
THRIFTY: Towards High Reduction In Flow Table
memorY
Ali Malik
School of Computing, University of Portsmouth, United Kingdom
ali.al-bdairi@port.ac.uk

Benjamin Aziz
School of Computing, University of Portsmouth, United Kingdom
benjamin.aziz@port.ac.uk

Chih-Heng Ke
Department of Computer Science and Information Engineering, National Quemoy University,
Taiwan
smallko@nqu.edu.tw

Abstract
The rapid evolution of information technology has compelled the ubiquitous systems and comput-
ing to adapt with this expeditious development. Because of its rigidity, computer networks failed
to meet that evolvement for decades, however, the recently emerged paradigm of software-defined
networks gives a glimpse of hope for a new networking architecture that provides more flexibil-
ity and adaptability. Fault tolerance is considered one of the key concerns with respect to the
software-defined networks dependability. In this paper, we propose a new architecture, named
THRIFTY, to ease the recovery process when failure occurs and save the storage space of forward-
ing elements, which is therefore aims to enhance the fault tolerance of software-defined networks.
Unlike the prevailing concept of fault management, THRIFTY uses the Edge-Core technique to
forward the incoming packets. THRIFTY is tailored to fit the only centrally controlled systems
such as the new architecture of software-defined networks that interestingly maintain a global
view of the entire network. The architecture of THRIFTY is illustrated and experimental study
is reported showing the performance of the proposed method. Further directions are suggested
in the context of scalability towards achieving further advances in this research area.

2012 ACM Subject Classification Networks → Network protocols

Keywords and phrases Source Routing, Resiliency, Fault Tolerance, SDN, TCAM

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.2

Category Main Track

1 Introduction

Computer networks play an essential role in changing the life style of modern society.
Nowadays, most of the Internet services are located in data centers, which are consisting
of thousands of computers that connected via large-scale data center networks. Typically,
wide-area networks interconnecting the data centers that distributed across the globe. The
Internet users are usually using their devices (i.e. computer, mobile, tablet, smart watch,
etc.) to access the various available services of Internet through different ways such as WiFi,
Ethernet and cellular networks. Traditionally, the distributed control systems in networking
devices along with a set of defined protocols (e.g. OSPF [16] and RIP [9]) constitute a
fundamental technology that have been adopted to send and receive data via networks

© Ali Malik, Benjamin Aziz, and Chih-Heng Ke;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 2; pp. 2:1–2:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ali.al-bdairi@port.ac.uk
mailto:benjamin.aziz@port.ac.uk
mailto:smallko@nqu.edu.tw
https://doi.org/10.4230/OASIcs.ICCSW.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 THRIFTY: Towards High Reduction In Flow Table memorY

Traditional Network Software-Defined Network
Controller
machine

Programmable
switch

Control plane

Data plane

Switch

Figure 1 Traditional versus SDN architecture.

around the world in recent years. According to [2], these distributed protocols increase the
inflexibility of network management through making the network operators to lose their
visibility over their networks. Managing the networks efficiently to meet the requirements of
the Quality of Service (QoS) and the Service Level Agreements (SLA) are the core challenging
points of the computer networks, which need to be improved continuously in light of the
increasing number of devices that are connected to the Internet, which are currently estimated
to be in the range of 9 billion devices and expected to reach double that number by 2020.
Therefore, the Internet ossification is highly expected as stated in [12]. One possible solution
is to replace the complex/rigid networking system with an open and programmable network
instead. Software-Defined Networking (SDN) is a promising paradigm that resulted from a
long history of efforts aiming to simplify the computer networks management and control [5].
In SDN the control plane has been decoupled from the data plane and placed in a central
location usually called the network controller or the network operating system. Figure 1
illustrates the difference between the SDNs and conventional networks architecture. Such a
new networking architecture of SDN with much more flexibility comparing to the traditional
networks meant that SDNs are nowadays adopted by many of the well known pioneering
companies like Deutsche Telekom, Google, Microsoft, Verizon, and CISCO, which have
recently combined in 2011 to launch the Open Network Foundation (ONF) [18] as a nonprofit
consortium that aims to accelerate the adoption of SDN technologies.

Although SDNs have brought many advantages with dramatic network improvements,
this innovation has been accompanied by several challenges, such as the management of
network failures and updating of the network architecture [1].

2 Related Work

Since link and node failure is an issue almost as old as computer networks, so far, SDN follows
the traditional fundamental strategies of failure recovery (i.e. protection and restoration)
to recover from the data plane failures. However, the fault management in SDNs differs
from the legacy networks in the way of computing and update the routing tables. Instead of
the conventional way of reconfiguration in which each node makes the required changes to
update the routing table locally, the controller in SDN is responsible to handle the network
reconfiguration and instruct the relevant nodes on how to follow the new update, which
is therefore made globally. Protection and restoration are currently the only two ways to
reconfigure the network and mask failure incidents. However, each associated with some
drawbacks in terms of time and memory space consumption. In protection, the alternative
solutions (i.e. backups) are preplanned and installed in the relevant switches, however, in

A. Malik, B. Aziz, and C. Ke 2:3

restoration the possible solutions are not preplanned and will be calculated dynamically
when failure occurs. A large number of studies have considered the issue of network failures
and propose different contributions that are reviewed in [6]. Unfortunately, the current SDN
switches in the market have a limited capacity of flow table due to the small space of the
expensive Ternary Content-Addressable Memory (TCAM) [10]. Recently, this issue took
place in the proposed schemes of failure recovery as the new schemes should consider the
problem of TCAM limitation.

In this context, [19] propose SlickFlow, a source-based routing method to enhance the
scalability and fault tolerance in OpenFlow networks. In SlickFlow, the controller computes
the primary and the backup (disjoint) paths and then both are encoded in the packet header
in addition to an alternative bit, which indicates the current using path. When the primary
path is affected by link failure then, a switch will forward the packets through the backup
path and change the value of the alternative, which is necessary for the neighbor switch
to follow the backup as well. The packet header provides an additional limited segment
of information that can be used for the purpose of encoding path details [17], where the
alternative path should not exceed 16 hops.

The authors in [15] produce a protection scheme, as an extension to their previous work
in [14], that minimises TCAM consumption. The authors developed two routing strategies:
Backward Local Rerouting (BLR) and Forward Local Rerouting (FLR). In BLR, a node-
disjoint path is computed as a backup for every primary path in the network and when a
failure occurs, packets are sent back to the origin node to be rerouted over the pre-planned
backup towards the destination. In FLR, a backup route for each link in the primary path is
pre-computed. When a link failure occurs, the packets will be forwarded from the point of
failure towards the downstream switch in the primary path by following the backup path,
however, in case of there will be a multiple backups then, the one with least number of
switches will be chosen. Instead of using fast failover group type, the authors have extended
the OpenFlow protocol by adding an additional entry that called BACKUP_OUTPUT to the
ACTION SET of the flow table entries, so that the new added entry is responsible to set the
out put port when a link fails.

The authors in [23] propose a new flow tables compression algorithm as well as a
compression-aware routing concept to enhance the ratio of the gained compression rate. The
proposed algorithm reduces the consumed TCAM space by using the wildcard to match
the tables who shared the same output and packet modification operations and hence the
compression. The authors relied on their previous work [22] in which they proposed Plinko
as a new forwarding model where the forwarding table entries apply the same action.

The authors in [24] discuss the problem of the protection schemes and its impact on the
shortage of TCAM memory. The authors proposed Flow Entry Sharing Protection (FESP),
which is a greedy algorithm that selects the node with larger available flow entry capacity
and minimum backup flow entry. The study showed how the total number of flow entries
can be minimised where the experimental results revealed that the reduction ratio of flow
entries is up to 28.31% compared with the existing path and segment protection methods.
With respect to all contributions, some issues still exist such as the following:

1) The disjointness as constraint for the calculated backups will require a totally new set of
flow entries, which in turn will consume an additional TCAM space.

2) Compress flow tables using wildcard will affect the fine-grained per packet inspection and
therefore might lead to policy/security violations.

ICCSW 2018

2:4 THRIFTY: Towards High Reduction In Flow Table memorY

Edge

Controller

Edge

Edge

Core Core

Clique1 Clique 2

Figure 2 THRIFTY architecture.

3 Problem Statement

On one hand, protection solutions require an additional information, which have to be loaded
into the data plane elements, to tell the nodes how to perform when failure occurs. However,
the extra loaded information affects the storage memory of the network switches and therefore
the designed fault tolerance mechanisms should consider the limited space of flow table and
TCAM. On the other hand, it is very hard to meet the carrier-grade reliability requirements
(i.e. recover within 50 µs) in restoration [20, 21] because the infrastructure layer equipment
in SDN are dummy forwarding elements due to the split architecture, then, the central
controller is responsible for calculating the alternative paths and then installing the flow
entries (i.e. forwarding rules) in the relevant switches of each backup after detecting failures.

4 THRIFTY for SDNs

THRIFTY is a scalable fault tolerant system with aim to reduce the TCAM storage space of
forwarding elements as much as possible. THRIFTY has the following properties:

Edge-Core based routing: The idea of Edge-core design has been proposed in [4], in which
the complex control functions have been removed to the ingress switches and keep the
remain core switches as clean-slate. THRIFTY makes use the same idea of Edge-core
design and to be applied on the partitioned network topology, as an extension to our
previous work in [13] in which the network topology can be divided into N number of
cliques.
Fast recovery: Reacting to network link failures, THRIFTY is capable to recover from
single/multi link failures in a carrier-grade time scale (i.e. less than 50 µs).
Scalable to large-scale networks: As the size of network topology increases, the flow table
entries of data plane will be still manageable due to the designed architecture.
Single network controller : Network can be controlled by one controller and it is the entity
that responsible for the network activities and adjust the global policy of network.

4.1 Architecture

Figure 2 depicts THRIFTY architecture, the controller comprises three modules, each
responsible for a specific task as follows:

A. Malik, B. Aziz, and C. Ke 2:5

S4

Controller

S5

S1

S2

S3
1 2 1

3 2

1
2

2 3
1

2 1

Host 1
Host 2

Figure 3 Example topology.

1) Topology parser : is responsible for fetching the underlying network topology characteristics
and build a topological view in order to represent the gained network topology as a graph
G, we utilised the NetworkX [8] tool, which is a pure python package with a powerful set
of functions that can be used to manipulate and simplify network graphs.

2) Cliques producer : is responsible for partitioning the constructed network graph G into set
of sub-graphs by incorporating the well known community detection algorithm Girvan and
Newman [7] to produce a set of possible cliques (with any size). The densely connection
between the resulted cliques’ vertices is the main interesting feature of Girvan and Newman
algorithm, in other words, the strong connection among the nodes in each clique could
provide a multiple alternative paths that could be utilised when failures occur.

3) Edge-Core finder : Based on the resulted cliques, this module is responsible for dividing
the set of nodes, in each single clique, into two sets Edge and Core. Therefore, we will
have two kind of switches, namely Edge and Core. The key challenging point of this
module is to find the optimal number of Edge switches.

4.2 Prototype and Implementation

To demonstrate the feasibility of the proposed architecture, we provide a prototype imple-
mentation of THRIFTY. The current prototype is designed as a proof of concept as well as
to show how the proposed solution can be applied.

The current implementation of THRIFTY is prototyped with the recently proposed P4
language [3] using a software switch as a platform. We use the open source P41 as a packet
processing language to create a set of P4 switches in the specified topology of Figure 3 in
which Edge={S4, S5} and Core={S1, S2, S3}. We evaluate our THRIFTY prototype
using Mininet [11] as a virtual network emulator, which is suitable to generate customized
virtual network topologies in a single Linux machine. The current implementation is divided
into two schemes as follows:
1. Rules aggregation method (Scheme1)2

In this method, the necessary flow entries (from source to destination) of a particular
path are stored in Edge switches of the network in addition to add one more flow entry

1 P4 switch model available at: https://github.com/p4lang
2 The implementation can be found at:

http://csie.nqu.edu.tw/smallko/sdn/mysource_routing.htm

ICCSW 2018

2:6 THRIFTY: Towards High Reduction In Flow Table memorY

(a) Ping test. (b) Required rules.

Figure 4 Adding rules with Scheme1.

in each Edge switch for the purpose of changing the destination mac address. Therefore,
the number of required flow entries in this method can be calculated by:

The number of traversed switches in a path + 1
Figure 4 shows the preliminary results of this method. Although the scheme fails to
reduce the number of required rules, it is still of interest since it collects the required rules
in two locations (i.e. Edges) rather than distributed them over switches and therefore it
might increase the flexibility of updating the network.

2. Rules compression method (Scheme2)3
In this method, the entire flow entries from source to destination of a particular path are
reduced to one rule only, which also need to be stored in one of the path Edge switches.
For instance, in the given example topology the shortest path between Host1 and Host2
is:

Host1-S4-S2-S3-S5-Host2
we set the next couple of rules to indicate the routing information at the ingress switch
(S4):

table_add ipv4_lpm set_path 10.0.5.2/32 => 4 1 3 2 2 0 0 0 0 0
table_add ipv4_final dmac 10.0.4.1/32 => 00:00:00:00:04:01

While, in the egress switch (S5) we had the following;
table_add ipv4_lpm set_path 10.0.4.1/32 => 4 1 3 2 2 0 0 0 0 0

table_add ipv4_final dmac 10.0.5.2/32 => 00:00:00:00:05:02
Where 4 indicates that the shortest path between Host1 and Host2 contains 4 nodes (i.e.
3 hops). While, the rest of digits denotes the set of output ports for the switches along
the path as follow: 1 refers to the output port of S5, 3 refers to the output port of S3, 2
refers to the output port of S2 and the last 2 refers to the output port of S4.

In order to compare our proposed methods to traditional/existing method, we replicated
the same experimental procedure with POX controller where the openflow.discovery4 and

3 The implementation can be found at:
http://csie.nqu.edu.tw/smallko/sdn/mysource_routing2.htm

4 https://github.com/att/pox/blob/master/pox/openflow/discovery.py

A. Malik, B. Aziz, and C. Ke 2:7

(a) Ping test. (b) Required rules.

Figure 5 Adding rules with traditional scheme.

l2_multi5 modules have been utilised to discover and setup the shortest path from sender to
receiver. Figure 5 shows the number of rules required to forward the incoming packets from
Host1 to Host2. It is worth mentioning here that we took into account the only IP packets,
however, the arp packets have been discarded.

As a result, Figure 6 illustrates the total number of flow rules required by the three
simulated schemes (i.e. Scheme1, Scheme2 and traditional).

S1 S2 S3 S4 S5

0

2

4

0 0 0

5 5

0 0 0

2 2

0

2 2 2 2

Switches

N
o.

of
flo

w
en
tr
ie
s

Scheme1 Scheme2 Traditional

Figure 6 A comparison of three scenarios.

5 Conclusion and Future Work

In this paper, we presented the ongoing work in realising THRIFTY as a new solution to
tackle the TCAM limitation problem as well as to accelerate the recovery from link failures.
We showed how the proposed solution can be implemented using a couple of new schemes

5 https://github.com/att/pox/blob/master/pox/forwarding/l2_multi.py

ICCSW 2018

2:8 THRIFTY: Towards High Reduction In Flow Table memorY

that aggregate and compress the forwarding rules. As a future plan, the authors will proceed
to conduct failure scenarios in addition to extend the current piece of work by considering
the following aspects:

Building a general framework: THRIFTY uses Edge-Core architecture on the basis of
cliques concept with a view of dramatically simplifying the packet forwarding as well as
reducing the number of flow table entries that will enhance the SDN scalability.

Dependability attributes: Currently, THRIFTY only supports the scenario of data plane
link failures, however, our work envisions to include other attributes of dependability such as
security.

References
1 Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap for traffic

engineering in SDN-OpenFlow networks. Computer Networks, 71:1–30, 2014.
2 Theophilus Benson, Aditya Akella, and David A Maltz. Unraveling the Complexity of

Network Management. In NSDI, pages 335–348, 2009.
3 Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,

Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Programming
protocol-independent packet processors. ACM SIGCOMM Computer Communication Re-
view, 44(3):87–95, 2014.

4 Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fabric: a retro-
spective on evolving SDN. In Proceedings of the first workshop on Hot topics in software
defined networks, pages 85–90. ACM, 2012.

5 Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN: an intellectual
history of programmable networks. ACM SIGCOMM Computer Communication Review,
44(2):87–98, 2014.

6 Paulo Fonseca and Edjard Mota. A survey on fault management in software-defined net-
works. IEEE Communications Surveys & Tutorials, 2017.

7 Michelle Girvan and Mark EJ Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

8 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

9 Charles L Hedrick. Routing information protocol. Technical report, Rutgers University,
1988. https://tools.ietf.org/html/rfc1058.

10 Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg,
Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, 103(1):14–76, 2015.

11 Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid prototyping
for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, page 19. ACM, 2010.

12 Pingping Lin, Jun Bi, Hongyu Hu, Tao Feng, and Xiaoke Jiang. A quick survey on selected
approaches for preparing programmable networks. In Proceedings of the 7th Asian Internet
Engineering Conference, pages 160–163. ACM, 2011.

13 Ali Malik, Benjamin Aziz, Chih-Heng Ke, Han Liu, and Mo Adda. Virtual topology par-
titioning towards an efficient failure recovery of software defined networks. In The 16th
International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2017.

A. Malik, B. Aziz, and C. Ke 2:9

14 Purnima Murali Mohan, Tram Truong-Huu, and Mohan Gurusamy. TCAM-aware local
rerouting for fast and efficient failure recovery in software defined networks. In Global
Communications Conference (GLOBECOM), 2015 IEEE, pages 1–6. IEEE, 2015.

15 Purnima Murali Mohan, Tram Truong-Huu, and Mohan Gurusamy. Fault tolerance in
TCAM-limited software defined networks. Computer Networks, 116:47–62, 2017.

16 John Moy. OSPF version 2. Technical report, Ascend Communications, Inc., 1998. ht-
tps://tools.ietf.org/html/rfc2328.

17 Giang TK Nguyen, Rachit Agarwal, Junda Liu, Matthew Caesar, P Godfrey, and Scott
Shenker. Slick packets. ACM SIGMETRICS Performance Evaluation Review, 39(1):205–
216, 2011.

18 ONF. Open Networking Foundation, 2018. https://www.opennetworking.org/.
19 Ramon Marques Ramos, Magnos Martinello, and Christian Esteve Rothenberg. Slickflow:

Resilient source routing in data center networks unlocked by openflow. In Local Computer
Networks (LCN), 2013 IEEE 38th Conference on, pages 606–613. IEEE, 2013.

20 Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet Demeester. En-
abling fast failure recovery in OpenFlow networks. In Design of Reliable Communication
Networks (DRCN), 2011 8th International Workshop on the, pages 164–171. IEEE, 2011.

21 Dimitri Staessens, Sachin Sharma, Didier Colle, Mario Pickavet, and Piet Demeester. Soft-
ware defined networking: Meeting carrier grade requirements. In Local & Metropolitan Area
Networks (LANMAN), 2011 18th IEEE Workshop on, pages 1–6. IEEE, 2011.

22 Brent Stephens, Alan L Cox, and Scott Rixner. Plinko: Building provably resilient for-
warding tables. In Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks,
page 26. ACM, 2013.

23 Brent Stephens, Alan L Cox, and Scott Rixner. Scalable multi-failure fast failover via
forwarding table compression. In Proceedings of the Symposium on SDN Research, page 9.
ACM, 2016.

24 Xiaoning Zhang, Shui Yu, Zhichao Xu, Yichao Li, Zijing Cheng, and Wanlei Zhou. Flow
Entry Sharing in Protection Design for Software Defined Networks. In GLOBECOM 2017-
2017 IEEE Global Communications Conference, pages 1–7. IEEE, 2017.

ICCSW 2018

	Introduction
	Related Work
	Problem Statement
	THRIFTY for SDNs
	Architecture
	Prototype and Implementation

	Conclusion and Future Work

