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Abstract
The notion of tree-cut width has been introduced by Wollan in [The structure of graphs not admitting
a fixed immersion, Journal of Combinatorial Theory, Series B, 110:47–66, 2015]. It is defined via
tree-cut decompositions, which are tree-like decompositions that highlight small (edge) cuts in a
graph. In that sense, tree-cut decompositions can be seen as an edge-version of tree-decompositions
and have algorithmic applications on problems that remain intractable on graphs of bounded
treewidth. In this paper, we prove that every graph admits an optimal tree-cut decomposition that
satisfies a certain Menger-like condition similar to that of the lean tree decompositions of Thomas
[A Menger-like property of tree-width: The finite case, Journal of Combinatorial Theory, Series
B, 48(1):67–76, 1990]. This allows us to give, for every k ∈ N, an upper-bound on the number
immersion-minimal graphs of tree-cut width k. Our results imply the constructive existence of a
linear FPT-algorithm for tree-cut width.
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32:2 Lean Tree-Cut Decompositions

1 Introduction

Menger’s theorem is a classic result in graph theory and arguably one of the most used. It
can be informally stated as follows: two vertex sets of a graph can be linked by k vertex-
disjoint paths if and only if they cannot be separated by the removal of k vertices [25]. A
significant feature of this result is that it provides a concise certificate for the optimality
(in terms of cardinality) of a collection of k disjoint paths between two sets, in the form of
a separator of size k. Many variants of Menger’s theorem are known, including edge and
directed versions [25, 19].

In 1990, Thomas [31] obtained a similar duality between paths and separators in tree
decompositions. Tree decompositions are central objects in the theory of graph minors of
Robertson and Seymour. Introduced in the early times of their Graph Minors series [28], they
soon became the standard way to approach problems related to minors (such as Disjoint
Paths, Feedback Vertex Set, etc.) and to minor-closed graph classes. The result of
Thomas is that every graph admits an optimal tree decomposition, said to be lean, where
the following holds: two bags of the decomposition1 can be connected by k vertex-disjoint
paths if and only if they cannot be separated by the removal of a bag on at most k vertices.
That is, while Menger’s theorem provides a set of k vertices separating the two bags, Thomas
proved that such vertices (again forming a concise certificate of optimality) can moreover be
found in a unique bag. Lean tree decompositions had important applications as they have
been used to optimize parameter dependencies and to simplify arguments in proofs of the
Graph Minors series [2, 9].

The objects of our attention in this paper are tree-like decompositions of graphs called
tree-cut decompositions. These decompositions, introduced by Wollan in [32], highlight small
(edge) cuts in graphs and are particularly suited to deal with problems related to the immersion
ordering2 and immersion-closed graph classes. (Comparatively, tree decompositions display
small vertex separators and are tailored for minor-related problems.) A strength of tree-cut
decompositions compared to other decompositions defined by edge cuts (such as cutwidth
orderings or carving decompositions) is that they enjoy two highly desirable properties that
mirror those of tree decompositions: (a) they admit an excluded wall immersion theorem
[32] (comparable to the excluded grid minor theorem of Robertson and Seymour [29]) and
(b) they can be used for dynamic programming, additionally for problems that cannot be
tackled under the bounded-treewidth framework [11, 21, 15]. Thus they are believed to be a
credible translation of tree decompositions to the settings of immersions. The importance
of tree decomposition-based techniques in graph algorithms is an additional motivation to
study their possible counterpart in the immersion world. Our first contribution is to show
that paths and cuts in tree-cut decompositions obey a duality as in the aforementioned result
of Thomas.

I Theorem 1. Every graph has an optimal tree-cut decomposition that is lean.

For the above statement to be meaningful, we adapted the notion of leanness to the
setting of tree-cut decomposition; in particular it relates edge-disjoint paths with edge cuts.3
A similar notion of leanness has been previously studied in [16] for the simpler setting of
cutwidth orderings. We also note that analogs of lean tree decompositions appeared for

1 We follow here the standard terminology about tree-decompositions, see Section 6 for details.
2 The immersion ordering is a partial order on graphs that has properties similar to the minor ordering,

see Section 2 for details.
3 The formal definition is given in Section 2.
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several different width parameters such as θ-tree-width [6, 13], pathwidth [24], directed path-
width [22], DAG-width [23], rank-width [26], linear-rankwidth [20], profile- and block-width
[9], matroid treewidth [12, 1, 9] and matroid branchwidth [12].

To prove Theorem 1, we design an improvement procedure that, in a finite number of
steps, transforms a tree-cut decomposition that is not lean into a lean one.

Tree-cut decompositions can be used to define the graph parameter of tree-cut width, in the
same way that treewidth can be defined via tree decompositions. Our second result pertains to
obstructions for bounded tree-cut width. We say that a graph is an (immersion)-obstruction
for tree-cut width at most k if it has tree-cut width more than k and all its proper immersions
have tree-cut width at most k. Intuitively, such graphs delimit the border between the graphs
of small tree-cut width (i.e. at most k) and the rest. As a consequence of the results of
Robertson and Seymour in [27], the set obs(k) of obstructions for tree-cut width at most k
is finite, for every k ∈ N. Unfortunately the techniques used to prove this result (namely,
properties of well-quasi-orders) do not provide explicit upper-bounds on its size. We consider
here the related question of estimating the size of the elements of obs(k). This question
has received significant attention in related settings. In [24], Lagergren gave exponential
upper-bounds on the order of minor-obstructions to graphs of pathwidth or treewidth at

most k (2O(k4) and 22O(k5)), respectively. Moreover, the size of immersion-obstructions to
graphs of cutwidth at most k is known to lie between (3k−5 − 1)/2 [17] and 2O(k3 log k) [16].
As noted in [5], these size estimations can be important in practice. Our result on this topic
is a constructive upper-bound on the size of obstructions for bounded tree-cut width.
I Theorem 2. Let k ∈ N. If G has tree-cut width more than k and every proper immersion
of G has tree-cut width at most k, then G has at most 22O(k4) vertices.

Our proof has two main ingredients. The first one is an encoding into a finite number
of types of the features of a graph that are relevant when computing tree-cut width, in the
fashion of the folios of [30] and the protrusion machinery of [4], but adapted to the different
setting studied here (and similar in this sense to the techniques developed in [16, 7]). The
second ingredient is our aforementioned result on leanness. Informally, Theorem 1 allows us,
when “redundancy” has been identified in a graph (using the first ingredient), to obtain an
immersion that has the same tree-cut width and less vertices. To the best of our knowledge,
no explicit upper-bound concerning obs(k) was known before.

The third problem that we consider is of algorithmic nature: how fast can the tree-
cut width of a graph be computed? This problem is NP-hard [21] and therefore has been
approached through parameterized complexity and approximation algorithms. A consequence
of the aforementioned result of Robertson and Seymour [27] and a result in [18] is the existence
– and the existence only – of an FPT algorithm that decides, given a graph G and k ∈ N,
whether G has tree-cut width at most k. The first step towards a constructive FPT algorithm
for tree-cut width was achieved by Kim et al. [21] who designed a 2O(k2 log k) ·n2-time factor 2
approximation algorithm. Our third result is the first constructive parameterized algorithm
for tree-cut width.
I Theorem 3. It is possible to construct an algorithm that given an n-vertex graph G and
an integer r decides whether G has tree-cut width more than r in f(r) · n steps, where f is
some recursive function.

Our algorithm relies on the fact that graphs of small tree-cut width have small treewidth
and on our result on the size of the obstructions. Graphs of large treewidth can be immediately
rejected, while graphs of small treewidth can be searched for the existence of an obstruction
to tree-cut width at most k using standard techniques on tree decompositions. We leave as
an open problem to determine the optimal order of magnitude for f .

STACS 2019



32:4 Lean Tree-Cut Decompositions

Organization of this extended abstract. In Section 2, we give preliminary definitions. The
proofs of Theorem 1 is given in Section 3. In Sections 4 and 5 we introduce the machinery
used to prove Theorems 2 and 3 whose proofs are given in Section 6. Finally, in Section 7,
we provide some discussion on how to bound the parametric dependence of the algorithm of
Theorem 3. Due to the space constraints, the proofs of the lemmas marked by F have been
omitted. They can be found in the full version [14].

2 Preliminaries

In this paper, graphs are undirected, finite, loopless, and may have multiple edges. We
respectively denote by V (G) and E(G) the vertex and edge sets of a graph G and by |G|
and ‖G‖ the cardinalities of these sets (counting edges with multiplicities).

A cut in a graph G is a set F ⊆ E(G) such that G− F has more connected components
than G. If A,B ⊆ V (G), the cut F is an (A,B)-cut if there is no path connecting a vertex
of A to a vertex of B in G − F . If A,B ⊆ E(G), we say that F is an (A,B)-cut if there
is no path from an endpoint of an edge of A to an endpoint of an edge of B in G− F . If
(X,Y ) is a partition of V (G), we sometimes refer to the cut {xy ∈ E(G), x ∈ X and y ∈ Y }
by (X,Y ). For k ∈ N, a graph is said to be k-edge-connected if it has no cut on (strictly)
less than k edges.

If T is a tree and a, b ∈ E(T ), we denote by aTb the (unique) path of T from a to b and
containing these edges.

Immersions. For graphs H and G, a pair (φ, ψ) is an H-immersion model in G if
φ is an injection from V (H) to V (G),
ψ maps every edge uv of H to a path of G between φ(u) and φ(v) such that different
edges are mapped to edge-disjoint paths.

We say that H is an immersion of G if there is an H-immersion model in G and we denote
this by H ≤ G. This defines a partial order on graphs. We also say that H is a proper
immersion of G if H ≤ G and H is not isomorphic to G.

Tree-cut decompositions. A near-partition of a set S is a family of pairwise disjoint subsets
S1,. . . , Sk ⊆ S such that

⋃k
i=1 Si = S. Observe that this definition allows some sets Si of

the family to be empty.

(a) (b)

ut

v

Figure 1 Example of a tree-cut decomposition (right) of a graph (left).

A tree-cut decomposition of a graph G is a pair (T,X ) where T is a tree and X =
{Xt}t∈V (T ) is a near-partition of V (G). We call elements of V (T ) nodes and elements of
V (G) vertices for clarity. The set Xt is called the bag of the decomposition corresponding to
the node t, or just the bag at t.
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An example of a tree-cut decomposition (X , T ) of a graph G is depicted in Figure 1. In
this picture, the tree T is depicted in blue and G is drawn on top of it to highlight which
vertices (resp. edges) belong to which bags (resp. adhesions). This decomposition has an
empty bag, at node t.

For an edge {u, v} ∈ E(T ), we denote by Tuv and Tvu the connected components of
T−{uv} containing u and v, respectively. The adhesion adh(T,X )(uv) of some edge uv ∈ E(T )
is defined as the set of edges of G that have an endpoint in a bag of Tuv and the other one
in a bag of Tvu. We drop the subscript when it is clear from the context. In Figure 1, the
adhesion of the edge tu of T consists in the two thick red edges of G.

If G is 3-edge-connected, we define the width of (T,X ) as follows:

width(T,X ) = max
{

max
tt′∈E(T )

| adh(tt′)|, max
t∈V (T )

(|Xt|+ degT (t))
}
.

The tree-cut width of G is the maximum width over all tree-cut decompositions of G. For
the simplicity of the presentation we only work on 3-edge-connected graphs in the extended
abstract4. However, our results hold for all graphs and full proofs can be found in the full
version [14]

3 A Menger-like property of tree-cut width

In this section, we give a formal definition of the notion of leanness for tree-cut decompositions
and we sketch the proof of Theorem 1.

A tree-cut decomposition (T,X ) is said to be lean if, for every distinct edges a, b ∈ E(T )
and every A ⊆ adh(a), B ⊆ adh(b) with |A| = |B| =: k,

either there are k edge-disjoint paths linking A to B;
or there is an edge e in aTb such that | adh(e)| < k.

Observe that when the second point holds, adh(e) is an (A,B)-cut. Therefore, as with
Thomas’ notion of leanness mentioned in the introduction, the absence of a large collection
of (here edge-disjoint) paths can be certified by a small (edge) separator that has restricted
position.
Out first result (Theorem 1) shows that every graph admits a tree-cut decomposition that is
lean and has optimum width. Its proof can in fact be reduced to the case of 3-edge-connected
graphs.

I Lemma 4 (F (included in the proof of Theorem 1)). Theorem 1 holds iff it holds for
3-edge-connected graphs.

Therefore we can now focus on 3-edge-connected graphs. A crucial element of the proof
of Theorem 1 is the definition of a potential on tree-cut decompositions, called fatness, as
in Bellenbaum and Diestel’s proof of Thomas leanness result for tree-decompositions [2].
Let G be a graph on m edges and let (T,X ) be a tree-cut decomposition of G. For
every i ∈ [m], we denote by T≥i the subgraph of T induced by the edges that have
adhesion at least i. The fatness, denoted by fatness(T,X ), of (T,X ) is the (2m)-tuple
(αm,−βm, αm−1,−βm−1, . . . , α1,−β1), where for every i ∈ [m],

4 There is a definition the width for tree-cut decompositions of graphs that are not 3-edge-connected. It
can be found in the full version [14]. The definition that we give here is equivalent to that of Wollan
in [32].
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32:6 Lean Tree-Cut Decompositions

αi is the number of edges of T≥i; and

βi is the number of connected components of T≥i.
We order fatnesses by lexicographic order. Informally, fatness is used to quantify the progress
made when improving a non-lean tree-cut decomposition. This is captured by the following
lemma which constitutes an important technical ingredient of the paper.

I Lemma 5 (F). Let G be a 3-edge-connected graph. If (T,X ) is a tree-cut decomposition
of G that is not lean, then G has a tree-cut decomposition of smaller fatness and no bigger
width than the one of (T,X ).

As the fatness of tree-decompositions of a given graph can take a finite number of values,
Lemma 5 implies that we can, after a finite number of “improvement steps”, obtain a lean
tree-cut decomposition. Let us now describe what we mean by improvement step. Let G be

a b

a1
∅
s1

b1 b′1

∅
s2

a′2 a2 b2

Figure 2 A tree-cut decomposition of a graph G (left) and its (a, b, F )-segregation (right), where
F is a cut that separates G into GA and GB . The vertices of GA and GB respectively lie in blue
and green bags. Newly introduced bags, corresponding to nodes s1, s2, are empty. The adhesion of
s1s2 is exactly F .

such a graph and let (T,X ) be a tree-cut decomposition of G. Let a, b ∈ E(T ), and let F be
an inclusion-wise minimal cut separating a graph G into two graphs that we call GA and
GB . We define the (a, b, F )-segregation of (T,X ) as the pair (U,Y) obtained as follows:

1. consider a first copy T1 of T , subdivide once the edge corresponding to b, call s1 the
subdivision vertex, and call the two created edges b1 and b′1, with the convention that
(the copy of) a is closer to b1 in T1;

2. symmetrically, consider a second copy T2 of T , subdivide once the edge corresponding
to a, call s2 the subdivision vertex, and call the two created edges a2 and a′2, with the
convention that (the copy of) b is closer to a2 in T2;

3. in the disjoint union of these two trees, add an edge joining s1 and s2: this gives U ;

4. for every t ∈ V (U), let Yt =


Xt ∩ V (GA) if t ∈ V (T1) \ {s1}
Xt ∩ V (GB) if t ∈ V (T2) \ {s2}, and
∅ if t ∈ {s1, s2}.

The construction of an (a, b, F )-segregation is depicted in Fig. 2. It is not hard to see that a
segregation of a tree-cut decomposition is still a tree-cut decomposition.

For every non-lean tree-cut decomposition (T,X ) there are edges a, b, e ∈ E(T ) and
subsets A ⊆ adh(a), B ⊆ adh(b) violating the definition of leanness. The proof of Lemma 5
consists in showing that the (a, b, F )-segregation of (T,X ), for some cut F carefully chosen
using a, b, e, A,B, has the same width as (T,X ) and smaller fatness.
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4 Tidy decompositions and branch interfaces

For the rest of the proofs we need the notion of tidiness of a tree-cut decomposition of a
graph G, with respect to some edge-cut F of G. Informally, the tidiness property, is satisfied
in a tree-cut decomposition of G, when, given a cut in a graph, the tree-cut decomposition
can be almost partitioned (excluding a set of nodes whose size is upper-bounded linearly
by the size of F ) to subtrees in such a way that the vertices of the graph residing in each
subtree reside also to the same side of the cut. (See also Figure 3.)

⊆ A ⊆ B ⊆ A ⊆ A ⊆ B

⊆ A

⊆ B

∈
M

∈
M

(i)

∈
M

(ii)

Figure 3 Parts of an (A,B)-tidy tree-cut decomposition, with subtrees colored differently
depending whether the bags of their vertices are included in A or in B.

To clearly define tidy tree-cut decompositions and state the main lemma of this section
we need the following.

For a tree T and a set M ⊆ V (T ), the least common ancestor closure (lca-closure) of M
is the set lca(M) ⊆ V (T ) obtained from M by repeatedly adding to it, for every triple x, y, z
in the set, the common vertex of the paths xTy, yTz, and zTx.

I Lemma 6 ([10]). Let T be a rooted forest and M ⊆ V (T ). Then | lca(M)| ≤ 2|M | and
every connected component C of T − lca(M) has at most two neighbors in T .

Let T be a tree, M ⊆ V (T ), and v ∈ V (T ). A node u ∈ V (T ) is a M-descendant of v
if every path from u to a vertex of M contains v. We denote by descM

T (v) the set of such
vertices (we drop the subscript when it is clear from the context). In particular v ∈ descM (v)
holds for every v ∈ V (T ) and descM (v) = {v} holds for every v ∈ M . We also use the
notation descT (v) instead of descV (G)

T (v).

I Definition 7 (tidy tree-cut decomposition). Let D = (T, {Xu}u∈V (T )) be a tree-cut decom-
position of a graph G and let (A,B) be a cut of this graph. Let M ⊆ V (T ) be the lca-closure
of the nodes of T whose bags contain endpoints of the cut (A,B). We denote by CM

i , i ∈ [2]
the set of connected components of T −M that have exactly i neighbors in M (and drop the
superscript M if it is clear from the context).

We say that D is (A,B)-tidy if the following conditions hold for every connected component
F of T −M :
(i) if F ∈ CM

2 : for every w ∈ V (F ), all the bags at T descM (w) are subsets of one of A
and B;

(ii) if F ∈ CM
1 : let u be the node of F adjacent to M . Then, first, u has at most two

neighbors in F ; let us call them v, w (if they exist). Second, Xu intersects at most one
of A and B and all the bags at T descM (v) (resp. T descM (w)) are subsets of A (resp.
B), or the other way around.

These two situations are again depicted on Fig. 3.
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32:8 Lean Tree-Cut Decompositions

Furthermore, we show that there exists a tidy tree-cut decomposition of optimum width
where the number of these subtrees is upper-bounded by a function of the size of the cut
and the tree-cut width of the graph.

JA JB

JA

JB

v

J

a
l
+
b l

a
r

+
b r

vA vB

a
l
+
b l

a
r

+
b r

a
r

+
b l

∈
M

v

a
l
+
b l

J ∈
M v′

a
l
+
b l

al

bl

(a) (b)

Figure 4 Improvement step towards obtaining a tidy tree-cut decomposition from a general
tree-cut decomposition without increasing the width.

Before we present the lemma, we need the following definition.
Let G be a graph and let D = (T, {X}u∈V (T )) be a tree-cut decomposition of G. For

X ⊆ V (G), a X-block is a maximal subtree F of T such that:
bags at nodes of F are subsets of X;
at most two nodes of T − V (F ) have a neighbor in F .

If (A,B) is a cut, we refer to A- and B- blocks as (A,B)-blocks.

I Lemma 8 (F). Let ` ∈ N≥3 and G be a 3-edge-connected graph. If (A,B) is a cut of G of
size `, then there is an optimum tidy tree-cut decomposition D = (T,X ) of G with less than
8` · tcw(G) (A,B)-blocks in T −M , where M is the lca-closure of the nodes of T whose bags
contain endpoints of the cut (A,B).

Note that from the definition of a block, two A-blocks (resp. B-blocks) cannot be connected
by a link of T . This simple property is crucial in the proof of Lemma 8. It allows us, given a
tree-cut decomposition of a graph G that has many (A,B)-blocks, to swap two of them (hence
decreasing the total number of blocks) without increasing the width of the decomposition.
Fig. 4 illustrates how we may obtain a tidy tree-cut decomposition of optimum width from a
general tree-cut decomposition of optimum width while Fig. 5 illustrates the intuition behind
swapping A- and B-blocks in order to decrease their total number.

Ti−1 Ti Ti+1 Ti+2
vp

i−1 vs
i−1 vp

i

ei−1
vs

i vp
i+1

ei

vs
i+1 vp

i+2

ei+1

vs
i+2

Li−1

Ri

Ri+1
Pi Si

Ti−1 Ti+1 Ti Ti+2
vp

i−1 vs
i−1

vp
i+1 vs

i+1

vp
i

vs
i vp

i+2 vs
i+2

Li−1 Ri+1

Pi
Si

Pi+1
Si+1

Figure 5 From D (top) to D′ (bottom): swapping the blocks Ti and Ti+1.
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5 Branch Interfaces

Tidy tree-cut decompositions will be used in this section to classify certain subgraphs of a
graph into a bounded number of equivalence classes. This will be directly used to obtain our
result on obstructions.

A k-boundaried graph is a pair G = (G, x̄) where G is a graph and x̄ = (x1, . . . , xk) is a
k-tuple of the graph’s vertices, called boundary vertices (ordered, not necessarily distinct).
The extension of G is the graph G∗ obtained from G by adding k new vertices x′1, . . . , x′k and
edges x1x

′
1, . . . , xkx

′
k. The join A⊕B of two k-boundaried graphs A = (A, x̄),B = (B, ȳ) is

the graph obtained from the disjoint union of A and B by adding an edge xiyi for i ∈ [k].
Intuitively, a boundaried graph can be seen as the subgraph corresponding to one side of an
(edge) cut in a larger graph. Its boundary vertices then record the endpoints of the edges of
the cut and can be glued to an other boundaried graph to recover the original graph.

We note that our definition of boundaried graph (already used in previous work [16, 15,
8, 7]) slightly differs from that usually followed in the literature (e.g. in [4]), in particular
the join operation. This is because the problems that we consider are related to (edge) cuts –
a setting where our definition is more natural – while other papers often deal with settings
pertaining to (vertex) separators, typically graphs of bounded treewidth.

Let A and B be two k-boundaried graphs and let G = A⊕B. (This is roughly the same
as saying that G has a cut (A,B) of size k.) Let D = (T,X ) be an (A,B)-tidy tree-cut
decomposition of G. Let M denote the lca-closure of the vertices of T whose bags contain
endpoints of the cut.

Let us construct a new pair B = (U,Y) from D as follows: for every (A,B)-block F of T ,
we contract F to a single vertex x and define Yx as the set of vertices of G that are contained
in bags at F . For every x ∈ M we set Yx = Xx. We call B a bucketing of G. In order to
avoid confusion with the bags of a tree-cut decomposition, we refer to the elements of Y
as buckets. Recall that by Lemma 8, the vertices of M are separated in T by a bounded
number of alternations of (A,B)-blocks. Therefore the size of U is bounded by a function of
k and tcw(G).

A bucketing of A is obtained from a bucketing of G by forgetting the content of the
buckets corresponding to B; formally it is the pair (U,Y ′) where Y ′ = {Yu ∩ V (A), u ∈
V (U −M)} ∪ {Yu, u ∈ M}. Given the bucketing (U,Y ′) of A together with D, we can
compute:

for each edge e of U , the size z(e) of its adhesion (defined as for tree-cut decompositions);
for each node x ∈ V (T −M), the width z(x) of the corresponding (A,B)-block in D;5
for each node x ∈ V (T −M), the maximum α(x) of adhesions sizes over the subpath
linking the attachement points (i.e. vertices with a neighbor outside of the block) of the
corresponding (A,B)-block in D;
for each node x ∈M , the sum z(x) of its degree in T and bag size in D;
a function f : [2k]→ V (U) specifying which buckets of U contain the endpoints of the
cut.

Informally, these values encode all the relevant information about the contribution of A
to the width of D. If ` = tcw(G), then we say that (U, z, α, f) (seen as a tuple independent
of A) is a (k, `)-branch interface6 and we say that A conforms with this branch interface.

5 That is, the width of D restricted to this block.
6 Note that we define here a slightly simplified notion of branch interface than in the full version [14],
which is sufficient for the presentation given in this extended abstract.
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Observe that the number of (k, `)-branch interfaces can be upper-bounded by a function of k
and `. In particular we have the following.

I Observation 9. For all k, ` ∈ N there are 2O(`k log k) (k, `)-branch interfaces.

We denote by Ik,`(A) the set of (k, `)-branch interfaces A conforms with. Intuitively, this
set records all the possible ways for A to appear in a tidy tree-cut decomposition of a graph
A ⊕B of tree-cut width at most `. That is, whatever k-boundaried graph B we consider
(among those such that tcw(A⊕B) ≤ `), all the possible ways (A,B)-blocks can interleave
and contribute to the width in a tidy tree-cut decomposition of A⊕B is of bounded size
and recorded in Ik,`(A). This is formalized by the following lemma.

I Theorem 10 (edge-protrusion replacement lemma F). Let k, ` be two positive integers.
Let also A1 and A2 be two k-boundaried graphs with Ik,`(A1) = Ik,`(A2). Then for any
k-boundaried graph B where tcw(A1 ⊕B) ≤ ` and such that both A1 ⊕B and A2 ⊕B are
3-edge connected, it holds that tcw(A2 ⊕B) = tcw(A1 ⊕B).

6 Obstructions and algorithms for tree-cut width

We explain in this section how the machinery introduced in the two previous sections can be
used to obtain theorems 2 and 3.

Let H = (H,x) and G = (G, y) be two k-boundaried graphs. If there is an H∗-immersion
model (φ, ψ) of G∗ where φ(xi) = yi and φ(x′i) = y′i for each i ∈ [k], then we say that H is a
rooted immersion of G and we denote this by H ≤ G.

Immersion obstructions. For every k ∈ N, we denote by obs(k) the set of all immersion-
minimal graphs whose tree-cut width is strictly greater than k. For instance, it is easy to see
that obs(1) contains only the graph with two vertices and a double edge between them.

Our purpose is to provide a bound to the order of the graphs in obs(k), as a function of
k. It follows from [21, Lemmata 3 and 4] that all graphs in obs(k) are 3-edge-connected for
k ≥ 2.

We use the following lemmata.

I Proposition 11 ([16]). Let w,m be positive integers and let y be a word in [w]∗ of length
mw. Then there is a number k ∈ [w] and a subword u of y such that all numbers in u are at
least k and u contains the number k at least m times.

I Lemma 12 (F). Let k ∈ N and let H = (H,x) and G = (G, y) be two k-boundaried
graphs. For every ` ∈ N, if H ≤ G, then Ik,`(G) ⊆ Ik,`(H).

I Lemma 13. There exists a function g : N2 → N such that for every w, r ∈ N and every
3-edge-connected graph G where tcw(G) ≤ w and |V (G)| > g(r, w), G contains as a proper
immersion a graph H for which tcw(H) ≤ r implies tcw(G) ≤ r. Moreover such a function
can be chosen so that g(r, w) = 22O(r·w3) .

Proof. By Lemma 5, there exists a lean tree-cut decomposition D = (T,X ) of G with width
at most w. We also assume that for every node t of T of degree at most 2, the bag Xt is
non-empty, otherwise we revise D by contracting a link incident to t. The 3-edge connectivity
of G implies that ∆(T ) ≤ w. We root T on some, arbitrarily chosen, node s. This permits
us to see T as a directed tree where all links are oriented towards the root s. In particular, if
(v, u) is a link of T , we always assume that u is closer than v to the root.
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From Observation 9 there is a function α : N2 → N, with α(w, `) = 2O(`·w·log w), such
that the number of the different (w, `) interfaces of w-boundaried graphs is upper-bounded
by α(w, `). We define d = mw where m = α(w, `) + 1 and ` = 8wr. Let z be a node of T of
maximum distance from the root s. Notice that z is a leaf of T . Let also f : N2 → N be a
function such that if |T | > f(d,w), then T contains a path P of length d from z to some
node, say u that is different than the root s. Notice that, as ∆(T ) ≤ w, we can choose f such
that f(d,w) = 2O(d·log w). We also set up the function g : N2 → N where g(r, w) = f(d,w) ·w.
Clearly, g(r, w) = f(mw, w) · w = 2O((2O(`·w2·log w))w·log w) · w = 22O(r·w3) .

Notice that if |G| > g(r, w), then |T | > f(d,w) and the aforementioned path P exists
in T . Let e1, . . . , ed be the links of P ordered so that e1 is the one that is closer to the
root and let wei

= | adhD(ei)|. We now see the string y = we1 . . . wed
as a word in [w]∗.

As d = mw, from Proposition 11 there is some k ∈ [w] and a subword y′ = wei . . . wej

of y such that weh
≥ k for h ∈ [i, j] and there is some I ⊆ [i, j] such that m = |I| and

∀h ∈ I wej = k. Let f1, . . . , fm be the links in {eh | h ∈ I} ordered as a subsequence of
e1, . . . , ed. As D is lean, we know that there exist k edge-disjoint paths from adh(T,X )(f1)
to adh(T,X )(fm). We denote these paths by P1, . . . , Pk. Notice also that for every q ∈ [m],
adh(T,X )(fm) contains exactly one edge from each of the paths in P1, . . . , Pk. We denote by
eq,p the unique edge in E(Pk) ∩ adh(T,X )(fq), for (p, q) ∈ [k] × [m]. for every q ∈ [m], we
define λq : adh(T,X )(fq)→ [wfq ] so that λq(eq,p) = p for p ∈ [k].

For q ∈ [m], we denote by tq the tail of the edge fq and we define Aq = (Aq, x̄q) where
Aq = G[

⋃
t∈descT (tq) Xt] and x̄q are the endpoints of the edges in adh(T,X )(fq) that belong to

A1, ordered according to λq (recall that descT (tq) consists of the descendants of tq, including
tq, in the rooted tree T ). We also set Bq = (Bq, x̄

′
q) where Bq = G − V (Aq) and x̄′q are

the endpoints of the edges in adh(T,X )(fq) that belong to Bq, again ordered according to λq.
Notice that for every q ∈ [m], Bq ⊕Aq = G. Moreover for every (q, q′) ∈ [m]2, where q ≤ q′,
there are k edge-disjoint paths in Aq that are joining, for each p ∈ [k] the edge eq,p with the
edge eq′,p. This implies that Aq ≤ Aq′ . This, combined with Lemma 12, yields that

Ik,`(A1) ⊆ · · · ⊆ Ik,`(Am)

and, as m = α(r, w) + 1, there is a pair (q, q′) ∈ [m]2, where q < q′ and Ik,`(Aq) = Ik,`(Aq′).
We set H = Aq′ ⊕Bq. Since q 6= q′, H is a proper immersion of G. From Lemma 10, the fact
that tcw(Aq⊕Bq) = tcw(G) ≤ r implies that tcw(H) = tcw(Aq⊕Bq′) = tcw(Aq⊕Bq) =
tcw(G) ≤ r. J

I Theorem 14 (Restatement of Theorem 2). For every k ∈ N, every graph in obs(k) has
22O(k4) vertices.

Proof. Let G ∈ obs(k). This means that tcw(G) ≥ k+1 and that if H is a proper immersion
of G, then tcw(H) < tcw(G) and hence, tcw(H) ≤ k. It is easy to verify that if H is
a proper immersion of G with ‖H‖ = ‖G‖ − 1 then tcw(H) ≥ tcw(G) − 1. This last
observation implies that tcw(G) ≤ k + 1. If |V (G)| > g(k, k + 1) (where g is the function of
Lemma 13) then Lemma 13 implies that G contains as a proper immersion a graph H for
which tcw(H) ≤ k implies that tcw(G) ≤ k. As tcw(H) ≤ k for every proper immersion H
of G, we deduce that tcw(G) ≤ k, a contradiction to the fact that tcw(G) ≥ k + 1. The
result follows as g(k, k + 1) = 22O(k4) . J
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Tree decompositions. A tree decomposition of a graph G is a pair D = (T,X ), where T is
a tree and X = {Xt | t ∈ V (T )} is a collection of subsets of V (G) such that:⋃

t∈V (T ) Xt = V (G),
for every uv ∈ E, there is a t ∈ V (T ) such that {u, v} ⊆ Xt, and
for each {x, y, z} ⊆ V (T ) such that z lies on the unique path between x and y in T ,
Xx ∩Xy ⊆ Xz.

The width of a tree decomposition D = (T,X ) is maxt∈V (T ) |Xt|−1. The treewidth of a graph
G, denoted by tw(G), is the smallest integer w such that there exists a tree decomposition
of G of width at most w.

The proof of Theorem 3 comes as a direct consequence of Theorem 14.

Proof of Theorem 3. We set n = |V (G)|. Observe that ∆(G) = Or(1). Moreover, if an
edge has multiplicity strictly greater than r, then both its endpoints should be in the same
bag of a tree-cut decomposition with width at most r. Therefore, we may replace each edge
in G of multiplicity bigger than r + 1 by one of multiplicity r + 1 and this modification can
be implemented in Or(n) steps. By applying this preprocessing we may assume that G has
Or(n) edges.

In [11] it was proved that there exists a constant c1 such that, for every graph H,
tw(H) ≤ c1 · (tcw(H))2. We run the algorithm in [3] that, given a graph H and an integer
q, either outputs a tree decomposition of H of width at most 5q or reports that tw(G) > q,
setting H = G and q = c1 · r2. If tw(G) > q we know that tcw(G) > r and we readily
have an answer. Therefore, we can assume that we have a tree decomposition of G of
width at most 5c1 · r2. As the property of the immersion-containment of a graph H can be
expressed in Monadic Second Order Logic, by using Courcelle’s theorem, it is possible to
construct an algorithm that, given two graphs H1 and H2, outputs whether H1 ≤ H2 in
O|V (H1)|+tw(G)(|V (H2)|) steps. By Theorem 14, the set obs(r) can be constructed in Or(1)
steps. Then, by testing immersion-containment for every graph H ∈ obs(r), we can decide
whether tcw(G) ≤ r in Or(n) steps. J

7 Discussion

An interesting direction is to specify the parameterized dependence of the algorithm in
Theorem 3. We argue below on why the proof of Lemma 13 can already give a first bound.

Notice that Lemma 10 defines an equivalence relation of w-boundaried graphs. We
say that two k-boundaried graphs G1 and G2 are (w, r)-equivalent, namely G1 ≡w,r G2
if Iw,8wr(G1) = Iw,8wr(G2). Notice that the proof of Lemma 13 already implies that a
minimum-size of a representative of any of the equivalence classes of ≡w,r has g(r, w) =
22O(r·w3) vertices. By brute-force checking on all graphs on g(r, w) = 22O(r·w3) vertices, we may

construct a set Rw,r of representatives for ≡. Moreover |Rw,r| = 222O(r·w3)

. The knowledge
of Rw,r permits us to avoid the use of Courcelle’s theorem in Theorem 3. For this, we first
transform the tree decomposition of the proof of Theorem 3 to a tree-cut decomposition
with width w = O(r4) using [32, Lemma 12]. Then we implement an algorithmic version

of the proof of Lemma 13: as long as the sub-tree of T rooted on u of height 222r·w3

exists,
we reduce G = Aq ⊕ Bq to the smaller equivalent instance G = Aq′ ⊕ Bq. Given that

|Rw,r| = 222O(r·w3)

and using suitable data-structures, this compression can be implemented

in 222O(r13)

steps and as it is repeated at most n times, it will report a correct answer in
222O(r13)

· n steps.
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Clearly, the parameterized dependence of the above argumentation is still too heavy. We
believe that a detailed dynamic programming based on how collections of branch interfaces
are updated along a rooted tree-cut decomposition may yield a bound f(r) = 2poly(r) to the
function of Theorem 3.

A second direction for further research is to obtain an algorithm that, besides computing
the tree-cut width of a graph, also provides a tree-cut decomposition of optimal width.
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