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——— Abstract

In multi-parameter decision making, data is usually modeled as a set of points whose dimension is
the number of parameters, and the skyline or Pareto points represent the possible optimal solutions
for various optimization problems. The structure and computation of such points have been well
studied, particularly in the database community. As the skyline can be quite large in high dimensions,
one often seeks a compact summary. In particular, for a given integer parameter k, a subset of k
points is desired which best approximates the skyline under some measure. Various measures have
been proposed, but they mostly treat the skyline as a discrete object. By viewing the skyline as
a continuous geometric hull, we propose a new measure that evaluates the quality of a subset by
the Hausdorff distance of its hull to the full hull. We argue that in many ways our measure more
naturally captures what it means to approximate the skyline.

For our new geometric skyline approximation measure, we provide a plethora of results. Specific-
ally, we provide (1) a near linear time exact algorithm in two dimensions, (2) APX-hardness results
for dimensions three and higher, (3) approximation algorithms for related variants of our problem,
and (4) a practical and efficient heuristic which uses our geometric insights into the problem, as well
as various experimental results to show the efficacy of our approach.
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1 Introduction

When deciding which entry to return from a database where entries have multiple parameters,
one must consider various criteria all at once. For example, given a collection of possible
hotels, one seeks a hotel which costs less, is nearest to the desired location, and has a high
rating. Typically one cannot optimize all these criteria simultaneously, though one would
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never make a selection for which there is an alternative that is better in every way (i.e.,
cheaper, closer, and higher rated). This naturally leads to the definition of so called staircase
or skyline points,' for which there are no strictly better alternatives, and each of which is a
possible optimal solution depending on how the criteria are weighted.

Formally, we model our input as a set of n points P in R?. Given two points p,q € R?,
we say p dominates g, written p < ¢, if p; < g; for all 7, where p; (resp. ¢;) denotes the ith
coordinate of p (resp. ¢). Then the staircase points of P, denoted S(P), is the subset of
points p € P such that p is not dominated by any point in P\ {p}.

While the staircase points model the set of possible solutions for various multi-criteria
objectives, in many situations one desires a small subset of these points which well represent
the tradeoffs in the solution space. For example, one may wish to present the user with a
short list of search results to choose from. Moreover, the staircase might be large, particularly
for high dimensional data sets, thus making a compact description highly desirable from a
computational perspective. Here we propose a new measure to evaluate how well a subset of
points approximates the staircase. Our work differs from previous attempts to define such
a measure since rather than viewing S(P) as a discrete point set, instead we consider it as
defining a continuous hull. Namely, we define the staircase hull of P, denoted SH(P), as
the set of all points in R¢ that are dominated by some point in P. Then for some integer
parameter k, we seek the subset of at most k& points () C P such that the distance between
SH(Q) and SH(P) is minimized. To measure the distance between the two hulls we use the
standard geometric notion of Hausdorff distance, which roughly speaking for two sets is
defined as the maximum of all the distances from a point in one set to the closest point in
the other set. For our problem we prove that this is equivalent to minimizing the maximum
distance from any point in P to SH(Q). We argue that our geometric perspective in many
ways better captures what it means to approximate the staircase. Moreover, our measure has
additional advantages such as being translation invariant. In addition to defining this new
measure, we provide a number of algorithmic, hardness, approximation, and experimental
results as detailed below.

Previous work. Skyline/staircase points have been extensively used and studied, particularly
in the database community (see for example [8]). In particular, it is known that for a set P
of n points in R, S(P) can be computed in O(n(logn 4 log® 2 n)) worst case time [24] for
any d or in O(nlog?®nloglogn) for d >4 [17]. In [12] they show a randomized algorithm
for computing the S(P) in O(nlog??) time for d > 4. There have also been a number of
previous works on approximating the best subset of k input points to represent the skyline
under various measures. Lin et al. [25] considered selecting k points so as to dominate the
maximum possible number of points from P. This is an instance of the standard maximum
coverage problem, for which the greedy algorithm achieves a 1 — 1/e approximation (to the
number of dominated points). Later, Tao et al. [34] considered representing the skyline by a
k-center clustering of the points in S(P), that is, minimize the maximum distance of a point
in S(P) to the chosen subset, for which there are several standard 2-approximation algorithms
to the optimal clustering radius. Koltun and Papadimitriou [21] consider what they call
approximately dominating representatives (ADR), where a subset @ C P is an e-ADR if
for every p € P there is some ¢ € ) such that (1 — &)g dominates p (their actual definition

L In the title /abstract we use the term “skyline”, more common in database papers, however in the rest
of the paper we favor the term “staircase”, common in computational geometry. In economics the term
“Pareto” is often used.
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differs slightly as they define dominating with the reverse inequality). Rather than focusing
on minimizing the error radius as in our case and in [34], instead [21] keeps ¢ fixed and
attempts to minimize k. As this variant is an instance of the well known Set-Cover problem,
the greedy algorithm achieves an O(logn) approximation. In all three papers [25, 34, 21],
among other things the authors give an exact polynomial time solution in 2 dimensions, and
argue the problem is hard for dimensions 3 and higher. Several other measures have also
been considered. Sgholm et al. [33] select points so as to cover the maximum total area
possible, giving an algorithm for the 2D case and some experimental results. Note they define
dominance with the reverse inequality and so area is with respect to the coordinate axes,
while in our case it would require defining some bounding box for the data. Magnani et al.
[26] define a measure which combines two quantities which they call significance and diversity
(where the user must specify the relative importance of each), and provide a hardness proof
and experimental results.

More generally, there have been many other previously defined notions of compact
approximate representations of the data, perhaps most notably the notion of clustering
[36]. The so called k-regret minimizing set is a recent method of finding representative data
points, which is used to approximate top-k queries [28, 13, 3, 11, 6, 23]. In the geometry
community the notion of coresets, which are small subsets of the input approximately
preserving some specified geometric property, has been widely studied [2]. Related to our
notion of approximating the staircase hull, the case of approximating the convex hull [7]
and the conic hull [9] was previously considered. These hull approximations more generally
relate to a number of different types of matrix factorizations used in areas such as machine
learning, including non-negative matrix factorization, CUR decomposition, and finding the
top-k singular vectors. Note that points on the convex and conic hull boundaries are in
general determined by a combination of multiple hull vertices. For the staircase hull we argue
that each boundary point in some sense is determined by a single hull vertex, leading to
stronger results as the problem can be modeled with asymmetric k-center.

Our results. As discussed above, here we introduce a new measure for approximating the
staircase. Specifically, we seek the subset of k points Q C P such that the Hausdorff distance
between SH(Q) and SH(P) is minimized, which we refer to as the k-staircase problem. In

addition to introducing this new measure we have the following results:
1. In Section 3 we show that the k-staircase problem is APX-hard for any dimension d > 3.
In particular, we give a simple argument to show it is hard to approximate within
2+ /3~ 1.932 for d > 4, and for d = 3 a more involved proof shows it is hard to

: S 2+4V3
approximate within a factor of s 1.0455.

2. Despite being hard to approximate for d > 3, in Section 4 we show that in two dimensions
it can be solved optimally in O(nlog®n) time.

3. In Section 2 we argue the k-staircase problem can actually be seen as an instance
of the well known asymmetric k-center problem. In Section 5 this is used to give
approximation algorithms for the k-staircase problem. In particular, in Section 5.1 we
propose an O(log* (n)) approximation running in O(n?(d+log®n)) time, and an O(log*(k))
approximation running in polynomial time.

4. In Section 5.2, we show that if one is allowed to pick 2k rather than k points, then by
making use of Well Separated Pair Decompositions (WSPD), for any fixed dimension
d we can get a faster O(kn polylogn) time algorithm which still achieves an O(log*(n))
approximation for the k-staircase problem. This is the only result where we assume d is
fixed. (The algorithm works for any d, though the approximation and time degrade.)
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5. In Section 6 we propose a new heuristic for the k-staircase problem which is based on
finding what we call relaxed CCV?2 points. Such points have nice symmetric geometric
properties, and we argue that any point set always contains at least one such point.
While certain contrived worst case examples make it difficult to provide worst case
guarantees, we show experimentally in Section 6.1 that approximating the staircase hull
using relaxed CCV points consistently gives a smaller amount of error than the guaranteed
O(log™(n))-approximation algorithm of [30]. Moreover, our heuristic is simple, easy to
implement, and fast, thus making it quite practical. Finally, in Section 6.2, we compare
our measure to several others by using NBA player statistics to predict NBA All Star
teams. Not only does our measure always select the most all star players, but also it is
inversely proportional to the number of selected players, while for other measures the
correspondence is less consistent.

Due to space limitations, some of the proofs can be found in the full version of the paper [22].
The Hausdorff distance uses the standard Lo norm for distances between points, however,

it can be generalized to any L, norm.® Intuitively, the L1 norm focuses on the average value

over the dimensions, while L., focuses on the dimension which is largest. We argue our
algorithmic results hold for any L, norm, thus allowing the user to tune the dial between
these two extremes in order to best suit a given application.

A

Figure 1.1 For k = 2, our solution is a and b, k-center a or b and ¢ or d, max cover a or b and c.

Understanding and comparing measures. As mentioned above, one of the main ways in
which our measure differs from [25] and [34] is that it considers the staircase as defining
a continuous hull rather than a discrete point set. In particular, consider the simple four
point example shown in Figure 1.1. For k = 2, in the maximum coverage measure of [25] the
optimal solution contains either a or b along with the point c¢. For the k-center clustering
measure of [34] the optimal solution contains exactly one of a or b and exactly one of ¢ or d.
On the other hand, for our measure the optimal solution contains points a and b. Arguably a
and b represent real tradeoffs between the horizontal and vertical coordinate values, whereas
c and d have a negligible advantage in the vertical coordinate over b but are far worse in the
horizontal coordinate. In other words, when considering the discrete points, ¢ and d are far
from a and b. However, when considering the continuous hulls, ¢ and d are very close to the
hull SH({a, b}), yet b has a larger distance to the hull SH({a, c}).

There are several additional nice properties of our measure. First, it is natural from
a geometric perspective as it is just the standard geometric notion of Hausdorff distance
between two objects. Second, it is translation invariant, i.e., the optimal solution does not

2 The notion of CCV points, which stands for “center capturing vertex”, was introduced in [30] to solve
the asymmetric k-center problem approximately.
3 Here we use the standard L, notation, though later we use Lo as p is often used to denote a point.
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change if all points are translated by the same amount (where the amount in each coordinate
can differ). This is also true of the measures in [25] and [34], however, it is not the case for
[33] and [21], making it difficult to compare their measure to ours as theirs strongly depends
on the choice of origin. A number of other properties, such as scale invariance or stability,
have been used to characterize previous approaches for approximating the staircase. In the
full version of the paper [22] we provide a table and description comparing our measure with
others, showing the tradeoffs of these various properties. Rather than focusing on any one of
these properties, here we advocate the benefit of taking into account the continuous hull, and
give some partial justification of this approach with our experimental results in Section 6.
In order to maximize the benefit of our measure, there are several preprocessing steps
that one may wish to take. First observe that depending on what the coordinate values
represent, in some coordinates one might desire a larger value and in others a smaller one
(e.g. hotel rating vs. price). To handle this one can negate all values in coordinates for which
large values are better, and then translation invariance implies we can shift the points to
remove negative values (if so desired). Translation invariance also implies one can translate
the point set such that in each coordinate the minimum value of any data point is zero. Also,
note that if one scales the data by the same factor in every coordinate then the optimal
solution does not change, hence one can scale so the data points lie in the unit hypercube
if so desired. On the other hand our measure is sensitive to scaling by different values in

each coordinate, and this fact can be used to encode our preferences over the coordinates.

Specifically, if one scales such that the maximum value is exactly 1 in each coordinate then
this attempts to put each coordinate on equal footing. Alternatively, if one knows certain
attributes are more important than others, one can weight the scaling differently in each
coordinate to take this into account. Note that all this can easily be done in linear time.

2 Problem Statement and Connection to Asymmetric K-center

2.1 Definitions and problem statement

Given points p,q € RY, we say p dominates q, written p < q, if p; < ¢; for all i, where p;
(resp. ¢;) denotes the ith coordinate of p (resp. ¢). For a point set P C R?, let S(P) denote
the set of staircase points of P, which is the set of points p € P such that p is not dominated
by any point in P\ {p}. Finally, let SH(P) denote the staircase hull of P, which is the
subset of points in R¢ dominated by some point in P. Notice that S(P) C P C SH(P) and
SH(P) = SH(S(P)) as dominance is transitive.

Let do(2,9) = ||z — y||o denote the distance between x,y € R? with respect to the L,
norm?, where o > 1. For (closed) sets X,Y C R% let do(X,Y) = mingex yey |7 — ylla
be the distance between point sets X and Y with respect to the L, norm. If X is a
singleton {x}, let do(z,Y") denote do(X,Y"). For point sets X and Y, let dn_ (X,Y) = max{
maxgex do(2,Y), maxycy do(y, X)} denote the Hausdorff distance with respect to the L,
norm, between X and Y. Typically, we consider the case where Y C X; here dy_ (X,Y) =
maxgzex do(z,Y).

» Problem 1 (k-staircase problem). Given a set of n points P C R? and a parameter k, find

a subset Q@ C P with |Q| < k which minimizes dn_ (SH(P),SH(Q)).

4 The Lo norm is defined for a > 1, as ||ul|a = (ijl |u]'\°‘)l/a.
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For Q C P, the value r = dy_ (SH(P),SH(Q)) is the radius of Q. Throughout the paper,
we say that @ r-covers P when dy_ (SH(P),SH(Q)) < r. For an optimal solution Q* to
Problem 1, we use r* to denote its corresponding optimal radius. A subset Q C P of size k
is called a c-approximation for Problem 1 if the radius of @ is at most cr*.

2.2 Properties and asymmetric k-center

Above we defined the notions of dominance, staircase points, and the staircase hull. In
this section we provide further definitions and properties, to ultimately reduce Problem 1
to the well known asymmetric k-center problem, which we now define. Then, using the
O(log™ n)-approximation algorithm for the asymmetric k-center problem [30], in Section 5
we can show how to approximate the k-staircase problem.

» Problem 2 (Asymmetric k-center). Given a set of n points P, with a corresponding
asymmetric distance function f : P x P — RZ2°, and a parameter k, find a subset Q C P of
at most k points which minimizes max,ep f(Q,p) = max,ep mingeo f(g,p).

In the above definition, by an asymmetric distance function we mean a function f :
P x P — R20 which satisfies the directed triangle inequality: for any three points a,b,c € P
we have f(a,c) < f(a,b) + f(b,c). However, f may not be symmetric, i.e., in general
f(a,b) # f(b,a), and thus it is not a metric.

To reduce Problem 1 to Problem 2, we need to provide a number of definitions and
structural properties. First, observe that the staircase hull is the union of a set of regions
determined by individual points of P (unlike the convex hull for example). Using SH(p) to
denote the subset of points in R¢ dominated by p, we observe that SH(P) = Upep SH(P).

Next, we introduce some useful notation that we use throughout the paper. For a

- 1/ 1/
vector u = (uy,...,uq) € R? define ||u||; = (Zuj<0 lu;|*) 7, and |jul|f = (Zu]zo ug) .
Observe that, ||ullg = || — ul|{ and [[ul[3 =[] — ul|5
We first provide a simple expression for the distance from a point p = (py,...,pq) € R?

to the region SH(q) of another point ¢ = (¢1, ..., qq)-
» Lemma 3. For any points p,q € R%, we have that, d,(p,SH(q)) = ||lg — pl|Z-

Proof. The region SH(q) is the set of points (z1,...,74) € R? such that z; > ¢; for
j=1,...,d. The L, distance from p to = to the power of v is (||z — p||a)® = Z;l:l |z; —pj|*.
It is easy to see that to minimize this expression over SH(q) one should take the point
(z1,...,2q) which has x; = p; for all j such that p; > ¢; and one should let z; = g;
otherwise. The result follows. |

The above implies that for any two points p and ¢, one can define a natural notion
of directed distance (or equivalently asymmetric distance) from p to ¢, namely do (p,q) =
da(q,SH(p)). Note the change in the order of the arguments. Alternatively one could define
the directed distance from p to ¢ as d,(p, SH(q)), which is natural when viewing p as traveling
to SH(q). However, our definition is more natural when considering how well SH(p) covers g,
ultimately helping relate our problem to the asymmetric k-center problem.

By Lemma 3, we have that,

1/«

da(p.q) = da(q.SHP) = llp—allf = llg—plla = | D laj—pil*

J:q; <pj

We say that p r-covers ¢ when do(p, q) < .
A fundamental inequality obeyed by our directed distances is the following:
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» Lemma 4. Let x be a point dominated by y, i.e., x € SH(y). Then, for any point p we
have that, do(p, ) < da(p,y), and da(y,p) < da(@,p).

Proof. We only prove the first inequality, as the proof of the second is similar. We have that
(e =plla)™ =>4, <p, 12 —p;|*. Since x € SH(y) we have that forall j = 1,....d, y; < x;.
For any j where x; < p; clearly y; < p; as Well,_{md moreover, |y; —p;|* > |z; —p;|*. Thus,
(2 = pliz)* < (ly — pllz)™ Tt follows that, (da(p,))* = (2 - lla)* < (ly - pll)* =
(da(p,y))* = da(p, ) < da(p,y). <

The above lemma can now be used to show that our directed distances satisfy the directed
triangle inequality, a fact not immediately apparent from our distance formula (Lemma 3),
and which we require later in order to apply previous results for asymmetric k-center.

» Lemma 5. The directed distance function &a(-, -) obeys the directed triangle inequality.
That is, for any three points a,b,c € R? we have dy(a,c) < dg(a,b) + da (b, c).

Proof. Let z be the closest point in SH(b) to ¢, i.e., z = argmingesy(y) da(c, ), and let 2’ be
the closest point in SH(a) to z, i.e., 2’ = argmingesp(q) da(2, ). Then,

— —

da(a,¢) < dalc,2) < dal(c,2) +dalz,2') = da(b, ¢) + da(a, 2) < da(b, c) + da(a,b).

The first inequality holds because 2/ € SH(a) and da(a,c) = du(c,SH(a)). The second
inequality holds because the L, norm satisfies the triangle inequality. The third equality
follows from the definition of z and 2’. Since z is dominated by b, by Lemma 4 we have that
du(a,z) < dala,b) so the result follows. <

We now argue that for any subset @ C P in Problem 1, minimizing dy_ (SH(P),SH(Q))
can instead be thought of as minimizing the distance from the finite point set P to the hull
SH(Q). Thus as SH(Q) = U, SH(g), this in turn allows us to think of the problem as
selecting () so as to minimize directed distances from P to @, i.e., a clustering problem.

For a point set Q and a point z, in the following we use the notation JQ(Q,x) =
mingeq do(q,z) = mingeg do (2, SH(g)). Observe that mingeq da(z, SH(g)) = da(z, SH(Q)),
and hence dy (Q,z) = do (2, SH(Q)).

» Lemma 6. For QC P, dy, (SH(P),SH(Q))=max,c pda (p, SH(Q))=max,cspyda(p, SH(Q)).
Proof. Note that S(Q) C S(P) since @Q C P, and so

dHa(SH(P)vSH(Q)) = max da(pvsH(Q))

pESH(P)

As S(P) C P C SH(P) we therefore have

dh, (SH(P), SH(Q)) = maxda (p, SH(Q)) = max da(p, SH(Q)).
peP pES(P)
For the other direction, for any point p € P, let f(p) € S(P)
For any point g € @Q, it follows by Lemma 4 that Ja( p) < du(q, f(p)) and as such taking
the minimum over @ we get that JQ(Q,p) < JQ(Q, f(p)). Now taking the maximum over
p € P we get that

maxda(p,SH(Q)):maXJ (@Q, p)<maxd (@, f(p)) < max aa(Q,p): max dq(p, SH(Q)).

peEP peEP pES(P) pES(P)

Similarly, because for each point 2 € SH(P) there is some point p € P dominating x we can
argue that dy, (SH(P),SH(Q)) < max,ep do(p, SH(Q)). <

be any point that dominates p.
do
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Note we can assume that any optimal solution @ to Problem 1 lies on the staircase S(P),
since otherwise we can choose a dominating point on S(P) for each point of @), defining a new
set @' such that SH(Q') 2 SH(Q) and so max,cs(py do(p, SH(Q')) < max,cs(py da(p, SH(Q)).
Thus the above implies that in Problem 1 we can consider the original input P as consisting
entirely of staircase points (i.e., S(P) = P), since otherwise as an initial step we can throw
out all non-staircase points. Moreover, since dy, (SH(P),SH(Q)) = max,ep do(p, SH(Q))
= maXpep JQ(Q,p), the above implies Problem 1 can easily be seen as an instance of
asymmetric k-center, for our asymmetric distance function Ja(-, ).

3 Hardness

In this section we mention APX-hardness results for the k-staircase problem for d > 3 using
the Ly norm. For the Lo, norm, the hardness proof by Koltun and Papadimitriou [21] can
be used to show that the problem is NP-hard, but there is no known APX-hardness proof.

Our main result for all d > 4 is,

» Theorem 7. The k-staircase problem for the Lo norm is NP-hard to approzimate in R?,
for any d > 4, within a factor better than \/2 + /3 ~ 1.932.

Proof. Since the results hold only for the Ls norm, we skip the subscript 2 from the
statements. We show the following claim which is required to establish the gap-preserving
nature of a reduction from the k-center problem in R? to the k-staircase problem in R*. We
prove that there_}is a mapping ¢_,: R? — R*, such that for any two points p, g € R? we have
that, [lp — gl = d(6(p), 9(a)) = d(6(a), 6(p))-

The mapping ¢ is defined by ¢((z,y)) = (z, —z,y, —y). Given p = (p,,p,) and ¢ =
(4x» @y), we have that [[p — ql| = \/(pz — 42)? + (py — 4,)*- Now, ¢(p) —¢(q) = (Ps — ¢ur 4w —
DDy — Gy, @y — Py)- I py # ¢u, exactly one of p, — ¢, and ¢, — p, is greater than 0. A similar
statement is true for p, — gy, qy — py. Thus, ||¢(p) — ()| = /(Ps — ¢2)2 + (py — qy)%. If
Pz = Gz, then neither of (p, — ¢.)?, (¢z — p2)? appear in the expression for ||¢(p) — ¢(q)||™
but there is no contribution to ||p — ¢|| from the z-coordinate as well. A similar statement is
true for the y-coordinate. Thus, d(é(p), ¢(q)) = ||6(p) — ¢(q)||T = |lp — ¢||. An analogous

argument shows that [[p — ql| = [|¢(p) — ¢(a)l|~ = [|6(q) — ¢(®)|[" = d(6(q), 6(p)) as well.
The claim follows.

The k-center problem in R? is polynomial time reducible to the k-staircase problem in
R*. Indeed, for a set P of n points in R? we consider the set P’ = {¢(p) : p € P} C R*.
Clearly P’ can be constructed in O(n) time. Moreover, our claim implies that for any (at
most) k points pi,...,pr € P which give a clustering radius R, the corresponding points
o(p1),...,0(pr) will give a value of R for the clustering radius in the k-staircase problem
for P’. (Interestingly note that in fact all the mapped points lie on the staircase.) The
minimum clustering radii thus are equal. Any APX-hardness result for the k-center problem
in R? can be combined with this polynomial time reduction to give the same hardness for
the k-staircase problem in R*. Feder and Greene [16] proved that the k-center problem in
R? cannot be approximated to a factor better than % ~ 1.823. There is also such a
result by Mentzer [27], although it is not that well known. Mentzer shows that the k-center
problem in R? is hard to approximate within a factor of v/2 + /3 ~ 1.932. Using Mentzer’s
result [27] we conclude the result of the theorem. <
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For d = 3, a non-trivial approximate embedding argument and Mentzer’s result [27] implies,

» Theorem 8. The k-staircase problem for the Ly norm is NP-hard to approzimate in R3
within a factor better than 24V3 1.0455.

i

The proof of the last theorem can be found in [22].

Finally, we would like to point out the paper by Chuzhoy et al. [14], who showed that
the asymmetric k-center problem is hard to approximate up to a factor log" n — ©(1) unless
NP C DTIME(n!°81°8m). An interesting open question is if their reduction can be used to
show that our k-staircase problem is hard to approximate by a factor better than log* n. The
authors construct a complicated graph for their reduction. In order to use their construction
we would have to embed their graph to the Euclidean space, such that i) the nodes are
represented by points on the staircase, and ii) capture their (directed) graph distances with
our geometric directed distances. Because of the complexity of their graph we could not find
such a geometric embedding, and hence we leave it as an open problem. For details see the
full version of the paper [22].

4 Exact Algorithm in 2D

In this section we present a polynomial time exact algorithm for the k-staircase problem in 2
dimensions for any L, norm with o > 1.

» Theorem 9. Given a set of n points P C R?, an integer parameter k < n, and a real
parameter « > 1, a set Q C P of size at most k can be computed in O(nlog3 n) time, such
that dy_ (SH(P),SH(Q)) is minimized.

Intuitively, the staircase problem is easier in 2D because of the ordering of the points along
the z and the y axis: If the z-coordinate of p € S(P) is smaller than the z-coordinate of
g € S(P), then the y-coordinate of p is larger than the y-coordinate of ¢q. Let p1, pa denote
the z, y-coordinates of a point p and let p,q € S(P) be two points in the staircase such
that p1 > ¢1 and py < ¢2. Then, for any o, 5 > 1 we have that Ja(p, q =|lp—dlt =

((p1 - Q1)a)1/a =P —¢1 = ((pl - Q1)ﬁ)1/5 = Jg(p, q). Thus, all the norms are equivalent,

and so without loss of generality, in what follows, & = 1. We now describe our algorithm.

Assume that we have a procedure Cover(P,r), which given a radius » > 0 returns a set
@, C S(P) of minimum size satisfying du_ (SH(P),SH(Q,)) < r. Notice that by definition

r* is the minimum value of 7 such that |Q,| < k. Since r* is one of the ©(n?) distances

d (pi,pj), we could run a binary search over all possible distances to find r*. For a given
distance r we would need to decide if r < r* or r > r*. To do this, we use Cover(P,r) and
check if the set @, it returns has |@Q,| < k. A naive implementation of this algorithm would
enumerate all the ©(n?) distances, sort them, and do the binary search over them, but this
would clearly take at least quadratic time. We now show how to implement the algorithm in
near-linear time.

Imagine an array containing all the ©(n?) distances in sorted order. As remarked above,
we cannot directly compute this array in near-linear time. However we do not need access
to the entire array. A typical query during binary search is : “return the m-th element of
this array”. Assume that finding the m-th smallest distance among the points in S(P), and
the procedure Cover(-), both take O(npolylog(n)) time. Then, all the O(logn) distance

queries for the binary search and all the calls to Cover(-) would take O(n polylog(n)) time.

Following this scheme, we now present an algorithm with overall O(nlog®n) running time.
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Algorithm 1: Cover(P,r).
Input :P,r
Output: Q, C P with |Q,| < k, and
du, (SH(P),SH(Q,)) <7

V=0

for p € S(P) do
VP:{Q|d(paq)§Ta qu(P)}
V=V Uu{Vy}

F = MiN_SET_COVER(S(P),V)

Q={p|V, € F}

Return @ b

[N S —

T LT Ty

N 0 0oph w N K

Figure 4.1 The interval I, is defined by the
xz-coordinate of point b and of point e.

The procedure Cover(P,r). Let k. be the smallest size of a set of centers @, such that
du,, (SH(P),SH(Q,)) < r. The pseudocode of Cover(P,r) can be seen in Algorithm 1.

Correctness. For each point p € S(P), the set V,, contains the points that are covered by
p within radius r. Then we solve the min-set-cover instance where the elements are the
points in S(P) and V is the family of sets. If the solution to the min-set-cover is optimal,
the correctness of the algorithm follows.

Even though min-set-cover is an NP-hard problem, some special instances can be solved
optimally in polynomial time. We show that the set system (S(P), V') can be mapped to a set
system where the elements are points on a line and the sets are intervals intersected with the
point set. This special case of the min-set-cover problem is the well known unweighted interval
point cover problem (IPCP) and for n intervals and n points it can be solved optimally in
O(nlogn) time [4, 35, 20]. The mapping of points is simple. For a point p = (p1,p2) it is
just the projection of p to p; on the z-axis. Let P; denote this projected set of points. The
following lemma shows that the set of points ¢ for which &a (p,q) < r corresponds to an
interval on the z-axis.

» Lemma 10. Letp,q,z € S(P). If ¢1 is between p1 and z1 and aa(p, z) <r then aa(p, q) <r.

Proof. We show it for the case where p; < ¢ < z1, since the case of z; < ¢ < p; is similar.
Since p,q,z € S(P) and p; < g1 < 2z, it also holds that ps > ¢o > 25. We have that
da(p,2) = pa — 29 < r. We conclude that d(p,q) =p2 — g2 < p2 — 20 <. <

The interval I, for a point p can be computed as follows. The left end-point is just p; —r
but we can clip it to a point in P; by doing a successor search for p; — r among the set of
points P;. The right end-point corresponds to the z-coordinate g; of a point ¢ = (¢1,g2)
such that ¢; > p; and is the largest value such that ps — g2 < r. To compute this we can do
a predecessor search for ps + r in the projection of points P, on the y-axis. Once we find this
point gz, the left end-point of I, is determined by ¢;. In Figure 4.1, we show an example
of the interval I, for a point p. Using the above construction and Lemma 10 we can argue
that each set V), corresponds to an interval I, on the z-axis and hence the set cover instance
defined by (S(P),V) is an instance of the IPCP.

Complexity of Cover(P,r). We can compute the staircase S(P) of P in O(nlogn) time.
The (sorted) projected point sets P;, P> as above can be constructed in additional O(n)
time. For each point p the set V), is specified by the interval I, which needs two predecessor
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searches. Thus each such interval can be computed in O(logn) time. The min-set-cover
for the IPCP instance can be computed in O(nlogn) time. Thus, overall Cover(P,r) takes
O(nlogn) time.

Search over the possible radii. Let Z = n(n — 1) denote the total number of distances
da (p, q) between points p,q € P. As remarked above, given m with 1 <m < Z, we need a
method to compute the m-th smallest distance in this set. We now show how to do this
in near-linear time, more specifically, O(n log? n) time. We first discuss another problem
which will be used. Let A, B be two sorted arrays of real numbers with length M each.
A classic exercise is to compute the m-th smallest element in the union of the two arrays
in sublinear time and it is well known that it can be computed in O(log M) time. The C
implementation of such an algorithm can be found in [22]. This algorithm makes at most
O(log M) comparisons between the elements of A, B. The set R of all the Z distances dq (p, q)
can be written as the union of two sets A, and A, defined as, A, = {p1 —q1 | p1 > ¢1}, and
Ay =A{p2 — q2 | p2 > q2}. Notice that |A,| = |A,| = Z/2, so let M = Z/2. So, our goal is to
compute the m-th smallest element of A, U A,. To use the algorithm just mentioned, we
need access to the i-th smallest element of A, (or a similar query for A,). Fortunately, we do
not need to explicitly compute A, A,. In [31, 32] the authors show that the i-th smallest L,
distance of n points on a line can be computed in O(nlogn) time. The distances in A,, A,
can be seen as the L; distances among the projections of S(P) on the two axes, namely,
among the points of Py and P,. Since the algorithm of [31, 32] needs to run at most O(log M)
times, the m-th smallest distance in R can be computed in O(nlognlog M) = O(nlog®n)
time. The pseudocode of the overall procedure described above is given in [22].

Overall complexity. The O(logn) iterations of the procedure Cover(P,r) take O(nlog®n)
time overall, and the O(logn) queries for the m-th smallest distance overall take O(nlog® n)
time. This is the dominating term in the running time.

5 Approximate K-Staircase

In this section we give approximation algorithms for the k-staircase problem. First, we show
a general algorithm that runs in quadratic time, and then we give a faster approximation
algorithm for fixed d.

5.1 An approximation algorithm

In Section 2 we showed that the k-staircase problem is a special case of the asymmetric
k-center problem. Previously, [30] gave an O(log™ n)-approximation for the asymmetric
k-center problem, so this immediately implies an O(log™ n) approximation for Problem 1 for
any L, norm. The proof of the next theorem can be found in [22].

» Theorem 11. There is an O(log™ (n))-approzimation algorithm for the k-staircase problem
with O(n?(d 4 log® n)) running time.

Omne can also parameterize on the value of k, in which case [5] provided an O(log" k)-
approximation. Their algorithm requires solving O(logn) linear programs, so while their
algorithm runs in polynomial time, the precise asymptotic time was not stated.

» Theorem 12. There exists an O(log”(k))-approzimation algorithm for the k-staircase
problem that runs in polynomial time.
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The O(log" n)-approximation algorithm of [30] can be implemented by performing a binary
search over all the ©(n?) inter-point distances. For a value r, deciding if r < r* or r > r*
requires solving a set cover problem. (This is similar to what we do for the exact algorithm
in 2D in Section 4, except that the set cover instance in general is not solved exactly but
only approximately.) In general, even constructing the set cover instance can take quadratic
time, and thus approximately solving the entire problem in near-linear time seems difficult.
We next use several geometric ideas to come up with a faster bi-criteria approximation
(approximation on both &k and radius) for any L, norm, if d is fixed.

5.2 A faster approximation algorithm for fixed d

In this subsection we show a faster approximation algorithm for the k-staircase problem if
the dimension d is fixed. Because of the space limit, here we only give a brief overview of
our approach. In [22] we provide all the details and the proofs of our method. The main
result of this section is the following theorem.

» Theorem 13. Given a set of n points P C R?, for constant d, and an integer parameter
k <mn, aset QC P of size at most 2k can be computed in O(kn polylog(n)) time, such that
dr, (SH(P),SH(Q)) = O(r} log" n), where r}, = mingc p, o)<k du., (SH(P),SH(Q)).

Our approach is to first get a fast approximation algorithm for the L., norm and then
argue that the same solution is a good approximation for any L. Intuitively, this will work
due to the known inequality, ||[p — ¢, < |lp —4ll, < d' e ||p — ql ., for any p,q € R% and
any a > 1, i.e., the Lo, and any L, norm differ by a factor that depends only on d and «.
Next, we only focus on the Lo, norm and we denote r* = mingc p,||<k dr.. (SH(P),SH(Q))
(unlike in the other sections where we use r* as the optimum distance for any L, norm).

Our algorithm follows the structure of the algorithm in [30] for the asymmetric k center
problem, which has two parts®: 1) A decider, such that given a distance r it either returns r is
less than r* or it returns a set @ C P which is an O(log" n)-approximation. Their algorithm
recursively solves many instances of the set cover problem using the greedy approximation
algorithm [15]. Notice that a center in the asymmetric k-center problem covers a set of points
within distance r so a set cover instance is indeed an intuitive way to model their problem.
2) A search over all O(n?) pair distances to find the smallest one where the decider returns
an O(log™ n)-approximation.

Both 1) and 2) can be made faster because we are focusing on the L., norm for our
k-staircase problem. 1) The sets defined by the set cover instances in [30] correspond to
half-open boxes in R for the L., norm. Using geometric data structures, like range trees [1],
we can thus run the greedy algorithm for the set cover problem without explicitly constructing
the set cover instances, i.e., without finding the points in P contained in each half-open
box. 2) Instead of computing the quadratic number of all pairwise directed distances, we use
the notion of Well-Separated Pair Decomposition (WSPD) [10, 18, 19, 29]. For a set of n
points in R?, for fixed d, a WSPD can approximate all pairwise Euclidean distances with a
near-linear number of distances. Unfortunately, our distance function aw(-, -) is not a metric
and as such the known WSPD constructions are not useful. The main idea we use is to
project the points to all d-axes separately, and construct the WSPD for each of the projected
point sets. The key observation allowing us to construct such WSPDs is that for L, the r*
distance is one of the pairwise distances among the projected 1-dimensional points.

5 The authors in [30] do not present it this way, however it makes our algorithm easier to explain.
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We note that our algorithm finds a set ) with at most 2k points. In order to guarantee at
most k points with an approximation factor of O(log™ n) in [30] they make use of the notion
of so called CCV points. These are defined and extended in the next section to get a heuristic

that works very well in practice. Finally, note that our algorithm works for any dimension d.

If d is not a constant, however, then we have an O(d'/*r} log* n)-approximation algorithm
that runs in O(poly(d)nk logPe () n) time, where poly(d) is a linear polynomial of d.

6 A practical heuristic

Here we present a fast heuristic for the k-staircase problem, and provide experimental results
showing its efficacy on both real and synthetic data. For simplicity, we present the result
only for the Lo norm and in the full version of the paper [22] we describe how to extend it to
any L,. Missing proofs of all lemmas in this section can be found in [22].

We first provide some intuition for our heuristic. As in the previous sections we look for
r* and the set of k centers using binary search. For a query radius r, we need to be able to
decide if r < 7%, or 7 > r*. The heuristic attempts to test this, by adapting an approach to
solve the standard symmetric k-center problem. The algorithm for the symmetric k-center
problem is iterative, and in each iteration it picks some arbitrary center p and removes
all points in a ball of radius 2r around p. If the procedure stops within k iterations then
clearly r* < 2r. Otherwise r* > r, because if r* < r, then one can argue in each iteration
this procedure entirely removes at least one optimal cluster which has not been completely

covered yet. To see this, let p; be the center that the algorithm selected in the ¢th round.

Let o; be the center from the optimal solution covering p;. (Since p; still exists, o;’s cluster
has not been fully covered yet.) All remaining points in 0;’s cluster are within distance r*
from o;, which is within r* from p;, and hence all remaining points are covered by the 2r
ball around p; if r > r*. If distances are asymmetric, however, this argument breaks since
while p; is within distance r* from o;, this does not imply o; is within r* from p;. To deal
with asymmetry, [30] defined the notion of center capturing vertices (CCV), where a point p
is CCV(r) if whenever the distance from another point to p is less than r, then the distance
from p to that point is also at most r. That is, at the resolution of the radius r, the distances
involving that point look symmetric. If we could always find a CCV(r) point among the

remaining ones, then by the directed triangle inequality the argument would still be valid.

However, for general asymmetric distance functions such CCV points may not exist, so we
define a new relaxed notion of CCV points allowing imbalance in the directed distances.

» Definition 14 (\-CCV(r)). Given a point set P C R, and real numbers r > 0,\ > 0,
p € P is a A-CCV(r) point, if for all ¢ € P with da(q,p) < r it is also true that da(p, q) < Ar.

Note that a 1-CCV(r) point is the same as a CCV(r) point in [30]. Also note that if we can
always find a A-CCV(r) point rather than a CCV(r) point as desired above we will end up

with a (1 4+ \) rather than 2 approximation. If r is clear from the context, a CCV(r) (resp.

A-CCV(r)) point is denoted as a CCV (resp. A-CCV) point. Ultimately our new heuristic
works by selecting appropriate A-CCV points. It is not clear whether such points even exist,
however, the following lemma confirms that there is a point that is a v/d — 1-CCV(r) point
for any radius r, and further, such a point can be found easily (in O(dn) time). For any
u € R? define its weight as w(u) = uy + ug + ... + ug.

» Lemma 15. For any point set P C R* with n points, the point p € P with minimum
weight w(p) is a v/d — 1-CCV(r) point for any distance r > 0.
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EINino Colors
—— Log*(n)-approx \

il —— MinWeight

—— Furthest

Algorithm 2: MinWeight(P, k, 7). P
Input :P,k, r k
Output: Either “r < r*” or a set
Q C P with
|Q| < k such that
(1++vd—-1r = -
X P Qe woW s @ o s ww w0
while |Q| < k AND X # () do . o—2nticor-Var=0.1
p = argminye x w(p)
Q@ QU {p}
X+ X \{g€ X|da(p,q) <
(1++d—1)r}
if |@Q| > k then
‘ Return “r < r*”

else
‘ Return @

[SLB NV R VI

© o J O

Figure 6.1 Approximation error for Ls norm.

The decision procedure. To recollect, let r* be the optimum radius for Problem 1 on a
given set P of n points. Our aim is to build a decision procedure which we later use to do a
binary search for r*. Specifically, Algorithm 2 shows a fast procedure MinWeight(P, k, ),
which either outputs “r < r*” or returns a set @ with |Q| < k. We were not able to argue
that the procedure is always correct when “r < r*” is output, hence the term “heuristic”,
though the experiments below show that in practice this does not at all seem to be an issue.
On the other hand if a set @ is output, we have the following.

» Lemma 16. If MinWeight(P, k,r) returns a set QCP, then |Q|<k and dg, (SH(P),SH(Q))
< (14 +d—1r. The algorithm runs in O(dnk) time.

To see the obstacle in arguing that the algorithm is correct when “r < 7*” is output, let Z be
an optimal r* radius solution to Problem 1. We would like to argue that every point z € Z is
at most v/d — 1r* from one of the chosen points, as this would imply a (14 v/d — 1)r* radius
covering. However, the issue is that the points we choose in each iteration are v/d — 1-CCV
with respect to only the remaining points (Lemma 15), for any r. Specifically, consider a
point p which is r*-covered by a point o; in the optimum solution. It is possible that o; may
cause p to not be a v/d — 1-CCV. However, if o; was removed in some earlier iteration, then
later p may become a v/d — 1-CCV point. This could be a problem, as in the worst case it
means it is possible that o; is not v/d — 1r*-covered by p, and hence all points 7*-covered by
0; are not (14 +/d — 1)r*-covered by p, as we would like to argue.
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6.1 Experiments

This section compares the performance of three algorithms: the heuristic MinWeight, the
log*(n) asymmetric k-center algorithm ([30]) which we call Log*(n)-approx, and another
greedy algorithm Furthest described below. We test on several real and synthetic datasets
and use the approximation measure defined in Problem 2 with the asymmetric distance
function 82(', -). Additionally, in [22], we compare MinWeight and Log*(n)-approx to the
optimal solution (found by brute force) for small synthetic datasets.

All algorithms are implemented in Python on 64-bit machine with 4 3500 MHz cores and
16GB of RAM with Ubuntu 17.10.

Although we do not report running times, the simplicity of MinWeight (Algorithm 2)
should be noted. There are k iterations that consist of two steps: greedily choose a point
to add to the solution; remove all points within some radius of that point. Not only do
both steps take O(dn) time, but they are easily parallelized. Though we don’t claim optimal
implementations, we mention MinWeight always ran faster than Log*(n)-approx.

Implementation details.

Log*(n): The authors in [30] simply try all n? distance pairs to find the optimal radius r*.
As this is impractical for large datasets, both algorithms (MinWeight and Log*(n)-approx)
instead do a binary search over all distance pairs of the staircase points. Specifically,
if the returned set of either algorithm for a given radius is larger than k, we drop the
smaller distances; otherwise, we drop the larger distances.

MinWeight: As MinWeight can possibly find a solution of size k& on a radius r < r*, the
binary search might choose a path where future guesses of r yield no solutions. We store
the most recent solution so that if this happens, we can use the stored solution.

Furthest: This is a simple greedy algorithm that iteratively adds the point furthest from the
current solution set. That is, given an input set P and a solution set @; in round i, it
adds arg maxpepag(Qi,p) to @; to obtain ;41 (and repeats until ¢ = k). This algorithm
does not require searching for an optimal radius r*.

Datasets. For the experiments we use five of the most common datasets that have been used
in other papers related to finding representative points or staircase queries ([3, 6, 8, 13, 28, 34]).
More specifically, we use the following datasets.

BB: This is a commonly used ([3, 6, 13]) basketball dataset where each point is a player
and the attributes are five statistics: points, rebounds, blocks, assists and fouls. There
are 21,961 points in 5-d with 200 points on the staircase.

EINino: Oceanographic data from the Pacific Ocean, with attributes such as surface temper-
ature, water temperature, and wind speed. There are 178,080 points in 5-d, with 1,183
points on the staircase. This dataset was used in [3, 13] for finding representative points.

AirData: On-time flight data published by the US Department of Transportation, contained
in the AirData dataset [6]. Information gathered from 14 carriers flying in January 2015
includes departure delay, taxi in, taxi out, air time, distance, actual elapsed time, and
arrival delay. This set has 458,311 points in 7-d, with 6,439 points on the staircase.

Colors: The Colors data set is also commonly used for evaluating staircase and regret sets
[28]. The data derives from the HSV color space of a color image, and includes the
standard deviation, skewness, and mean of each H, S, and V in the space.

AntiCor: This is a synthetic dataset of anti-correlated points. There are 100,000 points in
5-d that are generated as described in [8]. We test on different values (0.05, 0.1, 0.15) of
the variance (Var) that determines the position of the plane. For Var=0.05, there are
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7,941 staircase points; for Var=0.1, 1,275 staircase points; and for Var=0.15, 529 staircase
points.

Uniform: This synthetic dataset has points sampled uniformly from the unit hypercube
which is described in [8]. There are 200,000 points in 7-d with 6,585 points on the
staircase.

Results. In each experiment (see Figure 6.1), MinWeight outperforms the other algorithms
by at least 50% which suggests that, at least in practice, MinWeight does not erroneously
return “r < 7*”. Indeed, when the input set does not have the structure mentioned after
Lemma 16 (where multiple points of an optimal solution are removed in one iteration),
MinWeight achieves a (1+ +/d — 1)-approximation. Even with a (1+ +/d — 1)-approximation,
MinWeight seems to exceed expectations compared against the Log*(n)-approx. We observed
that after the binary search, MinWeight would consistently reach a final guess of r that was
2-4 times smaller than Log*(n)-approx. One difference between the two algorithms that could
explain this is the fact that MinWeight updates its set of v/d — 1-CCV points with respect
to the remaining points in each iteration. Specifically, a point which is not v/d — 1-CCV(r)
can become v/d — 1-CCV(r) in a later iteration. This indicates that, compared against the
‘static’ CCV point set in Log*(n)-approx, there are better points to be chosen conditioned
on some set of the previous v/d — 1-CCV(r) points.

6.2 Comparison of algorithms on real data

There are several well known algorithms which attempt to output a set of representative
points on the skyline. Comparing the outputs of these algorithms is tricky, as each tries to
optimize a different metric. In an attempt at an objective method of comparison, we look
at these algorithms and measures on a real data set. Specifically, we look at NBA player
statistics over several seasons and use the various staircase algorithms to predict potential
all star players in each season (a selection of outstanding players made by the US National
Basketball Association). As discussed below, our algorithm consistently selects the most
potential all stars, and moreover our error measure appears to most closely track how many
potential all stars are selected. Specifically, we compare our Hausdorff measure and our
algorithm MinWeight with the measures and the algorithms of the three most cited papers
for staircase representation, namely, KolPap [21], k-center [34], and Max-cover [25].

The dataset. For this experiment, we used the Basketball season data set that contains the
statistics of each NBA player for each regular season. We use the statistics of each player for
five seasons, 2004-2005, ..., 2008-2009. For each player we keep six statistics: total points,
number of rebounds, number of assists, number of steals, number of blocks, and the ratio of
field goals made over the number of attempted field goals.

The experiment. For each of the five seasons, we run the algorithms MinWeight, KolPap,
k-center, and Max-cover and record the k = 10 representative players returned, respectively.

The comparison method. Notice that each algorithm returns a set of 10 players S. Each
algorithm is attempting to optimize a different measure of error, thus in order to evaluate
the quality of the returned set S, we need some neutral method which is different from all
the metrics. Towards this end, we define a function B(S) attempting to capture how “good”
the set S is, where B(S) = |T' N S|, and T is the set of 50 players selected by NBA experts as
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the best in a season that fans could vote to participate in the NBA All Star game.5 Namely,
B(S) returns the number of players in S that were selected as potential players for the NBA
All Star game. Such a set of players T always contains the “best” players as selected by NBA
experts so we feel it is a fair way to compare the results of the algorithms, so we consider T'
as the ground truth. Since the notion of skyline approximation is more natural and better
suited for users, another possible or even better evaluation would have been by running a
real user study.

Assessment of the metric itself. We also obtain some evidence that our metric is somewhat
more desirable than the other metrics. Ideally, we would like to have an error function F(.59)
(to be optimized by an algorithm) such that if B(S1) > B(S3) then F(S7) < F(S2), i.e., the
better the set is, the smaller the error becomes, or in other words the error has an inverse

relationship with the quality of the solution.

Format of Table 6.1. To evaluate an algorithm which returns a set .S, we show in the table
the intersection B(S) = [T'N S| of S with the ground truth, as well as the error of S for all
measures under consideration. So each entry of the table for algorithm X and season Y
presents data in the format B(S)[a,b,c,d] where S is the set returned by X and a is the
error of S in the Hausdorff distance (our measure), b is the error as per the metric of KolPap,
c is the error as per the metric of k-center, and d is the error as per the metric of Max-Cover
(the number of uncovered items in P by S).

Table 6.1 Statistics and errors by using different measures and algorithms for k£ = 10.

2004-2005 2005-2006 2006-2007 2007-2008 2008-2009

MinWeight | 8[0.1,0.25,0.9,15] | 9[0.18,0.52,0.76,32] | 8[0.17,0.25,0.79,31] | 8[0.12,0.67,0.72,16] | 8[0.09,0.33,0.63, 22]
KolPap | 7]0.16,0.18,0.88, 17] | 7[0.22,0.33,0.62,16] | 7[0.17,0.25,0.79,30] | 6]0.3,0.34,0.74,66] | 8[0.14,0.23,0.8,9]

k-center | 7]0.34,0.51,0.48,27] | 5[0.31,1.2,0.50,57] | 5[0.43,0.75,0.55,68] | 6[0.34,0.93,0.51,19] | 60.22,0.71,0.49, 49]

Max-cover

7[0.32,0.44,0.77, 2]

5[0.39,0.69, 0.69, 4]

6[0.44,0.75,0.67,1]

6[0.38,0.59,0.52,1]

5[0.37, 0.48, 0.66, 3]

Analysis of the results. From Table 6.1 we can derive the following conclusions: (I) The
MinWeight algorithm always returns better results (based on the function B), and (II) the
Hausdorff error has an inverse relationship with the quality of the result B(S). We obtain
several data points to test this relationship. For a fixed season, the various algorithms return
some set S.We plot the points (B(S),error) for each algorithm using the set S it returns
and for the errors under the different metrics. If we look at the errors for a fixed measure,

the Hausdorff distance error measure satisfies the inverse relationship in almost all the cases.

The rest of the measures defined by the previous works do not seem to have this desirable
inverse relationship. In the full version of the paper [22] we show the results for k£ = 15 and

we provide more figures showing the relationship of the quality B(S) with the error measures.

7 Conclusions

Our work suggests several directions for future research. As shown, the k-staircase problem is

an instance of the asymmetric k-center problem and this implies an O(log" n)-approximation.

However, it is an open question whether we can exploit the geometric properties of the

5 We use https://www.basketball-reference.com/allstar/ to get the players selected by the experts.
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problem to improve the approximation. In particular, can we get an f(d)-approximation
for the k-staircase problem, where f(d) is a function only depending on the dimension?
The practical success of our heuristic and the properties discussed in Section 6 gives some
indication this may be possible. Even if this is not possible, one could consider whether
relaxing the constraint on having exactly k& points to O(k) points helps, i.e., whether a
bi-criteria approximation is possible. Alternatively, one can consider if there is an O(log™ k)-
approximation for the k-staircase problem that does not require solving multiple LP’s [5].
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