
Index-Based, High-Dimensional, Cosine Threshold
Querying with Optimality Guarantees
Yuliang Li
Megagon Labs, Mountain View, California, USA
UC San Diego, San Diego, California, USA

Jianguo Wang
UC San Diego, San Diego, California, USA

Benjamin Pullman
UC San Diego, San Diego, California, USA

Nuno Bandeira
UC San Diego, San Diego, California, USA

Yannis Papakonstantinou
UC San Diego, San Diego, California, USA

Abstract
Given a database of vectors, a cosine threshold query returns all vectors in the database having
cosine similarity to a query vector above a given threshold. These queries arise naturally in many
applications, such as document retrieval, image search, and mass spectrometry. The present paper
considers the efficient evaluation of such queries, providing novel optimality guarantees and exhibiting
good performance on real datasets. We take as a starting point Fagin’s well-known Threshold
Algorithm (TA), which can be used to answer cosine threshold queries as follows: an inverted
index is first built from the database vectors during pre-processing; at query time, the algorithm
traverses the index partially to gather a set of candidate vectors to be later verified against the
similarity threshold. However, directly applying TA in its raw form misses significant optimization
opportunities. Indeed, we first show that one can take advantage of the fact that the vectors can be
assumed to be normalized, to obtain an improved, tight stopping condition for index traversal and
to efficiently compute it incrementally. Then we show that one can take advantage of data skewness
to obtain better traversal strategies. In particular, we show a novel traversal strategy that exploits
a common data skewness condition which holds in multiple domains including mass spectrometry,
documents, and image databases. We show that under the skewness assumption, the new traversal
strategy has a strong, near-optimal performance guarantee. The techniques developed in the paper
are quite general since they can be applied to a large class of similarity functions beyond cosine.

2012 ACM Subject Classification Theory of computation → Data structures and algorithms for
data management; Theory of computation → Database query processing and optimization (theory);
Information systems → Nearest-neighbor search

Keywords and phrases Vector databases, Similarity search, Cosine, Threshold Algorithm

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.11

Related Version A full version of the paper is available at https://arxiv.org/abs/1812.07695.

Acknowledgements We are very grateful to Victor Vianu who helped us significantly improve the
presentation of the paper. We also thank the anonymous reviewers for the very constructive and
helpful comments. This work was supported in part by the National Science Foundation (NSF)
under awards BIGDATA 1447943 and ABI 1759980, and by the National Institutes of Health (NIH)
under awards P41GM103484 and R24GM127667.

© Yuliang Li, Jianguo Wang, Benjamin Pullman, Nuno Bandeira, and Yannis Papakonstantinou;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2019.11
https://arxiv.org/abs/1812.07695
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Cosine Threshold Querying with Optimality Guarantees

1 Introduction

Given a database of vectors, a cosine threshold query asks for all database vectors with
cosine similarity to a query vector above a given threshold.

This problem arises in many applications including document retrieval [11], image
search [24], recommender systems [26] and mass spectrometry. For example, in mass
spectrometry, billions of spectra are generated for the purpose of protein analysis [1, 25, 33].
Each spectrum is a collection of key-value pairs where the key is the mass-to-charge ratio of
an ion contained in the protein and the value is the intensity of the ion. Essentially, each
spectrum is a high-dimensional, non-negative and sparse vector with ∼2000 dimensions where
∼100 coordinates are non-zero.

Cosine threshold queries play an important role in analyzing such spectra repositories.
Example questions include “is the given spectrum similar to any spectrum in the database?”,
spectrum identification (matching query spectra against reference spectra), or clustering
(matching pairs of unidentified spectra) or metadata queries (searching for public datasets
containing matching spectra, even if obtained from different types of samples). For such
applications with a large vector database, it is critically important to process cosine threshold
queries efficiently – this is the fundamental topic addressed in this paper.

I Definition 1 (Cosine Threshold Query). Let D be a collection of high-dimensional, non-
negative vectors; q be a query vector; θ be a threshold 0 < θ ≤ 1. Then the cosine threshold
query returns the vector set R = {s|s ∈ D, cos(q, s) ≥ θ}. A vector s is called θ-similar to
the query q if cos(q, s) ≥ θ and the score of s is the value cos(q, s) when q is understood
from the context.

Observe that cosine similarity is insensitive to vector normalization. We will therefore
assume without loss of generality that the database as well as query consist of unit vectors
(otherwise, all vectors can be normalized in a pre-processing step).

In the literature, cosine threshold querying is a special case of Cosine Similarity Search
(CSS) [31, 3, 26], where other aspects like approximate answers, top-k queries and similarity
join are considered. Our work considers specifically CSS with exact, threshold and single-
vector queries, which is the case of interest to many applications.

Because of the unit-vector assumption, the scoring function cos computes the dot product
q ·s. Without the unit-vector assumption, the problem is equivalent to inner product threshold
querying, which is of interest in its own right. Related work on cosine and inner product
similarity search is summarized in Section 5.

In this paper we develop novel techniques for the efficient evaluation of cosine threshold
queries. We take as a starting point the well-known Threshold Algorithm (TA), by Fagin et
al. [16], because of its simplicity, wide applicability, and optimality guarantees. A review of
the classic TA is provided in the full version of the paper.

A TA-like baseline index and algorithm and its shortcomings. The TA algorithm can be
easily adapted to our setting, yielding a first-cut approach to processing cosine threshold
queries. We describe how this is done and refer to the resulting index and algorithm as the
TA-like baseline. Note first that cosine threshold queries use cos(q, s), which can be viewed
as a particular family of functions F (s) = s · q parameterized by q, that are monotonic in s
for unit vectors. However, TA produces the vectors with the top-k scores according to F (s),
whereas cosine threshold queries return all s whose score exceeds the threshold θ. We will
show how this difference can be overcome straightforwardly.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:3

1 2 3 4 5 6 7 8 9 10
s1
s2

0.3 0.20.1 0.4 0.2

0.5 0.7 0.5

0.2 0.1 0.6 0.5

0.6 0.4

0.5 0.60.3 0.4

s3
s4
s5
s6

0.8 0.3 0.20.3
...

0.4

0.5 0.5 0.4

0.3 0.5

0.7

0.4

𝑳𝟏
s1 0.8

s3 0.3
s5 0.7

s4 0.2

𝐿$
s5 0.6

s1 0.3
s3 0.1

s2 0.5

𝐿%

s3 0.4

s4 0.6
s6 0.5

0.8 0.50.3query

s1 0.4
s3 0.2

s2 0.7

s4 0.1

𝐿&𝐿'
s3 0.5
s6 0.4

Figure 1 An example of cosine threshold query with six 10-dimensional vectors. The missing
values are 0’s. We only need to scan the lists L1, L3, and L4 since the query vector has non-
zero values in dimension 1, 3 and 4. For θ = 0.6, the gathering phase terminates after each
list has examined three entries (highlighted) because the score for any unseen vector is at most
0.8 × 0.3 + 0.3 × 0.3 + 0.5 × 0.2 = 0.43 < 0.6. The verification phase only needs to retrieve from
the database those vectors obtained during the gathering phase, i.e., s1, s2, s3 and s5, compute the
cosines and produce the final result.

A baseline index and algorithm inspired by TA can answer cosine threshold queries exactly
without a full scan of the vector database for each query. In addition, the baseline algorithm
enjoys the same instance optimality guarantee as the original TA. This baseline is created as
follows. First, identically to the TA, the baseline index consists of one sorted list for each
of the d dimensions. In particular, the i-th sorted list has pairs (ref(s), s[i]), where ref(s) is
a reference to the vector s and s[i] is its value on the i-th dimension. The list is sorted in
descending order of s[i].1

Next, the baseline, like the TA, proceeds into a gathering phase during which it collects
a complete set of references to candidate result vectors. The TA shows that gathering can
be achieved by reading the d sorted lists from top to bottom and terminating early when
a stopping condition is finally satisfied. The condition guarantees that any vector that
has not been seen yet has no chance of being in the query result. The baseline makes a
straightforward change to the TA’s stopping condition to adjust for the difference between
the TA’s top-k requirement and the threshold requirement of the cosine threshold queries. In
particular, in each round the baseline algorithm has read the first b entries of each index.
(Initially it is b = 0.) If it is the case that cos(q, [L1[b], . . . , Ld[b]]) < θ then it is guaranteed
that the algorithm has already read (the references to) all the possible candidates and thus
it is safe to terminate the gathering phase, see Figure 1 for an example. Every vector s that
appears in the j-th entry of a list for j < b is a candidate.

In the next phase, called the verification phase, the baseline algorithm (again like TA)
retrieves the candidate vectors from the database and checks which ones actually score above
the threshold.

For inner product queries, the baseline algorithm’s gathering phase benefits from the
same d · OPT instance optimality guarantee as the TA. Namely, the gathering phase will
access at most d ·OPT entries, where OPT is the optimal index access cost. More specifically,
the notion of OPT is the minimal number of sequential accesses of the sorted inverted index
during the gathering phase for any TA-like algorithm applied to the specific query and index
instance.

There is an obvious optimization: Only the k dimensions that have non-zero values in
the query vector q should participate in query processing – this leads to a k ·OPT guarantee
for inner product queries.2 But even this guarantee loses its practical value when k is a large

1 There is no need to include pairs with zero values in the list.
2 This optimization is equally applicable to the TA’s problem: Scan only the lists that correspond to

ICDT 2019

11:4 Cosine Threshold Querying with Optimality Guarantees

Table 1 Summary of theoretical results for the near-convex case.

Stopping Condition Traversal Strategy
Baseline This work Baseline This work

Inner Product Tight m · OPT OPT + c

Cosine Not tight Tight NA OPT(θ − ε) + c

number. In the mass spectrometry scenario k is ∼100. In document similarity and image
similarity cases it is even higher.

For cosine threshold queries, the k · OPT guarantee no longer holds. The baseline fails
to utilize the unit vector constraint to reach the stopping condition faster, resulting in an
unbounded gap from OPT because of the unnecessary accesses (see Appendix C of the full
version).3 Furthermore, the baseline fails to utilize the skewing of the values in the vector’s
coordinates (both of the database’s vectors and of the query vector) and the linearity of the
similarity function. Intuitively, if the query’s weight is concentrated on a few coordinates,
the query processing should overweight the respective lists and may, thus, reach the stopping
condition much faster than reading all relevant lists in tandem.

We retain the baseline’s index and the gathering-verification structure which characterizes
the family of TA-like algorithms. The decision to keep the gathering and verification stages
separate is discussed in Section 2. We argue that this algorithmic structure is appropriate
for cosine threshold queries, because further optimizations that would require merging the
two phases are only likely to yield marginal benefits. Within this framework, we reconsider
1. Traversal strategy optimization: A traversal strategy determines the order in which the

gathering phase proceeds in the lists. In particular, we allow the gathering phase to
move deeper in some lists and less deep in others. For example, the gathering phase may
have read at some point b1 = 106 entries from the first list, b2 = 523 entries from the
second list, etc. Multiple traversal strategies are possible and, generally, each traversal
strategy will reach the stopping condition with a different configuration of [b1, b2, . . . , bn].
The traversal strategy optimization problem asks that we efficiently identify a traversal
path that minimizes the access cost

∑d
i=1 bi. To enable such optimization, we will allow

lightweight additions to the baseline index.
2. Stopping condition optimization: We reconsider the stopping condition so that it takes

into account (a) the specifics of the cos function and (b) the unit vector constraint.
Moreover, since the stopping condition is tested frequently during the gathering phase, it
has to to be evaluated very efficiently. Notice that optimizing the stopping condition is
independent of the traversal strategy or skewness assumptions about the data.

Contributions and summary of results.
We present a stopping condition for early termination of the index traversal (Section
3). We show that the stopping condition is complete and tight, informally meaning
that (1) for any traversal strategy, the gathering phase will produce a candidate set
containing all the vectors θ-similar to the query, and (2) the gathering terminates as
soon as no more θ-similar vectors can be found (Theorem 7). In contrast, the stopping
condition of the (TA-inspired) baseline is complete but not tight (Theorem 27 in the full
version). The proposed stopping condition takes into account that all database vectors

dimensions that actually affect the function F .
3 Notice, the unit vector constraint enables inference about the collective weight of the unseen coordinates

of a vector.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:5

are normalized and reduces the problem to solving a special quadratic program (Equation
1) that guarantees both completeness and tightness. While the new stopping condition
prunes further the set of candidates, it can also be efficiently computed in O(log d) time
using incremental maintenance techniques.
We introduce the hull-based traversal strategies that exploit the skewness of the data
(Section 4). In particular, skewness implies that each sorted list Li is “mostly convex”,
meaning that the shape of Li is approximately the lower convex hull constructed from
the set of points of Li. This technique is quite general, as it can be extended to the class
of decomposable functions which have the form F (s) = f1(s[1]) + . . . + fd(s[d]) where
each fi is non-decreasing.4 Consequently, we provide the following optimality guarantee
for inner product threshold queries: The number of accesses executed by the gathering
phase (i.e.,

∑d
i=1 bi) is at most OPT + c (Theorem 16 and Corollary 18), where OPT is

the number of accesses by the optimal strategy and c is the max distance between two
vertices in the lower convex hull. Experiments show that in multiple real-world cases, c is
a very small fraction of OPT.
Despite the fact that cosine and its tight stopping condition are not decomposable, we show
that the hull-based strategy can be adapted to cosine threshold queries by approximating
the tight stopping condition with a carefully chosen decomposable function. We show
that when the approximation is at most ε-away from the actual value, the access cost is
at most OPT(θ− ε) + c (Theorem 20) where OPT(θ− ε) is the optimal access cost on the
same query q with the threshold lowered by ε and c is a constant similar to the above
decomposable cases. Experiments show that the adjustment ε is very small in practice,
e.g., 0.1. We summarize these new results in Table 1.

The paper is organized as follows. We introduce the algorithmic framework and basic
definitions in Section 2. Section 3 and 4 discuss the technical developments as we mentioned
above. Finally, we discuss related work in Section 5 and conclude in Section 6.

2 Algorithmic Framework

In this section, we present a Gathering-Verification algorithmic framework to facilitate
optimizations in different components of an algorithm with a TA-like structure. We start
with notations summarized in Table 2.

To support fast query processing, we build an index for the database vectors similar to
the original TA. The basic index structure consists of a set of 1-dimensional sorted lists
(a.k.a inverted lists in web search [11]) where each list corresponds to a vector dimension and
contains vectors having non-zero values on that dimension, as mentioned earlier in Section 1.
Formally, for each dimension i, Li is a list of pairs {(ref(s), s[i]) | s ∈ D ∧ s[i] > 0} sorted in
descending order of s[i] where ref(s) is a reference to the vector s and s[i] is its value on the
i-th dimension. In the interest of brevity, we will often write (s, s[i]) instead of (ref(s), s[i]).
As an example in Figure 1, the list L1 is built for the first dimension and it includes 4 entries:
(s1, 0.8), (s5, 0.7), (s3, 0.3), (s4, 0.2) because s1, s5, s3 and s4 have non-zero values on the
first dimension.

Next, we show the Gathering-Verification framework (Algorithm 1) that operates on the
index structure. The framework has two phases: gathering and verification.

4 The inner product threshold problem is the special case where fi(s[i]) = qi · s[i].

ICDT 2019

11:6 Cosine Threshold Querying with Optimality Guarantees

Table 2 Notation.

D the vector database
d the number of dimen-

sions
s (bold font) a data vector
q (bold font) a query vector
s[i] or si the i-th dimensional

value of s
|s| the L1 norm of s
‖s‖ the L2 norm of s
θ the similarity threshold
cos(p,q) the cosine of p and q
Li the inverted list of the

i-th dimension
b = (b1, . . . , bd) a position vector
Li[bi] the bi-th value of Li

L[b] the vector (L1[b1], . . . ,
Ld[bd])

Algorithm 1: Gathering-Verification Frame-
work.

input : (D, {Li}1≤i≤d, q, θ)
output : R the set of θ-similar vectors
/* Gathering phase */

1 Initialize b = (b1, . . . , bd) = (0, . . . , 0);
// ϕ(·) is the stopping condition

2 while ϕ(b) = false do
// T (·) is the traversal strategy to

determine which list to access
next

3 i← T (b);
4 bi ← bi + 1;
5 Put the vector s in Li[bi] to the candidate

pool C;
/* Verification phase */

6 R← {s|s ∈ C ∧ cos(q, s) ≥ θ};
7 return R;

Gathering phase (line 1 to line 5). The goal of the gathering phase is to collect a complete
set of candidate vectors while minimizing the number of accesses to the sorted lists. The
algorithm maintains a position vector b = (b1, . . . , bd) where each bi indicates the current
position in the inverted list Li. Initially, the position vector b is (0, . . . , 0). Then it traverses
the lists according to a traversal strategy that determines the list (say Li) to be accessed
next (line 3). Then it advances the pointer bi by 1 (line 4) and adds the vector s referenced
in the entry Li[bi] to a candidate pool C (line 5). The traversal strategy is usually stateful,
which means that its decision is made based on information that has been observed up to
position b and its past decisions. For example, a strategy may decide that it will make the
next 20 moves along dimension 6 and thus it needs state in order to remember that it has
already committed to 20 moves on dimension 6.

The gathering phase terminates once a stopping condition is met. Intuitively, based on
the information that has been observed in the index, the stopping condition checks if a
complete set of candidates has already been found.

Next, we formally define stopping conditions and traversal strategies. As mentioned
above, the input of the stopping condition and the traversal strategy is the information that
has been observed up to position b, which is formally defined as follows.

I Definition 2. Let b be a position vector on the inverted index {Li}1≤i≤d of a database D.
The partial observation at b, denoted as L(b), is a collection of lists {L̂i}1≤i≤d where for
every 1 ≤ i ≤ d, L̂i = [Li[1], . . . , Li[bi]].

I Definition 3. Let L(b) be a partial observation and q be a query with similarity threshold
θ. A stopping condition is a boolean function ϕ(L(b),q, θ) and a traversal strategy is
a function T (L(b),q, θ) whose domain is [d]5. When clear from the context, we denote them
simply by ϕ(b) and T (b) respectively.

Verification phase (line 6). The verification phase examines each candidate vector s seen
in the gathering phase to verify whether cos(q, s) ≥ θ by accessing the database. Various

5 [d] is the set {1, . . . , d}

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:7

techniques [31, 4, 26] have been proposed to speed up this process. Essentially, instead of
accessing all the d dimensions of each s and q to compute exactly the cosine similarity, these
techniques decide θ-similarity by performing a partial scan of each candidate vector. We
review these techniques, which we refer to as partial verification, in Appendix B. Additionally,
as a novel contribution, we show that in the presence of data skewness, partial verification
can have a near-constant performance guarantee (Theorem 25 of the full version) for each
candidate.

I Theorem 4 (Informal). For most skewed vectors, θ-similarity can be computed at constant
time.

Remark on optimizing the gathering phase. Due to these optimization techniques, the
number of sequential accesses performed during the gathering phase becomes the dominating
factor of the overall running time. This reason behind is that the number of sequential
accesses is strictly greater than the number of candidates that need to be verified so reducing
the sequential access cost also results in better performance of the verification phase. In
practice, we observed that the sequential cost is indeed dominating: for 1,000 queries on 1.2
billion vectors with similarity threshold 0.6, the sequential gathering time is 16 seconds and
the verification time is only 4.6 seconds. Such observation justifies our goal of designing a
traversal strategy with near-optimal sequential access cost, as the dominant cost concerns
the gathering stage.

Remark on the suitability of TA-like algorithms. One may wonder whether algorithms
that start the gathering phase NOT from the top of the inverted lists may outperform the
best TA-like algorithm. In particular, it appears tempting to start the gathering phase
from the point closest to qi in each inverted list and traverse towards the two ends of each
list. Appendix E of the full version proves why this idea can lead to poor performance.
In particular, we prove that in a general setting, the computation of a tight and complete
stopping condition (formally defined in Definition 5 and 6) becomes np-hard since it needs to
take into account constraints from two pointers (forward and backward) for each inverted list.
Furthermore, in many applications, the data skewing leads to small savings from pruning the
top area of each list, since the top area is sparsely populated - unlike the densely populated
bottom area of each list. Thus it is not justified to use an expensive gathering phase algorithm
for small savings.

Section 5.1 reviews additional prior work ideas [31, 32] that avoid traversing some
top/bottom regions of the inverted index. Such ideas may provide additional optimizations
to TA-like algorithms in variations and/or restrictions of the problem (e.g., a restriction that
the threshold is very high) and thus they present future work opportunities in closely related
problems.

3 Stopping condition

In this section, we introduce a fine-tuned stopping condition that satisfies the tight and
complete requirements to early terminate the index traversal.

First, the stopping condition has to guarantee completeness (Definition 5), i.e. when the
stopping condition ϕ holds on a position b, the candidate set C must contain all the true
results. Note that since the input of ϕ is the partial observation at b, we must guarantee
that for all possible databases D consistent with the partial observation L(b), the candidate
set C contains all vectors in D that are θ-similar to the query q. This is equivalent to require

ICDT 2019

11:8 Cosine Threshold Querying with Optimality Guarantees

that if a unit vector s is found below position b (i.e. s does not appear above b), then s is
NOT θ-similar to q. We formulate this as follows.

I Definition 5 (Completeness). Given a query q with threshold θ, a position vector b on
index {Li}1≤i≤d is complete iff for every unit vector s, s < L[b] implies s ·q < θ. A stopping
condition ϕ(·) is complete iff for every b, ϕ(b) = True implies that b is complete.

The second requirement of the stopping condition is tightness. It is desirable that the
algorithm terminates immediately once the candidate set C contains a complete set of
candidates, such that no additional unnecessary access is made. This can reduce not only
the number of index accesses but also the candidate set size, which in turn reduces the
verification cost. Formally,

I Definition 6 (Tightness). A stopping condition ϕ(·) is tight iff for every complete position
vector b, ϕ(b) = True.

It is desirable that a stopping condition be both complete and tight. However, as we
shown in Appendix C of the full version, the baseline stopping condition ϕBL =

(
q ·L[b] < θ

)
is complete but not tight as it does not capture the unit vector constraint to terminate as
soon as no unseen unit vector can satisfy s ·q ≥ θ. Next, we present a new stopping condition
that is both complete and tight.

To guarantee tightness, one can check at every snapshot during the traversal whether the
current position vector b is complete and stop once the condition is true. However, directly
testing the completeness is impractical since it is equivalent to testing whether there exists a
real vector s = (s1, . . . , sd) that satisfies the following following set of quadratic constraints:

(a)
d∑

i=1
si · qi ≥ θ, (b) si ≤ Li[bi], ∀ i ∈ [d], and (c)

d∑
i=1

s2
i = 1. (1)

We denote by C(b) (or simply C) the set of Rd points defined by the above constraints. The
set C(b) is infeasible (i.e. there is no satisfying s) if and only if b is complete, but directly
testing the feasibility of C(b) requires an expensive call to a quadratic programming solver.
Depending on the implementation, the running time can be exponential or of high-degree
polynomial [10]. We address this challenge by deriving an equivalently strong stopping
condition that guarantees tightness and is efficiently testable:

I Theorem 7. Let τ be the solution of the equation
∑d

i=1 min{qi · τ, Li[bi]}2 = 1 and

MS(L[b]) =
d∑

i=1
min{qi · τ, Li[bi]} · qi (2)

called the max-similarity. The stopping condition ϕTC(b) = (MS(L[b]) < θ) is tight and
complete.

Proof. The tight and complete stopping condition is obtained by applying the Karush-Kuhn-
Tucker (KKT) conditions [23] for solving nonlinear programs. We first formulate the set of
constraints in (1) as an optimization problem over s:

maximize
d∑

i=1
si · qi subject to

d∑
i=1

s2
i = 1 and si ≤ Li[bi], ∀i ∈ [d] (3)

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:9

So checking whether C is feasible is equivalent to verifying whether the maximal
∑d

i=1 si ·qi is
at least θ. So it is sufficient to show that

∑d
i=1 si ·qi is maximized when si = min{qi ·τ, Li[bi]}

as specified above.
The KKT conditions of the above maximization problem specify a set of necessary

conditions that the optimal s needs to satisfy. More precisely, let

L(s, µ, λ) =
d∑

i=1
siqi −

d∑
i=1

µi(Li[bi]− si)− λ
(

d∑
i=1

s2
i − 1

)

be the Lagrangian of (3) where λ ∈ R and µ ∈ Rd are the Lagrange multipliers. Then,

I Lemma 8 (derived from KKT). The optimal s in (3) satisfies the following conditions:

∇sL(s, µ, λ) = 0 (Stationarity)
µi ≥ 0, ∀ i ∈ [d] (Dual feasibility)
µi(Li[bi]− si) = 0, ∀ i ∈ [d] (Complementary slackness)

in addition to the constraints in (3) (called the Primal feasibility conditions).

By the Complementary slackness condition, for every i, if µi 6= 0 then si = Li[bi]. If µi = 0,
then from the Stationarity condition, we know that for every i, qi + µi − 2λ · si = 0 so
si = qi/2λ. Thus, the value of si is either Li[bi] or qi/2λ.

If Li[bi] < qi/2λ then since si ≤ Li[bi], the only possible case is si = Li[bi]. For
the remaining dimensions, the objective function

∑d
i=1 si · qi is maximized when each si is

proportional to qi, so si = qi/2λ. Combining these two cases, we have si = min{qi/2λ, Li[bi]}.
Thus, for the λ that satisfies

∑d
i=1 min{qi/2λ, Li[bi]}2 = 1, the objective function

∑d
i=1 si ·

qi is maximized when si = min{qi/2λ, Li[bi]} for every i. The theorem is obtained by letting
τ = 1/2λ. J

Remark of ϕTC. The tight stopping condition ϕTC computes the vector s below L(b) with
the maximum cosine similarity MS(L[b]) with the query q. At the beginning of the gathering
phase, bi = 0 for every i so MS(L[b]) = 1 as s is not constrained. The cosine score is
maximized when s = q where τ = 1. During the gathering phase, as bi increases, the upper
bound Li[bi] of each si decreases. When Li[bi] < qi for some i, si can no longer be qi. Instead,
si equals Li[bi], the rest of s increases proportional to q and τ increases. During the traversal,
the value of τ monotonically increases and the score s(L[b]) monotonically decreases. This
is because the space for s becomes more constrained by L(b) as the pointers move deeper in
the inverted lists.

Testing the tight and complete condition ϕTC requires solving τ in Theorem (7), for which
a direct application of the bisection method takes O(d) time. We show a novel efficient
algorithm (Appendix D) in the full version of the paper based on incremental maintenance
which takes only O(log d) time for each test of ϕTC.

I Theorem 9. The stopping condition ϕTC(b) can be incrementally computed in O(log d)
time.

4 Near-Optimal Traversal Strategy

Given the inverted lists index and a query, there can be many stopping positions that are
both complete and tight. To optimize the performance, we need a traversal strategy that
reaches one such position as fast as possible. Specifically, the goal is to design a traversal

ICDT 2019

11:10 Cosine Threshold Querying with Optimality Guarantees

strategy T that minimizes |b| =
∑d

i=1 bi where b is the first position vector satisfying the
tight and complete stopping condition if T is followed. Minimizing |b| also reduces the
number of collected candidates, which in turn reduces the cost of the verification phase. We
call |b| the access cost of the strategy T . Formally,

I Definition 10 (Access Cost). Given a traversal strategy T , we denote by {bi}i≥0 the
sequence of position vectors obtained by following T . The access cost of T , denoted by
cost(T), is the minimal k such that ϕTC(bk) = True. Note that cost(T) also equals |bk|.

I Definition 11 (Instance Optimality). Given a database D with inverted lists {Li}1≤i≤d,
a query vector q and a threshold θ, the optimal access cost OPT(D,q, θ) is the minimum∑d

i=1 bi for position vectors b such that ϕTC(b) = True. When it is clear from the context,
we simply denote OPT(D,q, θ) as OPT(θ) or OPT.

At a position b, a traversal strategy makes its decision locally based on what has been
observed in the inverted lists up to that point, so the capability of making globally optimal
decisions is limited. As a result, traversal strategies are often designed as simple heuristics,
such as the lockstep strategy in the baseline approach. The lockstep strategy has a d · OPT
near-optimal bound which is loose in the high-dimensionality setting.

In this section, we present a traversal strategy for cosine threshold queries with tighter
near-optimal bound by taking into account that the index values are skewed in many realistic
scenarios. We approach the (near-)optimal traversal strategy in two steps.

First, we consider the simplified case with the unit-vector constraint ignored so that
the problem is reduced to inner product queries. We propose a general traversal strategy
that relies on convex hulls pre-computed from the inverted lists during indexing. During
the gathering phase, these convex hulls are accessed as auxiliary data during the traversal
to provide information on the increase/decrease rate towards the stopping condition. The
hull-based traversal strategy not only makes fast decisions (in O(log d) time) but is near-
optimal (Corollary 18) under a reasonable assumption. In particular, we show that if the
distance between any two consecutive convex hull vertices of the inverted lists is bounded by
a constant c, the access cost of the strategy is at most OPT + c. Experiments on real data
show that this constant is small in practice.

The hull-based traversal strategy is quite general, as it applies to a large class of functions
beyond inner product called the decomposable functions, which have the form

∑d
i=1 fi(si)

where each fi is a non-decreasing real function of a single dimension si. Obviously, for a
fixed query q, the inner product q · s is a special case of decomposable functions, where each
fi(si) = qi · si. We show that the near-optimality result for inner product queries can be
generalized to any decomposable function (Theorem 16).

Next, in Section 4.4, we consider the cosine queries by taking the normalization constraint
into account. Although the function MS(·) used in the tight stopping condition ϕTC is not
decomposable so the same technique cannot be directly applied, we show that the hull-based
strategy can be adapted by approximating MS(·) with a decomposable function. In addition,
we show that with a properly chosen approximation, the hull-based strategy is near-optimal
with a small adjustment to the input threshold θ, meaning that the access cost is bounded
by OPT(θ − ε) + c for a small ε (Theorem 20). Under the same experimental setting, we
verify that ε is indeed small in practice.

4.1 Decomposable Functions
We start with defining the decomposable functions for which the hull-based traversal strategies
can be applied:

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:11

I Definition 12 (Decomposable Function). A decomposable function F (s) is a d-dimensional
real function where F (s) =

∑d
i=1 fi(si) and each fi is a non-decreasing real function.

Given a decomposable function F , the corresponding stopping condition is called a
decomposable condition, which we define next.

IDefinition 13 (Decomposable Condition). A decomposable condition ϕF is a boolean function
ϕF (b) =

(
F (L[b]) < θ

)
where F is a decomposable function and θ is a fixed threshold.

When the unit vector constraint is lifted, the decomposable condition is tight and complete
for any scoring function F and threshold θ. As a result, the goal of designing a traversal
strategy for F is to have the access cost as close as possible to OPT when the stopping
condition is ϕF .

4.2 The max-reduction traversal strategy

To illustrate the high-level idea of the hull-based approach, we start with a simple greedy
traversal strategy called the Max-Reduction traversal strategy TMR(·). The strategy works
as follows: at each snapshot, move the pointer bi on the inverted list Li that results in the
maximal reduction on the score F (L[b]). Formally, we define

TMR(b) = argmax
1≤i≤d

(F (L[b])− F (L[b + 1i])) = argmax
1≤i≤d

(fi(Li[bi])− fi(Li[bi + 1]))

where 1i is the vector with 1 at dimension i and 0’s else where. Such a strategy is reasonable
since one would like F (L[b]) to drop as fast as possible, so that once it is below θ, the
stopping condition ϕF will be triggered and terminate the traversal.

It is obvious that there are instances where the max-reduction strategy can be far from
optimal, but is it possible that it is optimal under some assumption? The answer is positive:
if for every list Li, the values of fi(Li[bi]) are decreasing at decelerating rate, then we can
prove that its access cost is optimal. We state this ideal assumption next.

I Assumption 1 (Ideal Convexity). For every inverted list Li, let ∆i[j] = fi(Li[j])−fi(Li[j+
1]) for 0 ≤ j < |Li|.6 The list Li is ideally convex if the sequence ∆i is non-increasing, i.e.,
∆i[j + 1] ≤ ∆i[j] for every j. Equivalently, the piecewise linear function passing through the
points {(j, fi(Li[j]))}0≤j≤|Li| is convex for each i. A database D is ideally convex if every
Li is ideally convex.

An example of an inverted list satisfying the above assumption is shown in Figure 2(a).
The max-reduction strategy TMR is optimal under the ideal convexity assumption:

I Theorem 14 (Ideal Optimality). Given a decomposable function F , for every ideally convex
database D and every threshold θ, the access cost of TMR is exactly OPT.

We prove Theorem 14 with a simple greedy argument (see Appendix F for more details):
each move of TMR always results in the globally maximal reduction in the scoring function as
guaranteed by the convexity condition.

6 Recall that Li[0] = 1.

ICDT 2019

11:12 Cosine Threshold Querying with Optimality Guarantees

fi (Li[j])

O j

(a) Convex (b) Near-convex

jO

fi (Li[j])

(c) Constructing Li[j]
~

jO

Li[j]
~

Figure 2 Convexity and near-convexity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

L
[i

]

i

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

L
[i

]

i

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

L
[i

]

i

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

L
[i

]

i

(a) list L0 (b) list L1 (c) list L2 (d) list L3

Figure 3 The skewed inverted lists in mass spectrometry.

4.3 The hull-based traversal strategy
Theorem 14 provides a strong performance guarantee but the ideal convexity assumption
is usually not true on real datasets. Without the ideal convexity assumption, the strategy
suffers from the drawback of making locally optimal but globally suboptimal decisions. The
pointer bi to an inverted list Li might never be moved if choosing the current bi only results
in a small decrease in the score F (L[b]), but there is a much larger decrease several steps
ahead. As a result, the TMR strategy has no performance guarantee in general.

In most practical scenarios that we have seen, we can bring the traversal strategy TMR
to practicality by considering a relaxed version of Assumption 1. Informally, instead of
assuming that each list fi(Li) forms a convex piecewise linear function, we assume that
fi(Li) is “mostly” convex, meaning that if we compute the lower convex hull [14] of fi(Li),
the gap between any two consecutive vertices on the convex hull is small.7 Intuitively, the
relaxed assumption implies that the values at each list are decreasing at “approximately”
decelerating speed. It allows list segments that do not follow the overall deceleration trend,
as long as their lengths are bounded by a constant. We verified this property in the mass
spectrometry dataset as illustrated in Figure 3, a document dataset, and an image dataset
(see Appendix I of the full version for details).

I Assumption 2 (Near-Convexity). For every inverted list Li, let Hi be the lower convex hull of
the set of 2-D points {(j, fi(Li[j]))}0≤j≤|Li| represented by a set of indices Hi = {j1, . . . , jn}
where for each 1 ≤ k ≤ n, (jk, fi(Li[jk])) is a vertex of the convex hull. The list Li is
near-convex if for every k, jk+1 − jk is upper-bounded by some constant c. A database D is
near-convex if every inverted list Li is near-convex with the same constant c, which we refer
to as the convexity constant.

I Example 15. Intuitively, the near-convexity assumption captures the case where each
fi(Li) is decreasing with approximately decelerating speed, so the number of points between
two convex hull vertices should be small. For example, when fi is a linear function, the list
Li shown in Figure 2(b) is near-convex with convexity constant 2 since there is at most 1
point between each pair of consecutive vertices of the convex hull (dotted line). In the ideal
case shown in Figure 2(a), the constant is 1 when the decrease between successive values is
strictly decelerating.

7 We denote by fi(Li) the list [fi(Li[0]), fi(Li[1]), . . .] for every Li.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:13

Imitating the max-reduction strategy, for every pair of consecutive indices jk, jk+1 in

Hi and for every index j ∈ [jk, jk+1), let ∆̃i[j] = fi(Li[jk])− fi(Li[jk+1])
jk+1 − jk

. Since the

(jk, fi(Li[jk]))’s are vertices of a lower convex hull, each sequence ∆̃i is non-decreasing. Then
the hull-based traversal strategy is simply defined as

THL(b) = argmax
1≤i≤d

(∆̃i[bi]). (4)

Remark on data structures. In a practical implementation, to answer queries with scoring
function F using the hull-based strategy, the lower convex hulls need to be ready before
the traversal starts. If F is a general function unknown a priori, the convex hulls need
to be computed online which is not practical. Fortunately, when F is the inner product
F (s) = q · s parameterized by the query q, each convex hull Hi is exactly the convex hull
for the points {(j, Li[j])}0≤i≤|Li| from Li. This is because the slope from any two points

(j, fi(Li[j])) and (k, fi(Li[k])) is qiLi[j]− qiLi[k]
j − k

, which is exactly the slope from (j, Li[j])

and (k, Li[k]) multiplied by qi. So by using the standard convex hull algorithm [14], Hi can
be pre-computed in O(|Li|) time. Then the set of the convex hull vertices Hi can be stored
as inverted lists and accessed for computing the ∆̃i’s during query processing. In the ideal
case, Hi can be as large as |Li| but is much smaller in practice.

Moreover, during the traversal using the strategy THL, choosing the maximum ∆̃i[bi] at
each step can be done in O(log d) time using a max heap. This satisfies the requirement that
the traversal strategy is efficiently computable.

Near-optimality results. We show that the hull-based strategy THL is near-optimal under
the near-convexity assumption.

I Theorem 16. Given a decomposable function F , for every near-convex database D and
every threshold θ, the access cost of THL is strictly less than OPT + c where c is the convexity
constant.

When the assumption holds with a small convexity constant, this near-optimality result
provides a much tighter bound compared to the d · OPT bound in the TA-inspired baseline.
This is achieved under data assumption and by keeping the convex hulls as auxiliary data
structure, so it does not contradict the lower bound results on the approximation ratio [16].

Proof. Let B = {bi}i≥0 be the sequence of position vectors generated by THL. We call a
position vector b a boundary position if every bi is the index of a vertex of the convex hull
Hi. Namely, bi ∈ Hi for every i ∈ [d]. Notice that if we break ties consistently during the
traversal of THL, then in between every pair of consecutive boundary positions b and b′ in
B, THL(b) will always be the same index. We call the subsequence positions {bi}l≤i<r of
B where bl = b and br = b′ a segment with boundaries (bl,br). We show the following
lemma.

I Lemma 17. For every boundary position vector b generated by THL, we have F (L[b]) ≤
F (L[b∗]) for every position vector b∗ where |b∗| = |b|.

Intuitively, the above lemma says that if the traversal of THL reaches a boundary position b,
then the score F (L[b]) is the minimal possible score obtained by any traversal sequence of
at most |b| steps. We prove Lemma 17 by generalizing the greedy argument in the proof of
Theorem 14. More details can be found in Appendix G of the full version.

ICDT 2019

11:14 Cosine Threshold Querying with Optimality Guarantees

...L1 L2 L3 Ld

bl

br

bOPT

Figure 4 (bl, br): the two boundary positions surrounding the stopping position bstop of THL;
bOPT: the optimal stopping position; It is guaranteed that (1) |bstop| − |bl| < |br| − |bl| ≤ c and (2)
|bl| < |bOPT|.

Lemma 17 is sufficient for Theorem 16 because of the following. Suppose bstop is the
stopping position in B, which means that bstop is the first position in B that satisfies ϕF and
the access cost is |bstop|. Let {bi}l≤i<r be the segment that contains bstop. Given Lemma 17,
Theorem 16 holds trivially if bstop = bl. It remains to consider the case bstop 6= bl. Since the
traversal does not stop at bl, we have F (L[bl]) ≥ θ. By Lemma 17, bl is the position with
minimal F (L[·]) obtained in |bl| steps so |bl| ≤ OPT. Since |bstop| − |bl| < |br| − |bl| ≤ c,
we have that |bstop| < OPT + c. We illustrate this in Figure 4. J

Since the baseline stopping condition ϕBL is tight and complete for inner product queries,
one immediate implication of Theorem 16 is that

I Corollary 18 (Informal). The hull-based strategy THL for inner product queries is near-
optimal.

Verifying the assumption. We demonstrate the practical impact of the near-optimality
result in real mass spectrometry datasets. The same experiment is repeated on a document
and an image dataset (see Appendix I of the full version). The near-convexity assumption
requires that the gap between any two consecutive convex hull vertices has bounded size,
which is hard to achieve in general. According to the proof of Theorem 16, for a given query,
the difference from the optimal access cost is at most the size of the gap between the two
consecutive convex hull vertices containing the last move of the strategy (the bl and br in
Figure 4). The size of this gap can be much smaller than the global convexity constant c, so
the overall precision can be much better in practice. We verify this by running a set of 1,000
real queries on the dataset8. The gap size is 163.04 in average, which takes only 1.3% of the
overall access cost of traversing the indices. This indicates that the near-optimality guarantee
holds in the mass spectrometry dataset. Similar results are obtained in a document and
an image dataset, where the gap size takes only 7.9% and 0.4% of the overall access cost
respectively.

4.4 The traversal strategy for cosine
Next, we consider traversal strategies which take into account the unit vector constraint
posed by the cosine function, which means that the tight and complete stopping condition
is ϕTC introduced in Section 3. However, since the scoring function MS in ϕTC is not
decomposable, the hull-based technique cannot be directly applied. We adapt the technique
by approximating the original MS with a decomposable function F̃ . Without changing the

8 https://proteomics2.ucsd.edu/ProteoSAFe/index.jsp

https://proteomics2.ucsd.edu/ProteoSAFe/index.jsp

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:15

stopping condition ϕTC, the hull-based strategy can then be applied with the convex hull
indices constructed with the approximation F̃ . In the rest of this section, we first generalize
the result in Theorem 16 to scoring functions having decomposable approximations and show
how the hull-based traversal strategy can be adapted. Next, we show a natural choice of the
approximation for MS with practically tight near-optimal bounds. Finally, we discuss data
structures to support fast query processing using the traversal strategy.

We start with some additional definitions.

I Definition 19. A d-dimensional function F is decomposably approximable if there exists a
decomposable function F̃ , called the decomposable approximation of F , and two non-negative
constants ε1 and ε2 such that F̃ (s)− F (s) ∈ [−ε1, ε2] for every vector s.

When applied to a decomposably approximable function F , the hull-based traversal
strategy THL is adapted by constructing the convex hull indices and the {∆̃i}1≤i≤d using the
approximation F̃ . The following can be obtained by generalizing Theorem 16:

I Theorem 20. Given a function F approximable by a decomposable function F̃ with
constants (ε1, ε2), for every near-convex database D wrt F̃ and every threshold θ, the access
cost of THL is strictly less than OPT(θ − ε1 − ε2) + c where c is the convexity constant.

Proof. Recall that bl is the last boundary position generated by THL that does not satisfy the
tight stopping condition for F (which is ϕTC when F is MS) so F (L[bl]) ≥ θ. It is sufficient
to show that for every vector b∗ where |b∗| = |bl|, F (L[b∗]) ≥ θ − ε1 − ε2 so no traversal
can stop within |bl| steps, implying that the final access cost is no more than |bl|+ c which
is bounded by OPT(θ − ε1 − ε2) + c.

By Lemma 17, we know that for every such b∗, F̃ (L[b∗]) ≥ F̃ (L[bl]). By definition of
the approximation F̃ , we know that F (L[b∗]) ≥ F̃ (L[b∗])− ε1 and F̃ (L[bl]) ≥ F (L[bl])− ε2.
Combined together, for every b∗ where |b∗| = |bl|, we have

F (L[b∗]) ≥ F̃ (L[b∗])− ε1 ≥ F̃ (L[bl])− ε1 ≥ F (L[bl])− ε1 − ε2 ≥ θ − ε1 − ε2.

This completes the proof of Theorem 20. J

Choosing the decomposable approximation. By Theorem 20, it is important to choose an
approximation F̃ of MS with small ε1 and ε2 for a tight near-optimality result. By inspecting
the formula (2) of MS, one reasonable choice of F̃ can be obtained by replacing the term τ

with a fixed constant τ̃ . Formally, let

F̃ (L[b]) =
d∑

i=1
min{qi · τ̃ , Li[bi]} · qi (5)

be the decomposable approximation of MS where each component is a non-decreasing function
fi(x) = min{qi · τ̃ , x} · qi for i ∈ [d].

Ideally, the approximation is tight if the constant τ̃ is close to the final value of τ which is
unknown in advance. We argue that when τ̃ is properly chosen, the approximation parameter
ε1 + ε2 is very small. With a detailed analysis in Appendix H, we obtain the following upper
bound of ε:

ε ≤ max{0, τ̃ − 1/MS(L[bl])}+ MS(L[bl])− F̃ (L[bl]). (6)

ICDT 2019

11:16 Cosine Threshold Querying with Optimality Guarantees

=0.6 =0.7 =0.8 =0.9
0

200

400

600

800
#

Q
ue

ri
es

Range of :
[0, 0.04)
[0.04, 0.08)
[0.08, 0.12)
[0.12, 0.16)
>= 0.16

Figure 5 The distribution of ε.
jO

Li[j]

qi ∙ 𝜏
~

jO

Li[j]

qi ∙ 𝜏
~

Figure 6 The construction of convex hull H̃i.

Verifying the near-optimality. Next, we verify that the above upper bound of ε is small in
practice. We ran the same set of queries as in Section 4.3 and show the distribution of ε’s
upper bounds in Figure 5. We set τ̃ = 1/θ for all queries so the first term of (6) becomes zero.
Note that more aggressive pruning can yield better ε, but it is not done here for simplicity.
Overall, the fraction of queries with an upper bound <0.12 (the sum of the first 3 bars for
all θ) is 82.5% and the fraction of queries with ε > 0.16 is 0.5%. Similar to the case with
inner product queries, the average of the convexity constant c is 193.39, which is only 4.8%
of the overall access cost.

Remark on data structures. Similar to the inner product case, it is necessary that the
convex hulls for THL can be efficiently obtained without a full computation when a query
comes in. For every i ∈ [d], we let H̃i be the convex hull for the i-th component fi of F̃
and Hi be the convex hull constructed directly from the original inverted list Li. Next, we
show that each H̃i can be efficiently obtained from Hi during query time so we only need to
pre-compute the Hi’s.

We observe that when Li[bi] ≥ qi · τ̃ , fi(Li[bi]) equals a fixed value q2
i · τ̃ otherwise is

proportional to Li[bi]. As illustrated in Figure 6 (left), the list of values {fi(Li[j])}j≥0 is
essentially obtained by replacing the Li[j]’s greater than qi · τ̃ with qi · τ̃ .

The following can be shown using properties of convex hulls:

I Lemma 21. For every i ∈ [d], the convex hull H̃i is a subset of Hi where an index jk of
Hi is in H̃i iff k = 1 or(

qi · τ̃ − Li[jk]
)
/ jk ≥

(
Li[jk]− Li[jk+1]

)
/ (jk+1 − jk). (7)

Lemma 21 provides an efficient way to obtain each convex hull H̃i from the pre-computed
Hi’s. When a query q is given, we perform a binary search on each Hi to find the first
jk ∈ Hi that satisfies (7). Then H̃i is the set of indices {0, jk, jk+1 . . . }. We illustrate the
construction in Figure 6 (right).

Suppose that the maximum size of all Hi is h. The computation of the H̃i’s adds an extra
O(d log h) of overhead to the query processing time, which is insignificant in practice since h
is likely to be much smaller than the size of the database.

5 Related work

In this section, we present the main related work and defer the additional related work
(e.g., dimensionality reduction, mass spectrometry search, inner product queries) to the full
version.

5.1 Cosine similarity search
The cosine threshold querying studied in this work is a special case of the cosine similarity
search (CSS) problem [7, 3, 4] mentioned in Section 1. We first survey the techniques
developed for CSS.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:17

LSH. A widely used technique for cosine similarity search is locality-sensitive hash (LSH) [27,
5, 20, 22, 30]. The main idea of LSH is to partition the whole database into buckets using a
series of hash functions such that similar vectors have high probability to be in the same
bucket. However, LSH is designed for approximate query processing, meaning that it is
not guaranteed to return all the true results. In contrast, this work focuses on exact query
processing which returns all the results.

TA-family algorithms. Another technique for cosine similarity search is the family of TA-like
algorithms. Those algorithms were originally designed for processing top-k ranking queries
that find the top k objects ranked according to an aggregation function (see [21] for a survey).
We have summarized the classic TA algorithm [16], presented a baseline algorithm inspired
by it, and explained its shortcomings in Section 1. The Gathering-Verification framework
introduced in Section 2 captures the typical structure of the TA-family when applied to our
setting.

The variants of TA (e.g., [18, 6, 15, 12]) can have poor or no performance guarantee for
cosine threshold queries since they do not fully leverage the data skewness and the unit vector
condition. For example, Güntzer et al. developed Quick-Combine [18]. Instead of accessing all
the lists in a lockstep strategy, it relies on a heuristic traversal strategy to access the list with
the highest rate of changes to the ranking function in a fixed number of steps ahead. It was
shown in [17] that the algorithm is not instance optimal. Although the hull-based traversal
strategy proposed in this paper roughly follows the same idea, the number of steps to look
ahead is variable and determined by the next convex hull vertex. Thus, for decomposable
functions, the hull-based strategy makes globally optimal decisions and is near-optimal under
the near-convexity assumption, while Quick-Combine has no performance guarantee because
of the fixed step size even when the data is near-convex.

COORD. Teflioudi et al. proposed the COORD algorithm based on inverted lists for
CSS [32, 31]. The main idea is to scan the whole lists but with an optimization to prune
irrelevant entries using upper/lower bounds of the cosine similarity with the query. Thus,
instead of traversing the whole lists starting from the top, it scans only those entries within
a feasible range. We can also apply such a pruning strategy to the Gathering-Verification
framework by starting the gathering phase at the top of the feasible range. However, there
is no optimality guarantee of the algorithm. Also the optimization only works for high
thresholds (e.g., 0.95), which are not always the requirement. For example, a common and
well-accepted threshold in mass spectrometry search is 0.6, which is a medium-sized threshold,
making the effect of the pruning negligible.

Partial verification. Anastasiu and Karypis proposed a technique for fast verification of
θ-similarity between two vectors [3] without a full scan of the two vectors. We can apply
the same optimization to the verification phase of the Gathering-Verification framework.
Additionally, we prove that it has a novel near-constant performance guarantee in the presence
of data skewness.

Other variants. There are several studies focusing on cosine similarity join to find out all
pairs of vectors from the database such that their similarity exceeds a given threshold [7, 3, 4].
However, this work is different since the focus is comparing to a given query vector q rather
than join. As a result, the techniques in [7, 3, 4] are not directly applicable: (1) The inverted
index is built online instead of offline, meaning that at least one full scan of the whole data

ICDT 2019

11:18 Cosine Threshold Querying with Optimality Guarantees

is required, which is inefficient for search. (2) The index in [7, 3, 4] is built for a fixed query
threshold, meaning that the index cannot be used for answering arbitrary query thresholds
as concerned in this work. The theoretical aspects of similarity join were discussed recently
in [2, 20].

5.2 Euclidean distance threshold queries
The cosine threshold queries can also be answered by techniques for distance threshold queries
(the threshold variant of nearest neighbor search) in Euclidean space. This is because there
is a one-to-one mapping between the cosine similarity θ and the Euclidean distance r for
unit vectors, i.e., r = 2 sin(arccos(θ)/2). Thus, finding vectors that are θ-similar to a query
vector is equivalent to finding the vectors whose Euclidean distance is within r. Next, we
review exact approaches for distance queries while leaving the discussion of approximate
approaches in the full version.

Tree-based indexing. Several tree-based indexing techniques (such as R-tree, KD-tree,
Cover-tree [8]) were developed for range queries (so they can also be applied to distance
queries), see [9] for a survey. However, they are not scalable to high dimensions (say thousands
of dimensions as studied in this work) due to the well known dimensionality curse issue [34].

Pivot-based indexing. The main idea is to pre-compute the distances between data vectors
and a set of selected pivot vectors. Then during query processing, use triangle inequalities to
prune irrelevant vectors [13, 19]. However, it does not scale in high-dimensional space as
shown in [13] since it requires a large space to store the pre-computed distances.

Clustering-based (or partitioning-based) methods. The main idea of clustering is to
partition the database vectors into smaller clusters of vectors during indexing. Then during
query processing, irrelevant clusters are pruned via the triangle inequality [29, 28]. Clustering
is an optimization orthogonal to the proposed techniques, as they can be used to process
vectors within each cluster to speed up the overall performance.

6 Conclusion

In this work, we proposed optimizations to the index-based, TA-like algorithms for answering
the cosine threshold queries, which lie at the core of numerous applications. The novel
techniques include a complete and tight stopping condition computable incrementally in
O(log d) time and a family of convex hull-based traversal strategies with near-optimality
guarantees for a larger class of decomposable functions beyond cosine. With these techniques,
we show near-optimality first for inner-product threshold queries, then extend the result to the
full cosine threshold queries using approximation. These results are significant improvements
over a baseline approach inspired by the classic TA algorithm. In addition, we have verified
with experiments on real data the assumptions required by the near-optimality results.

References
1 Ruedi Aebersold and Matthias Mann. Mass-spectrometric exploration of proteome structure

and function. Nature, 537:347–355, 2016.
2 Thomas Dybdahl Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri. On the

Complexity of Inner Product Similarity Join. In PODS, pages 151–164, 2016.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:19

3 David C. Anastasiu and George Karypis. L2AP: Fast cosine similarity search with prefix L-2
norm bounds. In ICDE, pages 784–795, 2014.

4 David C. Anastasiu and George Karypis. PL2AP: Fast parallel cosine similarity search. In
IA3, pages 8:1–8:8, 2015.

5 Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and Optimal LSH for Angular Distance. In NIPS, pages 1225–1233, 2015.

6 Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Gerhard Weikum.
IO-Top-k: Index-access Optimized Top-k Query Processing. In VLDB, pages 475–486, 2006.

7 Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling Up All Pairs Similarity
Search. In WWW, pages 131–140, 2007.

8 Alina Beygelzimer, Sham Kakade, and John Langford. Cover Trees for Nearest Neighbor. In
ICML, pages 97–104, 2006.

9 Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in High-dimensional
Spaces: Index Structures for Improving the Performance of Multimedia Databases. CSUR,
33(3):322–373, 2001.

10 Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

11 Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. Efficient
Query Evaluation Using a Two-level Retrieval Process. In CIKM, pages 426–434, 2003.

12 Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating top-k queries over Web-accessible
databases. In ICDE, pages 369–380, 2002.

13 Lu Chen, Yunjun Gao, Baihua Zheng, Christian S. Jensen, Hanyu Yang, and Keyu Yang.
Pivot-based Metric Indexing. PVLDB, 10(10):1058–1069, 2017.

14 Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. Computational
Geometry: Introduction. Springer, 2008.

15 Prasad M Deshpande, Deepak P, and Krishna Kummamuru. Efficient Online top-K Retrieval
with Arbitrary Similarity Measures. In EDBT, pages 356–367, 2008.

16 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algorithms for Middleware.
In PODS, pages 102–113, 2001.

17 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
JCSS, 66(4):614–656, 2003.

18 Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kiebling. Optimizing Multi-Feature Queries for
Image Databases. In VLDB, pages 419–428, 2000.

19 Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. PREFER: A system for the
efficient execution of multi-parametric ranked queries. In SIGMOD, pages 259–270, 2001.

20 Xiao Hu, Yufei Tao, and Ke Yi. Output-optimal Parallel Algorithms for Similarity Joins. In
PODS, pages 79–90, 2017.

21 Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A Survey of Top-k Query Processing
Techniques in Relational Database Systems. CSUR, 40(4):1–58, 2008.

22 Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In ICDT, pages 604–613, 1998.

23 Harold W Kuhn and Albert W Tucker. Nonlinear programming. In Traces and Emergence of
Nonlinear Programming, pages 247–258. Springer, 2014.

24 B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In
ICCV, pages 2130–2137, 2009.

25 Henry Lam, Eric W. Deutsch, James S. Eddes, Jimmy K. Eng, Nichole King, Stephen E. Stein,
and Ruedi Aebersold. Development and validation of a spectral library searching method for
peptide identification from MS/MS. Proteomics, 7(5), 2007.

26 Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. FEXIPRO: Fast and Exact
Inner Product Retrieval in Recommender Systems. In SIGMOD, pages 835–850, 2017.

27 Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge
University Press, 2011.

ICDT 2019

11:20 Cosine Threshold Querying with Optimality Guarantees

28 Sharadh Ramaswamy and Kenneth Rose. Adaptive Cluster Distance Bounding for High-
Dimensional Indexing. TKDE, 23(6):815–830, 2011.

29 Hanan Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., 2005.

30 Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and Efficiency in High Dimensional
Nearest Neighbor Search. In SIGMOD, pages 563–576, 2009.

31 Christina Teflioudi and Rainer Gemulla. Exact and Approximate Maximum Inner Product
Search with LEMP. TODS, 42(1):5:1–5:49, 2016.

32 Christina Teflioudi, Rainer Gemulla, and Olga Mykytiuk. LEMP: Fast Retrieval of Large
Entries in a Matrix Product. In SIGMOD, pages 107–122, 2015.

33 Mingxun Wang and Nuno Bandeira. Spectral Library Generating Function for Assessing
Spectrum-Spectrum Match Significance. Journal of Proteome Research, 12(9):3944–3951, 2013.

34 Roger Weber, Hans-Jörg Schek, and Stephen Blott. A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In VLDB, pages 194–205,
1998.

	Introduction
	Algorithmic Framework
	Stopping condition
	Near-Optimal Traversal Strategy
	Decomposable Functions
	The max-reduction traversal strategy
	The hull-based traversal strategy
	The traversal strategy for cosine

	Related work
	Cosine similarity search
	Euclidean distance threshold queries

	Conclusion

