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Abstract
Computational Complexity is concerned with the resources that are required for algorithms to
detect properties of combinatorial objects and structures. It has often proven true that the
best way to argue about these combinatorial objects is by establishing a connection (perhaps
approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most
powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-
Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds,
the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test
are some of the most prominent examples.

In some of the most exciting recent progress in Computational Complexity the algebraic
theme still plays a central role. There have been significant recent advances in algebraic circuit
lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now be-
ing considered are not so far from ones that would lead to a general result. There have been
similar successes concerning the related problems of polynomial identity testing and circuit re-
construction in the algebraic model (and these are tied to central questions regarding the power
of randomness in computation). Also the areas of derandomization and coding theory have
experimented important advances.

The seminar aimed to capitalize on recent progress and bring together researchers who are
using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are
relying on ever more sophisticated and specialized mathematics and the goal of the seminar was
to play an important role in educating a diverse community about the latest new techniques.
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1 Executive Summary

Markus Bläser
Valentine Kabanets
Jacobo Torán
Christopher Umans
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The seminar brought together more than 40 researchers covering a wide spectrum of complexity
theory. The focus on algebraic methods showed the great importance of such techniques
for theoretical computer science. We had 24 talks, most of them lasting about 45 minutes,
leaving ample room for discussions. We also had a much appreciated rump session on
Tuesday evening in which Antonina Kolokolova, Bill Gasarch, Lance Fortnow, Chandran
Saha, William Hoza, Neeraj Kajal and Arpita Korwar presented some open questions. In the
following we describe the major topics of discussion in more detail.

Circuit Complexity

This is an area of fundamental importance to Complexity. Circuits studied from many
different perspectives were one of the main topics in the seminar. Eric Allender gave an
overview of the Minimum Circuit Size Problem (MCSP): given the truth-table for a Boolean
function, what is the size of the minimum circuit computing it? In his talk he mentioned
some interesting results proving that some low complexity classes cannot be reduced to the
problem of computing superlinear approximations to circuit size.

Arithmetic circuits and formulas are a special computation model that uses + and × as
operators for computing polynomials instead of Boolean operations. Nutan Limaye presented
a depth hierarchy theorem for this model showing that there is a polynomial computed by a
depth D+ 1 polynomial sized multilinear formula such that any depth D multilinear formula
computing the polynomial must have exponential size.

Chandan Saha considered a further restriction to depth three circuits C computing a
polynomial f = T1 +T2 + · · ·+Ts, where each Ti is a product of d linear forms in n variables.
He presented a randomized algorithm to reconstruct non-degenerate homogeneous depth
three circuits, for the case n > (3d)2, given black-box access to f . The algorithm works in
polynomial time in n, s and d.

Depth-2 circuits with polynomial size and linear threshold functions were presented by
Meena Mahajan. She surveyed the landscape below these circuits and present one new result
concerning decision lists.

Algebraic Complexity

There were also several presentations discussing the complexity of several problems over
algebraic structures.

Nitin Saxena considered in his talk the problem of testing whether a set F of polynomials
given as algebraic circuits has an algebraic dependence. He showed that this problem can be
computed in AM ∩ coAM thus solving an open question from 2007.

Problems related to the minimum code-word problem and the existence of non-trivial
automorphism moving few vertices in graphs or hypergraphs, were presented by V. Arvind
in his talk. He discuss the parameterized complexity of this and related algebraic problems.
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Josh Alman gave an interesting talk on Matrix Multiplication (MM). He surveyed the
two main approaches for MM algorithms: the Laser method of Strassen, and the Group
theoretic approach of Cohn and Umans and defined a generalization which subsumes these
two approaches. He then explained ways to obtain lower bounds for algorithms for MM when
using these algorithmic methods.

Rohit Gurjar studied the class of matrices A for which the lattice L(A) formed by all
integral vectors v in the null-space of A, has only polynomially many near-shortest vectors.
He proved that this is the case when the matrix A is totally unimodular (all sub-determinants
are 0, +1, or −1). As a consequence he could show a deterministic algorithm for PIT for any
polynomial of the form det(

∑
xiAi) for rank-1 matrices Ai.

Pseudo-Randomness and Derandomization

Derandomization is an area where there are tight connections between lower bounds and
algorithms. Strong enough circuit lower bounds can be used to construct pseudo-random
generators that can then be used to deterministically simulate randomized algorithms. A
central question in derandomization is whether randomized logspace RL equals deterministic
logspace L. To show that RL = L, it suffices to construct explicit pseudorandom generators
that fool polynomial-size read-once (oblivious) branching programs (roBPs). There were two
talks related to this question. Michael Forbes presented a method to obtain an explicit PRG
with seed-length O(log3 n) for polynomial-size roBPs reading their bits in an unknown order.
William Hoza gave an explicit hitting set generator for read-once branching programs with
known variable order. As a corollary of this construction, it follows that every RL algorithm
that uses r random bits can be simulated by an NL algorithm that uses only O(r/ logc n)
nondeterministic bits, where c is an arbitrarily large constant. Another consequence of
the result is that any RL algorithm with small success probability ε can be simulated
deterministically in space O(log3/2 n+ logn log log(1/ε)).

A hitting set is a set of instances such that every non-zero polynomial in the model has
a non-root in the set. This would solve the Polynomial Identity Testing problem (PIT) in
that model. Ramprasad Saptharishi showed that by barely improving the trivial (s+ 1)n
size hitting set even for n-variate degree s, size s algebraic circuits, we could get an almost
complete derandomization of PIT.

In a second talk, William Hoza talked about the possibility of derandomizing an algorithm
by using randomness from the input itself. For a language L with a bounded-error randomized
algorithm in space S and time n · poly(S) he gave a randomized algorithm for L with the
same time and space resources but using only O(S) random bits; the algorithm has a low
failure probability on all but a negligible fraction of inputs of each length.

Andrej Bogdanov considered the problem of extracting true randomness from a set biased
dice (Santha-Vazirani sources). He presented a recent result in which he completely classified
all non-trivial randomness sources of this type into: non-extractable ones, extractable from
polynomially many samples, and extractable from an logarithmically many samples (in the
inverse of the error).

Coding Theory

Error-correcting codes and other kinds of codes, particularly those constructed from polyno-
mials, i.e. Reed-Solomon codes or Reed-Muller codes, lie at the heart of many significant
results in Computational Complexity. This is an area in which the relation between different
areas of complexity, like the analysis of algebraic structures or derandomization becomes
especially fruitful.

18391
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Greatly improving previously known constructions for an odd size alphabet, Michal
Koucký presented a construction of quasi-Gray codes of dimension n and length 3n over the
ternary alphabet {0, 1, 2} with worst-case read complexity O(logn) and write complexity 2.
This generalizes to arbitrary odd-size alphabets. These results were obtained via a novel
application of algebraic tools together with the principles of catalytic computation.

Noga Ron-Zewi presented a very recent result showing that Folded Reed-Solomon codes
achieve list decoding capacity with constant list sizes, independent of the block length. She
explained that multiplicity codes exhibit similar behavior, and used this to obtain capacity
achieving locally list decodable codes with query complexity significantly lower than previous
constructions.

Binary error correcting code with relative distance (1− ε)/2 and relative rate ε2+o(1) were
explained in one of the talks given by Amnon Ta-Shma. Previous explicit constructions had
rate about ε3. The main tool used for this construction are Parity Samplers. He explained
how to get better explicit parity samplers using a variant of the zig-zag product.

In his second talk, Amnon talked about (1 − τ, L) erasure list-decodable codes. He
presented a recent work where he constructed for the first time an explicit binary (1− τ, L)
erasure list-decodable code having rate τ1+γ (for any constant γ > 0 and τ small enough)
and list-size poly(log 1/τ), exhibiting an explicit non-linear code that provably beats the best
possible linear one. The main ingredient in his construction is a new (and almost-optimal)
unbalanced two-source extractor.

Quantum Complexity

Complexity issues arising in the context of quantum computation are an important area in
Complexity Theory since several decades. In this workshop we had one talk on this topic.
Sevag Gharibian talked about quantum versions of the classical k-SAT problem. He talked
about the problem of computing satisfying assignments to k-QSAT instances which have a
“matching” or “dimer covering”; this is an NP problem whose decision variant is trivial, but
whose search complexity remains open. He presented a parameterized algorithm for k-QSAT
instances from a non-trivial class, which allows to obtain exponential speedups over brute
force methods.

Conclusion

As is evident from the list above, the talks ranged over a broad assortment of subjects
with the underlying theme of using algebraic and combinatorial techniques. It was a very
fruitful meeting and has hopefully initiated new directions in research. Several participants
specifically mentioned that they appreciated the particular focus on a common class of
techniques (rather than end results) as a unifying theme of the workshop. We look forward
to our next meeting!
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3 Overview of Talks

3.1 The Non-Hardness of Approximating Circuit Size
Eric Allender (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
© Eric Allender

The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently;
MCSP is hard for SZK under rather powerful reductions, and is provably not hard under
“local” reductions computable in TIME(n0.49). The question of whether MCSP is NP hard
(or indeed, hard even for small subclasses of P) under some of the more familiar notions of
reducibility (such as many-one or Turing reductions computable in polynomial time or in
AC0) is closely related to many of the longstanding open questions in complexity theory.

All known hardness results for MCSP hold also for computing somewhat weak approxima-
tions to the circuit complexity of a function. Some of these results were proved by exploiting a
connection to a notion of time-bounded Kolmogorov complexity (KT) and the corresponding
decision problem (MKTP). More recently, a new approach for proving improved hardness
results for MKTP was developed, but this approach establishes only hardness of extremely
good approximations of the form 1 + o(1), and these improved hardness results are not yet
known to hold for MCSP. In particular, it is known that MKTP is hard for the complexity
class DET under nonuniform AC0-many-one reductions, implying that MKTP is not in
AC0[p] for any prime p. It is still open if similar circuit lower bounds hold for MCSP. One
possible avenue for proving a similar hardness result for MCSP would be to improve the
hardness of approximation for MKTP beyond 1 + o(1) to ω(1). In this paper, we show that
this is impossible.

More specifically, we prove that PARITY does not reduce to the problem of computing
superlinear approximations to KT-complexity or circuit size via AC0-Turing reductions that
make O(1) queries. This is significant, since it is known that just ONE query to a much worse
approximation of circuit size or KT-complexity suffices, for an AC0 reduction to compute an
approximation to any set in P/poly. For weaker approximations, we also prove non-hardness
results for more powerful reductions. Our non-hardness results are unconditional, in contrast
to conditional results presented in earlier work of [Allender, Hirahara] (for more powerful
reductions, but for much worse approximations). This also highlights obstacles that would
have to be overcome by any proof that MKTP or MCSP is hard for NP under AC0 reductions.
It may also be a step toward confirming a conjecture of Murray and Williams, that MCSP is
not NP-complete under logtime-uniform AC0-many-one reductions.

18391
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3.2 Limits on All Known (and Some Unknown) Approaches to Matrix
Multiplication

Josh Alman (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
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Matrix Multiplication”, in Proc. of the 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, LIPIcs, Vol. 94,
pp. 25:1–25:15, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.
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We study the known techniques for designing Matrix Multiplication (MM) algorithms. The
two main approaches are the Laser method of Strassen, and the Group theoretic approach of
Cohn and Umans. We define a generalization based on zeroing outs which subsumes these
two approaches, which we call the Solar method, and an even more general method based on
monomial degenerations, which we call the Galactic method.

We then design a suite of techniques for proving lower bounds on the value of omega, the
exponent of MM, which can be achieved by algorithms using many tensors T and the Galactic
method. Some of our techniques exploit “local” properties of T , like finding a sub-tensor of
T which is so “weak” that T itself couldn’t be used to achieve a good bound on ω, while
others exploit “global” properties, like T being a monomial degeneration of the structural
tensor of a group algebra. Our main result is that there is a universal constant c > 2 such
that a large class of tensors generalizing the Coppersmith-Winograd tensor CWq cannot be
used within the Galactic method to show a bound on ω better than c, for any q.

3.3 The Complexity of Computing Small Weight Graph Automorphisms
V. Arvind (Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY 3.0 Unported license
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Given a graph (or hypergraph) G as input and a parameter k, does G have an automorphism
of weight exactly k? We discuss the parameterized complexity of this and related problems,
and also connections to the minimum weight codeword problem showing some cases in
which the problems are fixed parameter tractable. As a building block for our algorithms,
we generalize Schweitzer’s FPT algorithm [ESA 2011] that, given two graphs on the same
vertex set and a parameter k, decides whether there is an isomorphism between the two
graphs that moves at most k vertices. We extend this result to hypergraphs, using the
maximum hyperedge size as a second parameter. Another key component of our algorithm is
an orbit-shrinking technique that preserves permutations that move few points and that may
be of independent interest. Applying it to a suitable subgroup of the automorphism group
allows us to switch from bounded hyperedge size to bounded color classes in the exactly-k
case.
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3.4 Optimal Extractors for Generalized Santha-Vazirani Sources
Andrej Bogdanov (The Chinese University of Hong Kong, HK)
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Take a finite set of biased dice that share some common faces. An adversary repeatedly
tosses them, with each choice of die possibly depending on the previous outcomes. Can
you extract true randomness? In 1986 Santha and Vazirani gave a negative answer when
the dice are (two-sided) coins. In 2015 Beigi, Etesami, and Gohari showed how to obtain
an almost-unbiased bit for other sets of dice. The sample complexity of their extractor is
polynomial in the inverse of the error. We completely classify all non-trivial randomness
sources of this type into: (1) non-extractable ones; (2) extractable from polynomially many
samples; and (3) extractable from an logarithmically many samples (in the inverse of the
error). The extraction algorithms are efficient and easy to describe. I will discuss the
relevance to distributed and cryptographic computation from imperfect randomness and
point out some open questions in this context.

3.5 Degree vs Sparsity of Flat Polynomials that Approximate Boolean
Functions

Sourav Chakraborty (Indian Statistical Institute – Kolkata, IN)

License Creative Commons BY 3.0 Unported license
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Various conjectures and theorems about the Fourier spectrum of Boolean functions impose
various constraints of what type of polynomials can approximate a Boolean function. One
such conjecture is the Fourier Entropy Influence Conjecture (FEI). As an implication of the
conjecture we can observe a relation between the degree and sparsity of any polynomial that
approximates a Boolean function. Can we prove these implications directly without using
the conjecture? This question is related to the B-H conjecture in mathematics, which can be
thought of as a generalised balancing lights problem.
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3.6 A PSPACE Construction of a Hitting Set for the Closure of Small
Algebraic Circuits

Michael A. Forbes (University of Illinois – Urbana-Champaign, US)
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In this paper we study the complexity of constructing a hitting set for the closure of VP,
the class of polynomials that can be infinitesimally approximated by polynomials that
are computed by polynomial sized algebraic circuits, over the real or complex numbers.
Specifically, we show that there is a PSPACE algorithm that given n, s, r in unary outputs
a set of n-tuples over the rationals of size poly(n, s, r), with poly(n, s, r) bit complexity,
that hits all n-variate polynomials of degree-r that are the limit of size-s algebraic circuits.
Previously it was known that a random set of this size is a hitting set, but a construction
that is certified to work was only known in EXPSPACE (or EXPH assuming the generalized
Riemann hypothesis). As a corollary we get that a host of other algebraic problems such
as Noether Normalization Lemma, can also be solved in PSPACE deterministically, where
earlier only randomized algorithms and EXPSPACE algorithms (or EXPH assuming the
generalized Riemann hypothesis) were known. The proof relies on the new notion of a robust
hitting set which is a set of inputs such that any nonzero polynomial that can be computed
by a polynomial size algebraic circuit, evaluates to a not too small value on at least one
element of the set. Proving the existence of such a robust hitting set is the main technical
difficulty in the proof. Our proof uses anti-concentration results for polynomials, basic tools
from algebraic geometry and the existential theory of the reals.

3.7 Pseudorandom Generators for Read-Once Branching Programs, in
any Order

Michael A. Forbes (University of Illinois – Urbana-Champaign, US)
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Main reference Michael A. Forbes, Zander Kelley: “Pseudorandom Generators for Read-Once Branching Programs,

in any Order”, CoRR, Vol. abs/1808.06265, 2018.
URL https://arxiv.org/abs/1808.06265

A central question in derandomization is whether randomized logspace (RL) equals determin-
istic logspace (L). To show that RL = L, it suffices to construct explicit pseudorandom gen-
erators (PRGs) that fool polynomial-size read-once (oblivious) branching programs (roBPs).
Starting with the work of Nisan, pseudorandom generators with seed-length O(log2 n) were
constructed. Unfortunately, improving on this seed-length in general has proven challenging
and seems to require new ideas. A recent line of inquiry has suggested focusing on a particular
limitation of the existing PRGs, which is that they only fool roBPs when the variables are
read in a particular known order, such as x1 < · · · < xn. In comparison, existentially one
can obtain logarithmic seed-length for fooling the set of polynomial-size roBPs that read the
variables under any fixed unknown permutation xπ(1) < · · · < xπ(n). While recent works have
established novel PRGs in this setting for subclasses of roBPs, there were no known no(1)
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seed-length explicit PRGs for general polynomial-size roBPs in this setting. In this work, we
follow the “bounded independence plus noise” paradigm of Haramaty, Lee and Viola, and
give an improved analysis in the general roBP unknown-order setting. With this analysis we
obtain an explicit PRG with seed-length O(log3 n) for polynomial-size roBPs reading their
bits in an unknown order. Plugging in a recent Fourier tail bound of Chattopadhyay, Hatami,
Reingold, and Tal, we can obtain a Õ(log2 n) seed-length when the roBP is of constant width.

3.8 The Muffin Problem: Complexity Questions
William Gasarch (University of Maryland – College Park, US)

License Creative Commons BY 3.0 Unported license
© William Gasarch

Joint work of Guangqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob Prinz,
Naveen Raman, Daniel Smolyak, Sung Hyun Yoo

Main reference Guangqi Cui, John P. Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob Prinz,
Naveen Raman, Daniel Smolyak, Sung Hyun Yoo: “A Muffin-Theorem Generator”, in Proc. of the
9th International Conference on Fun with Algorithms, FUN 2018, June 13-15, 2018, La Maddalena,
Italy, LIPIcs, Vol. 100, pp. 15:1–15:19, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

URL https://doi.org/10.4230/LIPIcs.FUN.2018.15

Consider the following problem: You have m muffins and s students. You want to divide the
muffins and give out pieces so that everyone gets m/s muffins. You can clearly divide each
muffin in s pieces and give each person m s-sized pieces. Since students do not like crumbs
we want to maximize the smallest piece. Let f(m, s) be the size of the smallest piece in the
procedure which maximizes the smallest piece.

We have proven many theorems and have many procedures to find f(m, s). We have used
these to obtain f(m, s) for all s ≤ 60 and m ≤ 70. However, these procedures are somewhat
ad-hoc.

If s is fixed then, for m ≥ s3, f(m, s) has an easy formula. So f(m, s) is FPT.
There is a Mixed Integer Program for f(m, s) in O(ms) variables. Note that the input is
of size logm+ log s.
Is computing f(m, s) in P? We do not know.
Is computing f(m, s) in NP (phrased as a set). We do not know.

3.9 On Efficiently Solvable Cases of Quantum k-SAT
Sevag Gharibian (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Sevag Gharibian

Joint work of Sevag Gharibian, Marco Aldi, Niel de Beaudrap, Seyran Saeedi
Main reference Marco Aldi, Niel de Beaudrap, Sevag Gharibian, Seyran Saeedi: “On Efficiently Solvable Cases of

Quantum k-SAT”, in Proc. of the 43rd International Symposium on Mathematical Foundations of
Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, LIPIcs, Vol. 117,
pp. 38:1–38:16, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

URL https://doi.org/10.4230/LIPIcs.MFCS.2018.38

The constraint satisfaction problems k-SAT and Quantum k-SAT (k-QSAT) are canonical
NP-complete and QMA1-complete problems (for k ≥ 3), respectively, where QMA1 is a
quantum generalization of NP with one-sided error. Whereas k-SAT has been well-studied
for special tractable cases, as well as from a parameterized complexity perspective, much
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less is known in similar settings for k-QSAT. Here, we study the open problem of computing
satisfying assignments to k-QSAT instances which have a “matching” or “dimer covering”;
this is an NP problem whose decision variant is trivial, but whose search complexity remains
open.

Among other results, our main contribution is a parameterized algorithm for k-QSAT
instances from a certain non-trivial class, which allows us to obtain exponential speedups
over brute force methods in some cases. This is, to our knowledge, the first known such
parameterized algorithm. The techniques behind our work stem from algebraic geometry,
although no background in the topic is required for this presentation.

3.10 Number of near-shortest vectors in Lattices and Polynomial
Identity Testing

Rohit Gurjar (Indian Institute of Technology – Mumbai, IN)

License Creative Commons BY 3.0 Unported license
© Rohit Gurjar

For a matrix A, consider the lattice L(A) formed by all integral vectors v in the null-space of
A. We ask for which matrices A, the lattice L(A) has only polynomially many near-shortest
vectors i.e., vectors whose length is close to the shortest length in L(A). The motivation
for this question comes from the fact that we can get a deterministic black-box polynomial
identity testing algorithm for any polynomial whose newton polytope has faces described by
matrices with the aforementioned property.

We show that when the matrix A is totally unimodular (all sub-determinants are 0, +1,
or −1) then the lattice L(A) has only polynomially many near-shortest vectors. The proof
of this statement goes via a remarkable theorem of Seymour on a decomposition for totally
unimodular matrices. The statement generalizes two earlier known results – the number of
near-shortest cycles and the number of near-shorest cuts in a graph are poly-bounded. As a
special case, we get PIT for any polynomial of the form det(

∑
xiAi) for rank-1 matrices Ai.

3.11 Simple Optimal Hitting Sets for Small-Success RL
William Hoza (University of Texas – Austin, US)

License Creative Commons BY 3.0 Unported license
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Joint work of William Hoza, David Zuckerman

We give a simple explicit hitting set generator for read-once branching programs of width
w and length r with known variable order. When r = w, our generator has seed length
O(log2 r + log(1/ε)). When r = polylog w, our generator has optimal seed length O(logw +
log(1/ε)). For intermediate values of r, our generator’s seed length smoothly interpolates
between these two extremes.

Our generator’s seed length improves on recent work by Braverman, Cohen, and Garg
(STOC ’18). In addition, our generator and its analysis are dramatically simpler than the
work by Braverman et al. Our generator’s seed length improves on all the classic generators for
space-bounded computation (Nisan Combinatorica ’92; Impagliazzo, Nisan, and Wigderson
STOC ’94; Nisan and Zuckerman JCSS ’96) when ε is small.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Markus Bläser, Valentine Kabanets, Jacobo Torán, and Christopher Umans 145

As a corollary of our construction, we show that every RL algorithm that uses r random
bits can be simulated by an NL algorithm that uses only O(r/ logc n) nondeterministic bits,
where c is an arbitrarily large constant. Finally, we show that any RL algorithm with small
success probability ε can be simulated deterministically in space O(log3/2 n+logn log log(1/ε)).
This improves on work by Saks and Zhou (JCSS ’99), who gave an algorithm that runs in
space O(log3/2 n+

√
(logn) log(1/ε)).

3.12 Typically-Correct Derandomization for Small Time and Space
William Hoza (University of Texas – Austin, US)

License Creative Commons BY 3.0 Unported license
© William Hoza

Main reference William M. Hoza: “Typically-Correct Derandomization for Small Time and Space”, CoRR,
Vol. abs/1711.00565, 2017.

URL http://arxiv.org/abs/1711.00565

Suppose a language L can be decided by a bounded-error randomized algorithm that runs
in space S and time n · poly(S). We give a randomized algorithm for L that still runs in
space O(S) and time n · poly(S) that uses only O(S) random bits; our algorithm has a low
failure probability on all but a negligible fraction of inputs of each length. An immediate
corollary is a deterministic algorithm for L that runs in space O(S) and succeeds on all but
a negligible fraction of inputs of each length. We also give several other complexity-theoretic
applications of our technique.

3.13 Orbits of Monomials and Factorization into Products of Linear
Forms

Pascal Koiran (ENS – Lyon, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Pascal Koiran, Nicolas Ressayre
Main reference Pascal Koiran, Nicolas Ressayre: “Orbits of monomials and factorization into products of linear

forms”, CoRR, Vol. abs/1807.03663, 2018.
URL http://arxiv.org/abs/1807.03663

This talk is devoted to the factorization of multivariate polynomials into products of linear
forms, a problem which has applications to differential algebra, to the resolution of systems
of polynomial equations and to Waring decomposition (i.e., decomposition in sums of d-th
powers of linear forms; this problem is also known as symmetric tensor decomposition).
We provide three black box algorithms for this problem. Our main contribution is an
algorithm motivated by the application to Waring decomposition. This algorithm reduces the
corresponding factorization problem to simultaenous matrix diagonalization, a standard task
in linear algebra. The algorithm relies on ideas from invariant theory, and more specifically
on Lie algebras. Our second algorithm reconstructs a factorization from several bi-variate
projections. Our third algorithm reconstructs it from the determination of the zero set of
the input polynomial, which is a union of hyperplanes.
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3.14 Optimal Quasi-Gray Codes: The Alphabet Matters
Michal Koucký (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
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Codes with Logarithmic Read Complexity”, in Proc. of the 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, LIPIcs, Vol. 112, pp. 12:1–12:15,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.
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A quasi-Gray code of dimension n and length ` over an alphabet A is a sequence of distinct
words w1, w2, . . . , we from An such that any two consecutive words differ in at most c
coordinates, for some fixed constant c > 0. In this talk we are interested in the read and
write complexity of quasi-Gray codes in the bit-probe model, where we measure the number
of symbols read and written in order to transform any word wi into its successor wi+1.

We present construction of quasi-Gray codes of dimension n and length 3n over the ternary
alphabet {0, 1, 2} with worst-case read complexity O(logn) and write complexity 2. This
generalizes to arbitrary odd-size alphabets. For the binary alphabet, we present quasi-Gray
codes of dimension n and length at least 2n−−20n with worst-case read complexity 6 + logn
and write complexity 2. This complements a recent result by Raskin (2017) who shows that
any quasi-Gray code over binary alphabet of length 2n has read complexity Ω(n).

Our results significantly improve on previously known constructions and for the odd-size
alphabets we break the Ω(n) worst-case barrier for space-optimal (non-redundant) quasi-Gray
codes with constant number of writes. We obtain our results via a novel application of
algebraic tools together with the principles of catalytic computation [Buhrman et al. ’14,
Ben-Or and Cleve ’92, Barrington ’89, Coppersmith and Grossman ’75].

3.15 A Near-Optimal Depth-Hierarchy Theorem for Small-Depth
Multilinear Circuits

Nutan Limaye (Indian Institute of Technology – Mumbai, IN)

License Creative Commons BY 3.0 Unported license
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The field of Computational Complexity deals with the study of resources necessary and
sufficient for computations. One classical theme well-studied in the literature deals with
quantifying the additional power gained by a model of computation with extra resources.
For instance one could ask: does a Turing machine that runs for T steps necessarily compute
more functions than the machines that only run for o(T ) steps? In general, does more
resources mean more power? A hierarchy theorem is exactly such a statement for a model of
computation and a resource.

The Time Hierarchy Theorem, Space Hierarchy theorem and many more such theorems
for the Turing machines are classical results in Computational Complexity theory. In this
work the model of computation we focus on is arithmetic formulas. An arithmetic formula is
a natural model of computation for polynomials. It uses + and × as operators for computing
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polynomials. The size of the formula is the number of such operators it uses. The depth of the
formula is the longest input to output path in the formula. Here we provide a depth hierarchy
theorem for multilinear arithmetic formulas, where a formula is said to be multilinear if each
gate in it computes a multilinear polynomial.

Here we show that there is a polynomial computed by depth D + 1 polynomial sized
multilinear formula such that any depth D multilinear formula computing the polynomial
must have exponential size. In particular, we show that for every D ≤ o(logn/ log logn),
there is a polynomial PD on n variables that can be computed by a multilinear formula of
depth D + 1 and size O(n) but cannot be computed by any multilinear formula of depth
D and size exp(n1/D). This strengthens the result of Raz and Yehudayoff (Computational
Complexity 2009) who showed a quasipolynomial separation, and the result of Kayal, Nair
and Saha (STACS 2016) who gave an exponential separation when D = 3. Our separating
examples may be viewed as algebraic analogues of variants of the Graph Reachability problem
studied by Chen, Oliveira, Servedio and Tan (STOC 2016), who used them to prove lower
bounds for constant-depth Boolean circuits.

3.16 Locating linear decision lists within TC0

Meena Mahajan (Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY 3.0 Unported license
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Joint work of Arkadev Chattopadhyay, Meena Mahajan, Nikhil Mande, Nitin Saurabh

Polynomial-size depth-2 circuits with linear threshold functions at each gate lie at the frontier
of known circuit lower bounds. In this talk I will briefly survey the landscape below these
circuits – the very-low-depth threshold hierarchy – and present one new result concerning
decision lists, obtained jointly with Arkadev Chattopadhyay, Nikhil Mande and Nitin Saurabh.
I will also describe a (somewhat related) question from proof complexity.

3.17 Improved List Decoding of Algebraic Codes
Noga Ron-Zewi (University of Haifa, IL)

License Creative Commons BY 3.0 Unported license
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Joint work of Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, Mary Wootters
Main reference To appear in FOCS 2018

We show that Folded Reed-Solomon codes achieve list decoding capacity with constant list
sizes, independent of the block length. Prior work yielded list sizes that are polynomial in
the block length, and relied on elaborate subspace evasive machinery to reduce the list sizes
to constant.

We further show that multiplicity codes exhibit similar behavior, and use this to obtain
capacity achieving locally list decodable codes with query complexity significantly lower than
was known before.
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3.18 Proper Learning of Non-degenerate Homogeneous Depth Three
Arithmetic Circuits

Chandan Saha (Indian Institute of Science – Bangalore, IN)
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A homogeneous depth three circuit C computes a polynomial f = T1 + T2 + · · ·+ Ts, where
each Ti is a product of d linear forms in n variables. Given black-box access to f , can we
efficiently reconstruct (i.e. proper learn) a homogeneous depth three circuit computing f?
Learning homogeneous depth three circuits is stated as an open problem in a work by Klivans
and Shpilka (COLT 2003).

We give a randomized poly(n, d, s) time algorithm to reconstruct non-degenerate homo-
geneous depth three circuits, if n > (3d)2. The algorithm works over any field F , provided
char(F ) = 0 or greater than poly(nds). Loosely speaking, a circuit C is non-degenerate if
the dimension of the partial derivative (similarly, shifted partial derivative) space of f equals
the sum of the dimensions of the partial derivative (resp., shifted partial derivative) spaces
of the terms T1, . . . , Ts; in this sense, the terms are “independent” of each other. A random
homogeneous depth three circuit (chosen according to any reasonable distribution) is almost
surely non-degenerate. Previous learning algorithms for homogeneous depth three circuits
are either improper (with an exponential dependence on d), or they work for constant s
(with a doubly exponential dependence on s).

Our algorithm hinges on simultaneous block-diagonalization of a basis of the shifted
differential operator space that acts on the partials of f . The block-diagonalization yields a
decomposition of the partial derivative space of f into subspaces which, in turn, leads to the
terms of C via another application of shifts. To our knowledge, this is the first time shifted
partial derivative has been used to make progress on reconstruction algorithms.

3.19 Near Optimal Bootstrapping for Algebraic Models
Ramprasad Saptharishi (TIFR Mumbai, IN)

License Creative Commons BY 3.0 Unported license
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The classical lemma of Ore-DeMillo-Lipton-Schwartz-Zippel states that any nonzero polyno-
mial f(x1, . . . , xn) of degree at most s will evaluate to a nonzero value at some point on a
grid Sn in Fn with |S| > s . Thus, there is an explicit hitting set for all n-variate degree s,
size s algebraic circuits of size (s+ 1)n.

In this paper, we prove the following results:
Let ε > 0 be a constant. For a sufficiently large constant n and all s ≥ n, if we have an
explicit hitting set of size (s+ 1)n−ε for the class of n-variate degree s polynomials that
are computable by algebraic circuits of size s, then for all s, we have an explicit hitting
set of size sexp exp(O(log∗ s)) for s-variate circuits of degree s and size s. That is, if we can
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obtain a barely non-trivial exponent compared to the trivial (s + 1)n sized hitting set
even for constant variate circuits, we can get an almost complete derandomization of PIT.
The above result holds when “circuits” are replaced by “formulas” or “algebraic branching
programs”.

This extends a recent surprising result of Agrawal, Ghosh and Saxena (STOC 2018) who
proved the same conclusion for the class of algebraic circuits, if the hypothesis provided
a hitting set of size at most (sn0.5−−ε) (where ε > 0 is any constant). Hence, our work
significantly weakens the hypothesis of Agrawal, Ghosh and Saxena to only require a slightly
non-trivial saving over the trivial hitting set, and also presents the first such result for
algebraic branching programs and formulas.

3.20 Algebraic Dependence is Not Hard
Nitin Saxena (Indian Institute of Technology Kanpur, IN)

License Creative Commons BY 3.0 Unported license
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Testing whether a set F of polynomials has an algebraic dependence is a basic problem with
several applications. The polynomials are given as algebraic circuits. Algebraic independence
testing question is wide open over finite fields (Dvir, Gabizon, Wigderson, FOCS’07). In this
work we put the problem in AM ∩ coAM. In particular, dependence testing is unlikely to be
NP-hard. Our proof method is algebro-geometric, estimating the size of the image/preimage
of the polynomial map F over the finite field. A gap in this size is utilized in the AM
protocols.

Next, we introduce a new problem called approximate polynomials satisfiability (APS).
We show that APS is NP-hard and, using projective algebraic-geometry ideas, we put APS
in PSPACE (prior best was EXPSPACE via Gröbner bases). This has many unexpected
applications to approximative complexity theory. This solves an open problem posed in
(Mulmuley, FOCS’12, J. AMS 2017); greatly mitigating the GCT Chasm (exponentially in
terms of space complexity).
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3.21 Indistinguishability by Adaptive Procedures with Advice, and
Lower Bounds on Hardness Amplification Proofs

Ronen Shaltiel (University of Haifa, IL)

License Creative Commons BY 3.0 Unported license
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We study how well can q-query decision trees distinguish between the following two distribu-
tions: (i) R = (R1, . . . , RN ) that are i.i.d. indicator random variables, (ii) X = (R|R ∈ A)
where A is an event s.t. Pr[R ∈ A] ≥ 2−a. We prove two lemmas:
Forbidden-set lemma: There exists B ⊆ [N ] of size poly(a, q, 1

η ) such that q-query trees
that do not query variables in B cannot distinguish X from R with advantage η.

Fixed-set lemma: There exists B ⊆ [N ] of size poly(a, q, 1
η ) and v ∈ BB such that q-query

trees do not distinguish (X|XB = v) from (R|RB = v) with advantage η.

The first can be seen as an extension of past work by Edmonds, Impagliazzo, Rudich
and Sgall (Computational Complexity 2001), Raz (SICOMP 1998), and Shaltiel and Viola
(SICOMP 2010) to adaptive decision trees. It is independent of recent work by Meir and
Wigderson (ECCC 2017) bounding the number of i ∈ [N ] for which there exists a q-query
tree that predicts Xi from the other bits.

We use the second, fixed-set lemma to prove lower bounds on black-box proofs for hardness
amplification that amplify hardness from δ to 1

2 − ε. Specifically:
Reductions must make q = Ω(log(1/δ)/ε2) queries, implying a “size loss factor” of q.
We also prove the lower bound q = Ω(log(1/δ)/ε) for “error-less” hardness amplification
proofs, and for direct-product lemmas. These bounds are tight.
Reductions can be used to compute Majority on Ω(1/ε) bits, implying that black box
proofs cannot amplify hardness of functions that are hard against constant depth circuits
(unless they are allowed to use Majority gates).

Both items extend to pseudorandom-generator constructions.
These results prove 15-year-old conjectures by Viola, and improve on three incomparable

previous works (Shaltiel and Viola, SICOMP 2010; Gutfreund and Rothblum, RANDOM
2008; Artemenko and Shaltiel, Computational Complexity 2014).

3.22 Memory Augmented Markovian Walks and Explicit Parity
Samplers Giving Almost Optimal Binary Codes

Amnon Ta-Shma (Tel Aviv University, IL)
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I will show an explicit construction of a binary error correcting code with relative distance
(1− ε)/2 and relative rate ε2+o(1). This comes close to the Gilbert-Varshamov bound that
shows such codes with rate ε2 exist, and the LP lower bound that shows rate ε2/ log(1/ε)
is necessary. Previous explicit constructions had rate about ε3, and this is the first explicit
construction to get that close to the Gilbert-Varshamov bound.
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The main tool we use are “Parity Samplers”. A parity sampler is a collection of sets
Si ⊂ Λ with the property that for every “test” A ⊂ Λ of a given constant density ε0, the
probability a set Si from the collection falls into the test set A an even number of times is
about half. A sparse parity sampler immediately implies a good code with distance close to
1/2. The complete t-complex of all sequences of cardinality t is a good parity sampler, but
with too many sets in the collection. Rozenman and Wigderson, and independently Alon,
used random walks over expanders to explicitly construct sparse parity samplers, and their
construction implies explicit codes with relative rate ε4.

In the last part of the talk I will explain how one can get better explicit parity samplers
(and therefore also better explicit codes) using a variant of the zig-zag product. In the
random walk sampler, there exist many sets with substantial overlap. One way to look at
the zig-zag product is that it takes a sub-collection of the random walk sampler, and this
sub-collection has a smaller overlap between sets in the collection. The zig-zag product
achieves that by keeping a small internal state. I will show that by enlarging the internal
state one can further reduce the overlap, and as a result improve the quality of the parity
sampler. One may view this process as a memory augmented Markovian process.

3.23 Near-Optimal Strong Dispersers and Erasure List-Decodable
Codes

Amnon Ta-Shma (Tel Aviv University, IL)
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Joint work of Avraham Ben-Aroya, Dean Doron, Amnon Ta-Shma
Main reference Avraham Ben-Aroya, Dean Doron, Amnon Ta-Shma: “Near-Optimal Strong Dispersers, Erasure

List-Decodable Codes and Friends”, Electronic Colloquium on Computational Complexity (ECCC),
Vol. 25, p. 65, 2018.

URL https://eccc.weizmann.ac.il/report/2018/065

A code C is (1 − τ, L) erasure list-decodable if for every word w, after erasing any 1 − τ
fraction of the symbols of w, the remaining tau-fraction of its symbols have at most L
possible completions into codewords of C. Non-explicitly, there exist binary (1− τ, L) erasure
list-decodable codes having rate O(τ) and tiny list-size L = O(log 1/τ). Achieving either of
these parameters explicitly is a natural open problem and was brought up in several prior
works. While partial progress on the problem has been achieved, no explicit construction up
to this work achieved rate better than Ω(τ2) or list-size smaller than Ω(1/τ) (for τ small
enough). Furthermore, Guruswami showed that no linear code can have list-size smaller than
Ω(1/τ). In this work we construct an explicit binary (1− τ, L) erasure list-decodable code
having rate τ1+γ (for any constant γ > 0 and τ small enough) and list-size poly(log 1/τ),
answering simultaneously both questions, and exhibiting an explicit non-linear code that
provably beats the best possible linear one.

The binary erasure list-decoding problem is equivalent to the construction of explicit,
low-error, strong dispersers outputting one bit with minimal entropy-loss and seed-length.
Specifically, such dispersers with error ε have an unavoidable entropy-loss of log log 1/ε and
seed-length at least log 1/ε. Similarly to the situation with erasure list-decodable codes, no
explicit construction achieved seed-length better than 2 log 1/ε or entropy-loss smaller than
2 log 1/ε, which are the best possible parameters for extractors. For every constant γ > 0 and
every small ε, we explicitly construct an ε-error one-bit strong disperser with near-optimal
seed-length (1 + γ) log 1/ε and near-optimal entropy-loss O(log log 1/ε).
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The main ingredient in our construction is a new (and almost-optimal) unbalanced two-
source extractor. The extractor extracts one bit with constant error from two independent
sources, where one source has length n and tiny min-entropy O(log logn) and the other
source has length O(logn) and arbitrarily small constant min-entropy rate. The construction
incorporates recent components and ideas from extractor theory with a delicate and novel
analysis needed in order to solve dependency and error issues.

3.24 A Conditional Information Inequality and its Combinatorial
Applications

Nikolay K. Vereshchagin (NRU Higher School of Economics – Moscow, RU)
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Joint work of Tarik Kaced, Nikolay Vereshchagin
Main reference Tarik Kaced, Andrei E. Romashchenko, Nikolai K. Vereshchagin: “A Conditional Information

Inequality and Its Combinatorial Applications”, IEEE Trans. Information Theory, Vol. 64(5),
pp. 3610–3615, 2018.

URL https://doi.org/10.1109/TIT.2018.2806486

We show that the inequality H(A | B,X) +H(A | B, Y ) ≤ H(A | B) for jointly distributed
random variables A,B,X, Y , which does not hold in general case, holds under some natural
condition on the support of the probability distribution of A,B,X, Y . This result generalizes
a version of the conditional Ingleton inequality: if for some distribution I(X : Y | A) =
H(A | X,Y ) = 0, then I(A : B) ≤ I(A : B | X) + I(A : B | Y ) + I(X : Y ).

We present the following applications of our result. The first one is the following easy-to-
formulate theorem on edge colorings of bipartite graphs: assume that the edges of a bipartite
graph are colored in K colors so that each two edges sharing a vertex have different colors
and for each pair (left vertex x, right vertex y) there is at most one color a such both x and
y are incident to edges with color a; assume further that the degree of each left vertex is at
least L and the degree of each right vertex is at least R. Then K ≥ LR.
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