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—— Abstract

We investigate the complexity of the containment problem “Does L(A) C L(B) hold?”, where B is
an unambiguous register automaton and A is an arbitrary register automaton. We prove that the
problem is decidable and give upper bounds on the computational complexity in the general case,
and when B is restricted to have a fixed number of registers.
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1 Introduction

Register automata [10] are a widely studied model of computation that extend finite automata
with finitely many registers that are able to hold values from an infinite domain and perform
equality comparisons with data from the input word. This allows register automata to accept
data languages, i.e., sets of data words over ¥ x D, where X is a finite alphabet and D is an
infinite set called the data domain. The study of register automata is motivated by problems
in formal verification and database theory, where the objects under study are accompanied by
annotations (identification numbers, labels, parameters, ...), see the survey by Ségoufin [18].
One of the central problems in these areas is to check whether a given input document or
program complies with a given input specification. In our context, this problem can be
formalized as a containment problem: given two register automata A and B, does L(A) C L(B)
hold, i.e., is the data language accepted by A included in the data language accepted by
B? Here, B is understood as a specification, and one wants to check whether A satisfies the
specification. For arbitrary register automata, the containment problem is undecidable [14, 4].
It is known that one can recover decidability in two different ways. First, the containment
problem is known to be PSPACE-complete when B is a deterministic register automaton [4].
This is a severe restriction on the expressive power of B, and it is of practical interest to find
natural classes of register automata that can be tackled algorithmically and that can express
more properties than deterministic register automata. Secondly, one can recover decidability
of the containment problem when B is a non-deterministic register automaton with a single
register [10, 4]. However, in this setting, the problem is Ackermann-complete [6]; it can
therefore hardly be considered tractable.
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This motivates the study of unambiguous register automata, which are non-deterministic
register automata for which every data word has at most one accepting run. Such automata
are strictly more expressive than deterministic register automata [10, 11].

In the present paper, we investigate the complexity of the containment problem when B is
restricted to be an unambiguous register automaton. We prove that the problem is decidable
with a 2-EXPSPACE complexity, and is even decidable in EXPSPACE if the number of registers
of B is a fixed constant. This is a striking difference to the non-deterministic case, where even
for a fixed number of registers greater than 1 the problem is undecidable. Classically, one way
to approach the containment problem (for general models of computation) is to reduce it to a
reachability problem on an infinite state transition system, called the synchronized state space
of A and B, cf. [15]. Proving decidability or complexity upper bounds for the containment
problem then amounts to finding criteria of termination or bounds on the complexity of a
reachability algorithm on this space. In this paper, our techniques also rely on the analysis of
the synchronized state space of A and B, where our main contribution is to provide a bound
on the size of synchronized states that one needs to explore before being able to certify that
L(A) C L(B) holds. This bound is found by identifying elements of the synchronized state
space whose behaviour is similar, and by showing that every element of the synchronized
state space is equivalent to a small one. In the general case, where B is unambiguous and A
is an arbitrary non-deterministic register automaton, we bound the size of the graph that
one needs to inspect by a triple exponential in the size of A and B. In the restricted case
that B has a fixed number of registers, we proceed to give a better bound that is only doubly
exponential in the size of A and B.

Related Literature. A thorough study of the current literature on register automata re-
veals that there exists a variety of different definitions of register automata, partially with
significantly different semantics. In this paper, we study register automata as originally
introduced by Kaminski and Francez [10]. Such register automata process data words over
an infinite data domain. The registers can take data values that appear in the input data
word processed so far. The current input datum can be compared for (in)equality with the
data that is stored in the registers. Kaminski and Francez study register automata mainly
from a language-theoretic point of view; more results on the connection to logic, as well
as the decidability status and computational complexity of classical decision problems like
emptiness and containment are presented, e.g., in [17, 14, 4]. In [7], register automata over
ordered data domains are studied.

Kaminski and Zeitlin [11] define a generalisation of the model in [10], in the following called
register automata with guessing. The registers in such automata can non-deterministically
reassign, or “guess”, the datum of a register. In particular, such register automata can
store data values that have not appeared in the input data word before, in contrast to the
register automata in [10]. Register automata with guessing are strictly more expressive
than register automata; for instance, there exists a register automaton with guessing that
accepts the complement of the data language accepted by the register automaton in Figure
1 (Example 4 in [11]). Figueira [5] studies an alternating version of this model, also over
ordered data domains. Colcombet [2, 1] considers unambiguous register automata with
guessing. In Theorem 12 in [2], it is claimed that this automata class is effectively closed
under complement, so that universality, containment and equivalence are decidable; however,
to the best of our knowledge, this claim remains unproved.

Finally, unambiguity has become an important topic in automata theory, as witnessed by
the growing body of literature in the recent years [8, 13, 3, 16]. In addition to the motivations
mentioned above, unambiguous automata form an important model of computation due to
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their succinctness compared to their deterministic counterparts. For example, it is known that
unambiguous finite automata can be exponentially smaller than deterministic automata [12]
while the fundamental problems (such as emptiness, universality, containment, equivalence)
remain tractable.

2 Main Definitions

We study register automata as introduced in the seminal paper by Kaminski and Francez [10].
Throughout the paper, ¥ denotes a finite alphabet, and D denotes an infinite set of data
values. In our examples, we assume D = N, the set of non-negative integers. A data word is
a finite sequence (01,dy) ... (ok,di) € (X x D)*. A data language is a set of data words. We
use € to denote the empty data word. The length k of a data word w is denoted by |w|. Given
a data word w as above and 0 < ¢ < k, we define the infix w(i, j] := (0i41,dit1) - - - (0}, d;).
Note that w(i,i] = e. We use data(w) to denote the set {ds,...,d;} of all data occurring in
w. We use proj(w) to denote the projection of w onto X*, i.e., the word o7y ... o%.

Let D) denote the set DU {L}, where L ¢ D is a fresh symbol not occurring in D. A
partial isomorphism of D is an injection f: .S — D, with finite domain S C D such that
if L €5, then f(L)= 1. We use boldface lower-case letters like a, b, ... to denote tuples in
D", where n € N. Given a tuple a € D', we write a; for its i-th component, and data(a)
denotes the set {ai,...,a,} €D, of all data occurring in a.

Let R = {r1,...,r,} be a finite set of registers. A register valuation is a mapping
a : R — Dj; we may write a; as shorthand for a(r;). Let D¥ denote the set of all
register valuations. Given A C R and d € D, define the register valuation a[\ < d] by
(a[\ « d])(r;) :==d if r; € A, and (a[X < d])(r;) := a; otherwise.

A register constraint over R is defined by the grammar

¢u=true |=r | =6 | 610,

where € R. We use ®(R) to denote the set of all register constraints over R. We may use
# r or ¢1 V ¢o as shorthand for —(= r) and —(—¢1 A —¢s), respectively. The satisfaction
relation = for ®(R) on D x D is defined by structural induction in the obvious way; e.g.,
a,dE(=rm A #rq)if a; =d and ag # d.

A register automaton over ¥ is a tuple A = (R, L, lin, Lace, E), where

R is a finite set of registers,

L is a finite set of locations,

lin € L is the initial location,

Lace € L is the set of accepting locations, and

ECLxYx ®(R) x 28 x L is a finite set of edges. We may write ¢ 292, ¢ to denote

an edge (¢,0,0,\,¢') € E. Here, o is the label of the edge, ¢ is the register constraint of
the edge, and X is the set of updated registers of the edge. A register constraint true is
vacuously true and may be omitted; likewise we may omit X if A = 0.
A state of A is a pair (£,a) € £ x D, where ¢ is the current location and a is the current
register valuation. Given two states (¢, a) and (¢, a’) and some input letter (o,d) € (X x D),

we postulate a transition (¢, a) J—"d>A (¢,a’) if there exists some edge ¢ 22 0 such
that a,d | ¢ and @’ = a[\ + d]. If the context is clear, we may omit the index A and
write (¢, a) 24, (¢,a’) instead of (¢, a) id—m (¢',;a’). We use —* to denote the reflexive

transitive closure of —. A run of A on the data word (o1,dy1)... (0%, dg) is a sequence

d d i o .
(bo,a®) T2 (41, at) 2225 . 2%, (4, a¥) of transitions. We say that a run starts in
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(¢,a) if (4y,a®) = (£,a). A run is initialized if it starts in (¢, { L}1?), and a run is accepting
if £ € Lacc. The data language accepted by A, denoted by L(A), is the set of data words
w € (X x D)* such that there exists an initialized accepting run of A on w.

We classify register automata into deterministic register automata (DRA), unambiguous
register automata (URA), and non-deterministic register automata (NRA). A register auto-
maton is a DRA if for every data word w there is at most one initialized run. A register
automaton is a URA if for every data word w there is at most one initialized accepting
run. A register automaton without any restriction is an NRA. We say that a data language
L C (X x D)* is DRA-recognizable (URA-recognizable and NRA-recognizable, respectively),
if there exists a DRA (URA and NRA, respectively) A over ¥ such that L(A) = L. We
write DRA, URA, and NRA for the class of DRA-recognizable, URA-recognizable, and
NRA-recognizable, respectively, data languages. Note that DRA C URA C NRA. Also
note that, albeit a semantical property, the unambiguity of a register automaton can be
decided using a simple extension of a product construction, cf. [2].

The containment problem is the following decision problem: given two register automata
A and B, does L(A) C L(B) hold? We consider two more decision problems that stand in
a close relation to the containment problem (namely, they both reduce to the containment
problem): the universality problem is the question whether L(B) = (X x D)* for a given
register automaton B. The equivalence problem is to decide, given two register automata A
and B, whether L(A) = L(B).

3 Some Facts about Register Automata

For many computational models, a straightforward approach to solve the containment
problem is by a reduction to the emptiness problem using the equivalence: L(A) C L(B)
if, and only if, L(A) N L(B) = (). This approach proves useful for DRA, which is closed
under complementation. Using the decidability of the emptiness problem for NRA, as well
as the closure of NRA under intersection [10], we obtain the decidability of the containment
problem for the case where A4 is an NRA and B is a DRA. More precisely, and using results
in [4], the containment problem for this particular case is PSPACE-complete.

In contrast to DRA, the class NRA is not closed under complementation [10] so that
the above approach must fail if B is an NRA. Indeed, it is well known that the containment
problem for the case where B is an NRA is undecidable [4]. The proof is a reduction from
the halting problem for Minsky machines: an NRA is capable to accept the complement of a
set of data words encoding halting computations of a Minsky machine.

In this paper, we are interested in the containment problem for the case where A is an
NRA and B is a URA. When attempting to solve this problem, an obvious idea is to ask
whether the class URA is closed under complementation. Kaminski and Francez [10] proved
that URA is not closed under complementation, and this even holds for the class of data
languages that are accepted by URA that only use a single register. In Figure 1, we show a
standard example of a URA for which the complement of the accepted data language cannot
even be accepted by an NRA [11]. Intuitively, this automaton is unambiguous because it is
not possible for two different runs of the automaton on some data word to reach the location
£ with the same register valuation at the same time. Therefore, at any time only one run
can proceed to the accepting location ¢5. Note that this also implies DRA C URA.

An alternative approach for solving the containment problem is to explore the (possibly
infinite) synchronized state space of A and B, cf. [15]. Intuitively, the synchronized state
space of A and B stores for every state (¢,a) that A is in after processing a data word w
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A (0. D).} (o, 1), (01.2)}
O % —>(x2) (o 0 ) 1,2
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{(lo, L), (61, 1), (62, 1)} -+ {(bo, 1), (€1,3), (£1,2), (&1, 1)}

Figure 1 On the left we depict a URA with a single register r and over a singleton alphabet (we
omit the labels at the edges). The complement of the data language accepted by this URA cannot
be accepted by any NRA. On the right we show a finite part of the infinite state space of the URA.

the set of states that B is in after processing the same data word w. For an example, see
the computation tree on the right side of Figure 1, where the leftmost branch shows the set
of states that the URA on the left side of Figure 1 reaches after processing the data word
(0,1)(0,1)(0,1), and the rightmost branch shows the set of states that the URA reaches after
processing the data word (o,2)(c,1)(0,3). The key property of the synchronized state space
of A and B is that it contains sufficient information to decide whether for every data word
for which there is an initialized accepting run in A there is also an initialized accepting run
in B. We formalize this intuition in the following paragraphs.

We start by defining the state space of a given NRA. Fix an NRA A = (R, L, bin, Lacc, E)
over X. A configuration of A is a finite set C' C (£ x D) of states of A; if C = {({,a)}
is a singleton set, in slight abuse of notation and if the context is clear, we may omit the
parentheses and write (£, a). Given a configuration C' and an input letter (o,d) € (X x D), we
use Succ4(C, (0,d)) to denote the successor configuration of C on the input (o, d), formally
defined by

Succ(C, (0,d)) == {((,a) € (L x DEY | 3(¢,a’) € C.(¢',a") 2% 4 (¢, a)).

In order to extend this definition to data words, we define inductively Succ4(C,¢) := C and
Succ4(C,w-(0,d)) := Succ.4(Succ(C,w), (c,d)). We say that a configuration C is reachable
in A if there exists some data word w such that C' = Succ4((¢in, { L}?), w). We say that a
configuration C' is coverable in A if there exists some configuration C’ O C such that C’ is
reachable in 4. We say that a configuration C' is accepting if there exists (¢,a) € C such that
l € Lacc; otherwise we say that C'is non-accepting. We define data(C) := U 4)cc data(a)
as the set of data occurring in configuration C.
The following proposition follows immediately from the definition of URA.

» Proposition 1. If A is a URA and C,C’ are two configurations of A such that CNC’' =0
and CUC’ is coverable, then for every data word w the following holds: if Succ4(C,w) is
accepting, then Succ(C’, w) is non-accepting.

Let C,C’ be two configurations of A. Consider two data words w = (o1,d1) ... (0k, dg)
and w' = (o1,d})...(0k,d},) such that proj(w) = proj(w’). Recall that a partial func-
tion f: D} — D, with finite domain is a partial isomorphism if it is an injection such
that if 1 € dom(f) then f(L) = L. Let f be a partial isomorphism of D, and let C
be a configuration with data(C') € dom(f). We define f(C) := {(¢, f(d1),..., f(d|r))) |
(,dy,...,dRr)) € C}; likewise, if {dy,...,dy} C dom(f), we define f((o1,d1)...(ok,dr)) :=
(o1, f(d1)) ... (o, f(di)). We say that C,w and C’,w’ are equivalent with respect to f,
written C,w ~y C',w', if

f(C)=C"and f(w) =w'. (%)
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If w=w" = ¢, then we may simply write C' ~; C". We write C' ~ C" if C' ~; C’ for some
partial isomorphism f of D .

» Proposition 2. If C,w ~ C',w', then Succa(C,w(0,i]), w(i, k] ~ Succa(C’,w'(0,1]),
w' (i, k] for all 0 < i <k, where k = |w|.

Proof. The proof is by induction on i. For the induction base, let i = 0. But then
Succ(C,w(0,0])) = Succa(C,e) = C and w(0,k] = w, and similarly for C’ and w’, so
that the statement holds by assumption. For the induction step, let ¢ > 0. Define C;_; :=
Succa(C, w(0,7—1]) and similarly C/_,. By induction hypothesis, there exists some bijective

mapping
fi—1 : data(C;_1) Udata(w(i — 1,k]) — data(C]_,) U data(w’(i — 1, k])

satisfying (%) fi—1(Ci—1) = C/_; and fi_1(w(i — 1,k]) = w'(i — 1,k]. Define C; :=
Succ4(Ci—1, (0i,d;)) and C! := Succa(C!_q, (04,d;)). Note that data(C;) C data(C;—1) U
{d;}, and similarly for data(C7). Let f; be the restriction of f;_; to data(C;) U data(w(s, k).
We are going to prove that C;,w(s, k] ~y Ci,w'(i,k]. Note that f;(w(i,k]) = w'(4,k]
holds by definition of f; and (2). We prove f;(C;) C CI. Suppose ({,a) € C;. Hence

oi,d;

there exists (¢;_1,b) € C;_; such that (¢;_;,b) —— ({,a). Thus there exists an edge

i1 —— 7092, ¢ such that b,d; E ¢ and a = b[A + d;]. By induction hypothesis, there
exists (¢;—1,b") € C!_; such that f;_1(b) = b’. By induction on the structure of ¢, one
can easily prove that b,d; = ¢ if, and only if, ', d} = ¢. Define a’ := b’[\ « dfj]. We
prove fi(a) = a’: there are two cases: (i) If » € A, then f;(a(r)) = fi(d;) = d; = a’(r).
(ii) If r & A, then f;i(a(r)) = fi(b(r)) = fi—1(b(r)) = a’(r). Hence, f;(a) = a’. Altogether
(¢, fi(a)) € C!, and thus f;(C;) C Ci. The proof for C} C f;(C;) is analogous. Altogether,
Cy,w(i, k| ~fi Cz/a w' (i, k. <

As an immediate consequence of Proposition 2, we obtain that ~ preserves the configura-
tion properties of being accepting respectively non-accepting.

» Corollary 3. Let C and C’ be two configurations of A. If C,w ~ C’,w’ and Succ4(C,w)
is non-accepting (accepting, respectively), then Succa(C’,w") is non-accepting (accepting,
respectively).

Combining the last corollary with Proposition 1, we obtain

» Corollary 4. If A is a URA and C,C’ are two configurations such that C N C' = and
CUC" is coverable in A, then for every data word w such that C,w ~ C’, w, the configurations
Succ4(C,w) and Succ4(C’,w) are non-accepting.

For the rest of this paper, let A = (R4, LA ¢A, LA, EA) be an NRA over ¥, and
let B = (RB, L5, (8, LB  EB) be a URA over . Without loss of generality, we assume
RANRB =( and £AN LB = (. We let m be the number of registers of A, and we let n be
the number of registers of B.

A synchronized configuration of A and B is a pair ((¢,d),C), where (¢,d) € (LA x ]D)fA)
is a single state of A, and C' C (£B x DEB) is a configuration of B. Given a synchronized
configuration S, we use data(S) to denote the set data(d) U data(C) of all data occurring in
S. We define Si, := ((¢2, {13™), {(¢B,{L}™)}) to be the initial synchronized configuration
of A and B. We define the synchronized state space of A and B to be the (infinite) state
transition system (S, =), where S is the set of all synchronized configurations of A and B,
and = is defined as follows. If S = ((¢,d),C) and S’ = ((¢',d’),C"), then S = S’ if there
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exists a letter (o,d) € (¥ x D) such that (¢,d) id%A (¢',d"), and Succg(C, (0,d)) = C'. We
say that a synchronized configuration S reaches a synchronized configuration S’ in (S, =) if
there exists a path in (S,=) from S to S’. We say that a synchronized configuration S is
reachable in (S, =) if Si, reaches S. We say that a synchronized configuration S = ((¢,d), C)
is coverable in (S, =) if there exists some synchronized configuration S’ = ((¢,d),C") such
that C' D C and S’ is reachable in (S, =).

We aim to reduce the containment problem L(.A) C L(B) to a reachability problem in
(S,=). For this, call a synchronized configuration ((¢,d),C) bad if £ € L,
location and C' is non-accepting, i.e., ¢ ¢ L5, for all (¢,a) € C. The following proposition
is easy to prove, cf. [15].

is an accepting

» Proposition 5. L(A) C L(B) does not hold if, and only if, some bad synchronized
configuration is reachable in (S,=).

We extend the equivalence relation ~ defined above to synchronized configurations in
a natural manner, i.e, given a partial isomorphism f of D such that data(d) U data(C) C
dom(f), we define ((¢,d),C) ~; ((¢,d'),C") if f(C) = C" and f(d) = d'. We shortly write
S ~ 5" if there exists a partial isomorphism f of D, such that S ~ S’. Clearly, an analogon
of Proposition 2 holds for this extended relation. In particular, we have the following:

» Proposition 6. Let S, S’ be two synchronized configurations of (S,=) such that S ~ S'.
If S reaches a bad synchronized configuration, so does S’.

Note that the state transition system (S, =) is infinite. First of all, (S,=>) is not finitely
branching: for every synchronized configuration S = ((¢,d),C) in S, every datum d € D may
give rise to its own individual synchronized configuration Sy such that S = Sy. However,
it can be easily seen that for every two different data values d,d’ € D\data(S), if inputting
(0,d) gives rise to a transition S = Sy and inputting (o, d’) gives rise to a transition S = Sy
(for some o € X)), then Sy ~ Sy . Hence there exist synchronized configurations S, ..., Sk
for some k € N such that S = S; for all i € {1,...,k}, and such that for all S’ € S with
S = S’ there exists i € {1,...,k} such that S; ~ S’. This is why we define in Section 4.3 the
notion of abstract configuration, representing synchronized configurations up to the relation
~. Second, and potentially more harmful for the termination of an algorithm to decide
the reachability problem from Proposition 5, the configuration C' of B in a synchronized
configuration may grow unboundedly. As an example, consider the URA on the left side
of Figure 1. For every k > 1, the configuration {({y, L), (¢1,d1), (¢1,dz) ..., (¢1,d;)} with
pairwise distinct data values dy, ..., dj is reachable in this URA by inputting the data word
(0,d1)(0,d2) ... (0,dk). In the next section, we prove that we can solve the reachability
problem from Proposition 5 by focussing on a subset of configurations of B that are bounded
in size, thus reducing to a reachability problem on a finite graph.

4 The Containment Problem for Register Automata

4.1 Types

Given k € N, a k-type! of D is a quantifier-free formula ¢(y1, . . ., y) formed by a conjunction
of (positive or negative) literals of the form y;, = y; and y; = L that is satisfiable in
D,. A k-type is complete if for any other quantifier-free formula ¥(yi,...,yx), either

1 Types are a standard notion of model theory (see, e.g., [9] for a definition). The definition that we give
here coincides with the standard notion of types when applied to D .
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Yyr, .o Yk (0(Y1, - Yk) = (Y1, ..., yxk)) holds or ¢ A ¢ is unsatisfiable. It is easy to see
that given a € D¥, there is a unique complete k-type ¢ such that ¢(a) holds in D, . We call
¢ the type of a and denote it by tp(a). It may be observed that a,b € ID)’i have the same
type if, and only if, there exists a partial isomorphism f of D, such that f(a) =b.

Recall that m and n denote the number of registers of A and B. For every a € D"} and
for every complete (2n + m)-type ¢(y), where y = (y1,. .., Y2n+m), we define the set

Ly(a) ={¢' € £P|3b €D such that (¢,b) € C and ¢(a,b,d) holds in D, }.

Let S = ((¢,d),C) be a synchronized configuration and let a,b € D"} be two register
valuations occurring in C, i.e., there exist £4,p € £Z such that (£4,a), (s, b) € C. We say
that @ and b are indistinguishable in S, written a =g b, if L,(a) = L,(b) for every complete

(2n + m)-type ¢(y).

» Example 7. Let (¢“,3) be a state in some NRA with a single register, and let C’ =
{(£,1,3),(¢,2,3),(¢,1,2)} be a configuration of a URA with two registers. Let S’ =
((¢4,3),C") be the corresponding synchronized configuration of A and B. Consider a = (1, 3)
and b = (2,3). For the 5-type

o1 = (Y1 # Y2) A (Y1 # y3) A (Y2 = ya) A (Ya = ys) A (Y3 # y2)

we have L, (a) = {¢} as ¢1(a, b,d) holds in (N, =), and similarly, £, (b) = {¢} as ¢1(b,a,d)
holds in (N, =). However, we have L,,(a) = {¢'} and L, (b) = 0 for the 5-type

P2 = (y1 #y2) A(y1 = ys) A (Y2 7 ya) A (y2 = ys) A (ya # 1)
Hence a =g b does not hold. However, a =g b for S = ((¢4,3),C) with C := C"U{(¢',2,1)}.

» Proposition 8. Let S = ((¢4,d),C) be a coverable synchronized configuration of A and
B. Let a,b be such that a =g b. Then the map f: data(a) — data(b) defined by f(a;) :=b;
is a partial isomorphism of Dy . Moreover, if we let Cq == {({,a) € C | £ € LB} and
Cp:={(£,b) € C | L € LB}, then Cq ~ Cb.

Proof. Let ¢ be the complete (2n+m)-type of (a, a,d). Note that for two vectors u,v € D7,
o(u,v,d) holds in D, iff w = v and tp(a,d) = tp(u, d) = tp(v, d).

Let now (¢, a) be in Cq. By definition, this means that £ € £, (a). By indistinguishibility,
¢ e L,(b) so that

(b, ¢, d) holds in D ()

for some (¢,c) € C. Now, (1) implies b = ¢ and tp(b) = tp(a). The former implies that
(¢,b) € Cp, while the latter implies that f is a partial isomorphism. Conversely, we obtain
that (¢,b) € Cp implies (¢, a) € Cq. Hence f(Cq) = Cp and thus Cq ~5 Cp. <

4.2 Collapsing Configurations

As we pointed out in the introduction, the crucial ingredient of our algorithm for deciding
whether L(A) C L(B) holds is to prevent configurations C' in a synchronized configuration
((¢,d),C) to grow unboundedly. We do this by collapsing two subconfigurations Cq,Cp C C
that behave equivalently with respect to reaching a bad synchronized configuration in (S, =)
into a single subconfiguration. The key notions for deciding when two subconfigurations
can be collapsed into a single one are k-types and indistinguishability from the previous
subsection.
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» Proposition 9. Let S’ = ((¢,d),C") be a coverable synchronized configuration of A and B.
Let a and b be two distinct register valuations in C' such that a =g b. Let Cy := {({,b) €
C'| € LBY. Then S := ((¢,d),C"\ Cp) reaches a bad synchronized configuration if, and
only if, S’ reaches a bad synchronized configuration.

Proof. The “if” direction follows from the simple observation that for every data word w,
if Sucep(C’,w) is non-accepting, then so is Succg(D,w) for every subset D C C’. For the
“only if” direction, let Cy := {(¢,a) € C' | ¢ € LB} and C := C"\ (Cq U Cp). Let m be the
number of registers of A and n be the number of registers of B. Suppose that there exists
a data word w such that there exists an accepting run of A on w that starts in (¢,d), and
Sucep(CqUC, w) is non-accepting. We assume in the following that Succs(Ch, w) is accepting;
otherwise we are done. Without loss of generality, we assume that data(w) N data(S’) C
data(b) U data(d). Otherwise, pick for every d € data(w) N (data(a) U data(C)) such that
d ¢ data(b) U data(d), a fresh datum d’ € D not occurring in data(w) U data(S’), and
simultaneously replace every occurrence of d in w by d’. Let w’ be the resulting data
word. Then (¢,d),w ~ (¢,d),w" and Cp,w ~ Cp,w’. By Corollary 3, Succ4((¢,d),w’) is
accepting, and Succg(Cp, w’) is accepting, too. Then there must exist some accepting run of

A on w' starting in (¢,d), and, by Proposition 1, Succg(Cq U C, w’) must be non-accepting.

Hence, we could continue the proof with w’ instead of w. Let us assume henceforth that
data(w) N data(S") C data(b) U data(d) holds.

Let now w” be the data word obtained from w as follows: for every b; € data(w) with
b; # a;, pick some fresh datum e; € D not occurring in data(w) U data(S’). Then replace
every occurrence of the letter b; in w by e;.

Note that (¢,d),w ~ (¢,d),w”: the key argument for this is that by a =g b we have
b; ¢ data(d) whenever b; # a;. By Corollary 3, Succ4((¢,d),w") is accepting. Hence there
must exist some accepting run of A on w” starting in (¢, d).

Further note that Cq,w” ~ Cp,w”: by Proposition 8, Cq ~f Cp, where f : data(a) —
data(b) is the bijective mapping defined by f(a;) = b; for all 1 < i < n. Now let g :
data(a) U data(w”) — data(b) Udata(w’) be the bijective mapping that agrees with f on all
data in data(a), and that maps each datum d € data(w’)\data(a) to d. One can easily see

that g is a bijection such that g(Cq) = Cp and g(w”) = w” so that indeed Cq, w” ~4 Cp, w".

By Corollary 4, Succp(Cq,w”) and Succg(Cp, w”) are non-accepting.
Finally, we prove that Succg(C,w") is non-accepting, too. For this, let (¢,¢) € C; we
prove that Succg((¢, ¢), w’) is non-accepting. We distinguish the following two cases:
For all 1 < i < n with a; # b; we have b; ¢ data(c). Then (¢,c),w ~ (¢, ¢),w",
as witnessed by the bijection f such that f(b;) = e; for all b; € data(w) such that
b; # a;, and that is the identity otherwise. Recall that by assumption Succg((¢, ¢), w) is
non-accepting. By Corollary 3, Suceg((¢, ¢),w") is non-accepting.
There exists 1 < i < n such that a; # b; and b; € data(c).
Let ¢(y) be the (2n + m)-type of (b, c,d), and note that ¢ € L,(b). By assumption
V' € L,(a) and there exists a state (¢/,¢’) € C such that ¢(a,c’,d) holds. Note that
for all 1 < j < n such that b; = ¢; we have a; = c;-. By assumption, b; = ¢; for some
1 < j < n. Since a; # b;, we can infer ¢; # ¢}, and hence (¢,c) # (¢',c’). Next we
prove (¢';¢),w” ~ (¢',¢’),w"”. We define f : data(c) U data(w”) — data(c’) U data(w")
as follows:

cw—)c} 1<p<n
f: 1"
e—e ecdata(w”)
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Figure 2 An NRA A and a URA B over a singleton alphabet for which L(A) C L(B).

We prove below that

(i) forall1<p,q<n,c,=cqiff ¢, =cy;

(i) forall 1 <p<mn,forall e € data(w”), e = ¢, iff e = c};
note that this implies that f is well-defined and f is a bijective mapping, and hence
(¢, c),w" ~5 (¢',c),w"”. By Proposition 2, Succg((¢', c),w”) ~ Succg((¢,c’),w"”). By
Corollary 4, Suceg((¢', ¢), w”) and Succp((¢, ¢’),w’) are non-accepting. We now prove the
two items from above: (i) Follows directly from the fact that ¢(a, ¢/, d) and ¢(b, ¢, d) hold,
which implies that ¢’ and ¢ have the same type. For (ii), recall that data(w) Nndata(S’) C

data(b) U data(d). This, the definition of w”, and a =g/ b yield the claim.

Altogether, we proved that Succg(C’, w") is non-accepting, while there exists some accepting
run (¢,d) —* (¢”,d") of A on w”. This finishes the proof for the “only if” direction. <

When S is obtained from S’ by applying Proposition 9 to some pair of register valuations,
we say that S’ collapses to S. We say that S is maximally collapsed if for all pairs a and
b of distinct register valuations appearing in C' we have that a =g b does not hold. Note
that in Proposition 9, the synchronized configuration S is again coverable. By iterating
Proposition 9, one obtains that a coverable synchronized configurations reaches a bad
synchronized configuration if, and only if, it collapses in finitely many steps to a maximally
collapsed synchronized configuration that also reaches a bad synchronized configuration.

Before we present our algorithm for deciding the containment problem, we would like
to point out that the intuitive notion of types alone is not sufficient for deciding whether
synchronized configurations can be collapsed. More precisely, given a coverable synchronized
configuration S’ = ((¢4,d),C") and two register valuations @ and b that occur in ¢’ and for
which tp(a, d) = tp(b, d), it is in general not the case that S’ reaches a bad synchronized
configuration if S := ((¢,d),C’\Cp), where Cp := {(£,b) € C' | £ € LB}, reaches a bad
synchronized configuration. To see that, consider Figure 2, where two register automata
over a singleton alphabet (we omit the labels at the edges) are depicted: an NRA A with
a single register r on the left side, and a URA B with two registers r; and 72 on the right
side. Note that L(A) C L(B). After processing the input data word w = (o, 1)(0, 2)(0, 3),
the synchronized configuration S’ = ((¢4,3),C"), where C" := {(¢,1,3), (¢,2,3), (¢,1,2)}), is
reached in the synchronized state space of A and B. For a = (1,3) and b = (2, 3), we have
tp(a,d) = tp(b,d), but a =g/ b does not hold (cf. Example 7). Indeed, Succg(C'\Ch, (0,2))
is non-accepting, while C’ cannot reach any non-accepting configuration.

4.3 Abstract Configurations

In this section, we study synchronized configurations up to the equivalence relation ~. Recall
that m is the number of registers of A and n is the number of registers of B. An abstract
synchronized configuration of A and B is a tuple (¢,T, @) where p is a complete (sn+m)-type
for some s € N, T' is an s-tuple of subsets of £B, and ¢ € £LA.
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The size of an abstract synchronized configuration is defined to be (sn+m)log(sn+m)+
s|L£B| + log(]£4]), which corresponds to the size needed on the tape of a Turing machine to
encode an abstract synchronized configuration (where one encodes, for example, an (sn+m)-
type by giving for each of the sn + m variables, a number in {1,...,sn + m} in a way that
y; = y; is a conjunct in ¢ iff y; and y; are assigned the same number).

Every synchronized configuration S = ((¢4,d),C) gives rise to an abstract synchronized
configuration in the following way: let a',...,a® be the distinct register valuations in C,
listed in some arbitrary order. Let ¢ be the complete (sn + m)-type of (al,...,a® d).
Let Cqi == {¢ € LB | ({,a’) € C}. We obtain an abstract synchronized configuration
(64, (Cqr,...,Cqs), ). Different enumerations of the register valuations of C' can yield
different abstract configurations. We let abs(S) be the set of all abstract synchronized
configurations that can be obtained from S. Every two abstract synchronized configurations
in abs(.S) can be obtained from one another by permuting the variables from the type and
the entries from the tuple accordingly. It is easy to prove that S ~ S’ if, and only if,
abs(S) = abs(57).

An abstract configuration (¢,T, ) is said to be mazimally collapsed if there exists a
synchronized configuration S such that (¢,T', ) € abs(S) and such that S is maximally
collapsed (equivalently, one could ask that every S such that (¢,T, ) € abs(S) is maximally
collapsed). The main result of this section is that the number of different register valuations
in a maximally collapsed synchronized configuration is bounded. Let B, < r” be the number
of complete r-types, which is also called the Bell number of order r.

» Proposition 10. Let S = ((¢4,d),C) be a mazimally collapsed synchronized configuration
of A and B. The number of different register valuations appearing in C is bounded by
(Banm - 217G,

Proof. We first prove a slightly worse upper bound, to give an idea of the proof. Let
K := Bo,1m- We prove that the number of different register valuations is bounded by 9ILPIK
Associate with every register valuation a appearing in C the K-tuple (L., (a),..., L, (a))
of subsets of LB, where ¢1,...,px is an enumeration of all the complete (2n + m)-types.
Note that there are at most 2/£° 1K such tuples. Suppose by contradiction that S contains
more than 2/£°1K different register valuations. By the pigeonhole principle there are two
different register valuations a and b that have the same associated K-tuple. Note that if a
and b share the same K-tuple, then a =g b. By Proposition 9, S could be collapsed further,
contradiction. Hence, we proved an upper bound of 21£%1K 4n the number of different register
valuations appearing in a given maximally collapsed synchronized configuration.

We now proceed to prove the actual bound. The important fact is that when a and d
are fixed in S, then few (i.e., < (2n +m)™) entries in the tuple (L,, (a),..., L, (a)) are

e Loy
non-empty. Indeed, in a given (2n + m)-type, each of the variables y,41,...,¥y2, can be
constrained to be equal to one of y1,...,Yn, Y2n+1,- - -, Y2n+m, Or constrained to be different

than all of them.

Therefore, it remains to bound the number of K-tuples with entries in 2£° and with
at most (2n 4+ m)™ non-empty entries. Each such tuple is characterised by the subset
T C {1,...,K} of entries that are non-empty, together with a |T|-tuple of non-empty
subsets of £5. Since |T| can be bounded by (2n + m)™, we obtain that there are at most
K@ntm)™ 9l£8|@ndm)" bosgible tuples, and thus at most (Banm - 21€°1) @™ different
register valuations. <

Note that the bound in Proposition 10 is doubly exponential in n and exponential in
|£B] and m. As a direct corollary, we obtain a bound on the number of maximally collapsed
abstract synchronized configurations.
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» Proposition 11. The number of mazimally collapsed abstract configurations is bounded by
a triple exponential in |A| and |B|. If the number of registers of B is fized, then the number of
mazimally collapsed abstract configurations is bounded by a double exponential in |A| and |B.

Proof. Recall that m is the number of registers of A and n is the number of registers of B.
By Proposition 10, a maximally collapsed synchronized configuration S = ((¢4,d), C) is such
that C contains at most K := (Bay4m - 2"58‘)(2”*’”)” different register valuations. Therefore,
any abstract synchronized configuration in abs(S) is described by an (sn + m)-type with
s < K. For a given s, there are at most By, 1., - |[L5|® - |[£A] different abstract synchronized
configurations. Summing up from s = 0 to K, we obtain that there are at most

K
> Bangm - LB LA < LA (B + Bogml L8+ -+ + Bugcym - [L5[5)
s=0

< |£A| ’ (1 JFK) *Bnkm - ‘EB‘K

< LAl (14 K) - (nK 4 m)mE+m) B

maximally collapsed abstract synchronized configurations. Since K is doubly exponential in
|A| and |B|, this gives the first result. The second result follows from the fact that for fixed
n, K only depends exponentially on m and |L5|. <

Given abstract synchronized configurations (¢4,T, @) and (¢/4,T7, '), define (¢4, T, ) ~
('A T, ¢') if there exist synchronized configurations S and S’ such that:

S =9,

(64T, ) is in abs(9),

S’ can be maximally collapsed to some S” such that (¢4,T7,¢’) is in abs(S").

» Lemma 12. Given two abstract synchronized configurations ((A, T, ) and (£'A T, ¢'),
deciding whether (04, T, @) ~ (0'A,T7,¢") holds can be done in polynomial space.

Proof. In this proof, we assume without loss of generality that D = N. Let s be such that ¢
is an (sn+m)-type. Note that there is a synchronized configuration S of the form ((¢4,d), D)
such that data(D) U data(d) C {1,...,sn +m} and such that (¢4, T, ) € abs(S). This S is
moreover computable in polynomial space.

To decide whether (¢4,T,¢) ~ (£"4,T’, ') holds, one simply:

guesses a letter 0 € ¥ and a datum d in {1,...,sn+m+ 1},

computes a synchronized configuration S’ obtained by firing the transition corresponding

o (o,d) from S,

guesses a sequence (a',b'), ..., (a”,b") of register valuations such that Proposition 9 can

be applied r times to obtain a maximally collapsed configuration S”,

checks that (¢4, T, ¢') is in abs(S").
At the second step, the size of S’ is polynomially bounded by the size of A, B, and of S.
Moreover, the maximal length of a collapsing sequence in the third step is also polynomially
bounded, as the number of distinct register valuations decreases after each application of
Proposition 9. Therefore, this algorithm uses a polynomial amount of space. |

As for synchronized configuration, an abstract synchronized configuration (¢4, T, ) is
called bad if ¢4 is an accepting location and none of the states in I" contains an accepting
location.

» Proposition 13. A bad synchronized configuration is reachable in (S,=>) if, and only if, a
bad abstract synchronized configuration is reachable from abs(Si,).
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Proof. We prove that for every coverable synchronized configuration S and every n > 0, a
bad synchronized configuration is reachable in n steps from S if, and only if, a bad abstract
synchronized configuration is reachable in n steps from abs(S). The statement then follows
by taking S := Sj,. The proof goes by induction on n, where the case n = 0 is trivial in both
directions.

Suppose now that S reaches a bad synchronized configuration in n steps. Let S’ be such
that S = S’ and such that S’ reaches a bad synchronized configuration in n — 1 steps. Let
S be such that S’ can be maximally collapsed to S”. By iterating Proposition 9, we have
that S reaches a bad synchronized configuration in n — 1 steps (the fact that the length
of the path is unchanged can be seen from the proof of Proposition 9). It follows from the
induction hypothesis that some (¢,I",¢") € abs(S”) reaches a bad abstract synchronized
configuration in n — 1 steps. Let (¢,T',p) be an arbitrary abstraction in abs(S). We have
by definition (¢,T,¢) ~ (¢',T7,¢"), so that (¢,T, ) reaches a bad abstract synchronized
configuration in n steps. The converse direction is proved similarly. |

Finally, we are able to present the main theorem.

» Theorem 14. The containment problem L(A) C L(B), where A is a non-deterministic
register automaton and B is an unambiguous register automaton, is in 2-EXPSPACE. If the
number of registers of B is fized, the problem is in EXPSPACE.

Proof. The algorithm checks whether a bad abstract synchronized configuration is reachable
from abs(Siy,), using the classical non-deterministic logspace algorithm for reachability. Every
node of the graph can be stored using double-exponential space (see the second paragraph
at the beginning of Section 4.3), and the size of the graph is triply exponential in the size
of A and B by Proposition 11. Moreover, the relation ~ is decidable in polynomial space
by Lemma 12. Therefore, we obtain that the algorithm uses at most a double-exponential
amount of space. In case the number of registers of B is fixed, Proposition 11 implies that the
size of the graph is doubly exponential in the size of A and B. We obtain that the algorithm
uses at most an exponential amount of space. |

As an immediate corollary of Theorem 14, we obtain that the universality problem is
in 2-EXPSPACE and in PSPACE for fixed number of registers. Similarly, the equivalence
problem for unambiguous register automata is in 2-EXPSPACE.

5 Open Problems

The most obvious problem is to figure out the exact computational complexity of the
containment problem L(A) C L(B), when B is an URA. Finding lower bounds for unam-
biguous automata is a hard problem. Techniques for proving lower complexity bounds of
the containment problem (respectively the universality problem) for the case where B is a
non-deterministic automaton rely heavily on non-determinism (cf. Theorem 5.2 in [4]); as
was already pointed out in [2], we are lacking techniques for finding lower computational
complexity bounds for the case where B is unambiguous, even for the class of finite automata.
Concerning the upper bound, computer experiments revealed that maximally collapsed
synchronized configurations seem to remain small. Based on these experiments, we believe
that the bound in Proposition 10 is not optimal and can be improved to 0(2”"[9("’“1’|£B‘)).
If this is correct, we would obtain an EXPSPACE upper-bound for the general containment
problem.
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We also would like to study to what extent our techniques can be used to solve the

containment problem for other computation models. In particular, we are interested in the
following:
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