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Abstract
In this paper, we investigate the complexity of Maximum Independent Set (MIS) in the class
of H-free graphs, that is, graphs excluding a fixed graph as an induced subgraph. Given that
the problem remains NP -hard for most graphs H, we study its fixed-parameter tractability and
make progress towards a dichotomy between FPT and W [1]-hard cases. We first show that MIS
remains W [1]-hard in graphs forbidding simultaneously K1,4, any finite set of cycles of length at
least 4, and any finite set of trees with at least two branching vertices. In particular, this answers
an open question of Dabrowski et al. concerning C4-free graphs. Then we extend the polynomial
algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm when H is a
disjoint union of cliques. We also provide a framework for solving several other cases, which is a
generalization of the concept of iterative expansion accompanied by the extraction of a particular
structure using Ramsey’s theorem. Iterative expansion is a maximization version of the so-called
iterative compression. We believe that our framework can be of independent interest for solving
other similar graph problems. Finally, we present positive and negative results on the existence
of polynomial (Turing) kernels for several graphs H.
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1 Introduction

Given a simple graph G, a set of vertices S ⊆ V (G) is an independent set if the vertices of
this set are all pairwise non-adjacent. Finding an independent set with maximum cardinality
is a fundamental problem in algorithmic graph theory, and is known as the MIS problem
(MIS, for short) [12]. In general graphs, it is not only NP -hard, but also not approximable
within O(n1−ε) for any ε > 0 unless P = NP [20], and W [1]-hard [10] (unless otherwise
stated, n always denotes the number of vertices of the input graph). Thus, it seems natural
to study the complexity of MIS in restricted graph classes. One natural way to obtain such
a restricted graph class is to forbid some given pattern to appear in the input. For a fixed
graph H, we say that a graph is H-free if it does not contain H as an induced subgraph.
Unfortunately, it turns out that for most graphs H, MIS in H-free graphs remains NP -hard,
as shown by a very simple reduction first observed by Alekseev:

I Theorem 1 ([1]). Let H be a connected graph which is neither a path nor a subdivision of
the claw. Then MIS is NP-hard in H-free graphs.

On the positive side, the case of Pt-free graphs has attracted a lot of attention during the
last decade. While it is still open whether there exists t ∈ N for which MIS is NP -hard in Pt-
free graphs, quite involved polynomial-time algorithms were discovered for P5-free graphs [17],
and very recently for P6-free graphs [13]. In addition, we can also mention the recent following
result: MIS admits a subexponential algorithm running in time 2O(

√
tn logn) in Pt-free graphs

for every t ∈ N [3]. The second open question concerns the subdivision of the claw. Let Si,j,j
be a tree with exactly three vertices of degree one, being at distance i, j and k from the
unique vertex of degree three. The complexity of MIS is still open in S1,2,2-free graphs and
S1,1,3-free graphs. In this direction, the only positive results concern some subcases: it is
polynomial-time solvable in (S1,2,2, S1,1,3, dart)-free graphs [15], (S1,1,3, banner)-free graphs
and (S1,1,3, bull)-free graphs [16], where dart, banner and bull are particular graphs on five
vertices. Given the large number of graphs H for which the problem remains NP -hard, it
seems natural to investigate the existence of parameterized algorithms1, that is, determining
the existence of an independent set of size k in a graph with n vertices in time O(f(k)nc) for
some computable function f and constant c. A very simple case concerns Kr-free graphs,
that is, graphs excluding a clique of size r. In that case, Ramsey’s theorem implies that
every such graph G admits an independent set of size Ω(n

1
r−1 ), where n = |V (G)|. In the

FPT vocabulary, it implies that MIS in Kr-free graphs has a kernel with O(kr−1) vertices.
To the best of our knowledge, the first step towards an extension of this observation

within the FPT framework is the work of Dabrowski et al. [8] (see also Dabrowski’s PhD
manuscript [7]) who showed, among others, that for any positive integer r, Max Weighted
Independent Set is FPT in H-free graphs when H is a clique of size r minus an edge. In
the same paper, they settle the parameterized complexity of MIS on almost all the remaining
cases of H-free graphs when H has at most four vertices. The conclusion is that the problem
is FPT on those classes, except for H = C4 which is left open. We answer this question by
showing that MIS remains W [1]-hard in a subclass of C4-free graphs. On the negative side,
it was proved that MIS remains W [1]-hard in K1,4-free graphs [14].

Finally, we can also mention the case where H is the bull graph, which is a triangle with
a pending vertex attached to two different vertices. For that case, a polynomial Turing kernel
was obtained [19] then improved [11].

1 For the sake of simplicity, “MIS” will denote the optimisation, decision and parameterized version of
the problem (in the latter case, the parameter is the size of the solution), the correct use being clear
from the context.
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1.1 Our results
In Section 2, we present three reductions proving W [1]-hardness of MIS in graph excluding
several graphs as induced subgraphs, such as K1,4, any fixed cycle of length at least four,
and any fixed tree with two branching vertices. In Section 3, we extend the polynomial
algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm when H
is a disjoint union of cliques. In Section 4, we present a general framework extending the
technique of iterative expansion, which itself is the maximization version of the well-known
iterative compression technique. We apply this framework to provide FPT algorithms when
H is a clique minus a complete bipartite graph, or when H is a clique minus a triangle.
Finally, in Section 5, we focus on the existence of polynomial (Turing) kernels. We first
strenghten some results of the previous section by providing polynomial (Turing) kernels in
the case where H is a clique minus a claw. Then, we prove that for many H, MIS on H-free
graphs does not admit a polynomial kernel, unless NP ⊆ coNP/poly. Our results allows to
obtain the complete dichotomy polynomial/polynomial kernel (PK)/no PK but polynomial
Turing kernel/W [1]-hard for all possible graphs on four vertices, while only five graphs on
five vertices remain open for the FPT/W [1]-hard dichotomy.

Due to space restrictions, proofs marked with a (?) were omitted, and can be found in
the long version of the paper [4]. This long version also contains additional figures, and two
variants of the reduction presented in the next section, together with a discussion.

1.2 Notation
For classical notation related to graph theory or fixed-parameter tractable algorithms, we
refer the reader to the monographs [9] and [10], respectively. For an integer r ≥ 2 and a
graph H with vertex set V (H) = {v1, . . . , vnH

} with nH ≤ r, we denote by Kr \ H the
graph with vertex set {1, . . . , r} and edge set {ab : 1 ≤ a, b ≤ r such that vavb /∈ E(H)}. For
X ⊆ V (G), we write G \X to denote G[V (G) \X]. For two graphs G and H, we denote by
G]H the disjoint union operation, that is, the graph with vertex set V (G)∪V (H) and edge
set E(G) ∪ E(H). We denote by G+H the join operation of G and H, that is, the graph
with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. For
two integers r, k, we denote by Ram(r, k) the Ramsey number of r and k, i.e. the minimum
order of a graph to contain either a clique of size r or an independent set of size k. We write
for short Ram(k) = Ram(k, k). Finally, for `, k > 0, we denote by Ram`(k) the minimum
order of a complete graph whose edges are colored with ` colors to contain a monochromatic
clique of size k.

2 W [1]-hardness

I Theorem 2. For any p1 ≥ 4 and p2 ≥ 1, MIS remains W [1]-hard in graphs excluding
simultaneously the following graphs as induced subgraphs: K1,4, C4, . . . , Cp1 and any tree T
with two branching vertices2 at distance at most p2.

Proof. Let p = max{p1, p2}. We reduce from Grid Tiling, where the input is composed of
k2 sets Si,j ⊆ [m]× [m] (0 ≤ i, j ≤ k − 1), called tiles, each composed of n elements. The
objective of Grid Tiling is to find an element s∗i,j ∈ Si,j for each 0 ≤ i, j ≤ k− 1, such that
s∗i,j agrees in the first coordinate with s∗i,j+1, and agrees in the second coordinate with s∗i+1,j ,

2 A branching vertex in a tree is a vertex of degree at least 3.
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Ti,j

Ri,jLi,j

Bi,j

Gadget TGi,j

Li,j+1Ri,j−1

Figure 1 Gadget T Gi,j representing a tile and its adjacencies with T Gi,j−1 and T Gi,j+1, for
p = 1. Each circle is a clique on n vertices (dashed cliques are the cycle cliques). Black, blue and
red arrows represent respectively type Th, Tr and Tc edges (bold arrows are between two gadgets).

for every 0 ≤ i, j ≤ k − 1 (incrementations of i and j are done modulo k). In such case, we
say that {s∗i,j , 0 ≤ i, j ≤ k − 1} is a feasible solution of the instance. It is known that Grid
Tiling is W [1]-hard parameterized by k [6].

Before describing formally the reduction, let us give some definitions and ideas. Given
s = (a, b) and s′ = (a′, b′), we say that s is row-compatible (resp. column-compatible) with
s′ if a ≥ a′ (resp. b ≥ b′)3. Observe that a solution {s∗i,j , 0 ≤ i, j ≤ k − 1} is feasible if
and only if s∗i,j is row-compatible with s∗i,j+1 and column-compatible with s∗i+1,j for every
0 ≤ i, j ≤ k − 1 (incrementations of i and j are done modulo k). Informally, the main
idea of the reduction is that, when representing a tile by a clique, the row-compatibility
(resp. column-compatibility) relation (as well at its complement) forms a C4-free graph when
considering two consecutive tiles, and a claw-free graph when considering three consecutive
tiles. The main difficulty is to forbid the desired graphs to appear in the “branchings” of
tiles. We now describe the reduction.

For every tile Si,j = {si,j1 , . . . , si,jn }, we construct a tile gadget TGi,j , depicted in Figure 1.
Notice that this gadget shares some ideas with the W [1]-hardness of the problem in K1,4-free
graphs by Hermelin et al. [14]. To define this gadget, we first describe an oriented graph
with three types of arcs (type Th, Tr and Tc, which respectively stands for half graph, row
and column, this meaning will become clearer later), and then explain how to represent the
vertices and arcs of this graph to get the concrete gadget. Consider first a directed cycle on
4p+ 4 vertices c1, . . . , c4p+4 with arcs of type Th. Then consider four oriented paths on p+ 1
vertices: P1, P2, P3 and P4. P1 and P3 are composed of arcs of type Tc, while P2 and P4 are
composed of arcs of type Tr. Put an arc of type Tc between the last vertex of P1 and c1, an
arc of type Tc between c2p+3 and the first vertex of P3, an arc of type Tr between cp+2 and
the first vertex of P2, and an arc of type Tr between the last vertex of P4 and c3p+4.

3 Notice that the row-compatibility (resp. column-compatibility) relation is not symmetrical.
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Now, replace every vertex of this oriented graph by a clique on n vertices, and fix an
arbitrary ordering on the vertices of each clique. For each arc of type Th between c and c′,
add a half graph4 between the corresponding cliques: connect the ath vertex of the clique
representing c with the bth vertex of the clique representing c′ iff a > b. For every arc of
type Tr from a vertex c to a vertex c′, connect the ath vertex of the clique representing
c with the bth vertex of the clique representing c′ iff si,ja is not row-compatible with si,jb .
Similarly, for every arc of type Tc from a vertex c to a vertex c′, connect the ath vertex
of the clique representing C with the bth vertex of the clique representing c′ iff si,ja is not
column-compatible with si,jb . The cliques corresponding to vertices of this gadget are called
the main cliques of TGi,j , and the cliques corresponding to the central cycle on 4p+4 vertices
are called the cycle cliques. The main cliques which are not cycle cliques are called path
cliques. The cycle cliques adjacent to one path clique are called branching cliques. Finally,
the clique corresponding to the vertex of degree one in the path attached to c1 (resp. cp+2,
c2p+3, c3p+4) is called the top (resp. right, bottom, left) clique of TGi,j , denoted by Ti,j (resp.
Ri,j , Bi,j , Li,j). Let Ti,j = {ti,j1 , . . . , ti,jn }, Ri,j = {ri,j1 , . . . , ri,jn }, Bi,j = {bi,j1 , . . . , bi,jn }, and
Li,j = {`i,j1 , . . . , `i,jn }. For the sake of readability, we might omit the superscripts i, j when it
is clear from the context.

I Lemma 3. (?) Let K be an independent set of size 8(p+ 1) in TGi,j. Then:
(a) K intersects all the cycle cliques on the same index x;
(b) if K ∩ Ti,j = {txt}, K ∩Ri,j = {rxr}, K ∩Bi,j = {bxb

}, and K ∩ Li,j = {`x`
}. Then:

si,jx`
is row-compatible with si,jx which is row-compatible with si,jxr

, and
si,jxt

is column-compatible with si,jx which is column-compatible with si,jxb
.

For i, j ∈ {0, . . . , k − 1}, we connect the right clique of TGi,j with the left clique of
TGi,j+1 in a “type Tr spirit”: for every x, y ∈ [n], connect ri,jx ∈ Ri,j with `i,j+1

y ∈ Li,j+1 iff
si,jx is not row-compatible with si,j+1

y . Similarly, we connect the bottom clique of TGi,j with
the top clique of TGi+1,j in a “type Tc spirit”: for every x, y ∈ [n], connect bi,jx ∈ Bi,j with
ti+1,j
y ∈ Ti+1,j iff si,jx is not column-compatible with si+1,j

y (all incrementations of i and j
are done modulo k). This terminates the construction of the graph G.

I Lemma 4. (?) The input instance of Grid Tiling is positive if and only if G has an
independent set of size k′ = 8(p+ 1)k2.

Let us now prove that G does not contain the graphs mentionned in the statement as an
induced subgraph:
(i) K1,4: we first prove that for every 0 ≤ i, j ≤ k − 1, the graph induced by the cycle

cliques of TGi,j is claw-free. For the sake of contradiction, suppose that there exist
three consecutive cycle cliques A, B and C containing a claw. W.l.o.g. we may assume
that bx ∈ B is the center of the claw, and aα ∈ A, bβ ∈ B and cγ ∈ C are the three
endpoints. By construction of the gadgets (there is a half graph between A and B and
between B and C), we must have α < x < γ. Now, observe that if x < β then aα
must be adjacent to bβ , and if β < x, then bβ must be adjacent to cγ , but both case
are impossible since {aα, bβ , cγ} is supposed to be an independent set. Similarly, we
can prove that the graph induced by each path of size 2(p+ 1) linking two consecutive
gadgets is claw-free. Hence, the only way for K1,4 to appear in G would be that

4 Notice that our definition of half graph slighly differs from the usual one, in the sense that we do not
put edges relying two vertices of the same index. Hence, our construction can actually be seen as the
complement of a half graph (which is consistent with the fact that usually, both parts of a half graph
are independent sets, while they are cliques in our gadgets).

IPEC 2018
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the center appears in the cycle clique attached to a path, for instance in the clique
represented by the vertex c1 in the cycle. However, it can easily be seen that in this
case, a claw must lie either in the graph induced by the cycle cliques of the gadget, or
in the path linking TGi,j with TGi−1,j , which is impossible.

(ii) C4, . . . , Cp1 . The main argument is that the graph induced by any two main cliques
does not contain any of these cycles. Then, we show that such a cycle cannot lie entirely
in the cycle cliques of a single gadget TGi,j . Indeed, if this cycle uses at most one
vertex per main clique, then it must be of length at least 4p+ 4. If it intersects a clique
C on two vertices, then either it also intersect all the cycle cliques of the gadget, in
which case it is of length 4p+ 5, or it intersects an adjacent clique of C on two vertices,
in which case these two cliques induce a C4, which is impossible. Similarly, such a cycle
cannot lie entirely in a path between the main cliques of two gadgets. Finally, the main
cliques of two gadgets are at distance 2(p+ 1), hence such a cycle cannot intersect the
main cliques of two gadgets.

(iii) any tree T with two branching vertices at distance at most p2. Using the same argument
as for the K1,4 case, observe that the claws contained in G can only appear in the
cycle cliques where the paths are attached. However, observe that these cliques are at
distance 2(p+ 1) > p2, thus, such a tree T cannot appear in G. J

3 Positive results I: disjoint union of cliques

For r, q ≥ 1, let Kq
r be the disjoint union of q copies of Kr. The following proof is inspired

by the case r = 2 by Alekseev [2].

I Theorem 5. Maximum Independent Set is FPT in Kq
r -free graphs.

Proof. We will prove by induction on q that a Kq
r -free graph has an independent set of

size k or has at most (Ram(r, k) + 1)qknqr independent sets. This will give the desired
FPT-algorithm, as the proof shows how to construct this collection of independent sets. Note
that the case q = 1 is trivial by Ramsey’s theorem.

Let G be a Kq
r -free graph and let < be any fixed total ordering of V (G) such that the

largest vertex in this ordering belongs to a clique of size r (the case where G is Kr-free is
trivial by Ramsey’s theorem). For any vertex x, define x+ = {y, x < y} and x− = V (G) \ x+

(hence, x ∈ x−).
Let C be a fixed clique of size r in G and let c be the largest vertex of C with respect to

<. Let V1 be the set of vertices of c+ which have no neighbor in C. Note that V1 induces a
Kq−1
r -free graph, so by induction either it contains an independent set of size k, and so does

G, or it has at most (Ram(r, k) + 1)(q−1)kn(q−1)r independent sets. In the latter case, let S1
be the set of all independent sets of G[V1].

Now in a second phase we define an initially empty set SC and do the following. For each
independent set S1 in S1 (including the empty set), we denote by V2 the set of vertices in c−
that have no neighbor in S1 (notice that c ∈ V2). For every choice of a vertex x amongst
the largest (Ram(r, k) + 1) vertices of V2 in the order, we add x to S1 and modify V2 in
order to keep only vertices that are smaller than x (with respect to <) and not adjacent to
x. We repeat this operation k times (or less if V2 becomes empty) and, at the end, we either
find an independent set of size k or add S1 to SC . By doing so we construct a family of
at most (Ram(r, k) + 1)k independent sets for each S1, so in total we get indeed at most
(Ram(r, k) + 1)kqn(q−1)r independent sets for each clique C. Finally we define S as the union
over all r-cliques C of the sets SC , so that S has size at most the desired number.



É. Bonnet, N. Bousquet, P. Charbit, S. Thomassé, and R. Watrigant 17:7

We claim that if G does not contain an independent set of size k, then S contains all
independent sets of G. It suffices to prove that for every independent set S, there exists a
clique C for which S ∈ SC . Let S be an independent set, and define C to be a clique of size
r such that its largest vertex c (with respect to <) satisfies the conditions:

no vertex of C is adjacent to a vertex of S ∩ c+, and
c is the smallest vertex such that a clique C satisfying the first item exists.

First remark that such a clique always exist, since we assumed that the largest vertex clast
of < is contained in a clique of size r, which means that S ∩ c+

last is empty and thus the
first item is vacuously satisfied. Secondly, note that several cliques C might satisfy the two
previous conditions. In that case, pick one such clique arbitrarily. This definition of C and c
ensures that S ∩ c+ is an independent set in the set V1 defined in the construction above
(it might be empty, but we also consider this case). Thus, it will be picked in the second
phase as some S1 in S1 and for this choice, each time V2 is considered, the fact that C is
chosen to minimize its largest element c guarantees that there must be a vertex of S in the
(Ram(r, k) + 1) largest vertices in V2: either c ∈ S and we are done, or S must intersect
one of the Ram(r, k) largest elements of V2 \ {c}, otherwise there would be an an r-clique
contradicting the choice of C. This shows that S ∈ SC , which concludes our proof. J

4 Positive results II

4.1 Key ingredient: Iterative expansion and Ramsey extraction
In this section, we present the main idea of our algorithms. It is a generalization of iterative
expansion, which itself is the maximization version of the well-known iterative compression
technique. Iterative compression is a useful tool for designing parameterized algorithms for
subset problems (i.e. problems where a solution is a subset of some set of elements: vertices
of a graph, variables of a logic formula...etc.) [6, 18]. Although it has been mainly used for
minimization problems, iterative compression has been successfully applied for maximization
problems as well, under the name iterative expansion [5]. Roughly speaking, when the
problem consists in finding a solution of size at least k, the iterative expansion technique
consists in solving the problem where a solution S of size k − 1 is given in the input, in
the hope that this solution will imply some structure in the instance. In the following, we
consider an extension of this approach where, instead of a single smaller solution, one is given
a set of f(k) smaller solutions S1, . . . , Sf(k). As we will see later, we can further add more
constraints on the sets S1, . . . , Sf(k). Notice that all the results presented in this sub-section
(Lemmas 7 and 10 in particular) hold for any hereditary graph class (including the class of
all graphs). The use of properties inherited from particular graphs (namely, H-free graphs in
our case) will only appear in Sections 4.2 and 4.3.

I Definition 6. For a function f : N → N, the f-Iterative Expansion MIS takes as
input a graph G, an integer k, and a set of f(k) independent sets S1, . . . , Sf(k), each of size
k − 1. The objective is to find an independent set of size k in G, or to decide that such an
independent set does not exist.

I Lemma 7. (?) Let G be a hereditary graph class. MIS is FPT in G iff f-Iterative
Expansion MIS is FPT in G for some computable function f : N→ N.

We will actually prove a stronger version of this result, by adding more constraints on
the input sets S1, . . . , Sf(k), and show that solving the expansion version on this particular
kind of input is enough to obtain the result for MIS.

IPEC 2018
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I Definition 8. Given a graph G and a set of k − 1 vertex-disjoint cliques of G, C =
{C1, . . . , Ck−1}, each of size q, we say that C is a set of Ramsey-extracted cliques of size q if
the conditions below hold. Let Cr = {crj : j ∈ {1, . . . , q}} for every r ∈ {1, . . . , k − 1}.

For every j ∈ [q], the set {crj : r ∈ {1, . . . , k− 1}} is an independent set of G of size k− 1.
For any r 6= r′ ∈ {1, . . . , k − 1}, one of the four following case can happen:

(i) for every j, j′ ∈ [q], crjcr
′

j′ /∈ E(G)
(ii) for every j, j′ ∈ [q], crjcr

′

j′ ∈ E(G) iff j 6= j′

(iii) for every j, j′ ∈ [q], crjcr
′

j′ ∈ E(G) iff j < j′

(iv) for every j, j′ ∈ [q], crjcr
′

j′ ∈ E(G) iff j > j′

In the case (i) (resp. (ii)), we say that the relation between Cr and Cr′ is empty (resp.
full5). In case (iii) or (iv), we say the relation is semi-full.

Observe, in particular, that a set C of k − 1 Ramsey-extracted cliques of size q can
be partitionned into q independent sets of size k − 1. As we will see later, these cliques
will allow us to obtain more structure with the remaining vertices if the graph is H-free.
Roughly speaking, if q is large, we will be able to extract from C another set C′ of k − 1
Ramsey-extracted cliques of size q′ < q, such that every clique is a module6 with respect to
the solution x∗1, . . . , x∗k we are looking for. Then, by guessing the structure of the adjacencies
between C′ and the solution, we will be able to identify from the remaining vertices k sets
X1, . . . , Xk, where each Xi has the same neighborhood as x∗i w.r.t. C′, and plays the role of
“candidates” for this vertex. For a function f : N→ N, we define the following problem:

I Definition 9. The f-Ramsey-extracted Iterative Expansion MIS problem takes
as input an integer k and a graph G whose vertices are partitionned into non-empty sets
X1 ∪ · · · ∪Xk ∪ C1 ∪ · · · ∪ Ck−1, where:
{C1, . . . , Ck−1} is a set of k − 1 Ramsey-extracted cliques of size f(k)
any independent set of size k in G is contained in X1 ∪ · · · ∪Xk

∀i ∈ {1, . . . , k}, ∀v, w ∈ Xi and ∀j ∈ {1, . . . , k − 1}, N(v) ∩ Cj = N(w) ∩ Cj = ∅ or
N(v) ∩ Cj = N(w) ∩ Cj = Cj
the following bipartite graph B is connected: V (B) = B1 ∪ B2, B1 = {b1

1, . . . , b
1
k},

B2 = {b2
1, . . . , b

2
k−1} and b1

jb
2
r ∈ E(B) iff Xj and Cr are adjacent.

The objective is to find an independent set S in G of size at least k, or to decide that G does
not contain an independent set S such that S ∩Xi 6= ∅ for all i ∈ {1, . . . , k}.

I Lemma 10. Let G be a hereditary graph class. If there exists a computable function
f : N → N such that f-Ramsey-extracted Iterative Expansion MIS is FPT in G,
then g-Iterative Expansion MIS is FPT in G, where g(x) = Ram`(f(x)2x(x−1)) ∀x ∈ N,
with `x = 2(x−1)2 .

Proof. Let f : N→ N be such a function, and let G, k and S = {S1, . . . , Sg(k)} be an input
of g-Iterative Expansion MIS. Recall that the objective is to find an independent set
of size k in G, or to decide that such an independent set does not exist. If G contains
an independent set of size k, then either there is one intersecting some set of S, or every
independent set of size k avoids the sets in S. In order to capture the first case, we branch
on every vertex v of the sets in S, and make a recursive call with parameter G \N [v], k − 1.

5 Remark that in this case, the graph induced by Cr ∪ Cr′ is the complement of a perfect matching.
6 A set of vertices M is a module if every vertex v /∈ M is adjacent to either all vertices of M , or none.
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In the remainder of the algorithm, we thus assume that any independent set of size k in G
avoids every set of S.

We choose an arbitrary ordering of the vertices of each Sj . Let us denote by srj the rth
vertex of Sj . Notice that given an ordered pair of sets of k − 1 vertices (A,B), there are
`k = 2(k−1)2 possible sets of edges between these two sets. Let us denote by c1, . . . , c2(k−1)2

the possible sets of edges, called types. We define an auxiliary edge-colored graph H whose
vertices are in one-to-one correspondence with S1, . . . , Sg(k), and, for i < j, there is an
edge between Si and Sj of color γ iff the type of (Si, Sj) is γ. By Ramsey’s theorem, since
H has Ram`k

(f(k)2k(k−1)) vertices, it must admit a monochromatic clique of size at least
h(k) = f(k)2k(k−1). W.l.o.g., the vertex set of this clique corresponds to S1, . . . , Sh(k). For
p ∈ {1, . . . , k − 1}, let Cp = {spj , . . . , s

p
h(k)}. Observe that the Ramsey extraction ensures

that each Cp is either a clique or an independent set. If Cp is an independent set for some r,
then we can immediately conclude, since h(k) ≥ k. Hence, we suppose that Cp is a clique for
every p ∈ {1, . . . , k − 1}. We now prove that C1, . . . , Ck−1 are Ramsey-extracted cliques of
size h(k). First, by construction, for every j ∈ {1, . . . , h(k)}, the set {spj : p = 1, . . . , k− 1} is
an independent set. Then, let c be the type of the clique obtained previously, represented by
the adjacencies between two sets (A,B), each of size k − 1. For every p ∈ {1, . . . , k − 1}, let
ap (resp. bp) be the ath vertex of A (resp. B). Let p, q ∈ {1, . . . , t}, p 6= q. If any of apbq and
aqbp are edges in type c, then there is no edge between Cp and Cq, and their relation is thus
empty. If both edges apbq and aqbp exist in c, then the relation between Cp and Cq is full.
Finally if exactly one edge among apbq and aqbp exists in c, then the relation between Cp
and Cq is semi-full. This concludes the fact that C = {C1, . . . , Ck−1} are Ramsey-extracted
cliques of size h(k).

Suppose that G has an independent set X∗ = {x∗1, . . . , x∗k}. Recall that we assumed
previously that X∗ is contained in V (G) \ (C1 ∪ · · · ∪ Ck−1). The next step of the algorithm
consists in branching on every subset of f(k) indices J ⊆ {1, . . . , h(k)}, and restrict every set
Cp to {spj : j ∈ J}. For the sake of readability, we keep the notation Cp to denote {spj : j ∈ J}
(the non-selected vertices are put back in the set of remaining vertices of the graph, i.e.
we do not delete them). Since h(k) = f(k)2k(k−1), there must exist a branching where the
chosen indices are such that for every i ∈ {1, . . . , k} and every p ∈ {1, . . . , k− 1}, x∗i is either
adjacent to all vertices of Cp or none of them. In the remainder, we may thus assume that
such a branching has been made, with respect to the considered solution X∗ = {x∗1, . . . , x∗k}.
Now, for every v ∈ V (G) \ (C1, . . . , Ck−1), if there exists p ∈ {1, . . . , k − 1} such that
N(v) ∩ Cp 6= ∅ and N(v) ∩ Cp 6= Cp , then we can remove this vertex, as we know that it
cannot correspond to any x∗i . Thus, we know that all the remaining vertices v are such that
for every p ∈ {1, . . . , k − 1}, v is either adjacent to all vertices of Cp, or none of them.

In the following, we perform a color coding-based step on the remaining vertices. Inform-
ally, this color coding will allow us to identify, for every vertex x∗i of the optimal solution, a
set Xi of candidates, with the property that all vertices in Xi have the same neighborhood
with respect to sets C1, . . . , Ck−1. We thus color uniformly at random the remaining vertices
V (G) \ (C1, . . . , Ck−1) using k colors. The probability that the elements of X∗ are colored
with pairwise distinct colors is at least e−k. We are thus reduced to the case of finding
a colorful7 independent set of size k. For every i ∈ {1, . . . , k}, let Xi be the vertices of
V (G) \ (C1, . . . , Ck−1) colored with color i. We now partition every set Xi into at most
2k−1 subsets X1

i , . . . , X2k−1

i , such that for every j ∈ {1, . . . , 2k−1}, all vertices of Xj
i have

the same neighborhood with respect to the sets C1, . . . , Ck−1 (recall that every vertex of

7 A set of vertices is called colorful if it is colored with pairwise distinct colors.

IPEC 2018



17:10 Parameterized Complexity of Independent Set in H-Free Graphs

V (G) \ (C1, . . . , Ck−1) is adjacent to all vertices of Cp or none, for each p ∈ {1, . . . , k − 1}).
We branch on every tuple (j1, . . . , jk) ∈ {1, . . . , 2k−1}. Clearly the number of branchings
is bounded by a function of k only and, moreover, one branching (j1, . . . , jk) is such that
x∗i has the same neighborhood in C1 ∪ · · · ∪ Ck−1 as vertices of Xji

i for every i ∈ {1, . . . , k}.
We assume in the following that such a branching has been made. For every i ∈ {1, . . . , k},
we can thus remove vertices of Xj

i for every j 6= ji. For the sake of readability, we rename
Xji

i as Xi. Let B be the bipartite graph with vertex bipartition (B1, B2), B1 = {b1
1, . . . , b

1
k},

B2 = {b2
1, . . . , b

2
k−1}, and b1

i b
2
p ∈ E(B) iff x∗i is adjacent to Cp. Since every x∗i has the same

neighborhood as Xi with respect to C1, . . . , Ck−1, this bipartite graph actually corresponds
to the one described in Definition 9 representing the adjacencies between Xi’s and Cp’s. We
now prove that it is connected. Suppose it is not. Then, since |B1| = k and |B2| = k − 1,
there must be a component with as many vertices from B1 as vertices from B2. However,
in this case, using the fixed solution X∗ on one side and an independent set of size k − 1
in C1 ∪ · · · ∪ Ck−1 on the other side, it implies that there is an independent set of size k
intersecting ∪k−1

p=1Cp, a contradiction.
Hence, all conditions of Definition 9 are now fulfilled. It now remains to find an independent

set of size k disjoint from the sets C, and having a non-empty intersection with Xi, for
every i ∈ {1, . . . , k}. We thus run an algorithm solving f-Ramsey-extracted Iterative
Expansion MIS on this input, which concludes the algorithm. J

The proof of the following result is immediate, by using successively Lemmas 7 and 10.

I Theorem 11. Let G be a hereditary graph class. If f-Ramsey-extracted Iterative
Expansion MIS is FPT in G for some computable function f , then MIS is FPT in G.

We now apply this framework to two families of graphs H.

4.2 Clique minus a smaller clique
I Theorem 12. (?) For any r ≥ 2 and s < r, MIS in (Kr \Ks)-free graphs is FPT if s ≤ 3,
and W [1]-hard otherwise.

4.3 Clique minus a complete bipartite graph
For every three positive integers r, s1, s2 with s1 + s2 < r, we consider the graph Kr \Ks1,s2 .
Another way to see Kr \Ks1,s2 is as a P3 of cliques of size s1, r − s1 − s2, and s2. More
formally, every graph Kr \Ks1,s2 can be obtained from a P3 by adding s1 − 1 false twins of
the first vertex, r − s1 − s2 − 1, for the second, and s2 − 1, for the third.

I Theorem 13. ∀r ≥ 2 and s1 ≤ s2 s.t. s1 + s2 < r, MIS in Kr \Ks1,s2-free graphs is FPT.

Proof. It is more convenient to prove the result for K3r \Kr,r-free graphs, for any positive
integer r. It implies the theorem by choosing this new r to be larger than s1, s2, and
r − s1 − s2. We will show that for f(x) := 3r for every x ∈ N, f-Ramsey-extracted
Iterative Expansion MIS in K3r \Kr,r-free graphs is FPT. By Theorem 11, this implies
that MIS is FPT in this class. Let C1, . . . , Ck−1 (whose union is denoted by C) be the
Ramsey-extracted cliques of size 3r, which can be partitionned, as in Definition 9, into 3r
independent sets S1, . . . , S3r, each of size k− 1. Let X =

⋃k
i=1 Xi be the set in which we are

looking for an independent set of size k. We recall that between any Xi and any Cj there are
either all the edges or none. Hence, the whole interaction between X and C can be described
by the bipartite graph B described in Definition 9. Firstly, we can assume that each Xi is of
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size at least Ram(r, k), otherwise we can branch on Ram(r, k) choices to find one vertex in
an optimum solution. By Ramsey’s theorem, we can assume that each Xi contains a clique
of size r (if it contains an independent set of size k, we are done). Our general strategy is
to leverage the fact that the input graph is (K3r \Kr,r)-free to describe the structure of X .
Hopefully, this structure will be sufficient to solve our problem in FPT time.

We define an auxiliary graph Y with k − 1 vertices. The vertices y1, . . . , yk−1 of Y
represent the Ramsey-extracted cliques of C and two vertices yi and yj are adjacent iff the
relation between Ci and Cj is not empty (equivalently the relation is full or semi-full). It
might seem peculiar that we concentrate the structure of C, when we will eventually discard
it from the graph. It is an indirect move: the simple structure of C will imply that the
interaction between X and C is simple, which in turn, will severely restrict the subgraph
induced by X . More concretely, in the rest of the proof, we will (1) show that Y is a clique,
(2) deduce that B is a complete bipartite graph, (3) conclude that X cannot contain an
induced K2

r = Kr ]Kr and run the algorithm of Theorem 5.
Suppose that there is yi1yi2yi3 an induced P3 in Y , and consider Ci1 , Ci2 , Ci3 the

corresponding Ramsey-extracted cliques. For s < t ∈ [3r], let Cs→ti := Ci ∩
⋃
s6j6t Sj .

In other words, Cs→ti contains the elements of Ci having indices between s and t. Since
|Ci| = 3r, each Ci can be partitionned into three sets, of r elements each: C1→r

i , Cr+1→2r
i

and C2r+1→3r
i . Recall that the relation between Ci1 and Ci2 (resp. Ci2 and Ci3) is either

full or semi-full, while the relation between Ci1 and Ci3 is empty. This implies that at least
one of the four following sets induces a graph isomorphic to K3r \Kr,r:

C1→r
i1
∪ Cr+1→2r

i2
∪ C1→r

i3

C1→r
i1
∪ Cr+1→2r

i2
∪ C2r+1→3r

i3

C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C1→r
i3

C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C2r+1→3r
i3

Hence, Y is a disjoint union of cliques. Let us assume that Y is the union of at least two
(maximal) cliques.

Recall that the bipartite graph B is connected. Thus there is b1
h ∈ B1 (corresponding to

Xh) adjacent to b2
i ∈ B2 and b2

j ∈ B2 (corresponding to Ci and Cj , respectively), such that
yi and yj lie in two different connected components of Y (in particular, the relation between
Ci and Cj is empty). Recall that Xh contains a clique of size at least r. This clique induces,
together with any r vertices in Ci and any r vertices in Cj , a graph isomorphic to K3r \Kr,r;
a contradiction. Hence, Y is a clique.

Now, we can show that B is a complete bipartite graph. Each Xh has to be adjacent to
at least one Ci (otherwise this trivially contradicts the connectedness of B). If Xh is not
linked to Cj for some j ∈ {1, . . . , k − 1}, then a clique of size r in Xh (which always exists)
induces, together with C1→r

i ∪ C2r+1→3r
j or with C2r+1→3r

i ∪ C1→r
j , a graph isomorphic to

K3r \Kr,r.
Since B is a complete bipartite graph, every vertex of C1 dominates all vertices of X In

particular, X is in the intersection of the neighborhood of the vertices of some clique of size
r. This implies that the subgraph induced by X is (Kr ]Kr)-free. Hence, we can run the
FPT algorithm of Theorem 5 on this graph. J

5 Polynomial (Turing) kernels

In this section we investigate some special cases of Section 4.3, in particular when H is a
clique of size r minus a claw with s branches, for s < r. Although Theorem 13 proves that
MIS is FPT for every possible values of r and s, we show that when s ≥ r − 2, the problem
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admits a polynomial Turing kernel, while for s ≤ 2, it admits a polynomial kernel. Notice
that the latter result is somehow tight, as Corollary 18 shows that MIS cannot admit a
polynomial kernel in (Kr \K1,s)-free graphs whenever s ≥ 3.

I Theorem 14. (?) ∀r ≥ 2, MIS in (Kr \ K1,r−2)-free graphs has a polynomial Turing
kernel.

I Theorem 15. (?) ∀r ≥ 3, MIS in (Kr \ K1,2)-free graphs has a kernel with O(kr−1)
vertices.

Observe that a (Kr \K2)-free graph is (Kr+1 \K1,2)-free, hence, thus the previous result
also applies to (Kr \K2)-free graphs, which answers a question of [8].

We now focus on kernel lower bounds.

I Definition 16. Given the graphs H, H1, . . . , Hp, we say that (H1, . . . ,Hp) is a multipartite
decomposition of H if H is isomorphic to H1 + · · ·+Hp. We say that (H1, . . . ,Hp) is maximal
if, for every multipartite decomposition (H ′1, . . . ,H ′q) of H, we have p > q.

It can easily be seen that for every graph H, a maximal multipartite decomposition of H
is unique. We have the following:

I Theorem 17. (?) Let H be any fixed graph, and let H = H1 + · · ·+Hp be the maximal
multipartite decomposition of H. If, for some i ∈ [p], MIS is NP-hard in Hi-free graphs,
then MIS does not admit a polynomial kernel in H-free graphs unless NP ⊆ coNP/poly.

The next results shows that the polynomial kernel obtained in the previous section for
(Kr \K1,s)-free graphs, s ≤ 2, is somehow tight.

I Corollary 18. (?) For r ≥ 4, and every 3 ≤ s ≤ r − 1, MIS in (Kr \K1,s)-free graphs
does not admit a polynomial kernel unless NP ⊆ coNP/poly.

6 Conclusion and open problems

We started to unravel the FPT/W [1]-hard dichotomy for MIS in H-free graphs, for a fixed
graph H. At the cost of one reduction, we showed that it is W [1]-hard as soon as H is not
chordal, even if we simultaneously forbid induced K1,4 and trees with at least two branching
vertices. Tuning this construction, it is also possible to show that if a connected H is not
roughly a "path of cliques" or a "subdivided claw of cliques", then MIS is W [1]-hard.

An interesting open problem is the case when H is the cricket, that is a triangle with
two pending vertices, each attached to a different vertex

For disconnected graphs H, we obtained an FPT algorithm when H is a cluster (i.e., a
disjoint union of cliques). We conjecture that, more generally, the disjoint union of two easy
cases is an easy case; formally, if MIS is FPT in G-free graphs and in H-free graphs, then it
is FPT in G]H-free graphs. A more anecdotal conclusion is the fact that the parameterized
complexity of the problem on H-free graphs is now complete for every graph H on four
vertices, including concerning the polynomial kernel question, whereas the FPT/W [1]-hard
question remains open for only five graphs H on five vertices.
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