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Preface

This volume contains the proceedings of the 1st International Workshop on Autonomous
Systems Design (ASD 2019). The workshop is held in Florence, Italy on March 29, 2019,
and is co-located with the 22nd Design, Automation and Test in Europe Conference (DATE
2019). ASD 2019 aims at exploring recent industrial and academic trends, methods and
methodologies in autonomous systems design. The workshop is organized into regular sessions
with peer-reviewed research papers selected from an open call, complemented by 4 invited
talks and two distinguished keynotes. The presented contributions addressed different topics
on robotics, automated driving and frameworks for autonomous systems like Robot Operating
System (ROS) and AUTOSAR Adaptive.

Selected papers are included in this volume and are categorized into 6 long papers and 3
interactive presentations. The presented papers discuss recent development approaches for
autonomous systems involving the integration of ROS-based self-driving system (Autoware)
using MATLAB/Simulink, advanced implementations of model predictive control systems
and multi-view model-based design and verification approaches. Another important discussed
topic is related to dependable autonomous systems design based on degradation cascades
for sensor and communication failures in autonomous car platoons, applying STPA-based
(System Theoretic Process Analysis) hazard analysis technique for the design of robust
autonomous emergency braking systems under safety and security requirements, and the
incorporation of self-awareness in the design of autonomous systems using dynamic formal
data flow semantics.

The first invited talk will focus on the next generation of ROS frameworks developed to
address the main challenge of seamless integration of deeply embedded devices considering
resource-constrained computing platforms, non-ideal networks and real-time requirements.
The second invited talk will address the dependability challenge by providing reliable control
solutions in cloud computing provided under formal guarantees. The two last invited talks,
are dedicated to present recent research activities and derived findings of research and
industrial clusters in the field of autonomous driving. The activities of two large projects
in the field will be presented, namely the UNICARagil project to demonstrate disruptive
modular architectures for agile automated vehicle concept, and the CCC (Controlling
Concurrent Change) project to investigate automated integration of critical applications
using self-adaptation with self-protection based on contracting and self-awareness.

The workshop will host two distinguished industrial keynotes highlighting important
challenges and recent trends in the fields of autonomous design. In his keynote "Challenges
of Automated and Connected Driving", Thomas Form, Head of Electronics and Vehicle
Research at Volkswagen AG, will talk about the challenges in automated driving regarding
sensor technologies, redundancies as well as verification and validation questions. Masaki
Gondo, CTO at eSOL, the company that provides POSIX/AUTOSAR/TRON RTOS will
talk about AUTOSAR Adaptive as a standardized software platform specification for the
highly automated and autonomous driving and emphasize the role of OS architectures in
coping with recent challenges in the field.

This volume will present a short summary of the considered keynotes and invited talks in
addition to the selected long and interactive presentation papers.
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Keynotes & Invited Talks

Keynote 1: Challenges of Automated and Connected Driving

Speaker: Thomas Form, Head of Electronics and Vehicle Research, Volkswagen AG, Germany

In recent years, various publications and presentations from a lot of companies have shown
the improvements in the sector of automated driving. The vehicle- and mobility-concept
SEDRIC is a current example from the Volkswagen AG. However, for a release of these
technologies there are several unresolved issues regarding sensor technologies, redundancies
as well as verification and validation questions. Regarding sensors, the main objectives are
miniaturization and reduction of system costs. Advantages and disadvantages of existing
solutions have to be evaluated. In addition to economic aspects, ensuring the redundancy of
the system is absolute necessary. Is, for example, Artificial Intelligence able to provide an
independent second or third function path? Regarding verification and validation concepts,
current discussions are focused on which scenarios have to be tested and how, in order to
enable regulatory authorities to approve the release of automated driving functions? It
is conceivable, that this is an automotive industry wide task that can only be solved in
cooperation with all stakeholders.

Keynote 2: AUTOSAR Adaptive - Challenging the Impossible

Speaker: Masaki Gondo, Software CTO at eSOL Co., Ltd., Japan

The vast researches related to autonomous driving seem steadily progressing - it no longer
makes news to just have some research vehicle drive autonomously. However, bringing this
technology to the market, with all the associated legal, societal, and ethical responsibilities,
with justifiable cost efficiency, is hard at its best, and impossible at its worst. Furthermore,
the automotive industry is facing drastic challenges in electric vehicles, connected services,
which also heavily impact the whole vehicle architecture. AUTOSAR (AUTomotive Open
System ARchitecture) is a worldwide development partnership of automotive interested
parties. One of its latest challenges is to develop the software platform specification for the
highly automated and autonomous driving, named AUTOSAR Adaptive Platform. This talk
gives an overview of the challenges of such a platform, followed by the solution approach
of AUTOSAR reflecting the industrial needs, and the overall architecture of AUTOSAR
Adaptive. It also introduces a new multi-kernel OS technology the author develops, describing
why such OS architecture is essential for coping with the challenge in the long run.

Workshop on Autonomous Systems Design (ASD 2019).
Editors: Selma Saidi, Rolf Ernst, and Dirk Ziegenbein

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xii

Keynotes & Invited Talks

Invited Talk 1: Bringing the Next Generation Robot Operating System
on Deeply Embedded Autonomous Platforms

Speaker: Ralph Lange, Robert Bosch GmbH, DE

In the last decade, the Robot Operating System (ROS) has become the primary framework
and middleware for robotics research and an important building block for the autonomous
systems engineering in general. The Next Generation Robot Operating System (ROS 2)
aims at strengthening this position by new mechanisms for resource-constrained computing
platforms, non-ideal networks, real-time requirements and further fundamental needs from
series development of autonomous systems. A particular challenge is the seamless integration
of deeply embedded devices with ROS 2. In this talk, an overview to ROS 2 will be provided,
followed by an analysis of basic issues for such seamless integration. As a solution, the micro-
ROS stack will be presented in the second part of this talk. This includes an introduction
to the up-coming DDS-XRCE middleware standard, a novel concept of system runtime
configuration for ROS2 and micro-ROS, and early results on an extended API for predictable
scheduling.

Invited Talk 2: Autonomous Data Center - Feedback Control for
Predictable Cloud Computing

Speaker: Martina Maggio, University of Lund, SE,

Cloud computing gives the illusion of infinite computational capacity and allows for
on-demand resource provisioning. As a result, over the last few years, the cloud computing
model has experienced widespread industrial adoption and companies like Netflix offloaded
their entire infrastructure to the cloud. However, with even the largest datacenter being
of a finite size, cloud infrastructures have experienced overload due to overbooking or
transient failures. In essence, this is an excellent opportunity for the design of control
solutions, that tackle the problem of mitigating overload peaks, using feedback from the
computing infrastructure. Exploiting control-theoretical principles and taking advantage of
the knowledge and the analysis capabilities of control tools, it is possible to provide formal
guarantees on the predictability of the cloud platform. This talk introduces recent research
advances on feedback control in the cloud computing domain. This talk discusses control
solutions and future research for both cloud application development, and infrastructure
management. In particular, it covers application brownout, control-based load-balancing,
and autoscaling.

Invited Talk 3: An Approach to Automotive Service-oriented Software
Architectures in a Multi-partner Research Project

Speaker: Stefan Kowalewski, RWTH Aachen, DE

Novel software architectures will become necessary to cope with the short lifetime and
innovation cycles of the technologies underpinning self-driving vehicles. In the UNICARagil
project, seven German universities and six industrial partners join forces to research and
demonstrate disruptive modular architectures for agile, automated vehicle concepts. As
today’s prevailing automotive electric, electronic and software architectures are mostly
function-oriented and design-time integrated, they often are unsuitable for infield updates
or system reconfiguration. In contrast, service-oriented software architectures are based on
runtime integrated service and are a promising way forward. We present the lean and simple
concept for service-orientation, that serves as the basis for the implementation of all vehicle
functions in the UNICARagil vehicles.



Keynotes & Invited Talks

Invited Talk 4: Controlling Concurrent Change- Design Automation for
Critical Systems Integration

Speaker: Rolf Ernst, TU Braunschweig, DE

Embedded systems for safety critical and high availability applications have moved
from isolated components to highly integrated mixed criticality networked systems with
numerous shared resources. The resulting function interference challenges the design process,
in particular in autonomous systems which shall independently manage software updates
and hardware reconfigurations. With support from the German DFG, a group of 8 Pls
has investigated automated integration of critical applications using self-adaptation with
self-protection based on contracting and self-awareness. Applications were driving automation
and space robotics. The talk will review the results of the six year project and outline the
demonstrations which will be exhibited at the workshop.
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of authors and the help of program committee members in the review process. We extend
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the IEEE Council on Electronic Design Automation CEDA and the Technical University of
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—— Abstract

The key advantage of autonomous car platoons are their short inter-vehicle distances that increase
traffic flow and reduce fuel consumption. However, this is challenging for operational and functional
safety. If a failure occurs, the affected vehicles cannot suddenly stop driving but instead should
continue their operation with reduced performance until a safe state can be reached or, in the case
of temporal failures, full functionality can be guaranteed again. To achieve this degradation, platoon
members have to be able to compensate sensor and communication failures and have to adjust their
inter-vehicle distances to ensure safety. In this work, we describe a systematic design of degradation
cascades for sensor and communication failures in autonomous car platoons using the example of an
autonomous model car. We describe our systematic design method, the resulting degradation modes,
and formulate contracts for each degradation level. We model and test our resulting degradation
controller in Simulink/Stateflow.

2012 ACM Subject Classification Computer systems organization — Embedded and cyber-physical
systems; Computer systems organization — Availability; Software and its engineering — Software
design engineering

Keywords and phrases fault-tolerance, degradation, car platoons, autonomous driving, contracts

Digital Object Identifier 10.4230/0OASIcs.ASD.2019.1

1 Introduction

In autonomous car platoons vehicles drive with short inter-vehicle distances to increase traffic
flow and reduce fuel consumption by travelling in the slipstream. The short distances can
be achieved by exploiting real-time knowledge about the driving behaviour of preceding
vehicles in the platoon. This knowledge is achieved by combining onboard sensors and
wireless communication with platoon members. If a sensor or communication failure occurs,
the required knowledge becomes unavailable and driving within a short distance is not safe
anymore. In contrast to fail-safe systems, where a shut-down of actuators leads to a safe
system state, autonomous vehicles have to be fail-operational, i.e. a shut-down of the vehicle
during operation on a highway is not acceptable. Thus, failures have to be compensated
and adherence to safety restrictions has to be guaranteed even under failure occurrence.
For autonomous car platoons, this means that the inter-vehicle distance always has to be

large enough to allow for an autonomous reaction to a sudden braking of preceding vehicles
© M. Baha E. Zarrouki, Verena Koés, Markus Grabowski, and Sabine Glesner;
37 licensed under Creative Commons License CC-BY
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Fault-Tolerance by Graceful Degradation for Car Platoons

without risking a collision. The required reaction time depends on the quality and speed of
information about the behaviour of preceding vehicles, i.e. available sensors and inter-vehicle
communication, and has to be reflected in the distance. One possibility to specify safe and
fault-tolerant driving behaviour for autonomous platoons is to rely on graceful degradation.
This means to systematically define a partial-order of less and less acceptable operation
modes and to select the best achievable mode in presence of failures. Thus, the system
maintains its operation as far as possible. As an example, an autonomous vehicle can be
in the platoon-mode or in a mode of cooperative adaptive cruise control (CACC), where it
only communicates with the vehicle directly in front of it, or in the mode of adaptive cruise
control (ACC), where it relies on onboard sensors only. An operating mode in which the
system is not operated at full functionality due to failures is called degradation mode and a
sequence of less and less acceptable operation modes is called degradation cascade.

With the increasing complexity of vehicles, e.g. due to increasing functionality required for
autonomous driving, the design of degradation cascades becomes challenging, i.e. managing
the resulting amount of failure combinations. In [4], a systematic approach for design
and verification of degradation cascades for embedded systems was presented. Following a
systematic process can help to cope with the increasing complexity. Inspired by this work, we
describe a systematic design of degradation cascades for sensor and communication failures
in autonomous car platoons using the example of the autonomous model car “Velox” which
serves as a case study in the AMASS research project'. Note that although this paper focuses
on safety, the proposed solutions can also be used to cope with security, i.e. attacks on
sensors, actuators and communication channels, as long as these attacks are identified by some
anomaly detection mechanisms (see [1] for an overview). We describe our systematic design
method, the resulting degradation modes, and formulate contracts 2 for each degradation
level. We model and test our resulting degradation controller in Simulink/Stateflow.

Car Platoons

Car-2-Car, Car-2-Car.

/ \ \/Car—Z—Ca r\
' - Y .

3rd Follower 2nd Follower 1st Follower Platoon-Leader

Figure 1 A platoon-drive.

In this paper, we focus on autonomous car platoons with at least two vehicles that drive
with a small inter-vehicle distance on one lane of the highway. They synchronize their speed
and sensor data based on onboard sensors and Vehicle-to-Vehicle (V2V) communication, as
depicted in Figure 1. The platoon members can have different vehicle types (cars, trucks)
from different manufacturers. The vehicle at the front of a platoon is the platoon leader.

! https://www.amass-ecsel.eu/
2 Contracts are pairs of assumptions and guarantees that define the behaviour of individual system
components to lower the overall complexity of large systems.
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Based on user-inputs, it determines an efficient velocity and a desired inter-vehicle distance
for the whole platoon. As the safety of inter-vehicle distances depends on individual vehicle
characteristics (i.e. maximum braking deceleration), we assume that each platoon member
adjusts its distance control setpoint such that it is always larger or equal to the individual safe
inter-vehicle distance, and never smaller then the desired distance proposed by the platoon
leader. Furthermore, the leader keeps a safe distance to vehicles or platoons in front of it.
Each following vehicle is a follower (or platoon member) and autonomously has to maintain
the inter-vehicle distance determined by the platoon leader. This is achieved by longitudinal
control, which regulates the speed of the vehicle. The vehicles drive fully autonomously with
a driver who is not prepared to take control, i.e. as if no driver were present.

Outline

This paper is structured as follows: In Section 2, we discuss related work on degradation
concepts for car platoons. In Section 3, we systematically analyze the system architecture,
identify relevant failures for platooning and discuss how to adapt the inter-vehicle distance
to capture slower response times due to less precise information. The results are used to
infer degradation modes for sensor and communication failures. Based on these reactions, we
propose a compact degradation controller that we model in Simulink/Stateflow in Section 4.
To ensure the safety of autonomous platoons that use graceful degradation, we define contracts
and discuss how they can be analyzed and tested with our Stateflow model in Section 5. We
conclude the paper in Section 6 and outline future work.

2 Related Work

In this section, we review related work on fault-tolerant designs and degradation strategies
for CACC and platooning.

The work in [7] proposes a diagnostic system that monitors the sensors of the longitudinal
and lateral controllers in autonomous vehicles that operate in a platoon. However, it does
not detect communication failures and the authors do not define a reaction to the detected
failures. In our work, we assume that sensor and communication failures are successfully
detected and focus on appropriate and safe reactions to detected faults.

The work in [6] presents a graceful degradation technique for CACC in case of commu-
nication failures. The main idea is to estimate the acceleration of the preceding vehicle
based on distance measurement information provided by onboard sensors. This strategy
shows better performance than using ACC as a fallback option. This paper only considers
one possible failure of CACC-mode which is the communication with the preceding vehicle
and does not handle other failures i.e. distance measurement sensor failures that affect the
estimation. In our work, we cover all possible sensor and communication failures affecting
the longitudinal guidance in platoon-mode. Moreover, we define reactions and design a
global state-machine-model that guides the vehicle completely-autonomously in a running
platoon-drive. In our approach, we rely on a similar distance measurement as described in [6]
in case of communication failures with the preceding vehicle.

Our work is similar to and based on the work presented in [9], which introduces a
structured design of degradation cascades for car platoons and a contract-based design
approach to ensure safety. The presented degradation cascade only switches between Platoon,
CACC, ACC and manual driving. In our work, there is no possibility for a fallback to manual
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driving as we handle fully automated vehicles (SAE Level 5 3). Moreover, we introduce new
degradation modes that allow the vehicle to handle more failure combinations and to deliver
a better performance in the platoon.

Our work is inspired by the systematic approach to define, design, implement and
verify degradation cascades for embedded systems presented in [4]. The approach proceeds
systematically from the analysis of the system and its safety over defining degradation
cascades and its requirements down to modelling and generating code from Simulink for
real-time testing. The systematic approach is illustrated with a DC drive example. In our
work, we apply a similar approach on autonomous vehicles in a platoon-drive.

3 Systematic Analysis of Possible Failures and Alternative
Information Sources

In the regular industrial design process, the system design is followed by a safety analysis
to check whether the system adheres to safety requirements. For safe-operational systems
that rely on graceful degradation, possible failures already have to be considered during the
design of degradation modes. Thus, we follow [4], and already perform a systematic safety
analysis before the system design. With this minor change of the usual design flow, the
systematic design of degradation cascades can be easily integrated into industrial practice.

Our systematic design approach for degradation cascades consists of a systematic analysis
of the system architecture to identify a) failure sources that are relevant for platooning,
and b) fallback alternatives for faulty system components. To capture the performance loss
of fallback alternatives, we define individual failure-specific constants that we add to the
reaction time of degraded vehicles. The reaction time describes how long it takes to detect
and react to a sudden change in the behaviour of the preceding vehicle. It is used to define
the safe inter-vehicle distance x4, between the i-th vehicle and the preceding vehicle:

xrd,i(t) = Ty + t',-ﬂ' * V5 (1)

The parameters of the equation are the remaining distance at standstill x,., the reaction
time t,;, and the current velocity v; of vehicle i. This distance law assumes similar vehicle
velocities and accelerations in a platoon drive.

Our failure-specific constants describe the additional time that is needed to detect sudden
breaks in the presence of specific failures. They are added to the reaction time ¢,; in
equation 1. Based on our analysis results, we define degradation cascades that describe
several degradation steps as a response to sequences of failures. We combine these cascades
into a single and compact degradation controller, which we model in Simulink/Stateflow to
enable simulation, testing and later controller synthesis.

In this section, we first describe relevant parts of the system architecture of the “Velox”
car in Section 3.1. To identify degradation modes for sensor and communication failures, we
identify possible sources for required information about the environment, e.g. the distance
to the vehicle in front, and about other platoon members, e.g. the velocity of the vehicle in
front, based on available sensors and communication partners, and evaluate the influence of
alternative information sources on the reaction time of the autonomous vehicle in Section 3.2.

3 The SAE Norm [8] defines six levels of autonomy for motor vehicle automation ranging from no
automation (level 0) to full automation (level 5)
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3.1 System Architecture

Within the scope of research projects, experimental cars on a scale of 1:8, the “Velox
Cars”, were developed by “Assystem Germany GmbH”. The prototypes were designed for
training and research purposes as well as for the development of advanced functions of highly
automated systems (HAS) with a focus on autonomous driving. Various driving assistance
functions such as a lane departure warning system, the ACC/CACC/Platoon or the Traffic
Sign Assistant, have been developed. For this purpose, the model cars are equipped with a
valuable range of sensors. In this work, the analysis is based abstractly on the architecture
of the Velox car, which is generally similar to other vehicles.

In this paper, we assume a vehicle architecture as depicted in Figure 2. Each vehicle
is equipped with ultrasonic sensors and a LIDAR (LIght Detection And Ranging) radar
to measure the distance to the vehicle in front. A sensor fusion of the ultrasonic sensor
data and the LIDAR data is performed in order to detect measurement errors. In addition,
the vehicles are equipped with an odometry unit to determine their own driving behaviour
(acceleration, velocity, distance covered and position). A camera and an inertial measurement
unit (IMU) are implemented on the vehicle. However, we assume that they are not used
by the longitudinal controller for the normal Platoon/CACC function. Note that we here
assume a similar architecture and equipment of all platoon members. However, the approach
could also include vehicles that are not fully equipped with sensors or communication devices
by handling these vehicles as vehicles with corresponding senor or communication failures.

Longitudinal

Environment Environment | Ego-Motion comtrol Dot
Perception Modelling Data | platoon/CACC o Velocllfy
7 Controller
Wheel-Encoder WeEnc Data | Controller
X . > >
Processing Unit Object —
LIDAR LID Data Tracking Data Partner Vehicle
Processing Unit v . Data
Ultrasonic Sensor US Data . . Partner Vehicle
Processing Unit d Data.
. Processing
MU 'y
Processing Unit V2V Data
Camera External
Processing Unit L
Communication

Figure 2 A simplified vehicle architecture for platooning.

The signal flow in Figure 2 goes from the input on the left to the output on the right.
The input corresponds to the sensors, and the output corresponds to the actuator control.
All sensor data is processed in the corresponding Processing Unit in the Environment
Perception layer. This layer contains function blocks such as the Wheel-Encoder Pro-
cessing Unit, which acquires the odometer data (steering angle and wheel encoder data)
and preprocesses the odometer data. The IMU is only used if the wheel encoder fails. In
the subsequent Environment Modelling layer, the environment is modelled with the help
of different algorithms. This layer contains function blocks such as a Vehicle Detection
block. The Platoon/CACC Controller decides between platoon and CACC mode and
calculates a target velocity to maintain the desired distance between the ego-vehicle and
the vehicle in front. These decisions are based on the partner’s and the ego-vehicle data.
The partner vehicle data are received by the External Communication interface for the
communication between the own vehicle and external systems (Vehicle-to-Vehicle (V2V)
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communication, GPS etc.). The received V2V data is then filtered by Partner Vehicle
Data Processing. Furthermore, the Platoon/CACC Controller broadcasts the Ego vehicle
data. The Velocity Controller regulates the speed of the vehicle and controls the motor
based on the provided target velocity. We design our degradation concept for the Velox
Car. In practice, it can be assumed that vehicles of different manufacturers participate in a
platoon. Thus, the platoon can be regarded as a heterogeneous system of systems of different
manufacturers. In order to realize the functionality of platoon driving, all vehicles have to
be equipped with relative distance and speed sensors as well as V2V communication. Our
results can easily be transferred to similar architectures.

3.2 Failures, Consequences, and Fallback Strategies

For the platoon operation, a Velox car needs the following capabilities: it can determine the
distance to the vehicle in front, it can measure its own (ego) motion data (acceleration, speed,
distance covered and position), and it can receive the motion of the vehicle in front and of
the first vehicle in the platoon, i.e. the platoon leader. In normal platoon operation, the
distance to the vehicle in front is determined by LIDAR and ultrasonic (US) sensor fusion,
the calculation of the ego-motion is based on the wheel encoder, information about the
front-vehicle motion is available via vehicle-2-front-vehicle communication, and the motion
of the platoon leader is available via vehicle-2-leader communication.

Table 1 Default and Fallback Information Sources.

Kind of Information Default Source 1st Fallback Source 2nd Fallback Source ‘
Distance to vehicle in | LIDAR and Ultra- LIDAR only, Ultra- | GPS and Wheel-
front sonic sensor fusion sonic only Encoder (for commu-

nication packet iden-
tification only)

Ego-Motion Wheel-Encoder Inertial- Motor-model for
Measurement- speed estimation
Unit (IMU)

vehicle in front mo- | vehicle-2-Front vehicle-2-Leader based on distance

tion vehicle (V2F) (V2L) measurement

Motion of Platoon V2L V2F -

Leader

In the case of sensor and communication failures, the required information has to be
obtained from alternative sources. In Table 1, we summarize available information sources in
the Velox car and introduce new sources for the fallback scenario. If, for example, the LIDAR,
fails, ultrasonic data can be used without sensor fusion. However, the obtained information
is less precise. If this sensor also fails, the system can still rely on the second fallback option:
a combination of GPS and wheel-encoder that is precise enough to identify communication
packets from the vehicle in front, but not for ACC-mode.

In the following, we describe the identified fallback possibilities for sensor and commu-
nication failures and their influence on the reaction time to changes in the behaviour of
preceding vehicles. The resulting delays are expressed in terms of failure-specific constants.
These constants have to over-approximate the actual delays as precisely as possible to ensure
that the distance to the vehicle in front is as small as safely possible. The actual values
depend on the characteristics of the sensors, actuators and the efficiency of the algorithms
(fusion of data, recognition etc.) and can be determined with simulations and real-time tests.
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Failure in Distance Measurement

In case of a failure of the LIDAR (LID_F) or the US sensor (US_F), it is no longer possible
to use sensor fusion to increase precision, but we can still rely on the remaining sensor. As a
result, the reaction time increases due to less precise sensor data. We capture this by adding
a constant failure-specific factor, e.g. tr_lid1 for LIDAR failures and tr_us! for US failures,
that captures the necessary increase of the reaction time, to the reaction time in the normal
platoon operation tr_pl. Thus, we get tr_pl+tr_lidl and tr_pl+tr_usi, respectively. It
applies tr_lid1 > tr_usl, since the LIDAR is more accurate than the ultrasonic sensor.

If both distance sensors fail, the system can still rely on a combination of GPS and
wheel-encoder to identify communication packets from the vehicle in front. In this case,

tr_lid_us is added to the reaction time. However, this is not precise enough for CACC-mode.

Failure in estimating the Ego-motion

An error in the wheel encoder (WEnc_F) affects the acquisition of the covered distance, the
own acceleration and speed (Ego-Motion-Data). If a wheel encoder error occurs, the system
can still obtain 3-axis acceleration data from the motion sensor (inertial measuring unit
(IMU)). However, this information is less precise. Accordingly, the reaction time increases to
tr_pl+tr_wenc. If the IMU fails (IMU_F), it is still possible to roughly estimate the own
velocity based on electrical values by using a motor model as discussed in [4]. The reaction
time has to be increased to tr_pl+tr_wenc__imu.

Communication Failures

In the platoon operation, each vehicle communicates with the platoon leader and the vehicle
in front of it. If the communication with the vehicle in front fails (V2F_F), the vehicle in
front motion can only be estimated using the slower distance measurement, which means
that the reaction times, and, thus, the safety distance, have to be increased when switching
to the corresponding ACC mode. However, if communication to the platoon leader is still

available, the platoon leader could be requested to forward messages from the vehicle in front.

To this end, an extended packet filtering algorithm has to be implemented in the Partner
Vehicle Data Processing.

If an error in the communication with the platoon leader (V2L_F) occurs (e.g. error
during a sending procedure or error with the reception), we lose any information about the
leader’s driving behaviour. As a consequence, we would need to switch to the CACC mode
and increase the inter-vehicle distance accordingly. However, if the vehicle in front is still
able to communicate with the platoon leader and the ego vehicle has a stable communication

connection to the vehicle in front, this vehicle can forward messages from the platoon leader.

As message forwarding introduces some communication delay, reactions to sudden changes
in the behaviour of the vehicle in front / the leader will also be delayed. Thus, the reaction
time increases to tr_pl + tr_front and tr_pl + tr_lead, respectively.

Based on the results of a systematic evaluation of available fallback possibilities for
relevant sensor and communication failures, we define corresponding degradation modes for
each combination of evaluated failures in the next section.
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4 Degradation Controller

With our systematic analysis, we have identified fallback alternatives to compensate for
sensor and communication failures within a running platoon-drive. In this section, we use the
analysis results to infer degradation modes that describe less and less acceptable operation
modes for platoon members. We propose a controller, modelled in Simulink/Stateflow, that
safely guides the graceful degradation. Note that we assume the existence of a reliable and
sufficiently fast fault detection method that we can rely on. This, of course, is not trivial, but
out of the scope of this work. Our controller receives fault detection events from the fault
detector and selects the best mode based on these events. The Stateflow model is used for
systematic testing in the next section and can be further refined for controller code synthesis.

4.1 Degradation Cascades

In case of failure combinations of different information types, our fallback strategies from
the previous section can be combined step-by-step as long as information alternatives are
available. If only knowledge about the platoon leader is missing, the vehicle can still switch
to CACC and rely on vehicle-2-front-vehicle communication. If this communication also fails,
only onboard sensor-based ACC may be possible. However, degradation is only possible as
long as any acceptable operation mode can be executed. Thus, the last degradation step
leads to a final degradation mode FIN__DEG, which describes a safe exit from the platoon.
At this point, the system cannot rely on important sensor information and may not be able
to communicate with other vehicles. Thus, it should come to a standstill as far to the right
as possible, brake and warn other road users.

4.2 Controller Model

The Stateflow model, as depicted in Figure 3, consists of three hierarchical modes. The system
starts in the nominal platoon mode. Failures cause a transition to the degraded platoon
mode. If failures are resolved, it returns to nominal platoon mode. If no further acceptable
degradation is possible, the last step leads to the final degradation mode (FIN_DEG).

[}

norminal_platoon_mode
entry: tr_max=tr_pl;

[V2L_F | V2F_F |US_F | LID_F | WEnc_F]

[~V2L_F & ~V2F_F & ~US_F & ~LID_F & ~WEnc_F]
1

degraded_platoon_mode

2
[LID_F & (US_F & V2F_F | WEnc_F & IMU_F & (US_F | V2F_F & V2L_F))]

FIN DEG

Figure 3 Main Statechart.
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/degraded_platoon_mode )
[degradation_for_the_communicaton |
- _I
( degradation_for_the_distance_measurement ':
-k — — — — — — -
:Eeargdgtfnn__ fsrrth_ereaoirﬁoﬁoﬁ__mga_su_reTnEnT 7

Figure 4 Statechart for the Degraded Platoon-Mode.

The degraded platoon mode, as depicted in Figure 4, consists of three parallel states,
which in turn contain further state machines: Degradation for the communication (Figure 5),
Degradation for the distance measurement (Figure 7) and Degradation for the ego motion
measurement (Figure 8) according to the failure categories: communication failures, failures
in distance measurement and failures in measurement of the ego-motion. In each parallel
state, the reaction time is adjusted as described in the previous section. The overall reaction
time is the sum of the normal reaction time ¢r_pl and all added constants. If, for example,
an error occurs in the LIDAR, in the communication with the vehicle in front and in the
wheel encoder, the reaction time to be added is the sum of ¢r_lid, ¢tr_front and tr_wenc.

/degradation_for_the_communication * M
~V2L_F] . [~V2F_F
S i 2 N

DEG L _~ DEG_F
V2L _F] V2F_ F] ——
- [FV2FF] V2L Fl
2 2
_ 2 1
N ACC S/
- _|entry: ACC_m=true; =
(V2F_F] | tr_max=tr_max+tr_acc_offset;| [V2L_F]
exitt ACC_m=false;
tr_max=tr_max-tr_acc_offset;

- /

Figure 5 Degradation for Communication Failures.

The state machine for degradation in case of communication failures is shown in Figure 5.
The initial state “wait” corresponds to states without any communication errors. This state
is active if the degraded platoon-mode is activated without communication errors, but with
an error in the distance measurement or in the measurement of own motion. There are three
different variants of degradation for communication: the failure is due to communication with
the platoon leader (V2L_F), with the vehicle in front (V2F_F), or with both. When a failure
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in the communication with the platoon leader (V2L_F) occurs, we switch to a degradation
mode for communication with the leader. If the failure is resolved, the system returns to
“wait” again. Failures within the communication with the vehicle in front (V2F_F) are
handled analogously. If the communication with both, the leader and the preceding vehicle,
is corrupted, the ACC mode is activated (ACC_m=true) and the ACC-specific constant
tr_acc_offset is added to the reaction time. When this state is left, the offset is subtracted
again. The same holds for a switch to the CACC mode, where tr_cacc_ offset is added.

It contains a sub-state machine for corrupted communication with the platoon leader
(DEG__L)as shown in Figure 6(DEG_F is similar and, thus, omitted here). The vehicle
switches to CACC mode (CACC_m=true) and tr_cacc_ offset is added to the reaction time.
At the same time, a request for the data of the platoon leader is sent to the preceding vehicle.
When this data is received (pos_resp_F), the vehicle changes to a degraded state (DEG_L1)
and the reaction time is increased by tr_lead. If the preceding vehicle looses connection to
the platoon leader (F2L_F), the system returns to CACC mode. During this process, the
system continuously tries to re-establish the communication with the platoon leader in order
to switch back to an operating mode with a better performance.

(DEG L ? )

{ 3

! i

| i

! i

! i

i p i

I ichange_to_CACC !

) . - .

i 1entry: CACC_m=true; TR T Y T B 1
| | tr_max=tr_max-+tr_cacc_offset; ¢ jre_establish_V2L
! |exit: CACC_m=false; o P A ;
l i
l :
l |
i i
| i
: :
! H
| i
| i
L 1
l |
L J

e

I
| tr_max=tr_max-tr_cacc_offset;

~

—_— —-m_-

[F2LFl /" [pos_resp_F]

entry: tr_max=tr_max+tr_lead;

DEG_L1
exit:tr_max=tr_max-tr_lead;

Figure 6 Degradation for Communication Failures with the Leader.

The state machine for degradation in case of distance measurement failures is depicted
in Figure 7. The LIDAR and the ultrasonic sensor are mainly used for the identification
of the received communication packets or for precise distance measurement in ACC mode.
Starting from a wait state (wait), the system switches to a degraded state (DEG_LID1)
and relies on the ultrasonic sensor for identification of communication packets if a LIDAR,

error occurs (LID_F). ¢r_lid! is added to the reaction time. However, when ACC mode is
active (ACC_m), it switches to a degraded state (DEG_LID2) and relies on the ultrasonic
sensor for precise distance measurement. ¢r_lid2 is added to the reaction time. The same

applies if an error occurs in the ultrasonic sensor, i.e. tr_usl or tr_us2 are added to the
reaction time and only the LIDAR is used. The following applies: tr_lid2 > tr_lidl and
tr_us2 > tr_usl. For failure-free communication, an estimate is sufficient to identify the
communication packets. If the communication is faulty, an exact distance measurement is
needed. Thus, the reaction times tr_lid2 and tr_us2 are higher.
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If the data of both sensors are faulty, the system switches to a degradation state in which
it relies on the GPS and the wheel encoder to identify communication packets. Compared to
the positions of platoon partners that were received via V2V communication, communication-
packets of the vehicle in front and the platoon leader can then be filtered. ¢r lid_us is
added to the reaction time in this case. This degradation is only possible if communication
is available. Otherwise, the vehicle passes to the final degradation state (FIN_DEG).

/degradation_for_the_distance_measurement ’ A
f/degradation_distance_measurement ’ )
[US_F] [LID_F]

[~US_F]'"———/[~LID_F]
_(DEG_US1 J | | | (DEG_LID1
g entry: tr_max=tr_max+tr_us1;|, | |\ |entry: tr_max=tr_max+tr_lid1;
exit:tr_max=tr_max-tr_us1; 1 | exit:tr_max=tr_max-tr_lid1;
| [(=ACC_m] 2 -US_F) [-L1D_F] < ~ACC_m]
\ S, ' |
[ACC_m]y J \_ i [ACC_m]
"\ ,[DEG_US2 1~ ~1{DEG_LID2 >’
entry: tr_max=tr_max+tr_us2; entry: tr_max=tr_max+tr_lid2;
exit:tr_max=tr_max-tr_us2; exit:tr_max=tr_max-tr_lid2;
k. : /
[USF&LD_F] " [~US_F|~LID_F]
DEG_US_LID
entry: tr_max=tr_max+tr_lid_us;
exit:tr_max=tr_max-tr_lid_us;
- J

Figure 7 Degradation for Distance Measurement Failures.

Gegradation_for_the_ego_motion_measurement

wait _["WEnc_F], (DEG_WENC
entry: tr_max=tr_max+tr_wenc;

2—— = exit:itr_max=tr_max-tr_wenc;
[WEnc_F]

DEG_WENC_IMU
entry: tr_max=tr_max+tr_wenc_imu;
exit:tr_max=tr_max-tr_wenc_imu;

-

Figure 8 Degradation for the Measurement of Own Motion.
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In Figure 8, we depict the state machine for degradation in case of measurement failures
of the ego-motion. Starting from a wait state (wait), the system switches to a degraded state
(DEG_WENC) and relies on the inertial measurement unit to determine its own acceleration
if an error occurs in the wheel encoder (WEnc_F). ¢tr_wenc is added to the reaction time.

If the inertial measurement unit is faulty too, we switch to a degraded state
(DEG_WENC_IMU) and add ¢r_wenc_imu to the reaction time. In this mode, a motor
model is introduced which estimates the motor speed from electrical values without using the
physical speed sensor. The introduction of the motor model was discussed in [4]. Although
the speed is not estimated very well, an estimation is better than a complete loss of the
measurement of the ego-vehicle motion.

The proposed fallback concept can be further refined by changing reactions to failures or
adding new actions. For example, in case of a distance measurement failure, the cameras
can be used to estimate the distances. Furthermore, the logical expression that leads to
the final degradation state can also be adjusted. This can be useful, for example, if it is
determined during simulation or testing that a safe distance cannot be maintained for a
certain combination of failures. The presented controller model contains degradation steps
for all failure combinations that were considered during our systematic system analysis.
To ensure that the controller is complete and that the reaction time estimate is safe, i.e.
leading to a safe distance to the preceding vehicle, we systematically tested our controller, as
described in the next section.

5 Assurance by Mode-Specific Contracts

To ensure a safe operation of vehicles, standards like ISO26262 [3] define concepts and
procedures which need to be considered during the development of safety-critical functions.
These standards explicitly recommend a formal system description for heavily safety-critical
systems like our car platoon. Based on the formal system description, methods like model
checking allow a partly or fully automated way of verifying and validating the system early
during development. A promising approach to this is Contract-based Design[5]. By specifying
pairs of assumptions and guarantees the behaviour of each system component can be defined
on its own and thus lowering the overall complexity of large systems. The composition of
components and their contracts can then be evaluated.

To validate our degradation controller we specify contracts in SSPL (System Specification
Pattern Language)[2], which enables a formal and verifiable description of behaviour while
also maintaining a readable appearance. We came up with 11 contracts which describe the
degradation of the platooning function. As an example, the contract defining the minimum
distance to the vehicle in front while platooning is active and no errors occur (nominal
platoon-mode) looks as follows:

Assumption | all of the following conditions hold:

- platooning is ACTIVE

- com__error does not occur

- distance__meas__error does not occur.

Guarantee 1 | distance__to__front is always greater than d_ min_ pl

Guarantee 2 | Whenever break__maneuver_ front occurs then in response dis-
tance__to__front is never less than distance__at__standstill starting immediately.
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As a second example, we show a contract specifying a switch to ACC-mode (drv__mode
= ACC) when the communication to the platoon head and the preceding vehicle is lost:

’ Assumption ‘ No specific assumption. The contract’s guarantees shall always hold.

Guarantee 1 | Whenever V2L__F changes to true while all of the following conditions hold:
- V2F__F is true
- drv_mode is not FIN DEG

then in response drv__mode changes to ACC eventually.

Guarantee 2 | Whenever V2F__F changes to true while all of the following conditions hold:
- V2L_ F is true
- drv__mode is not FIN_DEG

then in response drv__mode changes to ACC eventually.

As a first step towards a verified degradation controller, we have implemented and automated
tests based on these contracts in Simulink to successfully check the state machines against
our specification. To this end, we have simulated our controller in the presence of specific
failure combinations and checked whether our guarantees hold. Figure 9 gives an overview
of internal failures and external events that we have used for systematic testing of failure
combinations. Expressing our system behaviour with semi-formal contracts in SSPL, has
eased writing proper test cases for our state machines.

internal failures

US_F »/0s F
- US F i A
ID_F »LID_F
LID_F
\WEnNc_F P WEnc_F
WEnc_F

IMU_F IMU_F

IMU_F
g
- V2F F

L

V2L_F
external
L2F F P L2F_F
events = L2F_F
F2L_F F2L_F
= F2L_F
|pos_resp_F 005, respF P pos_resp_F
|-
| pos_resp_L — y\@s_resp_L /

Figure 9 Simulink/Stateflow model used to verify against contract specification.

6 Conclusion & Future Work

We have described a systematic design of degradation cascades for sensor and communication

failures in autonomous car platoons using the autonomous model car “Velox” as example.

We have modelled our resulting degradation controller in Simulink/Stateflow. For safety
assurance, we have formulated contracts for each identified degradation level and used them
for systematic testing. The methodology of the present work and its systematic approach is
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inspired by [4] and has been adapted for the platooning function. In our work, new ideas for
degradation and reactions to errors have been developed and presented at a conceptual level.
It can serve as a basis for further improvement, development and implementation in future
work. The systematic approach presented in this paper is not restricted to autonomous
platoon driving but can also be applied to other problems and different systems in general.

In contrast to traditional, non-distributive systems, cooperative systems should not
only deal with local failures, but also with failures of the other participants. Failures can,
if possible, be transmitted via communication. However, if this is not possible due to
communication failures, participants should also be able to deal with this situations and
reach a functional and safe state. In future work, the degradation concept could be extended
to feature additional modes allowing platoon members to autonomously determine which
members are affected by malfunctions. For example, if a platoon member can only estimate
its own acceleration with poor accuracy due to sensor failures, it will communicate its
degradation mode to the other platoon participants. Another approach would be to define
reactions beyond the consideration of individual vehicles on a platoon level. For example,
if the platoon leader cannot be reached by several followers, the platoon leader could be
changed, e.g. by choosing the next achievable follower as a new platoon leader. This kind of
platoon management has not been systematically coped with so far and would definitely be
a mandatory step for a robust and applicable platooning functionality.

As a first step, we have tested our concept based on formal contract specifications. By
expressing our system behaviour with semi-formal contracts in SSPL, it has already been
much easier to write proper test cases for our state machines. In future work, we aim at
automatically verifying our contract specification against the static system architecture using
model checking. A promising candidate is the model checking tool OCRA* as it already
supports this type of contract verification. We are currently developing a translation from
SSPL to Othello, the contract specification language supported by OCRA. With an automatic
translation, the engineers will not have to cope with difficult expressions in temporal logic
but can rather use our template approach to specify and verify their systems.
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—— Abstract

This paper performs a feasibility analysis of deploying Model Predictive Control (MPC) for vehicle
platooning on an On-Board Unit (OBU) and performance benchmarking considering interference
from other (system) tasks running on an OBU. MPC is a control strategy that solves an implicit
(on-line) or explicit (off-line) optimisation problem for computing the control input in every sample.
OBUs have limited computational resources. The challenge is to implement an MPC algorithm on
such automotive Electronic Control Units (ECUs) with an acceptable timing behavior. Moreover,
we should be able to stop the execution if necessary at the cost of performance.

We measured the computational capability of a unit developed by Cohda Wireless and NXP
under the influence of its Operating System (OS). Next, we analysed the computational requirements
of different state-of-the-art MPC algorithms by estimating their execution times. We use off-the-shelf
and free automatic code generators for MPC to run a number of relevant MPC algorithms on the
platform. From the results, we conclude that it is feasible to implement MPC on automotive ECUs
for vehicle platooning and we further benchmark their performance in terms of MPC parameters
such as prediction horizon and system dimension.
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1 Introduction

Vehicle platooning is an application based on Cooperative Adaptive Cruise Control (CACC)
technology, which is an extension of Adaptive Cruise Control (ACC). In ACC, the vehicle
senses the position of the preceding vehicle and adapts the speed to avoid a collision. CACC
introduces V2V messages between different vehicles. These messages have much richer
information including position, speed, acceleration or road intersection status among others.
The richer information allows the vehicles to react faster to sudden changes in the preceding
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vehicles and therefore, the distance between the vehicles can be reduced which enables to
achieve better fuel efficiency and road capacity [21].

Model Predictive Control (MPC) is an optimal control strategy capable of satisfying
constraints on the states of the system (plant) and the control input. The main challenge
of MPC is its high computational requirements since it requires to solve an optimisation
problem at every time step (sample) [7]. The MPC technology is extensively used in the
chemical industry where the dynamics is generally slower. With the advent of powerful
computing abilities of modern processors, MPC is making its way into other sectors such as
the automotive industry [10]. One of the applications of MPC in the automotive industry is
vehicle platooning. MPC has already been applied to vehicle platooning without explicitly
considering constraints on the computational resources and the V2V communication time
that is present in a real implementation [6]. In a real implementation, the ECU of a vehicle,
which is an embedded device with limited resources, needs to solve the MPC optimization
fast enough to meet the timing requirements imposed by the V2V communication.

MPC has already been implemented on embedded platforms successfully for different
applications. In [31] the authors use a simple embedded device with an ARM processor
running at 48MHz with 64kB of RAM memory. They control a system consisting of 8 states,
2 inputs and a control horizon of length 20 achieving a sampling period of 4ms. In [31], Fast
Gradient Method algorithm (FGM) was used with fixed point operations and a tuned level
of sub-optimality specific for the plant. When using floating point operations and decreasing
the control horizon length to 15, it achieves a sampling time of 8ms. In [9], the authors
achieved a sampling frequency in the kHz range using a processor with a clock frequency of
1GHz with a dedicated floating point unit. When controlling a larger system they manage to
reach a sampling time of 13ms.

A number of works approached the embedded MPC problem using hardware accelerators
[5] [28] [25] [17] [14] [22] usually on a Field Programmable Gate Array (FPGA). These works
attempt to achieve sampling rates in the kHz range or control very large systems, while the
vehicle platooning problem does not require very short sampling times nor large predictive
models.

In order to solve the MPC optimisation problem an algorithm needs to be used. There
are mainly two categories of MPC algorithms — explicit and implicit. In explicit MPC the
solution is computed off-line and given to the controller as a look up table which usually
requires large memory capacity. In implicit MPC the solution is computed on-line at each
sampling period [1]. In this paper we focus on implicit MPC. Implicit MPC is the most
commonly used method and there are a number well-developed state-of-the-art algorithms.
Almost all of them can be classified in one of the following categories — Inner Point Method
(IPM) [16], Active Set Method (ASM) [8], and (Fast) Gradient Method ((F)GM) [17] [3]. We
analysed the feasibility of these algorithms with a special focus on FGM.

In order to determine if it is feasible to implement MPC for vehicle platooning on an
embedded device, timing constraints must be met. The MPC algorithm needs to be able to
compute the solution fast enough for a problem with similar dimensions and constraints as
in vehicle platooning, described below (Section 4.2). The time available for the execution
of the MPC task depends on the message rate (or sampling rate) supported by the V2V
communication and the execution time of the other tasks running on the device. Ideally the
execution time would be deterministic or bounded, which can be achieved for some of the
state-of-the-art algorithms.

We also analyse the trade-off that needs to be made to balance the control performance
and the execution time of the MPC task. We investigate the impact of the length of the
control horizon (used in the MPC optimization) on the execution time, the effect of the
algorithm choice and provide a number of guidelines for choosing the processor.
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The rest of the paper is organised as follows. We describe the problem of vehicle platooning
in Section 2. In Section 3, we analyse the characteristics and the performance of a platform
suitable for being used for vehicle platooning. Next, we describe a possible implementation
for vehicle platooning and we measure the overhead introduced by the other tasks that need
to run on the selected platform in Section 4. We investigate a number of automatic C code
generation tools available for MPC in Section 5. We analyse the computational requirements
of different MPC algorithms in Section 6. Using the computational requirements of different
algorithms and the performance of the platform, we provide an analytical estimation of the
execution time on the selected platform in Section 7.1. We use the code generation tools to
run a number of template MPC algorithms on the V2V wireless node in Section 7.2. Using
the experimental and the analytical execution times we estimate the possible delays and
sampling periods that can be achieved using MPC and the trade-offs that can be made, in
Section 7.3. Finally we conclude in Section 8.

2  Vehicle platoons

2.1 V2V Communication and topology

The vehicle-to-vehicle communication (V2V) is performed following the standards of each
country, most notably the standard of the EU, ETSI-ITS, and the standard of the USA,
1609 WAVE. Both standards are based on the IEEE 802.11p protocol stack. Under IEEE
802.11p, we can reach up to 10Hz message rate when the network usage is below 70%. The
message rate can get as low as 1Hz under heavy traffic of vehicles with V2V communication
devices [13].

In this paper we consider the Predecessor-Follower (PF) topology, where each vehicle
receives messages from its predecessor (Fig. 1). Other topologies exist, such as Two-
Predecessor-Follower (TPF) [30] and Leader-Predecessor-Follower (LPF) [30].

In Fig. 1, m; is the message from the vehicle i including its speed, position and acceleration,
and Ad; is the error in distance (desired gap - actual gap) between the vehicles ¢ and 7 — 1.

(P i () o

@3 Adj.q C@ Ad; @3 Adjyq @

i-2 i-1 1 i+1

Figure 1 Predecessor-Follower topology.

2.2 Platoon model

The platoon model is distributed, each vehicle has a model of itself (vehicle model) and its
relation with its predecessor (inter-vehicle dynamics).

The model of the vehicle 7 is obtained combining a simplified model of the longitudinal
dynamics of the vehicle with the dynamics of a DC motor [27, 26], and it is given by:

B = ALl + Bl 1)
where A? and B! are the state and input matrices respectively, u!

the input of the motor and z! = [a* @'|T is the state vector. Where a’ and &' are the
acceleration and the rate of change of the acceleration of the vehicle i, respectively. Moreover,

is the duty cycle of

%
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the state matrix A’ and the input vector B! of vehicle i are defined as:

i 0 1 ) 2x2 i O ) 2x1
Av = 1 —(ri 7)) eR ,Bv = | k'K’ eR .

where 7%, 71, K' K! are model parameters of the vehicle i.

To obtain the platoon model under the PF topology, the inter-vehicle dynamics relate
the vehicle 4 to the vehicle i — 1. This is done by adding two new states, Av’ and Ad?, which
represent the speed difference and the gap error between the vehicles, respectively. They are
defined as Ad' = d' — d},,, and Av® = v'~! — v, where Ad' is the error between the actual
gap (d') and the desired inter-vehicle gap (dY,,) between the vehicle i and the vehicle i — 1.
Av® is the velocity error between the vehicle i and the vehicle i — 1, where v* denote for the
velocity of the vehicle i. d* and df,,, are defined as d',, = do + 0" and d* = ¢"~' — ¢* — L',

des

where dj is the gap between vehicles at standstill, 73, is the constant headway time (the time
the vehicle i needs to reach the position of the vehicle i — 1 when dy = 0). L%, ¢* are the
length and position of the vehicle 7, respectively.

Combining the vehicle model with the inter-vehicle dynamics we obtain the platoon
model:

# = Algh + Biub + Gla'! (2)

where 2! = [ @' Ad' Av'] is the state vector, a®~! is the acceleration of the preceding

P _
vehicle and A}, is the state matrix. The predictive model used for MPC will be obtained

based on the platoon model in Eq.(2) (see Section 4.2).

3 Embedded platform: Cohda Wireless MK5 OBU

The Cohda Wireless MK5 is a platform developed by Cohda Wireless in partnership with
NXP. It has been developed as a prototyping platform for V2V applications, such as CACC,
and other Vehicle to Everything (V2X) applications.

3.1 Hardware

The platform has one main processor, NXP i.MX6 Dual Lite @ 800MHz (dual-core processor),
paired with a communications co-processor, NXP MARS. It is equipped with 1GB of volatile
memory. With a large volatile memory, memory is not a bottleneck and we are interested
only in the computational power.

The platform has several ports and connectivity options. It can be connected to two
5.9GHz antennas, a GNSS antenna, uSD card, Ethernet port, CAN bus port and audio jack.
On top of that it has a DC power connection.

3.2 Software

The platform uses an Ubuntu distribution of Linux as its Operating System (OS). It is not a
Real-Time OS (RTOS). There are system applications available on the platform. The most
relevant are the communication stacks of the EU and the USA standards.

We also use the evaluation platform reported in [30] and available in [29], which allows to
quickly measure the string stability of the platoon and takes care of all the tasks required to
execute CACC in a modular approach. The structure of this evaluation platform is further
detailed in Section 4.
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3.3 Performance evaluation

The performance is measured in millions of floating point operations per second (Mflop/s) and
millions of fixed point operations per second (Mop/s). We evaluate the average performance
and its distribution in percentiles.

The type of operations measured are fixed point and floating point additions, and fixed
point and floating point multiplications. Most MPC algorithms use only these operations.
In Table 1, the performance of the platform is shown.

Table 1 Performance of the Cohda Wireless MK5 platform.

Fixed point | Fixed point Floating point | Floating point

addition multiplication | addition multiplication
Fastest 230.1 Mop/s 214.0 Mop/s 113.0 Mflop/s 88.2 Mflop/s
95th percentile® | 214.0 Mop/s 200.0 Mop/s 113.0 Mflop/s 88.2 Mflop/s
Average 174.0 Mop/s 156.0 Mop/s 112.0 Mflop/s 60.0 Mflop/s
5th percentile* 200.0 Mop/s 150.0 Mop/s 103.0 Mflop/s 78.9 Mflop/s
1st percentile* 107.0 Mop/s 88.2 Mop/s 50.8 Mflop/s 47.6 Mflop/s

*The kth percentile is the number larger than k% of the measurements.

We use an internal timer for the measurement which runs at a frequency of 1MHz, while
the processor runs at 800MHz. Therefore the accuracy of our measurement is within 800
clock cycles. The first test uses a large number of operations in a loop. We used 8 x 107,
4 x 10° and 2 x 10° operations for each of the measured types. The different number of
operations allows us to confirm that the execution time is linear to the number of operations.
These measurements give us a notion of the average performance of the system.

As our system does not use a RTOS, during the time that the test executes (over 4

minutes in some cases) there are other tasks preempting the test. In order to measure the
variability of the performance we designed a second test. In this test we measure the time

needed to perform 3000 operations, and the measurement is repeated for 1 million times.

We search for the fastest iteration and the 1st, 5th and 95th percentile. If performance
requirement is higher, the device can be overclocked to reach 1GHz, and some secondary OS
tasks such as Bluetooth can be shut down to remove their influence.

4  Qverall architecture

In the Fig. 2 we can see a diagram showing how the system works. We use the platform in
[30], with the MPC design in [15]. As we will use the PF strategy for the communication,
the leader sends its state to the first vehicle, and the vehicle i sends its state to the vehicle
i+ 1. In a real environment, the leader vehicle would be driven by a human driver, and the
commands control the real vehicle. In a simulation we create a profile for the acceleration
commands and actuate the model of the vehicle.

The vehicle i receives the state from the vehicle i — 1 and uses a*~! and x; as inputs for
the MPC controller (the upper layer), which computes the desired acceleration. The desired
acceleration is used by the lower layer as reference value and outputs the duty cycle of the
input to the motor, which controls the vehicle. The state of the vehicle (sensed or simulated)
is given as an input to the two controllers and it is also sent to the next vehicle.

2:5
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Figure 2 Overall architecture of the system.

4.1 Lower layer controller

The lower layer controller is a state-feedback controller and it runs at a faster rate than the
upper layer with a sampling rate of 2ms [15]. The output of this controller is the motor duty
cycle which controls the vehicle.

4.2 MPC: Upper layer controller

In MPC we solve an optimisation problem by defining the following quadratic cost function
subject to specific constraints on inputs and states:

N-1
i i i i i i
T =k Povane + 2 @ Qe + e Rud )
j=0
. i _ & i, i i1 . _
subject to Tig ik = P Ty T Tr Uy e+ \\ g J = 0,...N—1
Tomin < x;+k|k < Tmaz, .7 = 17"-’N

Umin < u;_’_klk < Umaz, .7 =1, aN (3)

where J is the cost function, N is the length of the control horizon, x; Fk[k is the predicted
state vector of vehicle i after j steps computed at time k, where x}c‘ . is the sensed state of
vehicle 3. u; Skl is the computed input vector for the vehicle i for the j step, and @, R and
P are the weight matrices. It should be noted that a quadratic cost function is chosen so
that the problem is convex and a global minimum can be found.

In order to use MPC we must discretize the platoon model in Eq. (2) using Zero-Order

Hold (ZOH). After the discretization, the predictive model for vehicle i becomes:

i _ FHioi i, i i—1 - _
xj+k+1|k—¢)$j+k\k+r uj+k|k—|—\llaj+k‘k, j—o,,N 1 (4)
i — [ i i i : i
where Ty e = [aj+k|k 6aj+k|k Adj+l€|k7 Avj+k|k] represent the predicted states. (G

is the desired acceleration (the optimal control inputs that must be computed). aé;il L 18
the predicted acceleration of the preceding vehicle. We consider that the future evolution
of the acceleration of the preceding vehicle is constant. Therefore, it does not affect the
optimisation process. The predictive model has 4 states and 1 input variable. Each of the
states and the desired acceleration (u’) have an upper and a lower bound. Therefore we have

10 constraints.
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The upper layer uses MPC. It receives the current state of the vehicle and the state of
the preceding vehicle, and gives the lower layer a new acceleration reference. The upper layer
runs with a sampling time of 100ms since the maximum message rate is 10Hz. At every
sample in which a new message has been received, the MPC controller computes an optimal
series of future N inputs (N is the horizon length). When the message rate is lower than the
sampling rate, the MPC controller automatically updates the desired acceleration using the
next value of the optimal series of inputs that were computed in the last sample in which a
message had been received. As the message rate can drop to 1Hz, we need the length of the

control horizon to be at least 10 while a higher N could improve the quality of the control.

We consider 10 < N < 20.

4.3 Execution time budget for MPC

In this section, we compute the maximum available execution time for the MPC algorithm
considering a message rate of 10Hz. That is, the time available to execute the MPC algorithm
after performing all the other system tasks — see Fig. 3. The platform needs to send and
receive messages (communication task), and compute the result of the lower layer and upper
layer controllers. The upper layer also has some overhead besides the MPC algorithm such
as updating the value of some pointers and variables like the desired acceleration. Fig. 5
shows the tasks performed by each piece of hardware. The MARS co-processor sends and
receives packages. The main processor creates the packages that need to be sent, processes
the received packages, and executes the upper and lower layer controllers.

Communication Lower Overhead MPC

tasks layer (x50) | (upper layer) (upper layer)

T A
| 100 ms

Figure 3 Execution time requirement when running on a single core.

In order to measure the contribution of each task to the total execution time, we use the
platform developed in [29] which uses a PID controller for the upper layer and a state-feedback
controller for the lower layer. We removed the logging functions and the PID controller, so
that we get a minimal version of the platform, and added time stamps to analyse the latency
of each task. Furthermore, we have modified the platform so that the tasks in the main
processor are scheduled using POSIX threads with a Fixed-Priority Preemptive Scheduler
(FPPS). For tasks with equal priority it follows a First In, First Out (FIFO) schedule. The

Main processor Co-processor

h A
(De)packetizing Communication

Upper layer

Upper layer
(Overhead + MPC)

Communication = Core 0

tasks

Lower layer
NXP .MX6 NXP MARS
Figure 4 Typical execution without OS tasks. Figure 5 Task distribution and data

flow on hardware.
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OS has the highest priority, the lower layer and the (de)packetizing tasks are given an
equal medium priority, while the upper layer has the lowest priority. The processor has two
cores, making it possible to process two different tasks (threads) simultaneously. The kernel
distributes the different tasks (including the OS tasks) between the 2 cores dynamically.

In Fig. 4 we can observe the expected execution of the tasks in the absence of OS tasks.
The lower layer is represented at a lower frequency that the frequency implemented.

The results are shown in Table 2. We are mainly concerned about the tasks shown in
Fig. 3. We present the measured maximum and average latencies after 100 runs and the
execution frequency, i.e. how often does that task have to execute.

Table 2 Latency of other tasks that run on the platform.

Maximum latency | Average latency | Execution frequency
Lower layer controller 0.045ms 0.0151ms 500Hz
Upper layer controller 0.059ms 0.0126ms 10Hz
overhead
Communication tasks 1.063ms 0.3611ms < 10Hz

With the results in Table 2 we can obtain the execution time budget for the MPC task.
In 100ms we need to perform the lower layer controller task 50 times (51000]515), and the
communication and the upper layer controller tasks only once. We used the worst case
latencies to compute the execution time available for the MPC algorithm in the worst case.
The worst case latencies will occur when the OS tasks are running on both cores of the
processor, therefore for the worst case analysis we assume that there is only one core available
for all the tasks. eyrpc, €comm, €ovn and err, denote the maximum latency of the MPC
task, the communications tasks, the overhead of the high level controller and the low level

controller respectively.

empe < 100ms — (ecomm + €own + 50err) = 96.628ms (5)

From the above experiments, we conclude that the effects of other tasks are almost
negligible and we obtained an upper bound for the execution time. How to respect this
requirement is analysed in Section 6. The quality of the control is affected by the sensor-to-
actuator delay. Therefore, the execution time should be as short as possible.

5 Automatic C code generation for MPC

In order to facilitate implementing MPC algorithms on embedded platforms, automatic C
code generators are developed. These tools take a description of the desired MPC problem
and generate the necessary C code to solve it with a given optimisation algorithm.

Code generators are used academically and in the industry [4]. There are many tools
available. Some of them are commercial (paid) tools, e.g., ODYS [24] or FORCES [11] while
others (e.g., tAO-MPCJ32], CVXGEN [20], FiOrdOs [12], jJMPC [2]) are free. We used
CVXGEN, nAO-MPC and FiOrdOs in this paper since they are free and they allow to stop
executions providing a sub-optimal solution.

CVXGEN has been developed in the University of Stanford. It allows to describe an
optimisation problem in general terms, the problem description includes the dimensions of
the different matrices and vectors, and some properties such as being positively definite, or
diagonal. It does not need the exact values of each entry of the matrices. The algorithm
used is based on CVX, a solver for MATLAB. The tool is online based and free for
academic use [20].



I. Martin Soroa, A. Ibrahim, D. Goswami, and H. Li

IPM ASM

Number of iterations
=

-

3 4 5 6 7 8 9 10 11 12 13 3 4 5 6 7 8 9 10 11 12 13
Number of decision variables, nv Number of decision variables, nv

Figure 6 Number of iterations as a function of the number of variables (n,) and constraints
(me), reproduced from [19)].

BAO-MPC has been developed in the Otto von Guericke University of Magdeburg. This
tool is a very similar to CVXGEN in its usage and flexibility. It uses a FGM algorithm for
obtaining the solution. The tool can be downloaded for free and it works using Python,
which is also a free tool [32].

FiOrdOs has been developed in ETH Zurich. This tool requires a full description of the
problem, with all the entries of the matrices before it can generate the code. It uses a
FGM algorithm. The tool is a free toolbox for MATLAB [12].

6 MPC algorithms and computational requirements

In order to estimate the execution time of different algorithms, we need to know their
complexity. The number of computations per iteration is deterministic in most algorithms,
but the number of iterations depends on the convergence speed of the problem and the initial
conditions making the total execution time unpredictable.!

IPM reaches the solution in steps towards solving the Karush-Kuhn-Tucker equations,
making few but computationally heavy iterations [19]. For IPM we used the estimate of
the number of flops shown in [19] which is also shown in Table 3. We use the Gauss-Jordan
elimination with pivoting method for solving the linear systems using the estimate given
in [19]. We assumed that division operations are equivalent to 10 multiplications. For
the number of iterations, we took an approximate value based on Fig. 6, reproduced
from [19], with 13 iterations.

ASM tries to guess the constraints that are active in the solution (Active Set) and does
it by adding the constraints one by one on every iteration [19]. For ASM we use the
estimate of the number of flops found in [19]. We made the same choices as for IPM. For
the number of iterations, we can find a direct linear relationship between the number of
decision variables, n,, and the number of iterations when looking at Fig. 6, see Table 3.
GM computes the gradient of the cost function in the current point and next, it moves
one step in that direction. It repeats the process until it finds the minimum. In the fast
variants, FGM, a sub-optimal solution is accepted as a trade-off for a faster computation
time. An important advantage of FGM is that it can give an output at any point in time,
making it possible to bound the execution time. These methods require the cost function
to be quadratic [17] [3].

! In [23] an upper bound for the number of iterations of some algorithms is found. However, it requires
knowledge of the exact values of the predictive model and the bound is significantly larger than the
observed number of iterations [31].
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For FGM we use the estimations provided in [18], which analyses several different FGM
algorithms. It analyses Bemporad’s and Richter’s algorithms, each of them with 2
alternative formulations, which give different computational requirements. The equations
used can be seen in Table 3. These estimates don’t specify the type of operations. We
assume that 50 iterations are needed, based on the experiments performed in [18], but
those values are based on a different problem than the one used in [19], therefore they
might not be comparable.

Table 3 Formulas used to compute the number of flops [8] [19] [18].

Algorithm Flops per iteration if:::gs:lsof
PM 2n2(ne + 1) + 1y (Tne + 2) + 14n, + 1+ 13
Ma(n,) + Mm(ny) + 10(3n. + 1 + Md(n,))
o’ + 2n,(2ne + 1) — ne + Ma(n, + 0.5n.)+
ASM v 2. "
5 Mm(0.5nc + ny) + 10(ne + Md(ny, + 0.5n.)) bxn
’s FGM
Bemporad's FGM | o) o) g0 4 g 50
u-formulation
Bemporad’s FGM | N(4n2 + 6nyny) + 6N (Ne 4 ny) (e + 1y )+ 50
xu-formulation ANy (N + ny)
Richter’'s FGM 2, 2
2N u
uy-formulation (ny + nuny) 50
Richter’'s FGM
xuy-formulation 2N (ny +12)(5na + 2nu +1y) 5

In Table 3 the new variables have the following meaning:

ng: Number of states of the plant model, in this case 4.

ny: Number of outputs of the plant model, in this case 1.

n,: Number of inputs of the plant model, in this case 1.

n.: Number of inequality constraints, in this case 10.

ng: Parameter computed as ny = n,, +ny + ny

n,: Parameter computed as n, = N - n,,

Ma(z): Number of additions needed to solve the linear system of equations, computed
as Ma(z) = 0.5(z — 1)z(x + 1) when using Gauss-Jordan elimination.

Mm(z): Number of multiplications needed to solve the linear system of equations,
computed as Mm(x) = 0.52%(x + 1) when using Gauss-Jordan elimination.

Md(z): Number of divisions needed to solve the linear system of equations, computed as
Md(z) = x when using Gauss-Jordan elimination.

The effect of varying the control horizon length for a system with 4 states, 1 input, 1 output
and 10 inequality constraints can be seen in Fig. 7. We can observe that the complexity
of some algorithms grows exponentially while in others it grows linearly. Depending on the
control horizon chosen for the application, different algorithms are recommendable.

7 Performance analysis

7.1 Estimated execution time

Using the specifications of the predictive model and the constraints in Section 4.2, taking
N =15, and the formulas given in Table 3, we can obtain the number of operations needed
to solve MPC for vehicle platooning. Combining them with the performance of the device
(Table 1) we can estimate the execution time for each algorithm.
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Table 4 Execution time estimation for different algorithms for the model described in Section
4.2 and N = 15.

Per iteration Total
Fl Time [ms] Time [ms] Fl Time [ms] Time [ms]
©oPs (multiplications') (mixed?) oPs (multiplications') (mixed?)
ASM 9.56%10% 0.1593 0.1112 | 35.85x10* 5.9750 4.1686
S_?;ifif;;:GM 9.9x103 0.1650 0.1151 | 49.5x10* 8.2500 5.7558
Bemporad's FGM | 2 o) ;s 0.1320 0.0921 | 39.6x10* 6.6000 4.6047

xu-formulation
IPM 10.11x10% 0.1685 0.1176 | 13.14x10* 2.1907 1.5284
Richter’s FGM
uy-formulation
Richter’s FGM
xuy-formulation

9x10% 0.1500 0.1047 45%10* 7.5000 5.2326

6.24x10° 0.1040 0.0726 31.2x10* 5.2000 3.6279

T This measurement assumes that all the operations are multiplications.
2 This measurement assumes that half of the operations are additions and the other half multiplications.

In Table 4 we show the number of operations and execution time in total and per
iteration for all the considered algorithms. Two different execution times are given, one under
the assumption that all the operations are multiplications and the other assuming mixed
operations, i.e. half of the operations are additions and the other half are multiplications.

7.2 Code generation experiments

The theoretical estimations can be too optimistic, as they assume that the data is always
available, which is equivalent to having a infinitely fast memory. Using the code generation
tools described in Section 5 we run an experiment (Appendix A) on the Cohda platform,
obtaining a real execution time. The three algorithms are considered. We use approaches
based on several iterations and sub-optimality levels. Each algorithm converges to the
solution at a different speed. Therefore they need a different number of iterations. We
determined the number of iterations as the minimum necessary to reach a value within 0.001
units of the solution for a very large number of iterations, which is assumed to be the optimal
solution. This is equivalent to an error smaller that 1% in the problem used (Appendix A).

For CVXGEN the number of iterations varied with the control horizon length, being 63
for N=10, 56 for N=15 and 59 for N=20. nAO-MPC and FiOrdOs use a dual approach, with
an inner and outer loop. For pnAO-MPC we needed 30 iterations for the inner loop and 30
for the outer loop. For FiOrdOs the number of iterations of the inner loop is 1, and 125 for
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the outer loop for all the horizons. The time displayed in Table 5 is the average between 100
solutions. We expect that the number of iterations needed to solve the vehicle platooning
problem will be comparable to the number of iterations used in this problem.

Table 5 Execution time of different automatic code generation tools for different control horizon
lengths.

Horizon length | CVXGEN | ntAO-MPC | FiOrdOs
N=10 15.52 ms 106.150 ms 32.286 ms
N=15 26.02 ms 211.526 ms 73.632 ms
N=20 45.35 ms 358.030 ms | 125.968 ms

7.3 Feasibility analysis

Following the execution diagram in Fig. 4, the delay from the sampling instant until the
new control input is computed, depends on the execution times of the upper layer and the
communication tasks. The execution time is variable due to the OS, making it impossible to
obtain an exact value. We approximate it as:

delay R TMPC + TComm + TOvh (6)

where Tarpe, TComm and To,n are the average execution time of the MPC task, the commu-
nication task and the overhead of the upper layer, respectively.

Under the selected communication protocol, there is no use on having a faster sampling
rate than 10Hz, but other communication protocols could be used. Therefore we will compute
the maximum achievable sampling rate as the inverse of the delay. We consider that it is
feasible to use an algorithm if its execution time is below the budget computed in Section 4.3.

Looking at the theoretical estimates, the execution time of IPM is the shortest, while
the shortest FGM algorithm is Richter’s algorithm using the xuy-formulation. For the FGM
algorithms we don’t know the type of operations. Therefore, we use the estimate in the
case that all the operations are multiplications. For IPM the number of multiplications
and additions are very similar [19] and we use the mixed estimation. When considering the
experimental execution times, the best results are for CVXGEN for all the tested horizon
lengths. In Table 6 we present the results for the selected algorithms allowing us to make
the following observations. First, there is a significant difference in the execution time when
using different algorithms or different control horizon lengths. Second, the delay is almost
equal to the execution time of the MPC algorithm. Finally, all the selected algorithms are
feasible to be used for this problem.

7.4 Trade-off analysis

From the complexity of the different algorithms (Section 6) we observe that the size of the
predictive model and the length of the control horizon have a big impact on the complexity
of the algorithm. Generally a longer control horizon length and a more accurate predictive
model (which usually results in a larger model) give a better control performance, but
the improvement might not be sufficient to overcome the negative effects of increasing the
sensor-to-actuator delay and reducing the sampling rate.

When choosing hardware for MPC applications, the variability in the execution time must
be taken into account. In all the implicit MPC algorithms the number of iterations varies
depending on the initial conditions (making the total execution time vary), therefore it is not
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Table 6 Feasibility analysis, execution time, delay and the maximum sampling period for the
selected algorithms.

Execution Maximum samplin .
time (ms) Delay (ms) period (Hz? € | Feasible
IPM N =15 1.5284 1.9021 526 | Yes
Richter’'s FGM
xuy-formulation 5.2000 5.5737 179 | Yes
N =15
CVXGEN N =10 15.5200 15.8937 63 | Yes
CVXGEN N =15 26.0200 26.6368 38 | Yes
CVXGEN N =20 45.3500 46.1027 22 | Yes

enough to select a processor capable of meeting the timing constraints for the average case.
The processor depends on the requirements of the application, i.e. the MPC algorithm must
be guaranteed to execute within the timing constraints 90% of the times. To provide such
guarantees, it is required to perform multiple experiments under different initial conditions
and obtain a probabilistic distribution of the execution time.

Finally, the MPC task can be parallelized when running on a multi-core processor. This
can improve the execution time of MPC but it must be done ensuring that the task in charge
of receiving new messages is able to run. Every received message needs to be processed and
it must be recalled that every vehicle broadcasts several messages per second, making it
possible to receive several hundreds of messages per second when there is traffic.

8 Conclusion

In this paper we analysed the feasibility of employing embedded MPC for vehicle platooning
and provided an overview of the trade-offs that can be done. We obtained a bound for the
maximum execution time admissible when taking into consideration the other system tasks
that run on the platform. We have shown that it is feasible in two different ways. First,
we analysed the computational complexity of different MPC algorithms and compared it
to the performance of the device, obtaining a theoretical execution time. Second, we used
automatic C code generation tools to measure the real execution time of MPC algorithms
for different control horizon lengths. We compared the execution times to the execution time
bounds, showing that it is feasible to use embedded MPC for vehicle platooning. In this
process, we have benchmarked the performance of various MPC algorithms with respect to
parameters such as the horizon length and the number of the states.
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—— Abstract

This paper proposes an integrated development framework that enables co-simulation and operation
of a Robot Operating System (ROS)-based self-driving system using MATLAB/Simulink (IDF-
Autoware). The management of self-driving systems is becoming more complex as the development
of self-driving technology progresses. One approach to the development of self-driving systems is
the use of ROS; however, the system used in the automotive industry is typically designed using
MATLAB/Simulink, which can simulate and evaluate the models used for self-driving. These models
are incompatible with ROS-based systems. To allow the two to be used in tandem, it is necessary to
rewrite the C++ code and incorporate them into the ROS-based system, which makes development
inefficient. Therefore, the proposed framework allows models created using MATLAB/Simulink to
be used in a ROS-based self-driving system, thereby improving development efficiency. Furthermore,
our evaluations of the proposed framework demonstrated its practical potential.
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1 Introduction

Self-driving systems continuously increase in complexity along with the increasing number
of required functionalities. One approach to the development of complicated systems is the
use of Robot Operating System (ROS) [5] [12] [13]. ROS characteristics, such as abstracting
hardware and improving code reusability, make the development of such systems more
efficient. A ROS-based self-driving system is Autoware [1]. Autoware is open-source software
for autonomous vehicles and can be used in embedded systems, such as NVIDIA DRIVE
PX2 [10] and Kalray MPPA-256 [11].
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Figure 1 System model of IDF-Autoware.

However, in the automotive industry, the design of self-driving subsystems, such as
detection, planning, and control have often used MATLAB®/Simulink® [3]. The models
designed using MATLAB/Simulink can not be directly linked to Autoware in the currently
adopted development framework. To integrate such models into Autoware, it is necessary
to generate and incorporate the associated C++ code. Although MATLAB/Simulink has
a C++ code generation functionality, code corresponding to Autoware (i.e., ROS) can not
be generated, thereby deteriorating development efficiency. Moreover, it is possible that a
model ported to Autoware will not perform as designed because the MATLAB/Simulink
environment differs from that of Autoware. To address these limitations, we propose
a framework called IDF-Autoware [2] (Figure. 1) that manages models designed using
MATLAB/Simulink as nodes that represent individual processes in ROS. This enables data
exchange between Autoware and MATLAB/Simulink, thereby allowing the models to be
used without incorporation into Autoware.

To the best of our knowledge, this is the first work that co-simulation and operation of a
real vehicle using MATLAB/Simulink for self-driving systems. The main contributions of
this study are as follows:

We confirmed the practicality of the method by comparing the data transfer time and
processing capacity of ROS and MATLAB/Simulink (Section 3.1), as well as that the
nodes designed using MATLAB/Simulink could be applied to the co-simulation and
operation of an autonomous vehicle;

We improved the design efficiency in MATLAB/Simulink based on IDF-Autoware gener-
ating MATLAB template scripts and Simulink template models (Section 3.2), which help
a developer design nodes for Autoware using MATLAB/Simulink;

We improved usability by extending Runtime Manager, which is a graphical user interface
(GUI) tool for Autoware, to enable operations for MATLAB/Simulink (Section 3.3),
as well as making available the other functionalities provided by IDF-Autoware (e.g.,
template generation).
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Figure 2 Screenshot of co-simulation using IDF-Autoware: (a)RViz displaying Autoware status,
(b) the rqt__graph_autoware, and (c) the Runtime Manager for IDF-Autoware.

2 Design and Implementation

The functionalities provided by IDF-Autoware facilitate the integrated development of

Autoware and MATLAB/Simulink. The key functionalities are as follows (Figure. 1):

m They generate MATLAB template scripts and Simulink template models, and provide
visualization tools to aid template generation (Section 2.1);

= They enable MATLAB/Simulink to operate on Runtime Manager, to display node
information, and to make use of the other provided functionalities (Section 2.2)

In this section, we discuss the design and implementation of each of these functionalities,
and use cases of the proposed framework are shown.

2.1 Template Generation

When MATLAB/Simulink is used to design nodes for Autoware, the nodes must contain
essential information, such as a node name, the topics to publish/subscribe, and the message
type of each topic. This information can be obtained by analyzing the source code of
Autoware and executing ROS commands. However, the need for such analyses places a
burden on developers, especially on those who are unfamiliar with ROS. Therefore, we
provided functionalities that allow the generation of MATLAB template scripts and Simulink
template models that include this necessary information, as the templates help developers
design nodes in MATLAB/Simulink. Additionally, we made two visualization tools to aid
the template generation. One is the rqt_graph_autoware plugin (Figure. 2 (b)). In addition
to the functionalities of rqt_ graph [7], rqt_ graph_autoware can render node dependency,
such as sensing, perception, decision, and planning, for Autoware applications. The other
tool displays a list of the running nodes and provides information on any node selected from
the list.
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As noted, before the template of a desired node is generated, it is necessary to obtain
node information; therefore, a .yaml file containing information pertaining to all Autoware
nodes was created. Based on this information, templates are created using functions pro-
vided by Robotics System Toolbox™ [4], which provides the interface between ROS and
MATLAB/Simulink. Developers can create nodes for Autoware in MATLAB/Simulink using
the generated template.

To implement the rqt_ graph_autoware plugin, we created .dot files that render node
dependency graphs for each Autoware’s application. Moreover, to create the GUI for
rqt_ graph_autoware, we added buttons to rqt_ graph using Qt designer, which is a Qt tool
for designing a GUI. The buttons were configured to open each .dot file, and clicking on
these buttons cause a graph to be drawn. This allows developers visualization of the nodes
included in each Autoware’s application.

To display node information, we used a rosnode command-line tool [6] that includes
commands that fetch node information, including rosnode list and rosnode info node name.
The rosnode list command displays a list of running nodes, whereas rosnode info node_name
displays information about the topics to be published /subscribed by the node. Displaying
the results of these commands in Runtime Manager renders the node information easily
comprehensible. Section 2.2 describes the method for displaying these results in Runtime
Manager.

2.2 Runtime Manager for IDF-Autoware

Autoware and MATLAB/Simulink are operated with different GUI tools; thus, this is
troublesome for users who want to use the two simultaneously. Therefore, we added GUIs
to the Autoware’s GUI tool (i.e., Runtime Manager) to allow use of MATLAB/Simulink
and the functionalities provided in IDF-Autoware (Figure. 2 (c)). These GUIs enabled the
following functionalities:

Starting MATLAB, Simulink, and rqt_ graph_autoware;

Executing MATLAB scripts and Simulink models;

Generating MATLAB template scripts and Simulink template models;

Displaying node information.

This unification of operation method simplifies the MATLAB/Simulink operation and the
utilization of the provided functionalities.

Runtime Manager was designed using the wxPython toolkit [9]. Therefore, we designed
the GUIs for the added functionalities using wxGlade [8], and outputted its designs as
wxPython. The GUIs involve buttons and panels that execute each functionality.

We next modified the Runtime Manager execution code to configure them for GUI func-
tionalities. The execution code imports modules, including the code generated by wxGlade,
and loads the .yaml files. In the execution code, loading .yaml files initiates functions that
align simple operations to specified buttons. Therefore, by creating a yaml file for MAT-
LAB/Simulink, we configured the initiation of MATLAB, Simulink, and rqt_ graph_ autoware
to each button.

To allow the execution of MATLAB scripts and Simulink models from Runtime Manager,
we created multiple GUIs with the following configurations:

A button to open a dialog for file selection;

A panel displaying the absolute path of the selected file; and

A button to execute the file displayed on the panel.

This execution button was designed to run if the selected file was a MATLAB/Simulink file
(i.e., a .m or .slx file).
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Table 1 Evaluation environment.

Model number || Intel Core i7-6700K
CPU Cores 4
Threads 8
Frequency 4.00 GHz
Memory 32 GB
ROS Indigo
MATLAB/Simulink R2016b
(O}] Ubuntu 14.04.5 LTS

'EL Node2
l..l e
>

O:node [ : topic == : publish/subscribe

Figure 3 Measurement of transfer time.

To generate MATLAB template scripts and Simulink template models, we designed the
following GUIs: a panel to input the node name and buttons to run the execution code that
generates the template of the input node.

For the node information display, we designed two panels, with the first displaying the
output of the executing rosnode list. When a node is selected from the list, the second panel
displays the output of rosnode info the selected mode__name, which eliminates the need to
enter the rosnode command.

2.3 Use Case

IDF-Autoware allows co-simulation of Autoware and MATLAB/Simulink. The demonstration
video can be viewed at the following hyperlink: https://youtu.be/X4d9VbXnPeg (Figure.
2). In this video, one of the nodes necessary for planning is executed by MATLAB/Simulink.
This simulation facilitates an operational check of MATLAB/Simulink nodes. Moreover, it
can also be used for experiments using an autonomous vehicle. The demonstration video
showing operating of the autonomous vehicle using IDF-Autoware can be seen at the following
hyperlink: https://youtu.be/wusCU2VPGGQ.

3 Evaluations

The main goal of this study was to improve development efficiency. To demonstrate this
improvement, the practicality of IDF-Autoware, efficiency, and usability were evaluated. To
evaluate the practicality, we compared the communication times among nodes within ROS
and between ROS and MATLAB/Simulink. Additionally, we performed a co-simulation and
operation of an autonomous vehicle to show the practicality of the proposed framework. We
investigated the design efficiency by measuring the generated MATLAB/Simulink template.
To evaluate the usability, we compared the development environments with Autoware,
Robotics System Toolbox, and IDF-Autoware. These evaluations demonstrated that IDF-
Autoware improved the development efficiency. Table 1 summarizes the software and hardware
environments used in the experiments.
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Figure 4 The average transfer time according to the size of the message data.

3.1 Practicality

IDF-Autoware enabled the communication of nodes designed using MATLAB/Simulink with
Autoware nodes to improve the development efficiency. However, it was necessary to consider
the effect of using Autoware with only ROS and together with MATLAB/Simulink together.
Therefore, to evaluate practicality, ROS and MATLAB/Simulink were compared as follows:

1. According to the relationship between the transfer time and the data size when a message
is sent via ROS and via MATLAB/Simulink, respectively; and

2. According to the processing capacity when the same type of method was used.

As shown in Figure. 3, the transfer time was defined as the elapsed time when Node 1
published the message to Node 3, which subscribed the message via Node 2. The processing
capacity was compared with the processing time over 1,000 iterations and using the same
machine (Node 1 published the message at 10 Hz).

We measured the ROS and MATLAB/Simulink transfer time when the message data
size on each topic was set to 100, 1 K, 10 K, 100 K, and 1 M bytes. Figure. 4 shows the
transfer times via ROS and MATLAB/Simulink plotted against each data size. Both the
ROS and MATLAB/Simulink transfer times increased along with data size, although the
data transfer by MATLAB/Simulink had an overhead exceeding that of ROS. However, the
MATLAB/Simulink transfer time did not exceed the Autoware maximum of 32 Hz.
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Figure 5 The average processing time according to each matrix size.

Table 2 Task reduction using MATLAB template scripts.

MATLAB template scripts
(1) + a(2) + B((3) + 2(4))
(1): Defining node

(

Generated lines

2): Defining publisher

(3): Defining subscriber

(4): Defining callback function
«: The number of publishers
B: The number of subscribers

To evaluate the processing capacity, we measured the processing times of ROS and
MATLAB/Simulink when multiplying square matrices on the order of 50, 100, 150, and 200,
which served as easy points of reference to enable comparison of ROS with MATLAB/Simulink
rather than as a requirement for self-driving. The evaluation measured the time required to
process the time complexity at each matrix size and assessed the performance of the functions
provided by MATLAB/Simulink. Therefore, the MATLAB/Simulink processing time was
measured using two MATLAB scripts: one written in the same way as the ROS code, and
the other using MATLAB matrix functions. Figure. 5 shows the processing times at each
matrix size. When using the MATLAB script written in the same way as the ROS code, the
processing times of ROS and MATLAB/Simulink were approximately the same. By contrast,
when the MATLAB script used matrix functions, its processing time was significantly shorter
than that of the other two methods, because processing was executed on multiple cores with
multiple threads, even when this was unspecified. Comparison of the processing times with
the transfer times revealed that the script using matrix functions was again significantly
faster, thereby confirming that application of the functions provided by MATLAB/Simulink
code enabled the handling of processes with large time complexity (e.g., image processing),
even when accounting for the transfer time. Therefore, as shown the videos in Section 2.3,
the practicality of IDF-Autoware is demonstrated.
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Table 3 Task reduction using Simulink template models.

Simulink template models
Simulink blocks|| a((1) + (2) + (3)) + 8((4) + (5) + (6))

6

Settings () + (@ + B)((H) + (ii) + (iv) + 2(v))
(1): Placing Publisher (i): Defining model name

(2): Placing Message (ii): setting message name
(3): Placing Bus Assignment (iii): setting topic name

(4): Placing Subscriber (iv): Configuring topic source
(5): Placing Bus Selector  (v): Connecting blocks

(6):

Placing Terminal : The number of publishers

The number of subscribers

«
g

Table 4 Functionalities available with Autoware, Robotics System Toolbox, and IDF-Autoware.

H Autoware [1] Robotics System Toolbox [4] IDF-Autoware [2]

Operating Autoware v v

Operating MATLAB/Simulink v v

Communicating between v v
Autoware and MATLAB/Simulink

Drawing node dependency v v

Generating MATLAB/Simulink templates v

Displaying node information v

3.2 Efficiency

To improve the design efficiency, a functionality to generate both MATLAB template scripts
and Simulink template models was provided. These templates help developers design nodes
for Autoware in MATLAB/Simulink.

Table 2 shows the amount of the template generated by a MATLAB template script.
The MATLAB template script defines the essential information, as mentioned in Section
2.1, and creates callback functions utilized when a topic is subscribed. For example, the
lane_ stop node required for planning has one publisher and five subscribers. One line is
generated to define a node, a subscriber, and a publisher, and two lines are generated to
define the callback function. Therefore, in total, 17 lines are generated for the MATLAB
template script for the lane stop node.

When creating a Simulink model, it is necessary to place and configure the Simulink
blocks, to define the model name, and to connect the blocks. Table 3 summarizes the number
of Simulink blocks placed and the settings created by a Simulink template model. The
Simulink template model defines the model name and places the essential Simulink blocks,
thereby creating a model for Autoware. Additionally, the Simulink blocks are configured and
connected together. For example, when the Simulink template model of lane_stop node is
generated, 18 Simulink blocks are placed and 31 settings are configured in total.

If the functionality allowing MATLAB /Simulink templates to be generated is not provided,
the developer must examine the node information and define it in a MATLAB script or
a Simulink model. By contrast, when the templates are used, this becomes unnecessary;
therefore, this improves design efficiency.
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3.3 Usability

IDF-Autoware enables the operation of MATLAB/Simulink in Autoware and provides
functionalities to improve the usability. Here, we compared the available functionalities
between Autoware, Robotics System Toolbox, and IDF-Autoware, as summarized in Table 4.

Autoware cannot operate MATLAB/Simulink, and Robotics System Toolbox cannot oper-
ate Autoware. IDF-Autoware provides functionalities required to operate MATLAB/Simulink
in Runtime Manager for IDF-Autoware, such as starting MATLAB/Simulink or executing
MATLAB scripts and Simulink models. Therefore, IDF-Autoware can operate both systems.
Communication between Autoware and MATLAB/Simulink is possible in Robotics System
Toolbox and IDF-Autoware. Moreover, IDF-Autoware provides a drawing to visualize node
dependency using the rqt_ graph_autoware plugin created by extending rqt_ graph available
in Autoware. In addition to these features, IDF-Autoware can generate MATLAB/Simulink
templates and display node information. Because this increases the number of available
functionalities, the usability is also enhanced, which in turn improves development efficiency.

4  Conclusion

In this paper, we described the development of an integrated development framework for
Autoware with MATLAB/Simulink (IDF-Autoware) that enabled communication between
Autoware and MATLAB/Simulink. We evaluated the data transfer time and processing
capacity of MATLAB/Simulink, and confirmed the practicality of the method by using both
co-simulations and experiments using an autonomous vehicle. IDF-Autoware facilitated the
generation of MATLAB/Simulink templates that can help developers create models using
MATLAB/Simulink for Autoware, thereby improving the design efficiency. Furthermore, the
functionalities added to IDF-Autoware allow Runtime Manager to operate MATLAB/Simulink
and various functionalities, further improving usability. Our findings confirmed that IDF-
Autoware improved the development efficiency.
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—— Abstract

The development of SAE Level 3+ vehicles [24] poses new challenges not only for the functional
development, but also for design and development processes. Such systems consist of a growing
number of interconnected functional, as well as hardware and software components, making safety
design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough
systems engineering becomes a key requirement, which enables traceability between different design
viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of
such systems. Formal models can in turn assist in keeping track of how the different viewpoints
relate to each other and how the interplay of components affects the overall system behavior. Based
on experience from the project Controlling Concurrent Change, this paper presents an approach
towards model-based integration and verification of a cause effect chain for a component-based
vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers
necessary aspects of a design in individual architectural views, e.g. safety and timing. In the
synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into
the design to ensure adherence to the model. We present a use case description for an environment
perception system, starting with a functional architecture, which is the basis for componentization
of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we
are able to map the reasoning done during verification to vehicle behavior.
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1 Introduction

In recent years, huge progress has been generated toward the commercialization of automated
vehicles systems. The focus of the industry has shifted from advanced driver assistance
systems (ADAS), corresponding to SAE level 1 and 2 [24] to automated vehicle systems of SAE
Levels 3+. However, while impressive results are achieved regarding environment perception
algorithms, also due to the introduction of machine learning technology, verification and
validation of Level 3+ systems becomes increasingly difficult. This is especially true, if it must
be considered that software intense systems will most likely require frequent after-market
updates for deploying bugfixes, and/or updates of the vehicle’s functionality.

Challenges for safety verification are on the other hand caused by increased complexity
of the perception systems required to generate a representation of the vehicle’s environment
which is sufficiently detailed to make decisions in complex traffic scenes (cf. [13]). On the
other hand, replacing the driver is equivalent to replacing vast parts of the safety system of
SAE Level 1 and 2 systems. Established safety design processes must thus be rethought and
extended in order to suit the newly arising challenges when removing the driver from the
control loop. Safety strategies which only assure that the driver can control system failures
by being able to physically overrule system commands to the drive train or steering system
do not apply anymore.

For the automotive industry, the safety standard ISO 26262 [10] provides guidelines
for designing functionally safe systems. This subsumes hazards caused by malfunctioning
behavior of E/E components and ensures the correct implementation of functional (safety)
requirements. One frequently formulated drawback of the ISO regarding the applicability to
Level3+ systems is that it does not consider nominal behavior of the overall E/E system
(cf. [19, 4, 13, 8]) and thus does not provide guidelines on how to define the functional
requirements for the system. However, this formulation of safe nominal behavior (or external
behavior as defined in [20], according to [3]) and the boundaries of safe nominal behavior is
crucial when it comes to ensuring safety of driverless vehicles, as the system must not pose a
threat to its passengers and/or other traffic participants. For this publication, we adopt the
terminology as defined by Waymo in their 2017 safety report [32], referring to the process of
defining safe nominal behavior as behavioral safety (cf. [4]). The upcoming ISO PAS 21448
“Road Vehicles — Safety of the Intended Functionality” is partially addressing this problem,
however the scope of the current draft standard is intentionally limited to SAE Level 1 and
2 systems [12], while the defined concepts might also apply to levels of higher automation.

While there is a number of recent publications on how to extend the concept phase
of ISO 26262 toward the definition of safe behavior [19, 4, 8], e.g. based on a scenario-
driven concept phase, we would like to elaborate on the consequences of behavioral safety
considerations from a systems engineering point of view. As we have argued in [4], the design
of safe automated vehicle should follow a safety by design paradigm as a cross-domain effort
over different disciplines. For this purpose we have proposed an architecture framework in
accordance with ISO 42010 [11], featuring safety as a cross-cutting viewpoint and formulating
a functional, a capability, software and hardware viewpoint and attributing behavioral safety
to the former two and functional safety to the latter two viewpoints. Correspondences and
correspondence rules, as defined in ISO 42010, are represented in example mappings between
components in the respective viewpoints. While we formulate the need for formal methods to
represent and instantiate the different viewpoints in the architecture framework, the actual
instantiation was not part of the initial contribution.
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Behavioral and functional safety of vehicle automation systems is one of the grand
challenges for future automotive systems. Reducing the necessary testing efforts to ship
updates for vehicular systems, especially of models that are already in production and in

the field is the second grand challenge. The later is particularly interesting to reduce costs.

In this paper, we want to show that concepts for safety related systems engineering ([4])
can be combined with automated integration mechanims and tools as investigated in the
project Controlling Concurrent Change (CCC)*. As a result of such a design and integration
flow, we envision systems where software updates and upgrades can be easily deployed at a
minimum of cost for integration testing and safety validation through testing.

We illustrate this idea based on an update scenario for the automation system of a
research vehicle. Therefore, we first introduce the architecture framework we use to asses
behavioral safety in section 2. We maintain traceability from the functional viewpoint up
until integration in this architecture (cf. Figure 2), by using Traceability in this architecture
is maintained in two ways: For behavioral safety the process is still manual, first ideas to
further automate this are also presented in section 2. The example showcase is then presented
in section 3, while section 4 then presents the key ideas how we automate the integration
and verification based on the presented architecture framework. This section also includes a

description of the resulting cross-layer system model. Finally, section 5 concludes the paper.

2 Behavioral Safety in Systems Engineering

As stated in Section 1, the concept of behavioral safety is a potential missing link to extend
the concept phase of established ISO-26262-compliant processes toward the application for
SAE Level 3+ vehicle automation systems. In this section, we summarize the architecture
framework described in [4] and discuss the implications of behavioral safety on traceability
requirements for system properties in the design phase and at runtime.

Considering behavioral safety as an integral part of the safety concept creates the problem
of defining appropriate behavior in different scenarios [4]. An example scenario is displayed
in Figure 1 with the vehicle approaching a pedestrian crosswalk.

- Pedestrian 1..Pedestrian 2

Figure 1 Example scenario: Automated vehicle approaching a pedestrian crosswalk occluded by
a parked vehicle with oncoming traffic and pedestrians who are likely to cross.

At the scenario level, abstract safety goals can be formulated, e.g. by stating that
the automated vehicle must not enter oncoming traffic. A process of how these abstract
safety goals can be decomposed into (functional) safety requirements and actual technical
requirements has been formulated in [4]. A short summary of the described process following
an (iterative) Item Definition can be stated as follows:

! nttps://ccc-project.org
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1. Conduct Hazard Analysis and Risk Assessment by possible accidents in the defined
scenarios.

2. Define safety goals.

3. Define a risk minimal state for the scenario at hand.

4. Define functional safety concept (safety requirements and hazard mitigation strategies)
for fulfilling the safety goals.

5. Combine with functional architecture and required system capabilities derived during the
item definition to derive technical requirements.

However, the consequences of formulating behavioral safety requirements for systems
development reaches further than defining requirements at the beginning of the development
and validation and test before market release in a classic V-Model-like development process.
In addition, the adherence to safety requirements must be monitored at runtime. This is
required to initiate emergency strategies for reaching a risk minimal state in case safety
requirements are violated.

For monitoring system behavior at runtime, we have proposed the application of ability
and skill graphs [21] and their integration into a development process [20]. They represent
functional dependencies in the system, formulating the required capabilities to fulfill the
vehicle’s mission. They explicitly model external system behavior as well as dependencies for
performance assessment at a functional level, and provide guidance for the decomposition of
functional requirements into technical requirements.

A core question which needs to be addressed in this context is, how the technical
implementation, which is subject to functional safety requirements can cause hazards at
the behavioral level. This is where traceability aspects come into play: Assuming that
a functional system architecture and a capability representation are available after the
concept phase of the development process, technical architectures in terms of hardware
and software architectures are developed during system implementation. As defined in the
ISO 42010, a sound architecture framework requires the formulation of correspondences and
correspondence rules between different architectural views. In our formulated architecture
framework (cf. Figure 2), this means that we need mapping relations between functional,
capability, hardware and software components (depicted in Figure 2 as red arrows).

However, while informal formulations of those correspondences can assist during system
development, informal notations are not suitable to support system monitoring at runtime.
For this purpose a formal system model is required which can relate formalized requirements
to the current system configuration, e.g. including component mappings or interface and
task dependencies.

To demonstrate this, we performed a manual ability and skill graph based assesment for
an automated driving function of a research vehicle, and used its results as the input for
a model-based integration flow. The vehicle and the automation function is explained in
the following section. How this function is integrated into a vehicle system in a correct-by-
construction fashion is subsequently explained in section 4, which will explain our cross-layer
model instantiating the multi-view architecture.

3 Concurrent Change Use-Case

The CCC approach combines a conventional lab-based design of individual functions with an
automated integration process which ensures that updates are applied to an already deployed
system only if the system can still adhere to the required safety and security constraints.
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Figure 2 Architecture framework presented in [4]: Showing safety as a cross-cutting viewpoint
orthogonal to the functional, capability, hardware and software viewpoint. Note that depicted
architectures are examples, such as a component architecture in the software viewpoint. Red arrows
depict example mapping relations (correspondences) between components in different viewpoints.

This becomes particularly challenging as the target platform is shared by multiple
functions with different criticality. All side effects must therefore be anticipated and either be
bounded or mitigated in order to ensure safe operation of critical functions at all times. For
this purpose, all requirements and constraints must be explicitly specified in the input models.
Another challenge consists in finding (and specifying) appropriate abstractions that guide
the decisions which must be made during such a model-based integration process, as these
are usually based on experience and expert knowledge, which is only implicitly available.

We demonstrate the applicability of the approach on an environment perception and
motion planing showcase that we will introduce in the following;:

3.1 Research Vehicle MOBILE

For showing the applicability of the approaches developed in the CCC project in an automotive
context, the research vehicle MOBILE [5] built at the Institute of Control Engineering at
TU Braunschweig serves as a demonstrator platform.

MOBILE was originally built as a demonstrator for the development of vehicle dynamics
control algorithms and vehicle systems engineering applications. It features of four close-
to-wheel electric drives (4 x 100kW), as well as individually steerable wheels, and electro-
mechanic brakes [5]. The vehicle features a FlexRay backbone for inter-ECU-communication
and additional CAN bus interfaces, which are used for communication with sensors and
actuators for vehicle control. The ECUs for vehicle control are programmed in a customized
MATLAB/Simulink tool chain. Combined with detailed vehicle-dynamics models, the tool
chain serves as a means to establish a rapid-prototyping process for vehicle control algorithms.

The basic idea in the project scope is to demonstrate how the CCC architecture can
contribute to a state-of-the-art environment perception system in an automated vehicle. For
this purpose, the research vehicle MOBILE has been equipped with three roof-mounted
LiDAR sensors (cf. Figure 4a), as well as a highly accurate localization platform. Additional
hardware platforms were installed in the vehicle to run environment perception and motion
planning algorithms in the CCC middleware. The ECUs and sensors of the CCC subsystem
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are interconnected by Ethernet and connected to the legacy vehicle control through a CAN
interface. In addition, the algorithms can be run on a legacy platform as it is used in the
Stadtpilot [33] project for comparison.

3.2 Environment Perception & Trajectory Planning System

The sensors provide a 360° representation of the vehicles’ environment and enable it to
navigate its path around obstacles in its vicinity. For the CCC project, we have ported
selected algorithms from the Stadtpilot project, focusing on the representation of the static
vehicle environment. For this purpose, incoming sensor raw data from the LiDAR sensors is
combined into a point cloud. Each measurement contains position and reflectivity information.
Thus, apart from the information about obstacle positions, reflectivity information can be
used to create a monochrome image, making it possible to e.g. detect lane markings in the
LiDAR data.

In several steps, measurements are annotated with measurement classes (e.g. ground
measurements, valid measurements on actual objects, clutter, etc.). The resulting annotated
point cloud is then fed into an occupancy grid [6] (cf. Figure 3a), which accumulates
measurements over time. The grid framework is based on a multi-layer approach to represent
environment features in distinct layers. Examples of three layers are depicted in Figure 3.
Figure 3a shows an example of occupancy information in terms of free (green), occupied
(red) and unkown (dark blue) space. In addition, the mentioned reflectance information
(Figure 3b) for ground-labeled points is represented in a separate layer. For a more detailed
description of the processing chain, please refer to [14], [23]. At the end of the sensor-data

- X ' ; N el L . :
(a) Occupancy grid: discretized (b) Reflectance grid: reflectance (c) Fused grid layer: each color
map displaying free (green) and values allow detecting lane mark- indicates a different represented
occupied areas (red) around the ings (white) [23]. feature [23].
vehicle.

Figure 3 Three layers of the grid framework to represent environment features on an intersection.

processing chain for the static environment, the different layers are fused into a consistent
representation of the static vehicle environment.

The grid representation is always kept in a local coordinate frame, which moves with
the vehicle. The vehicle’s position is acquired from an accurate tightly-coupled GNSS/INS
platform (global position is obtained via GPS and fused with accelerations & angular rates).

(A) fused local occupancy grid(s) provide the basis to perform trajectory planning for
automated driving. For this purpose, the system generates a target pose in a reachable
area of the vehicle’s environment and the trajectory is planned from the current position
to the target pose in the vehicle coordinate frame. Trajectory planning is performed in a
model-based fashion, using front- and rear-axle steering. The underlying trajectory control
algorithms use the available actuators (4x steering, 4x brakes & drives) to control the vehicle
to the planned trajectory. For details on and architectural considerations for trajectory
planning, refer to [19]. Aspects of the applied control algorithms are presented in [30].
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By representing the available actuators, trajectory planning considers the vehicle’s current
abilities. By monitoring e.g. sensor quality, actuator performance and control quality, the
system will be able to react to failures in the system. A simple example here is the presence
of a steering actuator failure, which can be compensated at the control level, as well as by
adapting the trajectory planning algorithm. Monitoring of non-functional properties, such as
timing is performed directly in the middleware.

GPS V2x

| Vehicle
Actuator n

Env.
Perception

Vehicle

Localization
Control

Vehicle

Vehicle
ECU n

ECU 1

Vehicle
ECU 2

Vehicle Vehicle Vehicle = (Smart) Actuators

Sensor 1 Actuator 1 Sensor n = (Smart) Sensors
1 Control Units / PCs
(a) Roof-mounted lidar sensors. (b) Hardware architecture used in MOBILE.

Figure 4 Research vehicle MOBILE.

The algorithms required to demonstrate the use case will run in a distributed system, as
shown in Figure 4b. The platform can be separated into two parts: While the lower part of
the displayed ECUs is responsible for controlling the individual actuators of the vehicle, the
upper part performs environment perception and trajectory planning tasks. As the CCC
middleware only runs in the context of the environment perception system, the system model
must support transitions between legacy-parts of the system, running without the project
middleware and those parts, which are fully controllable by the Multi Change Controller
(cf. section 4).

A coarse grained functional architecture of the use-case is depicted in Figure 5.

Stati
Sensor Data Sensor Data Envir:nlrient T;;i:t Trajectory Vehicle
Aquisition Preprocessing Modelling Generation Generation Control

Figure 5 Coarse functional system architecture.

4 CCC'’s integration and verification system

For the model-based integration approach pursued here, the system is composed of two
segregated domains: the model domain and the execution domain.

Figure 6 shows the conceptual setup of the system. A Multi-Change Controller (MCC)
(red) hosts the model domain, consisting of the cross-layer model, as well as configuration
generation and verification. We aim for component-based models — including software as
well as hardware components — as they reduce dependencies in the architecture to the
explicitly modeled interfaces. The components are generic building blocks of the system
that is composed of these components such that they implement the desired functionality
and fit to the particular target platform. Each change to the system must be coherently
representable in this system-wide model for analyzing any potential cross-layer dependencies,
as well as for other analyses to ensure freedom from interference for the individual functions
that a set of (software) components create.
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deployment Software Software

Component |~ " Component
QI Application Shaper/Monitor |
Multi-Change igurati

Camiallar . — Run-Time Environment
(MCC) [~ ] (including OS)
metrics

O Platform Shaper/Monitor |

Hardware Hardware
Component Component

Network

— model domain [ execution domain

= at down time -~ at run time

Figure 6 CCC architecture comprising a model domain (red), an execution domain (green) as
well as changing software/hardware components (gray).

Similar to the conventional V-model development process, the MCC gradually refines
the model representation of the new system configuration during the integration process.
This is done based on a cross-layer model that captures relevant viewpoints of the system.
The process generates new configurations and subsequently checks them for requirements
satisfaction. If a new configuration satisfies all requirements and is rated as an improvement
to the current one, it can be deployed into the execution domain.

Verification is separated due to the fact that not all requirements can be systematically
considered during configuration generation. E.g. software response times are hard to optimize
if arbitrary activation patterns are assumed. Consequently, an autonomous configuration
and verification goes beyond a multi-dimensional optimization of requirement satisfaction.

Our execution domain, is based on the open-source Genode OS Framework [7]. This
framework follows the microkernel approach and employs a strict decomposition of the
system on the application level, resulting in a service-oriented architecture in which separate
components implement and provide services for other components. While decomposition can
already deal with liveliness issues [1] that arise in mixed-critical systems, dependencies on
the execution time or response time of other components remain. Note that, however, the
methods developed in the model domain are not restricted to these semantics but can be
adapted to different implementation models.

4.1 The MCC’s cross-layer model

The core concept of the MCC’s model domain is that a) the system is represented on different
layers of abstraction, and b) that models describing different viewpoints of the architecture
are connected through mappings. Consequently, the described mappings between model
artifacts are the implementation of corespondences from the abstract architecture framework.

To perform the integration task in the MCC we define three architecture layers, where
each layer is treated as a graph. The top layer is a function model, that captures functional
aspects implementation independent.

» Definition 1. A function model is a graph FG = (F, <) where the nodes in F describe
the functions, and — is the set of edges that describe functional interactions.

For instance the function chain depicted in Figure 5 fulfills this definition.
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A further necessity of such a layer lies in the fact that safety requirements are derived from

implementation independent functional descriptions of a system [10, Part1] (cf. section 2).

In order to implement functions, they are decomposed into components. Since during
implementation, mappings of software components to hardware components might already be
fixed, e.g. because code of one software component requires certain peripherals of a hardware
component, they are already part of the component model. In our employed Run Time
Environment (RTE), data exchange from one component to one or more others is performed
through read-only memory (ROM) components. ROMs implement synchronous bulk transfer
of data based on remote procedure calls (RPCs) [7]. If a reader on a remote resource requires
contents of a ROM, proxy ROM components on both ends of the communication are inserted
that provide the required data on the remote side via a network connection. Formally
we define:

» Definition 2. A component model is a graph CG = (CUCRoms URS, SHuSu 13) where
the nodes are the unified set consisting of C that describes the set of software components
implementing functions, Croms the set of ROM components, and R the set of abstract
resources of the system. The edges either describe a read (=) or write (=) operation
between software components and ROMs, or a mapping (—) of a software component to a
resource (R*).

In the course of generating configuration candidates the MCC applies pattern based
transformations on FG to produce a component model instance CG. For the example use-case
the function chain from Figure 5 is mapped to components in Figure 7 (second layer from the
top). The transformation is based on selecting components that implement a function from
a component repository. The repository is populated through formal xml-based descriptions
of components. A more detailed account of this transformation is provided in [28].

In a subsequent step, the MCC’s configuration generation refines the component model
to an instance model, which only contains instantiated components. This process also
allows refining components ¢ € C' into sub-components, which again can be linked by ROM
components. The semantics of the resulting instance model are similar to CG, however it
only contains the minimal number of component instantiations under cardinality constraints,
i.e. the maximum number of instantiations of a component on a particular CPU. This also
results in a mapping of components to particular hardware components, i.e. from abstract
resources to individual CPUs. The instance model of the use-case is depicted as the third
layer from the top in Figure 7. Yet note, that some components are shown as composites
(light blue) due to space limitations.

The knowledge of the concrete instance model together with the knowledge about the
communication mechanisms allows the MCC to derive and map additional layers that
model certain aspects of the system in order to represent particular viewpoints such as
safety, availability or security. The requirements for these viewpoints — e.g. a safety-level
requirement or a real-time constraint — are collected for each component in a so-called
contracting language, which serves as an input to the MCC. Viewpoint-specific analyses are
implemented as separate entities in the MCC, e.g. in order to resolve run-time dependencies
between software components as presented in [27].

4.2 Analysis and Verification by the MCC

For this paper we restrict the scope to outlining how timing and safety requirements are
verified by the MCC. W.r.t. safety we further limit ourselves to freedom from timing
interference. For the external behavior of the vehicle, timing properties are crucial when it
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comes to vehicle control. As unaccounted delays can cause degraded control performance
or even instable controllers, the adherence to timing constraints in the timing domain must
be ensured.

In order to reason about end-to-end function timing, a model describing the timing
behaviour is necessary. The transformation of the component-based software structure of the
Genode OS Framework together with the RPC semantic used by the ROM components to a
timing model is described in detail in [26]. The transformation result explicitly expresses
effects such as blocking and priority inheritance, while preserving the event chains. [26] also
describes how response-time bounds can be computed over a chain of components. Possible
alternatives to compute response-time bounds is e.g. MAST [2].

However, if hardware resources are shared with components from other cause effect chains,
possibly even components with a different criticality than the chain under analysis, only
verifying response-time bounds is insufficient. In the use-case depicted in Figure 7 this is
the case for the shared vehicle network. Following a conservative design strategy, a designer
would have to assume that by sharing the resource the components are mutually dependent
and that any dependency leads to interference, i.e. failures causing malfunctioning behavior.
Consequently, absence or strict bounds on the dependencies have to be proven in order to
argue freedom from interference.

A timing model for the Ethernet network can be derived from the knowledge of: (i) how
traffic is routed through the network, (ii) which components inject Ethernet frames into the
network at which rate, and (iii) what the maximum payload per frame is.

How traffic is routed is known, as this is under control of the MCC which also deploys
the network configuration. Similarly, the components which inject frames are already known
in the component model. The rate at which they emit a frame ¢ into the network can
be abstracted by standard event models, §;,d;. These are event model abstractions of
concrete execution traces that capture the maximum/minimum time interval between n
consecutive activation events. §; and §; for a frame i can be derived from the results of
the timing analysis of the component chains on the computation resources with the analysis
described in [26]. Only the maximum payload per frame must be extracted from contracting
information, which must be fed into the MCC. Based on this information a timing model
for the Ethernet network as e.g. described in [31] can be derived. It is formally based on
Compositional Performance Analysis (CPA) [22]. In this model each task 7; represents a
frame that is competing for arbitration on a switch port, i.e. the switch ports are the resources.
The payload of each frame is captured by bounds on its worst-case execution time (WCET)
C;" /best-case execution time (BCET) C; on the wire including all protocol overhead. Chains
of dependent tasks on different resources, i.e. Ethernet switch ports, then model a data
stream. This model provides the basis to derive the timing-dependency graph (TDG) for the
network and the components injecting the traffic as e.g. described by [15].

» Definition 3. A Timing Dependence Graph is a graph G = (V,E) consisting of nodes
v;,v; € V and edges e, € € where each edge e), = (v;,v;) describes that v; is dependent
on v;. Fach node v; either describes a task parameter p € P = {C™, C‘,(S;;L,é;n} or an

(intermediate) timing analysis result r € R = {wt, w™, 6%, 6,1 BT, R, Gmaz }-

To transform the timing model’s parameter and results into a TDG, two conversion
functions are necessary to populate the edge set of the TDG G.

» Definition 4. The parameter conversion function is a function

Oy T x{CH,C™,65 .67V (1)

rVan Tin



M. Mostl, M. Nolte, J. Schlatow, and R. Ernst

that maps each input parameter type p € P for a task 7, € T to a node v = 9,(74,p) with
v €V in the TDG, and the result conversion function:

?97" : T X {w+a w775jut7 o_uta R+a Riv‘]mam} — V (2)

that maps each result type r € R of a task 7; € T to a node v = 9,.(1;,7) with v € V in
the TDG.

This conversion function is analysis-specific, i.e. how CPA’s busy-window (w*/w™) and
output event models (4,,,/dF,,) are computed. In general, a TDG is constructed in four
steps: First, for each task in the task graph, the timing dependency graph is populated
with the nodes describing its parameters. In the second step, all explicit dependencies
between tasks on different resources are added as edges in the graph. This happens for two
tasks 7, and 7, by inserting two edges e;, = (v;,v;) and e; = (v, vy, ) into the dependency
graph in order to capture the dependency between their output and input event model
(07 out/Oa our and 51;,171/5;,171)' More precisely, v; = ¥, (Ta, 0py,) and v; = 9,(1,6;,) as well as
VU = Uy (T4, 6.4,) and vy, = 9, (7, 6;). The third step then deals with the dependencies on
each resource. It adds dependency edges according to the construction of the busy window
(w/w™), and the computation of response times (RT/R™). This implies that, for each
scheduler, a specific transformation is necessary. Consequently, the third step must be carried
out for each resource individually, respecting its scheduling analysis. Dependent tasks on
a resource can either be treated as in step two following the generalized CPA theory, or
be treated through the local resource analysis step, as e.g. done in [25] who considers task
chains under static-priority preemptive (SPP) scheduling. The fourth step then deals with
capturing the dependencies that influence the computation of the output event model, based

on the resource-analysis results and the applied propagation strategy to bound them. W.lL.g.

we assume busy-window propagation as described by Theorems 1-3 in [29].

Dependencies are consequently expressed as edges between timing model parameters in
the TDG. The TDG allows identifying timing dependencies that data which is transmitted
over the network experiences.

Since the functional model FG has a correspondence rule with the safety viewpoint (cf.

Figure 2), we can trace safety requirements from there over FG to individual task chains
and thus to the timing model and the TDG. [16] treats safety requirements on timing
requirements as so called confidence requirements. The confidence requirement expresses
how well all timing parameters to compute a timing bound must be known, in order to
utilize the computed bound as proof that the timing requirement and consequently the safety
requirement is fulfilled.

The input description of components on the other hand supplies information how accurate
timing parameters like WCET/BCET, e.g. payload sizes, are known. By propagating
confidence values through the TDG of the system in a flow like manner where the lowest
possible confidence is assigned to a TDG node, also every timing requirement in the TDG
receives a confidence value. In cases where a mismatch between the assigned confidence
and the confidence requirement exists, the MCC either must reject such a configuration or

instantiate enforcement mechanisms to guarantee the expected model behaviour at run-time.

4.3 Monitoring and Enforcement

If the timely transmission of this data is safety relevant and dependent on parameters
with lower confidence than its requirement, the MCC must take actions to bound these
dependencies.

4:11

ASD 2019



4:12

CCC — A Multiview Approach Toward Updatable Vehicle Automation Systems

Several authors, e.g. [17, 9, 18] have proposed monitoring and enforcement techniques to
conform run-time inputs to model behavior. These techniques can also be used to shape the
injected traffic into the network. The MCC can deploy such mechanisms into the execution
domain (cf. Figure 6). They render a dependency innocuous since they increase the confidence
into a parameter to the confidence of the enforcement mechanism, which is typically high or
the highest in the system. This is due to the fact that the monitors are reliable middleware
components. In order to prevent overly excessive monitoring and enforcement the MCC
coordinates the model enforcement strategy. Two possible strategies for efficient placement of
monitors that perform enforcement are described by [16], a greedy input monitor placement
and a min-cut strategy. For the MCC the greedy input placement is more suitable as it
avoids complex network management where monitors would have to be implemented in the
switches of the Ethernet network.

Through this enforcement, the network is guaranteed to operate within the bounds of
the timing analysis. A reevaluation of the confidence values after placing enforcing monitors
shows that confidence requirements are now fulfilled. Together with the timing analysis
this is a sufficient proof of freedom from timing interference ([10, clause 3.75,part1]). In the
case study depicted in Figure 7 the MCC performs this for the data that is transferred over
the shared Ethernet network, i.e. between the Sensor Data Preprocessing and the Static
Environment Modelling components, as well as for the reference trajectory sent to the vehicle
control component which interfaces with the legacy control subsystem of the vehicle.

5 Conclusion

In this paper we have presented a design and integration flow that respects safety aspects
of SAE level 3+ vehicle functions. We argued that the system emergent property of safety
requires traceability in a design. To ensure this traceability during integration, we presented
the MCC based integration flow in section 4, where traceability is inherent due to the
automated model-based integration flow. This is mainly achievable due to the cross-layer
model as an implementation of multiviewpoint modelling and the dependency analysis that
is performed based on the cross-layer model. In section 4 we have particularly shown how
this is handled for complex timing dependencies. However, the derivation and formulation
of functional safety requirements for the MCC are still manual. It is our vision, to further
automize the coupling between behavioral and functional safety (cf. Figure 2), i.e. integrating
this aspecet in future versions of the MCC, as it is currently a manual process.
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—— Abstract

Autonomous vehicles (AVs) are coming to our streets. Due to the presence of highly complex
software systems in AVs, there is a need for a new hazard analysis technique to meet stringent
safety standards. System Theoretic Process Analysis (STPA), based on Systems Theoretic Accident
Modeling and Processes (STAMP), is a powerful tool that can identify, define, analyze and mitigate
hazards from the earliest conceptual stage deployment to the operation of a system. Applying
STPA to autonomous vehicles demonstrates STPA's applicability to preliminary hazard analysis,
alternative available, developmental tests, organizational design, and functional design of each unique
safety operation.

This paper describes the STPA process used to generate system design requirements for an
Autonomous Emergency Braking (AEB) system using a top-down analysis approach to system safety.
The paper makes the following contributions to practicing STPA for safety and security:

1. It describes the incorporation of safety and security analysis in one process and discusses the
benefits of this;

2. It provides an improved, structural approach for scenario analysis, concentrating on safety and
security;

3. It demonstrates the utility of STPA for gap analysis of existing designs in the automotive domain;

4. Tt provides lessons learned throughout the process of applying STPA and STPA-Sec .
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1 Introduction

AV functionality is rapidly adopted through ADAS technology today. Combining this rate of
adoption with the complexity of the autonomous vehicle’s system architecture and its use of
complex SoC, it is essential for Tier-1? and semiconductor suppliers to be diligent in their
collaborative effort to design for functional safety and for the mitigation of cybersecurity
threats impacting functional safety.

STPA is a new hazard analysis technique and a new model of accident causation, based
on systems theory rather than reliability theory [4]. STPA has the same goals as any other
hazard analysis technique, that is, to recognize scenarios leading to identified hazards so that
they can be eliminated or controlled. STPA, however, has an innovative theoretical basis
or accident causality model. STPA is designed to address increasingly common component
interaction accidents, along with component failure accidents, which can result from design
flaws or unsafe interactions among non-failing (operational) components [3]. In fact, the
causes identified using STPA are a superset of those identified by other techniques [4].

This paper provides an example of applying STPA to an AEB system primarily designed
for functional safety as well as to mitigate risks associated with cybersecurity vulnerabilities.
In this, we have combined functional safety analysis with safety-relevant security analysis.

A methodology is defined to analyze functional safety and cybersecurity, first for the
AEB system, and then for the interactions, searching specifically for security vulnerabilities
that might contribute to safety hazards.

The next step in the analysis is the identification of accidents and unacceptable losses
along with accident hazards and unacceptable loss hazards. We define accident hazards and
unacceptable loss hazards, keeping in mind that the implementation of the AEB system is
on an L4 AV. Because of the level of autonomy of the vehicle, it is safe to assume there
is no driver interaction for the control of the vehicle or the AEB system. In this analysis,
the system hazards lead to high-level system constraints and further refinement in STPA
Steps 1 and 2.

As we move forward in the analysis, while applying the STPA process, additional
dependencies are going to be identified. Knowing this, we can define a basic initial high-level
control structure 3 which will be updated in later steps of the analysis. The final control
diagram * captures the dependencies from both a safety and cybersecurity perspective.

From the high-level control diagram, the next step is to identify CAs (Control Actions).
Evaluation of potential hazardous sources is shown in the refined control diagram, considering
all of the diagram’s inputs and outputs. We also considered component failure, but the
analysis is not limited to this. Instead, it presents all aspects of the system’s performance,
including cybersecurity features negatively impacting functional safety. From this analysis,
we are defining a set of causal factors and causal accident scenarios.

The novelty of this paper lies in the addition of a more systematic approach to the con-
ventional STPA approach. Identifying the scenarios by analyzing the components associated
with the control flow, and the causal factors corresponding to each scenario, constitutes the
next step. From the causal factors, we are refining the safety constraints so that they can
produce technical safety requirements (TSRs). Comparison of the TSRs against an existing

2 Companies which supply components directly to the original equipment manufacturer (OEM), that set
up the chain.

3 See Figure 3.

1 See Figure 4.



S. Sharma, A. Flores, C. Hobbs, J. Stafford, and S. Fischmeister

autonomous vehicle design (the autonomy vehicles designed as ASIL-D L4 fail-operational
systems) is carried out to identify design gaps for future improvement. This gap analysis on
an existing system demonstrates how to make safety and security design changes part of a
continuous improvement that must be at the heart of every safety culture.

2 How the analysis started

We started by reviewing an existing autonomous vehicle in need of formal safety analysis.
The initial plan was to use a conventional Hazards Analysis and Risk Assessment (HARA)
analysis because the group already had experience using this method. But then we learned
about STPA and decided to assess its suitability for a system of this scale. We had read
reports of its application to much larger systems [3] and wanted to determine whether it
would scale to a single, embedded system. Using this approach, we can generate high-level
safety constraints in the early stages of development. These constraints can then be tailored

to generate detailed safety requirements on individual components of the analyzed system[8].

To avoid biasing our results, we established that the safety analysis should be as general
as possible without being directly involved with the current implementation . Thus the result
of this analysis was a list of technical safety requirements which we could use to perform an
analysis on the current physical architecture and find possible security and safety issues.

We needed to select vehicle functionalities that played an important role in vehicle and
occupant safety. The vehicle component also had to be a part of a well-contained function to
complete the analysis in the time span available. For these reasons, we selected the L4 AEB
function for our analysis.

2.1 The AEB subsystem

An AEB system of 1.4 AV aid in avoiding accidents by identifying potential collisions with the
help of a perception system (LIDAR, RADAR, stereo vision, etc.), computing localization,
path planning and determining object trajectory. If a collision is unavoidable, these systems
prepare the vehicle to minimize the impact by lowering its speed. It is important to note
that the AEB itself is independent of the normal braking system of the vehicle. Once the
AEB has identified a potential threat, it takes control of the braking system to mitigate
the threat. This functionality has a significant effect on the safety of the vehicle and its
occupants, making it an excellent vehicle subsystem for our analysis.

When looking at the distances between the vehicles as shown in Figure 1, we can establish
safety thresholds. The first threshold is the warning distance that notifies the AV when
the proximity between ego vehicle and the vehicle in front is becoming dangerous; it is
recommended for the ego vehicle to start slowing down and increasing the distance between
the vehicles. At this distance, the probability of a collision is low. The next threshold is
the normal braking limit. At this distance, the normal braking system of the vehicle starts
slowing down the vehicle. If the braking system is unable to slow down the vehicle and
increase distance, the vehicle will reach the Collision Imminent Braking distance (CIBd) and
will activate the AEB system. At this point the collision probability is high, and the AEB
needs to take immediate action. The AEB’s objective is to stop or slow down the vehicle
before it reaches the Minimum Safe Distance (MSD). The MSD threshold is the only fixed
value amongst all the thresholds. The rest of the values are dependent on the road conditions
(weather and road surface) and the speed of the vehicle.

5:3

ASD 2019



5:4

FuSa of AEB

=

a - Collision d - Normal braking range
b - Minimum safe distance e - Warning mark

¢ - Collision imminent braking distance

Figure 1 Threshold distances for the braking system.

3 Methodology

The methodology used in the current approach combines safety and security analysis. This
approach considers the functional safety and the security-affecting safety. Figure 2 presents
the methodology we are using for the STPA analysis[2]:

1. Define analysis scope
a. Accidents
b. Hazards
c. High-level constraints
2. Develop control structure diagram
3. Identify unsafe control actions
a. Unsafe control actions
b. Corresponding safety constraints
4. Identify the occurrence of unsafe control actions
a. Hierarchical control structure with the process model
b. Causal factors, scenarios, and refined safety constraints

c. Technical safety constraints

The elements 1(c), 3(b), and 4(c) constitute the STPA analysis report which defines the
safety constraints for a safer and more secure system.

The analysis considers a detailed analysis of various blocks of Figure 2. The constituents
of the multiple blocks are referred with an identifier as the various parts of each block, to
serve as a starting ground for the next block.



S. Sharma, A. Flores, C. Hobbs, J. Stafford, and S. Fischmeister

Input STPA process Results
Start
Assumptions, system-level 1.1
¢ accidents, related hazards, Safety
I . design and safety constraints fundamentals
System specification Define
and design models analysis scope -
Assumptions, system-level Securit 1.2
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unsafe control structure with
action could occur process model
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\_} Casual scenarios Refined Technical
and > safety —> safety
casual factors constraints requirements

Figure 2 STPA methodology.

3.1 Scope

The methodology begins by defining the scope of the analysis. For the system under
consideration, the scope is as follows: “The analysis presents functional safety analysis for
AEB for an AV using vehicle state and environmental data analysis to contribute to the
safety of the passengers and environment.”

3.1.1 Assumptions

After defining the scope, the next step is to define certain conditions that serve as the basis
for analysis development. Thus, the analysis considers certain assumptions related to the
working conditions. These conditions are also helpful in setting the limits to the analysis.
Although, the authors recognize that it would be beneficial to further analyze the assumptions
from the perspective of an expanded scope. Here are a couple of examples:®:

Assumption 1: AEB functions for collisions from all angles, not just traditional forward-
collisions ( no lateral maneuvering or acceleration commanded, considering only the brake
actuation).

Assumption 5: Path prediction of surrounding mobile objects is available to the AEB system.

There are certain logical conditions behind including these assumptions in the analysis.
General cases assume collision primarily from the front. This analysis, however, also examines
projected paths of side objects relative to the AV projected path. Hence, the Assumption 1.

5 These are some of the assumptions we are referring here from the analysis. To have consistency with
the report [6], we are using the same identifiers.
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The analysis considers an assumption about the availability of data from the surroundings,
such as for calculating the collision imminent braking distance and path prediction from the
surrounding mobile objects. Hence, Assumption 5.

Some of the assumptions also consider certain conditions outside the scope of the analysis.
For example:

The variation in braking performance based on the mechanical condition of AV tires,

The sensor performance can be negatively impacted by maintenance or improper care,

No manufacturing defects and

All the components are correctly working as they are quality checked and properly

maintained.

3.1.2 Accidents

An accident is an undesired or unplanned event that results in the loss of a human life,
human injury, property damage, etc. The accidents considered in the analysis are:

Al: The AV collides with a mobile object.
A2: The AV collides with an immobile object.
A3: The AV passengers injured without collision.

In defining the accidents, we first discussed various scenarios that the AV can encounter
on the road. Next, we grouped the elements of the scenarios into different categories: vehicles,
pedestrians, cyclists, stationary objects, etc. As the analysis was evolving, these subsets
posed certain problems; for example, a dustbin could start off as a stationary object, but
due to the wind, could start rolling on the road and become non-stationary. We decided that
instead of defining it by its current state of activity, we can describe it with its innate ability.
So after refinement we devised two subsets: mobile and immobile. For example: if a mailbox
were on an HD map, it would be an immobile object. If that same mailbox were blown from
its bolts by high wind and became non-stationary, it would be a mobile object requiring
identification of the AD sensor system because it is no longer in its original position as
shown in the HD map. Here, “mobile” is anything that can move, irrespective of the external
influence. Thus Al and A2 are considered as two potential accidents for the analysis. Also,
as in the definition of accident, anything that causes harm to human occupants needs to be
considered and is stated as A3. While sitting inside the AV, under certain circumstances
such as sudden braking (braking deceleration exceeds the safety physics to passengers) can
harm the occupants even when there is no collision.

The next step in the analysis was to define system-level hazards. These are the system
states or set of conditions, which together with a particular set of worst-case environmental
conditions, would probably lead to an accident.

3.1.3 System level hazards

System level hazards can lead to accidents considered in the analysis. Some of the hazards
are listed below:

AH1: AV does not maintain Minimum Safe Distance (MSD) from a Forward Mobile Object
(FMO).

AH2: AV does not maintain MSD from Prohibited Area (PA).

AH3: AV occupants exposed to unhealthy g-forces in vehicle exceeding the safety threshold
of AV.
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Maintaining a safe distance from a vehicle in front is a necessary condition for AEB. If
the vehicle is unable to keep MSD from a forward mobile object, then this could be the
potential cause of an accident and thus become a hazard that could lead to an accident. The
condition for the MSD from an FMO is a prerequisite for the safety of the AV. There are
certain areas which have restricted access to traffic. The AVs should ensure that they do not
enter such areas and this has been considered — in the analysis as AH2. PA can mean any
area — military field, recent accident site, landslide site, etc., — AV’s design is not suitable for
L4 functionality in a PA. The thresholds predefined in the system related to BFC (Braking
Force Command) shall always be complied with because they have the potential to harm
the occupants if they exceed a certain threshold level and thus constitute a hazard for the
analysis (AH3).

After the identification of hazards, the next step was to describe high-level constraints.
These prevent the accident from occurring. Thus, HLCs (High-Level Constraints) provide
the set of requirements with which the system shall comply to be functionally safe. These
are defined consistently to have traceability to the corresponding hazards. Using a consistent
structure can be helpful for the automation of the process. Although this analysis doesn’t
automate the process, consistency in the structure helped in having a symmetric structure.

During this analysis, we were struggling with the question of whether we should generate
two different reports relating to safety and security or whether they should be merged into
one. We realized that safety and security are closely interlinked and therefore merged them
into one single analysis.

For example: If the AV speed sensor information is spoofed (security threat) then it can
lead to a hazardous scenario ultimately leading to an accident (safety threat).

If, due to delayed EPS sensor information (safety threat), BFC fails to set the braking
force = 0% even after the removal of earlier hazard, this situation could lead to an un-
necessary halt, and thus personal identifiable information of occupants could be inferred
(security threat).

3.1.4 High-level safety constraints

High-level safety constraints define the initial set of safety requirements for the system.

3.2 STPA Step 1

The identification of unsafe control actions and the corresponding safety constraints are
discussed in this section.

3.2.1 Safety control structure

The control structure is a preliminary process model for the system. It is a functional
decomposition of the system. While working on the control structure, we faced certain
challenges such as level of detail to be considered. For the sake of a systematic and structured
approach, a control structure is the most crucial thing for the safety analysis . We should
only consider the blocks responsible for significant functionality such as controller, actuator,
process, and feedback. The structure is only a generic one and does not consider the level
of granularity. It gives us an overview of how the execution of instruction is taking place
without considering the complete internal functionality of the various components involved.
Here follows the description of various blocks within the analysis:
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Controller: In the system under analysis, the AEB controller is responsible for generating
and controlling the BFC.

Actuator: In this system, brakes are the actuator responsible for implementing the BFCs.

Controlled process: The AEB controls the braking of the vehicle.

Feedback: The feedback from the vehicle state and the surrounding environment through
the sensors is collected in the state estimator, and thus constitutes the feedback network.

The control structure for the system under consideration is as shown in the Figure 3.

6 .
AEB Controller <=——— State Estimator
1 5
Brakes
|—> Vehicle SEE—— AD Sensors
2 3
Environment —4> Vehicle Sensors
Color Coding:
Controller Process Model
Actuator Sensors
Vehicle External Influence

Figure 3 Control loop structure.

By following the STPA process diligently, through detailed use of refined control diagrams,
we have a reference to verify that the hazards identification is adequate, and through continued
refinement, a benchmark for the design to support continuous improvement over the life
of the item. During the analysis, we struggled with the level of detail to be present in the
control loop diagram. After creating several revisions of the control loop, we concluded that
it should be generic in form and that a further level of detail would not add value to the
analysis. For the Control Loop, it shall be in basic generic form and the later stages shall
consider the details.

3.2.2 Unsafe control actions

This step performs the identification of the unsafe control actions each component can
create which helps in refining the safety requirements and constraints of the system. It will
determine the causes of these unsafe control actions. The UCAs are defined using the control
actions that can lead to accidents. So, this analysis is considering two control actions based
on the control diagram. Here we have taken the BFC (Braking Force Command) coming
from the controller; it is only the command and not the force. Two states considered in
the analysis are: BFC disengaged (0%), and BFC engaged (modulated engagement ranging
from 0% — 100%). After the identification of control actions, the next step is to identify the
potential causes of unsafe control.
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The four ways a controller can provide unsafe control are the following [3]:

1. A control action required for safety is not provided.

2. An unsafe control action is provided.

3. A potentially safe control action is provided too late or too early (at the wrong time) or
in the wrong sequence.

4. A control action required for safety is stopped too soon or applied for too long.

We considered these four categories as a basis for identification of the control table entries.

Some of the unsafe control actions considered are listed here:

UCA 1: AEB does not provide BFC when AV is at a closer distance than the CIBd.
UCA 3: AEB does not provide required braking force value when AV is at a closer distance
than the CIBd.

If BFC is not applied even when the AV is within the CIBd from an object, then this
can be a potential unsafe control action, which could lead to an accident. Hence, UCA 1
belongs to the category of “control action required, but not provided.” Another UCA is
when the BFC is applied, but the braking force < RDR (Required Deceleration Rate) can
also lead to an accident, and is therefore an unsafe control action. Similarly, other UCAs
are considered, based upon the time of application of BFC and the total time span of BFC
application. Thus, the UCA table is formed.

3.2.3 Safety constraints

The UCAS help to find reasons behind unsafe actions and guide design engineers to eliminate
or control them. We referred to table 1 for UCAs, and SCs sets the requirements for the
systems. The refined safety constraints are defined in a consistent language as follows:

SC 1: AEB shall provide BFC when AV is at a closer distance than the CIBd.

SC 3: AEB shall provide required braking force value when AV is at a closer distance than
the CIBd.

3.3 STPA Step 2

This section identifies the reasons behind the unsafe control actions.

3.3.1 Causal factors and causal accident scenarios

After the identification of the unsafe control actions, we followed STPA Step 2 (Figure 2)
to identify the potential causes of unsafe control actions, to understand their presence and
how to prevent their occurrence [9]. However, accidents can still occur even without unsafe
control actions if, for example, correct and safe control actions are provided, but not executed
by other components in the system. The identification of the causal factors can identify a
violation of safety constraints despite safe control actions; this is important.
To study the scenarios and causal factors corresponding to each UCA, we made a
structured approach:
1. Identify scenarios using UCAs.
2. Identify causal factors corresponding to each scenario by analysing the components
associated with the control flow diagram.
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