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Abstract
We consider the problem of morphing between contact representations of a plane graph. In a contact
representation of a plane graph, vertices are realized by internally disjoint elements from a family of
connected geometric objects. Two such elements touch if and only if their corresponding vertices are
adjacent. These touchings also induce the same embedding as in the graph. In a morph between
two contact representations we insist that at each time step (continuously throughout the morph)
we have a contact representation of the same type.

We focus on the case when the geometric objects are triangles that are the lower-right half of
axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are
one of the simplest families of shapes supporting this property. Thus, they provide a natural case to
study regarding morphs of contact representations of plane graphs.

We study piecewise linear morphs, where each step is a linear morph moving the endpoints
of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time
algorithm that decides whether there is a piecewise linear morph between two RT-representations
of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs.
As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph
between every pair of RT-representations where the “top-most” triangle in both representations
corresponds to the same vertex. This shows that the realization space of such RT-representations of
any 4-connected plane triangulation forms a connected set.
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10:2 Morphing Contact Representations of Graphs

1 Introduction

We consider the morphing problem from the perspective of geometric representations of
graphs. While a lot of work has been done to understand how to planarly morph the standard
node-link diagrams1 of plane graphs2 and to “rigidly” morph3 configurations of geometric
objects, comparatively little has been explicitly done regarding (non-rigid) morphing of
alternative representations of planar graphs, e.g., contact systems of geometric objects such
as disks or triangles. In this case, the planarity constraint translates into the requirement of
continuously maintaining a representation of the appropriate type throughout the morph.

More formally, let F be a family of geometric objects homeomorphic to a disk. An
F-contact representation of a plane graph G maps vertices to internally disjoint elements of
F . We denote the geometric object representing a vertex v by ∆(v). Objects ∆(v) and ∆(w)
touch if and only if {v, w} is an edge. The contact system of the objects must induce the
same faces and outer face as in G. A morph between two F -contact representations R0 and
R1 of a plane graph G is a continuously changing family of F -contact representations Rt of
G indexed by time t ∈ [0, 1]. An implication of the existence of morphs between any two
representations of the same type is that the topological space defined by such representations
is connected. We are interested in elementary morphs, and in particular in linear morphs,
where the boundary points of the geometric objects move at constant speed along straight-line
trajectories from their starting to their ending position. A piecewise linear morph of length `
between two F-contact representations R1 and R`+1 of a plane graph G is a sequence
〈R1, . . . , R`+1〉 of F -contact representations of G such that 〈Ri, Ri+1〉 is a linear morph, for
i = 1, . . . , `. For a background on the mathematical aspects of morphing, see, e.g., [3].

Morphs of Node-Link Diagrams. Fáry’s theorem tells us that every plane graph has a
node-link diagram where the edges are mapped to line segments. Of course, for a given plane
graph G, there can be many such node-link diagrams of G, and the goal of the work in planar
morphing is to study how (efficiently) one can create a smooth (animated) transition from
one such node-link diagram to another while maintaining planarity. Already in the 1940’s
Cairns [17] proved that, for plane triangulations, planar morphs exist between any pair of
such node-link diagrams. However, the construction involved exponentially-many morphing
steps. Floater and Gotsman [29], and Gotsman and Surazhsky [31, 39] gave a different
approach via Tutte’s graph drawing algorithm [42], but this involves non-linear trajectories of
unbounded complexity. Thomassen [40] and Aranov et al. [10] independently showed that two
node-link diagrams of the same plane graph have a compatible triangulation4 thereby lifting
Cairns’ result to plane graphs. Of particular interest is the study of linear morphs, where
each vertex moves at a uniform speed along a straight-line. After several intermediate results
to improve the complexity of the morphs [2, 6] and to remove the necessity of computing
compatible triangulations [8], the current state of the art [1] is that there is a planar morph
between any pair of node-link diagrams of any n-vertex plane graph using θ(n) linear steps.
Planar morphs of other specialized plane node-link diagrams have also been considered, e.g.,
planar orthogonal drawings [13, 43], convex drawings [7], upward planar drawings [21], and
so-called Schnyder drawings [12]. In this latter result the lattice structure of all Schnyder

1 where vertices are represented as points and edges as non-crossing curves
2 the set of faces and the outer face are fixed
3 scaling the objects is not allowed, e.g., as in bar-joint systems [35] or in body-hinge systems [14, 19, 24]
4 i.e., a way to triangulate both diagrams to produce the same plane triangulation
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woods of a plane triangulation [15, 25] is exploited in order to obtain a sequence of linear
morphs within a grid of quadratic size. Finally, planar morphs on the surface of a sphere [33]
and in three dimensions have been investigated [11].

Morphs of Contact Representations. Similar to Fáry’s theorem, the well-known Koebe-
Andreev-Thurston theorem [4, 34] states that every plane graph G has a coin representation,
i.e. an F-contact representation where F is the set of all disks. Additionally, for the
case of 3-connected plane graphs, such coin representations of G are unique up to Möbius
transformations [16] – see [27] for a modern treatment. There has been a lot of work on how
to intuitively understand and animate such transformations (see, e.g., the work of Arnold
and Rogness [9]), i.e., for our context, how to morph between two coin representations. Of
course, ambiguity remains regarding how to formalize the complexity of such morphs. In
particular, this connection to Möbius transformations appears to indicate that a theory of
piecewise linear morphing for coin representations would be quite limited.

For this reason, we instead focus on contact representations of convex polygons. These
shapes still allow for representing all plane triangulations, as a direct consequence of the
Koebe-Andreev-Thurston theorem, but are more amenable to piecewise linear morphs, where
the linearity is defined on the trajectories of the corners. De Fraysseix et al. [23] showed
that every plane graph G has a contact representation by triangles, and observed that these
triangle-contact representations correspond to the 3-orientations (i.e., the Schnyder woods)
of G. Schrenzenmaier [38] used Schnyder woods to show that each 4-connected triangulation
has a contact representation with homothetic triangles. Gonçalves et al. [30] extended the
triangle-contact results from triangulations [23] to 3-connected plane graphs, by showing
that Felsner’s generalized Schnyder woods [25] correspond to primal-dual triangle-contact
representations. Note that triangles and coins are not the only families of shapes that have
been studied from the perspective of contact representations. Some further examples include
boxes in R3 [18, 26, 41], line segments [22, 32], and homothetic polygons [20, 28, 37].

The construction of triangle-contact representations [23] (and the correspondence to
3-orientations) can be adjusted so that each triangle is the lower-right half of an axis-parallel
rectangle. These right-triangle representations (RT-representations) are our focus; see Fig. 3.

Our Contribution and Outline. The paper is organized as follows. We start with some
definitions in Section 2 and describe the relationship between (degenerate) RT-representations
and Schnyder woods of plane triangulations in Section 3. In Section 4, we provide necessary
and sufficient conditions for a linear morph between two RT-representations. The first
condition is that each corner c of a triangle touches the same side s of another triangle
in the two representations, that is, the morph happens within the same Schnyder wood.
The contact between c and s is always maintained when s has the same slope in the two
RT-representations. Otherwise, we require the point of s hosting c to be defined by the same
convex combination of the end-points of s in both representations. In Section 5, we present
our morphing algorithm. If the two input RT-representations correspond to different Schnyder
woods, we consider a path between them in the lattice structure of all Schnyder woods, similar
to [12], that satisfies some properties (if it exists). When moving along this path, from a
Schnyder wood to another, we construct intermediate RT-representations that simultaneously
correspond to both woods. We provide an algorithm to construct such intermediate RT-
representations that result in a linear morph at each step. Finally, in Section 6, we show how
to decide whether there is a path in the lattice structure that satisfies the required properties.
This results in an efficient testing algorithm for the existence of a piecewise linear morph

SoCG 2019
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Figure 1 The two conditions for a Schnyder wood.

between two RT-representations of a plane triangulation; in the positive case, the computed
piecewise linear morph has at most quadratic length. Consequently, for 4-connected plane
triangulations, under a natural condition on the outer face of their RT-representations, the
topological space defined by such RT-representations is connected.

2 Definitions and Preliminaries

Basics. A plane triangulation is a maximal planar graph with a distinguished outer face.
A directed acyclic graph (DAG) is an oriented graph with no directed cycles. A topological
ordering of an n-vertex DAG G = (V,E) is a one-to-one map τ : V → {1, . . . , n} such that
τ(v) < τ(w) for (v, w) ∈ E. Let p and q be two points in the plane. The line segment pq
is the set {(1 − λ)p + λq; 0 ≤ λ ≤ 1} of convex combinations of p and q. Considering pq
oriented from p to q, we say that x cuts pq with the ratio λ if x = (1− λ)p+ λq.

In the case of polygons, a linear morph is completely specified by the initial and final
positions of the corners of each polygon. If a corner p is at position p0 in the initial
representation (at time t = 0) and at position p1 in the final representation (at time t = 1),
then its position at time t during a linear morph is (1− t)p0 + tp1 for any 0 ≤ t ≤ 1.

Schnyder Woods. A 3-orientation [15, 25] of a plane triangulation is an orientation of the
inner edges such that each inner vertex has out-degree 3 and the three outer vertices have
out-degree 0. A Schnyder wood T [36] of a plane triangulation G is a 3-orientation together
with a partition of the inner edges into three color classes, such that the three outgoing edges
of an inner vertex have distinct colors and all the incoming edges of an outer vertex have
the same color. Moreover, the color assignment around the vertices must be as indicated
in Fig. 1. We say that a cycle in a Schnyder wood is oriented if it is a directed cycle.

The following well-known properties of Schnyder woods can directly be deduced from
the work of Schnyder [36]. 1. Every plane triangulation has a 3-orientation. 2. For each
3-orientation of a plane triangulation there is exactly one partition of the inner edges into
three color classes such that the pair yields a Schnyder wood. 3. Each color class of a
Schnyder wood induces a directed spanning tree rooted at an outer vertex. 4. Reversing the
edges of two color classes and maintaining the orientation of the third color class yields a
directed acyclic graph. 5. The edges of an oriented triangle in a Schnyder wood have three
distinct colors and every triangle composed of edges of three different colors is oriented.

We call the color classes red (r, ), blue (b, ), and green (g, ). The symbols Xr,
Xb, and Xg denote the red, blue, and green outer vertex of G, i.e., the outer vertices with
incoming red, blue, and green edges, respectively. For an inner vertex v, let vr, vb, and vg
be the respective neighbors of v such that (v, vr) is red, (v, vb) is blue, and (v, vg) is green.
Finally, let DAGr(T ) (DAGb(T )) be the directed acyclic graph obtained from G by orienting
all red (blue) edges as in T while all blue (red) and green edges are reversed.
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Let C be an oriented triangle of a Schnyder wood T . Reversing C yields another 3-
orientation with its unique Schnyder wood TC . If C is a facial cycle, then T differs from
TC by recoloring the edges on C only. More precisely, the former outgoing edge of a vertex
gets the color of the former incoming edge of the same vertex. This procedure of reversing
and recoloring is called flipping5 an oriented triangle of a Schnyder wood. Any Schnyder
wood can be converted into any other Schnyder wood of the same plane triangulation by
flipping O(n2) oriented triangles [12, 15]. For two Schnyder woods T0 and T`, <C1, . . . , C`>

is a flip sequence between T0 and T` if there are Schnyder woods T1, . . . , T`−1 such that Ci,
i = 1, . . . , `, is an oriented triangle in Ti−1 and Ti is obtained from Ti−1 by flipping Ci. We
say that a Schnyder wood T ′ can be obtained from a Schnyder wood T by a sequence of facial
flips if there is a flip sequence between T and T ′ that contains only facial cycles.

3 RT-Representations of Plane Triangulations

Let R be an RT-representation of a plane triangulation G and let u be a vertex of G. Recall
that ∆(u) is the triangle representing u in R. We denote by (u), (u), and (u) the
horizontal, vertical, and diagonal side of ∆(u). Further, we denote by (u), (u), and

(u), the left, right, and top corner of ∆(u), respectively. If two triangles touch each other
in their corners, we say that these two corners coincide. If there exist no two triangles whose
corners coincide, then R is non-degenerate; otherwise, it is degenerate. Let (c, s) be a pair
with c ∈ { , , } and s ∈ { , , }, we say that (c, s) is a compatible pair if it belongs
to the set {( , ), ( , ), ( , )}. Observe that, in any RT-representation of G, if a
corner c of a triangle ∆(u) touches the side s of a triangle ∆(v), with (u, v) ∈ E(G), then
(c, s) is a compatible pair. We formally require this also in the case of a degeneracy. E.g., if

(v) coincides with (u) for two vertices u and v, then the respective compatible pair is
either ( , ) or ( , ) – even though (v) also touches (u), and (u) touches (v).

In the next two subsections, we describe the relationship between RT-representations and
Schnyder woods [23] and extend it to the case of degenerate RT-representations.

3.1 From RT-Representations to Schnyder Woods
Let G = (V,E) be a plane triangulation with a given RT-representation R. It is possible to
orient and color the edges of G in order to obtain a Schnyder wood by considering the types
of contacts between triangles in R as follows.

First, consider the non-degenerate case; refer to Fig. 2a. Let e = {u, v} ∈ E be an inner
edge such that a corner c of ∆(u) touches a side s of ∆(v). We use the following rules: We
orient e from u to v, and color e blue if c is (u), green if c is (u), red if c is (u).

I Lemma 1 ([23], Theorem 2.2). The above assignment yields a Schnyder wood.

Assume now that there exist two triangles ∆(u) and ∆(v) whose corners coincide. Observe
that the assignment of colors and directions to the edge {u, v} determined by the procedure
above would be ambiguous. The next observation will be useful to resolve this ambiguity.

I Observation 2. In an RT-representation of a plane triangulation, if the corner of a triangle
∆(u) coincides with the corner of a triangle ∆(v) in a point p, then there exists a triangle
∆(w), w 6= u, v, with a corner on p, unless {u, v} is an edge of the outer face.

5 Brehm [15] called flipping a counter clockwise triangle a flip, and flipping a clockwise triangle a flop.

SoCG 2019
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(a) non-degenerate case
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Figure 2 From an RT-representation to a Schnyder wood.

By Observation 2, in a degenerate RT-representation there exist three vertices u, v, and w
such that (u), (v), (w) lie on a point, see Fig. 2b. For each of the three edges, a choice
of coloring and orientation corresponds to deciding which of the two triangles participates to
the touching with its corner and which triangle with an extremal point of one of its sides.
This yields two options as indicated in Fig. 2b, both resulting in a Schnyder wood. Note
that the face f = 〈u, v, w〉 is cyclic in both these Schnyder woods, and each of them can be
obtained from the other by flipping f . Summarizing, we get the following.

I Observation 3. Given an RT-representation R of a plane triangulation G, let P be the
set of points where three triangles meet. Then, R corresponds to a set TR of 2|P | different
Schnyder woods on G, the points of P correspond to |P | edge-disjoint oriented triangles, and
the Schnyder woods in TR differ in flipping some of them.

3.2 From Schnyder Woods to RT-Representations
Assume now that we are given a Schnyder wood T of a plane triangulation G = (V,E). We
describe a technique for constructing an RT-representation of G corresponding to T in which
the y-coordinate of the horizontal side of each triangle is prescribed by a function τ : V → R
satisfying some constraints; observe that in the non-degenerate case in [23] τ is a topological
labeling of DAGr(T ), i.e., a canonical ordering of G.

We call τ : V −→ R an Admissible Degenerate Topological labeling of the graph DAGr(T ),
for short ADT-labeling, if for each directed edge (u, v) of DAGr(T ), we have 1. τ(u) ≤ τ(v)
and 2. τ(u) = τ(v) only if a. is green and belongs to a clockwise oriented facial cycle, or b. is
blue and belongs to a counter-clockwise oriented facial cycle, and 3. if τ(ub) = τ(u) = τ(ug)
for a vertex u, and u1 and u2 are vertices such that 〈u, ug, u1〉 is a clockwise facial cycle and
〈u, ub, u2〉 is a counter-clockwise facial cycle, then u1 6= u2.

I Lemma 4. Let R be an RT-representation of a plane triangulation G = (V,E), let T be a
Schnyder wood corresponding to R, and let τ(v), v ∈ V , be the y-coordinate of (v). Then,
τ is an ADT-labeling of DAGr(T ).

Proof. Let (u, v) be a directed edge of DAGr(T ). By the definition of T , we get immediately
that τ(u) ≤ τ(v) independently of whether (u, v) is red, green, or blue. In fact, if (u, v) is
red, then it is oriented from u to v in Tr. Thus, the compatible pair corresponding to such
an edge in R is ( (u), (v)). Hence, (u) lies strictly below (v). If (u, v) is green (resp.,
blue), then it is oriented from v to u in T . Thus, the compatible pair corresponding to such
an edge in R is ( (v), (u)) (resp., ( (v), (u))). Hence, (u) does not lie above (v).

Assume that τ(u) = τ(v), which implies that (u, v) is not red, as observed above. Suppose
that (v, u) is a green edge. Then, (v) and (u) coincide. By Observation 2, there exists
a vertex z such that (z) coincides with (v) and (u). Thus, 〈v, u, z〉 is a clockwise
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Figure 3 (a) A Schnyder wood T of a plane triangulation G; the edges connecting v with vertices
vr, vg, and vb are dashed. (b) Graph DAGr(T ) with ADT-labeling τ . (c) An RT-representation of
G constructed from T , τ , and an RT-representation Ro of the outer face.

oriented facial cycle. Similarly, when (v, u) is a blue edge, there is a vertex z such that (v),
(u), and (z) coincide. Therefore, 〈v, u, z〉 is a counter-clockwise oriented facial cycle.
Finally, if τ(ub) = τ(u) = τ(ug) and u1 and u2 are the vertices such that 〈u, ug, u1〉 is a

clockwise facial cycle and 〈u, ub, u2〉 is a counter-clockwise facial cycle, then (u1) touches
(u) and (u2) touches (u). Thus, u1 6= u2. J

I Lemma 5. Let T be a Schnyder wood of an n-vertex plane triangulation G, let τ be an
ADT-labeling of DAGr(T ), and let Ro = ∆(Xr) ∪∆(Xg) ∪∆(Xb) be an RT-representation
of the outer face of G such that (Xi) has y-coordinate τ(Xi), with i ∈ {r, g, b}. Then, there
exists a unique RT-representation RT(T, τ,Ro) of G corresponding to T in which (v) has
y-coordinate τ(v), for each vertex v of G, and in which the outer face is drawn as in Ro.

Outline of the Proof. We process the vertices of G according to a topological ordering τ ′ of
DAGr(T ). In the first two steps, we draw triangles ∆(Xb) and ∆(Xg) as in Ro; see Fig. 3c.
At each of the following steps, we consider a vertex v, with 2 < τ ′(v) = i < n.

We draw ∆(v) with its horizontal side on y = τ(v) and with its top corner at y = τ(vr), as
follows. Since the blue edge (vb, v) and the green edge (vg, v) are entering v in DAGr(T ), the
triangles ∆(vb) and ∆(vg) have already been drawn. Also, by Property 1 of ADT-labeling,
we have that τ(vb) ≤ τ(v) and τ(vg) ≤ τ(v). Further, it can be shown that (vb) and

(vg) have y-coordinate larger than or equal to τ(v), and that if a triangle ∆(u) intersects
the line y = τ(v) between ∆(vb) and ∆(vg), then u is a neighbor of v such that v = ur. By
construction, (u) has y-coordinate equal to τ(v). Thus, we draw the horizontal side of
∆(v) on y = τ(v) between ∆(vb) and ∆(vg). The conditions of ADT-labelings guarantee
that (v) has positive length. If i = n, and hence v = Xr, we draw ∆(Xr) as in Ro. J

4 Geometric Tools

In this section, we provide geometric lemmata that will be exploited in the subsequent
sections. We first show that the incidence of a point and a line segment is maintained during
a linear morph if the line segment is moved in parallel (with a possible stretch, but keeping
the orientation) or the ratio with which the point cuts the segment is maintained; see Fig. 4.

I Lemma 6. For i = 0, 1 let pi, qi be two points in the plane and let xi ∈ piqi. For 0 < t < 1,
further let pt = (1− t)p0 + tp1 and qt = (1− t)q0 + tq1. Then, xt = (1− t)x0 + tx1 ∈ ptqt if
1. p0q0 and p1q1 are parallel with the same direction, or
2. x0 cuts p0q0 with the same ratio as x1 cuts p1q1

SoCG 2019
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Figure 4 Morphing a segment and a point.

Proof. Assume first that p0q0 and p1q1 are parallel. If p0q0 and p1q1 are collinear, we may
assume that they are both contained in the x-axis, that pi, qi, i = 0, 1, are real numbers, and
that p0 < q0. Since p0q0 and p1q1 have the same direction, this implies that p1 < q1. Since
xi, i = 0, 1, is a point in piqi, it follows that pi ≤ xi ≤ qi. Hence, we get for t ∈ [0, 1] that

(1− t)p0 + tp1︸ ︷︷ ︸
pt

≤ (1− t)x0 + tx1︸ ︷︷ ︸
xt

≤ (1− t)q0 + tq1︸ ︷︷ ︸
qt

.

If p0q0 and p1q1 are parallel with the same direction but not collinear, then the polygon
〈p0, q0, q1, p1〉 is convex. Thus, x0x1 must intersect ptqt, for any t. Also, ptqt and xt both lie
on the same line `t. More precisely, let d be the distance between the lines through segments
p0q0 and p1q1. Then, `t is the line with distance td from p0q0.

Finally, if x0 cuts p0q0 with the same ratio λ as x1 cuts p1q1, then xt = (1 − t)((1 −
λ)p0 + λq0) + t((1− λ)p1 + λq1) = (1− λ)pt + λqt ∈ ptqt. J

Lemma 6 implies the following sufficient criterion for a linear morph.

I Lemma 7. Let R0 and R1 be two RT-representations of a triangulation G corresponding
to the same Schnyder wood such that the triangles of the outer face pairwise touch in their
corners. The pair 〈R0, R1〉 defines a linear morph if, for any two adjacent vertices u and
v such that a corner ci(v) of v touches a side si(u) of u, where c ∈ { , , } and
s ∈ { , , }, one of the following holds:
1. s1(u) and s2(u) are parallel. 2. c1(v) cuts s1(u) with the same ratio as c2(v) cuts s2(u).

By Observation 3, an RT-representation R of a plane triangulation G corresponds to a set
TR of Schnyder woods that differ from each other by flipping a set of edge disjoint triangles.
The topmost vertex of R is the vertex v of G maximizing the y-coordinate of (v).

I Lemma 8. Let R0 and R1 be two RT-representations of the same plane triangulation
G = (V,E) such that 〈R0, R1〉 is a linear morph. Then TR0 ∩ TR1 6= ∅.

I Theorem 9 (Necessary Condition). If there is a piecewise linear morph between two RT-
representations of a plane triangulation G, then the corresponding Schnyder woods can be
obtained from each other by a sequence of facial flips. In particular the topmost vertex is the
same in both representations if G has more than three vertices.

Proof. Let 〈R1, . . . , R`〉 be a sequence of linear morphs. Lemma 8 implies TRi
∩ TRi+1 6= ∅

for i = 1, . . . , `− 1. Let Ti ∈ TRi
∩ TRi+1 for i = 1, . . . , `− 1. Then Ti+1, i = 1, . . . , `− 2 can

be obtained from Ti by a sequence of edge-disjoint facial flips. Hence, the Schnyder wood
T`−1 of R` can be obtained from the Schnyder wood T1 of R1 by a sequence of facial flips. J
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Figure 5 Morphing an RT-representation of a triangle to a labeled canonical form: First, cut
the extruding parts of the triangles, maintaining the slopes of the diagonal sides. Then, scale the
triangles such that the horizontal and vertical sides have length one. Finally, keep rotating the
triangles until the topmost vertex is as desired.

5 A Morphing Algorithm

In this section, we prove the following theorem.

I Theorem 10 (Sufficient Condition). Let R1 and R2 be two RT-representations of an n-
vertex plane triangulation G corresponding to the Schnyder woods T1 and T2, respectively. If
T2 can be obtained from T1 by a sequence of ` facial flips, then there exists a piecewise linear
morph between R1 and R2 of length O(n+ `). Such a morph can be computed in O(n(n+ `))
time, provided that the respective sequence of ` facial flips is given.

Since there is always a piecewise linear morph between two RT-representations of a plane
triangle (see Fig. 5), we will assume that G has at least four vertices. This implies especially
that the topmost vertex, which always coincides with Xr, is the same in R1 and R2.

In Section 5.1, we introduce our main procedure adjust, which moves a triangle in an
RT-representation along an incident diagonal and adjusts the remaining triangles so that the
result is a linear morph. Repeatedly applying adjust, we first morph R1 to a non-degenerate
RT-representation that still corresponds to T1 (Section 5.3); then, we perform a sequence
of linear morphs to realize the ` facial flips geometrically (Section 5.2), hence obtaining an
RT-representation corresponding to T2, which we finally morph to R2 (Section 5.3).

5.1 Moving a Triangle Along a Diagonal

Let G = (V,E) be a plane triangulation and let R be an RT-representation of G corresponding
to a Schnyder wood T of G. Given an inner vertex x of G and a real value y with some
properties, adjust computes a new RT-representation R′ of G corresponding to T in which

(x) has y-coordinate y and ∆(xg) remains unchanged, such that 〈R,R′〉 is a linear morph.
To achieve this goal, the y-coordinate of (v), for some vertex v 6= x, may also change;

however, the ratio with which (v) cuts (vg) does not change, thus satisfying Property 2
of Lemma 7. The y-coordinates of the horizontal sides are encoded by a new ADT-labeling τ
of G, and R′ is the unique RT-representation RT(T, τ,Ro) of G that is obtained by applying
Lemma 5 with input G, T , τ , and the representation Ro of the outer face of G in R.

For a vertex w ∈ V , we denote by top(w) the y-coordinate of (w); recall that, in
our construction, we have top(w) = τ(wr), if w is an inner vertex. Also, let v1, . . . , v` be
the neighbors of w such that (v1), . . . , (v`) appear in this order from (w) to (w)
along (w). For a fixed i ∈ {1, . . . , `}, we say that moving vi to y ∈ R respects the order
along (w) if (i) i = 1 and τ(w) ≤ y < τ(v2) (where equality is only allowed if (v1)
does not lie on (wb)), (ii) i = 2, . . . , ` − 1 and τ(vi−1) < y < τ(vi+1), or (iii) i = ` and
τ(vi−1) < y ≤ top(w) and y < top(v`). Further, for a vertex v, we consider the ratio λ(v)
with which (v) cuts the incident diagonal side, i.e., λ(v) = τ(v)−τ(vg)

top(vg)−τ(vg) , if either v is an
inner vertex or v ∈ {Xb, Xr}, (v) is on (Xg), and vg := Xg.
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x xg

(a) original RT-representation

x xg

(b) after applying adjust(., ., x, τ(xg)).

Figure 6 Moving ∆(x) down along (xg).

For the vertex x and the y-coordinate y that are part of the input of adjust, we assume
that moving x to y respects the order along (xg). Setting τ(x)← y may have implications
on the neighbors of x of the following type. A. For every vertex v such that x = vg, the
value of τ(v) has to be modified to ensure that the ratio λ(v) with which (v) cuts (x) is
maintained; B. for every vertex u such that x = ur, we have to set top(u) = y to maintain
the contact between ∆(u) and ∆(x). Since these modifications may change the diagonal side
of ∆(u) and ∆(v), they may trigger analogous implications for the neighbors of u and v.

Since the y-coordinate of (u) is not changed, only a type-A implication may be triggered
for the neighbors of u. Further, the two implications correspond to following either a red or a
green edge, respectively, in reverse direction with respect to the one in T . Hence, the vertices
whose triangles may need to be adjusted are those that can be reached from the vertex x by
a reversed directed path in T using only red and green edges, but no two consecutive red
edges; see Fig. 7. Note that, since the green and the red edges have opposite orientation in
T and in DAGb(T ), which is acyclic, this implies that adjust terminates.

The procedure adjust (see Fig. 6 for an illustration) first finds all the triangles that
may need to be adjusted, by performing a simple graph search from x following the above
described paths of red and green edges. In a second pass, it performs the adjustment of each
triangle ∆(w), by modifying τ(w) so that λ(w) is maintained. We ensure that the new value
of τ(w) is computed only after the triangle ∆(wg) has already been adjusted.

I Lemma 11. Let R1 be an RT-representation of a plane triangulation G = (V,E) corre-
sponding to the Schnyder wood T and let the y-coordinate of 1(v) be τ1(v), v ∈ V . Let
x ∈ V be an inner vertex and let y ∈ R be such that moving x to y respects the order along

(xg). Let τ2 be the output of adjust(τ1, T, x, y).
Then, we have that (i) τ2(x) = y, (ii) λ(v) is maintained for any vertex v 6= x, (iii) τ2

is an ADT-labeling of DAGr(T ), and (iv) the morph between R1 and R2 = RT(T, τ2, Ro) is
linear, where Ro = ∆1(Xb) ∪∆1(Xg) ∪∆1(Xr).

Outline of the Proof. Properties i and ii are clear from the construction. We establish a
cycle C ′ (see Fig. 7) that encloses all vertices for which τ might be changed. Distinguishing
the cases y < τ1(x) and y > τ1(x), Properties iii can be shown by induction on a suitable
ordering of the edges in DAGr(T ). Since all predecessors of xg in DAGb(T ) are outside or
on C ′, we have that ∆1(xg) = ∆2(xg). Now, by Lemma 7, 〈R1, R2〉 is a linear morph. J

5.2 A Flipping Algorithm
Recall that, given a Schnyder wood T and an oriented cycle C in T , the Schnyder wood TC
is obtained from T by flipping C. In the following theorem we show how to realize this flip
geometrically with two linear morphs in the case in which C is a facial cycle.
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Figure 7 Let u be the neighbor of x following xg in clockwise order. Then, the cycle C′ composed
of the blue u-Xb-path pb, the edge {u, x}, the red x-Xr-path pr, and the edge {Xr, Xb} encloses all
vertices for which τ is changed. Vertex x is the only vertex on C′ for which τ is changed.

I Theorem 12. Let R1 be a non-degenerate RT-representation of a plane triangulation
G corresponding to a Schnyder wood T . Let C be an oriented facial cycle in T . We can
construct a sequence of two linear morphs 〈R1, R2, R3〉 such that R3 is a non-degenerate
RT-representation of G corresponding to a Schnyder wood TC .

Proof. For the oriented facial cycle C, let Cr, Cg, and Cb be the vertices with outgoing red,
green, and blue edge, respectively, in C. In order to flip C, we move Cg along the respective
incident diagonal sides as sketched in the following figure.

Cg

Cb

Cr

Cg Cb

Cr
Cg

Cb

Cr

R2

clockwise counter-clockwise

More precisely, let τ1 be the y-coordinates of the horizontal sides in R1. We first compute
τ2 ← adjust(τ1, T, Cg, τ1(Cb)). If C is clockwise oriented, we then compute

τ3 ← adjust(τ2, TC , Cg, (τ2(Cg) + max{τ2(u); u = Cr or ug = Cr})/2).

If C is counter-clockwise oriented, we proceed as follows.

τ3 ← adjust(τ2, TC , Cg, (τ2(Cg) + min{τ2(u); u = (Cb)r or ug = Cb})/2).

In each case the new y-coordinates y for Cg are chosen such that moving Cg to y respects
the order along the respective incident diagonal. Thus, adjust can be applied. Also, τ2 is an
ADT-labeling of both, DAGr(T ) and DAGr(TC), and τ3 is an ADT-labeling of DAGr(TC).
Let R2 = RT(T, τ2, Ro) = RT(TC , τ2, Ro) and let R3 = RT(TC , τ3, Ro). Since τ2 and τ3 are
produced by adjust, by Lemma 11, both 〈R1, R2〉 and 〈R2, R3〉 are linear morphs. J

5.3 Morphing Representations with the same Schnyder Wood
In this section, we consider RT-representations corresponding to the same Schnyder Wood.

I Theorem 13. Let R1 and R2 be two RT-representations of an n-vertex plane triangulation
corresponding to the same Schnyder wood T . Then, there is a piecewise linear morph between
R1 and R2 of length at most 2n.
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The idea is to first transform the outer face to a canonical form, and then to move one
vertex v per step to a new y-coordinate y such that the ratio λ(v) is set to how it should be
in R2. The order in which we process the vertices is such that adjust can be applied to the
vertex v and the y-coordinate y. Recall that adjust does not alter the ratio λ, except for
the currently processed vertex v. The following lemma can be proven by induction on n.

I Lemma 14. Let P = {p1 < · · · < pn} and Q = {q1 < · · · < qn} be two sets of n reals each.
If P 6= Q then there is an i such that pi 6= qi and P has no element between pi and qi.

I Corollary 15. Let P and Q each be a set of n points on a segment s. We can move P to Q
in n steps by moving one point per step and by maintaining the ordering of the points on s.

Proof of Theorem 13. Let τ ′ be a topological ordering of the inner vertices of DAGr(T ).
We extend τ ′ to an ADT-labeling of DAGr(T ) by setting τ ′(Xb) = 0 = τ ′(Xg), and
τ ′(Xr) = n − 2. With a sequence of at most n linear morphs we transform Ri, i = 1, 2,
into an RT-representation R′ = RT(T, τ ′, Ro), where Ro has the following canonical form:

(Xb) = (Xg) = (0, 0), (Xb) = (Xr) = (0, n−2), (Xg) = (Xr) = (n−2, n−2),
and the lengths of (Xr) and (Xb) are one. In the first morph, we cut the extruding parts
of the outer triangles. In the second morph, we independently scale the x- and y-coordinates
of the corners and translate the drawing, to fit the corners as indicated. In a third step, we
adjust the lengths of (Xr) and (Xb). In the first morph the slope of no side is changed,
in the second morph no ratio is changed, and in the third morph there are only four sides
that are changed, which are not incident to any other triangle. Thus, the three morphs are
linear. Let the resulting RT-representation be R′i.

We now process the vertices in a reversed topological ordering on DAGb(T ). We process
a vertex w as follows. Let τ be the current y-coordinates of the horizontal sides. Let
G(w) = {v ∈ V ;w = vg} and let P = {τ(v); v ∈ G(w)}. For v ∈ G(w) let y(v) be such that

y(v)− τ(w)
τ(wr)− τ(w) = τ ′(v)− τ ′(w)

τ ′(wr)− τ ′(w) ,

i.e., placing (v), v ∈ G(w) on the y-coordinate y(v) cuts (w) in the the same ratio as in
R′. Let Q = {y(v); v ∈ G(w)}. By the above corollary, we can order G(w) = {v1, . . . , vk}
such that replacing in the ith step τ(vi) by y(vi) maintains the ordering of {τ(v); v ∈ G(w)}.
Since τ ′ is a topological ordering, we will not move (vi) to an end vertex of (w). For
i = 1, . . . , k we now call τ ← adjust(τ, T, vi, y(vi)). This yields one linear morphing step.

After processing all vertices w in a reversed topological ordering of DAGb(T ) and all
vertices in G(w) in the order given above, we have obtained an RT-representation R in which
any right corner cuts its incident diagonal in the same ratio as in R′. Since the outer face is
fixed, this implies that R = R′. Observe that G(w), w ∈ V , is a partition of the set of inner
vertices. Hence, we get at most one morphing step for each of the n− 3 inner vertices. J

Combining the results of Sections 5.1 to 5.3 yields the main result of the section.

Proof of Theorem 10. First, we transform R1 into a non-degenerate RT-representation R
with Schnyder wood T1 and a canonical representation of the outer face in O(n) linear
morphing steps, by Theorem 13. Then, we perform the ` facial flips as described in the proof
of Theorem 12, using two linear morphs for each flip. This yields an RT-representation R′
with Schnyder wood T2. Finally, we transform R′ into R2 in O(n) linear morphing steps,
by Theorem 13. This yields a total of O(n+ `) linear morphs. Each linear morph can be
computed by one application of adjust, which runs in linear time. J
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6 A Decision Algorithm

It follows from Theorem 9 and Theorem 10 that there is a piecewise linear morph between
two RT-representations of a plane triangulation if and only if the respective Schnyder woods
can be obtained from each other by flipping faces only. Note that this condition is always
satisfied if the triangulation is 4-connected and the topmost vertex is the same in both
RT-representations. On the other hand, if the graph contains separating triangles, we have
to decide whether there is such a sequence of facial flips. We will show that this can be
decided efficiently and that, in the positive case, there exists one sequence whose length is at
most quadratic in the number of vertices. This establishes our final result.

I Theorem 16. Let R1 and R2 be two RT-representations of an n-vertex plane triangulation.
We can decide in O(n2) time whether there is a piecewise linear morph between R1 and R2
and, if so, a morph with O(n2) linear morphing steps can be computed in O(n3) time.

Since there is a one-to-one correspondence between Schnyder woods of a plane triangulation
and its 3-orientations, we will omit the colors in the following. A careful reading of Brehm [15]
and Felsner [25] reveals the subsequent properties of 3-orientations. The set of 3-orientations
of a triangulation forms a distributive lattice with respect to the following ordering. T1 ≤ T2
if and only if T1 can be obtained from T2 by a sequence of flips on some counter-clockwise
triangles. The minimum element is the unique 3-orientation without counter-clockwise cycles.
Moreover, given a 3-orientation T and a triangle t, the number of occurrences of t in any
flip-sequence between T and the minimum 3-orientation is the same – provided that the flip
sequence contains only counter-clockwise triangles. Let this number be the potential πT (t).

Observe that πT is distinct for distinct T . Moreover, min(πT1(t), πT2(t)), t triangle, is
the potential of the meet T1 ∧ T2 (i.e., the infimum) of two 3-orientations T1 and T2, while
max(πT1(t), πT2(t)), t triangle, is the potential of the join T1 ∨ T2 (i.e., the supremum) of
T1 and T2. The potential πT can be computed in quadratic time for a fixed 3-orientation
T of an n-vertex triangulation: At most O(n2) flips have to be performed in order to
reach the minimum 3-orientation. With a linear-time preprocessing, we can store all initial
counter-clockwise triangles in a list. After each flip, the list can be updated in constant time.

I Lemma 17. Let T1 and T2 be two 3-orientations of an n-vertex triangulation. T1 can
be obtained from T2 by a sequence of facial flips if and only if πT1(t) − πT2(t) = 0 for all
separating triangles t. Moreover, if T1 can be obtained from T2 by a sequence of facial flips,
then it can be obtained by O(n2) facial flips.

Proof. Observe that going from T1 to the meet T1 ∧ T2 involves

πT1(t)−min(πT1(t), πT2(t)) ∈ {0, πT1(t)− πT2(t)}

counter-clockwise flips on triangle t, and going from the meet T1 ∧ T2 to T2 involves

πT2(t)−min(πT1(t), πT2(t)) ∈ {0, πT2(t)− πT1(t)}

clockwise flips on triangle t. Thus, if πT1(t)−πT2(t) = 0 for all separating triangles t, then no
flip must be performed on a separating triangle. Then, the total number of flips is bounded
by

∑
t face(πT1(t) + πT2(t)) ∈ O(n2).

Assume now that there is a sequence T1 = T ′0, T
′
1, . . . , T

′
` , T
′
`+1 = T2 of 3-orientations such

that T ′i+1, i = 0, . . . , `, is obtained from T ′i by a (clockwise or counter-clockwise) facial flip.
We show by induction on ` that πT1(t)− πT2(t) = 0 for all separating triangles t. If ` = 0, let
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t0 be the triangle that has to be flipped in order to go from T1 to T2. Then, t0 is a face and
πT1(t)− πT2(t) = 0 for t 6= t0. Assume now that ` ≥ 1. Let t be a separating triangle. Then

πT1(t)− πT2(t) = πT1(t)− πT ′
`
(t)︸ ︷︷ ︸

=0 by IH

+πT ′
`
(t)− πT2(t)︸ ︷︷ ︸
=0 by IH

= 0. J

7 Conclusions and Open Problems

We have studied piecewise linear morphs between RT-representations of plane triangulations,
and shown that when such a morph exists, there is one of length O(n2). It would be
interesting to explore lower bounds on this length. Observe that the minimum length of a
flip-sequence containing only facial cycles does not immediately imply such bound, since some
flips could be parallelized. Additionally, bounds on the resolution throughout our morphs
would be worth investigating; however, it is unclear whether the “ratio fixing” we use would
allow nice bounds. For this, it may help to return to integer y-coordinates between any
two flips; however, this would result in a cubic number of linear morphing steps. A major
open direction is whether our results can be lifted to general plane graphs, e.g., through the
use of compatible triangulations. Note that such a compatible triangulation would need to
be formed while preserving the conditions for the existence of a linear morph, i.e., without
introducing the need to flip a separating triangle.

Finally, beyond the context of RT-representations, many other families of geometric
objects could be considered. For example, morphing degenerate contact representations of
line segments generalizes planar morphing, by treating contact points as vertices.
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