Identifying Barriers to Adoption for Rust through
Online Discourse

Anna Zeng

Stanford University, USA

Will Crichton
Stanford University, USA

—— Abstract

Rust is a low-level programming language known for its unique approach to memory-safe systems
programming and for its steep learning curve. To understand what makes Rust difficult to adopt,
we surveyed the top Reddit and Hacker News posts and comments about Rust; from these online
discussions, we identified three hypotheses about Rust’s barriers to adoption. We found that
certain key features, idioms, and integration patterns were not easily accessible to new users.

2012 ACM Subject Classification Human-centered computing — Human computer interaction
(HCI)

Keywords and phrases rust, programming language usability

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.5

1 Introduction

Rust is a new programming language designed to usher low-level programming into the
modern era. Rust uses strong type systems and functional programming to execute programs
efficiently while avoiding the many safety problems that plague C and C++. As an open-
source project with support from Mozilla, the Rust ecosystem has grown rapidly over the
last decade. Hundreds of companies deploy Rust in production, and thousands of developers
regularly use Rust in their projects. However, Rust has a notoriously steep learning curve. A
community survey in 2017 revealed that 25% of the people who tried Rust and dropped it felt
the language was “too intimidating, too hard to learn, or too complicated” [13]. Prominent
members of the Rust community have stated that Rust is supposed to be hard to learn:
“Rust has never claimed that it is something you can learn in half a week” [6]. Even still, the
learning curve is only one aspect of many (library support, tooling, compile times, etc. [9])
that influences the adoption of a programming language.

If Rust is hard to learn or use, the question becomes: how should its developers prioritize
language features to drive adoption, addressing the key challenges facing its current or
potential user base? A developer on the Rust compiler told us in an interview that these
decisions are usually made in an ad hoc way, based on the intuitions of the language developers
and occasional feedback from community members in a potpourri of online forums [14]. To
address this issue, we sought to understand the challenges of adopting Rust by analyzing
online discourse within the Rust community. We conducted a holistic survey of popular posts
and comment threads about Rust to identify beliefs of developers using Rust that highlight
ongoing issues in the practice of the language.

? Anna Zeng and W%ll Crichton; .

5v icensed under Creative Commons License CC-BY
9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 5; pp.5:1-5:6

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.PLATEAU.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2

Identifying Barriers to Adoption for Rust through Online Discourse

2 Methodology

Prior work on analyzing language adoption has focused on evaluating various languages
and tools through questionnaires, surveys, in-person interviews, and automated code base
analysis. For example, Meyerovich and Rabkin [9] combined all of the above to highlight
both empirical popularity trends as well as reported beliefs of developers about a wide range
of topics from types vs. tests to features vs. libraries. Christakis and Bird [2] used surveys
and interviews to understand the adoption of program analyzers, and Ray et al. [10] used
program analyzers to compare languages based on bugs detected in a large corpus of GitHub
repositories.

This study differs from previous work in two ways: First, we focused only on a single
language, Rust. While this focus potentially limits the generality of our insights, it allows us
to produce deeper insights via thorough consideration of the factors driving specifically Rust’s
adoption. Second, we performed a content analysis on the existing discourse on Rust rather
than creating a new survey. We observed that Rust is frequently written about on blogs, and
subsequently discussed online by the people developing Rust itself (henceforth referred to as
“Rust language developers”), by the people learning and using Rust (“Rust community”),
and by the broader tech community. In fact, a version of this ethnomethodological approach
[4] was already used by the Rust language developers to inform the Rust 2018 roadmap [12]
and also used to analyze other online communities like Mechanical Turk [7].

We gathered a corpus of articles and corresponding comments from Hacker News (HN), a
forum for general tech-centric discussions, and the /r/rust subreddit, a forum specifically
about Rust. We selected these two forums both because they are frequent hosts to discussions
about Rust and use upvote mechanisms to sort content. Upvotes act as a loose proxy for
what readers consider to be good contributions to the conversation or perspectives they
agree with, and have been shown to correlate with coarse notions of quality [11]. While
upvote-based filtering can reduce exposure to controversial opinions, given the vast amount
of possible content to read, we found it critical in improving the signal-to-noise ratio. To
select the final corpus, we filtered for HN articles with “Rust” in the title, and considered all
/r/rust articles. Then, we filtered for posts with at least 250/200 upvotes on HN/Reddit
respectively, a total of 424 posts. From there, we selected posts that we felt were most
relevant towards understanding user experiences in Rust, e.g. choosing “Three months of
Rust” and “Why I'm dropping Rust’ over “Announcing Rust 1.12”. This ad hoc filter was
not applied soundly or completely (we read as much as time permitted), so we do not claim
our survey is exhaustive. Our final corpus contains 50 posts, with corresponding comment
sections on both forums where applicable.

For each article, we performed a content analysis on both the document and at least the
top five comments by upvotes for each forum the article appeared on. Then we categorized
the articles (categories like “community”, “ergonomics”, “tooling”, “security”, etc.) and
looked for trends within each category, forming preliminary hypotheses about barriers to
adoption that were both novel and actionable to the Rust community. From the insights,
we formed hypotheses that help explain the experiences that users encounter in our corpus.
Concurrently, we interviewed three Rust language developers to help us contextualize our
findings and to understand prevailing attitudes towards Rust’s usability in the community.

3 Hypotheses

» Hypothesis 1. Rust is primarily promoted for safety and speed; while those aspects matter to
users, the tooling around Rust is equally valuable, but its value is not as clearly communicated
by the language developers.

A. Zeng and W. Crichton

Potential users need to understand Rust’s features and goals in order to determine
whether to use it. The authoritative source of information on Rust is its official website,
https://rust-lang.org. On the front page and the FAQ, Rust is promoted as “a systems
programming language that runs blazingly fast, prevents segfaults, and guarantees thread
safety.” Laundry lists of language features including “zero-cost abstractions,”
matching,” and “type inference” are also provided. The standard library, the tooling, and

the ecosystem are all absent from this messaging [1].

pattern

To evaluate whether Rust users found the language useful for its claimed benefits, we
analyzed 12 experience reports (e.g. “Trying out Rust for Graphics Programming”) and 6
language comparisons (e.g. “Comparing Rust and Java”). Across the 18 articles, we counted
the reported pros/cons of Rust. The first and third most reported benefits of Rust were
elimination of runtime errors (7 articles) and data races (5 articles). Runtime errors include
both avoiding memory errors through Rust’s memory safety analyzer as well as avoiding
unhandled failures through sum types, e.g. Option<T>. This finding is consistent with Rust’s
messaging — users empirically self-report the utility of Rust’s safety guarantees.

By contrast, the second most reported benefit of Rust was Cargo, Rust’s build system
and dependency manager (6 articles). One article summarized the collective sentiment [8]:

Instead of having to invoke pkg-config by hand or with Autotools macros, wrangling
include paths for header files and library files, and basically depending on the user to
ensure that the correct versions of libraries are installed, you write a Cargo.toml file
which lists the names and versions of your dependencies. [...] It just works when you
cargo build.

The Rust language developers likely understand the importance of Rust’s tooling, being a
major part of the Rust 2017/18 roadmaps. However, because Rust’s promotional messaging
doesn’t clearly emphasize these features, this absence suggests a possible disconnect between
what the language developers and potential users consider the most important features of
Rust.

» Hypothesis 2. Complex pointer aliasing patterns are primarily implemented through
existing libraries built on unsafe code, but Rust users have a hard time discovering these
solutions.

To guarantee memory safety for low-level programs with direct access to memory, Rust
employs the “borrow checker”, a static analysis tool that prevents memory-unsafe operations,
e.g. returning a dangling pointer to a stack-allocated value. The borrow checker does not
permit mutable aliases, or holding two mutable pointers to the same piece of memory. Aliasing
patterns that violate this rule, like reference-counted pointers, can be implemented carefully
through Rust’s unsafe construct, often provided as libraries. However, this restriction is
often daunting to Rust novices because it disallows patterns that are easy to express in
other low-level languages, and it makes solutions difficult to find. Out of the 18 experience
reports and language comparisons, the complexity of the borrow checker was the second most
frequently mentioned complaint (only behind compiler version issues of stable vs. nightly).
For example, one user implementing a video codec found [5]:

Video codecs usually operate on planes and there you'd like to operate with different
chunks of the frame buffer (or plane) at the same time. Rust does not allow you to
mutably borrow parts of the same array even when it should be completely safe like
let mut a = &mut arr[0..pivot]; let mut b = &mut arr[pivot..];.

5:3

PLATEAU 2018

https://rust-lang.org

5:4

Identifying Barriers to Adoption for Rust through Online Discourse

Another user implementing a GUI framework found [3]:

For nanogui... each widget has a pointer to a parent and a vector of pointers to its
children. How does this concept map to Rust? There are several answers: 1. Use a
naive Vec<T> implementation. 2. Use Vec<*mut T>. 3. Use Vec<Rc<RefCell<T>>>.
4. Use C bindings. ... I have tried options 1 through 3 with several drawbacks, each
making them not fit for use. I'm currently looking at point 4 as my only remaining
option to use.

In both cases, Rust users encountered a particular memory access pattern (disjoint mutable
pointers to an array, widget trees with back pointers) that Rust disallowed. As with other
complex aliasing patterns like reference counting, the solution to these types of problems
is sufficiently complex that Rust users aren’t expected to implement it themselves, but
instead defer to external code. In both cases above, commenters pointed out standard library
functions (Vec: :split_at_mut) and third-party libraries (petgraph) for solving these issues
respectively; however, the authors were not able to independently discover these solutions.
These experiences suggest that Rust needs better resources to help users identify common
aliasing patterns and understand what tools exist to solve those problems.

» Hypothesis 3. Although incremental migration of existing codebases into Rust seems
promising, Rust users aren’t pursuing this path because the cost of integrating Rust into a
different language ecosystem or toolchain is too great.

One important path to adoption of Rust is incremental migration, or gradually rewriting
components of a large software system from a host language (like C/C++) into Rust. Mozilla’s
initial motivation for Rust was to replace performance-critical parts of Firefox (Project Servo),
and others have begun exploring integrating with databases (Postgres) and operating systems
(Linux). However, the idea of incremental migration is almost entirely absent from the
discourse we studied. Only one of our 50 articles directly described experiences integrating
Rust into an existing system; most experience reports detailed new projects in Rust or
entire rewrites of existing projects. While lack of discourse doesn’t necessarily imply lack of
adoption, it still does not bode well for the path of incremental migration — issues out of
the public eye are unlikely to receive attention either from the Rust compiler developers in
prioritizing work, or from the Rust community in generating documentation and tooling.

A possible explanation is that the challenges of incremental migration of Rust may be
surmountable for larger teams, like those supporting Firefox, but are still too challenging
for most Rust users. Discussion of incremental migration in our corpus largely occurred
in scattered comments focused on describing challenges, not hailing great successes. For
example, a Servo developer described in an interview the challenges of bridging Rust, C++,
and Javascript in Firefox: the ease of accidentally invalidating a C++ reference when in
Rust, the challenge of managing macros across the language barriers, and the complexity of
tracking when each variable would be deallocated by which runtime [15].

Another example of a difficult challenge for most Rust users is working on Rust without
Cargo, a tool which reduces the overhead of starting (and maintaining) a new project
and reusing third-party Rust code. In low-level programming, build systems and package
management are traditionally relegated to a hodgepodge of tools like Make, Autotools,
CMake, and Apt; in contrast, the Rust community uses Cargo for both build process and
dependency management. While Cargo is not strictly required, all major libraries must be
built with Cargo. Developing Rust without Cargo means losing easy access to these libraries.
For example, Facebook’s Mononoke project, a rewrite of Mercurial in Rust, initially could

A. Zeng and W. Crichton

not use any packages outside the standard library due to integration requirements with

Facebook’s custom build system, which significantly slowed adoption of external libraries.

The lack of discourse around these issues suggest more resources should potentially be
dedicated to reducing these barriers to adoption for incremental migration into Rust.

4 Discussion

By applying an ethnomethodological approach to Rust’s online discourse, we identified
supporting evidence for three hypotheses about factors which meaningfully influence the
adoption of Rust. This methodology is neither fully precise nor conclusive, but it provides a
useful signal to direct further evaluation of these hypotheses. While online commenters are
not subject to the same level of rigor as peer-reviewed research, our experience suggests that
blog posts and forum threads still contain an enormous amount of collective wisdom that
is perhaps under-appreciated in academic literature. Much of the prior work has trended
towards precision through controlled experiments or breadth through surveys and code base
analyses. However, we believe that understanding these online communities can provide
valuable guidance to PL/HCI researchers seeking to address the key problems facing today’s
programmers.

To that end, one key question is this study’s replicability: could other researchers recreate
our results for Rust, or perform the same study on other programming languages? Due to
the time-consuming nature of manual content analysis, consistently filtering articles from
the larger corpus is important. Creating better filters would be simplified by looking at a
smaller domain of documents with more quantifiable filters, e.g. analyzing just experience
reports, or articles about security, or articles about language design decisions. Conversely,
studies that attempt to just categorize the discourse by identifying common topics can reduce
work done in later studies on any given category. Lastly, applying a consistent content
analysis methodology is challenging given the open-ended, free-form nature of synthesizing
connections in document surveys. Perhaps here the PL/HCI community could provide more
guidance on standard methodologies for ethnomethodological analyses.

The second question is the applicability of this study’s results: what further experiments
do our results suggest? We believe the logical next step is to develop surveys targeted towards
understanding the extent of the issues identified above. While usability surveys often resort
to generic questions like “where do you think Rust can improve?” (e.g. as in [13]), the
hypotheses above suggest more specific questions like:

How has your perception of Cargo’s value changed between starting with Rust and today?

What parts of Rust do you find most useful that you weren’t told about initially?

What are examples of times when you couldn’t solve an issue with the borrow checker

after several hours? If you eventually solved it, how did you solve it?

What factors influence your likelihood to adopt Rust into an existing non-Rust project?
Given feedback on these questions from the community, future work could explore controlled
experiments for more replicable identification of usability issues, as well as analyze how
insights gleaned from Rust can generalize to other programming language communities.

—— References

1 The Rust Programming Language. URL: https://www.rust-lang.org/en-US/.

2 Maria Christakis and Christian Bird. What developers want and need from program
analysis: an empirical study. In Automated Software Engineering (ASE), 2016 31st
IEEE/ACM International Conference on, pages 332-343. IEEE, 2016.

5:5

PLATEAU 2018

https://www.rust-lang.org/en-US/

5:6

Identifying Barriers to Adoption for Rust through Online Discourse

10

11

12

13

14
15

Michael de Lang. Why I'm dropping Rust, September 2016. URL: https://hackernoon.
com/why-im-dropping-rust-£d1c32986c88.

Harold Garfinkel. Studies in ethnomethodology. Prentice-Hall, 1967.

Kotsya. Rust: Not So Great for Codec Implementing, July 2017. URL: https://codecs.
multimedia.cx/2017/07/rust-not-so-great-for-codec-implementing/.

Manishearth. Rust severely disappoints me. Reddit, January 2017. URL: https://www.
reddit.com/r/rust/comments/5nl13fk/rust_severely_disappoints_me/.

David Martin, Benjamin V Hanrahan, Jacki O’Neill, and Neha Gupta. Being a turker. In
Proceedings of the 17th ACM conference on Computer supported cooperative work € social
computing, pages 224-235. ACM, 2014.

Federico Mena-Quintero. Rust things I miss in C, February 2018. URL: https://people.
gnome.org/~federico/blog/rust-things-i-miss-in-c.html.

Leo A Meyerovich and Ariel S Rabkin. Empirical analysis of programming language adop-
tion. ACM SIGPLAN Notices, 48(10):1-18, 2013.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large scale
study of programming languages and code quality in github. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
155-165. ACM, 2014.

Greg Stoddard. Popularity and quality in social news aggregators: A study of reddit and
hacker news. In Proceedings of the 24th international conference on world wide web, pages
815-818. ACM, 2015.

The Rust Core Team. Rust’s 2018 roadmap, March 2018. URL: https://blog.rust-lang.
org/2018/03/12/roadmap.html.

Jonathan Turner. Rust 2017 Survey Results, September 2017. URL: https://blog.
rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html.

Anna Zeng, Will Crichton, and Niko Matsakis. Interview with Niko Matsakis, May 2018.
Anna Zeng and Josh Matthews. Interview with Josh Matthews, May 2018.

https://hackernoon.com/why-im-dropping-rust-fd1c32986c88
https://hackernoon.com/why-im-dropping-rust-fd1c32986c88
https://codecs.multimedia.cx/2017/07/rust-not-so-great-for-codec-implementing/
https://codecs.multimedia.cx/2017/07/rust-not-so-great-for-codec-implementing/
https://www.reddit.com/r/rust/comments/5nl3fk/rust_severely_disappoints_me/
https://www.reddit.com/r/rust/comments/5nl3fk/rust_severely_disappoints_me/
https://people.gnome.org/~federico/blog/rust-things-i-miss-in-c.html
https://people.gnome.org/~federico/blog/rust-things-i-miss-in-c.html
https://blog.rust-lang.org/2018/03/12/roadmap.html
https://blog.rust-lang.org/2018/03/12/roadmap.html
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html

	Introduction
	Methodology
	Hypotheses
	Discussion

