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Abstract
Persistence diagrams are important descriptors in Topological Data Analysis. Due to the nonlinearity
of the space of persistence diagrams equipped with their diagram distances, most of the recent
attempts at using persistence diagrams in machine learning have been done through kernel methods,
i.e., embeddings of persistence diagrams into Reproducing Kernel Hilbert Spaces, in which all
computations can be performed easily. Since persistence diagrams enjoy theoretical stability
guarantees for the diagram distances, the metric properties of the feature map, i.e., the relationship
between the Hilbert distance and the diagram distances, are of central interest for understanding
if the persistence diagram guarantees carry over to the embedding. In this article, we study the
possibility of embedding persistence diagrams into separable Hilbert spaces with bi-Lipschitz maps.
In particular, we show that for several stable embeddings into infinite-dimensional Hilbert spaces
defined in the literature, any lower bound must depend on the cardinalities of the persistence
diagrams, and that when the Hilbert space is finite dimensional, finding a bi-Lipschitz embedding is
impossible, even when restricting the persistence diagrams to have bounded cardinalities.
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1 Introduction

The increase of available data in both academia and industry has been exponential over the
past few decades, making data analysis and machine learning ubiquitous in many different
fields of science. Topological Data Analysis (TDA) [5] is one specific field of data science,
which focuses more on complex rather than big data. The general assumption of TDA is
that data is actually sampled from geometric or low-dimensional domains, whose topological
features are relevant to the analysis. These topological features are usually encoded in a
mathematical object called persistence diagram, which is roughly a set of points in the plane,
each point representing a topological feature whose size is contained in the coordinates of
the point. Persistence diagrams have been proved to bring complementary information to
other traditional descriptors in many different applications, often leading to large result
improvements. This is also due to the stability properties of the persistence diagrams, which
state that persistence diagrams computed on similar data are also very close in the diagram
distances [2, 8, 9].

Unfortunately, the use of persistence diagrams in machine learning methods is not
straightforward, since many algorithms expect data to be Euclidean vectors, while persistence
diagrams are sets of points with possibly different cardinalities. Moreover, the diagram
distances used to compare persistence diagrams are computed by means of optimal matchings,
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and thus are quite different from Euclidean metrics. The usual way to cope with such difficult
data is to use kernel methods. A kernel is a symmetric function on the data whose evaluation
on a pair of data points equals the scalar product of the images of these points under a feature
map into a Hilbert space, called the Reproducing Kernel Hilbert Space of the kernel. Many
algorithms can be kernelized, such as PCA and SVM, allowing one to handle non-Euclidean
data as soon as either a kernel or a feature map is available.

Hence, the question of defining a feature map into a Hilbert space has been intensively
studied in the past few years, and, as of today, various methods have been proposed and
implemented, either into finite or infinite dimensional Hilbert spaces [4, 7, 21, 16, 1, 6, 13].
Since persistence diagrams enjoy stability properties, it is also natural to ask the same
guarantee for their embeddings. Indeed, various feature maps defined in the literature satisfy
a stability property stating that the Hilbert distance between the image of the persistence
diagrams is upper bounded by some specific diagram distance, most commonly the 1-
Wasserstein diagram distance. In many cases, this upper bound applies only to a restricted
set of persistence diagrams with bounded number and bounded range of persistence pairs,
and these bounds enter the constant in the stability estimate. However, some unconditional
stability results exist as well, e.g., for the Persistence Scale Space feature map [21].

A more difficult question is to prove whether a lower bound also holds or not. As a
first step in this direction, a lower bound for the Sliced Wasserstein distance was proved
in [6], showing that this metric is equivalent to the first diagram distance. Moreover, since
the Sliced Wasserstein distance is conditionally negative definite, a Gaussian kernel can be
defined with it with Berg’s theorem [3]. However, even in this case, the resulting Sliced
Wasserstein kernel distance is not equivalent to the Sliced Wasserstein distance, and so the
corresponding feature map is not guaranteed to be bi-Lipschitz. Thus, the question remained
open in general.

Contributions

In this article, we consider the general question of the existence of bi-Lipschitz embeddings
of persistence diagrams into separable Hilbert spaces. More precisely, we show the following
results:

For several stable feature maps defined in the literature, if such a bi-Lipschitz embedding
exists for persistence diagrams with bounded number and range of points, then the ratio
between upper and lower bound goes to ∞ as the bounds on the number of points in the
persistence diagrams and on their range increase to∞ (Theorem 3.5 and Proposition 3.9).
Such a bi-Lipschitz embedding does not exist if the Hilbert space is finite dimensional
(Theorem 4.4),

Finally, we also provide experimental evidence of this behavior by computing the metric
distortions of various feature maps for persistence diagrams with increasing cardinalities.

Related work

Feature maps for persistence diagrams can be classified into two different classes, depending
on whether the corresponding Hilbert space has finite or infinite dimension.

In the infinite dimensional case, the first attempt was that proposed in [4], in which
persistence diagrams are turned into families of L2 functions, called landscapes, by computing
the homological rank functions given by the persistence diagram points. Another common
way to define a feature map is to see the points of the persistence diagrams as centers of
Gaussians with a fixed bandwidth, weighted by the distance of the point to the diagonal.
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This is the approach originally advocated in [21], and later generalized in [17], leading to the
so-called Persistence Scale Space and Persistence Weighted Gaussian feature maps. Another
possibility is to define a Gaussian-like feature map by using the Sliced Wasserstein distance
between persistence diagrams, which is conditionally negative definite. This implicit feature
map, called the Sliced Wasserstein map, was defined in [6].

In the finite dimensional case, many different possibilities are available. One may consider
evaluating a family of tropical polynomials onto the persistence diagram [14], taking the sorted
vector of the pairwise distances between the persistence diagram points [7], or computing
the coefficients of a complex polynomial whose roots are given by the persistence diagram
points [10]. Another line of work has been proposed in [1] by discretizing the Persistence
Scale Space feature map. The idea is to discretize the plane into a fixed grid, and then
compute a value for each pixel by integrating Gaussian functions centered on the persistence
diagram points. Finally, persistence diagrams have been incorporated in deep learning
frameworks in [13], in which Gaussian functions (whose means and variances are optimized
by the neural network during training) are integrated against persistence diagrams seen as
discrete measures.

2 Background

2.1 Persistence Diagrams
Persistent homology is a technique of TDA, using concepts from algebraic topology, which
allows the user to compute and encode topological information of datasets in a compact
descriptor called the persistence diagram. Given a space X and a continuous and real-valued
function f : X → R, the persistence diagram of f can be computed under mild conditions
(the function has to be tame, see [8] for more details), and consists in a finite set of points with
multiplicities in the upper-diagonal half-plane Dg(f) = {(xi, yi)} ⊂ {(x, y) ∈ R2 : y > x}.
This set of points is computed from the family of sublevel sets of f , that is the sets of the form
f−1((−∞, α]), for some α ∈ R. More precisely, persistence diagrams encode the different
topological events that occur as α increases from −∞ to ∞. Such topological events include
creation and merging of connected components and cycles in every dimension. For example,
when dealing with a point cloud X̂ ⊂ Rn, a common strategy to obtain a persistence diagram
from X̂ is to set X = Rn and to use the Euclidean distance to X̂ as the function f . See also
Figure 1 for another example.

Intuitively, persistent homology records, for each topological feature that appears in the
family of sublevel sets, the value αb at which the feature appears, called the birth value, and
the value αd at which it gets merged or filled in, called the death value. These values are
then used as coordinates for a corresponding point in the persistence diagram. In general,
depending on the space X, there will also be topological features for which there is no
finite death value. Such features are however not considered in the context of the present
paper. Note that several features may have the same birth and death values, so points in the
persistence diagram have multiplicities. Moreover, since αd ≥ αb, these points are always
located above the diagonal ∆ = {(x, x) : x ∈ R}. A general intuition about persistence
diagrams is that the distance of a point to ∆ is a direct measure of its relevance: if a point
is close to ∆, it means that the corresponding cycle got filled in right after its appearance,
thus suggesting that it is likely due to noise in the dataset. On the contrary, points that
are far away from ∆ represent cycles with a significant life span, and are more likely to be
relevant for the analysis. We refer the interested reader to [11, 19] for more details about
persistent homology.

SoCG 2019
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Figure 1 Example of persistence diagram computation. The space we consider is a blurry image
of a zero, and the function f that we use is the grey level value on each pixel. We show four different
sublevel sets of f . For each sublevel set, the corresponding pixels are displayed in pink color. In the
first sublevel set, two connected components are present in the sublevel set, so we start two intervals
I1 and I2. In the second one, one connected component got merged to the other, so we stop the
corresponding interval I2, and a cycle (loop) is created, so we start a third interval I3. In the third
sublevel set, a new small cycle is created, as well as three more connected components. In the fourth
sublevel set, all pixels belong to the set: all cycles are filled in and all connected components are
merged together, so all intervals end here. Finally, each interval Ik is represented as a point Pk in
the plane (using the endpoints as coordinates).

Notation

Let D be the set of persistence diagrams with at most a countable number of points. More
formally, D can be equivalently defined as a set of multiplicity functions {m : R2 \ ∆ →
N : supp(m) is countable}, where each point q ∈ supp(m) is a point in the corresponding
persistence diagram with multiplicity m(q). Let DN be the set of persistence diagrams with
less than N points, i.e., DN = {m : R2 \∆→ N :

∑
qm(q) < N}. Let DL be the space of

persistence diagrams included in [−L,L]2, i.e., DL = {m : R2\∆→ N : supp(m) ⊂ [−L,L]2}.
Finally, let DLN be the space of persistence diagrams with less than N points included in
[−L,L]2, i.e., DLN = DN ∩ DL. Obviously, we have the following sequences of (strict)
inclusions: DLN ⊂ DN ⊂ D, and DLN ⊂ DL ⊂ D.

Diagram distances

Persistence diagrams can be efficiently compared using the diagram distances, which is a
family of distances parametrized by an integer p that rely on the computation of partial
matchings. Recall that two persistence diagrams Dg1 and Dg2 may have different number of
points. A partial matching Γ between Dg1 and Dg2 is a subset of Dg1 ×Dg2. It comes along
with Γ1 (resp. Γ2), which is the set of points of Dg1 (resp. Dg2) that are not matched to a
point of Dg2 (resp. Dg1) by Γ. The p-cost of Γ is given as:

cp(Γ) =
∑

(p,q)∈Γ

‖p− q‖p∞ +
∑
p∈Γ1

‖p−∆‖p∞ +
∑
q∈Γ2

‖q −∆‖p∞.

The p-diagram distance is then defined as the cost of the best partial matching:
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I Definition 2.1. Given two persistence diagrams Dg1 and Dg2, the p-diagram distance dp
is defined as:

dp(Dg1,Dg2) = infΓ
p
√
cp(Γ).

Note that in the literature, these distances are often called the Wasserstein distances
between persistence diagrams. Here, we follow the denomination of [6]. In particular, taking
a maximum instead of a sum in the definition of the cost,

c∞(Γ) = max
(p,q)∈Γ

‖p− q‖∞ + max
p∈Γ1

‖p−∆‖∞ + max
q∈Γ2

‖q −∆‖∞.

allows to add one more distance in the family, the bottleneck distance d∞(Dg1,Dg2) =
infΓ c∞(Γ).

Stability

A useful property of persistence diagrams is their stability in terms of the data generating
the diagrams. Indeed, it is well known in the literature that persistence diagrams computed
from close functions are close themselves in the bottleneck distance:

I Theorem 2.2 ([8, 9]). Given two tame functions f, g : X → R, one has the following
inequality:

d∞(Dg(f),Dg(g)) ≤ ‖f − g‖∞. (1)

In other words, the map Dg is 1-Lipschitz. Note that stability results exist as well for the
other diagram distances, but these results are weaker than the above Lipschitz condition,
and they require more conditions – see [19].

2.2 Bi-Lipschitz embeddings.
The main question that we adress in this article is the one of preserving the persistence
diagram metric properties when using embeddings into Hilbert spaces. For instance, one
may ask the images of persistence diagrams under a feature map into a Hilbert space to be
stable as well. A natural question is then whether a lower bound also exists, i.e., whether
the feature map Φ is a bi-Lipschitz embedding between (D, dp) and H.

I Definition 2.3. Let (X, dX) and (Y, dY ) be two metric spaces. A bi-Lipschitz embedding
between (X, dX) and (Y, dY ) is a map Φ : X → Y such that there are constants 0 < A,B <∞
such that

AdX(x, x′) ≤ dY (Φ(x),Φ(x′)) ≤ B dX(x, x′)

for any x, x′ ∈ X. The metrics dX and dY are called strongly equivalent, and the constants
A and B are called the lower and upper metric distortion bounds, respectively. If A = B = 1,
Φ is called an isometric embedding.

Note that this definition is equivalent to the commonly used definition, which additionally
requires A = 1

B .
I Remark 2.4. Finding an isometric embedding of persistence diagrams into a Hilbert space
is impossible since geodesics are unique in a Hilbert space, while this is not the case for
persistence diagrams, as shown in the proof of Proposition 2.4 in [23].

SoCG 2019
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I Remark 2.5. For feature maps that are bounded, i.e., those maps Φ such that there exists
a constant C > 0 for which ‖Φ(Dg)‖ ≤ C for all Dg, it is obviously impossible to find a
bi-Lipschitz embedding. This involves for instance the Sliced Wasserstein (SW) feature
map [6], which is defined implicitly from a Gaussian-like function.

3 Mapping into separable Hilbert spaces

In our first main result, we use separability to determine whether a bi-Lipschitz embedding
can exist between the space of persistence diagrams and a Hilbert space.

I Definition 3.1. A metric space is called separable if it has a dense countable subset.

For instance, the following three Hilbert spaces (equipped with their canonical metrics)
are separable: Rn, `2 and L2(Ω), where Ω is separable. The two following results describe
well-known properties of separable spaces.

I Proposition 3.2. Any subspace of a separable metric space is separable as well.

I Proposition 3.3. Let (X, dX) and (Y, dY ) be two metric spaces, and assume there is a
bi-Lipschitz embedding Φ : X → Y , with Lipschitz constants A and B. Then X is separable
if and only if im(Φ) is separable.

The following lemma shows that for a feature map Φ which is bi-Lipschitz when restricted
to DLN , the limits of the corresponding constants can actually be used to study the general
metric distortion in D.

I Lemma 3.4. Let p ∈ R∗+ and let d be a continuous metric on (D, dp). Let

RLN =
{
dp(Dg,Dg′)
d(Dg,Dg′)

: Dg 6= Dg′ ∈ DLN
}
,

ALN = inf RLN and BLN = sup RLN .

Since ALN is nonincreasing and BLN is nondecreasing with respect to N and L, we define

AN = lim
L→∞

ALN , AL = lim
N→∞

ALN , A = lim inf
N,L→∞

ALN ,

BN = lim
L→∞

BLN , BL = lim
N→∞

BLN , B = lim sup
N,L→∞

BLN ,

where the limit superior and inferior for N,L→∞ are taken for the nets ALN and BLN over
the directed set N× R. Then the following inequalities hold:

AL d(Dg,Dg′) ≤ dp(Dg,Dg′) ≤ BL d(Dg,Dg′) for all Dg,Dg′ ∈ DL,
AN d(Dg,Dg′) ≤ dp(Dg,Dg′) ≤ BN d(Dg,Dg′) for all Dg,Dg′ ∈ DN ,
A d(Dg,Dg′) ≤ dp(Dg,Dg′) ≤ B d(Dg,Dg′) for all Dg,Dg′ ∈ D.

Note that A, AN , AL, B, BN and BL may be equal to 0 or ∞, so it does not necessarily
hold that d and dp are strongly equivalent on either DN , DL, or D.

Proof. We only prove the last inequality, since the proof extends verbatim to the other two.
Pick any two persistence diagrams Dg,Dg′ ∈ D. Let Γ = {(pi, qi)}i∈N be an optimal partial
matching achieving dp(Dg,Dg′), where pi (resp. qi) is either in Dg (resp. Dg′) or in π∆(Dg′)



M. Carrière and U. Bauer 21:7

(resp. π∆(Dg)), and where π∆ is the projection (in the Euclidean norm) onto the diagonal ∆.
We now define two sequences of persistence diagrams {Dgn}n∈N and {Dg′n}n∈N recursively
with Dg0 = Dg′0 = ∅ and

Dgn+1 =
{

Dgn if pn+1 ∈ π∆(Dg′),
Dgn ∪ {pn+1} otherwise,

Dg′n+1 =
{

Dg′n if qn+1 ∈ π∆(Dg),
Dg′n ∪ {qn+1} otherwise.

Note that Γ might have only a finite number of elements if both Dg and Dg′ have finite
cardinalities. In this case, we set {Dgn}n∈N (resp. {Dg′n}n∈N) to be constant and equal to
Dg (resp. Dg′) for sufficiently large n. Moreover, define

ln = max{max{‖p‖∞ : p ∈ Dgn},max{‖q‖∞ : q ∈ Dg′n}},
sn = max{card(Dgn), card(Dg′n)},

Note that both {ln}n∈N and {sn}n∈N are nondecreasing. We have Dgn,Dg′n ∈ Dlnsn and thus

Alnsn d(Dgn,Dg′n) ≤ dp(Dgn,Dg′n) ≤ Blnsn d(Dgn,Dg′n). (2)

Now, since dp(Dgn,Dg)→ 0 when n→∞, we have d(Dgn,Dg)→ 0 by continuity of d, and
similarly d(Dg′n,Dg′)→ 0. Hence, we have dp(Dgn,Dg′n)→ dp(Dg,Dg′) and d(Dgn,Dg′n)→
d(Dg,Dg′) with the triangle inequality. We finally obtain the desired inequality by letting
n→∞ in (2). J

A corollary of the previous results is that even if a feature map taking values in a separable
Hilbert space might be bi-Lipschitz when restricted to DLN , the ratio of upper and lower
bound has to go to ∞ as soon as the domain of the feature map is not separable.

I Theorem 3.5. Let Φ : DΦ → H be a feature map defined on a non-separable subspace DΦ
of persistence diagrams containing every DLN , i.e., DLN ⊂ DΦ for each N,L. Assume Φ takes
values in a separable Hilbert space H, and that Φ is bi-Lipschitz on each DLN with constants
ALN , B

L
N . Then BLN/ALN →∞ as N,L→∞.

Note that, by Theorem 12 in [18], if the p-total persistence, i.e., the p-diagram distance
to the empty diagram, of each element of DΦ is finite, then DΦ becomes separable w.r.t. dp.
In particular, this means that DLN is separable for each N,L. Moreover, this shows that
Theorem 3.5 applies only to domains DΦ containing at least one diagram whose p-total
persistence is infinite, in particular, a diagram with an infinite number of points.

However, many feature maps defined in the literature, such as the Persistence Weighted
Gaussian feature map [17] or the Landscape feature map [4], are actually defined on such
domains, and take values in separable spaces, such as the function space L2(Ω), where Ω is
the upper half-plane {(x, y) : x ≤ y}. Hence, to illustrate how Theorem 3.5 applies to these
feature maps, we now provide two lemmata. In the first one, we define a set S which is not
separable with respect to d1, and in the second one, we show that, nevertheless, S is actually
included in the domain DΦ of these feature maps.

I Lemma 3.6. Consider the set of points P =
{(
k, k + 1

k

)
∈ R2 : k ∈ N

}
, and define the

set S of persistence diagrams as the power set S = P(P ). Then (S, d1) is not separable.

Proof. Let pk =
(
k, k + 1

k

)
∈ R2 for all k ∈ N. Then we have S = {Dgu}u∈U , where

U = {0, 1}N is the set of sequences with values in {0, 1}, and where Dgu = {pi : i ∈ supp(u)}.
First note that since the sequences u ∈ U can have infinite support, the spaces U and
S = {Dgu}u∈U are not countable.

SoCG 2019
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Let ∼ be the equivalence relation on S defined as

Dgu ∼ Dgv ⇐⇒ | supp(u)4 supp(v)| <∞,

where 4 denotes the symmetric difference of sets. Since the set of sequences with finite
support is countable, it follows that each equivalence class [Dgu]∼ is countable as well. In
particular, this means that the set of equivalence classes S/ ∼ is uncountable, since otherwise
S would be countable as a countable union of countable equivalence classes.

We now prove the result by contradiction. Assume that S is separable, and let S ′ ⊂ S
be the corresponding dense countable subset of S. Let ε > 0. Then for each u ∈ U , there
is at least one sequence u′ ∈ U such that Dgu′ ∈ S ′ and d1(Dgu,Dgu′) ≤ ε. We now
claim that every such u′ satisfies Dgu′ ∈ [Dgu]∼. Indeed, assume Dgu′ 6∈ [Dgu]∼ and let
I = supp(u′)4 supp(u). Then, since |I| =∞, we would have

d1(Dgu,Dgu′) =
∑
k∈I

1
k

=∞ > ε,

which is not possible. Hence, this means that |S ′| ≥ |S/ ∼ |. However, we showed that S/ ∼
is uncountable, meaning that S ′ is uncountable as well, which leads to a contradiction, since
S ′ is countable by assumption. J

We now show that the Persistence Weighted Gaussian and the Landscape feature maps
are well-defined on the set S. Let us first formally define these feature maps.

I Definition 3.7. Given p = (u, v) ∈ R2, u ≤ v, let φp be the piecewise linear hat function
defined as

φp(t) =
{
v−u

2 (1− 2
v−u |t−

u+v
2 |) if x ≤ t ≤ y,

0 otherwise.

Then, given a persistence diagram Dg, let λk : t 7→ maxk{φp(t)}p∈Dg, where maxk denotes
the k-th largest element. The Landscape feature map is defined as:

ΦL : Dg 7→ λ̄, where λ̄(x, y) =
{
λdxe(y) x ≥ 0,
0 otherwise.

I Definition 3.8. Let ω : R2 → R be a weight function and σ > 0. The Persistence Weighted
Gaussian feature map is defined as:

ΦωPWG : Dg 7→
∑
p∈Dg

ω(p)e−
‖·−p‖2

2
2σ2 .

I Proposition 3.9. Let ω be the weight function (x, y) 7→ (y − x)2. Let S be the set of
persistence diagrams defined in Lemma 3.6. Then:

S ⊂ DΦωPWG
and S ⊂ DΦL .

Proof. Let uk ∈ U be the sequence defined with un = 1 if n ≤ k and un = 0 otherwise. To
show the desired result, it suffices to show that {ΦωPWG(Dguk)}k∈N and {ΦL(Dguk)}k∈N are
Cauchy sequences in L2(R2). Let q ≥ p ≥ 1, and let us study ‖Φ(Dguq)− Φ(Dgup)‖

2
L2(R2)

for each feature map.
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Case ΦωPWG. We have the following inequalities:

‖ΦωPWG(Dguq )− ΦωPWG(Dgup)‖2L2(R2)

=
∫
R2

 q∑
k=p

1
k2 e−

‖x−pk‖
2
2

2σ2

2

dx =
q∑

k=p

q∑
l=p

1
k2l2

∫
R2

e−
‖x−pk‖

2
2+‖x−pl‖

2
2

2σ2 dx

= πσ2
q∑

k=p

q∑
l=p

1
k2l2

e−
‖pk−pl‖

2
2

4σ2 (cf Appendix C in [20])

≤ πσ2

 q∑
k=p

1
k2

 q∑
l=p

1
l2


The result simply follows from the fact that {

∑n
k=1

1
k2 }n∈N is convergent and Cauchy.

Case ΦL. Since all triangular functions, as defined in Definition 3.7, have disjoint support,
it follows that the only non-zero lambda function is λ1 =

∑k
n=1 φn, where φn is a

triangular function defined with φn(t) = 1
2n (1− |2n(t− (n+ 1

2n ))|) if n ≤ t ≤ n+ 1
n and

0 otherwise. See Figure 2.

1/2

1/4

1/8

1 2 3 4

φ1

φ2
φ3 φ4

Figure 2 Image of Dgu4 under ΦL.

Hence, we have the following inequalities:

‖ΦL(Dguq )− ΦL(Dgup)‖2L2(R2)

=
∫
R

 q∑
k=p

φk(x)

2

dx =
q∑

k=p

q∑
l=p

∫
R
φk(x)φl(x)dx

=
q∑

k=p

∫
R
φk(x)2dx ≤

q∑
k=p

∫
R
φk(x)dx =

q∑
k=p

1
4k2

Again, the result follows from the fact that {
∑n
k=1

1
k2 }n∈N is convergent and Cauchy. J

Proposition 3.9 shows that Theorem 3.5 applies (with the metric d1 between persistence
diagrams) to the Landscape feature map and to the Persistence Weighted Gaussian feature
map with weight function (x, y) 7→ (y− x)2 – actually, any weight function that is equivalent
to or dominated by (y − x)2 when (y − x) goes to 0. Note also that the authors in [16]
suggest using weight functions of the form (x, y) 7→ arctan(C|y − x|α), which, in this case,
means that Theorem 3.5 applies if α ≥ 2. In particular, in this case, any lower bound for the
Persistence Weighted Gaussian feature map has to go to 0 when N,L→∞, since an upper
bound exists for this map due to its stability properties – see Corollary 3.5 in [17].

SoCG 2019
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4 Mapping into finite-dimensional Hilbert spaces

In our second main result, we show that more can be said about feature maps into Rn
(equipped with the Euclidean metric), using the so-called Assouad dimension. This involves
all vectorization methods for persistence diagrams that we described in the related work.

Assouad dimension

I Definition 4.1 (Paragraph 10.13 in [12]). Let (X, dX) be a metric space. Given a subset
E ⊂ X and r > 0, let Nr(E) be the least number of open balls of radius less than or equal to
r that can cover E. The Assouad dimension of X is:

dimA(X, dX) = inf{α > 0 : ∃C > 0 s.t. supx∈XNβr(B(x, r)) ≤ Cβ−α, ∀r > 0, β ∈ (0, 1]}.

Intuitively, the Assouad dimension measures the number of open balls of radius βr needed
to cover an open ball of radius r. For example, the Assouad dimension of Rn is n. Moreover,
the Assouad dimension is preserved by bi-Lipschitz embeddings.

I Proposition 4.2 (Lemma 9.6 in [22]). Let (X, dX) and (Y, dY ) be metric spaces with a
bi-Lipschitz embedding Φ : X → Y . Then dimA(X, dX) = dimA(im(Φ), dY ).

The Assouad dimension is closely related to the familiar notion of doubling metric space,
where only the number of open balls of radius βr needed to cover an open ball of radius
r is considered: A metric space (X, dX) is doubling if there is a constant M such that
N r

2
(B(x, r)) ≤M for all x ∈ X and r > 0. In terms of Assouad dimension, this is equivalent

to dimA(X, dX) < ∞ [12]. Hence, the property of being doubling is also preserved under
bi-Lipschitz maps.

Non-embeddability

We now show that DLN cannot be embedded into Rn with bi-Lipschitz embeddings. The
proof of this fact is a consequence of the following lemma:

I Lemma 4.3. Let p ∈ N ∪ {∞}, N ∈ N, and L > 0. Then dimA(DLN , dp) =∞.

Proof. Let Bp denote an open ball with dp. We want to show that, for any α > 0 and C > 0,
it is possible to find a persistence diagram Dg ∈ DLN , a radius r > 0 and a factor β ∈ (0, 1]
such that the number of open balls of radius at most βr needed to cover Bp(Dg, r) is strictly
larger than Cβ−α. To this end, we pick arbitrary α > 0 and C > 0. The idea of the proof is
to define Dg as the empty diagram, and to derive a lower bound on the number of balls with
radius βr needed to cover Bp(Dg, r) by considering a family of persistence diagrams {Dg′j}
with only one point each, evenly distributed on the line {(x, x+ r) : x ∈ [−L,L]} such that
the distance between two consecutive points is r in the `∞-distance. Indeed, the pairwise
distance between any two such persistence diagrams is sufficiently large so that they must
belong to different balls. Then we can control the number of persistence diagrams, and thus
the number of balls, by taking r sufficiently small.

More formally, choose β = 1
4 , M = 1 + bCβ−αc > Cβ−α, and r = 2L/M . We want to

show that we have at least M balls in any cover by βr, meaning that |{Dgi}| ≥M . To this
end, assume we are given an arbitrary cover of Bp(Dg, r) with open balls of radius less than
βr centered on a family {Dgi} as follows:

Bp(Dg, r) ⊆
⋃
i

Bp(Dgi, βr). (3)
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Figure 3 Persistence diagram used in the proof of Lemma 4.3. In this particular example, we
have M = 5.

We now define a particular family of persistence diagrams which all have to lie in different
elements of the cover (3). For any 0 ≤ j ≤M − 1, we let Dg′j denote the persistence diagram
containing only the point (−L+ jr,−L+ (j + 1)r), see Figure 3. It is clear that each Dg′j is
in DLN .

Moreover, since dp(Dg,Dg′j) = r
2 < r, it also follows that Dg′j ∈ Bp(Dg, r). Hence,

according to (3), each Dg′j is contained in some ball Bp(Dgi, βr). Finally, note that no
two Dg′j 6= Dg′k can be contained in the same ball Bp(Dgi, βr). Indeed, assuming that
Dg′j ,Dg′k ∈ Bp(Dgi, βr), since the distance between Dg′j and Dg′j′ is always obtained by
matching their points to the diagonal, we reach a contradiction with the following application
of the triangle inequality:

dp(Dg′j ,Dg′k) = 2
1
p
r

2 ≤ dp(Dg′j ,Dgi) + dp(Dgi,Dg′k) < 2βr = r

2 .

This observation shows that there are at least M different open balls in the cover (3), which
concludes the proof. J

The following theorem is then a simple consequence of Lemma 4.3 and Proposition 4.2:

I Theorem 4.4. Let p ∈ N ∪ {∞} and n ∈ N. Then, for any N ∈ N and L > 0, there is no
bi-Lipschitz embedding between (DLN , dp) and Rn.

Interestingly, the integers N and n are independent in Theorem 4.4: even if one restricts
to persistence diagrams with only one point, it is still impossible to find a bi-Lipschitz
embedding into Rn, whatever n is.

5 Experiments

In this section, we illustrate our main results by computing the lower metric distortion
bounds for the main stable feature maps in the literature. We use persistence diagrams with
increasing number of points to experimentally observe the convergence of this bound to 0, as
described in Theorem 3.5. More precisely, we generate 100 persistence diagrams for each
cardinality in a range going from 10 to 1000 by uniformly sampling points in the unit upper
half-square {(x, y) : 0 ≤ x, y ≤ 1, x ≤ y}. See Figure 4 for an illustration.
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Figure 4 Example of synthetic persistence diagrams with cardinalities 10 (upper left), 30 (upper
right), 60 (lower left) and 100 (lower right) generated for the experiment.

Then, we consider the following feature maps:
the Persistence Weighted Gaussian with unit bandwidth (PWG) [17],
the Persistence Scale Space with unit bandwidth (PSS) [21],
the Landscape (LS) [4],
the Persistence Image with resolution 10 x 10 and unit bandwidth (IM) [1]
the Topological Vector with 10 dimensions (TV) [7],

Since most of these feature maps enjoy stability properties with respect to the first diagram
distance d1, we compute the ratios between the metrics in the Hilbert spaces corresponding
to these feature maps and d1. Moreover, we also look at the ratio induced by the square root
of the Sliced Wasserstein distance SW between persistence diagrams [6]. Indeed, if the SW
feature map is restricted to a set of persistence diagrams which are close to each other (w.r.t.
the SW distance), then the distance in the corresponding Hilbert space is actually equivalent
to the square root of the SW distance from the formula:

‖ΦSW(Dg)− ΦSW(Dg′)‖ =
√

2
(
1− e−SW(Dg,Dg′)

)
Hence, we added the square root of the SW distance in our experiment. All feature maps
were computed with the sklearn-tda library1, which uses Hera2 [15] as a backend to compute
the first diagram distances d1 between pairs of persistence diagrams. These ratios are then
displayed as boxplots in Figure 5.

It is clear from Figure 5 that the extreme values of these ratios (the upper tail of the ratio
distributions) increase with the cardinality of the persistence diagrams, as expected from
Theorem 3.5. This is especially interesting in the case of the Sliced Wasserstein distance
since the question whether the lower bound that was proved in [6], which increases with the
number of points in the diagrams, was tight or not, i.e., if a lower bound which is oblivious

1 https://github.com/MathieuCarriere/sklearn_tda
2 https://bitbucket.org/grey_narn/hera

https://github.com/MathieuCarriere/sklearn_tda
https://bitbucket.org/grey_narn/hera
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Figure 5 Boxplots of the ratios between distances induced by various feature maps and the first
diagram distance d1.

to the number of points could be derived, is still open. Hence, it seems from Figure 5 that
this is not the case empirically. It is also interesting to notice that the divergence speed of
these ratios differ from a feature map to another. More precisely, it seems like the metric
distortion bounds increase linearly with the cardinalities for the TV and LS feature maps
and the Sliced Wasserstein distance, while it is increasing at a much lower speed for the
other feature maps.

6 Conclusion

In this article, we provided two important theoretical results about the embedding of
persistence diagrams in separable Hilbert spaces, which is a common technique in TDA to
feed machine learning algorithms with persistence diagrams. Indeed, most of the recent
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attempts have defined feature maps for persistence diagrams into Hilbert spaces and showed
these maps were stable with respect to the first diagram distance, and conjectured whether a
lower bound holds as well or not. In this work, we proved that this is never the case if the
Hilbert space is finite dimensional, and that such a lower bound has to go to zero with the
number of points for most other feature maps in the literature. We also provided experiments
that confirm this result, by showing a clear increase of the metric distortion with the number
of points for persistence diagrams generated uniformly in the unit upper half-square.
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