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Abstract
We show how to construct (1 + ε)-spanner over a set P of n points in Rd that is resilient to a
catastrophic failure of nodes. Specifically, for prescribed parameters ϑ, ε ∈ (0, 1), the computed
spanner G has O

(
ε−7d log7 ε−1 · ϑ−6n log n(log log n)6) edges. Furthermore, for any k, and any

deleted set B ⊆ P of k points, the residual graph G \ B is (1 + ε)-spanner for all the points
of P except for (1 + ϑ)k of them. No previous constructions, beyond the trivial clique with
O(n2) edges, were known such that only a tiny additional fraction (i.e., ϑ) lose their distance
preserving connectivity.

Our construction works by first solving the exact problem in one dimension, and then showing a
surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional
construction in a black box fashion.
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1 Introduction

Spanners. A Euclidean graph is a graph whose vertices are points in Rd and the edges are
weighted by the Euclidean distance between their endpoints. Let G = (P,E) be a Euclidean
graph and p, q ∈ P be two vertices of G. For a parameter t ≥ 1, a path between p and q in
G is a t-path if the length of the path is at most t ‖p− q‖, where ‖p− q‖ is the Euclidean
distance between p and q. The graph G is a t-spanner of P if there is a t-path between
any pair of points p, q ∈ P . Throughout the paper, n denotes the cardinality of the point set
P , unless stated otherwise. We denote the length of the shortest path between p, q ∈ P in
the graph G by d(p, q).

Spanners have been studied extensively. The main goal in spanner constructions is to
have small size, that is, to use as few edges as possible. Other desirable properties are low
degrees [2, 10, 18], low weight [6, 12], low diameter [3, 4] or to be resistant against failures.
The book by Narasimhan and Smid [17] gives a comprehensive overview of spanners.
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Robustness. In this paper, our goal is to construct spanners that are robust according to
the notion introduced by Bose et al. [7]. Intuitively, a spanner is robust if the deletion of k
vertices only harms a few other vertices. Formally, a graph G is an f(k)-robust t-spanner,
for some positive monotone function f , if for any set B of k vertices deleted in the graph,
the remaining graph G \B is still a t-spanner for at least n− f(k) of the vertices. Note, that
the graph G \B has n− k vertices – namely, there are at most L(k) = f(k)− k additional
vertices that no longer have good connectivity to the remaining graph. The quantity L(k) is
the loss. We are interested in minimizing the loss.

The natural question is how many edges are needed to achieve a certain robustness (since
the clique has the desired property). That is, for a given parameter t and function f , what
is the minimal size that is needed to obtain an f(k)-robust t-spanner on any set of n points.

A priori it is not clear that such a sparse graph should exist (for t a constant) for a
point set in Rd, since the robustness property looks quite strong. Surprisingly, Bose et al. [7]
showed that one can construct a O(k2)-robust O(1)-spanner with O(n logn) edges. Bose
et al. [7] proved various other bounds in the same vein on the size for one-dimensional and
higher-dimensional point sets. Their most closely related result is that for the one-dimensional
point set P = {1, 2, . . . , n} and for any t ≥ 1 at least Ω(n logn) edges are needed to construct
an O(k)-robust t-spanner.

An open problem left by Bose et al. [7] is the construction of O(k)-robust spanners –
they only provide the easy upper bound of O(n2) for this case.

ϑ-reliable spanners. We are interested in building spanners where the loss is only fractional.
Specifically, given a parameter ϑ, we consider the function f(k) = (1 + ϑ)k. The loss in this
case is L(k) = f(k)− k = ϑk. A (1 + ϑ)k-robust t-spanner is ϑ-reliable t-spanner .

Exact reliable spanners. If the input point set is in one dimension, then one can easily
construct a 1-spanner for the points, which means that the exact distances between points
on the line are preserved by the spanner. This of course can be done easily by connecting
the points from left to right. It becomes significantly more challenging to construct such an
exact spanner that is reliable.

Fault tolerant spanners. Robustness is not the only definition that captures the resistance
of a spanner network against vertex failures. A closely related notion is fault tolerance
[13, 14, 15]. A graph G = (P,E) is an r-fault tolerant t-spanner if for any set B of failed
vertices with |B| ≤ r, the graph G \ B is still a t-spanner. The disadvantage of r-fault
tolerance is that each vertex must have degree at least r + 1, otherwise the vertex can be
isolated by deleting its neighbors. Therefore, the graph has size at least Ω(rn). There are
constructions that show O(rn) edges are enough to build r-fault tolerant spanners. However,
depending on the chosen value r the size can be too large.

In particular, fault tolerant spanners cannot have a near-linear number of edges, and
still withstand a widespread failure of nodes. Specifically, if a fault tolerant spanner has m
edges, then it can withstand a failure of at most 2m/n vertices. In sharp contrast, ϑ-reliable
spanners can withstand a widespread failure. Indeed, a ϑ-reliable spanner can withstand a
failure of close to n/(1 + ϑ) of its vertices, and still have some vertices that are connected by
short paths in the remaining graph.
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1.1 Our results
In this paper, we investigate how to construct reliable spanners with very small loss – that is
ϑ-reliable spanners. To the best of our knowledge nothing was known on this case before
this work. For omitted proofs we refer the reader to the full version of the paper [8].

(a) Expanders are reliable. Intuitively, a constant degree expander is a robust/reliable
graph under a weaker notion of robustness – that is, connectivity. As such, for a
parameter ϑ > 0, we show that constant degree expanders are indeed ϑ-reliable in the
sense that all except a small fraction of the points stay connected. Formally, one can
build a graph G with O(ϑ−3n) edges, such that for any failure set B of k vertices, the
graph G \ B has a connected component of size at least n − (1 + ϑ)k. We emphasize,
however, that distances are not being preserved in this case. See Lemma 6 for the result.

(b) Exact O(1)-reliable spanner in one dimension. Inspired by the reliability of
constant degree expanders, we show how to construct an O(1)-reliable exact spanner on
any one-dimensional set of n points with O(n logn) edges.1 The idea of the construction
is to build a binary tree over the points, and to build bipartite expanders between
certain subsets of nodes in the same layer. One can think of this construction as building
different layers of expanders for different resolutions. The construction is described in
Section 3.2. See Theorem 12 for the result.

(c) Exact ϑ-reliable spanner in one dimension. One can get added redundancy by
systematically shifting the layers. Done carefully, this results in a ϑ-reliable exact spanner.
The construction is described in Section 3.3. See Theorem 13 for the result.

(d) ϑ-reliable (1 + ε)-spanners in higher dimensions. We next show a surprisingly
simple and elegant construction of ϑ-reliable spanners in two and higher dimensions,
using a recent result of Chan et al. [11], which show that one needs to maintain only a
“few” linear orders. This immediately reduces the d dimensional problem to maintaining
a reliable spanner for each of this orderings, which is the problem we already solved. See
Section 4 for details.

(e) ϑ-reliable (1 + ε))-spanner in Rd with bounded spread. Since both general
constructions in Rd have some additional polylog factors that seems unnecessary, we
present a better construction for the bounded spread case. Specifically, for points
with spread Φ in Rd, and for any ε > 0, we construct a ϑ-reliable (1 + ε)-spanner
with O

(
ε−dϑ−2n log Φ

)
edges. The basic idea is to construct a well-separated pair

decomposition (WSPD) directly on the quadtree of the point set, and convert every pair
in the WSPD into a reliable graph using a bipartite expander. The union of these graphs
is the required reliable spanner. See Section 5 and Lemma 21 for details.

Shadow. Underlying our construction is the notion of identifying the points that loose
connectivity when the failure set is removed. Intuitively, a point is in the shadow if it is
surrounded by failed points. We believe that this concept is of independent interest – see
Section 3.1 for details and relevant results in one dimension and the full version [8] for an
additional result in higher dimensions.

Independently, Bose et al. [5] also obtained an upper bound on the size of reliable spanners
in Rd. Their construction has O(n log2 n log logn) edges, which is close to our bound of
O(n logn(log logn)6) edges.

1 This also improves an earlier preliminary construction by (some of) the authors arXiv:1803.08719.
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2 Preliminaries

2.1 Problem definition and notations
Let [n] denote the set {1, 2, . . . , n} and let [i : j] = {i, i+ 1, . . . , j}.

I Definition 1 (Robust spanner). Let G = (P,E) be a t-spanner for some t ≥ 1 and let
f : N → R+, and two point sets P1, P2 ⊆ P . The graph G is an f(k)-robust t-spanner
for P1 ⊕ P2 if for any set of (failed) vertices B ⊆ P there exists a set B+ ⊇ B with
|B+| ≤ f

(
|B|
)
such that the subgraph

G \B = GP\B =
(
P \B,

{
uv ∈ E(G)

∣∣ u, v ∈ P \B})
induced by P \B is a t-spanner for (P1 \B+)⊕ (P2 \B+). That is, G\B has a t-path between
all pairs of points p ∈ P1 \B+ and q ∈ P2 \B+. If P1 = P2 = P , then G is a f(k)-robust
t-spanner.

The vertices of B+ \B are the vertices harmed by B, and the quantity L(k) = f(k)−k ≥
|B+| − |B| is the loss.

I Definition 2. For a parameter ϑ > 0, a graph G that is (1 + ϑ)k-robust t-spanner is a
ϑ-reliable t-spanner.

I Definition 3. For a number x > 0, let pow2(x) = 2dlog xe be the smallest number that is a
power of 2 and is at least as large as x.

2.2 Expander construction
For a set X of vertices in a graph G = (V,E), let Γ(X) =

{
v ∈ V

∣∣ uv ∈ E for a u ∈ X
}
be

the neighbors of X in G. The following lemma, which is a standard expander construc-
tion (see e.g. [16, Section 5.3]), provides the main building block of our one-dimensional
construction.

I Lemma 4. Let L,R be two disjoint sets, with a total of n elements, and let ξ ∈ (0, 1) be a
parameter. One can build a bipartite graph G = (L ∪R,E) with O(n/ξ2) edges, such that

(i) for any subset X ⊆ L, with |X| ≥ ξ|L|, we have that |Γ(X)| > (1− ξ)|R|, and

(ii) for any subset Y ⊆ R, with |Y | ≥ ξ|R|, we have that |Γ(Y )| > (1− ξ)|L|.

2.3 Expanders are reliable
Let P be a set with n elements, and let ϑ ∈ (0, 1) be a parameter. We next build a constant
degree expander graph on P and show that it is ϑ-reliable. The following two lemmas are
not surprising if one is familiar with expanders and their properties.

I Lemma 5. Let n be a positive integer number, let α > 1 be an integer constant, and let
β ∈ (0, 1) be some constant. One can build a graph G = ([n], E), such that for all sets
X ⊂ V , we have that |Γ(X)| ≥ min

(
(1− β)n, α |X|

)
. The graph G has O((α/β)n) edges.

I Lemma 6. Let n and ϑ ∈ (0, 1/2) be parameters. One can build a graph G = ([n], E) with
O(ϑ−3n) edges, such that for any set B ⊆ [n], we have that G\B has a connected component
of size at least n− (1 + ϑ) |B|. That is, the graph G is ϑ-reliable.
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3 Building reliable spanners in one dimension

3.1 Bounding the size of the shadow
Our purpose is to build a reliable 1-spanner in one dimension. Intuitively, a point in [n] is in
trouble, if many of its close by neighbors belong to the failure set B. Such an element is in
the shadow of B, defined formally next.

I Definition 7. Consider an arbitrary set B ⊆ [n] and a parameter α ∈ (0, 1). A number
i is in the left α-shadow of B, if and only if there exists an integer j ≥ i, such that∣∣[i : j] ∩B

∣∣ ≥ α
∣∣[i : j]

∣∣ . Similarly, i is in the right α-shadow of B, if and only if there
exists an integer i, such that h ≤ i and |[h : i] ∩B| ≥ α |[h : i]| . The left and right α-shadow
of B is denoted by S→(B) and S←(B), respectively. The combined shadow is denoted by
S(α,B) = S→(B) ∪ S←(B).

I Lemma 8. Fix a set B ⊆ [n] and let α ∈ (0, 1) be a parameter. Then, we have that
|S→(B)| ≤ (1 + d1/αe) |B|. In particular, the size of S(α,B) is at most 2(1 + d1/αe) |B|.

Lemma 8 is somewhat restrictive because the shadow is at least twice larger than the
failure set B. Intuitively, as α→ 1, the shadow should converge to B. The following lemma,
which is a variant of Lemma 8 quantify this.

I Lemma 9. Fix a set B ⊆ [n], let α ∈ (2/3, 1) be a parameter, and let S(α,B) be the set
of elements in the α-shadow of B. We have that |S(α,B)| ≤ |B| /(2α− 1).

Proof. Let c = 1− 1/α < 0. For i = 1, . . . , n, let xi = c if i ∈ B, and xi = 1 otherwise. For
any interval I of length ∆, with τ∆ elements in B, such that x(I) =

∑
i∈I xi ≤ 0, we have

that

x(I) ≤ 0 ⇐⇒ (1− τ)∆ + cτ∆ ≤ 0 ⇐⇒ 1− τ ≤ −τc ⇐⇒ 1/τ ≤ 1− c
⇐⇒ 1/τ ≤ 1− (1− 1/α) ⇐⇒ 1/τ ≤ 1/α ⇐⇒ τ ≥ α.

An element j ∈ [n] is in the left α-shadow of B if and only if there exists an integer j′,
such that |[j : j′] ∩B| ≥ α |[j : j′]| and, by the above, x

(
[j : j′]

)
≤ 0. Namely, an integer j in

the left α-shadow of B corresponds to some prefix sum of the xis that starts at j and add
up to some non-positive sum. From this point on, we work with the sequence of numbers
x1, . . . , xn, using the above summation criterion to detect the elements in the left α-shadow.

For a location j ∈ [n] that is in the left α-shadow, let Wj = [j : j′] be the witness
interval for j – this is the shortest interval that has a non-positive sum that starts at j.
Let I = Wk = [k : k′] be the shortest witness interval, for any number in S(α,B) \B. For
any j ∈ [k + 1 : k′], we have x

(
[k : j − 1]

)
+ x([j : k′]) = x([k : k′]) ≤ 0. Thus, if xj = 1, this

implies that either j or k have shorter witness intervals than I, which is a contradiction to
the choice of k. We conclude that xj < 0 for all j ∈ [k + 1 : k′], that is, [k + 1 : k′] ⊆ B.

Letting ` = |I| = k′ − k + 1, we have that (` − 1)/` ≥ α ⇐⇒ ` − 1 ≥ α` ⇐⇒
` ≥ 1/(1− α) ⇐⇒ ` ≥ d1/(1− α)e ≥ 3, as α ≥ 2/3. In particular, by the minimality of I,
it follows that ` = d1/(1− α)e.

Let J = [k : k′ − 1] ⊂ I. We have that x(J) > 0. For any j ∈ S(α,B) \ B, such that
j 6= k, consider the witness interval Wj . If j > k, then j > k′, as all the elements of
I, except k, are in B. If j < k and j′ ∈ J , then τ = x([k : j′]) > 0, which implies that
x
(
[j : k − 1]

)
= x

(
Wj

)
− τ < 0, but this is a contradiction to the definition of Wj . Namely,

all the witness intervals either avoids J , or contain it in their interior. Given a witness
interval Wj , such that J ⊂ Wj , we have x(Wj \ J) = x(Wj) − x(J) < x(Wj) ≤ 0, since
x(J) > 0.

SoCG 2019
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1 ni j

v

Figure 1 The binary tree built over [n]. The block of node v is the interval [i : j].

So consider the new sequence of numbers x[n]\J = x1, . . . , xk−1, xk′ , . . . xn resulting from
removing the elements that corresponds to J from the sequence. Reclassify which elements
are in the left shadow in the new sequence. By the above, any element that was in the
shadow before, is going to be in the new shadow. As such, one can charge the element k,
that is in the left shadow (but not in B), to all the other elements of J (that are all in B).
Applying this charging scheme inductively, charges all the elements in the left shadow (that
are not in B) to elements in B. We conclude that the number of elements in the left shadow
of B, that are not in B is bounded by

|B|
|J | − 1 = |B|

`− 2 = |B|
d1/(1− α)e − 2 ≤

1− α
1− 2(1− α) |B| =

1− α
2α− 1 |B| .

The above argument can be applied symmetrically to the right shadow. We conclude that

|S(α,B)| ≤ |B|+ 2 1− α
2α− 1 |B| =

2α− 1 + 2− 2α
2α− 1 |B| = |B|

2α− 1 . J

3.2 Construction of O(1)-reliable exact spanners in one dimension
3.2.1 Constructing the graph H
Assume n is a power of two, and consider building the natural full binary tree T with the
numbers of [n] as the leaves. Every node v of T corresponds to an interval of numbers of the
form [i : j] its canonical interval, which we refer to as the block of v, see Figure 1. Let I be
the resulting set of all blocks. In each level one can sort the blocks of the tree from left to
right. Two adjacent blocks of the same level are neighbors. For a block I ∈ I, let next(I)
and prev(I) be the blocks (in the same level) directly to the right and left of I, respectively.

We build the graph of Lemma 4 with ξ = 1/16 for any two neighboring blocks in I.
Let H be the resulting graph when taking the union over all the sets of edges generated
by the above.

3.2.2 Analysis
In the following we show that the resulting graph H is an O(k)-robust 1-spanner and has
O(n logn) edges. We start by verifying the size of the graph.

I Lemma 10. The graph H has O(n logn) edges.

Proof. Let h = logn be the depth of the tree T . In each level i = 1, 2, . . . , h of T there
are 2h−i nodes and the blocks of these nodes have size 2i. The number of pairs of adjacent
blocks in level i is 2h−i − 1 and each pair contributes O(2i) edges. Therefore, each level
of T contributes O(n) edges. We get O(n logn) for the overall size by summing up for
all levels. J
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i j

(a) The canonical path in the tree.

1 ni j

(b) The canonical path on the blocks.

Figure 2 The canonical path between the vertices i and j in two different representations. The
blue nodes and blocks correspond to the ascent part and the red nodes and blocks correspond to the
descent part of the walk.

There is a natural path between two leaves in the tree T , described above, going through
their lowest common ancestor. However, for our purposes we need something somewhat
different – intuitively because we only want to move forward in the 1-path.

Given two numbers i and j, where i < j, consider the two blocks I, J ∈ I that correspond
to the two numbers at the bottom level. Set I0 = I, and J0 = J . We now describe a canonical
walk from I to J , where initially ` = 0. During the walk we have two active blocks I` and J`,
that are both in the same level. For any block I ∈ I we denote its parent by p(I). At every
iteration we bring the two active blocks closer to each other by moving up in the tree.

Specifically, repeatedly do the following:
(a) If I` and J` are neighbors then the walk is done.
(b) If I` is the right child of p(I`), then set I`+1 = next(I`) and J`+1 = J`, and continue to

the next iteration.
(c) If J` is the left child of p(J`), then set I`+1 = I` and J`+1 = prev(J`), and continue to

the next iteration.
(d) Otherwise – the algorithm ascends. It sets I`+1 = p(I`), and I`+1 = p(J`), and it

continues to the next iteration.
It is easy to verify that this walk is well defined, and let

π(i, j) ≡ I0 → I1 → · · · → I`︸ ︷︷ ︸
ascent

→ J` → · · · → J0︸ ︷︷ ︸
descent

be the resulting walk on the blocks where we removed repeated blocks. Figure 2 illustrates
the path of blocks between two vertices i and j.

In the following, consider a fixed set B ⊆ [n] of faulty nodes. A block I ∈ I is α-
contaminated, for some α ∈ (0, 1), if |I ∩B| ≥ α |I|.

I Lemma 11. Consider two nodes i, j ∈ [n], with i < j, and let π(i, j) be the canonical
path between i and j. If any block of π = π(i, j) is α-contaminated, then i or j are in the
α/3-shadow of B.

SoCG 2019
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Proof. Assume the contamination happens in the left half of the path, i.e., at some block It,
during the ascent from i to the connecting block to the descent path into j. By construction,
there could be only one block before It on the path of the same level, and all previous blocks
are smaller, and there are at most two blocks at each level. Furthermore, for two consecutive
Ij , Ij+1 that are blocks of different levels, Ij ⊆ Ij+1. Thus we have that either i ∈ It, or
i ∈ prev(It), or i ∈ prev(prev(It)), since there are at most |It|+ |It| /2+ · · ·+2+1 = 2 |It|−1
vertices that are contained in the path before the block It. Notice that if i ∈ It, then it is
the leftmost point of It.

In particular, let r be the maximum number in It, and observe |[i : r] ∩B| ≥ α |It| ≥
(α/3) |[i : r]|. Thus, the number i is the α/3-shadow, as claimed.

The other case, when the contamination happens in the right part during the descent, is
handled symmetrically. J

I Theorem 12. The graph H constructed above on the set [n] is an O(1)-reliable exact
spanner and has O(n logn) edges.
Proof. The size is proved in Lemma 10. Let α = 1/32. Let B+ be the set of vertices
that are in the α/3-shadow of B, that is, B+ = S(α/3, B). By Lemma 8 we have that
|B+| ≤ 2(1 + d3/αe) |B| ≤ 200 |B| .

Consider any two vertices i, j ∈ [n] \B+. Let π(i, j) be the canonical path between i and
j. None of the blocks in this path are α-contaminated, by Lemma 11.

Let S be the set of all vertices that have a 1-path from i to them. Consider the ascent
part of the path π(i, j) : I0 → I1 → · · · → I`. The claim is that for every block It in this
path, we have that at least 3

4 of the vertices have 1-paths from i (i.e., |It ∩ S| ≥ 3
4 |It|).

This claim is proven by induction. The claim trivially holds for I0. Now, consider two
consecutive blocks It → It+1. There are two cases:
(i) It+1 = next(It). Then, the graph H includes the expander graph on It, It+1 described

in Lemma 4. At least 3
4 |It| vertices of It are in S. As such, at least 15

16 |It+1| vertices of
It+1 are reachable from the vertices of It. Since It+1 is not α-contaminated, at most an
α-fraction of vertices of It+1 are in B, and it follows that |It+1 ∩ S| ≥ ( 15

16 −α) |It+1| ≥
3
4 |It+1| , as claimed.

(ii) It+1 is the parent of It. In this case, It is the left child of It+1. Let I ′t be the right child
of It+1. Since It+1 is not α-contaminated, we have that |It+1 ∩B| ≤ α |It+1|. As such,

|I ′t ∩B| ≤ |It+1 ∩B| ≤ 2α |I ′t|

Now, by the expander construction on (It, I ′t), and arguing as above, we have

|I ′t ∩ S| ≥
(

15
16 − 2α

)
|I ′t| ≥

3
4 |I
′
t| ,

which implies that |It+1 ∩ S| ≥ 3
4 |It+1|.

The symmetric claim for the descent part of the path is handled in a similar fashion,
therefore, at least 3

4 of the points in J` can reach j with a 1-path. Using these and the
expander construction between I` and J`, we conclude that there is a 1-path from i to j in
H \B, as claimed. J

Note that it is easy to generalize the construction for arbitrary n. Let h be an integer
such that 2h−1 < n < 2h and build the graph H on {1, 2, 3, . . . , 2h}. Since H is a 1-spanner,
the 1-paths between any pair of vertices of [n] does not use any vertices from {n+ 1, . . . , 2h}.
Therefore, we can simply delete the part of H that is beyond n to obtain an O(1)-reliable
1-spanner on [n]. Since we defined B+ to be the shadow of B, the O(1)-reliability is
inherited automatically.

We also note that no effort was made to optimize the constants in the above construction.
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1 n2

1
2
3
4

j =

0 1 2 87

k =

I(3, 2, 4)

Figure 3 The shifted intervals I(i, ·, ·) for i = 3 with N = 4 and n = 64. Each interval has length
2i = 8, there are N = 4 different shifts and there are n

2i + 1 = 9 blocks per each shift.

3.3 Construction of ϑ-reliable exact spanners in one dimension
Here, we show how to extend Theorem 12, to build a one dimensional graph, such that for
any fixed ϑ > 0 and any set B of k deleted vertices, at most (1 + ϑ)k vertices are no longer
connected (by a 1-path) after the removal of B. The basic idea is to retrace the construction
of Theorem 12, and extend it to this more challenging case. The main new ingredient is a
shifting scheme.

Let [n] be the ground set, and assume that n is a power of two, and let h = logn. Let

N = pow2
(
c/ϑ2) and ξ = 1

32N , (1)

where c is a sufficiently large constant (c ≥ 512). We first connect any i ∈ [n], to all the
vertices that are in distance at most 3N from it, by adding an edge between the two vertices.
Let G0 be the resulting graph.

Let i0 = logN . For i = i0, . . . , h− 1, and j = 1, . . . , N , let

∆(i, j) = 1 + (j − 1)2i/N − 2i

be the shift corresponding to i and j. For a fixed i, the ∆(i, j)s are N equally spaced numbers
in the block

[
1− 2i : 1− 2i/N

]
, starting at its left endpoint. For k = 0, . . . , n/2i, let

I(i, j, k) =
[
∆(i, j) + k2i : ∆(i, j) + (k + 1)2i

]
be the shifted interval of length 2i that starts at ∆(i, j) and is shifted k blocks to the right,
see Figure 3. The set of all intervals of interest is

I =

I(i, j, k)

∣∣∣∣∣∣
i = i0, . . . , logn
j = 1, . . . , N
k = 0, . . . , n/2i

 .

Constructing the graph Hϑ. Let GE(i, j, k) denote the expander graph of Lemma 4,
constructed over I(i, j, k) and I(i, j, k + 1), with the value of the parameter ξ as specified in
Eq. (1). We define Hϑ to be the union of all the graphs GE over all choices of i, j, k, and
also including the graph G0 (described above). In the case that n is not a power of two, do
the construction on [pow2(n)]. In any case, the last step is to delete vertices from Hϑ that
are outside the range of interest [n].

I Theorem 13. For parameters n and ϑ > 0, the graph Hϑ constructed over [n], is a
ϑ-reliable exact spanner. Furthermore, Hϑ has O(ϑ−6n logn) edges.

SoCG 2019
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4 Building a reliable spanner in Rd

In the following, we assume that P ⊆ [0, 1)d – this can be done by an appropriate scaling
and translation of space. We use a novel result of Chan et al. [11], called locality-sensitive
orderings. These orderings can be thought as an alternative to quadtrees and related
structures. For an ordering σ of [0, 1)d, and two points p, q ∈ [0, 1)d, such that p ≺ q, let
(p, q)σ =

{
z ∈ [0, 1)d

∣∣ p ≺ z ≺ q} be the set of points between p and q in the order σ.

I Theorem 14 ([11]). For ς ∈ (0, 1) fixed, there is a set Π+(ς) of M(ς) = O(ς−d log ς−1)
orderings of [0, 1)d, such that for any two (distinct) points p, q ∈ [0, 1)d, with ` = ‖p− q‖,
there is an ordering σ ∈ Π+, and a point z ∈ [0, 1)d, such that
(i) p ≺σ q,
(ii) (p, z)σ ⊆ ball

(
p, ς`

)
,

(iii) (z, q)σ ⊆ ball
(
q, ς`

)
, and

(iv) z ∈ ball
(
p, ς`

)
or z ∈ ball

(
q, ς`

)
.

Furthermore, given such an ordering σ, and two points p, q, one can compute their ordering,
according to σ, using O(d log ς−1) arithmetic and bitwise-logical operations.

4.1 Construction
Given a set P of n points in [0, 1)d, and parameters ε, ϑ ∈ (0, 1), let ς = ε/c,

M = M(ς) = O(ς−d log ς−1) = O
(
ε−d log ε−1),

and c be some sufficiently large constant. Next, let ϑ′ = ϑ/(3N ·M) where N = dlog logne+1,
and let Π+ = Π+(ς) be the set of orderings of Theorem 14. For each ordering σ ∈ Π+,
compute the ϑ′-reliable exact spanner Gσ of P , see Theorem 13, according to σ. Let G be
the resulting graph by taking the union of Gσ for all σ ∈ Π+.

4.2 Analysis
I Theorem 15. The graph G, constructed above, is a ϑ-reliable (1 + ε)-spanner and has size

O
(
ε−7d log7 1

ε
· ϑ−6n logn(log logn)6

)
.

Proof. First, we show the bound on the size. There are M different orderings for which we
build the graph of Theorem 13. Each of these graphs has O

(
(ϑ′)−6n logn

)
edges. Therefore,

the size of G is

M ·O
(
(ϑ′)−6n logn

)
= O

(
M

(
3NM
ϑ

)6
n logn

)
= O

(
ε−7d log7 1

ε
· ϑ−6n logn(log logn)6

)
.

Next, we identify the set of harmed vertices B+ given a set of failed vertices B ⊆ P . First, let
B1 be the union of all the (1−ϑ′/4)-shadows resulting from B in Gσ, for all σ ∈ Π+. Then, for
i = 2, . . . , N , we define Bi in a recursive manner to be the union of all the (1−ϑ′/4)-shadows
resulting from Bi−1 in Gσ, for all σ ∈ Π+. We set B+ = BN .

By the recursion and Lemma 9 we have that

|Bi| ≤

(
|Bi−1|

2(1− ϑ′

4 )− 1
− |Bi−1|

)
M + |Bi−1| =

|Bi−1| − (1− ϑ′

2 ) |Bi−1|
1− ϑ′

2
M + |Bi−1|

= ϑ′ |Bi−1|
2− ϑ′ M + |Bi−1| ≤ (1 + ϑ′M) |Bi−1| =

(
1 + ϑ

3N

)
|Bi−1| .
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Therefore, we obtain

∣∣B+∣∣ = |BN | ≤
(

1 + ϑ

3N

)N
|B| ≤ exp

(
N

ϑ

3N

)
|B| ≤ (1 + ϑ) |B| ,

using 1 + x ≤ ex ≤ 1 + 3x, for x ∈ [0, 1].
Now we show that there is a (1 + ε)-path π̂ between any pair of vertices p, q ∈ P \B+ ≡

P \ BN such that the path π̂ does not use any vertices of B. By Theorem 13, the graph
Gσ \BN−1 ⊆ G\BN−1 contains a monotone path connecting p to q, according to σ. Observe
that there is a unique edge (p′, q′) on this path that “jumps” from the locality of p to the
locality of q. Formally, we have the following:
(a) ‖p′ − q′‖ ≤ ‖p− q‖+ 2ς ‖p− q‖ = (1 + 2ε/c) ‖p− q‖ .
(b) ‖p− p′‖ ≤ 2ς ‖p− q‖ = 2(ε/c) ‖p− q‖ and similarly ‖q − q′‖ ≤ 2(ε/c) ‖p− q‖.
(c) p′, q′ ∈ P \BN−1.
We fix the edge (p′, q′) to be used in the computed path π̂ connecting p to q. We still need
to build the two parts of the path π̂ between p, p′ and q, q′.

This procedure reduced the problem of computing a reliable path between two points
p, q ∈ P \BN , into computing two such paths between two points of P \BN−1 (i.e., p, p′ and
q, q′). The benefit here is that ‖p− p′‖ , ‖q − q′‖ � ‖p− q‖. We now repeat this refinement
process N − 1 times.

To this end, let Qi be the set of active pairs that needs to be connected in the ith level of
the recursion. Thus, we have Q0 = {(p, q)}, Q1 = {(p, p′), (q, q′)}, and so on. We repeat this
N − 1 times. In the ith level there are |Qi| = 2i active pairs. Let (x, y) ∈ Qi be such a pair.
Then, there is an edge (x′, y′) in the graph G \BN−(i+1), such that we have the following:
(a) ‖x′ − y′‖ ≤ ‖x− y‖ (1 + 2ε/c) ≤ (2ε/c)i(1 + 2ε/c) ‖p− q‖ .
(b) ‖x− x′‖ ≤ 2(ε/c) ‖x− y‖ ≤ (2ε/c)i+1 ‖p− q‖ and ‖y − y′‖ ≤ (2ε/c)i+1 ‖p− q‖.
(c) x′, y′ ∈ P \BN−(i+1).
The edge (x′, y′) is added to the path π̂. After N − 1 iterations the set of active pairs is
QN−1 and for each pair (x, y) ∈ QN−1 we have that x, y ∈ P \B1. For each of these pairs
(x, y) ∈ QN−1 we apply Theorem 14 and Theorem 13 to obtain a path of length at most
‖x− y‖ 2 logn between x and y (and this subpath of course does not contain any vertex in
B). We add all these subpaths to connect the active pairs in the path π̂, which completes π̂
into a path.

Now, we bound the length of path π̂. Since, for all (x, y) ∈ QN−1, we have ‖x− y‖ ≤
‖p− q‖ · (2ε/c)N−1 and |QN−1| = 2N−1, the total length of the subpaths calculated, in the
last step, is

∑
(x,y)∈QN−1

length
(
π̂[x, y]

)
≤ 2N−1 ‖p− q‖ ·

(
2ε
c

)N−1
2 logn

≤ ‖p− q‖ ·
(

4ε
c

)log logn
2 logn ≤ ‖p− q‖ · εlog logn

(
4
c

)log logn
2 logn

≤ ‖p− q‖ · ε4 ·
1

logn · 2 logn ≤ ε

2 ‖p− q‖ ,

for large enough n and c ≥ 8. The total length of the long edges added to π̂ in the recursion,
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is bounded by

N−2∑
i=0

2i ‖p− q‖
(

2ε
c

)i(
1 + 2ε

c

)
≤ ‖p− q‖

(
1 + 2ε

c

) ∞∑
i=0

(
4ε
c

)i
= ‖p− q‖

(
1 + 2ε

c

)
1

1− 4ε/c = ‖p− q‖
(

1 + 6ε
c− 4ε

)
≤
(

1 + ε

2

)
‖p− q‖ ,

which holds for c ≥ 16. Therefore, the computed path π̂ between p and q is a (1 + ε)-path in
G \B, which concludes the proof of the theorem. J

5 Construction for points with bounded spread in Rd

The input is again a set P ⊂ Rd of n points, and parameters ϑ ∈ (0, 1/2) and ε ∈ (0, 1).
The goal is to build a ϑ-reliable (1 + ε)-spanner on P that has optimal size under some
condition on P . The condition is that the spread Φ(P ) is bounded by a polynomial of n. The
construction is based on well-separated pair decompositions (WSPD), which was introduced
by Callahan and Kosaraju [9]. For preliminaries see the full version [8].

5.1 The construction of GΦ

First, compute a quadtree T for the point set P . For any node v ∈ T , let �v denote the cell
(i.e. square or cube, depending on the dimension) represented by v. Let Pv = �v ∩ P be
the point set stored in the subtree of v. Compute a (6/ε)-WSPD W over T for P using the
construction of Abam and Har-Peled [1, Lemma 2.8]. The pairs in W can be represented
by pairs of nodes {u, v} of the quadtree T . Note that the algorithm uses the diameters and
distances of the cells of the quadtree, that is, for a pair {u, v} ∈ W, we have

(6/ε) ·max
(
diam(�u),diam(�v)

)
≤ d(�u,�v).

For any pair {u, v} ∈ W, we build the bipartite expander of Lemma 4 on the sets Pu
and Pv such that the expander property holds with ξ = ϑ/8. Furthermore, for every two
node u and v that have the same parent in the quadtree T we add the edges of the bipartite
expander of Lemma 4 between Pu and Pv. Let GΦ be the resulting graph when taking the
union over all the sets of edges generated by the above.

5.2 Analysis
I Lemma 16. The graph GΦ has O

(
ξ−2ε−dn log Φ(P )

)
edges.

Proof. By Lemma 5.4 of [8], every point participates in O(ε−d log Φ(P )) WSPD pairs. By
Lemma 4 the average degree in all the expanders is at most O(1/ξ2), resulting in the given
bound on the number of edges. There are also the additional pairs between a node in T and
its parent, but since every point participates in only O(log Φ(P )) such pairs, the number of
edges is dominated by the expanders on the WSPD pairs. It follows that the number of edges
in the resulting graph is O(ξ−2ε−dn log Φ(P )). J

I Definition 17. For a number γ ∈ (0, 1), and failed set of vertices B ⊆ P , a node v of the
quadtree T is in the γ-shadow if |B ∩ Pv| ≥ γ |Pv|. Naturally, if v is in the γ-shadow, then
the points of Pv are also in the shadow. As such, the γ-shadow of B is the set of all the
points in the shadow – formally, S(γ,B) =

⋃
v∈T : |B∩Pv|≥γ|Pv| Pv.
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Let γ = 1− ϑ/2. Note that B ⊆ S(γ,B), since every point of B is stored as a singleton
in a leaf of T .

I Definition 18. For a node x in T , let n(x) = |Px|, and b(x) = |Px ∩B|.

I Lemma 19. Let γ = 1− ϑ/2 and B ⊆ P be fixed. Then, the size of the γ-shadow of B is
at most (1 + ϑ) |B|.

Proof. Let H be the set of nodes of T that are in the γ-shadow of B. A node u ∈ H is
maximal if none of its ancestors is in H. Let H ′ = {u1, . . . , um} be the set of all maximal
nodes in H, and observe that ∪u∈H′Pu = ∪v∈HPv = S(γ,B). For any two nodes x, y ∈ H ′,
we have Px ∩ Py = ∅. Therefore, we have

|B| =
∑
u∈H′

b(u) ≥
∑
u∈H′

γn(u) = γ |S(γ,B)| .

Dividing both sides by γ implies the claim, since 1/γ = 1/(1− ϑ/2) ≤ 1 + ϑ. J

I Lemma 20. Let γ = 1 − ϑ/2. Fix a node u ∈ T of the quadtree, the failure set B ⊆ P ,
its shadow B+ = S(γ, P ), and the residual graph H = GΦ \ B. For a point p ∈ Pu \ B+,
let Ru(p) be the set of all reachable points in Pu with stretch two, formally, Ru(p) ={
q ∈ Pu \B

∣∣ dH(p, q) ≤ 2 · diam(�u)
}
. Then, we have |Ru(p)| ≥ 3ξ |Pu| .

Proof. Let u1, u2, . . . , uj = u be the sequence of nodes in the quadtree from the leaf u1 that
contains (only) p, to the node u. A level of a point q ∈ Pu, denoted by `(q), is the first index
i, such that q ∈ Pui

. A skipping path in GΦ, is a sequence of edges pq1, q1q2, . . . qm−1qm,
such that `(qi) < `(qi+1), for all i.

Let Qi be the set of all points in Pui
\B that are reachable by a skipping path in H from

p. We claim, for i = 1, . . . , j, that

|Qi| ≥ (1− ξ)n(ui)− b(ui) ≥ (1− ξ − γ)n(ui) = (ϑ/2− ξ)n(ui) = 3ξn(ui),

since ξ = ϑ/8 and p is not in the γ-shadow. The claim clearly holds for u1. So, assume
inductively that the claim holds for u1, . . . , uj−1. Let v1, . . . , vm be the children of uj that
have points stored in them (excluding uj−1). There is an expander between Puj−1 and Pvi ,
for all i, as a subgraph of GΦ. It follows, by induction, that

|Qj | ≥ (1− ξ)n(uj−1)− b(uj−1) +
∑
i

(
(1− ξ)n(vi)− b(vi)

)
= (1− ξ)n(uj−1) +

∑
i

(1− ξ)n(vi)−
(
b(uj−1) +

∑
i

b(vi)
)

= (1− ξ)n(uj)− b(uj).

Observe that a skipping path from p to q ∈ Puj
has length at most

j∑
i=1

diam(�ui
) ≤ diam

(
�uj

) j∑
i=1

21−j ≤ 2 · diam
(
�uj

)
.

Thus, Qj ⊆ Ru(p), and the claim follows. J

Now we are ready to prove that GΦ is a reliable spanner.

I Lemma 21. For a set P ⊆ Rd of n points and parameters ε ∈ (0, 1) and ϑ ∈ (0, 1/2), the
graph GΦ is a ϑ-reliable (1 + ε)-spanner with O

(
ε−dϑ−2n log Φ(P )

)
edges, where Φ(P ) is the

spread of P .
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p

q

p′

q′

�u

�v

Figure 4 The pair {u, v} ∈ W that separates p and q. The blue path is a (1 + ε)-path between p

and q in the graph GΦ \B.

Proof. Let ξ = ϑ/8 and γ = 1 − ϑ/2. The bound on the number of edges follows by
Lemma 16.

Let B be a set of faulty vertices of GΦ, and let H = GΦ \B be the residual graph. We
define B+ to contain the vertices that are in the γ-shadow of B. Then, we have B ⊆ B+ and
|B+| ≤ (1 + ϑ) |B| by Lemma 19. Finally, we need to show that there exists a (1 + ε)-path
between any p, q ∈ P \B+.

Let {u, v} ∈ W be the pair that separates p and q with p ∈ Pu and q ∈ Pv, see Figure 4.
Let Ru(p) (resp. Rv(q)) be the set of points in Pu (resp. Pv) that are reachable in H from
p (resp. q) with paths that have lengths at most 2 · diam(�u) (resp. 2 · diam(�v)). By
Lemma 20, |Ru(p)| ≥ 3ξn(u) ≥ ξn(u) and |Rv(q)| ≥ 3ξn(v).

Since there is a bipartite expander between Pu and Pv with parameter ξ, by Lemma 4,
the neighborhood Y of Ru(p) in Pv has size at least (1− ξ)n(v). Observe that |Y ∩Rv(q)| =
|Rv(q) \ (Pv \ Y )| ≥ |Rv(q)| − |Pv \ Y | ≥ 3ξn(v) − ξn(v) > 0. Therefore, there is a point
q′ ∈ Y ∩Rv(q), and a point p′ ∈ Ru(p), such that p′q′ ∈ E(GΦ). We have that

dH(p, q) ≤ dH(p, p′) + dH(p′, q′) + dH(q′, q) ≤ 2 · diam(�u) + ‖p′ − q′‖+ 2 · diam(�v)

≤ 3 · diam(�u) + d(�u,�v) + 3 · diam(�v) ≤
(

1 + 6 · ε6

)
· d(�u,�v)

≤ (1 + ε) · ‖p− q‖ . J

6 Conclusions

In this paper we have shown several constructions for ϑ-reliable spanners. Our results for
constructing reliable exact spanners in one dimension have size O(n logn), which is optimal.
In higher dimensions we were able to show a simple construction of a ϑ-reliable spanner with
optimal size for the case of bounded spread. For arbitrary point sets in Rd we obtained a
construction with an extra (log logn)6 factor in the size.

It seems clear that our construction for the unbounded case is suboptimal in terms of
extra factors, and we leave improving it as an open problem for further research. Another
natural open question is how to construct reliable spanners that are required to be subgraphs
of a given graph.
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