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Abstract
Real time perception and understanding of the environment is essential for an autonomous vehicle.
To obtain the most accurate perception, existing solutions propose to combine multiple sensors.
However, a large number of embedded sensors in the vehicle implies to process a large amount of
data thus increasing the system complexity and cost. In this work, we present a novel approach that
uses only one LIDAR sensor. Our approach enables reducing the size and complexity of the used
machine learning algorithm. A novel approach is proposed to generate multiple 2D representation
from 3D points cloud using the LIDAR sensor. The obtained representation solves the sparsity and
connectivity issues encountered with LIDAR-based solution.
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1 Introduction

Camera, Stereo-camera, RADAR, and LIDAR are the sensors that provide our view of
the world. To enable machines to understand our world, multiple approaches have been
developed. Camera-based systems are the most dominant [2, 19, 3]. Recently, approaches
using depth information generated from stereo-camera have started to gain popularity, as
they have proven to improve accuracy. Knowing that camera and stereo-camera are almost
the same since the stereo-camera enable the recovery of depth information compared to
the monocular camera. Similar Machine Learning (ML) algorithms for multi-class object
detection and segmentation are used with minor modifications. On the other hand, the
LIDAR has fallen behind performing mainly detection tasks [20, 17, 14] as the variance in
the points coordinates ease the task.

The richness and variation of data fed to an ML determine its complexity and size. These
two factors have a direct impact on network accuracy. Images are well structured and rich in
information, as each pixel has a non-zero value and adjacent to another pixel on a 2D plane.
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However, this richness adds more challenges like illumination conditions, shadows, colors, and
textures. All these parameters require an ML architecture to have more layers to capture
abstract aspects like car tires and window edges. A large amount of filters is also needed
to accommodate the infinite changes that we can obtain like car shapes and the possible
textures of an object. The LIDAR is an active sensor capable of operating in the majority of
weather conditions and at any daytime. Unfortunately, due to its rotatory movement, the
obtained points are unstructured, unordered and have no connectivity between them. These
weaknesses make it difficult to use for multiple purposes when compared to the camera sensor.

In this work, we propose a new approach to generate multiple 2D representations using
only a 3D LIDAR. These representations reflect the real world and are immune to camera
limitations. These representations allow us to see the silhouette of objects without the added
textures, colors and illumination condition. Some of the generated representations are an
up-sampled version of the ranging data projected into an image, where the new values are
filled using interpolation. Further, the obtained representations simplify the ML architecture
and reduce its size thus gaining in processing time and getting closer to real time.

Our Contributions are as follow:
Novel range data up-sampling process to enable camera-based approaches to be used
with LIDAR data.
Robust normal map estimation.
We present a new approach to reducing the complexity of current machine learning
algorithms and their computation overhead.

In Section 2, we present the related work to up-sampling the ranging data, then we
introduce the concept in Section 3 and method to generate the representation in Section 4.
We then conclude the paper by presenting the benefits of the proposed representations for
machine learning algorithms.

2 Related Work

The first attempt to generate dense information from range data which corresponds to LIDAR
points cloud in our case was made by Diebel et al [4]. The authors proposed a range of data
and image fusion to generate a dense depth map from a low-resolution one. They fed the
projected range data with the image to Markov Random Field regressor, then they generate
the high-resolution depth map by iterating through the MRF. Their experiments showed
that textured surfaces had a negative impact on the estimated values as color value changed.

In [1], Andreasson et al. proposed 5 interpolation methods as a replacement to the
MFR proposed by [4]. The nearest range (NR) and multi-linear interpolation (MLI) are
color free estimations. The color was considered in the two modified version NRC and LIC.
These approaches relied on an empirically predefined constant and parameter-free version
of LIC was further introduced as PLIC. Their results in a laboratory environment under
controlled illumination has proved that color improved accuracy. However, experiments in
real conditions showed that color had the opposite effect. This limitation is caused mainly
by variant illumination conditions.

In [10], Yuhang et al proposed a new approach to generate depth, height and a normal
map from the range data and image. They used different features to determine the value
of the new pixels. The features were used to minimize the effects of textured surfaces and
illumination conditions on the final result. However, their result accuracy varies according to
the used window size. These representations have proven their effectiveness in the work of [9].
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Further, the KITTI benchmark recently launched a competition to generate the depth map
from the LIDAR data, when used solely or in conjunction with a camera. This competition
saw the introduction of machine learning algorithms, where the best at the time of writing
this paper is [15]. The authors considered the up-sampling task as a deep regression problem.
They feed depth data and color sequences to the regression network.

Ku et al [13] proposed a simpler approach to up-sample the range data, by using a
computational fast process like morphological dilatation, filling and blurring. They were able
to generate the depth map in 11ms on a CPU and their results were comparable to results
obtained by convolutional neural networks.

In [16], Schneider et al. propose to use the edge information to guide the up-sampling.
The authors considered the up-sampling as a global energy minimization problem. Although
the approach was developed for time-of-flight cameras, the authors were able to extend it to
range data and compete in the KITTI depth completion.

Dimitrievski et al [5] proposed a morphological neural network, their approach approx-
imates morphological operations using a novel Contraharmonic Mean Filter layers. The
proposed network is modified U-net architecture with morphological layers.

Multiscale networks have produced very interesting results in the KITTI challenge. In
[11], Huang et al proposed a hierarchical multi-scale network, they introduced three sparsity-
invariant operations. These operations were used to create a sparsity-invariant multi-scale
encoder-decoder network. The method was developed to deal with the sparsity problem in
the range data generated by LIDAR.

Although these approaches are able to generate dense depth map representations and
more representations in some of them, the following problems arise:

A degraded image quality is obtained under unfavorable illumination conditions.
A large number of points must be used for the estimation.
The whole process must be repeated much time to obtain a different representation. This
factor increases the processing time with the number of generated representations.

Existing approaches use a window to retrieve the close points for the estimation. A wide
window utilization could augment greatly the number of used points, thus generating false
estimations at high variance regions. Furthermore, the number of points cannot be reduced
due to adapt the algorithm to the hardware processing constraints. In this work, we consider
a newly generated pixels as part of a triangle surface, where the value is an interpolation
between three closest points. This approach removes the need for a fixed window and allows
the generation of the representations without the need to repeat the process.

3 Optimized 3D representation for LIDAR data

Real objects are in general modeled as 3D model mesh consisting of 3D points and their
connectivity list. In this work, we propose to generate a 3D mesh from the LIDAR ranging
data. The high accuracy of this data enables the creation of a mesh that mimics the
environment of the vehicle. Greater control over desired the desired output resolution is then
possible. This obtained mesh enable the generation of a set of representations, which we
formulate as follows:

R3 ≡ {R2,R2,R2, ....} (1)

Figure 1 presents a 3D mesh obtained by our approach and Figure 2 shows the multiple
obtainable representations. The Figures 2.b to 2.d representations show (respectively) the
rendered X, Z, Y and the reflection of the surface. These representation using only the mesh

ASD 2019
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Figure 1 Reconstructed mesh from point cloud.

Figure 2 Rendered representations (from top to bottom) a) Initial image, b) up-sampled x
coordinates, c) Up-sampled z coordinates, d) Up-sampled y coordinates, e) Reflection data, f)
Estimated normal map (final result).

Figure 3 Overall Algorithm.
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and points coordinates in the real world. The last representation is a 3-channel image, where
each channel contains one of the normal parameter estimated from the three points making
the surface. In the last representation (Figure 2.f), the coordinates of the points and their
connectivity were used to generate the results.

Further results can be acquired, such as object contours, using the mesh connectivity
list and the angle between the points. This last feature is very interesting as it allows to
obtains the contours with a relatively reduced processing. In the next section, we present
our method to obtain the connectivity list.

4 Method

A 3D mesh is a virtual construct composed of a 3D point set and their connectivity list.
The LIDAR generates an accurate point cloud from its environment. These points can be
considered as the first half of the mesh. However, the rotatory movement, the angular speed,
the number of receptors and the used algorithm have a great impact on the number of points.
These factors have an important variance in the possible results obtained.

The steps to generate the representation are shown In Figure 3. We bring the reader
attention to the fact that all the steps can be done in parallel.

4.1 Division and Filtering
Point clouds are unordered and have no connectivity by nature. Attempting to generate a
mesh in this format will be time-consuming. A simpler and effective approach is to process
the points in 2D space. This allows to reduce the complexity of the algorithm and gives
faster processing compared to 3D space representation.

The projected point number can be also be reduced to accelerate the processing. Our
experiments show that reducing the number of points will not greatly reduce the quality of
the results. This point will be discussed in the experiments section.

After the projection, the points are divided into a grid with equal dimensions. The
number of points in each grid cell is then reduced based on distance criteria. This distance
controls the number of points used to create the mesh. In this work, the Manhattan distance
is used for its computation simplicity. In Figure 4, reduced points with different distances
are shown. We attract the reader attention to the blue rectangle. As can be seen, the details
of the scene are preserved even with a big distance.

4.2 Triangulation and mesh creation
Delaunay triangulation is used to create the connectivity list between the points. Multiple
variants of the algorithm exist from which we denote: Flip algorithms [12], Incremental [8, 7]
and Divide and Conquer [6]. The Divide and conquer variant is chosen in our approach for
two main reasons. First, generating these representations have to be as fast as possible. The
work of Su et. Al [18] proved that this variant is the most performing approach. Secondly,
the algorithm has been developed with GPUs in mind. The points in the grid cells can be
processed separately and in parallel then merged at the end.

4.3 Rendering
The rendering step is where the up-sampling is performed. For each triangle, the value and
positions of the delimiting points are used to interpolate the new values at rendering time.
Figure 5 presents four examples of rendered triangles.

ASD 2019
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Figure 4 Ranging data projected after filtering with different distances: a) 1 pixel, b) 5 pixels, c)
10 pixels, d) 15 pixels.

Figure 5 Samples of rendered triangles mimicking possible interpolations cases.
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Figure 6 Up-sampled ranging data: a) the original image, b ,c and the respective up-sampled x,
y and z coordinates.

Each example in Figure 5 represents a possible case.
In this example P1, P2, and P3 are the delimiting points of the triangle, each point has a

different color to mark its contribution to the interpolation. In 5.a), the three points have
the same value to simulate points on the same surface. The three points contribute equally
to the interpolation. In the case of 5.b), P2 and P3 are 0.05 the value of P1 to simulate the
case of a distant point that is connected to close ones, it can be observed that P2 and P3
do not contribute. Case 5.c) simulates the case where the three points belong to the same
object with a slight difference in the value. We bring the reader’s attention to the differences
between this case and case In 5.a) for comparison. Case In 5.d) present a randomly shaped
triangle.

5 Improving ML

Machine Learning (ML) based algorithms is becoming popular where a large set of data
must be processed in a reduced time period. The three most researched tasks in ML are
classification, detection, and segmentation. With the proposed representations in this paper,
detection and segmentation tasks are targeted for AV. We present two possible improvements
to accelerate and train machine learning algorithms.

Detection and segmentation algorithms are used to extract object shape, delimiters, and
position from the provided images. In contrast to existing classification algorithms that have
to differentiate between two visually different instance of the same object. We propose to
use the generated representations as a replacement to camera provided images. The idea is
that object in a scene can be detected using their silhouettes instead of their texture. Figure
6 shows the image of a car and the corresponding x, y and z representations. The reduced
visual complexity produced by textures, illumination, and shadows allows the reduction of
filters number inside layers, thus compressing the size of the model and accelerating the
processing time.

ASD 2019
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Figure 7 Generated normal map for a complex environment: a) The original image b) The
generated normal map.

Furthermore, the generated normal map enables the clustering of points into surfaces
and ease the differentiation between the multiple objects in a scene. In Figure 7 we present a
scene that contains the normal that can be found in a complex environment.

As a second improvement, we propose to train ML algorithms using synthesized repres-
entations using modeling software. In fact, the representations do not require any realism
and can be used in real-world applications.

6 Experiments

To evaluate the accuracy of the generated meshes, a ground-truth mesh is needed. However,
this information is unavailable, as an alternative, the evaluation was carried using the
generated representations. A 100 scene was chosen at random from different sets, and for
each scene we generated the X, Y and Z representations with filtering distances in the range
[5 - 25] pixels between the points, we found through experiments that a distances less than 5
pixels will create small triangles that cannot be rendered in the flowing step. The results are
compared using the Root of Mean Squared Error (RMSE), Mean of Absolute Error (MAE)
to the ranging data, and the number of triangles. The RMSE will give an insight on the
standard deviation of interpolation error, whereas the MAE will reflect the common error
value. Finally, the number of triangles in the mesh present us with the impact of rendering
on the hardware. In Figure 7, the MAE and RMSE metric is plotted for the height (Z)
representation, the results are in relation to pixels distance between projected points, in
addition to triangles count. The result shows that with a distance of 5 pixels introduces a 1
cm absolute error and a 10 cm deviation compared to 3 cm absolute error with 25 pixels
distance, it can be observed that standard deviation is only about 2 cm more for 25 pixels
distance for 45% of the triangles counts. Thus, enabling the possibility to choose a balance
between the desired accuracy and the dedicated processing power or processing time.
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Figure 8 The different fusion architectures.

Table 1 Interpolation error MAE and RMSE in meters.

Error Metric per coord Filtering distance in pixel
5 11 19 25

X MAE 0.160 0.320 0.443 0.498
RMSE 1.857 1.902 2.053 2.119

Y MAE 0.045 0.088 0.153 0.168
RMSE 0.763 0.768 0.807 0.824

Z MAE 0.009 0.019 0.026 0.029
RMSE 0.100 0.102 0.109 0.113

In Table 1, the interpolation error is presented, in relation to the distance by which the
number of points is reduced. From the table, it can be observed that the error is strongly
connected to the range. For example, values for the X coordinates range from 0 to 60 meters,
where the mean absolute error increase from 16 cm to about 50 cm the more the filtering
distance increase, which is not the case for the Z coordinates that range from −2m to 1m
relative to LIDAR position.

7 Conclusion and Future Works

This paper presents an ongoing work on generating multiple representations from LIDAR
ranging data. Our aim is to introduce a novel approach to reduce the size of ML architectures
and augmenting the training set. Currently, we are implementing the generation of the
representation to run in parallel on a GPU. In the next steps, we will evaluate the impact of
reducing the number of points on the processing time and results in accuracy. We will also
validate our hypothesis of compressing ML architecture by testing it on a variety of detection
and segmentation architectures.

ASD 2019
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