,—-I'-s;, - f,=A-f, -8, —A-8,; -8,

5 Weakening

It is perhaps surprising to find a notion of weakening for a linear calculus: the whole point
of linearity is precisely to ensure that all the resources are used. However, when opting for a
system based on consumption annotations it becomes necessary to be able to extend the
context a term lives in. This will typically be used in the definition of parallel substitution to
push the substitution under a binder. Linearity is guaranteed by ensuring that the inserted
variables are left untouched by the term.

Weakening arises from a notion of inclusion. The appropriate type theoretical structure
to describe these inclusions is well-known and called an Order Preserving Embedding [15, 4].
Unlike a simple function witnessing the inclusion of its domain into its codomain, the
restriction brought by order preserving embeddings guarantees that contraction is simply
not possible which is crucial in a linear setting.

» Definition 21. An Order Preserving Embedding (OPE) is an inductive family. Its
constructors (dubbed “moves” in this paper) describe a strategy to realise the promise of an
injective embedding which respects the order induced by the de Bruijn indices. We start
with an example in Figure 9 before giving, in Figure 10, the formal definition of OPEs for
NAT, CONTEXT and USAGE.

In the following example, we prove that the source context « - 7 can be safely embedded
into the target one v-o -7 - v, written v-7 < -0 -7-v. This example proof uses all three of
the moves the inductive definition of OPEs offers: insert, which introduces a new variable
of type «, copy which embeds the source context’s top variable, and done which simply
copies the source context. Because we read strategies left-to-right and it is easier to see how

they act if contexts are also presented left-to-right, we temporarily switch to cons-style (i.e.

0,7) instead of the snoc-style (i.e. 7 - o) used in the rest of this paper.
» Example 22. An Order Preserving Embedding.

Now that we have seen an example, we can focus on the formal definition. We give the
definition of OPE for NAT, CONTEXT and USAGE all side by side in one table: the first
column lists the names of the constructors associated to each move whilst the other ones

1:11
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OPE insert, copy insert, done
source T , ~y
target v R T , o , ol
Figure 9 Example: proof that v-7 <~vy.-0-7-v.
NAT CONTEXT USAGE
done
k<k <~ r<r
k<l v<4 r<A S : USAGE,
copy
k< | y-0<b-0 r-s<A-Ss
k<l v<d r<aA S : USAGE,
insert
k< 1+l y<§-0o I'<A-.S

Figure 10 Order Preserving Embeddings for NAT, CONTEXT and USAGE.

give their corresponding types for each category. It is worth noting that OPEs for CONTEXT
are indexed over the ones for NAT and the OPEs for USAGE are indexed by both. The latter
definitions are effectively algebraic ornaments [16, 28] over the previous ones, that is to say
they have the same structure only storing additional information.

The first row defines the move done. It is the strategy corresponding to the trivial
embedding of a set into itself by the identity function and serves as a base case.

The second row corresponds to the copy move which extends an existing embedding
by copying the current Oth variable from source to target. The corresponding cases for
CONTEXTs and USAGE are purely structural: no additional content is required to be
able to perform a copy move.

The third row describes the move insert which introduces an extra variable in the target
set. This is the move used to extend an existing context, i.e. to weaken it. In this case, it
is paramount that the OPE for CONTEXTs should take a type o as an extra argument
(it will be the type of the newly introduced variable) whilst the OPE for USAGE takes a
USAGE,, (it will be the usage associated to that newly introduced variable of type o).

Now that the structure of these OPEs is clear, we have to introduce a caveat regarding
this description: the CONTEXT and USAGE case are a bit special. They do not in fact
mention the source and target sets in their indices. This is a feature: when weakening a
typing relation, the OPE for USAGE will be applied simultaneously to the input and the
output USAGE which, although of a similar structure because of their shared CONTEXT
index, will be different.

» Definition 23. The semantics of an OPE is defined by induction over the proof object.
We use the overloaded function name ope(-) for it. They behave as the simplified view given
in Figure 10 where v / T is seen as the input, o / S the additional information stored into
the proof object and § / A the output.

We leave out the definition of weakening for raw terms which is the standard definition
for the untyped A-calculus. It proves that given k& < we can turn an INFERy, (respectively
CHECK}y,) into an INFER, (respectively CHECK;). It is given by a simple structural induction
on the terms themselves, using copy to go under binders.
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» Definition 24. A Typing Relation 7. for a NAT-indexed family T such that we have a
function weaky transporting proofs that & < [ to functions T} — T} is said to have the Weak-
ening Property if for all k,[ in NAT, o a proof that k <1, O a proof that OPE(0) and O a
proof that OPE(O) then for all v a CONTEXTy, I' and A two USAGE,, t an element of T}, and o
a TYPE, if T (T, t, 0, A) holds true then we also have 7;(ope(O,T"), weakr (o, t), o, 0pe(O, A)).

» Theorem 25. The Typing Relation for VAR has the Weakening Property. So do the Typing
Relations for INFER and CHECK.

Proof. The proof for VAR is by induction on the typing derivation. The statements for
INFER and CHECK are proved by mutual structural inductions on the respective typing
derivations. Using the copy constructor of OPEs is crucial to be able to go under binders. <«

Unlike the framing property, this theorem is not purely about the type system: the
term is indeed modified between the premise and the conclusion. Now that we know that
weakening is compatible with the typing relations, let us study substitution.

6  Substituting

Stability of the typing relations under substitution guarantees that the untyped evaluation
of programs will yield results which have the same type as well as preserve the linearity
constraints. The notion of leftovers naturally extends to substitutions: the terms meant to
be substituted for the variables in context which are not used by a term will not be used
when pushing the substitution onto this term. They will therefore have to be returned as
leftovers.

Because of this rather unusual behaviour for substitution, picking the right type-theoretical
representation for the environment carrying the values to be substituted in is a bit subtle.
Indeed, relying on the usual combination of weakening and crafting a fresh variable when
going under a binder becomes problematic. The leftovers returned by the induction hypothesis
would then live in an extended context and quite a lot of effort would be needed to downcast
them back to the smaller context they started in. The solution is to have an explicit
constructor for “going under a binder” which can be simply peeled off on the way out of a
binder. The values are still weakened to fit in the extended context they end up in but that
happens at the point of use (i.e. when they are being looked up to replace a variable) instead
of when pushing the substitution under a binder.

» Definition 26. The environment ENV used to define substitution for raw terms is indexed
by two NATs k and [ where k is the source’s scope and [ is the target’s scope. There are
three constructors: one for the empty environment ([]), one for going under a binder (- +v)
and one to extend an environment with an INFER,;.

k,l: NAT p:ENV(k, 1) p: ENV(k,) t : INFER;

ENV(k,l) : Set  []: ENV(0,1) pev:ENV(t+k, 1+]) p-t:ENV(1+E,1)

Environment are carrying INFER elements because, being in the same syntactical class as
VARSs, they can be substituted for them without any issue. We now state the substitution
lemma on untyped terms because it is, unlike the one for weakening, non-standard by way of
our definition of environments.

» Lemma 27. Given a VAR v and an ENV(k, 1) p, we can look up the INFER; associated to
vV in p.

1:13
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Proof. The proof goes by induction on v and case analysis on p. If the variable we look up
has been introduced by a binder we went under using the constructor - «v then we return it
immediately. Otherwise we get our hands on a term which we may need to weaken. This
corresponds to the following functional specification (the practical implementation can be
distinct to avoid retraversing the term once for every single binder we went under).

We assume that 1ift is an instance of weakening defined in the previous section which takes
a term in a scope of size k and returns the same term in scope 1+k. |

» Lemma 28. Raw terms are stable under substitutions: for all k and [, given t a term
INFERy, (resp. CHECK}) and p an environment ENV(k,l), we can apply the substitution p to
t and obtain an INFER; (resp. CHECK]).

Proof. By mutual induction on the raw terms. The traversals are purely structural except
when going under binders where the constructor (- «v) is used to extend the ENV appropri-
ately. The prototypical case of a binder is the lam one, and its functional specification is:
(lam t) [p] = lam (¢ [pev]). <

» Definition 29. The environments used when proving that Typing Relations are stable
under substitution follow closely the ones for raw terms. ©1 . I' 5 pR O is a typing relation
with input usages ©; and output O9 for the raw substitution p targeting the fresh variables in
I". The typing for the empty environment has the same input and output usages annotation.
Formally:

0 : CONTEXT]

©1 : USAGEy

~ : CONTEXTy p: ENV(k,1) O, : USAGEy
I' : USAGE,

O ¢ [] > []@@1
O1F.I'> pRO,y : Set

For fresh variables in T', there are two cases depending on whether they have been introduced
by going under a binder or not. If it is not the case then the typing environment carries
around a typing derivation for the term ¢ meant to be substituted for this variable. Otherwise,
it does not carry anything extra but tracks in its input / output usages annotation the fact
that the variable has been consumed.

91"t€0’|2|@2 @2"81—‘9[)&@3 @1"61—‘9p®@2

©1F.T-f,2p trO; O fobe T £, pevO, s,

For stale variables, there are two cases too. They are however a bit more similar: none of
them carry around an extra typing derivation. The main difference is in the shape of the
input and output context: in the case for the “going under a binder” constructor, they are
clearly enriched with an extra (now consumed) variable whereas it is not the case for the
normal environment extension.

O1F.T'3pxr0O, O F.T'3prO,

O1Fe - s8,2p - tRO, O1-S,Fe 8,23 pevROy - s,



G. Allais

» Definition 30. A Typing Relation 7. for a NAT-indexed family T equipped with a function
substr which for all NATs k, [, given an element T}, and an ENV(k,[) returns an element 7T}
is said to be stable under substitution if for all NATs k and [/, v a CONTEXTy, I' and A
two USAGE,, t an element of Ty, o a Type, p an ENV(k,1), # a CONTEXT; and ©; and O
two USAGEy such that 7 (T, t,0,A) and ©; . I' 3 pR O3 holds then there exists a O of
type USAGEy such that 7;(01, substr(t, p),0,02) and O3 -, A 3 pRO;.

» Theorem 31. The Typing Relations for INFER and CHECK are stable under substitution.

Proof. The proof by mutual structural induction on the typing derivations relies heavily
on the fact that these Typing Relations enjoy the framing property in order to adjust the
USAGE annotations. <

7 Functionality

In the next section we will prove that type-checking and type-inference are decidable. In the
cases where the check fails, we have to prove that any purported typing derivation would
lead to a contradiction. These arguments all follow a similar pattern: assuming that a typing
derivation exists, we use inversion lemmas to obtain results in direct contradiction to the
observations we have made. These inversion lemmas often rely on the fact that the typing
relations are functional.

Although we did highlight that some of our relations’ indices are meant to be seen as
inputs whilst others are supposed to be outputs, we have not yet made this relationship
formal because this fact was seldom used in the proofs so far. Functionality can be expressed
by saying that given a typing relation, if two typing derivations exist for some fixed arguments
(seen as inputs) then the other arguments (seen as outputs) are equal to each other.

» Definition 32. We say that a relation R of type [[(vi : RI).II — O(ri) — Set is
functional if for all relevant inputs ri, all pairs of irrelevant inputs 7i; and i, and for all
pairs of outputs o1 and o9, if both R(ri, i;,01) and R(ri, iiz, 02) hold then 01 = 0.

» Lemma 33. The Typing Relations for VAR and INFER are functional when seen as relations
with relevant inputs the context and the scrutinee (either a VAR or an INFER), irrelevant
inputs their USAGE annotation and outputs the inferred TYPEs.

» Lemma 34. The Typing Relations for VAR, INFER, CHECK and ENV are functional when
seen as relations with relevant inputs all of their arguments except for one of the USAGE
annotation or the other. This means that given a USAGE annotation (whether the input one
or the output one) and the rest of the arguments, the other USAGE annotation is uniquely
determined.

8 Typechecking

» Theorem 35 (Decidability of Typechecking). Type-inference for INFER and Type-

checking for CHECK are decidable. In other words, given a NAT k, v a CONTEXTy and I a

USAGE,,

1. for all INFERy, t, we can decide if there is a TYPE 0 and A a USAGE, such that 't €
oRA

2. for all TYPE 0 and CHECK}, t, we can decide if there is A a USAGE, such that ' o >
tRA.
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Proof. The proof proceeds by mutual induction on the raw terms, using inversion lemmas to
dismiss the impossible cases, using auxiliary lemmas showing that typechecking of VARs and
PATTERNS also is decidable and relies heavily on the functionality of the various relations
involved. <

One of the benefits of having a formal proof of a theorem in Agda is that the theorem
actually has computational content and may be run: the proof is a decision procedure.

» Example 36. We can for instance check that the search procedure succeeds in finding the
swapTyped derivation we had written down as Example 13. Because o and 7 are abstract in
the following snippet, the equality test checking that o is equal to itself and so is 7 does not
reduce and we need to rewrite by the proof eq-diag that the equality test always succeeds
in this kind of situation:

swapChecked : V o 7 = check []1 ((¢ ® 7) — (7 ® 0)) swap
= yes ([l , swapTyped)
swapChecked o 7 rewrite eq-diag 7 | eq-diag o = refl

9 Equivalence to ILL

We have now demonstrated that the USAGE-based formulation of linear logic as a type system
is amenable to mechanisation without putting an unreasonable burden on the user. Indeed,
the system’s important properties can all be dealt with by structural induction and the user
still retains the ability to write simple A-terms which are not cluttered with structural rules.

However this presentation departs quite a lot from more traditional formulations of
intuitionistic linear logic. This naturally raises the question of its correctness. In this section
we recall a typical presentation of Intuitionistic Linear Logic using a Sequent Calculus,
representing the multiset of assumptions as a list.

9.1 A Sequent Calculus for Intuitionistic Linear Logic

The definition of this calculus is directly taken from the Linear Logic Wiki [26] whose
notations we follow to the letter. The interested reader will find more details in for instance
Troelstra’s lectures [35]. In the following figure, v, ¢, and # are context variables while o, 7 ,
and v range over types. We overload the comma to mean both consing a single type to the
front of a list and appending two lists, as is customary.

Our only departure from the traditional presentation is the miz rule which is an artefact
of our encoding multisets as lists. It allows the user to pick any interleaving € of two lists ~y
and §. This notion of interleaving is formalised by the following three-place relation.

» Definition 37. The interleaving relation is defined by three constructors: [| declares
that interleaving two empty lists yields the empty-list whilst -,; - (and -,,. - respectively) picks
the head of the list on the left (the right respectively) as the head of the interleaving and the
tail as the result of interleaving the rest.

~v,6,0 : LIST a p:y,0 =20 pry,0 =0
7,820 Set D:0,020 oap: (0,7),0 2 (0,0) o p 7, (0,0) = (0,0)

Now that we have our definition of the usual representation of Intuitionistic Linear Logic
(ILL), we are left with proving that the linear typing relation we have defined is both sound
and complete with respect to that logic.
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Figure 11 Sequent Calculus for Intuitionistic Linear Logic.

9.2 Soundness

We start with the easiest part of the proof: soundness. This means that from a typing
derivation, we can derive a proof in ILL of what is essentially the same statement. That is to
say that if a term is said to have type ¢ in a fully fresh context v and proceeds to consume
all of the resources in that context during the typing derivation then it corresponds to a
proof of v I ¢ in ILL.

This statement needs to be generalised to be proven. Indeed, even if we start with a
context full of available resources, at the first split we encounter (e.g. a tensor introduction
or a function application), it won’t be the case anymore in one of the sub-terms. To state
this more general formulation, we need to introduce a new notion: used assumptions.

» Definition 38. The list of used assumptions in a proof I' C A in the consumption partial
order is the list of types which have turned from fresh in I" to stale in A. The used(-) function
is defined by recursion over the proof that I' C A.

» Definition 39. A Typing Relation 7T for terms 7" is said to be sound with respect to ILL
if, for k a NAT, v a CONTEXTy, I' and A two USAGE,, t a term T} and o a type, from the
typing derivation 7(T, t, o, A) and p a proof that I' C A we can derive used(p) - o.

» Remark. The consumption lemma 18 guarantees that such a proof I' C A always exists
whenever the typing relation is either the one for VAR, INFER or CHECK.

Before we can prove the soudness theorem, we need two auxiliary lemmas allowing us to
handle the mismatch we may have between the way the used assumptions of a derivation are
computed and the way the ones for its subderivations are obtained.

» Lemma 40. Given k a NAT, v a CONTEXTy, and I', A, and 6 three USAGE,, we have:

1. if p and q are proofs that T' C A then used(p) = used(q).

2. if pis a proof thatT' C A, q that A C 0 and pq that T' C 6 then used(pq) is an interleaving
of used(p) and used(q).

The relation validating patterns is not a typing relation and as such it needs to be handled
separately. This can be done by defining a procedure elaborating patterns away by showing
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that whenever o 5 p ~ =, it is morally acceptable to replace o on the left by . Which gives
us the following cut-like admissible rule:

» Lemma 41 (Elaboration of Let-bindings). Provided k a NAT, p a PATTERNy, 0 a TYPE
and v a CONTEXT}, such that o 5 p ~> vy, we have that for all 6 and 0 two LIST TYPE and T
a TYPE, if 0 F o and ~v,0 - 7 then 6,0 - 7.

We now have all the pieces to prove the soundness of our typing relations.
» Theorem 42 (Soundness). The typing relations for VAR, INFER and CHECK are all sound.

Proof. The proof is by mutual induction on the typing derivations. ILL’s right rules are
in direct correspondence with our introduction rules. The eliminators in our languages are
translated by using ILL’s cut together with left rules. The miz rule is crucial to rewrite the
derivations’ contexts on the fly. |

9.3 Completeness

Completeness is a trickier thing to prove: given a derivation in the traditional sequent
calculus, we need to build a corresponding term and its typing derivation. However, unlike
the soundness one it does not give us any insight as to what the meaning of USAGE and
typing derivations is. So we only state the result and give an idea of the proof.

» Theorem 43 (Completeness). Given v a LIST TYPE and o a type, from a proof v+ o we
can derive an INFER 1 and a proof that f, bt € o” s,.

Proof. The proof is by induction over the derivation in ILL. The right rules match our
introduction rules well enough that they do not pose any issue. Weakening lets us extend
the USAGE of the sequents obtained by induction hypothesis in the case of multi-premises
rules. Left rules are systematically translated as cut s.

Finally, the hardest rule to handle is the mix rule which reorganises the context. It is
handled by a technical lemma which we have left out of this paper. Informally: it states that
if the input and output USAGE of a typing derivation are obtained by the same interleaving
of two distinct pairs of USAGE, then for any other interleaving we can find a term and a
typing derivation for that term. <

10 Related Work

Benton, Bierman, de Paiva, and Hyland [8] did devise a term assignment system for Intuition-
istic Linear Logic which was stable under substitution. Their system focuses on multiplicative
linear logic only when ours also encompasses additive connectives but it gives a thorough
treatment of the ! modality. This is still an open problem for us because we do not want to
have the explicit handling of I’s weakening, contraction, dereliction, and promotion rules
pollute the raw terms.

Rand, Paykin and Zdancewic’s work on modelling quantum circuits in Coq [34] necessarily
includes a treatment of linearity as gbits cannot be duplicated. And because it is mechanised,
they have to deal with the representation of contexts. Their focus is mostly on the quantum
aspect and they are happy relying on Coq’s scripting capabilities to cope with the extensional
presentation.

Bob Atkey and James Wood [6] have been experimenting with using a deep embedding
of a linear lambda calculus in Agda as a way to certify common algorithms. Being able to
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encode insertion sort as a term in this deep embedding is indeed sufficient to conclude that
the output of the algorithm is a permutation of its input. They use on-the-fly re-ordering of
contexts via explicit permutation proofs.

Polakow faced with the task of embedding a linear A-calculus in Haskell [33] used a
typed-tagless approach [23] and tried to get as much automation from typeclass resolution as
possible. Seeing Haskell’s typeclass resolution mechanism as a Prolog-style proof search engine,
he opted for a relational description and thus an input-output presentation. This system
can handle multiplicatives, additives and is even extended to a Dual Intuitionistic Linear
Logic [7] to accomodate for values which can be duplicated. Focusing on the applications, it
is not proven to be stable under substitution or that the typechecking process will always
succeed.

The proof search community has been confronted with the inefficiency of randomly
splitting up the multiset of assumption when applying a tensor-introduction rule. In an effort
to combat this non-determinism, they have introduced alternative sequent calculi returning
leftovers [14, 37]. However because they do not have to type a term living in a given context,
they do not care about the structure of the context of assumptions: it is still modelled as a
multiset.

We have already mentioned McBride’s work [29] on (as a first approximation: the setup
is actually more general) a type theory with a dependent linear function space as a very
important source of inspiration. In that context it is indeed crucial to retain the ability to
talk about a resource even if it has already been consumed. E.g. a function taking a boolean
and deciding whether it is equal to tt or ff will have a type mentioning the function’s
argument twice. But in a lawful manner: (z : BOOL) — (x = tt) V (z = ££). This leads to
the need for a context shared across all subterms and consumption annotations ensuring that
the linear resources are never used more than once.

Finally, we can find a very concrete motivation for a predicate similar to our USAGE
in Robbert Krebbers’ thesis [24]. In section 2.5.9, he describes one source of undefined
behaviours in the C standard: the execution order of expressions is unspecified thus leaving
the implementers with absolute freedom to pick any order they like if that yields better
performances. To make their life simpler, the standard specifies that no object should be
modified more than once during the execution of an expression. In order to enforce this
invariant, Krebbers’ memory model is enriched with extra information:

[E]ach bit in memory carries a permission that is set to a special locked permission
when a store has been performed. The memory model prohibits any access (read or
store) to objects with locked permissions. At the next sequence point, the permissions
of locked objects are changed back into their original permission, making future
accesses possible again.

11 Conclusion

We have shown that taking seriously the view of linear logic as a logic of resource consumption
leads, in type theory, to a well-behaved presentation of the corresponding type system for the
lambda-calculus. The framing property claims that the state of irrelevant resources does not
matter, stability under weakening shows that one may even add extra irrelevant assumptions
to the context and they will be ignored whilst stability under substitution guarantees subject
reduction with respect to the usual small step semantics of the lambda calculus. Finally, the
decidability of type checking makes it possible to envision a user-facing language based on raw
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terms and top-level type annotations where the machine does the heavy lifting of checking
that all the invariants are met whilst producing a certified-correct witness of typability.

Avenues for future work include a treatment of an affine logic where the type of substitution
will have to be be different because of the ability to throw away resources without using
them. Our long term goal is to have a formal specification of a calculus for Probabilistic and
Bayesian Reasoning similar to the affine one described by Adams and Jacobs [2]. Another
interesting question is whether these resource annotations can be used to develop a fully
formalised proof search procedure for intuitionistic linear logic. The author and McBride have
made an effort in such a direction [3] by designing a sound and complete search procedure for
a fragment of intuitionistic linear logic with type constructors tensor and with. Its extension
to lolipop is currently an open question.
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—— Abstract

We show that recognizing axiomatizations of the Hilbert-style calculus containing only the axiom
a — (b — a) is undecidable (a reduction from the Post correspondence problem is formalized
in the Lean theorem prover). Interestingly, the problem remains undecidable considering only
axioms which, when seen as simple types, are principal for some A-terms in S-normal form. This
problem is closely related to type-based composition synthesis, i.e. finding a composition of given
building blocks (typed terms) satisfying a desired specification (goal type).

Contrary to the above result, axiomatizations of the Hilbert-style calculus containing only
the axiom a — (b — b) are recognizable in linear time.
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1 Introduction

The problem of decidability of a given Hilbert-style propositional calculus was posed by Tarski
in 1946 and has subsequently been studied by several authors in various forms, beginning with
the abstract published in 1949 by Linial and Post [13] in which the existence of an undecidable
propositional calculus and undecidability of the problem of recognizing axiomatizations of
classical propositional logic was stated (Linial-Post theorems). Zolin [20] provides a good
overview of the history of this problem, and let us mention here only that Singletary [16]
proved in 1974 that there exists a purely implicational propositional calculus which can
represent any r.e. degree. Such a calculus can be seen as a combinatory logic [1, 11] in
simple types [10, 2] with an undecidable inhabitation problem. In honor of the pioneers,
we refer to the set of all Hilbert-style propositional calculi as the Linial-Post spectrum. In
the present work we shed some light on the ‘lower end’ (seemingly very weak calculi) of
the Linial-Post spectrum from the point of view of functional program synthesis. Our main
result is that recognizing axiomatizations of the Hilbert-style calculus containing only the
axiom a — (b — a) (the type of the combinator K in combinatory logic) is undecidable.
Moreover, we show that the problem remains undecidable considering only principal axioms,
i.e. axioms that, seen as simple types, are principal for some A-terms in S-normal form.
In general, to recognize whether given axioms A = {oy,...,0,} axiomatize some calculus
¢ means to decide whether theorems in € coincide with formulae derivable from A using
the rules of substitution and modus ponens. In particular, if € is the Hilbert-style calculus
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containing only the axiom a — (b — a), then A axiomatizes € iff @ — (b — a) is derivable
from A and o is derivable from {a — (b — a)} for each 0 € A. We show that the former
problem, even if only principal axioms are considered, is undecidable while the latter, in
general, is decidable in linear time®. If one is not interested in principal axioms, then the
former result follows directly from the recent work by Bokov [6] which shows that problems
of recognizing axiomatizations and completeness are undecidable for propositional calculi
containing the axiom a — (b — a).

The result presented here encompasses two motivating aspects which distinguish it from
existing work (see [20] for an overview). First, similar to Bokov [6], we explore the lower
end of the Linial-Post spectrum, whereas existing work focuses on classical [13, 19, 4] or
superintuitionistic [12, 20, 5] calculi, often having rich type syntax, e.g. containing negation.
In this work, we consider only implicational formulae and stay below a — (b — a) in
terms of derivability. This is arguably ‘as low as you can get’ because, as will be shown,
axiomatizations of ¢ — a (or even a — (b — b)) are recognizable in linear time. Second,
we are interested in synthesis of functional programs from given building blocks. Following
the same motivation as [15, 3], we want to utilize proof search (inhabitation in combinatory
logics) to synthesize code by composition from a given collection of combinators. Specifically,
provided simply typed A-terms My, ..., M, in B-normal form, we search for an applicative
composition of the given terms that has some designated simple type o. This is equivalent to
proof search in the Hilbert-style calculus having axioms o1, ..., 0, where o; is the principal
type of M; for i =1...n. It is a typical synthesis scenario, in which M, ..., M, are library
components exposing functionality specified by their corresponding principal types o1, ..., 0.
The synthesized composition is a functional program that uses the library to realize behavior
specified by the type o.

Our second motivation forces us to deviate from standard constructions pervading existing
work. For example, considering axioms a — (a — a) (testing equality of two arguments)
or (a — b) — b (encoding disjunction), there are no A-terms in S-normal form having such
axioms as their principal types. Therefore, such logical formulae could be considered an
artificial and purely logical peculiarity from the point of view of program synthesis. Moreover,
necessarily deviating from existing techniques (also using the Post correspondence problem
instead of Post production systems as in [6]) we provide a novel and formalized? proof.

A noteworthy side effect when considering axioms that are tied to corresponding A-
terms via principality is an additional twist to the Curry-Howard isomorphism. We observe
that the constructed proof that a formula is derivable (therefore logically solving the un-
derlying problem) corresponds to a A-term that actually solves the underlying problem
computationally.

The paper is organized as follows. Section 2 recapitulates preliminary definitions (simply
typed A-calculus, simply typed combinatory logic, Hilbert-style calculi and the Post cor-
respondence problem). Our main result on undecidability of recognizing axiomatizations
of @ = (b — a) in shown in Section 3, which also contains linear time derivability from
a — (b — a). The proof is formalized? in the Lean theorem prover. Formalizations of key
statements are referred to by namespace.lemma. Complementary, linear time decidability
of recognizing axiomatizations of @ — a (resp. a — (b — b)) are shown in Section 4 (resp.
Section 5). We conclude the paper in Section 6 which also contains remarks on future work.

L As is well known, adding the axiom (a — (b — ¢)) = ((a = b) — (a — c)), the type of the combinator
S, results in intuitionistic implicational logic for which provability is PSPACE-complete [18].
2 http://www-seal.cs.tu-dortmund.de/seal/downloads/research/TYPES17.zip
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2 Preliminaries

In this section we briefly assemble necessary prerequisites in order to discuss principal
axiomatizations of implicational propositional calculi. For a survey on simply typed calculi
along with corresponding (under the Curry-Howard isomorphism) implicational propositional
calculi see [17].

2.1 Simply Typed Lambda Calculus

We denote A-terms (cf. Definition 1) by M, N, L where term variables are denoted by x,y, z.

As is usual, application associates to the left and binds stronger than abstraction.
» Definition 1 (\-Terms). M,N,L :=x | (Az.M) | (M N)

Simple types (cf. Definition 2) are denoted by o, T where type atoms (also called type
variables in literature) are denoted by a, b, ¢ and drawn from the denumerable set A. As is
usual, — associates to the right, i.e. 0 =7 >0 =0 — (7 — 0).

» Definition 2 (Simple Types). T2 o, 7 i=a |0 =T
A type environment T is a finite set of type assumptions {x1 : 01,...,%y, : 05} in which
term variables occur at most once. We set

dom(T) = {x1,...,zn}, IT| ={o1,...,0n}, D(x;) =0, fori=1...n

We write ' U{x : 0} as T,z : ¢ if z ¢ dom(T").

The rules (Var), (—I) and (—E) of the simple type system (F) are given in the following
Definition 3.
» Definition 3 (Simply Typed A-Calculus (I)).

Ne:obEM:7 (1) '-M:0—>7 '-N:o
'EXeM:0—T1 'FMN:T1

(Var) (—E)

Nz:okFx:0

A substitution ¢ : A — T is a mapping such that its substitution domain dom({) := {a € A |
¢(a) # a} is finite. We lift substitutions homomorphically to types. We say o is unifiable
with 7, if there exists a substitution ¢ such that ((o) = {(7). A principal type (cf. Definition
4) of a term is the most general type assignable to that term and is unique up to atom
renaming.

» Definition 4 (Principal Type). We say that 7 is a principal type of M, if - M : 7 and for
all types o such that b M : o there exists a substitution ¢ such that {(7) = o.
2.2 Simply Typed Combinatory Logic

We call A-terms without abstractions combinatory terms (cf. Definition 5), denoted by
F.G,H.

» Definition 5 (Combinatory Terms). F,G, H ==z | (F Q)
The size of a combinatory term is the number of leaves in its syntax tree (cf. Definition 6).
» Definition 6 (Size). size(z) = 1 and size(F G) = size(F) + size(G).

The rules (Ax) and (—E) of the simply typed combinatory logic (F¢) are given in the
following Definition 7.

2:3

TYPES 2017



2:4

Lower End of the Linial-Post Spectrum

» Definition 7 (Simply Typed Combinatory Logic (F¢)).

I'teFio—T I'teG:o

¢ is a substitution
Tre FG:7 (=F)

Tz:obex:((o)

(Ax)

Observe that the above definition is relativized to arbitrary bases I' whereas ‘simply typed
combinatory logic’ often refers to a fixed base containing the combinators S and K with
their corresponding types. We will use relativization to inspect arbitrary bases allowing to
go below S and K in term of derivability.

Naturally, combinatory terms are of shape x F} ... F,, for some n € N and we have the
following generation lemma (cf. derivation.long_typability).

» Lemma 8 (Generation Lemma). IfT' ¢ Fy ... F, : 7, then there exists a substitution
such that ((T'(z)) =01 = ... = 0y = T for somen €N, o1,...,0, and T' k¢ F; : 0; holds
fori=1...n.

To mitigate extensive use of parentheses in combinatory terms we use the left-associative
pipe metaoperator > defined as Fi>G = (G F). For example, G5 (G2 (G1 F)) = FrG1>Ga>Gs.

2.3 Hilbert-Style Calculus

We identify propositional implicational azioms (sometimes called formulae) with simple types
and denote finite sets of axioms by A. The rules (Ax) and (—E) of the Hilbert-style calculus
(F¢) are given in the following Definition 9.

» Definition 9 (Hilbert-Style Calculus (F%)).

(¢ is a substitution
Av o l_’H C(U)

Abyo—T AbFyo
E
A"HT (_>)

(Ax)

Again, (Fy) is relativized to arbitrary sets of axioms A. Observe that (F3) and (F¢)
are in direct Curry-Howard correspondence. The set of derivable formulae is denoted by
[A]H:{T€T|AFHT}

We say Ay aziomatizes [Ag]y if [A1]y = [Az]y. Clearly, [Aq]y = [Az]y iff Ay by 7 for
all 7 € Ag and Ay Fy o for all 0 € Ay. For brevity, we say A axiomatizes o if [Aly = [{o}]n.

» Example 10. For A={a—b—a,(a = b—¢c) = (a = b) = a — ¢} the set of formulae
[A] contains exactly the intuitionistic propositional implicational tautologies.

For A’ = AU{(((p — ¢q) = p) — p} the set of formulae [A’]y; contains exactly the
classical propositional implicational tautologies [20].

» Definition 11. An axiom o is principal if there exists a A-term M in S-normal form such
that o is the principal type of M in the simply typed A-calculus.

Intuitively, axioms that are not principal, e.g. @ — a — a, could in some contexts (for
example, in synthesis) be considered ‘artificial’ since they have no ‘naturally’ associated
realization. Principality of axioms is decidable [7] and, in fact, PSPACE-complete [9].

2.4 Post Correspondence Problem
The Post correspondence problem (PCP) is well-known for its undecidability ([14]).

» Problem 12 (Post Correspondence Problem). Given pairs of words (vi,wi),..., (v, wk)
over the alphabet {a,b} such that v; # € # w; fori=1...k (where € is the empty word) decide

whether there exists an index sequence i1, ... ,1, such that v;,v;, ... v;, = Wi, Wi, ... W4, .
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As an immediate consequence, the following slight restriction of the problem, where
v; # w;, is also undecidable.

» Corollary 13. Given pairs of words (v1,w1),..., (vi, wg) over the alphabet {a,b} such
that € # v; # w; # € fori =1...k it is undecidable whether there exists an index sequence
U1,y in Such that vV, Vs, ...V, = WIW;, Wiy « .. W, -

n n

We aim at showing undecidability of recognizing principal axiomatizations of the calculus
a — b — a by reduction from PCP. Usually, the Post correspondence problem is approached
constructively, i.e. start with some given pair of words, then iteratively append corresponding
suffixes, and finally test for equality. The approach taken in the present work is, in a sense,
‘deconstructive’. In particular, we start from an arbitrary pair of equal words, then iteratively
remove corresponding suffixes, and finally test whether the resulting pair is given. While the
former approach requires an equality test for arbitrarily large structures as a final operation
(the encoding of which appears problematic in terms of principal axioms), the final operation
of the latter approach can be bounded. The following Definition 14 and Lemma 15 capture
the outlined iterative deconstruction.

» Definition 14. Given a set PCP = {(vi,w1),..., (vg,wy)} of pairs of words over the
alphabet {a,b} we define for n > 0 the set PCP,, of pairs of words as follows

PCPy = {(v,v) | v € {a,b}"} PCPpt1 = {(v,w) | Fi € {1,...,k}.(vv;, ww;) € PCP,}

» Lemma 15. Let n > 0 and v,w € {a,b}*. We have vv;,v;, ... v;
some indexr sequence i1, ..., i, iff (v,w) € PCP,.

= WW;, Wi, ... w;, for

n

Proof. Routine induction on n (cf. pcp.pcp_set_iff_sync_word_pair). <
In sum, it is undecidable whether the prefix (v1,w;) is in PCP,, for some n > 0.

» Lemma 16. Given a set PCP = {(vy,w1), ..., (v, wi)} of pairs of words over the alphabet
{a,b} such that € # v; # w; # € fori=1...k it is undecidable whether there exists an n > 0
such that (v1,w;) € PCP,,.

Proof. Immediate consequence of Corollary 13 and Lemma 15. |

3 Recognizing Axiomatizations of a —» b — a

In this section we show that recognizing principal axiomatizations of the Hilbert-style calculus
containing only the axiom a — b — a is undecidable (cf. Theorem 17), which is our main
result.

» Theorem 17. Given principal axioms o1,...,0, such that {a — b — a} by o for
it =1...n, it is undecidable whether {o1,...,0n} F a = b — a.

» Corollary 18. Given A-terms My, ..., M, in B-normal form with principal types o1,...,0n
in the simply typed \-calculus such that {a — b — a} by o; fori=1...n, it is undecidable
whether there is an applicative composition of My, ..., M, having the simple type a — b — a.

In the context of type-based composition synthesis, the types o1,...,0, are natural spe-
cifications of associated terms M, ..., M, and a — b — a is a goal specification. Deriving
a — b — a from oq,...,0, naturally corresponds to finding a composition of given terms
satisfying the goal specification.

2:5
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We prove Theorem 17 by reduction from the Post correspondence problem, specifically, the

construction in Lemma 16. For that reason, we fix pairs (v1,w1),. .., (vk, wi) of words over
the alphabet {a, b} such that € # v; # w; # e fori =1...k. Our goal is to construct principal
axioms o1,...,0; such that {a = b—a} by o;fori=1...land {o1,...,01} Fyya—=b—a

is equivalent to (v1,w;) € PCP,, for some n > 0.

PCP Reduction

In this subsection we construct axioms o1, ..., o; associated with the outlined reduction. We
do not address principality which will be dealt with in the next subsection.

We need to represent words, pairs and suffixing. Let us fix a unique type atom e. For a
word v € {a,b}* we define its representation as [v] = e - v where the operation - is defined as

oc-e=0 oc-wa=(e— e)—= (0-w) o-wb=(e—e—e)— (0-w)
We represent a pair of types o, 7 as
(o,T)=(0e—>e0e—oe) > (c>T—e)(e—=0)—(e—=T)>e—>e—e

As a side note, [v] contains only e as atom. More importantly, we have [v] - w = [vw],
and representations of two distinct words are not unifiable (cf. Lemma 19).

» Lemma 19. Let v,w € {a,b}*. If [v] and [w] are unifiable, then v = w.

Proof. Assuming v # w we show that [v] and [w] are not unifiable by induction on the

length of v (cf. word.append_unique_encoding). Wlog. v is not longer than w.

Case v = e: Clearly, [v] = e is not unifiable with [w] =01 — ... » 0, — ® with n > 1.

Case v = v'a, w = w'b (resp. v = v'b, w = w'a): Let c =0 — o (resp. o =0 — & —
e)and 7 = e — e — e (resp. T = @ — e). Since o is not unifiable with 7, we have that
[v] = o0 — [v'] is not unifiable with [w] = 7 — [w'].

Case v = v'a, w = w’a (resp. v = v’b, w = w’'b): By induction hypothesis [v'] is not
unifiable with [w’]. Therefore, [v] = o — [v] is not unifiable with [w] = ¢ — [w'], where
og=e— e (resp. c =e — e —e). <

Additionally, for any types o,7 we have that (o, 7) is derivable from a — b — a (cf.
Lemma 21).

» Lemma 20. Let 0,7 be types. If {a - b—a}t by 7, then {a >b—a} by o— 7.

Proof. Use (—»E) with the premises {a - b —a}lby 7 >0 > T7and{a > b—a}by 1. <«

» Lemma 21. Let 0,7 be types. We have {a — b — a} b3 (o, 7).

Proof. Iterative application of Lemma 20 starting with {a = b — a} 3 0 — ¢ — e, <

Finally, we define a type environment I' of k + 2 combinators typed by principal axioms
'={z:{(a,a),z: {[v1],[un]) > e —a— e} U{y; : (a-v;,b-w;) = (a,b) |1 <i<k}

Due to Lemma 21, each axiom in |T'| is derivable from a — b — a.

Having established all prerequisite definitions, we now proceed with our main reduction.
The following Lemma 22 establishes a connection between elements (v,w) € PCP,, and
inhabitants of ([v], [w]).
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» Lemma 22. Let ¢ be a substitution and let v,w € {a,b}*. IfTke x>y Py, >...DY;, :
C[w], [w])) for some index sequence iy .. .in, then (v,w) € PCP,.

Proof. Induction on n (cf. pcp_reduction.piped_term_to_pcp_set).

Basis Step: T' F¢ z : ((([v], [w])) implies ¢([v]) = ¢([w]). By Lemma 19 we obtain v = w.

Inductive Step: Assume I' F¢ x>y, Dy, >...> Yy, by : C(([v], [w])) for some index sequence
i1,y in,l. Wenecessarily haveI' b¢ y; : 0 — ((([v], [w])) and T F¢ apby;, by,>. . >y;, : 0
for some type o. Additionally, o — (({[v], [w])) = &({a - v;,b - w;) — (a,b)) for some
substitution &, which implies (([v]) = £(a), ((Jw]) = £(b) and ((e) = &(e). Therefore,
&(a-v) = C¢([oy]) and (b w;) = ((Jww;]). As a result, we have o = £({a - v;,b - w;)) =
(e, fww])).
By induction hypothesis (vv;, ww;) € PCP,,, which implies (v, w) € PCP,,41. <

Let us define n € NU {oo} (cf. pcp_reduction.min_special) as either the minimal size of

a combinatory term typable in I' by ¢ — ¢ — ¢ or as oo if no such term exists.

n = min{size(F) |I'F¢ F : 0 — 0 — o for some type o}

Intuitively, a ‘small’, i.e. of size less than n, derivation of an instance of ([v1], [w1])
contains no derivation of an instance of ¢ — e — e. Due to our pair encoding, which contains
as its first argument the type e — e — e we are able to severely restrict the shape of the
minimal derivation of ([v1], [w1]) (cf. Lemma 23).

» Lemma 23. IfT' k¢ F : (({(o,7)) for some substitution ¢ such that size(F') < n, then
F=gxzv>y, >...0y;,, for some (possibly empty) index sequence iy, ..., im.

Proof. Induction on size(F') (cf. pcp_reduction.small_to_piped_term).
Basis Step: We have F' # z and F # y; for any i because the type of the corresponding
combinator is not unifiable with (o, 7). If F' = z the claim follows.
Inductive Step:
Case F = z2G1...G,, for some m > 1: We have I' k¢ Gy : (({[v1], [w1])) for some
substitution ¢ which using a +— ((e) impliesT' k¢ z Gy : (o) — ((e) — ((e). Therefore,
n < size(z G1) < size(F) <n. %
Case F =xGy...G,,: Wehave I' k¢ G : ¢/ — ¢/ — ¢ for some ¢’. However,
n < size(G1) < size(F') < n is a contradiction. 4
Case F = y; G for some i: We have I' ¢ G : (({0-v;, 7-w;)). By induction hypothesis
we have G = z>y;, >...>y;,, for some (potentially empty) index sequence i1, ..., 0.
Therefore, ' =x>y;, >...>y,;, >y
Case F = y; Gy ...G,, for some i and some m > 2: Wehave I'Fc Gy : 0/ — 0’ —
o’ for some ¢’. However, n < size(G2) < size(F') < n is a contradiction. 4 <
Next, we show that if @ — b — a is derivable, then there is a small derivation of an instance
of ([v1],w1) (cf. Lemma 24).

» Lemma 24. If|T'| by a — b — a, then T k¢ F : (({[v1], [w1])) for some substitution ¢ and
combinatory term F' such that size(F) < n.

Proof. Case analysis (cf. pcp_reduction.aba_to_small_viwl). |I'| by a — b — a implies
n<oo,ie I'ke H: o0 — 0 — o for some type ¢ and combinatory term H such that
size(H) = n.

Cases H =x or H =z or H =vy; or H=y; G: H cannot be typed by 0 -0 — 0. %
Case H =xzG,...G,, forsome m > 1: We have I'" ¢ G : ¢/ — ¢’ — ¢’ for some o’.
However, n < size(G1) < size(H) = n is a contradiction. %

2:7
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Case H = y; G ...G,, for some m > 2: We have I' k¢ G5 : 0/ — 0’/ — o’ for some o’.
Again, n < size(G2) < size(H) = n is a contradiction. 4

Case H = 2zG1...G,, for some m > 1: We have I' ¢ Gy : ((([v1], [w1])) for some sub-
stitution ¢ which proves the claim since size(G1) < size(H) = n. <

By construction, elements (v, w) € PCP,, are associated with terms of type ([v], [w]) (cf.
Lemma 25).

» Lemma 25. Letv,w € {a,b}*. If (v,w) € PCP,, then T F¢ xby;, by, >...>y;, : ([v], [w])
for some index sequence iy ...1i,.

Proof. Routine induction on n (cf. pcp_reduction.pcp_set_to_piped_term).

Basis Step: (v,w) € PCPy implies v = w. Using the substitution a — [v] = [w] we obtain
[ke @ : (o], [w]).

Inductive Step: (v,w) € PCP,; implies (vv;,ww;) € PCP,, for some | € {1,...k}. By
induction hypothesis I' F¢ x> y;, B yi, b ... > ys, : ([vv], [ww,]) for some index sequence
i1...1n. Using the substitution a — [v],b — [w] we have T" k¢ y; : ([vv], [ww]) —
([v], [w]). By (—E), we obtain the claim I' F¢ x>y, Dy, b ... > y;, Dy ([v], [w]). <«

Finally, we can prove the following key Lemma 26 (cf. pcp_reduction.aba_iff_pcp_set)
which relates membership of (v, w;) in some PCP,, and derivability of @ — b — a from |T'|.

» Lemma 26. We have [I'|Fy a = b — a iff (v1,w1) € PCP,, for some n > 0.

Proof. =>: Assume |I'| b3y @ — b — a. By Lemma 24 we have I' ¢ F : {({[v1], [w1])) for
some substitution ¢ and combinatory term F with size(F) < n. By Lemma 23 we have
F=2x>y; by, >...>y;, for some index sequence i ...1,. Finally, by Lemma 22 we have
(v1,wy1) € PCP,,.

<=: Assume (v1,w;) € PCP,. By Lemma 25 we have I' F¢ F': ([v1], [w1]) for some term
F'. Using an appropriate substitution, we obtain I' F¢ 2 F : a — b — a. |

Principality of Axioms |T|

In this subsection we inspect evidence that axioms |T'| are, in fact, principal by means
of examples. Moreover, we explore the correspondence between compositions of principal
inhabitants and solutions to the given PCP instance. Particularly, a composition of principal
inhabitants which shows at type level that the given PCP instance has a solution also
constructs and verifies the corresponding solution at term level.

Let us fix the following PCP instance

k| (vi, wi)|(v2, w2)|(vs, ws) [v1i w2 v v3 = w1 wy w1 ws
3| (ba, b) |(ab, aa) |(a, baa) |ba ab ba a = b aa b baa
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In this case, |T'| consists of the following five axioms

of = (a-vs,b-ws)
a

We utilize Haskell? to implement principal inhabitants of the above axioms. Further, we
use GHC’s built-in type inference to attest principality*. In the following code fragments
‘\f -> M represents the A-term ‘Af.M’ and ‘--comment’ marks a comment.

The following A-term pair,, is a principal inhabitant of o* and is implemented in the
subsequent Listing 1 together with its inferred principal type.

pair,, =M\ f. sy . Amake, . Amake,, . Azx.\y.
fz (f (iSyw (make, x) (make,, x)) (isyy (make,, y) (make, y)))

Listing 1 Principal Inhabitant of o*.

pair_eq = \f -> \is_vw -> \make_v -> \make_w -> \x -> \y ->
f x (£ (is_vw (make_v x) (make_w x)) (is_vw (make_w y) (make_v y)))

--inferred principal type
pair_eq
(t1 -> t1 -> t1)
=> (t2 -> t2 -> t1) -> (t1 -> t2) -> (t1 -> t2) -> t1 -> t1 -> ti1

Intuitively, f is used as conjunction and is,,,, make,, make,, are used to attest equality of v
and w. Following this intuition, the type e is inhabited by tautologies (e.g. the Haskell value
True), which leads to a principal inhabitant of 0% implemented in the following Listing 2.

Listing 2 Principal Inhabitant of o*.

check_ba_b = \pair -> \x -> \z ->
let £ = pair (\x1 -> \x2 -> x) (\v -> \w -> x)
(\x’> -> \vl1c2 -> \vicl -> x) (\x’ -> \wlcl -> x)

in pair
(\x1 -> \x2 -> f x1 x2) --and
A\v -=> \w -> £ (v (f x) £) (w £)) --is_vw
(\x’> -> \vic2 -> \vicl -> f x’ (f (v1c2 x) (vlcl x x))) --make_v
(\x’> -> \wilcl -> f x’ (wlcl x x)) --make_w
x --True
x —-True

3 https://www.haskell.org/
4 Although Haskell’s type system is more expressive than simple types, we argue that the additional
features play no role in the given examples.
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check_ba_b --inferred principal type
((p1t -> p1 -> pil)
-> (((p1 -> p1) -> (p1l -> pl -> p1) -> pl)
-> ((p1 -> p1 -> p1) -> pl) -> pl)
-> (p1t -> (p1 -> p1) -> (pl -> pi1 -> pl) -> pil)
-> (p1 -> (p1 -> p1l -> pl1) -> pl)
-> pl -> p1 -> p1l) -> pl -> p2 -> pi

Note that the 1et ... in construction in this case does not contribute to principality (replacing
all occurrences of £ by copies of its implementation does not change the principal type) and
is just syntactic sugar. In the above, f is used not only as conjunction but also to construct
inhabitants £ x of type ¢ — e (represents a) and £ of type ¢ — e — e (represents b). As
a result, v (£ x) £ is of type e iff v is of type [ba]. Since £ allows for arbitrary nesting, we
argue that the above principal inhabitant construction can be generalized for any pair of
words vy, w1.
Finally, we implement principal inhabitants of o}, c3, o} in the following Listing 3.

Listing 3 Principal Inhabitants of ¢, 0y, 0.

step_ba_b = \pair -> \f -> \is_vw -> \make_v -> \make_w -> \x -> \y ->
f (f x y) (£ (is_vw (make_v x) (make_w y))
(pair (\x1 -> \x2 -> f x1 x2)
A\v’ -> \w’ -> is_vw (v’ (f x) f) (w’> f)) --is_v’w’
(\x’> -> \v’c2 -> \v’cl ->
make v (f x’ (f (v’c2 x) (v’cl x x)))) —--v’
(\x’> -> \w’cl ->
make_w (f x’ (w’cl x x))) --w’
x y))

step_ba_b --inferred principal type
((t1 -> t1 -> t1)
-> (((t1 -> t1) -> (t1 -> t1 -> t1) -> t2)
-> ((t1 -> t1 -> t1) -> t3) -> t1)
-> (t1 -> (t1 -> t1) -> (t1 -> t1 -> t1) -> t2)
-> (t1 -> (t1 -> t1 -> t1) -> t3)
-> t1 -> t1 -> t1)
-> (t1 -> t1 -> t1) -> (t2 -> t3 -> t1) -> (t1 -> t2) -> (t1 -> t3)
=> t1 -> t1 -> t1

step_ab_aa = \pair -> \f -> \is_vw -> \make_v -> \make_w -> \x -> \y ->
f (f x y) (£ (is_vw (make_v x) (make_w y))
(pair (\x1 -> \x2 -> f x1 x2)

(v’ -> \w’ -> is_vw (v’ £ (f x)) (w’> (£ x) (f x)))

(\x’ -> \v’c2 -> \v’cl ->
make_ v (f x’ (f (v’c2 x x) (v’cl x))))

(\x’ -> \w’c2 -> \w’cl ->
make w (f x° (f (w’c2 x) (w’cl x))))

x y))

step_a_baa = \pair -> \f -> \is_vw -> \make_v -> \make_w -> \x -> \y ->
f (f x y) (f (is_vw (make_v x) (make_w y))
(pair (\x1 -> \x2 -> f x1 x2)

Av’ -> \w’ -> is_vw (v’ (£ x)) (w’> (£ x) (£ x) £))

(\x’ -> \v’cl ->
make_v (f x’ (v’cl x)))

(\x’> -> \w’c3 -> \w’c2 -> \w’cl ->
make w (f x’ (f (w’c3 x) (f (w’c2 x) (w’cl x x)))))

x y))

Similarly, to the principal inhabitant of 0%, we need to ensure that the principal type of
the first argument pair is suffixed by the given words. Now, we may (and have to) use the
additional arguments is_vw of type a — b — e and make_v, make_w of types @ — a and e — b.
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Using £ as conjunction and a way to construct inhabitants of character representations,
\v’ -> \w’ -> is_vw (v’ (f x) £) (w’ £) implements the principal inhabitant of (a-ba) — (b-
b) — . Having x of type , \x’ -> \v’c2 -> \v’cl -> make_v (f x’ (£ (v’c2 x) (v’cl x %)))
implements the principal inhabitant of @ — (a - ba). Again, we argue that the principal
inhabitant construction can be generalized inductively.

Knowing a solution to the above PCP instance, let us compose the given implementations
in the following Listing 4 to an implementation of a — b — a.

Listing 4 Inhabitant of a — b — a.

(1> xy =y x
k = pair_eq |> step_a_baa |> step_ba_b |> step_ab_aa |> check_ba_b
k :: pl -> p2 -> pl --inferred principal type

As expected, evaluating ‘k "Lazy_ Hello" undefined’ via GHC results in "Lazy, Hello", which
shows that the second argument undefined is not evaluated. For some higher-order pleasure,
the expression ‘k ((.)$(.)) "Ask the owl" (==) 2 (1+) 1’ evaluates (as expected) to True.

Interestingly, the above principal implementation of the given axioms has more computa-
tional meaning than just preserving an argument. Viewing True as the only inhabitant of e,
consider the following piece of code.

Listing 5 Composition of Inhabitants.

a = \x -> x
b =\x ->\y -> x && y
——e = a
is_a = \c -> (c True == a True) && (c False == a False)
--c == Db
is_b = \c -> (¢ True True == b True True)
&& (c True False == b True False)
&% (c False True == b False True)
&& (c False False == b False False)

make_ba = \x -> \c2 -> \cl -> x && (is_a c2) && (is_b c1)
make_b = \x -> \cl -> x && (is_b c1)

is_ba_b = \v -> \w -> (v a b) && (w b)

composition = pair_eq |> step_a_baa |> step_ba_b |> step_ab_aa
f = composition (&&) is_ba_b make_ba make_b
show_function_table = do

putStrLn ("f_,True,,True,,=," ++ (show (f True True)))

putStrln ("f,True,, False =" ++ (show (f True False)))
putStrLn ("f_ False, True, =," ++ (show (f False True)))
putStrln ("f_,False False, =" ++ (show (f False False)))

The terms a and b implement representations of characters a and b. Given a character
c, the function is_a (resp. is_b) extensionally verifies equality to a (resp. b). The func-
tions make_ba, make_b and is_ba_a construct and verify inhabitants of representations of the
corresponding words.

Using the solution to the given PCP instance we have that composition is of type

([ba], [b]) = (¢ — @ — @) — ([ba] — [b] — @) — (e — [ba]) — (e — [b]) > e — e —

and, therefore, £ is of type e — e — o. Displaying the function table of £ reveals that if
conjunction (&&) is the first argument of composition, then £ remains a conjunction. On closer
examination of the underlying implementation, the term £ True True evaluates to True by
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constructing the representation of the actual solution to the given PCP instance and verifying
the correctness of the constructed solution via pair_eq. Viewing |I'| as an intuitionistic
axiomatization of the corresponding PCP instance, this provides an additional twist to the
Curry-Howard isomorphism. The constructed A-term not only corresponds to the proof that
a formula is derivable, but actually solves the underlying problem on the term level.

Derivability froma — b — a

We conclude this section by the systematic observation that the condition {a — b — a} F¢ oy
for 1 =1...n is decidable. The key observation is that any formula derivable from a — b — a
is a prefixed instance of a — b — a (cf. Lemma 27).

» Lemma 27.
Ha—=b—allu={o1— ... 20,2 0pt1 =T = 0p1|n>0andoy,...,0n11,7 € T}

Proof. D: n-fold use of Lemma 20 starting with {a = b — a} by 0py1 = 7 — opt1-
C:Let I'={z:a—b— a}. Assume I' ¢ F : o such that size(F') is minimal. We show
the claim by induction on size(F).
Case F = x: We have 0 = ((a — b — a) for some substitution ¢, showing the claim.
Case F = o G: We have 0 = ((b — a) and T' ¢ G : {(a) for some substitution ¢. By
the induction hypothesis {(a) =01 — ... = 0, = 0py1 = T — opy1 for some n >0
and 01,...,0,41,7 € T. Therefore, c =({(b — a) =((b) > 01 = ... = 0y = Opt1 —
T — Op+1, which shows the claim.
Case F=2 Gy...G; forsomel > 2: Wehave'lFeca:m = ... o1 > 0=((a—
b — a) for some substitution ¢, therefore 74 = 73 — ... =& 77 — 0. Additionally,
we have I' F¢ G; : 7; for i = 1...1. As aresult, I' F¢ Gy Gs3...G; : o with
size(G1 Gs ... G)) < size(F) which contradicts minimality of size(F). <

As a result of the above syntactic characterization by Lemma 27 of formulae de-
rivable from a — b — a, it is decidable in linear time whether for a given formula
o we have 0 € [{a —b— a}]y. This contrasts PSPACE-completeness to decide o €
{a—=b—a,(a—=b—c)— (a—=b)— (a— )}y [18].

4 Recognizing Axiomatizations of a — a

In this section, we record that axiomatizations of the Hilbert-style calculus containing only
the axiom a — a are recognizable in linear time. The key observation is that you cannot
meaningfully compose axioms that are instances of a — a. Therefore, the only derivable
formulae are instances of the given axioms (cf. Lemma 28).

» Lemma 28. Given o4,...,0, € T we have

o1 = 01,00 = ontlu = U{C(ai — 0;) | € is a substitution}

i=1

Proof. D: holds by instantiation of o; — o; for i =1...n.
C:LetI'={21:01 = 01,...,&p : 0y = op}. Assume I' F¢ F : o such that size(F) is
minimal.
Case F' = x; for some ¢ € {1,...,n}: We have o = ((0; — 0;) for some substitution
¢, which shows the claim.
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Case F =2; G1...G, forsome i € {1,...,n}: Wehave'bFeca;:m — ... > 1 —
o = ((0; — o;) for some substitution (, therefore 71 = » — ... = 77 = 0. Addi-
tionally, we have I' F¢ G; : 7 for i =1...1. Asaresult, ' ¢ G1 G>...G; : o0 with
size(G1 Gs ... G)) < size(F) which contradicts minimality of size(F). <

As a side note, the above proof of Lemma 28 implies that the set of minimal proofs from
axioms {0y — 01,...,0, — 0, } is of finite cardinality n.

» Corollary 29. [{a — a}]y ={r — 7|7 € T}.
» Lemma 30. If [A]ly = [{a — a}]n, thenb— b€ A for some b € A.

Proof. Since [{a — a}]y 2 [A]y implies [{a — a}]y 2 A we have A = {0y = 01,...,0p —
opn} for some o1,...,0, € T by Corollary 29. By Lemma 28 we obtain [A]y = J;_,{¢(0; —
0;) | ¢ is a substitution}. Due to [{a — a}]x C [A]y we obtain a — a = {(o; — o;) for some
i €{1,...,n} and some substitution ¢, which holds iff o; = 0; =b — b for some b € A. <«

» Corollary 31. We have [Aly =[{a » a}]n if AC{oc —-0|oc €T} andb—be A for
some b € A.

As a result of Corollary 31, recognizing axiomatizations of a — a is decidable in linear time.

5 Recognizing Axiomatizations of a — b — b

In this section, we extend linear time recognizability to axiomatizations of the Hilbert-style
calculus containing only the axiom a — b — b. Similarly to @ — a, meaningful logical
compositions of instances of @ — b — b are limited (cf. Lemma 32).

» Lemma 32. [{a b= bl y={c—>7—=>7|0o,7€eT}U{r—>71|7€T}

Proof. D: Instantiation resp. derivability of a — a.
C: LetI'={x:a—b— b}. Assume I' ¢ F': o such that size(F') is minimal.
Case F' = x: We have 0 = ((a — b — b) for some substitution ¢, which shows the claim.
Case F =2 G: Wehave ' F¢ 2 : 7 = 0 = ((a — b — b) for some substitution (,
therefore o = ¢/ — o', which shows the claim.
Case F=a2 G;...Gywherel >2: Wehave'bFez:mqp — ... > 11 = 0 =((a =

b — b) for some substitution ¢, therefore 73 = 73 — ... = 7, = o. Additionally,
we have I' ¢ G; : 7 for i = 1...1. As aresult, I' ¢ G2 G3...G; : o with
size(G2 Gy ... G)) < size(F) which contradicts minimality of size(F’). <

As a side note, the above proof of Lemma 32 implies that the set of minimal proofs starting
from the axiom a — b — b is finite (in fact of cardinality 2).

Using the above observation, we can characterize axiomatizations of a — b — b syntactic-
ally (cf. Lemma 33).

» Lemma 33. We have [Aly = [{a = b= b}y iff c > d — d € A for some ¢,d € A and
AC{o—=wT1—=>71|o7eTU{r—>r71|7eT}.

Proof. <=: 0 — 7 — 7 and 7 — 7 are derivable from ¢ — d — d for any 0,7 € T.
=>:Dueto[{a >b— b}y 2Awehave AC{oc w7 — 7|0, 7€TU{r =7 |7€T}
by Lemma 32. Due to [{a = b — b}y C [A]y we obtain A k¢ a — b — b. By case
analysis (similar to the proof of Lemma 32) the minimal derivation of A k3 @ — b — b is an
instantiation of some ¢ =7 — 7 € A i.e. a > b— b= (0 — 7 — 7) for some substitution
¢. Therefore, 0 - 17— 7 =c— d — d for some c,d € A. <

2:13
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As a result of the above Lemma 33, recognizing axiomatizations of a — b — b is decidable
in linear time. One reason why recognizing axiomatizations of a — a and a — b — b is trivial
is that the set of minimal proofs in the corresponding calculi is finite, which is not the case
fora — b — a.

6 Conclusion

We have shown that even under two severe restrictions subintuitionistic propositional calculi
have undecidable derivability. In particular, it is undecidable whether from a given set of
axioms (all of which are principal and derivable from a — b — a) the formula a — b — a is
derivable. In contrast, with respect to the formula a — b — b derivability is decidable in
linear time. Our result sheds some light on the lower end of the spectrum of propositional
calculi. In future, it may be of systematic interest to inspect (sets of) axioms that correspond
to principal types of other well known combinators such as S.

Under the Curry-Howard isomorphism, our result is related to type-based composition
synthesis. Particularly, even under the the assumption that the given building blocks are
‘natural’ (in the sense of principality) and ‘plain’ (in the sense of their types are derivable from
the axiom @ — b — a) synthesis remains undecidable. The research program in type-based
composition synthesis outlined in [15] is based on bounded variants of the inhabitation
problem in combinatory logic [8].

Additionally, the reduction from the Post correspondence problem proving of our main
result is formalized in the Lean theorem prover.
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—— Abstract

In previous work it has been shown how to generate natural deduction rules for propositional
connectives from truth tables, both for classical and constructive logic. The present paper extends
this for the constructive case with proof-terms, thereby extending the Curry-Howard isomorphism
to these new connectives. A general notion of conversion of proofs is defined, both as a conversion
of derivations and as a reduction of proof-terms. It is shown how the well-known rules for natural
deduction (Gentzen, Prawitz) and general elimination rules (Schroeder-Heister, von Plato, and
others), and their proof conversions can be found as instances. As an illustration of the power of
the method, we give constructive rules for the nand logical operator (also called Sheffer stroke).

As usual, conversions come in two flavours: either a detour conversion arising from a detour
convertibility, where an introduction rule is immediately followed by an elimination rule, or a
permutation conversion arising from an permutation convertibility, an elimination rule nested
inside another elimination rule. In this paper, both are defined for the general setting, as con-
versions of derivations and as reductions of proof-terms. The properties of these are studied as
proof-term reductions. As one of the main contributions it is proved that detour conversion is
strongly normalizing and permutation conversion is strongly normalizing: no matter how one
reduces, the process eventually terminates. Furthermore, the combination of the two conversions
is shown to be weakly normalizing: one can always reduce away all convertibilities.
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1 Introduction

Natural deduction rules come in various forms, where the tree format is the most well-known.
One either puts formulas A as the nodes and leaves of the tree, or sequents I' = A, where T’
is a sequence or a finite set of formulas. Other formalisms use a linear format, using flags or
boxes to explicitly manage the open and discharged assumptions.

We [7] use a natural deduction in sequent calculus style, where in addition all rules have
a special form:

I'-A; ... ... T AjFD
I'+D
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So if the conclusion of a rule is I' - D, then the hypotheses of the rule can be of one of two

forms:

1. I' A; = D: we still need to prove D from I', but we are now also allowed to use A; as
additional assumption. We call A; a case.

2. T'F A;: in stead of proving D from I', we now need to prove A; from I'. We call A; a
lemma.

Given the restricted format of the rules, we don’t have to give I' explicitly, as it can be
retrieved from the other information in a deduction. So, the deduction rules are presented
without I', in the following format

A ... ... A;bD
FD

In [7] we have shown how to derive natural deduction rules for a connective form its
definition by a truth table, both for the classical and the intuitionistic case. In that paper,
we have shown that the intuitionistic rules are indeed constructive by providing a Kripke
semantics. In the present paper we provide a proof-theoretic study of the natural deduction
rules for the intuitionistic case. We define a notion of convertibility and conversion for the
general connectives, which we analyze by interpreting derivations as proof-terms. So we
extend the Curry-Howard isomorphism, that interprets formulas as types and derivations as
terms, to include all these new intuitionistic connectives.

It turns out that the standard format for the deduction rules we have chosen (as described
above) is very suitable for defining convertibilities and conversion in general, for giving a
term interpretation to derivations and for defining reductions on these proof-terms that
correspond with conversion (both detour conversion and permutation conversion). The format
of our rules also allows the transformation of other formalisms, like the very well-known
ones by Gentzen and Prawitz [6, 14] but also more recent ones by Von Plato [23], in terms
of ours. This transformation we will define on the proof-term level and we will show how
detour conversion (the elimination of a direct convertibility, an introduction rule immediately
followed by an elimination rule) is preserved by the translation.

Standard questions about logic are consistency and decidability. We prove that both
hold (in general for our connectives) by proving weak normalization for the combined
process of detour conversion and permutation conversion. A permutation conversion operates
on a permutation convertibility, which arises when an elimination rule blocks a detour
convertibility for another connective; in that case one has to permute one elimination
rule over another. Weak normalization states that for any derivation (proof-term) we can
eliminate convertibilities in such a way that eventually no convertibilities are left. Using this
one can prove the sub-formula property and consistency and decidability. We prove weak
normalization for the proof-terms by studying reduction of proof-terms.

The interest of our work lies in the fact that the natural deduction rules can be defined
and analyzed in such a generic way, capturing very many known instances of deduction
rules for intuitionistic logic, but also new deduction rules for new connectives. The key
concepts that make this work are our general rule format (described above) and the fact that
our system provides natural deduction rules for each connective in isolation: rules for one
connective do not use another connective. We will illustrate this by giving the nand operator
as an extended example. We describe its constructive derivation rules, as they arise from the
truth tables. These rules are self-contained, so they only refer to nand itself, and we show
how to interpret intuitionistic proposition logic in the logic with only nand. We also give the
proof-terms and reductions for nand.
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1.1 Related work and contribution of the paper

Natural deduction has been studied extensively, since the original work by Gentzen [6], both
for classical and intuitionistic logic. Overviews can be found in [22] and [12]. Also the
generalization of natural deduction to include other connectives or allow different derivation
rules has been studied by various researchers. Notably, there is the work of Schroeder-Heister
[17], Read [16], Tennant [21], Von Plato [23, 12], Milne [11], Francez and Dyckhoff [4, 3] that
is related to ours. Schroeder-Heister studies general formats of natural deduction where also
rules may be discharged (as opposed to the normal situation where only formulas may be
discharged). He also studies a general rule format for intuitionistic logic and shows that
the connectives A,V,—, L are complete for it. Von Plato, Milne, Francez and Dyckhoff,
Read and Tennant study “general elimination rules”, where the idea is that elimination
rules arise naturally from the introduction rules, following Prawitz’s [15] inversion principle:
“the conclusion obtained by an elimination does not state anything more than what must
have already been obtained if the major premise of the elimination was inferred by an
introduction”. The elimination rules obtained have the same flavor as the elimination rules
we derive from truth tables: the conclusion of elimination ® is not a sub-formula of ®, but a
general formula D, where there are additional hypothesis that connect ® and D. For the
standard intuitionistic connectives the general elimination rules are quite close to ours, but
A-elimination is slightly different. Von Plato [23], Lopez-Escobar [10] and Tennant [21] study
the standard intuitionistic connectives with general rules.

A difference is that we focus not so much on the rules but on the fact that we can define
different and new connectives constructively. In our work, we do not take the introduction
rules as primary, with the elimination rules defined from them, but we derive elimination
and introduction rules directly from the truth table. Then we optimize them, which can be
done in various ways, where we adhere to a fixed format for the rules. Many of the general
elimination rules, for example for A, appear naturally as a consequence of our approach of
deriving the rules from the truth table.

The idea of deriving deduction rules from the truth table also occurs in the work of Milne
[11], but in a slightly different way: from the introduction rules, a truth table is derived
and then the classical elimination rules are derived from the truth table. For the if-then-else
connective, this amounts to classical rules equivalent to ours in [7], but not optimized. We
start from the truth table and derive rules for intuitionistic logic.

As remarked, the main contribution of this paper is a proof-theoretic analysis of our
system of generalized natural deduction via the Curry-Howard isomorphism that interprets
derivations as proof terms and conversions as reductions. We show that many known
conversions and reductions are captured by our approach and we prove general normalization
results. These is a lot of related work on the Curry-Howard isomorphism that our work rests
on, for which we refer to [18, 8].

The present paper builds on research reported in [7]. To make this paper self-contained,
we include the definitions and some basic results and examples from [7]: Section 2 repeats the
main definitions of [7] in slightly expanded form, where Section 2.1 adds the new example of
the nand-connective (Sheffer stroke), which is worked out in detail, especially the connection
between nand-logic and intuitionistic proposition logic. Section 3 defines detour conversion
and permutation conversion on derivations; the second is new. Section 4 defines the Curry-
Howard isomorphism for our general natural deduction format and gives (general) proof
terms for natural deductions and reduction rules on them. Section 5 shows how the general
rules relate to so called “optimized” rules, which are the ones that are known from the
literature for natural deduction and for proof-terms. Section 6 proves normalization results
for the calculi of proof-terms. Sections 4, 5, 6 are all new; Section 2.1 is largely new and
Section 3 is partially new.
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2 Deriving constructive natural deduction rules from truth tables

To make this paper self contained and to fix notions and notations, we recap the main
definitions from [7] and explain in detail how the elimination and introduction rules for a
connective are derived from its truth table. The elimination rules have the following form. ®
is the formula we eliminate. We have ® = ¢(A41, ..., A,) where ¢ is a connective of arity n
and n = k + £. The formula D is arbitrary.

F® FA, ... FA, AyFD ... A,bD

FD

el

So, Aiy,. .., Aiy s Ajy .., Aj, are the direct subformulas of ® = ¢(A4;,...,A,), where some
appear as “lemma” and others as “case” in the derivation rule. The (intuitionistic) introduc-

tion rules have the following form. Again, ¢ is a connective of arity n, ® = ¢(Ay,..., A,)
and n = k + £. (Of course, every rule has its own specific sequence i1, ..., ig, j1,- .- Je-)
FA, ... FA;, A F® .. A ED
in
Ho

For a concrete connective ¢, we derive the elimination and introduction rules from the
truth table, as described in the following Definition, taken from [7].

» Definition 1. Given an n-ary connective ¢ with a truth table ¢, (with 2" rows). We write
v =c(p1,.-.,Pn), where p1,...,p, are proposition letters and we write ® = ¢(41,...,A,),
where Aq,..., A, are arbitrary propositions. Each row of ¢, gives rise to an elimination rule
or an introduction rule for ¢ in the following way.

pro polclprpn) P2 o AjGfa;=1). .. ...AiFD(ifai:O)...l
ai ... Qap 0 LD €
P11 -.. Dn C(pl,,,,7pn) ..."Aj(ifbj:l)... AlF‘I)(lbeIO)

= in
by ... b, 1 &

If a; = 1in t., then A; occurs as a lemma in the rule; if a; = 0 in ¢, then A; occurs as a case.
The rules are given in abbreviated form and it should be understood that all judgments can
be used with an extended hypotheses set I". So the elimination rule in full reads as follows
(where T is a set of propositions).

I'=D

el

In an elimination rule, we call = ® the major premise and the other hypotheses of the rule
we call the minor premises.

» Definition 2. Given a set of connectives C := {¢1,...,¢,}, we define the intuitionistic
natural deduction system for C, IPC¢, by the following derivation rules.
The axiom rule

axiom (if A €T)
'-A
The elimination rules for the connectives in C and the intuitionistic introduction rules for
the connectives in C, as given in Definition 1.
We write I' ¢ A if I' - A is derivable using the derivation rules of IPCe.
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» Example 3.
A B|AVB|AAB|A—B| -4
0 0 0 0 1 1
0 1 1 0 1 1
1 0 1 0 0 0
11 1 1 1 0

1. From the truth table for V we derive the following intuitionistic rules for V. We label the
rules by the relevant entries in the truth table.

FAVB AFD B+D AFAVB FB
V-el V-ingy
FD FAVB
FA B+-AVB FA FB
\/—in10 —\/—inn
HFAVEB FAvVB

These rules are all intuitionistically correct, as one can observe by inspection. We will
show that these are equivalent to the well-known intuitionistic rules. We will also show
how these rules can be optimized and be reduced to 1 elimination rule and 2 introduction
rules, which are the well-known ones.

2. From the truth table for A we derive the following intuitionistic rules for A, 3 elimination
rules and one introduction rule.

FAAB AFD BFD FAAB AFD FB
A-€lgo A-eloy
FD FD
FAAB FA BFD FA FB
N-elqg ——— A-in
FD HFAAB

These rules are all intuitionistically correct, as one can observe by inspection. We will
show that these are equivalent to the well-known intuitionistic rules. We will also show
how these rules can be optimized and be reduced to 2 elimination rules and 1 introduction
rule, which are the well-known ones. The elimination rules for A have a bit the flavor of
the so called “general elimination rules” of Schroeder-Heister [17] and Von Plato [23], in
the sense that we don’t derive A, respectively B, from A A B, but an auxiliary conclusion
D is derived. This rule, also called the parallel elimination rule by Tennant [21], is as
follows.

FAANB  ABFD
D

We will show that this rule can be derived from ours. See Definition 45 and Lemma 46,
where this is shown using proof-terms.
3. From the truth table for = we also derive the following rules for —, one elimination rule

A-elP?*

and one introduction rule.
AF-A F-A FA
—-in — el

- A D

The elimination rule is familiar. For the introduction rule: to prove —A, one “only” has
to prove = A from A, which may seem limited. The traditional —-in rule is the following.

AF-B AFB
- -4

—-in

TYPES 2017
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The two —-introduction rules are equivalent, which we will show in detail (using proof
terms) in Lemma 53. To derive —-in® from —-in one also needs —-el, so we view —-in as
more primitive then the traditional rule —-in®.

As an example of the intuitionistic derivation rules for = we show that A - =—A is

derivable:
A, -AF—-A A -AF A |
—-e
A, —-AF —-A )
—-in
AF-—A
4. From the truth table for — we derive the following intuitionistic rules for —.
AFA—-B BFA—B FA—B FA B+D
—-ingg —-el
FA—B D
AFA—- B FB FA FB
FA—B HFA— B

These rules are all intuitionistically correct, as one can verify by inspection. For example,
for —-ing;, observe that if A+ A — B, then - A — B, so the second hypothesis is
superfluous. Similarly for —-inj;, the first hypothesis is superfluous. We will show that
these rules are equivalent to the well-known intuitionistic rules. We will also show how
these rules can be optimized and be reduced to 1 elimination rule and 2 introduction
rules. These are not the well-known ones, because the well-known —-in-rule does not fit
into our scheme:

A+ B
—_—
FA— B

-in
In this rule, both the conclusion is changed and an assumption (case) is added. In our
system, each rule has the property that a hypothesis either adds an assumption or changes

the conclusion (while retaining the same set of assumptions), and this “or” is exclusive.

We continue this section with some more basic properties and notions, most of which
have been described briefly in [7]. We also introduce some further notation.

In the logic IPCe (Definitions 1 and 2) we can freely reuse formulas and weaken the
context, so the structural rules of contraction and weakening are wired into the system.
Because weakening is used a lot, we formulate it as a Lemma. The proof is an immediate
induction on the derivation.

» Lemma 4 (Weakening). If I' = A with derivation Il and T' C A, then A + A with
derivation II.

In natural deduction in tree format, the elimination of a detour convertibility involves
composition of derivations: the placing of one derivation on top of another, replacing a
discharged leaf A on top of a derivation tree (an assumption) by a derivation of A. In
natural deduction in sequent calculus style, this amounts to replacing an axiom I'; A + A,
that appears as the leaf of a derivation tree, by a derivation of A - A, where A C I'. We
first define more precisely how the composition of derivation works in natural deduction in
sequent calculus style.

» Lemma 5. If A,pF 4, and T+, then T, A F 9

Proof. By induction on the derivation of A, ¢ F 4, using weakening (Lemma 4). <
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To be a bit more precise about what happens with the derivations in the proof of Lemma
5, let IT be the derivation of A, ¢ 4. Then, due to the format of our rules:

The only place in IT where the hypothesis ¢ is actually used is at a leaf of II, in an

instance of the (axiom) rule.

Contexts can only grow when we walk upwards in a derivation, so these leaves are of the

form A, p I ¢ for some A’ D A.
We replace this leaf by 3, the derivation of I' F . Due to weakening, this ¥ is also a
derivation of ', A’ I ¢, so II with the leaves of the form A’, ¢ F ¢ replaced by X yields a
correct derivation of I', A F .

» Notation 6. IfII is a derivation of A, =1 and X is a derivation of T'F ¢, then we have
a derivation of I') A+ 1 that looks like this:

> >

Fl;gp FI;Lp
I
T,AF

So in 11, every application of an (aziom) rule at a leaf, deriving A’ b ¢ for some A’ D A is
replaced by a copy of a derivation X, which is also a derivation of A',T I .

The fact that we have weakening supports the following convention.

» Convention 7. In examples, to simplify derivations we will often use the following format
for an elimination rule (and similarly for an introduction rule).

FO}_(I) F]}_AJ (zfajzl) FZ,A,FD(Zf(IZZO)
Up_oTx b D

el

This prevents us from having to copy the full T' from the conclusion to the hypotheses in a
rule; we can limit ourselves to the parts of T that we need for that particular branch in the
derivation.

We now recall from [7] two lemmas that allow to reduce the number of deduction rules:
some rules can be taken together and one or more of the hypotheses can be dropped. For

completeness, we give these lemmas again here (Lemma 9 and Lemma 12), with their proofs.

First, we motivate Lemma 9 by looking at the example of the rules for A (Example 3).

» Example 8. From the truth table we have derived the following 3 intuitionistic elimination
rules for A.
FAAB AFD B+D FAAB AFD FB

C D /\—6100 - D /\—6101

FAAB FA BED

D /\—6110

These rules can be reduced to the following 2 equivalent elimination rules. The index in the
rule indicates where it originates from: A-ely  is the combination of A-elpg and A-elp;.

FAAB AFD FAAB B+FD

N-el A-el
- D - - D -0

3:7
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It can be shown that these sets of rules are equivalent. Here we only show the derivability
of the A-ely  rule from the rules A-elpg and A-elp;. As usual, for notational simplicity we
suppress the context I'. Suppose we have derivations of H A A B and of A+ D. Then we
have the following derivation.

BFAAB B,AFD BFB
FAANB  AFD B+ D
D

/\-6101

/\-eloo

Note that the third and fourth hypothesis come from the first and second through weakening,
and the fifth hypothesis is the axiom rule

The general method here is that we can replace two rules that only differ in one hypothesis,
which in one rule occurs as a lemma and in the other as a case, by one rule where the hypothesis
is removed. It will be clear that the I'’'s above are not relevant for the argument, so we will
not write these.

» Lemma 9. A system with two derivation rules of the form

FA ...+ A, Bi+D...B,+-D AFD FA ...FA, FA Bi+-D...BytFD

=D FD
is equivalent to the system with these two Tules replaced by

FA ... FA, Bi+-D ... B, D
FD

Proof. The implication from bottom to top is immediate. From top to bottom, suppose we
have the two given rules. We now derive the bottom one. Assume we have derivations of
FA,...,kA,,Bi+D,..., B, b D. We now have the following derivation of - D.

AFA; ... AF A, AFA ABVFD...ABn+D
FA ...FA, BiFD...Bn+FD AFD
D

<

Lemma 9 can be applied to elimination and introduction rules. An application to
elimination rules is given in Example 8. We now give two applications to introduction rules.

» Example 10. From the truth table we have derived the following 3 intuitionistic introduc-
tion rules for V.
AHAVB FB FA BFAVB FA FB

V-in, V-in — V-in
AV B ol AV B 10 AV B M

Using Lemma 9, these rules can be reduced to the following 2 equivalent introduction
rules. (We could call V-inl also V-in_;, but we use a more informative and standard name:

“in-left”.)
FA B
—— V-inl ——— V-inr
FAVB FAVB

» Example 11. Similar to V, we can optimize the introduction rules for —. From the truth
table we have derived the following 3 intuitionistic introduction rules for —.
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A-rA—B B-FA—B A-rA—B FB FA FB
—-ingg —-inp1 ——— —-injg
FA— B FA—B FA—B

Using Lemma 9, these rules can be reduced to the following 2 equivalent introduction rules.

A A— B - B
—-in, < ———— —-iny

FA— B FA— B

It can easily be shown that the rules —-in, and —-in; together are equivalent with the
well-known —-in:

A+ B
FA— B

—-in

NB. To derive —-in, from —-in, one also needs —-el.

As —-in does not conform with our format for rules, we will be using —-in, and —-in,
as our basic rules and treat —-in as a defined rule, the composition of first —-in, and then
—-ing,.

Another optimization we can perform is to replace a rule which has only one case by a
rule where the case is the conclusion. To illustrate this: the simplified elimination rules for
A, N-elp_ and A-el o have only one case. The rule A-ely_ can thus be replaced by the rule
A-ell, which is the usual left projection rule, A-elimination-left.

FAAB AFD FAAB
N-elg —— AN-ell
FD - FA

There is a general Lemma stating this simplification is correct.

» Lemma 12. A system with a derivation rule of the form to the left is equivalent to the
system with this rule replaced by the rule on the right.

FA ... FA, B+D FA ... FA,
FD FB

Proof. The implication from left to right is immediate. From right to left, assume we have
derivations of - Ay,...,F A,. Then, by the rule to the right, we have I' - B. Now assume
we also have a derivation of B F D. By Lemma 5, we also have a derivation of ' D. <«

» Definition 13. The standard derivation rules for the intuitionistic propositional connectives
A,V,—,—, L and T are given below. These rules are derived from the truth tables and
optimized following Lemmas 9 and 12. We have seen most of the rules in previous Examples,
except for the rules for T and L, which are derived immediately from Definition 1. The
system with these connectives and rules we will call intuitionistic proposition logic and if we
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want to be explicit we write I' ; A for derivability in this system.

A B FAAB FAAB
—— A-in — A-ell —— A-elr
FAAB HA - B
FA FB FAVB ARD BFRD
—\/—il’ll —\/—inr \/—el
FAVB FAVB ~D
AFA— B FB FA—-B FA
— —in, — iy _ el
FA—- B FA— B B
AF-A F-A FA T L
—-in —_ el F - —— l-el
F-A D

2.1 Three larger examples

As examples we look in more detail at two ternary connectives and one binary connective.
The ternary connectives we treat are if-then-else, the “if-then-else” connective, and most,
the ternary connective that is true if at least 2 of the arguments are true. These have been
discussed in finer detail in [7], notably the connective if-then-else. The binary connective
that we study at the end of this section is the nand, written A 1 B for nand(A, B). It is
also known as the Sheffer stroke, the well-known connective that is functionally complete
classically, where A T B expresses =(A A B).

The truth tables of most and if-then-else are as follows, where we denote if A then B else C
by A—»B/C.

A B o most(A, B, C) A—B/C
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

From the lines in the truth table of A—B/C with a 0 we get the following four elimination
rules.

HA—-B/C A+D BvD CFD HA—-B/C ArD +B CkD
FD FD

FA—-B/C +A BFD CFD HA—-B/C +A BFD FC
FD FD

Using Lemmas 9 and 12, these can be reduced to the following two. (The two rules on
the first line reduce to else-el, the two rules on the second line reduce to then-el.)

FA—-B/C A+-D CFHD FA—-B/C FA
else-el then-el
D B
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These are not the only possible optimizations: the two rules on the left can also be combined
into an “if-el” rule:

+rA-B/C B+FD CFD
FD

From the lines in the truth table of A—B/C with a 1 we get the following four introduction
rules:

if-el

A+ A—-B/C BrA—B/C FC AFA-B/C +B +C
FA-B/C FA-B/C
A +B CFrA-B/C FA B FC
FA-B/C FA—B/C

Using Lemmas 9 and 12 can be reduced to the following two. (The two rules on the first
line reduce to else-in, the two rules on the second line reduce to then-in.)

ArFA-B/C FC FA +B
else-in ———— then-in

FA-B/C FA-B/C

Again, these are not the only possible optimizations: the two rules on the right can also
be combined into an “if-in” rule:

FB FC
—— ifin
FA-B/C

In [7], we have studied the if-then-else connective in more detail, and we have shown
that if-then-else, together with T and L is functionally complete: all other constructive
connectives can be defined in terms of it.

From the lines in the truth table of most(4, B,C) with a 0 we get the following four
elimination rules.

- most(A4,B,C) A+D BFD CFD Fmost(4,B,C) ArD BFD FC
-D D

- most(A,B,C) A+D +B CFD Fmost(4,B,C) +FA BFD CFD
-D FD

Using Lemmas 9 and 12, these can be reduced to the following three. If we would follow
the naming conventions that we introduced earlier, we would have most-el; = most-elgg
most-ely = most-ely o and most-el3 = most-el o9, but we will not pursue that naming here.

F most(A,B,C) AFD BFD Fmost(A,B,C) AFD CFD
most-el; most-ely
D F B

- most(4,B,C) B+D CFD
- B

most-els

From the lines in the truth table of most(4, B,C) with a 1 we get the following four
introduction rules:

AFmost(A,B,C) B +C FA BFmost(A,B,C) FC
F most(A, B, C) F most(A, B, C)

FA B CF most(4,B,C) FA FB FC
F most(A, B, C) F most(A, B, C)
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Using Lemmas 9 and 12 can be reduced to the following three.

FA +B FA FC FB FC
most-ing —————— most-iny —————— most-ing

F most(4, B, C) F most(4, B, C) F most(A4, B, C)

The truth table for nand(A, B), which we write as A 1 B is as follows.

A B|AtB
0 0 1
0 1 1
1 0 1
11 0

From this we derive the following 3 introduction and 1 elimination rule

AFAtB BFA1B AFAtB  +B
T-ingo P-ingy
FA1B A1 B
FA BFATB FATB HA FB
T-inyg el
A1 B - D

The three introduction rules can be combined to two rules, so our optimized set of
deduction rules for nand consists of three rules. We call this nand-logic.

» Definition 14. The logic with just the connective nand and the three derivation rules
below we define as nand-logic. We denote derivability in this logic by I' -4 A.

AFATB BFATB FAtB +HA +B
—— M~inl —— t-inr el
AT B FATB D

We can define the usual connectives of intuitionistic proposition logic (Definition 13) in
terms of nand in the usual way. This gives rise to an embedding of intuitionistic proposition
logic into the nand-logic.

» Definition 15.

A = AT A
AVB = (AtA)1 (BT B)
AAB = (A1B)t(A1B)
A->B = A1 (B1B)

This gives rise to the following interpretation of intuitionistic proposition logic into nand-logic.

pl = ==p for p proposition letter
(~A)T = =Ar
(AvB) = ATV B!
(AANB)T = ATAB!
(A= B! = AT B!

This interpretation extends straightforwardly to sets of propositions.
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As a side remark, the translation of a proposition letter p could also be chosen to be p in
stead of -p. Then the soundness statement below (Proposition 17) requires an additional
double negation: If I' ; A, then I'T -4 <+ AT, The connective 1 is very much a “negative
connective” and the choice of ~-p as translation of p renders all formulas AT negative, so
the double negation can be avoided.

Before proving the soundness of the interpretation we give some auxiliary lemmas.

» Lemma 16. In nand-logic, we have the following.
1. For arbitrary propositions A and B,

~5(A1B)F AT B,
2. For every A,
S94A F A
3. For every proposition P from intuitionistic proposition logic,
~=PT - PT.
4. For arbitrary propositions A and B,
IfT' A+ B then I')-B F - A.

Proof. The following proves =(A1 B)F A1 B. Here ' = -~(A 1 B), A, B, A1 B and the
last 1-in rule denotes a successive application of 1-inl followed by {-inr. Finally, the lowest 1-el
has one premise more, which is an exact copy of the derivation of ~-(A + B), A, B+ <(A 1 B)
that is given.

'-At+B TF+A TFB

el
“S(A1B).ABAIBI 5A1B)
(A1 B),A,BF ~5(A1B) (A1 B),A,BF (A1 B) frin 1
“(A1B),ABFA1B e
T-in

~%(A1B)FA1B

So, +54A F 4 A follows immediately, and similarly +=PT - PT for every proposition P from
intuitionistic proposition logic.

Now, assuming that I'; A - B, we can make the following derivation of I, =B F - A, using
the fact that I', BT B, A+ B by weakening.

I,Bt+B,A+BtB T,BtB,A+B T,BtB,A+B
I,B1B,AFATA
I,BtBFATA

T-el

T-in
<

We can now prove the soundness of the interpretation of intuitionistic proposition logic
into nand-logic.

» Proposition 17. IfT'+; A, then T'T 4 AT,

Proof. The proof is by induction on the derivation of I' F; A, so we have to show that the
rules of intuitionistic proposition logic are sound inside nand-logic (after interpretation). We
use Lemma 16, notably case (4), which we indicate explicitly in the derivations.
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= —-in: we show that —-in of Definition 13 is derivable.

AFATA
—— in
AFATA
= —-el: we show that —-el of Definition 13 is derivable.
FATA FA FA

FD
= V-in: we show that A -+ A V B is derivable.

AJATAFATA AJATAFA  AJATAFA
A ATAF (ATA) T (B1B)
AF (A1 A)1(B1B)
= V-el: we show that the following rule is derivable (which suffices).
HFAVB AFD B+ D
F-=D

T-el

T-el

T-inl

AFD BEFD
~(AtA)1(B1B  Diprata ™ DiprBin
DtDF(D1T D)t (D1 D)
= (D1 D)t (D1D)
= A-el: we show that A A B b4 =54 is derivable.
ATAFATA AFA
A+ A A AT B
AABF (A1 B)1 (A1 B) A+ AFATB
AAB, AT AF A
AAB,ATAF (AT A) T (AT A)
AABF (AT A)T(ATA)

= A-in: we show that the following rule is derivable (which suffices).

6(4)

T-el

T-inl

T-el

T-inl

T-el

16(4)

T-inl

A - B
FAAB
AtBFATB HA l—BT '
-e
AtBF(A1B)1(A1B) .
T-inl

F(ATB)1T(A1B)
= —-in: we show that the following rule is derivable (which suffices).
AF B
FA-S B
BtBFB1B A+ B A+ B
A,Bt B+ AT (B1B)
AF A1 (BT B)
FA1 (BT B)
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—r-el: we show that the following rule is derivable (which suffices).

FASB  FA
- 55B

At (B1B) +FA B1BFB1B
B1BFB
B1BF (B1B)1(B1B)
F(B1B)1(B1B)

T-el

16(4) <
T-inl

The reverse of Proposition 17 does not hold. For example, t# p V —p, for p a proposition
letter, while (p Vv —\p)T =(@1p 1 (-p1 -p), where p := --p. The proposition (A 1 A) T
(1A 1 —A) is derivable in nand-logic for any A (note that A = A 1 A):

SAT AR SATAA AT AF A AT AEF A

AT A AT AR (AT A) 1 (AT HA)
S(A7A) 1 (541 2A)

T-el

T-in

There is also an obvious mapping from nand-logic to intuitionistic proposition logic, by
interpreting A T B as =(A A B). As a matter of fact, it can also be shown in the joint system
(i.e. where we add nand to intuitionistic proposition logic) that A T B and —(A A B) are
equivalent: A1 BF —(AA B) and -(AA B) - A1 B. In presence of the implication and
conjunction connective, the latter can be reformulated as - A 1+ B «— (A A B) (where, as
usual, we let C' <— D abbreviate (C — D) A (D — C)).

» Definition 18. We define the mapping (—)i from nand-logic to intuitionistic proposition
logic by defining

(A1 B)* := ~(AY A BY)

and further by induction on propositions. This mapping extends to sets of hypotheses I" in
the obvious way.

» Proposition 19. IfT' 4 A, then TV ; Ab.

Proof. By induction on the derivation. The only thing to show is that the rules 1-el, 1-inl
and T-inr are sound in intuitionistic proposition logic is we interpret A T B as =(A A B). So
we have to verify the soundness of the following rules.
At —=(AAB) BF—-(AAB) F-(AAB) HFA +B
F-(AAB) F-(AAB) D

A simple inspection shows that these rules are sound in intuitionistic proposition logic. <

We can now formulate a Glivenko-like theorem that relates nand-logic and intuitionistic
proposition logic. (Glivenko’s theorem, e.g. see [22], relates intuitionistic and classical
proposition logic via the double negation.)

» Proposition 20. For A a proposition of intuitionistic proposition logic,

b AT A

3:15

TYPES 2017



3:16

Proof Terms for Generalized Natural Deduction

Proof. By induction on the structure of A.
A = p, a proposition letter. Then pTi = (%%p)i ==(=(pAp) A=(pAp)) +— —p.
A=-B. Then (-B)"Y = (B1 B)* = ~(B A B) «— ——B.
A=BVC. Then (BVC)™ = (B1B)1(C1C)* = ~(~(BAB)A—~(CAC)) s
-=(BVC).
For the equivalence =(—B A =C') «— —~=(BV C): from left to right, if =(B Vv C), then
=B and —C, so we have a contradiction with ~(=B A =C); from right to left, if ~B A =C,
then =B and so from BV C we derive C, contradiction, so we derive =(B V C), but this
contradicts =~ (B V C), so we conclude that =(-B A =C')
A=BAC. Then (BAC)™ = (B1C) 1 (B1C)* = ~(=(BAC)A—(BAC)) s
-=(BAC).
A=B = C. Then (B = C) = (B1(C1C))* = ~(BA~(CAC)) s (B — C).
For the equivalence =(B A =C) «— ——(B — C): From left to right, assume —(B — C);
if C, then B — C, so from —(B — C) we get —C; then if B we also have B A =C,
contradicting =(B A =C'), so we have —~B; but from —B we get B — C. Contradiction, so
we conclude ——(B — (). From right to left: Assume B A =C. Then B — C implies C,
contradiction, so (B — (), contradicting —=(B — C), so we conclude =(B A —-C). <«

» Corollary 21. For A a proposition in intuitionistic proposition logic,
FmA = kAl

Proof. If ; == A, then 4 =-AT by Proposition 17, and so k4 --AT by Lemma 16(1).
If F4 AT, then F; At by Proposition 19, so ; == A by Proposition 20. <

3 Convertibilities and conversion

The notion of detour convertibility has already been described in [7]: an introduction of ®
immediately followed by an elimination of ®. (In [7] it was called direct cut but — although
the literature is not completely consistent on this point — the notion of cut is usually reserved
for sequent calculus and for natural deduction one uses the terminology of convertibility.) In
such case there is (referring back to the truth table, see Definition 1) at least one k for which
ay, # by. In case a, = 0,b = 1, we have a sub-derivation ¥ of F Ay and a sub-derivation © of
A F D and we can plug % on top of © to obtain a derivation of - D. In case ap = 1,b; =0,
we have a sub-derivation ¥ of Ay F ® and a sub-derivation © of F A; and we can plug © on
top of ¥ to obtain a derivation of - ®. This is then used as a hypothesis for the elimination
rule (that remains in this case) instead of the original one that was a consequence of the
introduction rule (that now disappears).

In general there are more k for which a # by, so the general detour conversion procedure
is non-deterministic. We view this non-determinism as a natural feature in natural deduction;
the fact that for some connectives (or combination of connectives), detour conversion is
deterministic is an “emerging” property. We will show examples of the non-determinism of
detour conversion later.

The introduction of a formula ® immediately followed by an elimination of ® we will call
a detour convertibility. In general in between the introduction rule for ® and the elimination
rule for @, there may be other auxiliary rules, so occasionally we may have to first permute
the elimination rule with these auxiliary rules to obtain a detour convertibility that can
be reduced away. So, we will also define the notion of permutation convertibility and of
permutation conversion.
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» Definition 22. Let ¢ be a connective of arity n, with an elimination rule and an intuitionistic
introduction rule derived from the truth table, as in Definition 1. So suppose we have the
following rules in the truth table ¢..

pi o pn|c(pi-.- pn)
a ... an 0
by ... bn 1

A detour convertibility in a derivation is a pattern of the following form, where ® =
C(Al, e ,An)

TFA; - o TVA RO -
Tro "
. TFA, .- ... T,AFD ,
€
I'+D

Here, in is an arbitrary introduction rule. In this rule, A; ranges over all propositions
where b; = 1; A; ranges over all propositions where b; = 0,

Here, el is an arbitrary elimination rule. In this rule, A ranges over all propositions
where a; = 1; Ay over all propositions where a, = 0,

A detour conversion is defined by replacing the derivation pattern above by
1. If £ = j for some ¢, j (that is: 4, = A;):

= [

PFA;, ...TFA

i
I'D

2. If k = ¢ for some k,i (that is: Ay = A;):

W [

'k A; ....FI—AZ- . .
=] 1] 1]
I'-® ... THA, oo ... JAED

el

I'HD

There may be several choices for the ¢ and j in the previous definition, so detour elimination
is non-deterministic in general. We give an example of most to illustrate this. For simplicity,
we use the optimized rules.

» Example 23. Consider the following detour convertibility for most.

=] ] | |
rea -5 most-iny :

T F most(A, B, C) IA-D T,BFD
D

most-el;

Here we can reduce to either one of the following derivations of I' = D, which shows that
the detour conversion process is not Church-Rosser. (Of course, one could fix a choice, e.g.
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always take the first possible detour convertibility from the left, but that would be completely
arbitrary.)

= iE] = E

A4 ... THA B ... T+B

i i

r'FD '+ D

A more concrete example is the following.

ANBFAANB ANBFANANB
—— A-ell ——— A-elr
ANBFA ANBFB AFA B+B
most-iny ——— V-inl —— V-inr
AN BF most(A,B,C) AFAVB BFAVB
most-el;
ANBFAVB

This derivation can either be reduced to a derivation of AANBF AV B via AABF A or via
ANBLF B.

It can happen that the introduction of a formula ® = ¢(A4,...,A,) is not followed
directly by an elimination for ¢, but first by other elimination rules, where ® acts as a minor
premise. In that way, a detour convertibility can be “blocked” by other elimination rules. So,
apart from the detour conversion elimination arising from an introduction rule immediately
followed by an elimination, we have a notion of “hidden” or permutation convertibility, where
we want to permute one elimination rule over another.

» Example 24.
[,A,CFC =D
IFAVB TArC—>D ™ I BrC—oD
I'FC—D el r e

—-el

I'=D

In this derivation, the detour convertibility arising from —-in, followed by —-el is blocked
by the V-el rule where the major premise of the —-el rule is a minor premise. This is a
permutation convertibility, which can be contracted by permuting the —-el rule over the V-el
rule.

» Definition 25. Let ¢ and ¢’ be connectives of arity n and n’, with elimination rules r
and 7’ respectively, both derived from the truth table. A permutation convertibility in a
derivation is a pattern of the following form, where ® = ¢(By,...,B,), ¥ = (41,..., Aw).

5 =)

TFU...TFA, ... ... T, AiF® .. ; ;
i el ; :
TFo ...TFBy ... ...T,Bi+D
el,
T'FD

A; ranges over all propositions that have a 1 in the truth table of ¢/; A; ranges over all
propositions that have a 0,
By, ranges over all propositions that have a 1 in the truth table of ¢; B, ranges over all
propositions that have a 0.
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The permutation conversion is defined by replacing the derivation pattern above by
s z s
; DA F® ... T,A;FBy ... ... T,A,B+D ...

: el.
THFU...THA; ... ... ILA; +D

elT/

I'=D

This gives rise to copying of sub-derivations: for every A; we copy the sub-derivations
Iy, ..., I0,.
NB. Due to weakening, is also a derivation of ', A; F By, and is also a derivation
of ' A;, Be = D.

» Example 26. If we reduce the permutation convertibility in Example 24, we obtain the

following derivation.

A, C-C—D

—-in

I'NA-C — D INAFC IBrC—D I',B-C
—-el —-el
'-AvB I'NArD I'B-D
V-el
I'=D

4 The Curry-Howard isomorphism

We now define typed proof-terms for derivations, which enables the study of “proofs as
terms” and emphasis es the computational interpretation of proofs, as detour conversion
and permutation conversion will correspond to reductions on these proof-terms. For each
connective ¢ we give a general definition of proof-terms for the full set of derivation rules for c,
as they have been derived from the truth table. This amounts to a system AC, parametrized
by a set of connectives C. Then, to clarify the approach, we show how this works out on a
number of examples.

Often, we don’t want to consider the full rules for a connective ¢, but only the optimized
rules, following Lemmas 9 and 12. For these optimized rules, there is also a straightforward
definition of proof-terms and of the reduction relation associated with (detour, permutation)
conversion. In the next Section 5 we show in detail how Lemmas 9 and 12 can be extended
to terms and reductions: the proof-terms for the optimized rules can be defined in terms
of our original calculus A°, and the reduction rules for the optimized proof terms are an
instance of reductions in the original calculus (often multi-step).

» Definition 27. Given a logic with intuitionistic derivation rules, as derived from truth

tables for a set of connectives C, as in Definition 1, we now define the typed A-calculus A°.

The system A¢ has judgments I' - ¢ : A, where A is a formula, T is a set of declarations
{z1:A1,...,2m : Ap}, where the A4; are formulas and the z; are term-variables such that
every x; occurs at most once in I', and ¢ is a proof-term.

Let ¢ € C be a connective of arity n, which has 2™ rules (introduction plus elimination
rules). For each rule r we have a term: an introduction term, {p ; Q}., if r is an introduction
rule, or an elimination term, t . [p ; Q] if 7 is an elimination rule. Here, t is again a term, p
is a finite sequence of terms and @ is a finite sequence of abstracted terms Az : A.q, where x
is a term-variable, A is a proposition and ¢ is a term. So the abstract syntax for proof-terms,

Term, is as follows.

tuo=x | {t;  a: At) |t [t A Ad]
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where x ranges over variables and r ranges over the rules of all the connectives.
The terms are typed using the following derivation rules.

— ifa;: A, €T
F}_.IilAi
L ThEpi Ay Dyt Aibg i@l
— in
TH{D;A\y:Ag},: P
'kFt:® ..ThFpp:Ag... ...I‘,yg:Agl—qg:Dl
— e
Pkt [p; \y:Aq]: D
Here, p is the sequence of terms p1, ..., p, for all the 1-entries in the truth table, and

Ay @ A.q is the sequence of terms Ay; : A1.q1,- -+, AYm : Apm-qm for all the 0-entries in the
truth table.

» Convention 28. We view the A-abstracted variables as being typed so we write \y : A.q
and \y1 : A1.q1, ..., AXYm : Ar.qm. However, these types clutter up the syntax considerably,
so in practice we will almost always leave the types implicit. In case we want to stress that a
variable has a certain type, or in case type information enhances the understanding, we will
write the type as a superscript, so A\x™.p in stead of \x : A.p.

We will sometimes leave the rule r that the elimination or introduction term corresponds
to implicit, or we will just number the terms or introduce special names for them without
explicit reference to the rule. It should be clear that every line in the truth table for the
connective gives rise to one rule, which again gives rise to one term-constructor, which is
either an elimination or an introduction term-constructor.

There are term reduction rules that correspond to detour conversion.

» Definition 29. Given a detour convertibility as defined in Definition 22, we add reduction
rules for the associated terms as follows.
For the ¢ = j case, that is, yo : A; and p; : A; with A, = A;:

{D.Dj s Aw.q} - [55 Ny.r, Aye.re] —a Telye := pj]
For the k = i case, that is, s; : Ay and x; : A; with Ay = A;:
{P; Ax.q, Azinqi} + 5,5k 5 Ayr] —a qilzi = skl - [575% 5 Ay

For simplicity of presentation we write the “matching cases” in Definition 22 as last term
of the sequence. So when writing p,p;, this should be understood as a sequence of terms
Dis---3Djs---Pms, Where we have singled out the p; that matches the ry in Ay.r, Aye.re.
Similarly for 5,5 and A\z.q, A\z;.q;.

It is important to note that there is always (at least one) “matching case”, because
introduction rules and elimination rules comes from different lines in the truth table.

The reduction is extended in the straightforward way to sub-terms, by defining it as a
congruence with respect to the term constructions.

This Definition gives a reduction rule, and possibly more than one, for every combination
of an elimination and an introduction. For an n-ary connective, there are 2™ rules in the
truth table, and therefore 2" term-constructors (introduction plus elimination constructors).
We now give the examples of the proof-terms for V and A in full. In the rules we will always
omit the context I'.
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» Example 30. The rules for disjunction are as follows.

Ft:AVvB x:Abp:D y:Bbq:D z:AFr:AvVB Fb:B

Ft-Y 5 Arp, A\y.q] : D

Fa:A z:Bkr:AVvB
F{a;Xzr}ly : AV B

F{b; Xz} : AVB

Fa:A +b:B
F{a,b;}y: AVB

We could have followed our earlier introduced naming convention and index the operators
with the line of the truth table they arise from. Then we would write {b ; Az.r}y; for
{b; Xz}, {a; Azr}y, for {a ; Az.r}y and {a,b ; }Y; {a,b; }¥. This easily clutters up

notation, so we don’t pursue that.
The reduction rules are

{b; Xer}, Y[ dzp, M\yq) —a qly =10
{a; A2}y V[ Aep, \y.q) —a plri=a
{a, b} <V [5 dzp, Ayl —a plri=a
{a,b; 3V [; \ep, M\yq] —a qly:=1b]

From the last two cases, we see that the Church-Rosser property (confluence) is lost.

The rules for conjunction are as follows.

Ft:AANB x:AFp:D y:BFqg:D
Ft [ Aep, A\y.q] : D

Ft:AANB x:Abkp:D Fb:B
Ft-5 [b; Aw.p] : D

Ft:AANB Fa:A y:BFq:D

Ft5fa; M\y.ql: D

Fa:A Fb:B

F{a,b; }":ANB

The reduction rules are

{a,0; Y0 [; Aep, Myq) —a ple = d]
{a,b5 0[5 Aep, Ayq) —a qly =10
{a,b5 Y 0 (a5 Ayg) —a gy :=1]
{a,b; Y2 [V ; Aep] —4 plr=q]

From the first two cases, we see that the Church-Rosser property (confluence) is lost.
In Example 39 we will show how we can define proof-terms for the optimized rules for A
in terms of the proof-terms for the full rules, while preserving reduction.

In the reduction for the terms for V and A, an elimination is always removed at each step.
The situation gets more interesting with implication.

» Example 31. The rules for implication are as follows.

r:AFp:A—-B y:BFq:A— B
F{;\z.p,\q}]7 :A— B

Ft:A—-B Fa:A z2:BkFr:D
Ft7 [a;Azr]: D

r:ArFrp:A—-B +b:B
F{b; \zp}y :A— B

Fa:A +b:B
F{a,b;}3:A—> B
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The reduction rules are

Ui Azp, dyg}y” -7 a Azl ——a plzi=a] -7 [as Az
{b; Meply 7 a; Azr] —4 rlz:=1)

{b; Axp}y -7 la; Azr] —4 plxi=al-T a; Az
{d,b;}5 7 a; Aar] —a r[z:=1)]

From the second and third case, we can see that Church-Rosser is lost. In the first and the
third case, we see that the elimination remains.

In Example 41 we will show how we can define proof-terms for the optimized rules for —
in terms of the proof-terms for the full rules, while preserving reduction. In Definition 48 we
will define the standard rules for —.

We now extend the reduction on proof-terms to also capture the permutation conversions
of Definition 25. This gives rise to two elimination constructs permuting with each other.

» Definition 32. Given a permutation convertibility as defined in Definition 25, we add
reduction rules for the associated terms as follows.

(t-[ps Aag)) - 55 3]~ £+ [P Ae(q- (35 Agr))

Here, the notation Az.(q - [$; Ay.r|) should be understood as a sequence A\xi1.q1, ..., AZm.qm
where each g; is replaced by g; - [5; Ay.r].

The reduction is extended in the straightforward way to sub-terms, by defining it as a
congruence with respect to the term constructions.

» Notation 33. We omit brackets by letting the application operator — - — associate to the
left, sot-[p; Ax.q]-[S; Ay.r] denotes (t-[D; A\x.q]) - [$; Ay.r]. We will also omit the brackets

in Ax.(q - [5; Ay.r]), because no ambiguity can arise here.

We treat the well-known example from intuitionistic logic of the V-elimination, where a
permutation convertibility can occur. See also Example 24.

» Example 34.
Ft:AVB x2:AFp:C—D y:BFq:C—D
Ft- [ Aep,Ay.ql : C — D Fc:C z:DFr:E
eV Aep, gl -7 e Aer] B

We observe two consecutive elimination rules, where a potential detour convertibility, arising
e.g. when ¢ is an introduction term, is blocked by the V-elimination.
The term reduces as follows

tY [ Azp, My 7 e Az —p t Y [ Az T e Aer], Ay.q - e Az

We can now easily define the terms in normal-form under the combined reduction — .
The proof is straightforward and comes from the fact that an introduction followed by an
elimination is always a redex. (There is always a “matching case” in Definition 29.)

» Lemma 35. The set of terms in normal form of IPC¢, NFis characterized by the following
inductive definition.

x € NF for every variable x,

{p; M\y.q} € NF if all p; and g; are in NF,

z-[p; M\y.ql € NF if all p; and q; are in NF and x is a variable.
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» Remark. In [23], yet another notion of convertibility is defined, called simplification
convertibility. This is a situation where the assumption is unused in an introduction or
elimination rule and the rule can be removed all together. Adding these rules is not necessary
for the sub-formula property, so we don’t introduce it here. On the term level, an elimination
of simplification convertibilities would amount to the following reduction rules.

te[p; Arql — ¢ ifx; & FV(g)
{P; \eqt — ¢ ifxz; ¢ FV(g)

5 Extending the Curry-Howard isomorphism to definable rules

The optimizations for the logical rules, as given in Lemmas 9 and 12 can be extended to
the proof terms and also to convertibilities and conversions. This gives us the possibility
to capture questions related to normalization by looking at normalization for terms in the
original calculus A°. We will now describe the terms for the optimized rules in detail.

» Definition 36. For each optimization step in Lemmas 9 and 12 we give the canonical term
for the optimized rule and its translation in terms of A€ of Definition 27.

We first treat the two optimizations arising from Lemma 9, and then the optimization
arising from Lemma 12.

Given two rules

Fpr:Ar ... Fpn: A, r1:BitFq:® ...z BnbFgm:® z:AI—s:@_

in,

FA{D; Ax.q,\z.s}, : @

Fpi:Ar ... Fp,: A, Fa:A r1:BiFq:® ... % Bt gm:®
F{p,a; \x.q}, : ®

iIl,,./

we have the following term for the optimized introduction rule

Fpr:A ... Fp,: A, r1:BiFq:® ... 2y Bl gn:®
FA{p; Ar.q, 24P,z ; A\e.g}r }r : @

..opt
rr’

We define the term {p ; Az.q}7 ., as {P; Av.q, \2.{P, Z ; Az.q}r }r
Given two rules

Ft:® bFpr:Ai...bpp:A, z1:Bibtq@:D...xpm:Bnbgnm:D z:AbFs:D

— el,
Ftr[p; Ax.q,Az.8] : D
Ft:® Fpr:Ai...bpn:An Fa:A z:Bitq:D...xpm: Bt gm:D
p— elT/
Ft-v[pa; A\x.q): D
we have the following term for the optimized elimination rule
Ft:® Fpr:A ... Fp, A, xlzBll—qlzD...xm:Bm}—qm:Dlopt
er,r’

Fte[D; Ax.q, Azt [7,2; Ax.g]] : D

We define term t ©,,v [P; Ax.q] as t+ [p; Ax.q, Az.t + [P, Z ; Az.q]]
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Given the rule
Ft:® Fpi:A ... Fp,: A, z:AFs: D
Ft-[p; Az.s]: D

el,

we have the following term for the optimized elimination rule
Ft:® Fpr:A ... Fp,: A,
Fte[D; Azz]: A

opt
el?

We define the term ¢ [, [p] as t « [D ; Az.2]

There is a canonical way in which the notions of detour convertibility and detour conversion
extend to the optimized rules: the same rules as in Definition 29 apply. In case of a term of
the form {... ; ...} -[... ;...], a reduction is always possible, also in the case of optimized
rules. For the permutation convertibilities, the situation is similar: the same rules as in
Definition 32 apply.

» Definition 37. We define reduction on the optimized terms as follows. Let @ be any -~
or @y . for some 7", (For the notation, we refer to Definition 29.)

For the ¢ = j case:
{775 5 Mg}y 0 @[55 Ay, Adyewg]  —a welye == pyl

For the k = i case:

{P; Mg, Minqi}y 0 @555 s Ayl —a qilzi i= si] @ [5,5% 5 Ay
For the k =i case:
55 2}y, B [Pl —a  @ilwi == pi] B, [P
Special case:

{555 ; )\x.q}%r, O, P —a s

The last special case is when {5,3; ; V.q}jﬂ,, O, [p] : A and s; : A. See the definition of
{5755; M}:,r' O, [p] as {5,355 ; F.q}ﬁw - [P ; A\z.z] in Definition 36; this is the case where
s; matches the “invisible” Az.z.

We also extend the notions of permutation convertibility and permutation conversion
from Definition 25 (see also Definition 32): we add reduction rules for the optimized terms
as follows.

top; q)oE: wul — tep;A.(q0[5; Ay

where © is any «,» or @ v and @ is any s Or @pr prr or Ly,

» Remark. To clarify, we want to note explicitly that ¢ (3, [p] - [ ; Az.s] does not reduce to
t [, [p]. In case we only have the optimized rules, it does not reduce at all. If we consider
t [, [p] as a definition in the original calculus A, we do have a reduction,

t0 [P o [G; Avs] —p o [P A2z o [T 5 Az.8]]

but this uses a non-optimized elimination.

» Remark. The process described in Definition 36, which is based on Lemmas 9 and 12
can be iterated, as we have seen in earlier examples. A simple way to view the rules
for an m-ary connective ¢ as a pair (b,r) where b is 0 or 1 and r is a partial function
r:{1,2,...,n} — {0,1}. For a standard rule, derived from a line in the the truth table of ¢,
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r is a total function. (If (i) =1, then A; is a lemma in the rule and if r(j) = 0, then A; is
a case; if b = 0, we have an elimination rule, if b = 1 we have an introduction rule .) An
optimized rule is a function r that is undefined for some elements of {1,...,n}.

For the first case of Definition 36, where {... ; ...}, is defined in terms of {... ; ...},
and {... ;...};, we have " = r N7’ for the optimized rule . This is allowed in case b =1
for r and 7’ and r and 7’ differ for only one element.

For the second case of Definition 36, where ... ®;,s [... ;...] is defined in terms of

v ooy Jand oo [oos L, we again have 7 = Ny’ for the optimized rule r”’. This
is allowed in case b = 0 for r and " and r and 7’ differ for only one element.

Optimization according to Lemma 12, the third case of Definition 36, corresponds with a
(possibly partial) function r where b = 0 and r(¢) = 1 for exactly one i.

With the definable optimized terms for elimination and introduction, we have a choice
of taking these as defined terms, or taking them as primitives and removing the originals.
Or even there is a third alternative of adding them as additional term constructions. After
we have done some examples, we will, in Lemma 43, analyze the reduction behaviour of the
newly defined terms in terms of the original ones.

Before that we state what the normal forms are of the optimized terms and the optimized
reduction, extending Lemma 35. So in the following Lemma, we consider the situation where
we have added optimized terms and reductions, while removing the original ones. The proof
is straightforward, keeping in mind Remark 5 and the fact that with optimized terms, if an
introduction is followed immediately by an elimination, then there is a “matching case” that
allows us to reduce the term.

» Lemma 38. We simultaneously characterize NFP*, the set of terms in normal form of
IPCe with optimized terms and reductions, and the set of neutral terms inductively as follows.
x € NFP* and x is neutral, for every variable x,
{5 ; \y.q} € NF°P* if all p; and q; are in NF°P*,
T2 [P ; M\y.q) € NF®' if all p; and q; are in NF°** and z is a variable; this term is neutral
if © =0, for somer.
tE, 5 @ [p; \y-q] € NFP" if all sy, p; and q; are in NF°* and t is neutral; this term is
neutral if © = [, for some r'.

What the Lemma says is that terms like

N R e OV = @ [D; \y.q
are also normal forms, if 57, S3,...,p and g are.

» Example 39. We continue Example 30 and look into the optimized rules for A, as given
in Definition 13. The introduction rule of Example 30 is the same as in Definition 13; the
usual “pairing” construction is given by {a,b; }*. For elimination, we would like to have
the following “projection” rules.

Ft:AANB Ft:AANB

Fmt:A Fmot: B
That is, we would like to define 71 ¢ and 75t in terms of the constructions of Example 30,
with the expected reduction rules: m1 {a,b; }* —, a and w2 {a,b; } — 4 b. Definition
36 gives the clue. Let’s consider the first projection, 71 t. We have the following optimization
of the A-rules of Example 30.

Ft:AANB x:AkFp:D

tol [ xp]: D

3:25

TYPES 2017



3:26

Proof Terms for Generalized Natural Deduction

where t @2 [; Axd.p] :=t ) [; Axdp, \2B.t -4 [z Axd.p]]. Tt is easily verified that we have
the following reduction

{a,b; }" @) [; Aet.p] —q plz = al.

We have another optimization:

Ft:AANB
ey [;]: A
where t 07 [; | :=t o2 [; Az?.z].

All together we have
mt:=t0) [;]=tol [; dxta] =t ) [; Aata, NPt f [z Atz

which has the following reductions.

mf{a,b; YN = Aa,b; PN [ At B {a b V4 [z At
—. a

m{a,b; Y = {a,b; N0 Axta, 2B {a b D [z ]
—q {a,b; 35[0 Aata]
—. a

Similarly, we define mot :=t - [ ; AeB.x, AzA4.t -5 [z ; AzB.2]]. Then mo {a,b; }* —7F b.

An interesting feature is that the reduction rules for our non-optimized calculus are not
Church-Rosser, as we have already indicated in Example 30 and also in Example 23. On the
other hand, the optimized rules for standard intuitionistic proposition logic are know to be
Church-Rosser. We look into the case for A in more detail.

» Example 40. The set of full rules for A, see Example 30, is not Church-Rosser as the
following concrete example shows. Suppose we have - p: D and - ¢ : D, where p and q are
different.

a:AFa:A b:B+b:B
a:Ab:BF{a,b; }": AAB x:AbFp:D y:BFq:D
{a,b5 301 [ Aafp, dyP )

This term reduces to both p and ¢, which are distinct terms of type D. The crucial point is
in the rule for — -{ [; —] that admits a choice:

Ft:AANB x:Abp:D y:Bkq:D
Ftt s Aep, M\y.q] s D

For t = {a,b; }" we can either select the “A-case” or the “B-case”.

We have shown how the optimized rules can be explained in terms of the full rules, but
we can also doe the opposite: interpret the full rules for A of Example 30 in terms of 7; and
mo. Then we get

t1 [ atp Pl = plei=m ]
told s Pql = qly:=mt
t -é\ [b/ : )\;[,'Ap] = p[;y = t}

where in the first case we could also have chosen ¢y := mat]. We observe that the non-
determinism in the full rules is resolved by a choice we make in the translation of the first
A-elimination.
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» Example 41. We now look into the optimized rules for implication of Definition 13. The
full rules have been treated in Example 31. We want to define the following terms.

r:A+Fp: A—> B Fb:B Ft:A—-B Fa:A
F{;\?p)7°: A= B F{b;}3°:A— B Ft7 [a]: B

These can be defined from the terms in Example 31 via the optimizations of Definition
36 as follows.

{; At py® = {dafp e fz; At pl Y
{12 = {b; 22051578
t07 [a] = t7 [a; Az.2]

These obey the following reductions.
{;Axpie 07 (o] = {5 atp da{zs At pl i T (e Az
—q plri=a] 7 [a; Az.z]
plz = a7 [a]

{b;}7°07 [a] = {b; A2 {20513} O (g
—a b

{b;}7°07 o] = {b; Az {205 137} O (g
—a {a,b; }3 B [d]
—a b

These are the exact reduction rules one would expect for these terms. We can again translate
these to the well-known S-rules, that we will define in Definition 47.

The definition of the standard rule for —-introduction essentially uses the [J construction,
which has a somewhat special behaviour under normalization, as we have seen in Remark 5
and Lemma 38. Let’s look at an example to emphasis this.

» Example 42. Consider the following proof.
t:A—-B—=C Fa:A
t07 [a]: B—=C Fb:B
tE7 (o] @7 0] : C

If ¢ is not an introduction term (¢ # {A\x.q} ™), then this is not a redex with the optimized
rules. However, in case [ is a defined term-construction, this term is reducible:

tE7 [a] D7 B —p t-7 [a; X2B7C 207 b))
To clarify, the derivation for this term is:

z2:B—=-CkFz:B—=C Fb:B
Ft:A—-B—C Fa:A z:B—=CkFzE7[b]:C
t- 7 a; X7 b)) C

» Lemma 43. The translation of an —, step in the optimized calculus translates to a
(possibly multistep) —, step in the original calculus X°.

Proof. We show two cases:
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L If{Z; Ayv}p, v, Orir [P Az.q) —a R (using the optimized rules) and
{t; Ayr}p, vy ©rir [P 5 Ax.q] translates to T in the original calculus A, then there is a
term 7" such that 7 —F 7" and R translates to 7" in \°. Here — denotes a non-zero
sequence of reductions.

In this case the translation T is as follows. T = M - [p ; A\x.q, Az.M - [D, Z ; Ax.q]], where

we abbreviate M := {f ; \y.v,A\z.{f,z ; A\y.v}}. There are two possible cases for the
reduction.
Case {t ; m}ﬁsm Oy [P 3 AN.q) —a qe[ze = t;]. Then T —, qo[zy := t;] and
we are done.
Case {t; A\y.v}y, 1y Oryirs [P35 A2.q] — 4 vilyi := pi] ©ry iy [P ; Az.g]. Then
T —a vilyi=pe]- [P Av.g, A2.M - [p7Z 5 Az.q]

—ra Vilyi == prl - [P Azq, Azvilys = pi] - [P, 7 5 Az.ql]
and we are done.

2. If {t; Ay.v}p, s O [Pl —a Rand {T; Ay.r};, .. O [p] translates to T in the original
calculus A¢, then there is a term 7" such that T —7F 7" and R translates to 7" in AC.
Now the translation T is as follows. T' = { ; \y.v, \2.{t, 2 ; A\y.v}} - [p; Az.z]. There is
one possibility for the reduction.

Case {1 ; m}%,m Ory [P] —a vi[yi == pi] ©ry [p]. Then
T —. vilyi:=p|-[D; Az.2]
and we are done. |

As mentioned, Schroeder-Heister[17] has proposed another elimination rule for A which is
slightly different from ours. Von Plato [23] calls this general elimination while Tennant [21]
calls it parallel elimination. We call it parallel A-elimination and give it in typed A-calculus
format.

» Definition 44. We define the parallel N-elimination rule as follows
T'Ft:AANB e:Ay:BFq:D
CE¢-P [Az,y.q] : D

N-el

The reduction (detour conversion) rule associated with this rule is as follows.

{a,b; } P¥ [Az,y.q] —par ¢z :=a,y :=b].

We show that this elimination rule can be translated in terms of ours and that reduction
is preserved.

» Definition 45. We translate the parallel A-elimination rule of Definition 44 by defining it
in terms of the optimized terms for A of Example 39. We consider the following optimized
rules, the first of which was given explicitly in Example 39.

't:AANB I'x:AkFq:D 'kt:AANB I'y:BFq:D
THtol[; Ax.q): D CHtey[; A\y.q: D
Now define

P Dz, y.q) =t 0y [ Azt oy [ Ay.q]].

» Lemma 46. The defined term t -P** [Ax,y.q] is of the right type and the translation of an
—par Step in the calculus with the parallel N-elimination rule translates to multistep —,
in the original calculus \°.
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Proof. GivenI'Ft: AANBand I';z: A,y: B+ q: D, we have
z:AFt:AANB INz:Ay:BtFq:D
't:AAB Tex:AFte) [ M\y.ql: D
FHtol[; A top [; Ay.ql]: D

The reduction can easily be verified:

{a,b; }" P Da,yq] = {a,b; Y o) [5 Az {a,b; Y op [ Ay.q]]
—a {a,0; } 0 [ Mgl = a]]
— qlzi=a,y:=0b]. <

We define the standard rule for —-introduction and show that this introduction rule can
be translated in terms of ours and that the reduction is preserved.

» Definition 47. We define the standard rule for —-introduction as follows, where we
describe it using terms.
I'z:AbFq: B

—-in
I'{\zq}7:A— B

The reduction rule associated with this term is as follows.
{Az.q} 7 07 [a] —5 ¢[x := al,
where ¢ [17 [a] is the optimized elimination rule from Example 41.

» Definition 48. We define the standard —-introduction rule in terms of optimized —-rules
(Example 41) as follows. Given I',x : At ¢ : B we define

Ar.q}” = {; A {q; }27°17°

» Lemma 49. The translation of {\x.q} ™ is well-typed and the translation of an — 4 step
in the calculus with the standard rule for — translates to multistep —, in the original
calculus X

Proof. The well-typedness is easily verified:
x:AkFq:B
z:AF{q;}3°:A—> B
F{ et g ) A= B

For the reduction:

{2t {g; 17°17° 7 as ] —a {alei=a] 5 35707 a5 ] —a gz = al. <
We define the traditional rule for —-introduction and show that it can be translated in

terms of ours and that detour conversion is preserved.

» Definition 50. We define the traditional rules for —, the introduction and the elimination
rule, as follows, where we describe them using terms.

I'z:AFt:-B I'y:Atq: B I'Ft:-A I'Fa:A
' {zt,\y.q}t: =A 'kt a;]:D

The reduction rule associated with these terms is as follows.

Dttty e ] —otlzi=a] 7 [qly =] ; .
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» Example 51. The rules for negation that we derive from our general Definition 27 are the
following.

Tx:AkFqg:-A T'Ft:-A I'Fa:A

PH{; A xq}”:-A 'tt-"[a;]:D

with reduction

{; g} T a;] —aqlz=a] " [a;]
We see that the elimination rule for — in Example 51 is the same as the traditional one.

The traditional introduction rule for — is definable.

» Definition 52. We define the traditional —-introduction rule in terms of the one of Example
51 as follows. Given ',z : AFt: -Band I',y: A+ q: B we define

Dat, dytght = {5 At [gly = a] 1)
» Lemma 53. The definition of { z.t, \y.q}t is well-typed and a —— step in the calculus
with the traditional rule for — translates to multistep —, in the original calculus A€.
Proof. For the well-typedness:
Ny:Argq:B
Iz:A+t:-B Dx:Abgqly:=2]: B

—-el
Toe: Abt- " [qly:=2];]: A )
—in
TH{;xatt " [qly:=2];]}: A
For the reduction:
{; 2t [qly:=a]; 1} T as] —atlri=a] " [glz ==a] ;). «

As a final example, we give the proof-terms for the optimized rules of nand-logic, as
described in Definition 14.

» Example 54. The proof-terms for nand-logic are
z:AFp: AT B y:BFq: AT B Ft:AtB Fa:A Fb:B
F{;X?p}t:A1B F{:\P¢7:A1B Ftla,b;]:D
with reduction rules
{;x?pyt Tab;] —a plzi=a]Ta,b;]
(5P T abs ] —a aly=0]T[ab;]

This time we have a situation where a permutation conversion actually reduces the size of a
term considerably. Supposet: AT Banda: A, b: B, c:C,d: D. Then we have

Ft:A1tB Fa:A Fb:B
Ft Y a,b;]:C1TD Fe:C Fd:D
t-T[a,b;]-T[c,d;]:E

We have

tTabs ] e, d; ] —pt-Ta,bs ]
which is of type E, and we see that the superfluous second nand-elimination rule has been
removed.

As another example, we can give a proof-term of AV —AT, the proposition in nand-logic
that we have shown to be provable after the proof of Proposition 17. It’s proof-term is

{5 aad dyy ez BT (A1 A) 1 (541 54)



H. Geuvers and T. Hurkens

6 Normalization

In this section we prove that —, and —»; are both strongly normalizing (SN). We also
give a proof of weak normalization (WN) of the combination of —, and —;. As usual,
SN states that there are no terms that have an infinite reduction path, and WN states that
for each term there is a reduction path that leads to a normal form. For the proof of WN we
describe an actual procedure for finding a normal form of a term.

» Theorem 55. The reduction — is strongly normalizing.

Proof. We define a measure | — | from terms to natural numbers that decreases with every
reduction step. For notational convenience we suppress the reference to the derivation rule r.

|| = 1
HP; Ay.g}l = Xlpi| + gl
[t-[5; Ayul| = [t(2 + Blsk| + E[u)

It can easy be verified that, if tg —, ¢1, then |tg| > |t1], so — is strongly normalizing. <

» Corollary 56. The reduction —, for the optimized rules of Definition 36, the standard
rule for —-elimination of Definition 47, the parallel N-elimination rule of Definition 44 and
the traditional rule for —-elimination of Definition 50 are strongly normalizing.

Proof. The same metrics as in the proof of Theorem 55 applies. For the parallel reduction,
define |t -P2* [Az, y.q]| := |¢[(2 + |q])- <

6.1 Strong Normalization of the detour conversion

We now prove strong normalization for —, by adapting the well-known saturated sets
method of Tait [20] and Girard [8] to our calculus. Recall that Term is the set of all untyped
proof-terms. (Definition 27.) We write SN for the set of strongly normalizing (untyped)
terms and we write Var for the set of variables.

» Definition 57. 1. The set Neut of neutral terms is defined by
a. Var C Neut,
b. t-[p; M\y.q] € Neut for all t € Neut and p, \y.q € SN.
2. The term t does a key reduction to t', notation t —* ¢’  in case
a. t is a redex itself (according to Definition 29) and ¢’ is its reduct,
b. t=to-[p; My.ql, t' =t1-[p; dy.gql and to —F t1.
3. Aset X C Term is saturated (X € SAT) if it satisfies the following properties
a. X CSN,

b. Neut C X
c. X is closed under key-reder expansion: if t € SN and Vq(t —* ¢ = ¢ € X), then
te X.
4. For a connective ¢ of arity n and X, ..., X,, € SAT we define the set ¢(X1,...,X,,) as
follows. Assume that rq,...,r,, are the elimination rules for c.

o(X1,..., Xp) ={t|Vrie{r,...,rm}
VD € SAT,Vp,q € Term
Vk(pr € Xi) A (VEVue € Xo (qelye :=u) € D)) = t-, [p; Myq €D}
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In the definition of ¢(Xy,...,X,,) it should be clear that we quantify over all elimination
rules for the connective c¢. In the quantification Vp,q € Term we could also quantify over
Vp,g € SN: it amounts to the same because the additional conditions Vk(p, € Xi) and
VeVuy € Xy (qelye := ug] € D imply that p,g € SN.

> Lemma 58. If Xi,..., X,, € SAT, then ¢(X1, ..., X,) € SAT.

Proof. We check the 3 conditions for ¢(X1,...,X,). Suppose Xi,..., X, € SAT.
a. That ¢(Xy,...,X,) € SN follows directly from the fact that if ¢t € ¢(X1,...,X,), then

t-[p; A.ql € Dand D CSN,sot-[p; A\x.q] € SN, so ¢t € SN.
b. For ¢t € Neut and D € SAT and p,q € SN with Vk(p, € Xi) and V¢Vuy € Xy (qelye :=
ug] € D), we have t -, [p; \y.q] € Neut C D, so we can conclude that t € ¢(X1, ..., X,).
c. Suppose t € SN and Vt'(t —* #' =t € ¢(X1,...,X,)) (*). Let r; be a rule for ¢ and
let D € SAT, p,q € Term with Vk(pr € Xj) and VeVu, € Xy (q¢[ye := ug] € D). For all ¢/
with ¢ —* ¢ we have t -, [p; M\y.q] —F ' -.. [p; M\y.q) and ' -, [P ; Ay.q] € D by (¥).
So, e, [p; Ay.q € Dandsot € ¢(X1,...,X,). <

We use the saturated sets as a semantics for types: if A is a type, (4) will be a saturated
set. The simplest way to do this is to interpret all type variables (proposition letters) as the
set SN, which is indeed a saturated set.

» Definition 59. For A a type, we define (A4) by induction on A as follows.
(A) := SN if A is a proposition letter.
c(Aq,..., Ap) :==c({A1),...,{Ay)), where the right hand side is the interpretation of the
connective ¢ on saturated sets, as given in Definition 57, case (4).

We will often confuse A and (A), to avoid notational overhead, and just identify the
proposition A with its interpretation as a saturated set (A).

» Definition 60. Given a context I', a map (valuation) p : Var — Term satisfies I', notation
pET, in case p(x) € (A) forallx: A €T

If t € Term and p : Var — Term, we write (t), for ¢ where p has been carried out as a
substitution on ¢.

A valuation p : Var — Term is only relevant for a finite number of variables: those that
are declared in the context I' under consideration. So we will always assume that p(x) # «
only for a finite number of € Var. Those x we call the support of p. When applying p as a
substitution to a term ¢ we may need to “go under a \”, e.g. when applying p to {p ; A\z.q}
In this case we always assume that the bound variable is not in the support of p. (We can
always rename it.)

» Lemma 61. IfT'Ft: A, and p =T, then (t), € (A).
Proof. By induction on the derivation of I' ¢ : A. Suppose p =T'. For the (axiom) case, it

is trivial. We ignore p for the rest of the proof, as it gives a lot of notational overhead, so we
just write ¢ for (t),.
Suppose ® = ¢(Ay,...,A,) and
L'-{s; \a.t},: P
Let v’ be a rule for ¢, D € SAT, p,q € Term with Vk(py € Ax) and VEVu, € Ap (qelye :=
we] € D). For {5; Ax.t}, - [D; Ay.q] there are the following possible key-reductions:

(s; Xwtyy - [P5 Ayal —F aly = 5] (1)
(55 Axt}y o [P5 Ayg) —b tilwi = pi] o [P Myq) (2)

in
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In case (1), [y := s;] € D by the assumption and the induction hypothesis. In case (2),
tilx; :== px] € ® by the induction hypothesis and so t;[x; := pi] +» [P ; A\y.q] € D by the
definition of ® = c(Ay,..., A,) as a saturated set. So, {5 ; Az.t}, - [p; Ay.q] € SN and
all its key reductions are in D, so the term is in D. Therefore, {5 ; Az.t}, € ®.

Suppose & = ¢(44,...,A,) and
'tt:® ..Tkpr:Ak... ...T yp:Apbqe:D

'kt [p; M\y.gl: D

el

Then t-. [p; A\y.ql =t [P; M\y.q) € Dbyt e d=c(4;,...,4,) and the definition of
c(Ay,...,A,) as a saturated set and the induction hypothesis. <

The following is now an immediate corollary by taking p(z) := z for all € Var. Because
Var C Neut C (A), we know that p |=T". So, if I' -t : A, then (t), =t € (4) C SN.

» Theorem 62. The reduction —», is strongly normalizing: all — ,-reductions on proof
terms are finite.

» Corollary 63. The reduction —, for the optimized rules of Definition 36, the parallel
A-elimination rule of Definition 44, the standard —-introduction of Definition 47 and the
traditional rule for —-elimination of Definition 50 are strongly normalizing.

Proof. By Theorem 62 and the fact that reduction is preserved by the translation: Lemmas
43, 46 and 49. <

6.2 Weak Normalization of conversion

We now give a strategy for finding a normal form for the combined —,; reduction, the union
of —», and —>;. This proves that —»; is weakly normalizing and it also gives a concrete
procedure for finding a normal form. Due to the fact that, in general, reduction is not
confluent, this normal form is not unique, but it does yield decidability via the sub-formula
property. The weak normalization proof follows the well-known idea, originally due to Turing
(see [5]) for simple type theory, to contract the innermost redex of highest rank.

» Definition 64. We define the rank of a formula A, rk(A) as follows.

rk(A) := 1 if A is a proposition letter.

rk(c(Ay, ..., Ap) := 1+ max{rk(A41),...,rk(Ay)} if ¢ is a connective of arity n.
We define the rank of a redex as follows.

The rank of {p; Az.q} - [5; Ay.r] is the rank of the type of {p; Az.q}, .

The rank of (¢ - [D; Az.q]) - [§; Ay.r] is the rank of the type of ¢ -.v [D; Az.q].

We will sometimes mark the redex with its type ® such that rk(®) is the rank of the
redex. We do this by writing ® as a superscript to the elimination constructor. To clarify,
we summarize again the possible reduction steps of the form —, and —.

» Notation 65. From Definition 29, we have the reduction —, and form Definition 32 we
have the reduction —,. We introduce the following notation.

(5:77 : Mg} 2[5 Ayr, Ayere]  —ar Telye = pj
i Mg Aviqi} -* [555  Ayr] —a2 qilwi o= sk -® 555 5 Ay.r]

(-7 g -"[5: 2] —n [P Ae(g-? [ 5 wwr)]

Here, the proviso’s of Definition 29 apply, so the first is the “ = j case” which we will call
—a1, and the second is the “k = i case” which we will call —> 4.
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We give two Lemmas that show that the creation of new redexes is limited.

» Lemma 66. 1. Ift —, t' by contracting a redex of rk(®) then the newly created redexes
are also of rk(®).
2. Suppose {P; A\v.q, A\v;.q; } - [5,8% ; \y.r] —a2 il i= si] -2 [5,5% 5 Ay.r]. If qi[z; == sy

is an introduction term (that is: q;[x; := si| is of the form {... ; ...}), then q; is an
introduction term. Similarly, if ¢;[x; := sg] is an elimination term (that is: g;[z; := sg] is
of the form ...-[...;...]), then q; is an elimination term.

Proof. 1. If t — ¢’ by contracting a redex of rk(®), then ¢ contains a sub-term
s+[p; Ax.q]-® [ ; Ay.r] which is contracted to s-[p ; Az.q -® [@ ; Ay.r]]. The newly created
redexes (if any) are all of rk(®).

2. Suppose {p; Ar.q, A\1;.q; } -® [3,5% ; \y.r] —a2 qilwi := sx) -® [5,5% ; Ay.r]. Then ¢; : @
and s : A which is a sub-formula of ®, as ® = ¢(A4y,...,A,). If g;[z; := si] is an

introduction term, then either ¢; is an introduction term itself or ¢; = x; and s is an
introduction term. The latter case can only occur if si : @, but it is not, because its type
is a sub-formula of ®. So ¢; is an introduction term. The case for ¢;[z; := si] being an
elimination term is similar. <

The Lemma states that both the newly created redexes due to —», and — 42 are already
“hidden” inside the term. We give a list of facts about redex creation and the ranks of redexes.

» Fact 67. 1. A reduction step can produce more redezes either by (i) copying existing
redexes or by () creating new redexes. Copying occurs through substitution, in a
reduction step —>qa1 0T —>g42.

2. Creating new redexes happens in either one of the following ways.

a. When doing an —, step: in a sub-term x - [P ; A\y.q|, we substitute {5 ; A\z.r} for x.
This creates an a-redex of lower rank.

b. When doing an —, step: in a sub-term x - [p; M\y.q], we substitute t - [5; Az.r| for x
This creates a b-redex of lower rank.

c. When {p;p;j ; Av.q} - [85 Ay.r, ANye.re] —a1 Telye := p;] where this term occurs as a
sub-term: ey :=p;] Y .. 5 ) and relyei=pi) = {5}
This creates a new a-redex of unrelated rank.

d. When {p,p; ; Av.q} - [8 5 A\y.1, ANye.me] —a1 Telye := pj] where this term occurs as a

sub-term: relye :=p;] Y .. ) and relyei=py) = [
This creates a new b-redex of unrelated rank.
e. When {p ; Mv.q, A\v;.q;} - [5,8% ; \yr] —a2 @ilri = si] - [5,8% 5 A\y.r], where

This creates a new a-redex of the same rank.

f. When {p ; Av.q, A\vi.q;} -® [5,5% 5 \yr] —a2 @[z = si] -® [5,8% 5 M\y.r], where
g=..o[..;..]
This creates a new b-redex of the same rank.

g If(t-[p; deq)) - [5; Myr] —so t- [p5 Aw(q-® [5 5 Ay.r])], where ¢; =
This creates a new a-redex (possibly more) of the same rank.

ho If (t-[p; Axq)) - [5; Adyr] —o b+ [D5 Ax(q-® [55 Ay.r])], where q; =
This creates a new b-redex (possibly more) of the same rank.

|
—~
[

Note that in the cases e and f of Fact 67 we use the second part of Lemma 66.

The idea is to contract an innermost redex of highest rank of a term in b-normal form
(that is: a term that cannot do a —p-step). The advantage of b-normal forms is that cases
c and d of the Fact 67 do not occur. (Because in these cases, the term one starts with is not
in b-normal form.)
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» Lemma 68. If f is a well-typed term in b-normal form that has one redex of maximum
rank, say R, then f can be reduced to a term f’ in b-normal form that has mazimum rank
below R.

Proof. By induction on the size of f.

1L.Iff={p; x.qtor f=x-[p; Ar.glor f={p; Ax.q}-[3; A\y.r] and the redex of highest
rank is inside P, g, 5 or 7, then we are done by the induction hypothesis.

2. Suppose f = {p; Ax.q} -® [5; M\y.r] is itself a redex of highest rank, rk(®). We look at
the possible ways in which a new redex may arise, following Fact 67. The cases c, d, g
and h don’t apply.

For case a: the newly created redexes are of lower rank and the resulting term is in
b-nf.

For case b: the newly created redexes are of lower rank. The resulting term may not
be in b-nf, but we can contract all the newly created b-redexes to obtain a b-normal
form. According to Lemma 66, case (1), this does not create new redexes of higher
rank, so we are done.

For case e: f ={p; Az.q, Avi.qi}+® [5,5% 3 Ay.r] —vaz @il == si] - [5,5% ; Ady.r] with
¢ = {...;...}. By induction hypothesis, ¢; -® [5,3% ; Ay.r] = g for some g in b-normal
form with all redexes of lower rank. (Note that ¢; -® [5,5% ; Ay.r] is in b-normal form.)
Then g;[x; := si] *® [5,8% ; Ay.r] = g[x; := si] and due to the fact that the type of sp
is a sub-formula of ®, this only contains new redexes of lower rank, so we are done.

For case f: f = {p ; Av.q, Azi.qi} -® [5,5% ; M\yr] —a2 ilzi == si] -® [5,5% 5 Ay.r]
with ¢; = ¢ - [u ; Az.v]. If we take g to be the b-normal form of ¢; -® [5,5% ; A\y.7],
this term contains disjoint sub-terms of the shape Aw.d -® [5,5% ; Ay.r] that all have
one maximal redex of rank R and that have length smaller than the length of f. By
induction hypothesis, these can all be reduced to terms with only redexes of lower

rank. Having done this, we obtain g as a reduct of ¢; -® [,5% ; Ay.r] that is in b-normal
form and contains only redexes of rank lower than R. To obtain f’, we notice that
[ —a2 qilvi == si] -® [5,5% ; Ay.r] — ¢'[x; := s, which only contains b-redexs of
lower rank, so we can take f’ to be the b-normal form of ¢'[z; := s]. <

» Theorem 69. For any set of connectives C, the reduction —s 4 of the calculus X is weakly
normalizing and we have a procedure to compute a normal form for a well-typed term.

Proof. We consider the following measure m(—) terms: m(¢) := (R, m), where R is the
maximal rank of a redex in ¢ and m is the number of redexes of rank R in t. We consider
this measure under the lexicographic ordering.

Given a term ¢, we first compute its b-normal form, ¢; and consider m(¢;) = (R, m). Then
we pick p, an innermost redex of maximal rank inside t;. Following Lemma 68, we reduce p
to p/, in which all redexes are of rank below R. We do this reduction on ¢, obtaining ¢5. (So
t; — ta.) Notice that m(¢1) > m(¢2). We continue in this way, obtaining a normal form of ¢,
because the lexicographic ordering is well-founded. |

We recall Lemma 35 which describes NF inductively, the set of terms in normal form. If ¢
is in normal form, then ¢ is of either one of the following three forms
1. t is a variable,
2. t ={p; \y.q}, with all p; and ¢; in normal form,

3. t==x-[p; M\y.¢|, with = a variable and all p; and ¢; in normal form.
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6.3 Corollaries of normalization

» Theorem 70. For any set of connectives C, the calculus \C is consistent, that is: there
are types A for which there is no closed term t with -1t : A.

Proof. Take A to be a propositional variable and suppose F t : A with ¢ in normal form.
The three possible cases for t are given in Lemma 35, which we have recalled above. The
first and third case are impossible, because ¢ cannot contain any free variable. The second
case is impossible, because an introduction term is always of a composite type. |

The calculus (and logic) A€ also satisfies the sub-formula property.

» Theorem 71. Given a set of connectives C, the calculus X¢ satisfies the sub-formula
property, that is: if I =t : A, then there is a term t' such that T =t : A and all types of all
sub-terms of t' are either sub-types of A or of some A; for a declaration x; : A; in T.

Proof. If T+ ¢ : A, then (by Theorem 69) there is a term ¢’ in normal form with T' - ¢ : A.
We use Lemma 35 and prove by induction on ¢’ that “all types of all sub-terms of ¢’ are either
sub-types of A or of some A; for a declaration z; : A; in I'”. For simplicity we abbreviate
this property to “t’ satisfies the sub-type property for I'; A”.
t' = x, a variable. Then we are done.
t' = {p ; \x.q}, an introduction term. Then by induction hypothesis, all sub-terms of
D satisfy the sub-type property for I'; A; for some A; which is a sub-type of A. For
the Azj.¢; in Ax.q, we have I',z; : A; F ¢; : A for some A; which is a sub-type of A.
By induction hypothesis, for all j, all sub-terms of ¢; satisfy the sub-type property for
I,z;: Aj; A. So all sub-terms of Ax.¢ satisfy the sub-type property for I'; A and we are
done.
t' = x - [p; A\r.q], an elimination term. Suppose z : C. Each p; is of type B; for some
sub-type B; of C, so the induction hypothesis yields that all sub-terms of p satisfy the
sub-type property for I'; A. For the Az;.¢; in Az.q, we have T, xj: Bj Fgq; : A for some
Bj which is a sub-type of C'. By induction hypothesis, for all j, all sub-terms of g; satisfy
the sub-type property for I',z; : B;; A. So all sub-terms of Az.q satisfy the sub-type
property for I'; A and we are done. <

» Theorem 72. In X, given a context I' and a type D, the problem T' F? : D is decidable.
That is, it is whether there is a term t for which T -t : D.

Proof. By Theorem 69 we can limit our search to a term in normal form. So we can restrict
the elimination rules to the following restricted case, where ® = ¢(Ay, ..., A,). (Compare
with the original rules in Definition 27.)

r:Pel ...F}—kaAk... ...F,yz:AKI—Qg:D

Tha-[p; A\y.q]:D

el

Now, given I' and D, the following algorithm searches a term t in normal form with
IP'Ht¢:D. (1) Check if z : D € T for some z and otherwise (2) try an introduction rule (in
case D is composite) and (3) try an elimination rule for each z : ® € " with ® a composite
formula. In the recursive case, this gives finitely many possibilities to try and each try creates
new goals of the form I',y; : A; 7 : D or of the form I' -7 : A; with A; and A; sub-formulas
of I, D. This search terminates because the number of sub-formulas in the context increases
(which is bound by the number of all sub-formulas of T, D), and otherwise the size of the
goal-formula decreases. <
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As a corollary, we find that all the variants of the logical rules we have considered are
decidable and consistent, simply because they are (with respect to derivability) equivalent to
the set of rules for A, V,—, -, L, T that we extract from the truth tables, for which Theorems
70 and 72 apply. We can also say a bit more about the conversion of derivations in these
systems themselves: detour conversion is strongly normalizing, permutation conversion is
strongly normalizing and we can also conclude weak normalization of the combined conversion.

» Theorem 73. The reductions for the optimized rules of Definition 36, the parallel N-
elimination rule of Definition 44, the standard —-introduction of Definition 47 and the
traditional rule for —-elimination of Definition 50 are weakly normalizing.

Proof. The proof follows the same argument as the proof of Theorem 69. The crucial Lemmas
are Lemmas 68 and 66, which can be proved again with the reduction rules mentioned in the
statement of Theorem 73 added. Furthermore, the permutation conversion, —, is strongly
normalizing. (Corollary 56.) <

7 Conclusion and Further work

We have studied the general procedure for deriving intuitionistic natural deduction rules from
truth tables, that we have presented in [7]. We have defined detour conversion and permutation
in general and we have proven that both are strongly normalizing and that the combination
of the two is weakly normalizing. We have done so by defining a proof-term calculus for
derivations on which we have defined the reduction rules that correspond to conversion of
derivations. This follows the well-known Curry-Howard formulas-as-types isomorphism that
establishes an isomorphism between proofs (derivations in natural deduction) and terms. We
have shown that very many well-known formalisms for intuitionistic natural deduction can
be defined in terms of our calculus, including the conversion rules for derivations. Our paper
also provides a straightforward method for deriving a term calculus for any connective that
is given via a truth table: the term constructions and reduction rules are self-contained and
normalizing by construction. We have shown this on various examples, most notably the
nand-connective.

The work described here leaves various questions unanswered. For example, is proof
normalization (the combination of detour conversion and permutation conversion) strongly
normalizing in general for an arbitrary set of connectives? We would believe so, but have not
yet proved it. Techniques as in [9], where this property is proved for intuitionistic logic, may
be useful.

It also raises various new research questions: The rules are not Church-Rosser (confluent)
in general, but one may wonder whether there is a certain condition that guarantees confluence.
We have seen in Examples 23, 30 and 40 that fixing a choice for the “matching case” in a
detour convertibility may render the reduction confluent. It is not clear if this would work in
general.

Another topic to look into is detour conversion for the classical case, and what its
connection is with known term calculi for classical logic, for example as studied in [13], [1]
and [2]. Also, it might be interesting to look at these general rules from a linear perspective:
what if we enforce the rules to be linear?

Finally, we may wonder whether our research could contribute to the study of “harmony
in logic”, as first introduced by Prawitz [15] and further studied by various authors like
[16, 12, 23, 4, 3]. The inversion principle explains the elimination rules as capturing the
“least information” that is conveyed by the introduction rules. This can also be dualized (as
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is done in [12] in their “uniform calculus”) by explaining the introduction rules in terms of
the elimination rules. It would be interesting to study the relation with our rules, where
there is no a priori preference for the introduction or elimination rules.

From our research, we would propose the following as a proper system for intuitionistic

logic with “parallel elimination rules” that follow Prawitz’ [15] inversion principle. These rules

are derived from the truth tables and optimized following Lemma 9, but not using Lemma

12. Compare with Definition 13; the special rules are A-elimination and —-elimination.

» Definition 74. The parallel elimination rules for the intuitionistic propositional connectives
A,V,—,—, L and T are given below.

A B FAAB ARD FAANB BFD
——— A-in /\-el() N-el 0
FAANB D - D -
HA B FAVB A+-D BFD
—— V-inl —— V-inr V-el
FAVB FAVB D
AFA—- B B FA—-B +FA BFD
— in, —  iny —-el
FA— B FA— B D
AF-A F-A HA T L
—ﬁ—in —ﬁ—el — -n —L-el
F-A D
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—— Abstract

We present the PMLy language, which provides a uniform environment for programming, and
for proving properties of programs in an ML-like setting. The language is Curry-style and
call-by-value, it provides a control operator (interpreted in terms of classical logic), it supports
general recursion and a very general form of (implicit, non-coercive) subtyping. In the system,
equational properties of programs are expressed using two new type formers, and they are proved
by constructing terminating programs. Although proofs rely heavily on equational reasoning,
equalities are exclusively managed by the type-checker. This means that the user only has to
choose which equality to use, and not where to use it, as is usually done in mathematical proofs.
In the system, writing proofs mostly amounts to applying lemmas (possibly recursive function
calls), and to perform case analyses (pattern matchings).
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ing, Curry-style quantification, implicit subtyping
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1 Introduction: joining programming and proving

In the last thirty years, significant progress has been made in the application of type theory
to computer languages. The Curry-Howard correspondence, which links the type systems of
functional programming languages to mathematical logic, has been explored in two main
directions. On the one hand, proof assistants such as Agda [24] or Coq [23] are based on
very expressive logics [22, 7]. To establish their consistency, the underlying programming
languages need to be restricted to provably terminating programs. As a result, they forbid the
most general forms of recursion. On the other hand, functional programming languages such
as Haskell, SML or OCaml are well-suited for programming, as they impose no restriction on
recursion. However, their type systems are inconsistent when considered as logics, which
means that they cannot be used for proving mathematical formulas.

The aim of PMLs is to provide a uniform environment in which programs can be designed,
specified and proved. The idea is to combine a full-fledged ML-like programming language,
with an enriched type system allowing the specification of computational behaviours.? The
obtained system can thus be used as ML for type-safe general programming, and as a proof
assistant for proving properties of ML programs. The uniformity of the framework implies
that programs can be incrementally refined to obtain more and more guarantees. In particular,
there is no syntactic distinction between programs and proofs. The only difference is that the

! This particular point will be explained in more detail in Section 5.
2 On might argue that PMLy is not a full-fledged ML-like language as it does not have mutable references.
It is nonetheless effectful as it provides a control operator similar to Scheme’s call/cc.
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latter must be typed-checked against the consistent core of the system, which only accepts
programs that can be proved terminating. In the current implementation, programs must
also be proved terminating to be directly accepted by the type-checker. It would however
be possible to accept programs that do not pass the termination check, and we would then
need to make sure that such programs are not used to write proofs.? Note however that the
system can already be used to reason about arbitrary programs, including untyped ones and
those whose termination cannot be established (an example will be given in Section 5.3).

1.1 Program verification principles

In PMLsy, program properties may be specified with types containing equations of the form
t = u, where t and u are terms of the language itself. By quantifying over the free variables
of these terms, we can express properties such as the following.

// "add" is commutative.
Vn€nat, Vmcénat, add n m = add m n

// "reverse" is involutive.
Va, Vl€list(a), reverse (reverse 1) =1

// "sort" produces sorted lists.
V1l€list (nat), sorted (sort 1) =

// All natural numbers are equal to "Zero".
Vn€nat, n = Zero.

// Sorted lists are not affected by "sort".
V1l€list (nat), (sorted 1 = ) = (sort 1 = 1)

Of course, such a specification may be inaccurate, in which case it will not be provable. Note
that it is possible to observe complex behaviours using predicates such as sorted, which
correspond to boolean-valued functions.

The PML, language relies on two main ingredients for proving that programs meet their
specifications. First, the type system of the language can be considered as a (classical) logic
through the Curry-Howard correspondence, although it is only consistent for terminating
programs. This (usual) part of the type system provides basic reasoning principles, which
are used to structure the proofs. The second ingredient is an automatic decision procedure
for the equational theory of the language. It is used to manage a context of equational
assumptions, and eventually prove equations in this context. The decision procedure is driven
by the type-checker, without any direct interaction with the user. As a consequence, the
user only has to care about the structure of the proof, and not about the details of where
equations should be applied. In fact, equality types of the form t = u are computationally
irrelevant in the system. More precisely, t = u is equivalent to the unit type when the
denoted equality holds (and can be proved), and it is empty otherwise. As a consequence,
a proof will generally consist of a (possibly recursive) program that calls other programs
and performs pattern matching but eventually just returns a completely uninteresting result.
Nonetheless, writing proofs in this way is a very similar experience to writing functional
programs. We can hence hope that our approach to program verification will feel particularly
intuitive to functional programmers.

3 For example, we could have two different function types: one used for functions whose termination
has been established, and another one that that may be used for any function (and that would be a
supertype of the former).
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1.2 Previous work on the language

PML,, is based on many ideas introduced by Christophe Raffalli in the PML language [27].
Although this first version of the system was very encouraging on the practical side, it
did not stand on solid theoretical grounds. On the contrary, PMLs is based on a call-by-
value, classical realizability model designed by the author [16]. This framework provides a
satisfactory way of combining call-by-value evaluation and effects with dependent function
types.? The proposed solution relies on a relaxed form of value restriction (called semantical
value restriction), which takes advantage of our notion of program equivalence and its decision
procedure.’ In particular, it allows the application of a dependent function to a term which
is not a value, under the condition that it can be proved equivalent to some value. This
is especially important because dependent functions are an essential component of PMLs.
Indeed, they enable a form of typed quantification without which many program properties
could not be expressed (see Section 3).

Another important specificity of PMLy’s type system is that it relies on the notion of local
subtyping, which was introduced in joint work with Christophe Raffalli [19]. This framework
can be used to give a syntax-directed formulation of the typing and subtyping rules of the
system®, despite its Curry-style nature. In particular, it provides a very general notion of
infinite (circular) proof, that is used for handling inductive and coinductive types in subtyping
derivations, and recursion and termination checking in typing derivations. Of course, infinite
proofs are only valid if they are well-founded (this is ensured using the size-change principle
[15]). The combination of local subtyping [19] and the realizability model of the system has
been addressed in the author’s PhD thesis [17, Chapter 6].

Last but not least, the implementation of PMLsy [18] was initiated as part of the author’s
thesis [17], and continues with the collaboration of Christophe Raffalli. The implemented
system is intended to remain very close to the theoretical type system, and every part of the
implementation is justified by the formal semantics of PMLy [17]. Note that all the examples
given in this paper are accepted by the version 2.0.2_types2017 of PMLs, which can be
downloaded at the following URL.

https://github.com/rlepigre/pml/archive/pml_2.0.2_types2017.tar.gz

1.3 Disclaimer: the aim of this paper

This document is intended to be an introductory paper for the PMLy system. Its aim is
not to give the details of the realizability semantics, nor to prove new theoretical results,
but rather to list the principles and ideas on which PMLs is based. In particular, Section 6
contains an extensive description of several ideas that we would like to investigate in the near
future, and that will be necessary for achieving the goals of PMLs completely. For technical
details, the reader should refer to the author’s thesis [17], and related papers [16, 19].

4 Due to the soundness issues explained in previous work [16], the application of dependent functions is

usually restricted to value arguments. This is commonly called value restriction in the context of ML.
Intuitively, two terms are (observationally) equivalent if they have the same computational behaviour
(i-e., they both converge or they both diverge) in every possible evaluation context [16, 17].

This means that exactly one typing rule applies for every term constructor, and only one subtyping rule
applies for every pair of type constructors (up to commutation and circular proof construction).

5
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2  Functional programming in PML,

Our first goal in designing PML, was to obtain a practical, functional programming language.
Out of the many possible technical choices, we decided to consider a call-by-value language
similar to OCaml or SML, as they have proved to be highly practical and efficient. Our
language provides polymorphic variants [8] and SML-style records, which are convenient for
encoding data types. As an example, the type of lists can be defined as follows,” together
with the corresponding iter and append functions.

list(a) = [Nil ; Cms {hd : a ; tl : list}]

iter : Va, (a = {}) = list(a) = {} =
f 1 {

11
Nil — {}
Cns[c] — f c.hd; iter f c.tl

}
}
append : Va, list(a) = list(a) = list(a) =
11 12 {
11 {
Nil — 12
Cns[c] — Cns[{hd = c.hd ; tl = append c.tl 12}]
}
}

Note that the iter and append functions are polymorphic, which means, for instance, that
they can be applied to lists with elements of an arbitrary type. In our syntax, this is explicitly
materialised using universally quantified type variables. Note also that the iter function
relies on the type {3}, which contains records with no fields. It plays the same role as OCaml’s
unit type, and its unique inhabitant is denoted {} as well.

» Remark. As in System F [9, 28], polymorphism can be used anywhere in types, and it is
not limited to let-polymorphism (or prenex polymorphism) as in most ML-like languages.

2.1 Control operator and classical logic

The programming languages of the ML family generally include effectful operations such as
references (i.e., mutable variables). Our system is no exception since it provides a control
operator similar to call/cc.® On the programming side, it may be used to encode a form of
exception mechanism. For instance, we can define the following exists function, which tests
whether there is an element satisfying a given predicate in a given list, and stops as soon as
possible if such an element is found.

Note that 1ist is used without its type parameter in the type of the Cns constructor. This is due to the
fact that the “type rec” syntax is desugared to an inductive type (or least fixed point), and list(a) is
actually defined as “u 1list, [Nil; Cns of {hd : a; tl : 1list}]”. In particular, the current version
of PMLy does not support polymorphically recursive types.

This instruction can be used to capture the current continuation (or evaluation context), so that it can
be restored later. It was first introduced in the Scheme language.
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exists : Va, (a = bool) = list(a) = bool =
pred 1 {
k {
iter ( e { pred e { k L DI

Here, the continuation is saved in a variable k before calling the iter function, and it is
restored with the value true if an element satisfying the predicate is found. In this case,
the evaluation of iter is simply aborted. To obtain a similar behaviour without using a
continuation would require the user to write an independent recursive function (i.e., one that
does not rely on iter). A more interesting example that cannot be written without a control
operator will be given in Section 4.

As is now well-known, control operators such as ours can be used to give a computational
content to classical theorems, thus extending the Curry-Howard correspondence to classical
logic [10]. It is hence possible to define programs with a type corresponding to Peirce’s law,
or to the law of the excluded middle.

peirce : Va b, ((a = b) = a) = a =
x {

x ( y { ky B

// Disjoint sum (logical disjunction) and (logical) negation
either(a,b) = [InL a ; InR bl
neg(a) = a = Vx,x

excl_mid : Va, {} = either(a, neg(a)) =
_fp
k {
InR[ x { k InL[x] }]

Note that the definition of excl_mid requires a dummy function constructor due to the
call-by-value evaluation strategy. Indeed, excl_mid would not be a value if it did not start
with an abstraction, and it would thus save its continuation right away, unlike peirce
which must first be given an argument to trigger the computation. This is related to value
restriction [35, 34], which is required in presence of control operators [11].°

From a computational point of view, manipulating continuations using control operators
can be understood as “cheating”. For example excl_mid (or rather, excl_mid {}) saves the
continuation and immediately returns a (possibly false) proof of neg(a). Now, if this proof is
ever applied to a proof of a (which would result in absurdity), the program backtracks and
returns the given proof of a. This interpretation has been well-known for a long time, and
an account is given in the work of Wadler [33, Section 4], for example.

9 Value restriction is a sufficient (but not necessary) condition for correctness.
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2.2 Non-coercive subtyping

In PMLs, subtyping plays a very important role as it allows us to give a mostly syntax-directed
presentation of the system [19, 17]. Although it is less widespread than polymorphism in
mainstream languages, subtyping can be exploited to improve code modularity. Note that
we here consider a non-coercive form of subtyping, which means that if a is a subtype of b,
then any value of type a is also a value of type b (i.e., no coercion is required).

In the system, there are many forms of subtyping that may interact. In particular,
subtyping is used to handle all the connectives that do not have algorithmic contents (i.e., no
counterpart in the syntax of terms). Such connectives include quantifiers as well as inductive
types, but also the equality types of PML,. Subtyping also plays an important role with
variants and records. For instance, it implies that a record can always have more fields than
required. Moreover, subtyping enables many commutations of connectives.

As a first example, we can show that the type corresponding to the (classical) double
negation elimination principle can in fact be seen as an instance of Peirce’s law. Indeed, it
can be defined as follows in PMLs.

dneg_elim : Va, neg(neg(a)) = a =
peirce

It is relatively easy to see that the type of peirce is indeed a subtype of that of dneg_elim.
The corresponding subtyping derivation is sketched below.?

a0 C a0
a0 = Vx,x C a0 = Vx,x Vx,x C a0
(a0 = Vx,x) = Vx,x C (a0 = Vx,x) = a0 a0 C a0

((a0 = Vx,x) = a0) = a0 C ((a0 = Vx,x) = Vx,x) = a0
Vb, ((@0 = b) = a0) = a0 C ((a0 = Vx,x) = Vx,x) = a0
Va, Vb, ((a = b) = a) = a C ((a0 = Vx,x) = Vx,x) = a0

Va, Vb, ((a = b) = a) == a C Va, ((a = Vx,x) = Vx,x) = a

Intuitively, universal quantification on the right of the inclusion can be eliminated by
introducing a fresh constant. On the left, variables that are quantified over can be replaced
by anything. As usual, the subtyping rule for handling the arrow type reverses the inclusion
between the domains due to the contra-variance of the arrow type.

We will now consider the extension of the type of lists with an additional constructor
allowing constant time concatenation. In PML,, the corresponding type of “append lists”
can be defined in such a way that it admits the type of regular lists as a subtype.

alist(a) =

[Nil ; Cms {hd : a; tl : alist} ; App alist X alist]

// Constant time "append" function.
alist_append : Va, alist(a) = alist(a) = alist(a) =
11 12 { App[(11,12)] }

Although regular lists are a special case of “append lists”, the converse is not true. To
transform an “append list” into a list, it is necessary to define the following recursive,
flattening function.

10The proof does not contain all the necessary information to ensure its validity. The reader should refer
to the author’s thesis [17, Figure 6.5] to fill in the missing details.
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alist_to_list : Va, alist(a) = list(a) =
1
1 {
Nil — Nil
Cns[c] — Cns[{hd = c.hd ; tl = alist_to_list c.tl}]
Applc] — append (alist_to_list c.1) (alist_to_list c.2)

Another example of extension for a pre-existing type can be obtained by defining the
type of red-black trees as a subtype of binary trees. More precisely, a red-black tree can
be represented as a tree whose nodes have an extra color field. Of course, the presence of
additional information in the form of a new record field does not prevent the use of tree
functions such as binary search.

2.3 Toward the encoding of a module system

Despite its many different features, PMLy remains a fairly small system, which can be
implemented rather concisely. Its design is based on the principle that every feature should
be orthogonal. For instance, there is only one notion of product type in PMLs: records.
This is not the case in OCaml, for instance, which provides tuples, records, objects, modules,
which all have common product type characteristics.

In PML5, modules can be easily encoded using a combination of records for storing the
values, functions for building functors, and existentials for type abstraction. However, the
implementation does not yet provide a specific syntax for modules. For instance, there is still
no way of “opening” a module so that its values are accessible in the scope. It is nonetheless
possible to work with the target of the encoding directly. For example, we can define a
type corresponding to the signature (or interface) of a simple module providing an abstract

representation for the stack data structure with the corresponding operations.'!
stack_sig = dstack: o — o,
{ empty : Va, stack(a);
push : Va, a = stack(a) = stack(a);
pop : Va, stack(a) = [None ; Some a X stack(a)]l }

An implementation of this interface can then be defined by giving a corresponding record
value. For example, we can implement stacks with lists as follows.

stack_impl : stack_sig =
{ empty = (Nil : Va, list(a));

push = e s { Cns[{hd = e; tl = s}] };
pop = s {
s {
Nil — None
Cns[c] — Some[(c.hd, c.tl)]
}
} 3

1 Here, 0 — o corresponds to the sort of types with one type parameter. In particular, o is the sort of
types (or propositions), and we will later encounter the sort of program values ¢.
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Note that we need to give at least some type annotation for the system to know what to
instantiate the existential with. This could be done in a more systematic way with a syntax
requiring the user to give the intended definition for the stack type.

» Remark. It is possible to define a dot-projection operation in order to access abstract types,
so that it is possible to write stack_impl.stack to refer to the type of stacks. More details
are given in previous work [19], and in the corresponding implementation.

3 Verification of ML programs

PMLs; is not only a programming language, but also a proof assistant focusing on program
verification. Its proof mechanism relies on equality types of the form t = u, where t and
u are arbitrary (possibly untyped) terms of the language itself. Such an equality type is
inhabited by the term {}'? if the denoted equivalence is true, and it is empty otherwise.
Equivalences are managed using a partial decision procedure that is driven by the construction
of programs. An equational context is maintained by the type checker to keep track of the
equational assumptions during the construction of proofs. This context is extended when new
equations are learnt (e.g., when a lemma is applied), and an equation is proved by deriving a
contradiction (e.g., two different variants that are equated) from its negation.

Terms not only appear in (equality) types, but also play the role of objects in the
underlying logic. In particular, they can be quantified over in types, and thus form one
particular domain of discourse. In fact, our system is based on a higher-order logic with
several atomic sorts (including types and terms), which means that many different kinds
of objects can be quantified over (universally and existentially) in our types. We can for
example quantify over types with one type parameter (of sort o — 0), as in the signature
used for the stack module given in the previous section.

3.1 (Un)typed quantification and unary natural numbers

To illustrate the proof mechanism, we will consider very simple examples of proofs on unary
natural numbers. Their type is given below, together with the corresponding addition
function defined using recursion on its first argument.

nat = [Zero ; S nat]

add : nat = nat = nat =
nm {

n {
Zero — m
S[k] — S[add k m]

}

As a first example, we will show that for all n we have add Zero n = n. This property is
expressed using the type Vn:¢, add Zero n = n, and it is proved as follows.'?

add_Zero_n : Vn:., add Zero n = n =
{} // immediate

12 Recall that it denotes a record with no fields, or the unique inhabitant of a one-element type.
13 Here, the domain of the quantification is the set of values of the language, whose sort is ¢. It is not
limited to natural numbers, and also encompasses booleans and functions for example.
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The proof is immediate (i.e., only {}) as we have add Zero n = n by definition of add.
Note that this equivalence holds for every value n, whether it corresponds to an element of
the type nat or not. For instance, it can be used to show add Zero true = true since the
term add Zero true evaluates to true.

» Remark. Here, it is crucial that n ranges only over values of the language, as otherwise
the definition of add could not be unfolded. Indeed, since we are in call-by-value, it is only
possible to effectively apply a function when its arguments are all values.

Let us now show that for every n we have add n Zero = n. Although this property
looks similar to add_Zero_n, the following proof is invalid.

// val add_n_Zero : Vn::, add n Zero = n =

// {} // invalid

Indeed, the equivalence add n Zero = n does not hold when n is not a unary natural number.
In this case, the computation of add n Zero produces a runtime error while that of n does
not. As a consequence, we need to rely on a form of quantification that only ranges over unary
natural numbers. This can be achieved with the type Vn€nat, add n Zero = n, which
corresponds to a (dependent) function taking as input a natural number n and returning a
proof of add n Zero = n. This property can then be proved using induction (i.e., using a
recursive function) and case analysis (i.e., pattern matching) with the following program.

add_n_Zero : Vn€nat, add n Zero = n =
n {
n {
Zero — {}
S[k] — add_n_Zero k
}
}

If n is Zero, then we need to show add Zero Zero = Zero, which is immediate by definition
of add. In the case where n is S[k] we need to show add S[k] Zero = S[k]. By definition
of add, this reduces to S[add k Zero] = S[k]. We can then use the induction hypothesis
add_n_Zero k to learn add k Zero = k and conclude the proof.

» Remark. The dependent product type (or typed quantification) constructor is not primitive
in PMLs. It is encoded using a membership type of the form t€a which contains all the
elements of type a that are equivalent to the term t (it can be seen as a form of singleton
type). The dependent function type Vx€a, b is then encoded as Vx:t, x€a = b, which
corresponds to the relativised quantification scheme (see previous work [16, 17]).

It is important to note that, in our system, a program that is considered as a proof needs
to go through a termination checker. Indeed, a looping program could be used to prove
anything otherwise.' For example, the following proof is rejected.

// val rec add_n_Zero_loop : Vn€nat, add n Zero = n =
// fun n {

// add_n_Zero_loop n

// }

It is however easy to see that add_Zero_n and add_n_Zero are terminating, and hence valid.
In the following, we will only consider programs that can be automatically proved terminating
by the system.

1 More details will be given in Section 5.
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3.2 Building up an equational context

There are two main ways of learning new equations in the system. On the one hand, when
a term t is matched in a case analysis, a given branch can only be reached when the
corresponding pattern C[x] matches. In this case we can extend the equational context with
t = C[x]. On the other hand, it is possible to invoke a lemma by calling the corresponding
function. In particular, this must be done to use the induction hypothesis in proofs by
induction like in add_Zero_n or the following lemma.

add_n_S_m : Vn m€nat, add n S[m] = S[add n m] =
nm {
n {
Zero — {}
S[k] — add_n_S_m k m
}
}

In this case, the equation corresponding to the conclusion of the used lemma is directly
added to the context. Of course, more complex results can be obtained by combining more
lemmas. For example, the following proves the commutativity of addition using a proof by
induction with add_n_Zero and add_n_S_m.

add_comm : Vn m€nat, add n m = add m n =
nm {
n {
Zero — add_n_Zero m
S[k] — add_comm k m; add_n_S_m m k
}

» Remark. Note that terms can be put in sequence with a semicolon. In the above proof,
the recursive call add_comm k m is performed first, before calling add_n_S_m m k. They are
also type-checked in that order, and the corresponding equations are added to the context
one after the other as a side-effect to type-checking. Here, the order in which equations are
added is not significant (the resulting equational context is the same either way), but that is
not always the case (lemmas may require some equations to hold to be applied).

3.3 Detailed proofs using type annotations

Although the above proof of commutativity is perfectly valid, it might not be easy enough to
read by a human. This problem arises in most proof assistants. For instance, it is almost
impossible to understand a Coq [23] proof without replaying it step by step in a compatible
editor. In PMLs,, it is possible to annotate proofs to highlight the corresponding thought
process. For example, we can reformulate add_comm as follows.

add_comm : Vn m€nat, add n m = add m n =
nm {
n {
Zero — add Zero m = add m Zero add_n_Zero m;
S[k] — add k m = add m k add_comm k m;
add S[k] m = S[add m k];
add S[k] m = add m S[k] add_n_S_m m k;
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Note that no addition to the system is required for such annotations to be supported, it is

only syntactic sugar. For instance, qed is a synonym of {}, and show ul = u2 using pis
translated to p : ul = u2, which amounts to a type coercion.

» Remark. Many examples of proofs and programs are provided with the implementation
of the system. Each of the examples given here has been automatically checked upon the
generation of the document, they are hence correct with respect to the implementation.

3.4 Mixing proofs and programs

We will now see that the programming and the proving features of PMLy can be mixed when
constructing proofs or programs. In fact, there is no obvious distinction between the world of

the usual programs, and the world of proofs (remember that proofs are programs in PMLs).

For instance, it is possible to combine proofs with programs for them to transport properties
(e.g., addition carrying its own commutativity). This can be achieved using restriction types,
which are in fact used to encode equality types. In PMLy, the type a | t = u is equivalent
to a if t = u is true, and to the empty type otherwise. The type t = u is thus encoded
as {} | t = u, where {} is the unit type. Intuitively, the restriction type can be seen as a
form of conjunction with no algorithmic contents.

When combined with existential quantification and the membership type, restriction
can be used to encode a set type syntax similar to that of NuPrl [6]. Indeed, we can define
{x € a | t = u}, which contains all the elements of type a such that t = u holds, as
dx:t, x€(a | t = w). This provides a very useful scheme for defining the set of terms of
a that satisfy some property. For example, we can encode the type of vectors (i.e., lists of a
given length) by taking every list 1 that has size s. The type of vectors will hence have two
parameters: the type of the contained elements and a term giving the size of vectors.

length : Va:o, list(a) = nat =
1
1{
Nil — Zero
Cns[c] — S[length c.tl]
}

vec(a:o, s:7) = {1 € list(a) | length 1 = s}

» Remark. In the definition of vec, the second parameter must have sort 7 (the sort of terms)
and not ¢ (the sort of values). Indeed, it is often required to work with vectors whose sizes
are of the form add n m (see the definition of the app function below).

» Remark. There is no constraint on the type of s in the definition of vec. This means that
it is possible to consider the type of vectors of size true for example, but it will be empty
since the length function only returns natural numbers. One of the main advantages of this
approach is that it is compatible with subtyping.

Let us stress that vectors can always be used as lists, independently of their size. The
type of vectors is a subtype of the type of lists, as shown by the following function.

vec_to_list : Va:o, Vs:7, vec(a,s) = list(a) =

x { x }

Note that we will never need to use the function vec_to_1list to turn a vector into a list. A
vector can be seen as a list directly, without relying on any form of coercion.

4:11
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We will now define a concatenation function app on vectors. It produces a vector whose
length is the sum of the lengths of its two arguments. Note that we are first required to
define the length_total function for a technical reason that will be explained in Section 5.1°

length_total : Va:o, V1€list(a), dv:e, v = length 1 =
1 {

1 {
Nil — {2}
Cns[c] — length_total c.tl

}
}
app : Va:o, Vm n::, vec(a, m) = vec(a, n) = vec(a, add m n) =
11 12 {
11 {
Nil — 12
Cns[c] — length_total c.tl; Cns[{hd = c.hd; tl = app c.tl 12}]
}
}

Thanks to the Curry-style nature of our system, the sizes of the argument vectors do not
need to be provided as arguments. This may be surprising for readers that are used to
manipulating equivalent types in Agda or Coq, for example.

» Remark. In PMLs, the proof mechanism can also be used to eliminate unreachable code.
Indeed, if an equational contradiction is triggered only by learning equations along the way,
then the code in that branch cannot be accessed during evaluation. In this case, a special
value #< (to be pronounced “scissors”) can be used. Note that reachability information would
be particularly useful to efficiently compile PMLs programs down to assembly code.

4 Programs extracted from classical proofs

We will now consider an example of a program that can only be written in a classical
setting (i.e., with control operators). We are going to define a function on streams of natural
numbers called extract, that extracts a substream of odd numbers or a substream of even
numbers from its input. This will prove that such a substream exists for all steams of natural
numbers.'® First, we need to define odd and even numbers using our set type syntax.

is_odd : nat = bool =
n {
n {
Zero —
S[m] —
m {
Zero —
S[p] — is_odd p
}

15YWe have good hopes of simplifying this particular point in future work, for example by automatically
obtaining length_total from the definition of length as they have a similar structure.

16 Intuitively, we will have shown that every stream of natural numbers contains either infinitely many
odd numbers or infinitely many even numbers (and possibly both).
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odd = {veénat | is_odd v = }
even = {v€nat | is_odd v = ¥

As for the length function of the previous section, we will need to show that the is_odd
function is total for a technical reason (see Section 5 for more details). Intuitively, this will
allow us to reason by cases on the oddness (or evenness) of a given number of the input
stream. Indeed, the totality of is_odd implies that this function always produces a result
value, and hence that we can pattern match on its result.

odd_total
n {

n {
Zero — {}
S[m] —

m {
Zero — {}
S[p]l — odd_total p

Vn€nat, dv:¢,

is_odd n = v =

}

}

We also need to define the type of streams, together with a related type corresponding
to streams with an explicit size annotation (or ordinal) s. Intuitively, this size annotation
indicates the number of elements that are available in the stream (see Section 5 for more
details on sized-types).

tl stream}
{} = {hd : a;

stream(a) = {} = {hd : a;
sized_stream(s,a) = v_s stream, tl stream}
We can now define the extract_aux function, that will be used to define extract
on the next page. Note that it relies on abort, which logically amounts to the ex falso
quodlibet principle. Size annotations are also required on the type of extract_aux, for our

type-checking algorithm to prove its termination.

abort Vy, (Vx,x) =y = x {x 17}
Va b,
neg(sized_stream(a,even)) =
neg(sized_stream(b,odd )) = neg(stream(nat)) =
fe fo s {
{hd ; t1} = s {};
odd_total hd;

is_odd hd {

extract_aux

fo ( _ 1
{hd = hd; tl = oc {
abort (extract_aux fe ( x { oc x }) tl)}}
B
} {
fe ( A
{hd = hd; tl1 = ec {
abort (extract_aux ( x { ec x }) fo tl)}}
»

4:13
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Intuitively, the extract_aux function looks at the head of its third argument (a stream of
natural numbers), and depending on whether this number is odd or even, the function calls
one of its first two arguments. They can be understood as partially constructed stream of
even or odd numbers, in the form of continuations.'” The read number is then added to this
stream, and a recursive call is made to continue the construction.

» Remark. It may seem surprising that our prototype implementation is able to establish
the termination of extract_aux as an element is added to one of two streams at each call.
Moreover, this example does not satisfy the usually required semi-continuity condition [1].
It is here accepted because our termination test depends more finely on the structure of
programs than previous approaches [19].

The extract function can then be defined as follows, to complete the construction. The
function starts by saving two continuations, corresponding to the constructors InL and InR
of the return type, and then calls extract_aux on the input stream.

extract : stream(nat) = either (stream(even), stream(odd)) =
s {
a {
InL [ ec { a InR[ oc {
abort (extract_aux ( x { ec x1})
( x { oc x }) s)
}1 1]
}

The very fact that we can write extract proves that it is possible to extract a stream of odd
numbers or a stream of even numbers from any stream of natural numbers.

Of course, it is only possible to observe a finite prefix of a stream using a terminating
program. As a consequence, we may want to consider a finite version of extract, whose
result is a vector of a given size n instead of a stream.

prefix : Va, Vn€nat, stream(a) = vec(a,n) =
ns {
n {
Zero — Nil
S[k]l — {hd ; t1} = s {};
Cns[{hd ; tl = prefix k tl}]
}
}
finite_extract : Vn€nat,

stream(nat) = either(vec(even,n), vec(odd,n)) =
n s {
extract s {
InL[s] — InL[prefix n s]
InR[s] — InR[prefix n s]
b

17 Logical negation is intuitively used to type continuations represented in the form of a function. A
continuation of type neg(a) can thus be called with a value of type a in any context since it yields a
logical contradiction (or an element of type Vx,x).
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» Remark. It is possible to give an equivalent definition of finite_extract in an intuitionistic
setting (i.e., without using a control operator). Indeed, at most 2 x n elements of the input
stream need to be considered to construct the result.

» Remark. Of course, the type of extract or finite_extract does not directly imply that
the result of these functions is a substream of their input. It is nonetheless easy to convince
oneself that this is indeed the case, and we could certainly prove it in PMLs with some effort.

To conclude this section, we will consider the result returned by extract (or rather
finite_extract) on two particular streams. The former will be the stream of all natural
numbers, which can be defined as follows, and is called naturals.

naturals_from : nat = stream(nat) =

{hd = n; tl1 = naturals_from S[mn]}

naturals : stream(nat) = naturals_from Zero

The latter will be a stream of ones, prefixed by three zeroes. It can be defined as follows,
and is called three_zeroes_then_ones.

ones : stream(nat) =
_ { {hd = S[Zerol; tl = ones} }
three_zeroes_then_ones : stream(nat) =
_{ {hd = Zero; tl =
{ {hd = Zero; t1 =
_ { {nhd = Zero; tl = ones} }} }} }

The results of finite_extract on naturals and three_zeroes_then_ones may be dis-
played using the following printing functions.

print_nat : nat = {} =
n {
n {
Zero — print "O"
S[k] — print "S"; print_nat k

}
}
print_list : Va, (a = {}) = list(a) = {} =
pelt 1 {
14
Nil — print "\n"
Cns [{hd;t1l}] — pelt hd; print " "; print_list pelt tl
}
}
print_res : either(list(mat), list(mat)) = {} =
e {
e {
InL[1] — print " InL "; print_list print_nat 1
InR[1] — print " 1InR "; print_list print_nat 1
}
}

TYPES 2017
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» Remark. Although the above is boiler-plate code, it is provided so that the examples in this
document are completely self-contained, and can be type-checked and evaluated by PML,
without any modification.

We have now all the components that are required to run some tests, and to display prefixes
of the streams produced by the extract function. We will display, for each example, prefixes
of increasing size. We will thus rely on the following test function, taking as input a stream
of natural numbers, and showing the result of applying the finite_extract function on this
stream with various prefix lengths (from zero to four).

test : stream(mnat) = {} =
s {

print_res (finite_extract Zero s);

print_res (finite_extract S[Zero] s);

print_res (finite_extract S[S[Zerol] s);

print_res (finite_extract S[S[S[Zeroll] s);

print_res (finite_extract S[S[S[S[Zerol]l] s)
}

Let us first consider the output that is produced by applying the above test function to
three_zeroes_then_ones, which contains three zeroes followed by infinitely many ones.

InL

InL O

InL 0 O

InR SO SO SO
InR SO SO SO SO

As one should expect, the computation of the smallest prefixes yields a list of even numbers.
However, if more elements of the input stream are read, the extract function eventually
backtracks and produces a list of odd numbers instead. Indeed, the input stream only
contains three even numbers.

Note that one could expect the fourth line of the output to show a list of even numbers
with three zeroes. The produced result is due to the definition of extract, which looks
ahead one element further than strictly necessary in the input stream. It would be possible
to avoid doing so, but the function would be even more complex than it already is. Note
that this also has consequences on the result obtained by running test on naturals.

InL

InL O

InL O SSO

InLL 0 SSO SSSSO

InL. 0 SSO SSSSO SSSSSSO

Here, one would expect the prefixes to alternate between lists of even numbers, and lists
of odd numbers. Indeed, the stream of all the natural numbers both contain an infinite
sub-stream of even numbers, and an infinite sub-stream of odd numbers.

5 Termination and internal totality proofs

We will now look more deeply into the relation between proofs and termination checking
in PMLy. Technically, the termination of PMLy programs (and thus of PMLy proofs) is
established using circular proof techniques introduced in joint work with Christophe Raffalli
[19] and adapted in the author’s thesis [17]. The idea is to type recursive programs, or more
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precisely the fixed-point combinator used by PMLs, using a simple unfolding rule. In other
words, instances of the fixed-point construction of the language are typed assuming that
they can be typed, thus leading to a circular structure. Of course, proofs constructed in this
way may be invalid (i.e., not well-founded). To rule out such invalid proofs, a test based
on the size-change principle [15] is used. When it is able to show that the structure of a
proof is indeed well-founded, termination then follows from a standard semantic proof by
realizability.'®

5.1 Termination and consistency

As mentioned in the introduction, practical functional programming languages like OCaml
or Haskell cannot be used to prove mathematical formulas, since their type system is not
consistent when seen as a logic. More precisely, the “empty type” is inhabited by a simple
looping program in these systems. Any formula can thus be proved through the ex falso
quodlibet principle, as demonstrated by the following piece of Haskell code.'?

Empty = a. a
bad :: Empty
bad = bad
ex_falso :: Empty — a
ex_falso e = e

A similar example can also be given in OCaml, but a slightly more complex definition is
required for bad.?® This is due to the call-by-value evaluation strategy of the language, which
restricts the use of the let rec construct to the definition of functions.

empty = { any : ’a.’a }

bad : empty =

bad_aux : unit — empty = () — bad_aux ()
bad_aux ()
ex_falso : a. empty — a =

e — e.any

Of course, a similar example can be written in PMLs. This is why the current implementation
requires every program (not only proofs) to pass the termination check.

As PMLs can be used to prove program equivalences, the inconsistency that would be
introduced by possible non-termination would allow proving any program equivalence by
inhabiting the corresponding type. Moreover, a non-terminating program would allow invalid
program equivalences to be added to the equational context. The following invalid program
(first given in Section 3) gives an example of such a scenario.

// val rec add_n_Zero_loop : Vn€nat, add n Zero = n =
// fun n {

// add_n_Zero_loop n

// }

18 In this case, adequacy can still be proved by well-founded induction on the structure of the typing proof.
19Note that the Rank2Types (or RankNTypes) extension is required for the definition of Empty.
20 Note that empty is encoded using a polymorphic record field.
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Here, the recursive call add_n_Zero_loop n brings into the equational context the equivalence
add n Zero = n, which exactly corresponds to the goal of the proof.

» Remark. The example add_n_Zero_loop must be rejected because the underlying program
(and hence proof structure) is non terminating (and hence not well-founded). The management
of equivalences being correct by construction, incorrect equations can only be proved in a
contradictory equational context. In the example, a faulty equation is learned when the
non-well-founded recursive call is made.

5.2 Sized types

The termination checking technology used by PML, is based on a notion of size that is
attached to typing judgments. In fact, inductive and coinductive types are annotated using
an ordinal size indicating the number of times their definition can be unfolded (this is usual
in the context of sized types [1, 13, 30, 19]). Inductive or coinductive types, such as lists or
streams, can then be seen as sized types annotated by a large enough (limit) ordinal.?!

In practice, the implementation of PMLsy introduces sizes automatically when typing
recursive functions. This means that it replaces (some) inductive and coinductive types,
which carry a limit ordinal, with universal quantification over all possible ordinals. Note that
it is only possible to do so when the obtained type is more general that the one that was
given by the user. To enforce this invariant, we only introduce quantification on inductive
types in negative position, and on coinductive types in positive position. In practice, this
heuristic works well on simple functions, but the user is sometimes required to annotate the
functions with explicit quantifications for termination to be established. Moreover, manual
annotation may lead to more precise types, leading to more examples passing the termination
check. For example, the following map function is accepted by the implementation.

map : Va b, (a = b) = list(a) = list(b) =
fn 1 {

14
Nil — Nil
Cns[c] — Cns[{hd = fn c.hd; tl = map fn c.tl}]

}

However, if the user writes a complex recursive function containing a recursive call through
the map function, it will not be possible to establish its termination (despite the fact that
map does not change the size of the list it is applied to). To solve this problem, the user may
rather use a more precise sized type, which is a subtype of the former type.

slist(s:x, a:0) = pu_s slist, [Nil ; Cnms {hd : a; tl : slist}]

map : Vs, Va b, (a = b) = slist(s,a) = slist(s,b) =
fn 1 {

11
Nil — Nil
Cns[c] — Cns[{hd = fn c.hd; tl = map fn c.tl}]

21 In practice, w is sufficient for most of the usual data types, but this is not true in general. Nonetheless,
there exists an ordinal that is large enough for all the inductive and coinductive types to converge [19].
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» Remark. The type slist(s,a) should not be confused with the type of vectors vec(a,s)
defined in Section 3.4. Although they are both subtypes of regular lists, the former carries an
ordinal s (of sort ) that can be used by the termination checker to establish size relations,
while the latter contains a term (of sort 7) corresponding to the size of the list (as computed
by the length function) which cannot be used by the termination checker. Note however
that these two types could be easily combined.

» Remark. The above type of map only enforces that the output list is at most as long as
the input list. For instance, we could give the same type to a function taking the same two
arguments and always returning an empty list.

A similar scheme can be applied to insertion sort for example, but not for quick sort, as
discussed in previous work [19]. Indeed, a richer language of ordinals would be required to
express the fact that the partition function preserves the number of elements of its input.??

5.3 Proof by equivalence to a terminating function

Although the current implementation of PMLsy checks the termination of all programs (not
only proofs), it is possible to use the specific features of the system to write termination
proofs. Indeed, the equivalence relation on which the system relies can be used to substitute
one term with another, provided that they are equivalent. This means that if we want to
establish the termination of a program that does not pass the termination check directly,
then we can instead establish the termination of any equivalent program. We will here
consider the example of the well-known McCarthy 91 function, whose termination cannot be
established by most of the existing termination criteria (if not all).

lib.nat
lib.nat_proofs

mccarthy91_hard =
mccarthy91l n {
gt n ulo0 {
minus n ul0

} {
mccarthy91l (mccarthy91l (add n ull))
}

// val mccarthy91 : nat = nat =
// mccarthy91_hard

Note that here, the value mccarthy91_hard is not defined as a usual, type checked and
termination checked value, but as a value object (using the def keyword). This means that
this function can be manipulated as an object of the logic, but not evaluated directly. Note

also that we rely on some functions (and constants) defined in the standard library of PMLs.

The minus function computes the difference, and the gt function tests whether its first
argument is strictly greater than its second argument.

Although PMLs is not able to prove the termination of the commented version of
mccarthy91, we can give the following alternative (but equivalent) definition.

221t is nonetheless possible to show that quick sort is size-preserving using a PMLa proof.
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mccarthy91_easy : nat = nat =
n {
gt n ul00 {
minus n ul0
Y {
u9l

}

This second definition passes our termination check (it is not even recursive), but it does
not really correspond to the traditional definition of the McCarthy 91 function, which is a
shame. We can nonetheless write a PMLy proof showing that these definitions are (pointwise)
equivalent, which will then allow us to replace one with the other. To do so, we first need to
show that mccarthy91_hard n has value u91 for all numbers that are not greater than u100.

hard_aux: Vn€nat, gt n ul00 = = mccarthy91_hard n = u9l1 =
n eq {
{- ... -} // Can be done by enumerating the domain.

}

We do not give the full proof for lack of space, but it can be easily completed since the domain
of quantification is finite. One simply needs to explore the domain by pattern matching on
n, obtaining a trivial proof for all numbers less or equal to u100. In the case of numbers
greater that u100, the presence of an additional successor produces a contradiction with the
hypothesis gt n 1100 = false which allows the enumeration to remain finite.

» Remark. This brute-force approach, although it could be easily automated, yields a proof
that it rather inefficient. A better solution would be to write a proof by “induction”, which
is what one would do on paper.

Using the hard_aux lemma, we can then show that the two implementations of the
McCarthy 91 function produce the same result on every natural number as follows.

hard_is_easy : Vn€nat, mccarthy91_easy n = mccarthy91_hard n =
n {
gt_total n ul00;
gt n ul00 {

mccarthy91_easy n = minus n ul0;
mccarthy91l_hard n = minus n ul0;
3 {
mccarthy91_easy n = u91;
mccarthy91l_hard n = u91 hard_aux n {};

}

The proof is straightforward?? since the two implementations have the same structure, and
they share the same “then” branch. In the case of the “else” branch, hard_aux can be used
to conclude. We can then type check and prove the termination of the original version of the
McCarthy 91 function as follows.

23 None of the deduce annotations are necessary, they are only provided for clarity. The gt_total lemma
is defined in the standard library, more detail about its purpose will be given in the next section.
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mccarthy91l : nat = nat =
n {
mccarthy91l_easy n // Term used for type-checking.
mccarthy91_hard n // Actual term used in the definition.
hard_is_easy n // Proof that they are equal.
// The above really is "mccarthy91l_hard n" (up to erasure).

}

The annotation used in the definition of mccarthy91 instructs the type-checker to sub-
stitute mccarthy_hard n with mccarthy_easy n in the construction of the typing proof.
This is only possible because these two terms are equivalent (when n has type nat), as
witnessed by hard_is_easy n. However, the term used for the computation will indeed be
mccarthy_hard n after the annotations are erased.

» Remark. As all the types of PML, are closed under equivalence, it is always possible to
replace a term by another equivalent term. This technique can not only be used for proving
termination of functions such as mccarthy91, but also for typing terms that would not be
typable otherwise (but that are, for example, more efficient).

» Remark. Note that we did not prove mccarthy_hard = mccarthy_easy, which may not
even be true. Indeed, equivalence considers these two terms as untyped, and it is very well
possible that they can be distinguished by a certain evaluation context.?* A simpler example
arises when comparing different implementations of the identity function on natural num-
bers: we have (fun n { case n { Zero == n | S[L] = n} }) k= (funn {n }) k
for all k in nat, but fun n { case n { Zero == n | S[.] = n } } = funn { n }is
false. These two functions can be distinguished using the argument false, which yields a
pattern matching failure on the former, while the latter successfully returns false.

5.4 Internal totality proofs

In this last section, we will give more explanations about the so-called “totality proofs” that
are currently required in PMLy. A function is said to be total if it computes some value,
when applied to any value of its domain. In PMLo, the totality of functions can be expressed
inside the system using an existential quantification. We can thus write internal totality
proofs such as the following.

add_total : Vn m€nat, dv:., add n m = v =
nm {

n {
Zero —
S[k] — add_total k m;

» Remark. Note that the value that is obtained by applying the function is not relevant here,
nor is its type. We could however modify the definition of add_total to make sure that an
element of type nat is returned. In this case, we could even use add_total as add.

241n PMLs, the equivalence t = u being provable implies that t and u are observationally equivalent,
which means that they have the same “observable behaviour” in every possible evaluation context. Note
that we only observe termination, versus divergence or runtime error [17, 16].
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The reason why totality proofs are required in the system is strongly related to the
call-by-value evaluation strategy of the language. Indeed, in call-by-value, a function can
only be applied when all of its arguments are values. More precisely, it only makes sense to
reduce a (-redex if the term in argument position is a syntactic value. To understand where
the notion of totality is really required, let us consider the following proof example showing
the associativity of addition.

add_assoc : Vm n pcnat, add m (add n p) = add (add m n) p =

mnp {
add_total n p;
m {
Zero —
S[k] — add_assoc k n p; add_total k n;
}
}

Ignoring the first call to add_total, the proof starts by a case analysis on variable m. Let
us consider the Zero case, which already illustrates very well the necessity for the totality
proof. In this branch, the automatic decision procedure learns the equation m = Zero. As
a consequence, the goal simplifies to add Zero (add n p) = add (add Zero n) p, and
even as add Zero (add n p) = add n p since both Zero and n are values (the function
can thus be applied). However, the left-hand side of the equation cannot reduce further
because add n p is not a value. We can then only proceed using the totality proof produced
by add_total n p, which gives us a value v such that add n p = v. As a consequence, this
allows us to obtain add Zero (add n p) = add n p as follows.

add Zero (add n p) = add Zerov = v = addnp

» Remark. It is clear that the totality proof corresponding to a given function has a similar
structure as the definition of the function itself. We may thus hope that totality proofs can
be generated and called automatically, at least in most cases.

6 Future work

The current implementation of PMLy already allows for several convincing examples, some
of which cannot be expressed in other systems. They include, for example, the extract
function of Section 4 or the mccarthy91 function of Section 5.3. However, theoretical work
and implementation work remain to be done for the language to become fully practical, both
as a programming language and as a proof assistant.

6.1 Mixing termination and non-termination

As mentioned earlier, termination checking is only necessary for PMLy programs that are
considered as proofs. In the theory, proving that a program terminates amounts to showing
that its typing derivation has a well-founded circular structure. In this case, a standard
semantic proof can be used to prove normalisation [19], the essential point being that the
adequacy of the type system can be established by induction on the circular structure of
proofs?®, provided that they are well-founded.

25 Circularity is introduced by the typing rule for the fixed-point combinator.
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Alternatively, it is possible to type programs with standard (non-circular) typing proofs,2%
to the expense of losing normalisation since our termination criterion works by analysing
the circular structure of proofs. Note that lack of termination checking implies the loss of
soundness, but type-safety is nonetheless preserved. As it is hard to automatically prove the
termination of programs, it is clear that a user will not want to be restricted to programs that
can be proved terminating. For this purpose, it is important to allow arbitrary (type-safe)
programs to be written, if only to prove them terminating later (examples of such programs
can be found in previous work [27]).

As programs that can be proven terminating can be typed in both ways, it is natural
to consider a way of mixing the two approaches in the theory. This has actually already
been implemented in a particular branch of our implementation (called totality) [18]. The
corresponding extension of the theory has also been checked informally.

6.2 Other forms of effects, mutation

One of the distinguishing features of PMLs is the possibility for programs to manipulate
their own continuation (or evaluation context). This is achieved using a construct similar
to Scheme’s call/cc, or rather Michel Parigot’s p-abstraction [25], which triggers a form of
effect. As shown in Section 2.1, it can be used to realize theorems which only hold classically,
by extracting a program from their proofs [26].

Although PMLs is the first proof system based on a programming language with effects
and a classical realizability model [17], one may argue that control structures only have a
limited interest for writing practical ML programs.?” Other forms of effects however, for
example input/output directives or mutable cells, are essential to ML programmers. Although
it should be relatively easy to extend the system with the former, the latter poses a real
technical challenge. Indeed, it is not yet known how to account for mutation in a classical
realizability model.

6.3 Subject reduction and strong safety

The theory of PMLs is based on a realizability model, which has the major advantage of
being flexible. More precisely, the adequacy lemma, which is the keystone of the development,
only needs to be modified locally to encompass a new typing or subtyping rule. However, we
have not yet proved any subject reduction result for the system, and thus we only have a
weak form of type safety.

6.4 Extensible variants and records (better inference)

The current type-system of PMLy requires a relatively small amount of type annotations
(at least for programs). Nonetheless, the system relies on unification in several places, and
it may happen that the system guesses the wrong types. This situation arises most often
with variant and record types, for which some fields or constructors might be left out. This
problem can be solved using extensible variant types and record types, but we will need to
make sure that this does not pose any problem in the theory.

26 This feature is not available in the current implementation, which only accepts terminating programs.
7 They can however be used to encode a form of exception mechanism.
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6.5 Support for mutually recursive function

In the current implementation, PMLs lacks the possibility of defining mutually recursive
functions. Although it is always possible to encode mutual recursion using additional
parameters, this method does not perform very well when combined with our termination
checking technology. We thus need to consider a different fixed-point instruction for our
abstract machine, which does not seem to pose any theoretical problem. The idea is to replace
the current fixed-point instruction with a term constructor ¢a.v, binding the term variable a
into the value v, and with the reduction rule pa.v — v[a := @a.v].2® Mutual recursion can
then be encoded using a value v that is a record containing several A-abstractions, which can
still be typed using a simple unfolding rule (as in previous work [19, 17]).

6.6 Certificates using proof traces for equivalences

For now, it is not possible to formally check the proofs produced by PML, in another system.
Although the system already records the proof trees that are produced during type-checking,
the decision procedure for program equivalence yet lacks the ability of producing a proof
trace. However, there is no theoretical evidence that it would not be possible for the decision
procedure to record enough information for an external prover (for example Coq [23] or
Dedukti [31]) to check the proofs produced by PMLs.

7 Similar systems

To conclude this paper, we will compare PML5 to other proof systems and languages that
can be used to formalise and prove program properties, or that rely on similar principles.

7.1 Dependent types in ML

To our knowledge, the combination of call-by-value evaluation, side-effects and dependent
products has never been achieved before. At least not for a dependent product fully compatible
with effects and call-by-value. For example, the Aura language [14] forbids dependency on
terms that are not values in dependent applications. Similarly, the F* language [32] relies on
(partial) let-normal forms to enforce values in argument position. Daniel Licata and Robert
Harper have defined a notion of positively dependent types [20] which only allow dependency
over strictly positive types. Finally, in languages like ATS and DML [36, 37], dependencies
are limited to a specific index language.

7.2 Tools based on intuitionistic type theory

The most actively developed proof assistants following the Curry-Howard correspondence
are Agda and Coq [24, 23]. The former is based on Martin-Lof’s dependent type theory and
the latter on Coquand and Huet’s calculus of constructions [7, 22]. These two constructive
theories provide dependent types, which allow the definition of very expressive specifications.
Contrary to PMLy, Coq and Agda do not directly give a computational interpretation to
classical logic. Classical reasoning can only be done through a negative translation or with
the definition of axioms such as the law of the excluded middle. In particular, these two

28 Term variables should not be confused with value variables (or A-variables). In particular, the former
can be substituted with any term, while the latter can only be substituted with values.
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languages are not effectful. However, they are logically consistent, which means that they
only accept terminating programs. As termination checking is a difficult (and undecidable)
problem, many terminating programs are rejected. Although this is not a problem for
formalizing mathematics, this makes programming tedious. In PMLy, only proofs really need
to be shown terminating, and it is in any case possible to reason about non-terminating and
even untyped programs as they can be manipulated as objects in types.

7.3 NuPrl and refinement types

The NuPrl system [6] has many similarities with PMLo on the theoretical side, although it is
inconsistent with classical logic. NuPrl accommodates an observational equivalence relation
similar to ours (Howe’s squiggle relation [12]), which is partially reflected in the syntax of
the system. Being based on a Kleene-style realizability model, NuPrl can also be used to
reason about untyped terms. Another major difference between PMLy and NuPrl is that the
latter is based on refinement types, which means that it does not have an automatic way of
building typing derivations for programs. Indeed, typing derivations are built interactively
using a specific interface, and the user must say what typing rule should be applied first.

7.4 Partially consistent languages

The TRELLYS project [3] aims at providing a language in which a consistent core interacts
with type-safe dependently typed programming with general recursion. Although the language
is call-by-value and effectful, it suffers from value restriction like Aura [14]. The value
restriction does not appear explicitly but is encoded into a well-formedness judgement
appearing as the premise of the typing rule for application. Apart from value restriction,
the main difference between the language of the TRELLYS project and ours resides in the
calculus itself. Their calculus is Church-style (or explicitly typed) while ours is Curry-style
(or implicitly typed). In particular, their terms and types are defined simultaneously, while
our type system is constructed on top of an untyped calculus.

7.5 Systems aimed at program verification in ML

Several systems have been proposed for verifying ML programs. ProPre [21] relies on a
notion of algorithms, corresponding to equational specifications of programs. It is used in
conjunction with a type system based on intuitionistic logic. Although it is possible to use
classical logic to prove that a program meets its specification, the underlying programming
language is not effectful. Similarly, the PAF! system [2] implements a logic supporting proofs
of programs, but it is restricted to a purely functional subset of ML. Another approach for
reasoning about purely functional ML programs is given in the work of Yann Regis-Gianas
[29], where Hoare logic is used to specify program properties. Finally, it is also possible to
reason about ML programs (including effectful ones) by compiling them down to higher-order
formulas [4, 5], which can then be manipulated using an external prover such as Coq [23]. In
this case, the user is required to master at least two languages, contrary to our system in
which programming and proving take place in a uniform framework.
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We have formalized a range of proof systems for classical propositional logic (sequent calculus,
natural deduction, Hilbert systems, resolution) in Isabelle/HOL and have proved the most impor-
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1 Introduction

This paper presents a unified formalization in Isabelle/HOL [29] of the classical proof
systems for classical propositional logic (sequent calculus, natural deduction, Hilbert systems,
resolution) and their meta-theory: compactness, soundness, completeness, translations
between proof systems, cut-elimination, interpolation and model existence. The motivation
is the desire to develop (in the long run) a counterpart to the emerging Encyclopaedia of
Proof Systems [51], including all formalized meta-theory. Our work is also part of IsaFoL [3],
a collection of formalizations of logics in Isabelle. A second motivation comes from teaching
logic. Most textbooks cover only specific proof systems and specific results proved in a
specific manner, and it is hard to modify the setup. That is why we cover multiple proof
systems with their interconnections. In particular we give multiple proofs of some key results,
e.g. three different completeness proofs. The longer term goal is a formalized logic textbook
in the style of Concrete Semantics [28] but with a web of proof systems and multiple proofs
of key results such that one can select one’s own subset of the material. It is also possible to
obtain verified executable code from such formalizations, e.g. our toy sequent calculus and
resolution provers and our Craig interpolator.

Our paper differs from each of the related papers below in at least one of the following
aspects: we do not reason about deductive systems alone but also about semantics; we do
not consider a specific calculus but a collection of canonical calculi; we do not prove a specific
result but most if not all the results covered in the propositional section of an introductory
logic course. That is, we provide a unique, unified library of definitions and proofs. The
formalization of the translations between all the proof systems appears to be new.
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The complete development is available online [26]. It consists of 5000 lines of Isabelle
text that translate into more than 100 A4 pages of definitions and proofs. For readability
the notation in this paper differs in places from the Isabelle text.

1.1 Related Work

Formalization of logic was probably started by Shankar’s proof of Gédel’s first incompleteness
theorem [42]. Harrison formalized basic first-order model theory [16]. There are many other
formalizations of results about propositional and first-order logics (e.g. cut elimination [33, 49],
interpolation [9], completeness [36, 8, 39, 21, 6], incompleteness [31], resolution [37, 38],
quantifier elimination [27]) and temporal logic (e.g. [11]). Berghofer [1] formalized part of
[13] but this was never published. There is also significant work on formalized SAT solvers
[50, 25, 43, 24, 30, 5]. Harrison [17] started to verify a theorem prover in itself, which
was later extended [23]. The above publications rely on general purpose theorem provers.
Alternatively, a number of metalogical frameworks for reasoning about deductive systems
have been implemented (e.g. [32, 34, 14, 35]) and proof theoretic results were proved in
them, e.g. cut elimination in intuitonistic and classical logic [33], cut admissibility for a
number of propositional linear logics [10], and translations between various calculi for minimal
propositional logic of implication (in the Abella [14] library).

2 Isabelle Notation

The logic of Isabelle/HOL conforms largely to everyday mathematical notation. This section
summarizes non-standard notation.

The type of truth values is called bool. The function space is denoted by =. Type
variables are denoted by ’a, ‘b, etc. The notation ¢ :: 7 means that term ¢ has type 7. Type
constructors follow postfix syntax, e.g. ‘a set is the type of sets of elements of type ‘a. Lists
over type ‘a, type ‘a list, come with the empty list [] and the infix constructor “-”, the infix
append operator @Q. Function set converts a list into a set.

Type ‘a multiset is the type of finite multisets over type ‘a. The empty multiset is (4,
comprehension is written {...}x, multiset union is denoted by +, insertion by a comma,
difference by — and membership by €.

Horizontal lines in rules are displayed versions of the implication —.

Many of our theorems are proved by induction on the structure of formulas or derivations.
If we do not say anything about how the induction cases are dealt with, this means that Isabelle
can come up with proofs for them automatically (often with the help of Sledgehammer [2]).

3 Formulas and Their Semantics

A formula (which is simply a term of a recursive data type) is either an atom Ag, A1, ...1,
or L, or constructed from other formulas using the connectives -, A, V and —; note the
bold font to distinguish them from —, A, V and — in the metalogic. The variables F, G
and H always stand for formulas. The function atoms returns the set of all atom indices in a
formula (or similar object).

The semantics of a formula F is defined via a valuation or assignment A :: nat = bool (a
function from atom indices to truth values) and a recursively defined operator A = F. The

! 'We use natural numbers to index atoms, but any countably infinite set would suffice.
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—— AX BoTtL
Ak,F:>Ak,A J_,F:>A
I'=sF, A F,T = A
——— NorL —— NotR
—|F,F:>A Fé—!F,A
F,G, "= A I'=F, A =G, A
———— AnDL ANDR
FAGT=A I'=FAG, A
F,T = A G, I'=A '=F G, A
ORL —— OrRR
Fv GT=A ' FV G, A
I'=sF, A G, I'=A F,T=G,A
ImpPL ImpPR

F— G T'=A ' F— G, A

Figure 1 Rules of sequent calculus.

E operator canonically maps the constructors of the formulas to their equivalent boolean
operators in the metalogic, e.g.

UAEF> G =AEF—AEG).

Atoms are evaluated by looking up their index in A: A = A, = A k. Assignments are total
functions and thus suitable for any formula.

4  Proof Systems

4.1 Sequent Calculus

We formalize a Sequent Calculus (SC) inspired by Troelstra and Schwichtenberg [48]. But
whereas they define derivation trees inductively, we merely define derivable sequents, where
sequents are pairs of multisets. That is, we formalize an inductively defined predicate I' = A
where I' and A are multisets. Hence I' = A means that the sequent is derivable. We begin
with the system that [48] refers to as G3c: its rules, adjusted for our definition of formulas,
are shown in Figure 1.

In the literature one finds three types of sequents: lists, multisets and sets. After some
experiments with all three representations we found that multisets were most convenient,
although we did not conduct an in-depth study. However, we did formalize Gentzen’s original
system (approximately G2c in [48]) based on lists (with all the structural rules) and proved
the equivalence with the multiset-based system SC from Figure 1. From now on we consider
the latter system only.

Many of the proofs in [48] are by induction over the depth of a derivation tree. In order to
be able to follow this style we defined a second, ternary predicate written I' =, A, where n
is the depth of the derivation, and proved (3n. I' =, A) +— I' = A. A canonical definition
of depth would have AX and BOTL start with 0 (or 1) and use the maximum in rules with
two premises. Instead, we require both antecedents to have the same “depth”, e.g.:

=, F, A G, T=,A
F—>GTI=,41A

F.T=,G A
's,4+1 F— G, A

Ak,F:>n+1Ak,A

We found this modification to be more suitable for Isabelle’s automated reasoning tools.
While this allows the proofs in the next section to follow [48], we additinally found proofs
that do not require depth arguments. We present only those.
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4.1.1 Cut Admissibility

We prove weakening, inversion, contraction and cut as admissible rules in the meta-logic.
The proofs of the eight inversion rules can be partly automated, but they are still quite long.
One major issue is exchange: given a sequent of the form F, G — H, ' = A, we need to
exchange F and G — H before we can apply IMPL. The problem is that Isabelle’s unification
algorithm does not know about multiset laws. Although we do not need to apply an explicit
exchange rule of SC, the proof still needs to apply the multiset equation F', G, " = G, F,
I'. Luckily, ordered rewriting (which Isabelle’s simplifier supports) with this equation sorts
sequents into a canonical order, thus automating the application of this equation in many
cases. Another reason for our proofs to be long is that we formalized derivable sequents.
When a proof in the literature makes a case distinction on whether a formula is principal, we
can only reproduce that by making a case distinction on which rule was applied last. That
requires discharging ten instead of two cases.

The proof of the admissibility of the cut rule is by induction on the cut formula as in [48].
The induction steps are entirely taken care of automatically. For the base cases, we need two
auxiliary lemmas:

I'=A A, ' = A I'= 4, A
I'= A - {1l}x r=A

They are proved by induction on the derivations of I' = A and A, I' = A. While the
second lemma is just the cut rule for atoms, it is easier to show than the cut rule itself since
we know that the cut formula cannot be principal in the induction steps of its proof.

The proof of the two contraction rules proceeds in exactly the same manner, unlike the
proof by induction on the derivation tree depth in [48]. The proof by induction on the depth
does not require the two auxiliary lemmas in the base cases but is slightly more unwieldy in
Isabelle/HOL.

4.1.2 Soundness and Completeness

We define the semantics of a sequent as follows:
AET = A = (VFeyul. A= F) — (3FeuA. A= F).

Note that _ | _ = _ is a ternary operator. Validity is defined as usual:
ET=A T VAAET=A

Soundness (I' = A — E T = A) is proved by induction on I' = A. The proof of com-
pleteness

El=A—T=A (1)

is more involved and conceptually similar to Gallier’s [15, §3.4.6]. Gallier presents a search
procedure that constructs derivation trees. Once the procedure terminates (for propositional
logic, it always does), the set of open leaves in the derivation tree corresponds to the set of
counterexamples. Our proof search procedure sc dispenses with derivation trees and works
on lists of formulas and atoms. Replacing multisets with lists is necessary to formulate sc as
a simple structurally recursive function. In a call sc ' A A B, the parameters I" and A are
lists of formulas and (ignoring A and B) we are trying to prove mset I' = mset A, where
mset converts a list into a multiset. In each step, the first formula in I" or A is decomposed
according to a rule of SC. Atoms (more precisely, their indices) are moved into A and B. If
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sc[]A[] B = if set AN set B =0 then {(A, B)} else §
sc (A, -T) AAB scT' (k- A)AB

scI' A (A, - A) B scT"AA (k- B)

¢c(L-T)AAB ]

scT"A(L-A)B scT'"AAB

c(~nF-T)AAB scT"A(F-A)B
scT’A(-F-A)B c(F-T)AAB
sc(FANG-T)AAB sc(F-G-T)AAB

scT’ A(FANG-A)B scT’A(F-A)BUscT' A(G-A)B
sc(FVvG-T)YAAB c(F-TYAABUsc(G-T)AAB
scTT A(FVv G-A)B scT A(F-G-A)B
sc(F—G-T)AAB scTTA(F-A)BUsc(G-T)AAB
scT A(F—= G-A)B = sc(F-T)A(G-A)B

Figure 2 Search procedure sc.

I' = A =[] and set A N set B = {J, then a counterexample has been found. The defining
equations for sc are shown in Figure 2.
From a pair (4, B) returned by sc¢, a countermodel can be constructed: map all elements

of A to True and all elements of B to False. The following propositions are not hard to prove:

The search procedure always terminates in at most n steps, where n = 2 x > (map size

(' @ A)) + length (' @ A) and the size of a formula is the number of connectives in it.

For the same n we proved:

scT[J]A]] =0 — mset ' =, mset A

(A, B) € scT [] A[] — Ak. k € set A I~ mset I’ = mset A
Generalizations of the latter two facts (with variables for the empty lists) follow by induction
on the computation of sc. The completeness of SC follows easily. Note that in the final
proposition the countermodel is based only on A because disjointness of A and B implies
that Ak. k € set A maps elements in B to False.

4.2 Natural Deduction

We have chosen a presentation of Natural Deduction (ND) with explicit contexts.? A context
T" is a set of formulas. The set of ND rules is shown in Figure 3. Explicit contexts require
rule AX to get started. Streamlined proofs with explicit contexts require a weakening rule
which is proved by induction on I" -y F:

' - F rcr’
ey F

4.2.1 Soundness and Completeness

The semantic meaning of I' -y F is best described by entailment?:

2 This is indispensable for a positive inductive definition: without contexts, IMPI becomes (Fxy F — Fx
G) — Fn F — G where the inductive predicate occurs in a negative position (Fn F).

3 We chose a separate symbol |= for entailment because further overloading of }= necessitates type
annotations for disambiguation in too many places.
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Fel {ﬂF}UFFNJ_
Ax

CcC
'y F 'y F
I'ky - F 'ty F FluTl'ky L
v N Nors UTEN L o
'ty L 'y - F
'ty FAG 'ty FAG 'ty F 'ty G
NiANDEl NiANDEQ N N ANDI
'ty F 'ty G 'ty FAG
'ty F 'ty G
—— N° or;, — Y7 Orl
'ty FV G 'ty FV G
'y FV G {F} Ul ky H {G}uT ky H
OrE
'ty H
FlUT Ny G 'y F— G 'ty F
{}—NIMPI N N IMPE
FFNF—)G FFNG

Figure 3 Rules of natural deduction.

FEFE VA NG AEG) — AEF.

Soundness, I' Fy F — T' |= F, is shown by induction on I" 5 F.

For showing completeness, we follow an approach presented, for example, by Huth and
Ryan [20]: show that ND can “simulate truth tables”. The translation from assignments to
formulas is captured by the notation F* defined by

FA = if A= Fthen Felse = F
First we show two lemmas:

atoms F C 7 — {AA | k€ Z} by FA

VA {4 A | ke{lUZY Ny F) — (VA {AA | ke Z} by F)
The first one is proved by induction on F, the second one requires a few lines of careful
manual reasoning involving the derived rule

{F}UT' +x H {~F}Ul'ty H

-y H

A limited completeness theorem = F — () b F follows by downward induction on the
size of atoms F (removing atom by atom). The general completeness theorem requires
compactness and is postponed to Section 6.

4.3 Hilbert Systems

We consider Hilbert systems (HS) based on the axioms and rules shown in Figure 4. Axioms
5 to 10 correspond to those originally postulated by Hilbert [19]. Axioms 1 and 2 are merely
a more compact way of expressing Hilbert’s first four axioms. The axioms from 11 onward
needed to be adjusted since Hilbert does not use formulas with L.

The deduction theorem is proved in the standard inductive fashion:

{F} UAXSo UT kg G
Axso UT kg F— G

Here Axsy denotes the set of axioms 1 and 2 only. In Section 5 we relate HS to ND and

SC, thus obtaining a syntactic proof of soundness and completeness. A semantic proof of
completeness is given in Section 9.
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1. F>G—F

2 (F»G—>H) —-(F—-G -F—H Ferl

5. (FANG)— F Ax

6. (FAG) — G Thu F

. F>G—FNG [by F Ty Fo G

8. F>FV G MP
9. G FV G Ihu G

10. (F—>H)—» (G—~H)—»(FVG —H
11. (F—> 1) - F

12. - F—>F— 1

13. (m F—> 1)—=F

Figure 4 Axioms and rules of Hilbert systems.

5 Translating Between Proof Systems

This section presents results relating derivations in SC, ND and HS. The key results are:

by F— AXsy Ul kg F (2)
Axsi U{F |FexpT}Fry G —T = {G}% (3)
I'sA—{F|FeyT}U{=F|FeuA}tbn L (4)

where AXS; is the full set of axioms from Figure 4. All of these proofs are by induction on

the rules of the system in the premise, simulating each rule in the system of the conclusion.
For the proof of (2) the deduction theorem is required wherever ND modifies its context T

The only case that needs some manual attention is that of simulating ORE, simply because
of its slightly higher complexity.

For (3), we need to show that all AXs; axioms are derivable in SC, which can be done
by blindly applying matching SC rules. To simulate MP, admissibility of the cut rule is
necessary.

For (4), we need a set of rules that execute the reasoning of SC in the context I" of ND,
prefixing a — to formulas that would appear in A, for example:

(= F, - G}UTkFy L {(=F}UTFy L  {GIUTHkry L
(- (GV F)lUTFy L (F— G}UTky L

The proofs of these rules are constructed automatically.
Overall we obtain that the following three propositions are equivalent:

AXxSs; kg F 0 Fnv F w# = {F}#

6 Compactness

The compactness theorem states that satisfiability and finite satisfiability of a set of formulas
coincide:

def

sat S JA VFeS. AEF
fin_sat S = VsCS. finite s —> sat s

We follow Enderton’s proof [12] which is based on an enumeration of all formulas. There is
an Isabelle library theory that can automatically derive countability of the type of formulas
and define a surjective function from a natural number n to a formula F,. This enables us
to define the saturation of a set of formulas:
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ces Stgr C Str D PLeC Ni.eD
Skr C SFE(C-{ktHu(D-{k))

Figure 5 Rules of Resolution.

saturate S0 = §

saturate S (n + 1) =

(let S" = saturate S n; Sy = {Fp} U S, Sy ={=- Fp} US’
in if fin_sat Sy then Sy else Sy)

Saturate S = \Jn saturate S n
Compactness follows after proving the following lemmas:

S C Saturate S

fin_sat S — F € Saturate S «+— — F ¢ Saturate S

fin_sat S — fin__sat (Saturate S)

fin_sat S — (Ak. A} € Saturate S) = F <— F € Saturate S

The proofs are standard.

As an example application of compactness, we show a general completeness theorem
for ND: T' |= F — T Fn F. We have proved this both via the completeness result from
Section 4.2, compactness and weakening, and via compactness, the SC completeness result
from Section 4.1 and (4) from Section 5.

7 Resolution

We have dedicated a separate section to resolution since it is quite different from the other
proof systems. To begin with, it uses a different type of formulas: CNFs. A CNF is a set of
clauses, where a clause is a set of positive (Py) or negative (N},) literals. We use S, T' for
CNFs, C, D, E for clauses and L for literals. We write the empty clause as 0. The semantics
of CNFs (and literals) is defined in a similar fashion to that of formulas, and we will use the
same = for it here:

AlES < v(CeS. ILeC. AL,
AlEPL=Ak AEN,=(-Ak).

To convert a formula into CNF, we first convert it into NNF (- is applied only to atoms)
by pushing — downward and eliminating — in the usual fashion. To convert a formula in
NNF into CNF, we define another recursive function: enf :: formula = literal set set. Its
only interesting equation is

enf (FV G)={CUD| C¢€ecenfF ADE€ enf G}

The semantic correctness of these transformations (A = enf (nnf F) <— A = F) is trivial.

Our formalization of resolution as an inductively defined predicate requires two rules, as
shown in Figure 5. A resolution refutation of S is a derivation S g O. The following two
weakening rules will come in handy:

Str C SUTkrC

o5 (6)
UStgrC ADAL}. {{L}UE|E€S}UTFRr DU C
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A weaker version of (6) is presented by Gallier [15, §4.3.4] roughly as (we leave out any
formal notation): take a resolution refutation graph and insert an additional atom into some
of the start nodes’ clauses, then apply the same resolution steps as in the original graph. We
have to generalize this from assuming a refutation to an arbitrary resolution S U T kg C to
show the claim by induction on the derivation.

7.1 Soundness and Completeness

Soundness (S Fr O — V. A. A }= S) is an easy corollary of the following lemma which is
proved by induction on S Fg C:

SFrRCAAES — Al {C}

We give two proofs of completeness. The first one follows Schéning [40]. Since the proof is
an induction on the set of atoms in the CNF, we need the following definitions to manipulate
that set:

kY = case v of True = Py, | False = Ny,

ef

S/l X {0 - (k7| CeSAK ¢ C)

o

The notational similarity with a substitution is deliberate, but beware that there is no new
formula or clause that gets substituted in. Instead, the CNF is modified as if that atom
index k had been set to the value v:

A= Sv/kl«— Ak :=v) ES
We follow Schoning and show

(VA. A S) A finite (atoms S) — S +r O

by induction on atoms S. The base case is trivial since S can only contain the empty clause.

In the step case we conclude that if V.A. A}~ S, then also V.A. A}~ S[v/k], and hence
S[v/k] Fr O for any v and some k € atoms S. For a slick formal proof of the final S g O, it

is necessary to find a suitable lemma that relates a CNF S[v/k] back to the original CNF S:

{if {k7} U C € Sthen {k7"} U Celse C| C € S[v/k]} C S

After splitting the set comprehension into two separate sets of clauses based on whether
{7} U C € 8, we can use the two weakening lemmas (5,6) and resolution to finish the
proof.

7.2 A Translation Between SC and Resolution

We provide a translation between SC proofs and resolution refutations. This yields a second
soundness and completeness argument. The idea is to translate from an SC proof I' = (4
into a resolution refutation I'' Fr O where '’ is a CNF corresponding to I'. SC in the form
presented in Section 4.1 is not very suitable for this kind of reasoning. Instead, we follow an
idea by Gallier [15] and introduce LSC (shown in Figure 6), our own variant of Schiitte’s
one-sided calculus K3 [41]. We prove

=0y +—>T =,

To go from LSC to resolution we require a special normal form of formulas. The formula
should be a conjunction of disjunctions of literals, but with a twist: the conjunctions can
be arbitrarily nested but the disjunctions have to be nested to one side (we chose the right
side). This format is captured by the predicate is cnf on formulas. With that, we can show
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—— AX —— BorL
- Ak’ Ak,F:>L 1, T =L
F,. T =L
—|(—|F),F:>L
F,G7F=>L —|F7F=>L —|G7F:>L
——— ANDL
FAGT=g - (FANG),T =1
F,P=>L G7F$L —|F,—|G,F:>L
ORrRL
FV G, T =, - (FV G),T =L
—|F,F$L G,P:>L F7—|G,P:>L
F— G T = - (F— G), I =

Figure 6 Rules of LSC.

(VFeul. is enf FYANT =, — U{enfF | Fex '} RO

by induction on I' =;. The motivation for the special nesting of disjunctions is the ORL
case. In order to apply (6) one of the disjuncts must be a literal that can match L in (6).
The idea for this trick is borrowed from Gallier [15], but the details of the proofs differ (cf.
[26)).

In a second step we can use the lemma above to prove our main result:

{F}y = 0y — cenf (nnf F) g O

Doing so requires a number of auxiliary lemmas with laborious proofs about converting
deductions of I' =, to deductions of I'' = where I'’ is a variant of I" such that is_cnf
holds for all elements of I''.

We have also shown S Fr O — 3F. enf (nnf F) C S A {F}y = 04. We do not go
into this proof.

7.3 A Toy Resolution Prover

It is possible to generate code from executable Isabelle definitions; inductive definitions
are interpreted in a Prolog-like manner. Although applicable to g, it leads to the usual
nontermination issue due to DFS. Thus we implement resolution by hand in two steps. First
we define a function res that computes all resolvents of a clause set:

res S = (UC1e€8.UCyeS. UL € Ci. ULy € Ca.
case (L1,Ly) of
(Pi,Nj) = Zf’L :jthen {(01 — {Pz}) U (02 — {Nj})} else 0
| = 0)

Then we iterate res until no new clauses are generated:
Res S = (let R = res S U Sinif R = S then Some S else Res R)

The result is wrapped in datatype ‘a option = None | Some ’a to express if the computation
diverged or produced a result a by returning None or Some a. For more details see [22, 7].
Because of Isabelle’s automatic data refinement of sets by lists this is an executable function.
We proved soundness and completeness wrt. Fz and termination:

Res S = Some T — (C € T)=Stgr C
finite S A (V C€S. finite C) — IT. Res S = Some T
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Of course we can only show termination for finite sets of finite clauses. The termination
proof relies on the fact that there is a finite bounding set, the set of all clauses that can be
constructed from the atoms in S, because resolution does not introduce new atoms.

Of course Res is inefficient and only useful for demonstration purposes. Efficient variants
would need much further refinement as in [4, 5].

8 Craig Interpolation

The interpolation theorem states: given an SC derivation I'y + I's = A; 4+ As, there exists
an interpolant G s.t.

Iy = G, Al and G, I's = AQ and
atoms G C atoms (I'1 + A1) and atoms G C atoms (s + As)

(A slightly less general version uses I's = Ay = (4.) We follow the proof by Troelstra
and Schwichtenberg [48], which is by induction on the depth of the derivation. Instead of
formalizing the split sequents used in the original proof, we use multiset unions. Troelstra
and Schwichtenberg only provide the cases for Ax, BoTL, IMPL and IMPR.

To avoid the other six cases, we rewrite formulas into the implicative fragment, i.e we
define a transformation from a formula F' to a formula F':

—
A—;f = 1 =

A 1
Fod - P PRt = Folol) ol
' = F ol m:(?%L)ﬁg

Showing that this transformation preserves the semantics is trivial. Since we do not want to
introduce a semantic argument into our proof of interpolation, we also need to show that
derivability in SC is preserved by the transformation:

F:>A<—>?:>X

We show this using one induction over the SC rules for each direction of the logical equivalence.

In the direction from left to right, derivations can be transformed easily. The direction
from right to left is technically more difficult: the induction will produce two cases where
— was the topmost connective of the last principal formula, but the — could be the result
of rewriting any of the four connectives —, A, V or —. Appropriately splitting this into
cases requires some manual effort. This means that the reduced set of connectives does not
reduce the total proof effort for Craig interpolation dramatically, but we can also apply it to
contraction and cut admissibility.

The interpolation theorem is proved by induction on I' = A where I' =T'; + 'y and A =
A1 + A,. In the proof, we can now assume that =, A and V do not occur anywhere, making
the corresponding six cases vacuous. The remaining four cases need to be split into a total
of 10 subcases distinguishing in which of the multisets I'y, A1, I's, Ay the principal formula
occurred. In each of the subcases, we provide a witness for G. . Some of the difficulty of
the proof lies in finding a way to instantiate the induction hypothesis and then finding a
possible interpolation formula for the given instantiation. Consider, for example, the IMPL
case with F — H principal and F — H €4 I';. For brevity, we define I'y"s.t. I'y = F —
H, Ty’. Now, we have (at least) two choices: We can follow Troelstra and Schwichtenberg
and instantiate the IHs to obtain interpolants Gr and Gy such that:

4 Tn [48] one of the witnesses for Ax is L where it should be L — L.
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I, = GF7 AQ and GF, P1/:> F, Al and
I:[7 F1I:> GH, Al and GH, Iy = AQ

The new interpolant is then Gp — Gp. Note that this is not the only possible interpolant.
Alternatively we can obtain a G that satisfies 'y’ = Gp, F, A1 and G, I's = A and
use Gr V Gy as the interpolant.

While the above proof is fully constructive and provides witnesses for G in all cases,
splitting the sequent leads to a lot of technical detail. The next subsection shows an easy
semantic alternative.

8.1 Craig Interpolation via Substitution

It is also possible to show that if = F — H, then there exists a formula G s.t.

EF— Gand F G— H and
atoms G C atoms F' N atoms H

Doing so is interesting because there is a much easier proof with a different approach to
constructing the interpolant G, e.g. as presented by Harrison [18]: provide a uniform recursive
function that computes the interpolant:

interpolate F H =
(let K = atoms F — atoms H
inif K = () then F
else let k = Min K in interpolate (F[(L — L)/k] VvV F[L/k]) H)

where F[G/k] substitutes G for A in F and Min is (arbitrarily) used to select the minimal
index. The proof is by induction on the set atoms F — atoms H. The induction step follows
using A = F — Al F[(L — L1)/k] v F[L/kK].

90 The Model Existence Theorem

So far we have invested a lot of work into constructive, or at least insightful proofs. This
section shows a way to derive many of the results with much less effort: the Model Existence
Theorem, as presented by Fitting [13] (originally by Smullyan [44, 45]). We begin by defining
when a set of formulas is a Hintikka set:

def

Hintikka S = L ¢ S AN (Vk. A € S — = Ap € S — False) A
VFG FANGeS—FeSANGeS)A
VFG. FVGeS—FeSVGeS) A
VMVFGF—>GeS——-FeSVvVGeSlS)A
(VF.—l(—!F)GS—>F€S)/\
VFG - (FANG eSS —FeSVaGeS)A
VFG - (FVG@€eS—FeSAGeS)A
VFG - (F—>G eS—FeSAN-Ge?)

Hintikka’s lemma shows that Hintikka sets are satisfiable:
Hintikka S — sat S

We continue by defining when a set T of sets of formulas is a propositional consistency
property:
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pep T = VSeT. L ¢ SA(Vk A€ S — = Ay € S — False) A
WVEFG FANGeS—{F,G}USeT)A
WVEFG FVGeS—{FtuSeTVv{GtuSeT)A
VFGF—>GeS—{-FluSeTVv{GluSeT)A
(VF.a(nF)eS—{FtuSeT)A
VFG A (FANG eSS —{-FluSeTVv{-GtuSeT)A
VFG - (FVGeS—{-F,aGUSeT)A
VEFG -~ (F>@eS—{F,-GuSeTl

Fitting’s proof [13] of the Model Existence Theorem
pep T NS €T — sat S

shows that every pcp can be extended to one where every member is the start of a C-chain
(constructed in a similar fashion to the sequence in Section 6). The limit of this sequence is a
Hintikka set, and by Hintikka’s lemma satisfiable. The theorem follows. Our formalization of
this proof matches Fitting’s proof very closely, and we do not want to repeat it here. Instead,
we present three examples where we applied the Model Existence Theorem:

For SC, we show the lemma

pep UF | F €4 TH|T # Dy}

The proof of this is constructed automatically after dealing with the slight discrepancies
between sets and multisets. Completeness (1) follows easily.
We show compactness using the fact that

pep {W | fin_sat W}.

We show completeness of HS using
pep {T'| = (T U Axsy by L)}

This requires a significant amount of manual effort for proving derived rules, e.g.
FUAxs;Fg F—>G@ —TUAXS; Fg - FV G

in our Hilbert system.

10 Conclusion

We have presented the formalization of a broad spectrum of calculi and results for classical
propositional logic. Although all of the constructions and proofs we formalized “worked”
in principle, the distances between the informal starting points and the formal text varied
considerably. On one end of the spectrum were beautiful abstract results like the Model
Existence Theorem whose proofs could be formalized very easily. On the other end of the
spectrum was the translation from sequent calculus proofs into resolution refutations because
it required to relate CNFs represented as formulas to CNFs represented as sets of clauses.
Proofs about resolution graphs can also become more complicated if they take the form
of global modifications of the graph: such one-step proofs required more subtle inductive

arguments. Somewhere in the middle of the spectrum are proofs about sequent calculus, e.g.

admissibility of cut or syntactic Craig interpolation. These careful syntactic arguments either
lead to long manual proofs or require special purpose automation to deal with multisets (or
structural rules, depending on the formalization).
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This work is a first step towards a basis for the growing collection of formalized logical

calculi. There is a plethora of important but non-trivial extensions, e.g. first-order, intu-

itionistic, or modal logics, that we hope to see formalized. Thiemann et al.’s formalization
IsaFoR/CeTA [46] of large parts of rewriting theory (starting with [47]) shows that the dream
of a unified formalization of logic is achievable and ideally the two efforts will be linked one

day.
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—— Abstract
This paper investigates Voevodsky’s univalence axiom in intensional Martin-Lof type theory. In
particular, it looks at how univalence can be derived from simpler axioms. We first present
some existing work, collected together from various published and unpublished sources; we then
present a new decomposition of the univalence axiom into simpler axioms. We argue that these
axioms are easier to verify in certain potential models of univalent type theory, particularly those
models based on cubical sets. Finally we show how this decomposition is relevant to an open
problem in type theory.
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1 Introduction

Extensionality is a principle whereby two mathematical objects are deemed to be equal if
they have the same observable properties. Often, formal systems for mathematics will include
axioms designed to capture this principle. In the context of set theory we have the axiom of
extensionality, which tells us that two sets are equal if they contain the same elements. In
the context of (univalent) type theory we have Voevodsky’s univalence axiom [15, Section
2.10], which tells us, roughly speaking, that two types are equal if they are isomorphic.

In axiomatic set theory the axiom of extensionality is easily formalised as a simple
implication VAVB((VX(X € A < X € B)) = A = B). The converse implication
follows from the properties of equality, and combining these two implications we deduce that
equality of two sets is logically equivalent to them having the same elements. At this point
we are done, we now have an extensionality principle for sets and nothing further needs to
be assumed.
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The situation is more complicated in a proof relevant setting such as intensional type
theory. As with sets we can formalise the statement of interest in the language of type theory
as (AB: U) —» A~ B — A= B, where A ~ B is the type of equivalences between A and B.
We then postulate the existence of a term witnessing this statement. As before, the converse
implication follows from the properties of the identity type, and hence equality of two types
is logically equivalent to them being isomorphic. However, the proof relevant nature of type
theory means that what we have described so far will be insufficient. We may want to know
how equalities derived using the postulated term compute when passed to the eliminator for
identity types. For example, if we convert them back into equivalences do we always get the
same equivalence that we started with?

In univalent type theory (UTT), also known as homotopy type theory (HoTT), these
problems are resolved by taking a different approach to the statement of the univalence
axiom. As mentioned before the converse implication, (AB: U) -+ A= B — A ~ B, follows
from the properties of the identity type. The approach taken in UTT is to state that for any
types A and B this map is itself an equivalence between the types A = B and A ~ B. From
this fact we can deduce the existence of a map in the other direction (the original implication
of interest), as well as some information about how that map computes.

Merely stating that a certain canonical map is an equivalence is a very concise way to
express the univalence axiom. From a mathematical point of view it is appealingly simple and
yet powerful. In particular, this statement has the nice property that it is a mere proposition
[15, Definition 3.3.1] and so there is no ambiguity about the term witnessing the axiom.

However, there are some disadvantages to this way of stating the univalence axiom. For
example, verifying the univalence axiom in a model of type theory can be a difficult task. Fully
expanded, this seemingly simple statement becomes very large, with many complex subterms.
Verifying univalence directly, by computing the interpretation of the statement in the model
and explicitly constructing the interpretation of its proof term, may be unfeasible. Instead,
one would need to build up several intermediate results about contractibility, equivalences,
and possibly new constructions such as Glueing [8, Section 6], through a mixture of internal,
syntactic and semantic arguments.

The contribution in this paper is a reduction of the usual statement of univalence to a
collection of simpler axioms which are more easily verified in certain models of dependent
type theory, particularly those based on cubical sets [8, 5, 2, 3, 14, 6]. Importantly, we do
not propose these axioms as an alternative statement for the univalence axiom when doing
mathematics in univalent type theory. These axioms are designed with the previous goal in
mind and are not intended to be mathematically elegant or user-friendly.

In the rest of this paper we begin with some preliminary definitions and notational
conventions (Section 2). We then briefly discuss the univalence axiom (Section 3). These
sections cover existing work. We then introduce our alternative set of axioms (Section 4),
and examine their application to models of type theory (Section 5). Finally, we propose
another application of these axioms to an open problem in UTT (Section 6).

Agda formalisation

This work presented in this paper is supported by two separate developments in the Agda
proof assistant [1]. The first covers the material in sections 2-4, where Agda is useful for
precisely tracking universe levels in many of the theorems. The second covers the material in
Section 5, and builds on the development accompanying [13]. In this development we use
Agda to verify our constructions in the internal type theory of the cubical sets topos. The
source for both can be found at https://doi.org/10.17863/CAM.25036.
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2 Preliminaries

In most of this paper we work in intensional Martin-Lof type theory with dependent sums and
products, intentional identity types, and a cumulative hierarchy of universes Uy : Uy : Us : ....

We use the symbol = for the identity type, = for definitional equality and £ when giving
definitions. Given p : x = y and ¢ : y = z, we write p*q : x = z for the composition of

1

identity proofs, and p~" : y = x for the inverse proof.

We also assume the principle of function extensionality, which states that two functions
f+9 : I1,.4 B(z) are equal whenever they are pointwise equal: f ~ g = [],., f(z) = g(z).
That is, that there exists a term:

funewti,j:H H H frg—=>f=g

A:U; B:A—=U; f,g:11,.4B(x)

for all universe levels 1, j.

Note that in the Agda development mentioned previously we do not assume function
extensionality in general, but rather we make it an explicit assumption to each theorem. This
means that we can see exactly where function extensionality is used, and at which universe
levels it needs to hold.

We now recall some standard definitions and results in UTT/HoTT.

» Definition 2.1 (Contractibility). A type A is said to be contractible if the type

isContr(A) £ Z H(ao =a)

ap:A a:A
is inhabited. Contractibility expresses the fact that a type has a unique inhabitant.

» Definition 2.2 (Singletons). Given a type A and element a : A, we can define

sing(a) £ Z(a = 1)

T:A

to be the type of elements of A which are equal to a. It is easily shown by path induction
that the type sing(a) is always contractible.

» Definition 2.3 (Equivalences). An equivalence from A ~ B is a pair (f,e) where f : A — B
and e is a proof that for every b : B the fiber of f at b is contractible. To be precise:

A~B2 Z isEquiv(f)
f:A—B

where

fibs(b) & Z(f a=") and isEquiv(f) = H isContr(fibs(b))
a:A b:B
for A: U;, B : U; for any 1, j.
A simple example of an equivalence is the identity function id4 : A — A for any type A.

To demonstrate that id, is an equivalence we must show that [],. 4 isContr(>_,. 4(a = z)),
but this is equivalent to the statement that sing(a) is contractible for all a : A.
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3 Voevodsky’s Univalence Axiom

In this section we introduce Voevodsky’s univalence axiom. We then present an existing
result which decomposes the univalence axiom into a “naive” form and a computation rule.
In Section 4, we will then decompose these two axioms further into five even simpler axioms.

» Definition 3.1 (Coerce and idtoeqv). For all i, and types A, B : U;, there is a canonical
map idtoequ : (A = B) — (A ~ B) which is defined by path induction on the proof A = B:

idtoequ(refl) £ id

where id : A ~ A is the identity map regarded as an equivalence. We can also define a map
coerce : (A = B) — A — B either by path induction, or as:

coerce(p,a) = fst(idtoequ(p))(a)
where fst is the first projection.

» Definition 3.2 (Voevodsky's univalence axiom). The univalence axiom for a universe Uj;
asserts that for all A, B : U; the map idtoequ : (A = B) — (A ~ B) is an equivalence.

In light of the following definition we will often refer to the univalence axiom as the proper
univalence axiom.

» Definition 3.3 (The naive univalence axiom). The naive univalence axiom for a universe
U; gives, for all A, B : U;, a map from equivalences to equalities. In other words, it asserts
the existence of an inhabitant of the type:

H A~B—sA=BRB
A,B:U;

When using a term ua : UA; we will often omit the first two arguments (A and B). Proofs of
naive univalence may also come with an associated computation rule. That is, an inhabitant
of the type UApB;(ua), where:

UAB;(ua) H H H coerce (ua(f,e)) = f

A,B:U; f:A—=B erisEquiv(f

Next, we give a result which is known in the UTT/HoTT community and has been
discussed on the HoTT mailing list. However, the authors are not aware of any existing
presentation of a proof in the literature. This result decomposes the proper univalence axiom
into the naive version and a computation rule. First we give a lemma which generalises the
core construction of this result.

» Lemma 3.4. Given X : U;,Y : X - X — U; and a map f : Hr,x’:X x=1 =Y (x,2)
then fxx' is an equivalence for all z,x' : X iff there exists a map

g: H Y(z,2') = o =2a
z,x’: X

such that for all x,z’ : X and y : Y(x,2') we have f(g(y)) = y (we leave the first two
arguments to f and g implicit).
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Tablel1 (A,B:U;,C: A— B — U,a:A,b:Band c: Cab, for some universe U;).

Axiom Premise(s) Equality
(1) unit : A = Y 1
(2) flip : YowndppCab = > .5 Cab
(3) contract : isContr A — A = 1
(4) unitf : coerce unit a = (a,*)
(5) flipB : coerce flip (a,b,c) = (b,a,c)

Proof. For the backwards direction, assume that we are given g as above. To show that f is
an equivalence it suffices to show that f is a bi-invertible map [15, Section 4.3]. To do this
we must exhibit both a right and left inverse.

For the left inverse we take ¢'(y) £ g(y) * g(f(refl)) '. To see that this is indeed a
left inverse to f consider an arbitrary p : © = 2/, we aim to show that ¢'(f(p)) = p. By
path induction we may assume that x = 2’ and p = refl and therefore we are required
to show ¢'(f(refl)) = refl. However, since ¢'(f(refl)) = g(f(refl)) » g(f(refl))" this
goal simplifies to g(f(refl)) » g(f(refl)) ' = refl which follows immediately from the
groupoid laws for identity types.

For the right inverse we take g unchanged and observe that we know f(g(y)) = y for all
y: Y(x,2") by assumption. Therefore the map f is an equivalence.

For the forwards direction, given a proof e : isEquiv(f) and y : Y (z, 2") we have fst(e(y)) :

> pio—ar T (p) = y. We can then define g(y) to be the first component of this and the second
component tells us that f(g(y)) = y as required. <

» Theorem 3.5. Naive univalence, along with a computation rule, is logically equivalent to
the proper univalence axiom. That is, there are terms

ua : UA;, uaf : UAB;(ua)
iff for all types A, B : U;, the map idtoequ : (A = B) — (A ~ B) is an equivalence.

Proof. By uaf we know that £st(idtoequ(ua(f,e))) = f for all (f,e) : A ~ B. Now, since
isEquiv(f) is a mere proposition for each f, we can deduce that idtoequ(ua(f,e)) = (f,e) by
[15, Lemma 3.5.1]. Therefore we simply take X = U, Y(A, B) = A ~ B, f = idtoeqv and
g = ua in Lemma 3.4 to deduce the desired result. |

4 A new set of axioms

In this section we further decompose the univalence axiom into even simpler axioms. We
show that it is equivalent to axioms (1) to (5) given in Table 1. Note that these axioms apply
to a specific universe U;.

We begin by decomposing naive univalence, UA;, into axioms (1)-(3). These axioms also

follow from UA;. Recall that we are taking function extensionality as an ambient assumption.

» Theorem 4.1. Azioms (1)-(3) for a universe U; are together logically equivalent to UA;.

6:5
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Proof. We begin by showing the forwards direction. Assume that we are given axioms (1)
to (3). We now aim to define a term ua : UA;. Given arbitrary types A, B : U; and an
equivalence (f,e): A ~ B we define ua(f,e) : A = B as follows:

A=>" by (1)

ES

Q

fa= by funext and (3) on sing(fa)

I
=WH
M
~
S
I
(=

by (2)

|
= 8
(S

by funext and (3) on fibs(b) (contractible by e)

s+

ou s

by (1)

where the proof that A = B is given by the concatenation of each step of the above calculation.

The backwards direction follows from the fact that the obvious maps A — >~ , 1 and
O undp5Cab) = (3,5 4.4C ab) are both easily shown to be bi-invertible and hence
equivalences, and from the fact that any contractible type is equivalent to 1 [15, Lemma
3.11.3.]. Therefore given ua : UA; we simply apply it to these equivalences to get the required
equalities (1)-(3). <

Next, we decompose the computation rule for naive univalence UApS; into axioms (4)
and (5). Since UAB; depends on UA; and axioms (4) and (5) depend on axioms (1) and (2)
respectively, we in fact show the logical equivalence between the pair UA; and UAB;, and
axioms (1)-(5).

» Lemma 4.2. The function coerce is compositional. That is, given types A, B,C : U;, and
equalities p: A = B and q : B = C we have coerce(p-q) = coerce(q) o coerce(p).

Proof. Straightforward by path induction on either of p or ¢, or on both. <

» Theorem 4.3. Azioms (1)-(5) for a universe U; are together logically equivalent to
Zua: UA; UABi(ua)

Proof. For the forwards direction we know from Theorem 4.1 that axioms (1) to (3) allow
us to construct a term wa : UA;. If, in addition, we assume axioms (4) and (5) then we can
show that for all (f,e): A~ B we have coerce(ua(f,e)) = f as follows.

Since ua was constructed as the concatenation of five equalities then, in light of Lemma
4.2, we have that coercing along ua(f,e) is equal to the result of coercing along each stage
of the composite equality ua(f,e). Therefore starting with an arbitrary a : A, we can track
what happens at each stage of this process like so:

a = (a,%) = (o fa, refl) = (fa, a refl) — (fa, %) = fa

Therefore we see that for all a : A we have coerce(ua(f,e))(a) = f(a) and hence by function
extensionality we have coerce(ua(f,e)) = f as required.

For the reverse direction we assume that we are given ua : UA; and uaf : UAB;(ua). We
can now apply Theorem 4.1 to construct terms unit, flip and contract satisfying axioms (1)
to (3) from ua.

Since unit and flip were constructed by applying wua to the obvious equivalences, then by
uaf we know that applying coerce to these equalities will return the equivalences that we
started with. From this we can easily construct terms unit3 and flip§ satisfying axioms (4)
and (5) respectively. <
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» Corollary 4.4. Azioms (1)-(5) for a universe U; are together logically equivalent to the
proper univalence axiom for Uj.

Proof. By combining Theorems 3.5 and 4.3. |

5 Applications in models of type theory

In this section we discuss one reason why the result given in Corollary 4.4 is useful when trying
to construct models of univalent type theory. Specifically, we believe that this decomposition
is particularly useful for showing that a model of type theory with an interval object (e.g.
cubical type theory [8]) supports the univalence axiom. We first explain why we believe this
to be the case in general terms, and then give a precise account of what happens in the
specific case of the cubical sets model presented in [8]. The arguments given here should
translate to many similar models of type theory [5, 2, 3, 14, 6].

Note that we are assuming function extensionality. Every model of univalence must
satisfy function extensionality [15, Section 4.9], but it is often much easier to verify function
extensionality than the proper univalence axiom in a model of type theory. In particular,
function extensionality will hold in any type theory which includes an appropriate interval
type, cf. [15, Lemma 6.3.2].

Experience shows that axioms (1), (2), (4) and (5) are simple to verify in many potential
models of univalent type theory. To understand why, it is useful to consider the interpretation
of A ~ B in such a model. Propositional equality in the type theory is usually not interpreted
as equality in the model’s metatheory, but rather as a construction on types e.g. path spaces
in models of HoTT. Therefore, writing [X] for the interpretation of a type X, an equivalence
in the type theory will give rise to morphisms f : [A] — [B] and g : [B] — [A] which
are not exact inverses, but rather are inverses modulo the interpretation of propositional
equality, e.g. the existence of paths connecting z and g(f(z)), and y and f(g(y)) for all
x € [X],y € [Y]. However, in many models the interpretations of A and }_ ., 1, and of
YowadppCaband d, >, C abwil be isomorphic, i.e. there will be morphisms
going back and forth which are inverses up to equality in the model’s metatheory. This will
be true in any presheaf model of type theory of the kind described in Section 5.1.1, and
should be true more generally in any model which validates eta-rules for 1 and 3.

This means that we can satisfy (1) and (2) by proving that this stronger notion of
isomorphism gives rise to a propositional equality between types. Verifying axioms (4) and
(5) should then reduce to a fairly straightforward calculation involving two instance of this
construction.

This leaves axiom (3), which captures the homotopical condition that every contractible
space can be continuously deformed into a point. The hope is that verifying the previous
axioms should be fairly straightforward, leaving this as the only non-trivial condition to
check.

We now examine what happens in the specific case of cubical sets [8].

5.1 Example: the CCHM model of univalent type theory

In this section we will examine what happens in the case of the Cohen, Coquand, Huber,
Mortberg (CCHM) model of type theory based on cubical sets [8]. To be clear, this model
is shown to validate the univalence axiom in the previously cited paper. However, here we
give an alternative, hopefully simpler, proof of univalence using the decomposition given in
Section 4. We start from the knowledge that cubical sets model a type theory with Path

6:7
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types given by maps out of an interval object I, and where types come equipped with a
composition operation which is closed under all type formers (X, II, Path). From this we then
show how to validate our axioms, and therefore the proper univalence axiom. This therefore
yields an alternative proof of univalence which does not use the glueing construction from [8].
Note however that this construction is still required to show that the universe is fibrant, and
hence we cannot completely eliminate the use of glueing from the CCHM model.

For most of this section we will work in the internal language of the cubical sets topos,
using a technique developed by the authors in a previous paper [13]. We begin with a brief
summary of the cubical sets model and then describe the internal language approach to
working with such models. For those unfamiliar with this material we refer the reader to [8]
and [13] respectively for further details.

5.1.1 The cubical sets model

Cohen et al [8] present a model of type theory using the category C of presheaves on the
small category C whose objects are given by finite sets of symbols, written I,J, K, with
C(I,J) being the set of maps J — dm(I), where dm(I) is the free De Morgan algebra [4] on
the set I.

First we recall the standard way of constructing a presheaf model of type theory [10], note
that this is not the final model construction. Take C to be the category of contexts with the
types over a context I' € C, written Ty(T"), given by presheaves on I'’s category of elements.
Terms of type A € Ty(T'), written Ter(I' b A) are simply global sections of A. Explicitly,
this means that a type A € Ty(T') is given by a family of sets A(I, p) for every I € C and
p € T'(I) such that for every a € A(I,p) and f : J — I we have A(f)(a) € A(J,T'(f)(p))
with A(id;)(a) = a and A(go f)(a) = A(f)(A(g)(a)). A term a € Ter(I' - A) is given by
a family a(I, p) € A(1,p) for every I € C and p € T'(I) such that for all f:.J — I we have
A(f)(a(I,p)) = a(J,T(f)(p)). Following the convention in [8] we will often omit the first
argument I and will write functorial actions I'(f)(p) simply as pf.

These constructions all model substitution, context extension, projection, etc, in the
correct way, and can be shown to form a category with families (CwF) in the sense of Dybjer
[9]. Such a model always supports both dependent sums and products. For example, given
types A € Ty(T') and B € Ty(T".A) then the dependent sum Y AB € Ty(I") can be interpreted
as

YAB(I,p) £ {(a,b)|a€ A(l,p), b€ B(I,p,a)}

As stated in the previous section, any model of this kind will always have S A(XBC') being
strictly isomorphic to X B(XAC), that is, with natural transformations in each direction
which are inverses up to equality in the model’s metatheory. Furthermore, assuming that
the terminal type 1 is interpreted as the terminal presheaf, then the same will be true for
the types A and X A1. This is potentially useful when verifying axioms (1), (2), (4) and (5)
for the reasons given above.

To get a model of type theory which validates the univalence axiom we restrict our
attention to types with an associated composition structure [8, Definition 13]. We call such
types fibrant and write FTy(T") for the collection of fibrant types over a context I' € C,
and FTy,(T") for the collection of small types. Taking contexts, terms, type formers and
substitution as before, we get a new CwF of fibrant types. We delay giving the exact
definition of a composition structure until after we introduce the internal type theory of C in
the following section.
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5.1.2 The internal type theory of é

In previous work [13] the authors axiomatised the properties of the cubical sets topos needed
to develop a model of univalent type theory. They then showed how many of the constructions
used in the model could be replicated using the internal type theory of an elementary topos
[12]. Here we will often build on this approach, working mostly in the internal type theory.
We now give a brief overview of this approach, and refer the reader to [13] for full details.

We use a concrete syntax inspired by Agda [1]. Dependent function types are written as
(z : A) - B with lambda abstractions written as A(z : A) —t. We use {} in place of () to
indicate the use of implicit arguments. Dependent product types are written as (z : A) x B
with the pairing operation written as (s,t).

We assume the existence of an interval object I with endpoints 0,1 : 1 — I subject to
certain conditions, a class of propositions Cof — §2, closed under V, A and I-indexed V, which
we call the cofibrant propositions and two internal Russell-style universes U : U, closed under
all the type formers of the internal language. Given ¢ :  we write [¢] £ {_: 1| ¢} for the
type whose inhabitation corresponds to the provability of ¢, and given a object I' : U and a
cofibrant property ® : T' — Cof we write I'|® £ (2 : T') x [® 2] for the restriction of T' by ®.
Given @ : Cof, f : [p]>Aand a : A we write (¢, f) / afor (u: [¢])—= fu = a; thus elements of
this type are proofs that the partial element f (with cofibrant domain of definition ¢) extends
to the totally defined element a. Finally, we write a ~a’ = {p: I+ A|p0O=aApl=2ad}
for the type of paths from a : A to a’ : A.

As an example of the use of this language we now reproduce the internal definition of a
(small) fibration [13, Definition 5.7]:

» Definition 5.1 (CCHM fibrations). A CCHM fibration (A, ) over a type I' : U is a family
A : T-U equipped with a fibration structure o : isFib A, where isFib: {T': U}(A : T-U)-U
is defined by

isFib{l'} A= (e:{0,1})(p: I ~»T) — Compe (Ao p)

Here Comp : (e : {0,1})(A: I - U) — U is the type of composition structures for I-indexed
families:

Compe A = (¢ : Cof)(f : [¢] = TI1 A) -
{ao: Ael (o, f)@e Maot = {ar: A2 (o, f) Qe M ar}
where (@, f) @ e is an abbreviation for the term Au : [¢]. f ue of type [¢] = Ae, and where
O0=1and 1=0.

We write Fib I' 2 (A : T' - U) x isFib A for the type of fibrations over I' : & and recall
that fibrations can be reindexed (A, a)[y] = (Ao, a[y]) : Fib A for v: A =T

5.1.3 Paths between fibrations

We work in the internal type theory of the cubical sets topos wherever possible, however
this approach does have its limitations. In particular this internal approach is unable to
describe type theoretic universes [13, Remark 7.5]. Therefore we will not be able to construct
elements of the identity type on the universe (the target type of axioms (1)-(3)). Instead, we
work with an (externally) equivalent notion of equality between types.

» Definition 5.2 (Path equality between fibrations). Define the type of paths between CCHM
fibrations _ ~yy _ : {T': U} >FibT > Fib = U; by

(A, @) ~y (B, B) £ {(P,p) : Fib(I' x I) | (P, p)[{id, 0)] = (A, ) A (P, p)[{id, 1)] = (B, 8)}

6:9
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To understand why this notion of path is equivalent to the usual notion recall that the
universe construction in [8] is given by the usual Hofmann-Streicher universe construction
for presheaf categories [11]. This means that there exists a type U € Ty(T') for all T given
by U(I, p) £ FTy,(yI) where yI denotes the Yoneda embedding of I. Every (small) fibrant
type A € FTy,(T") has a code "A™ € Ter(I' - U) and every a € Ter(I' F U) encodes a type
Ela € FTy,(T) such that El(TA7) = A and "Ela™ = a for all a and A.

Now consider the following: externally, a path P : A ~y; B corresponds to a fibration
P € FTy,(T'.I) such that P[(id,0)] = A and P[(id,1)] = B for some T € € and A, B € FTy,(T).
From this data we can construct p € Ter(I' - PathU "A™ " B7) like so:

plp) = (i) "P7(psi, i)

for I € C,p € T'(I), where s; : I,i — I is the obvious inclusion of I in I,i. Note that this
does define a path with the correct endpoints since substituting 0 for i we get:

("P7(p,0))f = P(pf,0f) = P(pf,0) = A(pf) = ("A7(p)) f

for all f:J — I. The case for i = 1 is similar.
Conversely, given p € Ter(I' - Path U "A7 "B™) we can define P € FTy,(I'.I) with the
required properties like so:

P(p,i) = (p pi)ids
for I € C,p € I'(I),i € I. Again, note that this has the correct properties, e.g. at O:
P[(id,0)] p = P(p,0) = (p p0) id; = ("A" p)id; = (EI"A")p = Ap

for all p € I'(). It is easily checked that these two constructions are mutual inverses.
Therefore the data described by _ ~;; _ corresponds exactly to the data required to describe
a path in the universe.

5.1.4 The realignment lemma

Next, we introduce a technical lemma that will be needed in the following sections. For
readers familiar with the cubical sets model, it is interesting to note that this is the only
place where we use the fact that cofibrant propositions are closed under I-indexed V [8,
Section 4.1].

» Lemma 5.3 (Realignment lemma). GivenT :U and ® : T'—Cof, let v : I'|® ~— T be the first
projection. For any A:T U, B :isFib(A o) and « : isFib A, there exists a composition
structure realign(®, 8, «) : isFib A such that = realign(®, 3, a)[].

Proof. By [13, Theorem 6.13], in which we define realign(®, 3, «) by
realign(®, B, a)ept fa = aep(¥V (V(i:I).2(pi)) (fUf)a (1)
where f': [V(i: I).® (pi)] = Iz (A op) is given by f'u £ £ill e B (Ni— (p,ui))? fa. <

In words, given a fibrant type A and an alternative composition structure defined only
on some restriction of A, then we can realign the original composition structure so that it
agrees with the alternative on that restriction.
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Note that this construction is stable under reindexing in the following sense: given
v:A=T, ®:I'>Cof, A: "> U, f:1isFib(A o) and a : isFib A then,

realign(®, B, a)[ylepv fa
= realign(®,5,a)e(yop)y fa
=ae(yop) (¥ V(V(i:I).2((yop)i))) (fUfill eB(Xi— (yop,ui))¥ fa)a
=afylep(® Vv (V(i:I).(®oy)(pi))) (fU£ill e B[(y,id)] (i = (p,ui)) Y fa)a
= realign(® o, B[(y,id)],a[y])ept fa

Therefore we have

realign(®, 5, a)l] = realign(® o v, 5[(y, id)], a[7])

5.1.5 Fibrations are closed under isomorphism

» Definition 5.4 (Strict isomorphism). A strict isomorphism between two objects A, B : U is
a pair (f,g) where f: A— B and g: B — A such that go f = id and f o g = id. We write

(f,9): A= B.

This notion lifts to both families and fibrations, and we overload the notation ==
like so: when A, B : T' - U then we take A = B to mean (z : I') - Az = Bz and when
A, B :Fib I' then we take A = B to mean fst A = fst B.

» Lemma 5.5. Given a family A: T — U and a fibration (B, 3) : Fib T', such that A = B,
then we can construct an « such that (A, «) : Fib T'.

Proof. Assume that we are given A and (B, ) as above with an isomorphism (f, g): A = B.
We can then define a composition structure for A as follows:

aeppgag=g(pe) (Bepy (i f(pi)(gui)) (f(pe)ao))
This construction has the required property that, given w : [¢]:
aeppqag=g(pe) (Bepy (Aui- f(pi)(qui)) (f(pe)ao))
=g(pe) (f(pe)(que)
=que
Hence (A,«a) : Fib I <

Note that this proof only uses the fact that gz o fz = id and so in fact the lemma holds
more generally in the case where (f,g) is just a section-retraction pair rather than a full
isomorphism. Although here will we only use it in the context of isomorphisms.

5.1.6 Strictification

» Theorem 5.6. There exists a term:

strictify: {p: Cof}(A: [p]-U)(B:U)(s: (u:[¢]) » (Au™= B)) -
(B :U)x{s B =2ZB|Y(u:|p]). Au=B Asu=5s"}

In words, this says that given any object B : U and any cofibrant partial object A : [¢] - U
such that A is isomorphic to B everywhere it is defined, then one can can construct a new
object B’ : U which extends A, is isomorphic to B, and this isomorphism extends the original
isomorphism.

TYPES 2017



6:12

Decomposing the Univalence Axiom

Proof. See [13, Theorem 8.4] for a proof that this property holds in the cubical sets model, and
more generally in many other models (classically, in all presheaf models). The construction
depends on the fact that, externally, cofibrant propositions are pointwise decidable and so
we can simply define (B’,s’) to be either (A4, s) or (B,id) by case analysis on ¢ at each
point. |

We now lift this strictification property from objects to fibrations.

» Theorem 5.7. GivenT' : U and ® : I' — Cof, a partial fibration A : Fib(I'|®) and a total
fibration B : Fib I" with iso : A = B[], we can construct a new type and isomorphism:

A" : Fib(T) and iso’ + A= B
such that

A=A and iso' o1 = iso
where ¢ is the inclusion T'|® — T.

Proof. GivenI': U, ® : " — Cof, (A4, a) : Fib(T'|®) and (B, ) : Fib I" with iso: A = Bo.,
we define A’, iso’ as:

A’z & fst(strictify(A(x, ), Bx,iso(x,_)))

iso’ x £ snd(strictify(A(z, ), Bz,iso(z, )))

Now consider the equalities that are required to hold. From the properties of strictify we
already have that A’ or = A and iso’ o = iso. Therefore we just need to define a composition
structure o/ : isFib A’ such that o/[t] = a.

Since A’ = B and 8 : isFib B we can use Lemma 5.5 to deduce that A’ has a composition

! re- We then define o/ £ realign(®, o, al,,

structure, which we call o ) using Lemma 5.3. <«

5.1.7 Misaligned paths between fibrations

We now introduce a new relation between fibrations which we call a misaligned path. This is
similar to the notion of path between fibrations introduced in Definition 5.2, except that
rather than being equal to A and B at the endpoints, the path only need be isomorphic to
A and B at the endpoints.

» Definition 5.8 (Misaligned path equality between fibrations). Define the type of misaligned
paths between CCHM fibrations _ ~~ _ : {T': U} = Fib = FibT = U by

(A,0) ~= (B, B) 2 ((P,p) : Fib(T x 1)) x (A= Po (id,0)) x (B = Po (id, 1))

We can show that every misaligned path can be improved to a regular path between
fibrations. First, we introduce a new construction on fibrations.

» Definition 5.9. Given fibrations A, B : Fib I" we define a new fibration
AY B : Fib((T x I)|®) where O(z,i) 2 (i=0)V(i=1)
given by (A4,a) Y (B, ) £ (C,~) where

C:TxI)®-U
C((z,i),u) = ((A_:[i=0-Ax)U(\_:[i=1] - Bx))u
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Here C is a sort of disjoint union of the families A and B, observing that (I' x I)|® 2T + T
then we can think of C' as essentially being [4,B]: '+ T — U.

To see that C' is fibrant we observe that the interval I is internally connected in the sense
of ax; in [13, Figure 1]. This means that any path p : I — (I’ x I)|® must either factor as
p=(p/,0,%) or as p = (p/, 1,%). Therefore any composition problem for C' must lie either
entirely in A, in which case we use « to construct a solution, or entirely in B, in which case
we use . For further detail we refer the reader to [13, Theorem 7.3] where the family C
occurs as an intermediate construction.

» Definition 5.10. Given I" : U, A,B : Fib I' and D : Fib(I' x I) with isomorphisms
1809 : A = D[(id,0)] and iso; : B = D|(id,1)] then define isoy Y iso; : AY B = D[] as
follows. Given (z,%,u) : (I' x I)|®:

(isoo Yisoy) (z,i,u) : (£st(AY B)) (z,i,u) — (fst D) (z,1)
isopx when u : |

. V . . é
(500 X is01) (.4, u) {ism x when u: |

Observe that for all A, B : Fib I' we have (A Y B)[(id, 0,%)] = A and (A Y B)[(id, 1,*)] = B,
and for all isog : A = D[(id,0)] and iso; : B = D[(id, 1)] we have (is0qYis04)o(id,0,*) = iso,
and (isog Y iso0y) o (id,1,*) = iso;. We now use this construct to show the following result:

» Lemma 5.11. There exists a function
improve : {I':U}{A B:Fibl'} - A~ B> A~y B

Proof. Take I' : U, A, B : FibI" and (P, is0g,is01) : A ~~ B and observe that isog ¥ iso; :
AY B 2 P[i]. Therefore we can use Theorem 5.7 to strictify P in order to get P’ : Fib(T' x I)
such that P'[:] = AV B, where ¢ is the restriction (I' X I)|® =T x I. Now consider reindexing
P’ along (id,0) : T — T x I we get:

P'[{id,0)] = P'[vo (id,0,%)] = P'[][{id,0,*)] = (A Y B)[(id,0,+)] = A

and similarly P’[(id, 1)] = B. Therefore we have P’ : A ~;; B as required. <

5.1.8 Function extensionality

As discussed previously, function extensionality holds straightforwardly in any type theory
which includes an interval object/type with certain computational properties, cf. [15, Lemma
6.3.2]. See [13, Remark 5.16] and [8, Section 3.2] for a proof in the case of cubical type
theory.

5.1.9 Axioms (1), (2), (4) and (5)

As discussed previously, we can satisfy axioms (1) and (2) by showing that there is a way to
construct paths between strictly isomorphic (fibrant) types A, B : Fib I

» Theorem 5.12. Given fibrations A, B : Fib I with iso : A = B we can construct a path
isopath(iso) : A ~y B.

Proof. Given A, B, f,g as above, let B’ £ B[fst] : Fib(I' x I) and note that iso : A &
B'[(id,0)] and id : B = B’[{id, 1)] where id is the obvious isomorphism B = B. Therefore
we can define

isopath(iso) £ improve(B[fst],is0,id) : A ~y B

as required. Note that, in this case, improve will in fact only improve B[fst] at 0, since at
1 we improve along the identity, which does nothing. <

6:13
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» Corollary 5.13. Azioms (1) and (2) hold in the cubical sets model.

Proof. The obvious isomorphisms A= A x land ) >, zCab=%", > ,Cabare
both clearly strict isomorphisms in the sense of Definition 5.4. Therefore we can construct
the required paths A ~y (A x 1) and (3, 4> p.5C ab) ~u (O .52 4.4C ab). Hence
axioms (1) and (2) hold.

Note that in order interpret axioms (1) and (2) using isopath we need to know that
isopath is stable under reindexing (substitution in the type theory). This will be the case
because most of the constructions used to define it (strictification, closure under isomorphism,
etc) are all performed fiberwise and hence will be stable under reindexing. The only exception
is the realignment lemma, which redefines the entire composition structure. However, we
previously showed realign to be stable under reindexing. Therefore isopath will also be
stable under reindexing. |

We have seen that we can easily satisfy axioms (1) and (2) in the cubical sets model.
However, we also need to know what happens when we coerce along these equalities. This
can be stated in general for any strictly isomorphic types.

» Theorem 5.14. Given fibrations (A, «), (B, ) : Fib I" with (f,g) : A= B, coercing along
isopath({f,g)) is (propositionally) equal to applying f.

Proof. Take (A, «),(B,f), f,g as above and let (P, p) = isopath({f, g)). By unfolding the
constructions used we can see that p was obtained by realigning some pp,., which in turn
was obtained by transferring S[fst] across the isomorphism:

iso’ (x,1) = snd(strictify((A4,8)Y (B,B)(x,i, ), Bz, ({f,g) Vid) (z,i, ))): Px = Bux
Now consider arbitrary = : I', ap : A z and note that

iso' (2,0) = ((f,9) ¥ id) (2,0) = (f.g)x = (f,g2)
and

iso’ (z,1) = ((f,g) Vid) (x,1) = (id, id)
Now calculate:

coerce isopath({f,g)) = ag

=pO0 (r,id) L elimy ag by unfolding definitions?
= ppre 0 (z,id) (Vi.(i =0Vi=1))qag by Lemma 5.3, for some ¢
= ppre 0 (z,id) L elimy ag by definition of V

= snd(iso’(x,1)) (B0 (z,id) L elimy (fst(iso’(x,0))ap)) by Lemma 5.5

= B0 (x,id) L elimy (£st(iso’(x,0)) ag)) since snd(iso’(x,1)) = id
=00 (x,id) L elimy (f = ap) since £st(iso’(2,0)) = fx

Since this is merely a trivial/empty composition applied to f = ag we can construct a path
from f x ag to coerce isopath((f,g)) x ag like so:

£il1l 0 B (x,id) L elimy (f = ap) : f « ap ~ coerce isopath({f,g))  ag

Therefore, coercing along isopath({f,g)) is always propositionally equal to applying f. <«
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» Corollary 5.15. Azioms (4) and (5) hold in the cubical sets model (for the terms constructed
in Corollary 5.13).

Proof. By Theorem 5.14. <

5.1.10 Axiom (3)

In light of the previous section, the only axiom remaining is axiom (3). Our goal here is,
given a contractible fibration A : Fib I', to define a path A ~;; 1. Note that, for any I" : U,
there exists a unique fibration structure !y such that (A_ — 1,!;) : Fib(T'). Therefore we
will ambiguously write 1 : Fib(T') for the pair (A_ — 1,11).

» Definition 5.16 (The contraction of a family). Given a family A : I' — U we define the
contraction of A as

Cyp:I'xI—-U
Cal(z,i) 2 [i =0] — A(x)

We now need to show that C'4 is fibrant when A is both fibrant and contractible. First,
we restate the property of being contractible (Definition 2.1) in the internal type theory.

» Definition 5.17. A type A is said to be contractible if it has a centre of contraction ag : A
and every element a : A is propositionally equal to ag, that is, there exists a path ag ~ a.
Therefore a type is contractible if Contr A is inhabited, where Contr : U — U is defined by

Contr A = (ag: A) x ((a: A) = ag ~ a)

We say that a family A : T' - U is contractible if each of its fibres is and abusively write
Contr A2 (2 :T) — Contr(Ax)

Next we recall the notion of an extension structure [13, Definition 6.4].

» Definition 5.18 (Extension structures). The type of extension structures, Ext : U - U, is
given by

Ext A= (¢ :Cof)(f: [p] = A) = {a: Al (o, f) /a}

Having an extension structure for a type A : U allows us to extend any partial element of A
to a total element. As before we say that a family A : I' » U has an extension structure if
each of its fibres do, and write

Ext A2 (v:T) - Ext(Ax)

» Lemma 5.19. Any family A : T — U that is both fibrant and contractible is also extendable
in the sense of Defintion 5.18.

Proof. By [13, Lemma 6.6]. <

2 Note that there are different ways to interpret coerce in the model. This interpretation is not in general
the same as the one obtained by directly interpreting Definition 3.1. However, the two interpretations will
always be path equal in the model (the other interpretation will have more trivial/empty compositions),
and so the result still holds when using the other interpretation.

6:15
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Now we can construct a fibrancy structure for C'4 as follows:

» Theorem 5.20. If (A,«) : Fib I' is contractible then we can construct a composition
structure for C4.

Proof. Take (A,a) : Fib I' as above. Since A is both fibrant and contractible we can
construct an extension structure € : Ext A. We can then define a composition structure
Cq 1 18Fib(Cy) as follows, given

e:{0,1} p:I-IxI @ : Cof filp] =1 (Caop) co:Ca(pe)

we must define as term of type Cy4 (p€). Since this type is defined to be [snd(p €) = 0] — A,
we define the composition like so:

(caepy fe)use(pe)p(w— fueu)
Given v : [p] we have:
caep feg=du—e(pe) o (A — fveu) = u— fveu= fuve
as required. Therefore we have a defined a valid composition operation for C4. |
» Theorem 5.21. There exists a function
contract : {I': U}(A:FibT') - Contr A—- A~y 1
Proof. Given I" : U, (A, ) : Fib I" and € : Contr A, we obverse that
C4l(id,0)](z) = Ca(z,0) =[0=0] - A(z) 21 - A(z) = A(x)
and
Cal(id, )](z) = Ca(z,1) =1 =0] > A(x) 20 > A(z) 21

Therefore we have ((Cy4,cq),1504,1501) : A ~~ 1 where iso4 : A = C4[(id,0)] and iso; : 1 =
Cal(id, 1)] are the obvious isomorphisms indicated above. Hence we can define

contract((4,a),e) = improve((Ca,cy),i504,1501) : (A, ) ~y 1
as required. |

» Corollary 5.22. Cubical type theory with the cubical sets model supports axziom (3).

As in Corollary 5.13 we need to check that contract is stable under reindexing (substitution).
This holds for the same reasons as before, namely that the only non fibrewise construction
used in the definition of contract is realign which we previously showed to be stable under
reindexing.

6 An application to an open problem in type theory

In Section 2 we defined funext to be the principle which says that two functions f,g :
[1,.4 B(x) are equal if they are pointwise equal: f ~ g = [],., f(z) = g(z). That is, we
assumed the existence of a term:

funemtm:H H H frg—=>f=g

A:U; B:A—=U; f,g:11,.4B(x)
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for all universe levels ¢, j. This is similar to the statement of naive univalence, UA, from
Definition 3.3 and we call this principle naive function extensionality.

As with proper univalence (Definition 3.2), we could have instead stated that the canonical
map happly : (f = g) — f =~ g is an equivalence. In fact, these two formulations turn out to
be equivalent.

» Theorem 6.1 (due to Voevodsky). Naive function extensionality is logically equivalent to
the proper function extensionality aziom. That is, the existence of a term:

funefctivj:H H H f=g—=f=yg
A:U; B:A—U; f,g:11;.4B(x)
is logically equivalent to the statement that, for all types A : U;, B : A — U; and maps
f,9:11,.4 B(x), the map happly : (f = g) — (f = g) is an equivalence.
Proof. For the forwards direction: assuming funezt as above, it is easy to derive a proof of

weak function extensionality [15, Definition 4.9.1]. This in turn implies the proper function
extensionality axiom by [15, Theorem 4.9.5]. The reverse direction follows trivially. <

Compare this result with Theorem 3.5 where we saw that naive univalence with a
computation rule is logically equivalent to the proper univalence axiom. In the case of

function extensionality we did not need to assume any sort of computation rule about funext.

Therefore an obvious question is whether this computation rule is in fact necessary in the case

of univalence, or whether, as is the case with function extensionality, it is in fact redundant.

» Conjecture 6.2. Naive univalence implies the proper univalence axiom. That is, given
UA;, it follows that for all types A,B : U; the map idtoequ : (A = B) — (A ~ B) is an
equivalence.

To the authors’ best knowledge the status of Conjecture 6.2 is currently unknown. It is
certainly not inconsistent since there are models where naive univalence fails to hold, such as
the Set-valued model [10], and models where full univalence holds, such as the cubical sets
model [8]. However it is not clear whether Conjecture 6.2 is either a theorem of type theory,
cf. the case with function extensionality, or whether there are models which validate UA but
which do not validate the proper univalence axiom.

The work presented here may offer an approach to tackling this problem, by reducing it
to the following:

» Conjecture 6.3. Azioms (1)-(3) imply azioms (4)-(5), for possibly modified unit and flip.
That is, if for all A,B: U;, C: A — B — U; we have:

AzZl ZZCab:ZZCab isContr(A) - A=1
a:A

a:A b:B b:B a:A

then there exist terms unit and flip, with types as in Table 1, for which the following equalities
hold:

coerce unit a = (a, *) coerce flip (a,b,c) = (b,a,c)
foralla:A,b:B andc:Cab.

» Theorem 6.4. In the presence of function extensionality, Conjecture 6.2 and Conjecture
6.3 are logically equivalent.
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Proof. For the forwards direction, assume function extensionality, 6.2 and axioms (1)-(3).
By Theorem 4.1 we deduce that naive univalence, UA;, holds. Therefore by our assumption
of 6.2 we deduce the proper univalence axiom for U;. Hence, by Corollary 4.4, we deduce
axioms (1)-(5) (possibly with different proof terms than our existing assumptions of axioms
(1)-(3)). Therefore the conclusion of 6.3 holds.

For the reverse direction, assume function extensionality, 6.3 and naive univalence. By
Theorem 4.1 we deduce that axioms (1)-(3) hold. Therefore by our assumption of 6.3 we
deduce axioms (4)-(5) also hold. Hence, by Corollary 4.4, we deduce the proper univalence
axiom. <

This result may be useful in tackling the open question of whether Conjecture 6.2 is
a theorem of type theory, or whether there are in fact models in which it does not hold.
This is because finding models where the conclusions of Conjecture 6.3 do not hold given
the assumptions, or showing that no such models exist, seems an easier task. For example,
consider the case where the first conclusion fails, that is, where coerce unit a # (a,*) for
some A : U and a : A. If this is the case then we have fst o(coerce unit) : {A: U} - A— A
which is not equal to the identity function. We note that the existence of such a term has
interesting consequences relating to parametricity and excluded middle [7], and potentially
informs our search about the type of models which might invalidate Conjecture 6.2. However,
we leave further investigation of this problem to future work.
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—— Abstract

In this note we remark on the problem of equality of objects in categories formalized in Martin-
Lof’s constructive type theory. A standard notion of category in this system is E-category, where
no such equality is specified. The main observation here is that there is no general extension of
E-categories to categories with equality on objects, unless the principle Uniqueness of Identity
Proofs (UIP) holds. We also introduce the notion of an H-category with equality on objects,
which makes it easy to compare to the notion of univalent category proposed for Univalent Type
Theory by Ahrens, Kapulkin and Shulman.

2012 ACM Subject Classification Theory of computation — Type theory
Keywords and phrases type theory, formalization, category theory, setoids

Digital Object Identifier 10.4230/LIPIcs. TYPES.2017.7

Acknowledgements The author is grateful to the referees for spotting a false theorem in a
previous version of this paper.

1 Introduction

In this note we remark on the problem of equality of objects in categories formalized in
Martin-Lo6f’s constructive type theory. A common notion of category in this system is
E-category [1], where no such equality is specified. The main observation here is that there
is no general extension of E-categories to categories with equality on objects, unless the
principle Uniqueness of Identity Proofs (UIP) holds. In fact, for every type A, there is an
E-groupoid A* which cannot be so extended. We also introduce the notion of an H-category,
a variant of category, which makes it easy to compare to the notion of univalent category
proposed in Univalent Type Theory [9].

When formalizing mathematical structures in constructive type theory it is common to
interpret the notion of set as a type together with an equivalence relation, and the notion
of function between sets as a function or operation that preserves the equivalence relations.
Such functions are called extensional functions. This way of interpreting sets was adopted
in Bishop’s seminal book [4] on constructive analysis from 1967. In type theory literature
[3, 6, 8, 10] such sets are called setoids. Formally a setoid X = (] X|,=x,eqy) consists of a
type | X| together with a binary relation =y, and a proof object eq y witnessing =x being an
equivalence relation. We usually suppress the proof object. An extensional function between
setoids f : X — Y consists of a type-theoretic function |f] : |X| — |Y|, and a proof that f
respects the equivalence relations, i.e. |f|(z) =y |f|(u) whenever x =x u. One writes x : X
for z : |X|, and f(x) for |f|(z) to simplify notation. Every type A comes with a minimal
equivalence relation 14(+, ), the so-called identity type for A. We sometimes write a = b for
I4(a,b), when the type can be inferred. The principle of Uniqueness of Identity Proofs (UIP)
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for a type A states that
(UIP ) (Va,b: A)(Vp,q:a=bp=gq

(using the propostions-as-types convention that V is II, 3 is ¥ etc.) This principle is not
assumed in basic type theory, but can be proved for types A where I4(-,-) is a decidable
relation (Hedberg’s Theorem [9]). Another essential notion used in this paper is that of
family of setoids indexed by a setoid. There are several choices that can be made but the one
corresponding to fibers {f~!(a)}4ca of an extensional function f : B — A between setoids
is the notion of a proof-irrelevant family. Let A be a setoid. A proof-irrelevant family B
of setoids over A, assigns to each a : |A], a setoid B(a) = (|B(a)|,=pg(a), €4B(a)), and to
each proof object p: a =4 b an extensional function B(p) : B(a) — B(b) (the transport map
associated with p). The transport maps should satisfy the following conditions

B(p)(z) =p(a) = for all 2 : B(a) and p : a =4 a (identity)

B(p)(z) =pw) B(q)(x) for all z : B(a) and p,q : a =4 b (proof-irrelevance)

B(q)(B(p)(x)) =p() B(r)(z) for all z : B(a) and p:a =ab,q:b=ac¢,7:a=4c

(functoriality)

From these conditions follows easily that each B(p) is an isomorphism which is independent
of the proof object p. Hence proof-irrelevance. (An equivalent definition is obtained by
considering A as a discrete E-category A% (whose objects are elements of |A| and whose
hom-setoids are Hom(a,b) = (a =4 b, ~) with p ~ ¢ always true) and B as a functor from
this category to the E-category of setoids. This uses concepts only defined below.)

In Univalent Type Theory [9] the identity type is axiomatized so as to allow quotients,
and many other constructions. This makes it possible to avoid the extra complexity of setoids
and their defined equivalence relations.

These two approaches to type theory, may lead to different developments of category
theory. In both cases there are notions of categories, F-categories and precategories, which
are incomplete in some sense.

2 Categories in standard type theory

Categories [5] are commonly formalized in set theory in two ways, one is the essentially
algebraic formulation, where objects, arrows, and composable arrows each form sets (or
classes), with appropriate operations, and the other one is via objects and hom-sets (hom-
classes). Set theory gives automatically a notion of equality on objects imposed by the
equality of the theory. These definitions can be carried over to type theory and setoids, by
taking care to make all constructions extensional.

In type theory, an essentially algebraically presented category, or EA-category for short, is
formulated as follows. It consists of three setoids Ob(C), Arr(C) and Cmp(C) of objects, arrows
and composable pairs of arrows, respectively. Objects are thus supposed to be equipped with
equality. There are extensional functions, providing identity arrows to objects, 1 : Ob — Arr,
providing domains and codomains to arrows dom, cod : Arr — Ob, a composition function
cmp : Cmp — Arr, and selection functions fst, snd : Cmp — Arr satisfying familiar equations,
with the axiom that for a pair of arrows f, ¢:

cod(g) = dom(f) <= (Ju : Cmp) g = fst(u) A f = snd(u)

In this case cmp(u) will be the composition f o g. See [5, 8] for axioms and details.
The hom-set formulation in type theory is the following [7]: A hom-family presented
category C, or just HF-category, consists of a setoid C' of objects, and a (proof irrelevant)
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setoid family of homomorphisms Hom indexed by the product setoid C' x C. We have
1, : Hom(a, a), and an extensional composition o, . : Hom(b, ¢) x Hom(a, b) — Hom(a, c)
satisfying

foaabla =Hom(ap) [ 1boaps f = f,if f:Hom(a,b),

foa,e,d(9%a,b,ch) =tom(a,d) (fOb,c,d9)0ap,ah, if f: Hom(c,d), g : Hom(b, c), h : Hom(a, b).
For p:a=¢ cand q:b=¢ d, the transport map goes as follows

Hom(p, q) : Hom(a, b) — Hom(c, d).

The transport maps have to satisfy the following coherence conditions:
HOm(p,p)(la) —Hom(a’,a’) 14 for p:a=c a’
Hom(p, 7)(f ©ab,c 9) =Hom(a’,cry Hom(q,7)(f) 0arp,e Hom(p,q)(g) for p : a =¢ d’, ¢ :
b=cbV,r:c=cd, f:Hom(b,c) and g : Hom(a,b).

» Remark. The coherence conditions can be captured more briefly by just stating that 1 and
o are elements in the following dependent product setoids

(a) 1:1(C,Hom(id¢,id¢))

(b) o :II(C3, Hom(ms, m3) x Hom(rmy, me) — Hom(my, 73)).

In more detail, the product setoids in (a) and (b) are made using the following construc-
tions:

Let Fam(A) denote the type of proof irrelevant families over the setoid A. Such families
are closed under the following pointwise operations:

If F,G : Fam(A), then F' x G : Fam(A) and F' — G : Fam(A).

If F: Fam(A), and f : B — A is extensional, then the composition Ff : Fam(B).

The cartesian product II(A, F') of a family F': Fam(A) consists of pairs f = (| f|, exty)
where f: (Ilz : |A|)|F(z)| and exty is a proof object that witnesses that |f| is extensional,
that is

exty : (Vo,y: A)(Vp:x =4 y)[F(p)(|f1(2) =p) [FI(Y)]-

Two such pairs f and f’ are extensionally equally if and only if | f[(x) =p() |f'|(x) for all
2 : A. Then it is straightforward to check that TI(A, F)) is a setoid.

3 E-categories and H-categories in standard type theory

According to the philosophy of category theory, truly categorical notions should not refer to
equality of objects. This has a very natural realization in type theory, since there, unlike in
set theory, we can choose not to impose an equality on a type. This leads to the notion of
E-category [1], which is essentially an HF-category with equality on objects taken away, and
the corresponding transport maps removed.

An E-category C = (C,Hom, o, 1) is the formulation of a category where there is a type
C of objects, but no imposed equality, and for each pair of objects a,b there is a setoid
Hom(a, b) of morphisms from a to b. The composition is an extensional function

o : Hom(b, ¢) x Hom(a,b) — Home(a, ¢).

satisfying the familiar laws of associativity and identity. A functor or an E-functor between
E-categories is defined as usual, but the object part does not need to respect any equality of
objects (because there is none).

7:3
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Now an interesting question is whether we can impose an equality of objects onto an
E-category which is compatible with composition, so as to obtain an HF-category? We may
consider an intermediate structure on E-categories as follows.

Define an H-category C = (C,=¢,Hom, 0,1, 7) to be an E-category with an equivalence
relation =¢ on the objects C', and a family of isomorphisms 7, , € Hom(a, b), for each proof
p:a =c¢ b. The morphisms should satisfy the conditions
(H1) 740p =1 foranyp:a=ca
(H2) 74pp = Tap,q for any p,g:a=c b
(H3) Tb.c.q0 Tapp = Taer foranyp:a=cb, g:b=ccandr:a=cc
Axioms (H1) and (H3) can be replaced by the special cases 7, 4 ref(a) = la, and Ty g0 Tapp =
Ta,c,tr(q,p) Where ref and tr are specific proofs of reflexivity and transitivity. Note that by
these axioms, it follows that each 7, , is indeed an isomorphism.

A functor between H-categories C = (C,=¢,Hom, o0,1,7) and D = (D,=p Hom', o', 1’,0)
is an E-functor F from (C,Hom,o,1) to (D, Hom',o’,1’) such that a =¢ b implies F(a) =p
F(b) and F(Tapp) = 0F(a),F(b),q for p:a=c band q: F(a) =p F(b).

An H-category C is called skeletal if a =¢ b whenever a and b are isomorphic in C.

To pass between H- and HF-categories we proceed as follows:
For an H-category C = (C,=¢, Hom, o, 1, 7), define a transportation function

Hom(p, q) : Hom(a, b) — Hom(d',b")
forp:a=cd and q:b=¢ ¥V, by

Hom(p, ¢)(f) = To,pr,q © f © Tar ap-1-

It is straightforward to check that this defines an HF-category.
Conversely, an HF-category C = (C,Hom, o, 1) yields an E-category (|C|, Hom, o, 1) and
we can define, an H-structure on it by, for p : a =¢ b,

Tabp = Hom(r(a), p)(1,) : Hom(a, b).
These constructions are inverses to each other, though they do not form an equivalence,

since the two categories have different notions of functors.

4 E-categories are proper generalizations of H-categories

The existence of some H-structure on any E-category turns out to be equivalent to UIP.

» Theorem 1. If UIP holds for the type C, then any E-category with objects C can be
extended to an H-category.

Proof. The equivalence relation on C will be I¢(+, ). Using induction on identity one defines
Tabp € Hom(a, b) for p € I(C, a,b) by

Ta,a,ref(a) —def id,.
The UIP property implies (H2). Property (H3) follows from transitivity and (H2). <

» Remark. We recall that by Hedberg’s theorem, UIP holds for a type C, whenever Io(x,y)V
—Ic(x,y), for all 2,y : C. This explains why the extension problem is trivial in a classical
setting.
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Let A be an arbitrary type. Define the E-category A* where A is the type of objects, and
hom setoids are given by

Hom(a, b) =ger (Ia(a,b), =)

where p ~ ¢ holds if and only if Iy, 4,5)(p, ¢) is inhabited. Let composition be given by the
proof object transitivity, and the identity on a is ref(a). Then it is well-known that A* is an
E-groupoid.

» Theorem 2. Let A be a type. Suppose that the E-category A* can be extended to an
H-category. Then UIP holds for A.

Proof. Suppose that =4, 7 is an H-structure on A*.

Now since I4(a,b) is the minimal equivalence relation on A, there is a proof object
f(p) :a=abfor each p:14(a,b). Thus 7, f(p) : Hom(a,b) =1a(a,b). Let D(a,b,p) be the
proposition

By (H1) it holds that

Ta,a,f(ref(a)) ~ ref(a),

i.e. D(a,a,ref(a)). Hence by I-elimination (1) holds. On the other hand, (H1) gives for
p:la(a,a), that

Taa,f(p) ~ ref(a). (2)
With (1) this gives

p ~ ref(a)
for any p : I4(a,a), which is equivalent to UIP for A. <

» Corollary 3. Assuming any E-category with A as the type of objects can be extended to an
H-category. Then UIP holds for A.

In classical category theory any category may be equipped with isomorphism as equality
of objects (see remark above). This is thus not possible in basic type theory, with the above
A" as counter examples.

5 Categories in Univalent Type Theory

In Univalent Type Theory [9], a set is a type that satisfies the UIP condition. A precategory
[9, Chapter 9.1] is a tuple C = (C,Hom, o, 1) where C is a type, Hom is a family of types
over C' x C, such that Hom(a, b) is a set for all a,b: C. Moreover 1, : Hom(a,a) and

o : Hom(b, ¢) x Hom(a,b) — Hom(a, ¢)

satisfy the associativity and unit laws up to I-equality.
Such a precategory thus forms an E-category by considering the hom-set as the setoid
(Hom(a, b), Ittom(a,b) (-, -)). We have moreover:

» Theorem 4. FEvery precategory whose type of objects is a set is an H-category.
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Proof. Define a = b to be the statement that a and b are isomorphic in C i.e.
(3f : Hom(a,b))(3g : Hom(b,a)) go f =1, A fog=1,.
By I-elimination one defines a function
Oap:a=b—=>a=b (3)

by G40 (1ef(@)) = (Lo, (L, (vef(1,),¢E(1,))). Define by taking the first projection 7., =
(0a.p(p))1 : Hom(a, b). By I-induction it follows that

Ta,aref(a) = lo for any p:a =a,

Tb,e,q © Tab,p = Ta,c,qop fOr any p:a=>band ¢:b=c.

For a precategory where C' is a set, it follows that for any p,q : @ = b such that p = ¢
holds, so by substitution

Ta,b,p = Ta,b,q-

Thus 7 gives an H-structure on C, so the precategory is in fact an H-category. <

An univalent category, or UF-category, is a precategory where the function o, in (3) is
an equivalence for any a,b: C; see [2] and [9, Chapter 9.1]. In particular, it means that if
a =2 b, then Io(a,b).

» Example 5. An example of a precategory which is not a univalent category is given by
C = N3 where Hom(m,n) = N;. Here 0 = 1, but I¢(0,1) is false.

» Remark. Note that a UF-category whose type of objects is a set, is a skeletal H-category.

The reverse is however not true.

» Example 6. Suppose that C is a skeletal precategory whose type of objects is a set. Is
C necessarily a univalent category? No. Consider the group Zs as a one object, skeletal
precategory: Let the underlying set be N; and Hom(0,0) = Ny with 0 as unit and o as
addition. This is not a univalent category, compare Example 9.15 in [9]. Thus the standard
multiplication table presentation of a nontrivial group is not a univalent category.

6 Conclusion

In conclusion, the notion of univalent category is too restrictive to cover many familiar
examples. H-category is generalization of precategory and is a convenient version of E-
category with equality on objects. The notion of E-category is still more general as shown
here.
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