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—— Abstract

Despite strong stability properties, the persistent homology of filtrations classically used in Topological
Data Analysis, such as, e.g. the Cech or Vietoris-Rips filtrations, are very sensitive to the presence
of outliers in the data from which they are computed. In this paper, we introduce and study a
new family of filtrations, the DTM-filtrations, built on top of point clouds in the Euclidean space
which are more robust to noise and outliers. The approach adopted in this work relies on the notion
of distance-to-measure functions and extends some previous work on the approximation of such
functions.
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1 Introduction

The inference of relevant topological properties of data represented as point clouds in
Euclidean spaces is a central challenge in Topological Data Analysis (TDA).

Given a (finite) set of points X in R?, persistent homology provides a now classical
and powerful tool to construct persistence diagrams whose points can be interpreted as
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homological features of X at different scales. These persistence diagrams are obtained from
filtrations, i.e. nested families of subspaces or simplicial complexes, built on top of X. Among
the many filtrations available to the user, unions of growing balls U,ecx B(x,t) (sublevel
sets of distance functions), ¢ € R*, and their nerves, the Cech complex filtration, or its
usually easier to compute variation, the Vietoris-Rips filtration, are widely used. The main
theoretical advantage of these filtrations is that they have been shown to produce persistence
diagrams that are stable with respect to perturbations of X in the Hausdorff metric [6].
Unfortunately, the Hausdorff distance turns out to be very sensitive to noise and outliers,
preventing the direct use of distance functions and classical Cech or Vietoris-Rips filtrations
to infer relevant topological properties from real noisy data. Several attempts have been
made in the recent years to overcome this issue. Among them, the filtration defined by the
sublevel sets of the distance-to-measure (DTM) function introduced in [4], and some of its
variants [10], have been proven to provide relevant information about the geometric structure
underlying the data. Unfortunately, from a practical perspective, the exact computation
of the sublevel sets filtration of the DTM, that boils down to the computation of a k-th
order Voronoi diagram, and its persistent homology turn out to be far too expensive in most
cases. To address this problem, [8] introduces a variant of the DTM function, the witnessed
k-distance, whose persistence is easier to compute and proves that the witnessed k-distance
approximates the DTM persistence up to a fixed additive constant. In [3, 2], a weighted
version of the Vietoris-Rips complex filtration is introduced to approximate the persistence of
the DTM function, and several stability and approximation results, comparable to the ones
of [8], are established. Another kind of weighted Vietoris-Rips complex is presented in [1].

Contributions. In this paper, we introduce and study a new family of filtrations based on

the notion of DTM. Our contributions are the following;:
Given a set X C RY, a weight function f defined on X and p € [1,+00], we introduce
the weighted Cech and Rips filtrations that extend the notion of sublevel set filtration of
power distances of [3]. Using classical results, we show that these filtrations are stable
with respect to perturbations of X in the Hausdorff metric and perturbations of f with
respect to the sup norm (Propositions 3 and 4).
For a general function f, the stability results of the weighted Cech and Rips filtrations
are not suited to deal with noisy data or data containing outliers. We consider the
case where f is the empirical DTM-function associated to the input point cloud. In
this case, we show an outliers-robust stability result: given two point clouds X,Y C R¢,
the closeness between the persistence diagrams of the resulting filtrations relies on the
existence of a subset of X which is both close to X and Y in the Wasserstein metric
(Theorems 15 and 20).

Practical motivations. Even though this aspect is not considered in this paper, it is
interesting to mention that the DTM filtration was first experimented in the setting of
an industrial research project whose goal was to address an anomaly detection problem
from inertial sensor data in bridge and building monitoring [9]. In this problem, the input
data comes as time series measuring the acceleration of devices attached to the monitored
bridge/building. Using sliding windows and time-delay embedding, these times series are
converted into a series of fixed size point clouds in R?. Filtrations are then built on top
of these point clouds and their persistence is computed, giving rise to a time-dependent
sequence of persistence diagrams that are then used to detect anomalies or specific features
occurring along the time [11, 13]. In this practical setting it turned out that the DTM
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filtrations reveal to be not only more resilient to noise but also able to better highlight
topological features in the data than the standard Vietoris-Rips filtrations, as illustrated on
a basic synthetic example on Figure 1. One of the goals of the present work is to provide
theoretical foundations to these promising experimental results by studying the stability
properties of the DTM filtrations.

Time series without rapid shift Time series with rapid shift

Time series and ) . & I f
time delay embedding RGN TS M4

Conventional !
filtration

DTM filtration

Figure 1 A synthetic example comparing Vietoris-Rips filtration to DTM filtration. The first row
represents two time series with very different behavior and their embedding into R® (here a series
(z1,22,...,2x) is converted in the 3D point cloud {(z1, z2,x3), (2,23, 24), ..., (Tn—2,Tn-1,Zn)})-
The second row shows the persistence diagrams of the Vietoris-Rips filtration built on top of the two
point clouds (red and green points represent respectively the 0-dimensional 1-dimensional diagrams);
one observes that the diagrams do not clearly ‘detect’ the different behavior of the time series. The
third row shows the persistence diagrams of the DTM filtration built on top of the two point clouds;
a red point clearly appears away from the diagonal in the second diagram that highlights the rapid
shift occurring in the second time series.

Organisation of the paper. Preliminary definitions, notations, and basic notions on filtra-
tions and persistence modules are recalled in Section 2. The weighted Cech and Vietoris-Rips
filtrations are introduced in Section 3, where their stability properties are established. The
DTM-filtrations are introduced in Section 4. Their main stability properties are established in
Theorems 15 and 20, and their relation with the sublevel set filtration of the DTM-functions
is established in Proposition 16.

The various illustrations and experiments of this paper have been computed with the
GUDHLI library on Python [14].

For the complete version of this paper, including proofs and additional comments, see
the online version at https://arxiv.org/abs/1811.04757.

2  Filtrations and interleaving distance

In the sequel, we consider interleavings of filtrations, interleavings of persistence modules and
their associated pseudo-distances. Their definitions, restricted to the setting of the paper,
are briefly recalled in this section.

Let T =Rt and E = R? endowed with the standard Euclidean norm.
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Filtrations of sets and simplicial complexes. A family of subsets (V*);cr of E =R% is a
filtration if it is non-decreasing for the inclusion, i.e. for any s,t € T, if s <t then V* C V.
Given € > 0, two filtrations (V?);er and (W?)er of E are e-interleaved if, for every t € T,
Vit C Wtte and Wt C Ve, The interleaving pseudo-distance between (V!);e7 and (W?)er
is defined as the infimum of such e:

di(VYier, Wh)ier) = inf{e: (V') and (W") are e-interleaved}.

Filtrations of simplicial complexes and their interleaving distance are similarly defined:
given a set X and an abstract simplex S with vertex set X, a filtration of S is a non-decreasing
family (S*);er of subcomplexes of S. The interleaving pseudo-distance between two filtrations
(SH)ter and (SE)ier of S is the infimum of the € > 0 such that they are e-interleaved, i.e. for
any t € T, St C S5T¢ and S% C SjT.

Notice that the interleaving distance is only a pseudo-distance, as two distinct filtrations
may have zero interleaving distance.

Persistence modules. Let k be a field. A persistence module V over T'= RY is a pair V =
(VH)ier, (V) s<ter) where (V8)ep is a family of k-vector spaces, and (v} : V¥ — Vi) <ier a
family of linear maps such that:
for every t € T, vl : V! — V1 is the identity map,
for every r,s,t € T such that r < s <t, viovs = vl.
Given € > 0, an e-morphism between two persistence modules V and W is a family of linear
maps (¢ : V& — Wi+€), .1 such that the following diagrams commute for every s <t € T:

’Ut
Ve v

oo e
wt+e

Wste 5+5> Wite

If ¢ = 0 and each ¢, is an isomorphism, the family (¢;):er is said to be an isomorphism of
persistence modules.

An e-interleaving between two persistence modules V and W is a pair of e-morphisms
(pr : VE— W) e and (¢r : W — VIT€),cr such that the following diagrams commute
for every t € T

. v;‘,+2s
AV 3 Vt+25 Vt+e
N >
wit2e
Wt—i—e Wt t Wt+2e

The interleaving pseudo-distance between V and W is defined as
d;(V,W) = inf{e > 0,V and W are e-interleaved}.

In some cases, the proximity between persistence modules is expressed with a function.
Let n : T — T be a non-decreasing function such that for any ¢t € T, n(t) > t. A -
interleaving between two persistence modules V and W is a pair of families of linear maps
(¢ : VE— WD), and (¢, : WE — V28, such that the following diagrams commute
for every t € T

(M)

n(n(t)) yn(t)

C \Y
vn(v(t))
W) Wt : W

Vt

n(n(t))
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When 7 is t — t 4 ¢ for some ¢ > 0, it is called an additive c-interleaving and corresponds
with the previous definition. When 7 is t — ct for some ¢ > 1, it is called a multiplicative
c-interleaving.

A persistent module V is said to be g-tame if for every s,t € T such that s < t, the
map v! is of finite rank. The g-tameness of a persistence module ensures that we can
define a notion of persistence diagram — see [5]. Moreover, given two g-tame persistence
modules V, W with persistence diagrams D(V), D(W), the so-called isometry theorem states
that dp(D(V), D(W)) = d;(V,W) ([5, Theorem 4.11]) where dy(+,-) denotes the bottleneck
distance between diagrams.

Relation between filtrations and persistence modules. Applying the homology functor to
a filtration gives rise to a persistence module where the linear maps between homology groups
are induced by the inclusion maps between sets (or simplicial complexes). As a consequence,
if two filtrations are e-interleaved then their associated homology persistence modules are also
e-interleaved, the interleaving homomorphisms being induced by the interleaving inclusion
maps. Moreover, if the modules are g-tame, then the bottleneck distance between their
persistence diagrams is upperbounded by e.

The filtrations considered in this paper are obtained as union of growing balls. Their
associated persistence module is the same as the persistence module of a filtered simplicial
complex via the persistent nerve lemma ([7], Lemma 3.4). Indeed, consider a filtration
(V')er of E and assume that there exists a family of points (z;);e; € E! and a family of
non-decreasing functions r; : T — RT U {—o0}, i € I, such that, for every t € T, V! is equal
to the union of closed balls |J; B(z;,7;(t)), with the convention B(z;, —00) = (). For every
t € T, let V* denote the cover {B(z;,r;(t)),i € I} of V!, and S be its nerve. Let V be the
persistence module associated with the filtration (V*);er, and Vs the one associated with
the simplicial filtration (S*);er. Then V and Vs are isomorphic persistence modules. In
particular, if V is g-tame, V and Vs have the same persistence diagrams.

3 Weighted Cech filtrations

In order to define the DTM-filtrations, we go through an intermediate and more general
construction, namely the weighted Cech filtrations. It generalizes the usual notion of Cech
filtration of a subset of R?, and shares comparable regularity properties.

3.1 Definition

In the sequel of the paper, the Euclidean space E = R?, the index set T = RT and a real
number p > 1 are fixed. Consider X C E and f: X — RT. Forevery x € X and t € T, we
define
—00 ift < f(x),
ch( ) =
(7 = f(2)?)

We denote by By (z,t) = B(z,7,(t)) the closed Euclidean ball of center z and radius r,(t).
By convention, a Euclidean ball of radius —oo is the empty set. For p = oo, we also define

ro(t) {—oo if t < f(z),

t otherwise,

=

otherwise.

and the balls By(z,t) = B(z,7,(t)). Some of these radius functions are represented in
Figure 2.
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3] e p=1
— p=2
— =3
— =5
- — y=x

Figure 2 Graph of ¢t — 7, (t) for f(x) = 1 and several values of p.

» Definition 1. Let X C E and f: X — RT. For every t € T, we define the following set:
Vt[X7 f] = U Ff(%,t).

zeX
The family VX, f] = (VYX, f])i>0 is a filtration of E. It is called the weighted Cech
filtration with parameters (X, f,p). We denote by V[X, f] its persistent (singular) homology
module.

Note that V[X, f] and V[X, f] depend on fixed parameter p, that is not made explicit in
the notation.

Introduce V![X, f] = {Bj(z,t)}zex. It is a cover of V[ X, f] by closed Euclidean balls.
Let N(V![X, f]) be the nerve of the cover V![X, f]. It is a simplicial complex over the vertex
set X. The family N (V[X, f]) = (N (V'[X, f]))i>0 is a filtered simplicial complex. We denote
by Var[X, f] its persistent (simplicial) homology module. As a consequence of the persistent
nerve theorem [7, Lemma 3.4], V[X, f] and V[X, f] are isomorphic persistent modules.

When f =0, V[X, f] does not depend on p > 1, and it is the filtration of E by the sublevel
sets of the distance function to X. In the sequel, we denote it by V[X,0]. The corresponding
filtered simplicial complex, N'(V[X, 0]), is known as the usual Cech complex of X.

When p = 2, the filtration value of y € E, i.e. the infimum of the ¢ such that y € V*[X, f],
is called the power distance of y associated to the weighted set (X, f) in [3, Definition 4.1].
The filtration V[X, f] is called the weighted Cech filtration ([3, Definition 5.1]).

Example. Consider the point cloud X drawn on the left of Figure 3 (black). It is a 200-
sample of the uniform distribution on [—1,1]?> C R2. We choose f to be the distance function
to the lemniscate of Bernoulli (magenta). Let ¢ = 0.2. Figure 3 represents the sets V[ X, f]
for several values of p. The balls are colored differently according to their radius.

I
G
L

Figure 3 The set X and the sets V'[X, f] for t = 0.2 and several values of p.
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The following proposition states the regularity of the persistent module V[ X, f].

» Proposition 2. If X C E is finite and [ is any function, then V[X, f] is a pointwise
finite-dimensional persistence module.

More generally, if X is a bounded subset of E and f is any function, then V[X, f] is
g-tame.

3.2 Stability

We still consider a subset X C E and a function f : X — RT. Using the fact that two
e-interleaved filtrations induce e-interleaved persistence modules, the stability results for
the filtration V[X, f] of this subsection immediately translate as stability results for the
persistence module V[X, f].

The following proposition relates the stability of the filtration V[X, f] with respect to f.

» Proposition 3. Let g: X — R be a function such that sup,¢x | f(z) — g(z)] < €. Then
the filtrations VX, f] and V[X, g] are e-interleaved.

The following proposition states the stability of V[X, f] with respect to X. It generalizes
[3, Proposition 4.3] (case p = 2).

» Proposition 4. Let Y C E and suppose that f : X UY — RT 4s c-Lipschitz, ¢ > 0.

Suppose that X and Y are compact and that the Hausdorff distance dg(X,Y) < e. Then the
1

filtrations VX, f] and V[Y, f] are k-interleaved with k = e(1 + cP)%.

One can show that the bounds in Proposition 3 and 4 are tight.

When considering data with outliers, the observed set X may be very distant from the
underlying signal Y in Hausdorff distance. Therefore, the tight bound in Proposition 4 may
be unsatisfactory. Moreover, a usual choice of f would be dx, the distance function to X. But
the bound in Proposition 3 then becomes ||dx — dy||ec = dg(X,Y). We address this issue
in Section 4 by considering an outliers-robust function f, the so-called distance-to-measure
function (DTM).

3.3 Weighted Vietoris-Rips filtrations

Rather than computing the persistence of the Cech filtration of a point cloud X C F,
one sometimes consider the corresponding Vietoris-Rips filtration, which is usually easier
to compute.

If G is a graph with vertex set X, its corresponding clique complex is the simplicial
complex over X consisting of the sets of vertices of cliques of G. If S is a simplicial complex,
its corresponding flag complex is the clique complex of its 1-skeleton.

Recall that N(V'[X, f]) denotes the nerve of V![X, f], where V'[X, f] is the cover
{By(2,)}acx of VIIX, f].

» Definition 5. We denote by Rips(V'[X, f]) the flag complex of N(V'[X, f]), and by
Rips(V[X, f]) the corresponding filtered simplicial complex. It is called the weighted Rips
complex with parameters (X, f,p).

The following proposition states that the filtered simplicial complexes N (V[X, f]) and
Rips(V[X, f]) are 2-interleaved multiplicatively, generalizing the classical case of the Cech
and Vietoris-Rips filtrations (case f = 0).

58:7
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» Proposition 6. For everyt > 0,
NOV'X, f]) € Rips(V'[X, f]) € N(V*[X, f])

Using Theorem 3.1 of [1], the multiplicative interleaving Rips(V[X, f]) C N (V*[X, f])
can be improved to Rips(V![X, f]) C N (V![X, f]), where ¢ = ,/dQT‘_jl and d is the dimension

of the ambient space F = R%.

Note that weighted Rips filtration shares the same stability properties as the weighted
Cech filtration. Indeed, the proofs of Proposition 3 and 4 immediately extend to this case.

In order to compute the flag complex Rips(V![X, f]), it is enough to know the filtration
values of its 0- and 1-simplices. The following proposition describes these values.

» Proposition 7. Let p < 4+o0. The filtration value of a vertex x € X is given by tx ({z}) =

f(x).
The filtration value of an edge {x,y} C E is given by

tx({m,y)) = { max{f(2), f(y)} ¥ llz =yl <|f(@)" = Fly)]7,

t otherwise,

where t is the only positive root of

=

lz =yl = (& = f(2)")7 + (& = f(y)") (1)

When ||z —y[| > |f(2)? — f(y)p|%, the positive root of Equation (1) does not always
admit a closed form. We give some particular cases for which it can be computed.
For p = 1, the root is tx ({z,y}) = w,

- \/((f(w)+f(y))2+\lw—y|\2)((f(w)—f(y))2+Hw—yH2)
for p=2,itis tx({z,y}) = STl ,

for p = 0o, the condition reads ||z — y|| > max{f(z), f(y)}, and the root is tx ({z,y}) =
fe2ul I cither case, tx ({z,y}) = max{f(z), f(y), L340},

We close this subsection by discussing the influence of p on the weighted Cech and
Rips filtrations. Let Do(N(V[X, f,p])) be the persistence diagram of the Oth-homology
of N(V[X, f,p]). We say that a point (b,d) of Do(V[X, f,p]) is non-trivial if b # d. Let
Do (Rips(V[X, f,p])) be the persistence diagram of the Oth-homology of Rips(V[X, f,p]).
Note that Do(N(V[X, f,p])) = Do(Rips(V[X, f,p])) since the corresponding filtrations share
the same 1-skeleton.

» Proposition 8. The number of non-trivial points in Do(Rips(V[X, f,p])) is non-increasing
with respect to p € [1,+00). The same holds for Do(N (V[X, f,p])).

Figure 7 in Subsection 4.4 illustrates the previous proposition in the case of the DTM-
filtrations. Greater values of p lead to sparser Oth-homology diagrams.

Now, consider k > 0, and let Dy (N (V[X, f,p])) be the persistence diagram of the kth-
homology of N (V[X, f,p]). In this case, one can easily build examples showing that the
number of non-trivial points of Dy (N (V[X, f,p])) does not have to be non-increasing with
respect to p. The same holds for Dy (Rips(V[X, f,p])).
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4 DTM-filtrations

The results of previous section suggest that in order to construct a weighted Cech filtration
V[X, f] that is robust to outliers, it is necessary to choose a function f that depends on
X and that is itself robust to outliers. The so-called distance-to-measure function (DTM)
satisfies such properties, motivating the introduction of the DTM-filtrations in this section.

4.1 The distance to measure (DTM)

Let i be a probability measure over E = R%, and m € [0,1) a parameter. For every x € R4,

let 8, be the function defined on E by 6, m(x) = inf{r > 0, u(B(x,r)) > m}.
» Definition 9. Let m € [0,1]. The DTM p of parameter m is the function:

dym: £ — R

1 m
r — -+ [y 6z (x)dt
When m is fivzed — which is the case in the following subsections — and when there is no risk
of confusion, we write d,, instead of dy m.

Notice that when m =0, d,, ., is the distance function to supp(u), the support of p.

» Proposition 10 ([4], Corollary 3.7). For every probability measure ji and m € [0,1), dym
s 1-Lipschitz.

A fundamental property of the DTM is its stability with respect to the probability
measure 4 in the Wasserstein metric. Recall that given two probability measures p and v
over E, a transport plan between p and v is a probability measure m over F x E whose

marginals are y and v. The Wasserstein distance with quadratic cost between p and v is
1

defined as Wa(u,v) = (inf,r S g 2 = ylPdr(x, y)) *, where the infimum is taken over all
the transport plans 7. When p = px and v = py are the empirical measures of the finite
point clouds X and Y, i.e the normalized sums of the Dirac measures on the points of X
and Y respectively, we write Wa(X,Y") instead of Wa(ux, py).

» Proposition 11 ([4], Theorem 3.5). Let u,v be two probability measures, and m € (0, 1).
Then

Hdu,m - dl/,m”oo S m_%WQ(/-%V)-

Notice that for every « € E, d,,(z) is not lower than the distance from x to supp(u), the
support of p. This remark, along with the propositions 10 and 11, are the only properties of
the DTM that will be used to prove the results in the sequel of the paper.

In practice, the DTM can be computed. If X is a finite subset of E of cardinal n, we
ko with ko an integer. In this case,

n’

denote by pux its empirical measure. Assume that m =
dy ,m reformulates as follows: for every x € E,

ko
1
iy () = % >l = pr()]%,
k=1

where p1(z), ..., Pk, (z) are a choice of kg-nearest neighbors of z in X.

58:9
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4.2 DTM-filtrations

In the following, the two parameters p € [1, +o0] and m € (0, 1) are fixed.

» Definition 12. Let X C FE be a finite point cloud, px the empirical measure of X, and
d, . the corresponding DTM of parameter m. The weighted Cech filtration VX, duyl, as
defined in Definition 1, is called the DTM-filtration associated with the parameters (X, m,p).
It is denoted by W[X]|. The corresponding persistence module is denoted by W[X].

Let W' X] = V'[X,d,,| denote the cover of W*[X] as defined in section 3, and let
N(W'X]) be its nerve. The family NW[X])) = (N(W'[X]))t>0 is a filtered simplicial
complex, and its persistent (simplicial) homology module is denoted by Wx/[X]. By the
persistent nerve lemma, the persistence modules W[X] and W/[X] are isomorphic.

As in Definition 5, Rips(W!'[X]) denotes the flag complex of N'(W'[X]), and Rips(W[X])
the corresponding filtered simplicial complex.

Example. Consider the point cloud X drawn on the left of Figure 4. It is the union of
X and T, where X is a 50-sample of the uniform distribution on [~1,1]2 C R2, and T is a
300-sample of the uniform distribution on the unit circle. We consider the weighted Cech
filtrations VI, 0] and VX, 0], and the DTM-filtration W[X], for p =1 and m = 0.1. They
are represented in Figure 4 for the value ¢t = 0.3.

VL, 0]

Figure 4 The set X and the sets V*[I',0], V*[X,0] and W'[X] for p=1, m = 0.1 and ¢ = 0.3.

0
\, .
., .—-’

w'X]

Because of the outliers X, the value of ¢ from which the sets V* [X, 0] are contractible is
small. On the other hand, we observe that the set W*[X] does not suffer too much from the
presence of outliers.

We plot in Figure 5 the persistence diagrams of the persistence modules associated to
Rips(V[T, 0]), Rips(V[X,0]) and RipsW[X]) (p =1, m =0.1).

.

D(Rips(V[T,0)) D(Rips(V[X,0])) D(Rips(WI[X]))

Figure 5 Persistence diagrams of some simplicial filtrations. Points in red (resp. green) represent
the persistent homology in dimension 0 (resp. 1).
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Observe that the diagrams D(Rips(V[I,0])) and D(Rips(W[X])) appear to be close to
each other, while D(Rips(V[X,0])) does not.

Applying the results of Section 3, we immediately obtain the following proposition.

» Proposition 13. Consider two measures v, v on E with compact supports X and Y. Then
di(VIX,du), VIY.d,)) < m™EWa(p,v) + 27 du(X,Y).

In particular, if X and Y are finite subsets of E, using p = px and v = vy, we obtain
d;(W[X],W[Y]) < m 2 Wa(X,Y) + 25 dy (X, Y).

Note that this stability result is worse than the stability of the usual Cech filtrations,
which only involves the Hausdorff distance: d;(V[X,0],V]Y,0]) < duy(X,Y). However, the
term W (X,Y) is inevitable.

In the case where the Hausdorff distance dg(X,Y") is small, it would be more robust to
consider these usual Cech filtrations. However, in the case where is it large, the usual Cech
filtrations may be very distant. On the other hand, the DTM-filtrations may still be close,
as we discuss in the next subsection.

4.3 Stability when p =1

We first consider the case p = 1, for which the proofs are simpler and results are stronger. We
fix m € (0,1). If u is a probability measure on E with compact support supp(u), we define

c(p,m) = sup (dy,m)-
supp(u)

If 44 = pr is the empirical measure of a finite set I' C E, we denote it ¢(T',m).

» Proposition 14. Let pu be a probability measure on E with compact support I'. Let d,,
be the corresponding DTM. Consider a set X C E such that ' C X. The weighted Cech
filtrations VI',d,] and V[X,d,] are c(u, m)-interleaved.

Moreover, if Y C E is another set such that ' CY, V[X,d,] and V[Y,d,] are c(u, m)-
interleaved.

In particular, if T' is a finite set and p = pp its empirical measure, W(I'] and VX, d,,]
are ¢(T', m)-interleaved.

» Theorem 15. Consider two measures u,v on E with supports X and Y. Let ', v’ be two
measures with compact supports I' and Q such that ' C X and Q CY. We have

d;(V[X,d,), VY, dy)) < m~2Wa(p, ') +m~ 2 Wa(p', v/ ) +m =2 Wa (v, v)+c(i!,m)+c(v, m).
In particular, if X and Y are finite, we have

d;(WX],W[Y]) < m 2 Wa(X,T) +m 2 Wa(T, Q) + m 2 Wa(Y) + ¢(T', m) + (2, m).
Moreover, with Q0 =Y, we obtain

d;(WIX],W[Q)) < m™2Wa(X,T) +m~ 2 Wa(I', Q) + ¢(T',m) + (2, m).

The last inequality of Theorem 15 can be seen as an approximation result. Indeed,
suppose that € is some underlying set of interest, and X is a sample of it with, possibly,
noise or outliers. If one can find a subset I' of X such that X and I" are close to each other —
in the Wasserstein metric — and such that T'" and Q) are also close, then the filtrations W[X]
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and W[Q] are close. Their closeness depends on the constants ¢(I', m) and ¢(2, m). More
generally, if X is finite and g’ is a measure with compact support Q C X not necessarily
finite, note that the first inequality gives

d;(WIX],VIQ,dw]) <m™2Wa(X,T) + m ™2 Wa(ur, 1) + c(T,m) + c(i/,m).

For any probability measure u of support I' C E, the constant ¢(u, m) might be seen as a
bias term, expressing the behaviour of the DTM over T'. It relates to the concentration of u
on its support. Recall that a measure p with support I' is said to be (a,b)-standard, with
a,b >0, if for all z € T and r > 0, u(B(z,7)) > min{ar®, 1}. For example, the Hausdorff
measure associated to a compact b-dimensional submanifold of E is (a, b)-standard for some
a > 0. In this case, a simple computation shows that there exists a constant C', depending
only on @ and b, such that for all z € T, d, p(2) < Cm?. Therefore, ¢(u,m) < Cmb.

Regarding the second inequality of Theorem 15, suppose for the sake of simplicity that
one can choose I' = 2. The bound of Theorem 15 then reads

d;(WIX],W[Y]) < m 2 Wa(X,T) + m 2 Wy(T,Y) + 2¢(T, m).

Therefore, the DTM-filtrations W[X] and W[Y] are close to each other if ux and uy are
both close to a common measure pr. This would be the case if X and Y are noisy samples
of I'. This bound, expressed in terms of Wasserstein distance rather than Hausdorff distance,
shows the robustness of the DTM-filtration to outliers.

Notice that, in practice, for finite data sets X,Y and for given I' and 2, the constants
¢(T'ym) and ¢(Q2,m) can be explicitly computed, as it amounts to evaluating the DTM on T'
and €. This remark holds for the bounds of Theorem 15.

Example. Consider the set X = X UT as defined in the example page 10. Figure 6 displays
the sets W[X], V'[X,d,.] and W*[[] for the values p =1, m = 0.1 and ¢ = 0.4 and the
persistence diagrams of the corresponding weighted Rips filtrations, illustrating the stability
properties of Proposition 14 and Theorem 15.

3

D(Rips(WI[X])) D(Rips(V[X, dpr])) D(Rips(WII))

Figure 6 Filtrations for ¢t = 0.4, and their corresponding persistence diagrams.
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The following proposition relates the DTM-filtration to the filtration of E by the sublevels
sets of the DTM.

» Proposition 16. Let yu be a probability measure on E with compact support K. Let
m € [0,1) and denote by V the sublevel sets filtration of d,,. Consider a finite set X C E.
Then

di(V,W[X]) < m™EWa(p, px) + 26 + c(p,m),
with e =dg (K UX, X).

As a consequence, one can use the DTM-filtration to approximate the persistent homology
of the sublevel sets filtration of the DTM, which is expensive to compute in practice.

We close this subsection by noting that a natural strengthening of Theorem 15 does not
hold: let m € (0,1) and E = R™ with n > 1. There is no constant C' such that, for every
probability measure u, v on E with supports X and Y, we have:

dz(V[X7 du,m]7 V[Y, dl/,mD S CW2 (,U,, V)-
The same goes for the weaker statement

di (V[X7 duﬂn]; V[Ya dl/,m]) S CW2 (/.L7 l/).

4.4 Stability when p > 1

Now assume that p > 1, m € (0, 1) being still fixed. In this case, stability properties turn out
to be more difficult to establish. For small values of ¢, Lemma 18 gives a tight non-additive
interleaving between the filtrations. However, for large values of ¢, the filtrations are poorly
interleaved. To overcome this issue we consider stability at the homological level, i.e. between
the persistence modules associated to the DTM filtrations.

If p is a probability measure on E with compact support I', we define
c(p,m,p) = Sl;p(du,m) + #(p)tu (),

where k(p) =1 — %, and t,(I") is the filtration value of the simplex I' in N (V[I',d,,]), the
(simplicial) weighted Cech filtration. Equivalently, ¢, (I") is the value ¢ from which all the
balls By, (7v,t), v € I', share a common point.

If 4 = pr is the empirical measure of a finite set I' C E, we denote it ¢(T, m, p).

Note that we have the inequality fdiam(I) < ¢,(I') < 2diam(T).

» Proposition 17. Let p be a measure on E with compact support I', and d,, be the corres-
ponding DTM of parameter m. Consider a set X C E such that I' C X. The persistence
modules VI, d,,] and V[X,d,] are c¢(p, m, p)-interleaved.

Moreover, if Y C E is another set such that T C Y, V[X,d,,| and VY, d,] are c(u, m,p)-
interleaved.

In particular, if T is a finite set and p = pr its empirical measure, W[I'] and VX, d,, |
are ¢(T', m, p)-interleaved.

The proof involves the two following ingredients. The first lemma gives a (non-additive)
interleaving between the filtrations W[I'] and V[X,d,.], relevant for low values of ¢, while
the second proposition gives a result for large values of ¢.
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» Lemma 18. Let i1, T and X be as defined in Proposition 17. Let ¢ : ¢ +— 2l %t 4 supr d,, .
Then for every t > 0,

V[T, d,) € VX, d,) C VOO, d,).

» Proposition 19. Let u,T' and X be as defined in Proposition 17. Consider the map vt :
VX, d,] = VI*[X, d,] induced in homology by the inclusion v* : V'[X,d,] — V*T¢[X,d,].
Ift > t,(T), then v* is trivial.

» Theorem 20. Consider two measures i, v on E with supports X and Y. Let p',v' be two
measures with compact supports I' and Q such that T C X and Q CY. We have

di(V[X, d,], VY, dy)) < m~2Wa(u, i) +m™ 2 Wa(u',v') + m™ 2 Wa(/,v)
+ (W', m,p) + c(v',m, p).
In particular, if X and Y are finite, we have
di(W[X],W[Y]) < m 2 Wa(X,T)+m 2 Wa (T, Q) +m 2 Wa(Q,Y) +c(T, m, p)+c(,m, p).
Moreover, with Q =Y, we obtain
d;(W[X],W[T)) < m~2Wy(X,T) +m~2Wa(T, Q) + (T, m, p) + ¢(Q, m, p).

Notice that when p = 1, the constant ¢(T', m, p) is equal to the constant ¢(T",m) defined
in Subsection 4.3, and we recover Theorem 15 in homology.

As an illustration of these results, we represent in Figure 7 the persistence diagrams
associated to the filtration Rips(W[X]) for several values of p. The point cloud X is the one
defined in the example page 10. Observe that, as stated in Proposition 8, the number of red
points (homology in dimension 0) is non-increasing with respect to p.

14 - . 14 - . 14 -

p=1 p=2 p =00

Figure 7 Persistence diagrams of the simplicial filtrations Rips(W[X]) for several values of p.

5 Conclusion

In this paper we have introduced the DTM-filtrations that depend on a parameter p > 1.
This new family of filtrations extends the filtration introduced in [3] that corresponds to the
case p = 2.

The established stability properties are, as far as we know, of a new type: the closeness
of two DTM-filtrations associated to two data sets relies on the existence of a well-sampled
underlying object that approximates both data sets in the Wasserstein metric. This makes
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the DTM filtrations robust to outliers. Even though large values of p lead to persistence
diagrams with less points in the Oth homology, the choice of p = 1 gives the strongest stability
results. When p > 1, the interleaving bound is less significant since it involves the diameter
of the underlying object, but the obtained bound is consistent with the case p = 1 as it
converges to the bound for p =1 as p goes to 1.

It is interesting to notice that the proofs rely on only a few properties of the DTM. As a
consequence, the results should extend to other weight functions, such that the DTM with an
exponent parameter different from 2, or kernel density estimators. Some variants concerning
the radius functions in the weighted Cech filtration, are also worth considering. The analysis
shows that one should choose radius functions whose asymptotic behaviour look like the one
of the case p = 1. In the same spirit as in [12, 3] where sparse-weighted Rips filtrations were
considered, it would also be interesting to consider sparse versions of the DTM-filtrations
and to study their stability properties.

Last, the obtained stability results, depending on the choice of underlying sets, open the
way to the statistical analysis of the persistence diagrams of the DTM-filtrations, a problem
that will be addressed in a further work.
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