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Abstract
Let P be a polygonal domain of h holes and n vertices. We study the problem of constructing a data
structure that can compute a shortest path between s and t in P under the L1 metric for any two
query points s and t. To do so, a standard approach is to first find a set of ns “gateways” for s and
a set of nt “gateways” for t such that there exist a shortest s-t path containing a gateway of s and a
gateway of t, and then compute a shortest s-t path using these gateways. Previous algorithms all
take quadratic O(ns · nt) time to solve this problem. In this paper, we propose a divide-and-conquer
technique that solves the problem in O(ns + nt logns) time. As a consequence, we construct a
data structure of O(n+ (h2 log3 h/ log log h)) size in O(n+ (h2 log4 h/ log log h)) time such that each
query can be answered in O(logn) time.
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1 Introduction

Let P be a polygonal domain of h holes with a total of n vertices, i.e., there is an outer
simple polygon containing h disjoint holes and each hole itself is a simple polygon. If h = 0,
then P becomes a simple polygon. For any two points s and t, an L1 shortest path from s to
t in P is a path connecting s and t with the minimum length under the L1 metric.

We consider the two-point L1 shortest path query problem: Construct a data structure
for P that can compute an L1 shortest path in P for any two query points s and t. To do so,
a standard approach is to first find a set of ns “gateways” for s and a set of nt “gateways” for
t such that there exist a shortest s-t path containing a gateway of s and a gateway of t, and
then compute a shortest s-t path using these gateways. Previous algorithms [6,7] all take
quadratic O(ns ·nt) time to solve this problem. In this paper, we propose a divide-and-conquer
technique that solves the problem in O(ns + nt logns) time.

As a consequence, we construct a data structure of O(n+ (h2 log3 h/ log log h)) size in
O(n+ (h2 log4 h/ log log h)) time such that each query can be answered in O(logn) time1.
Previously, Chen et al. [7] built a data structure of O(n2 logn) size in O(n2 log2 n) time that
can answer each query in O(log2 n) time. Later Chen et al. [6] achieved O(logn) time queries
by building a data structure of O(n+ h2 · log h · 4

√
logh) space in O(n+ h2 · log2 h · 4

√
logh)

time. The preprocessing complexities of our result improve the previous work [6] by a
super polylogarithmic factor. More importantly, our divide-and-conquer technique may be
interesting in its own right.

1 Throughout the paper, unless otherwise stated, when we say that the query time of a data structure is
O(T ), we mean that the shortest path length can be computed in O(T ) time and an actual shortest
path can be output in additional linear time in the number of edges of the path.
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59:2 Two-Point L1 Shortest Path Queries

Related Work. Better results exist for certain special cases. If P is a simple polygon, then
a shortest path in P with minimum Euclidean length is also an L1 shortest path [20], and
thus by using the data structure in [17,19] for the Euclidean metric, one can build a data
structure in O(n) time and space that can answer each query in O(logn) time; recently Bae
and Wang [2] proposed a simpler approach that can achieve the same performance. If P and
all holes of it are rectangles with axis-parallel edges, then ElGindy and Mitra [14] constructed
a data structure of O(n2) size in O(n2) time that supports O(logn) time queries.

Better results are also known for one-point queries in the L1 metric [8, 11,12,22,24,25],
i.e., s is fixed in the input and only t is a query point. In particular, Mitchell [24, 25] built a
data structure of O(n) size in O(n logn) time that can answer each such query in O(logn)
time. Later Chen and Wang [8] reduced the preprocessing time to O(n + h log h) if P is
already triangulated (which can be done in O(n logn) or O(n + h log1+ε h) time for any
ε > 0 [3, 4]), while the query time is still O(logn).

The Euclidean counterparts have also been studied. For one-point queries, Hershberger
and Suri [21] built a shortest path map of O(n) size with O(logn) query time and the map can
be built in O(n logn) time and space. For two-point queries, Chiang and Mitchell [10] built
a data structure of O(n11) size that can support O(logn) time queries, and they also built
a data structure of O(n+ h5) size with O(h logn) query time. Other results with tradeoff
between preprocessing and query time were also proposed in [10]. Also, Chen et al. [5] showed
that with O(n2) space one can answer each two-point query in O(min{|Qs|, |Qt|} · logn)
time, where Qs (resp., Qt) is the set of vertices of P visible to s (resp., t). Guo et al. [18]
gave a data structure of O(n2) size that can support O(h logn) time two-point queries.

Our Techniques. We follow a similar scheme as in [6, 7], using a “path-preserving” graph
G proposed by Clarkson et al. [11, 12] to determine a set Vg(q) of O(logn) points (called
“gateways”) for each query point q ∈ {s, t}, such that there exists an L1 shortest s-t path that
contains a gateway in Vg(s) and a gateway in Vg(t). To find a shortest s-t path, the main
difficulty is to solve the following sub-problem. Let π(p, q) denote a shortest path between
two points p and q in P, and let d(p, q) denote its length. Suppose that the gateways of
s (resp., t) are formed as a cycle around s (resp., t) such that there is a shortest s-t path
containing a gateway of s and a gateway of t (e.g., see Fig. 1). The point s is visible to
each gateway p in Vg(s), and thus d(s, p) can be obtained in O(1) time. The same applies to
t. Also suppose in the preprocessing we have computed d(p, q) for any p ∈ Vg(s) and any
q ∈ Vg(t). The goal of the problem is to find p ∈ Vg(s) and q ∈ Vg(t) such that the value
d(s, p) + d(p, q) + d(q, t) is minimized, so that a shortest s-t path contains both p and q.

To solve the sub-problem, a straightforward method is to try all pairs of p and q with
p ∈ Vg(s) and q ∈ Vg(t), which is the approach used in both algorithms in [6, 7]. This takes
O(ns · nt) time, where ns = |Vg(s)| and nt = |Vg(t)|. In [7], both ns and nt are O(logn),
which results in O(log2 n) query time. In [6], both ns and nt are reduced to O(

√
logn),

and thus the query time becomes O(logn), by using a larger “enhanced graph” GE (than
the original graph G). More specifically, the size of G is O(n logn) while the size of GE is
O(n
√

logn2
√

logn) (which is further reduced to O(h
√

log h2
√

logh) by other techniques [6]).
Our main contribution is to develop an O(ns + nt logns) time algorithm for solving the

above sub-problem. To this end, we explore the geometric structures of the problem and
propose a divide-and-conquer technique, which can be roughly described as follows. For
simplicity, suppose we only consider one piece of the gateway cycle of s (e.g., those in the
first quadrant of s) and order the gateways of s on that piece by p1, p2, . . . , pk (e.g., see
Fig. 2). Then, in a straightforward way, for p1, we find a gateway, denoted by q1, of t that
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Figure 1 Illustrating the gateways of s and t
and a shortest s-t path.
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Figure 2 Illustrating our divide-and-conquer
scheme.
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Figure 3 A non-ideal situation: The shortest
path from p1 to q1 crosses the gateway cycle of s.
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Figure 4 A non-ideal situation: The shortest
path from pm to qm is not inside the region Q.

minimizes the value d(p1, q) + d(q, t) for all q ∈ Vg(t). Similarly, we find such a gateway
qk of t for pk. Let P1 be the s-t path sp1 ∪ π(p1, q1) ∪ q1t. Similarly, let P2 be the path
spk ∪ π(pk, qk) ∪ qkt. In the “ideal” situation, the two paths do not intersect except at s
and t, and they together form a cycle enclosing a plane region Q that contains all gateways
p1, p2, . . . , pk (e.g., see Fig. 2), and let V ′g(t) be the gateways of t that are also contained in
Q. The next step is to process the median gateway pm of s with m = k

2 . The key observation
is that we only need to consider the gateways in V ′g(t) instead of all the gateways of t, i.e.,
if a shortest s-t path contains pm, then there must be a shortest s-t path containing pm
and a gateway in V ′g(t). In this way, we only need to find the point, denoted by qm, that
minimizes the value d(pm, q) + d(q, t) for all q ∈ V ′g(t). Further, in the “ideal” situation, the
path Pm = spm ∪ π(pm, qm) ∪ qmt is inside the region Q and divides Q into two sub-regions
(e.g., see Fig. 2). We then proceed on the two sub-regions recursively.

The above exhibits our algorithm in an “ideal” situation. Our major effort is to deal with
the “non-ideal” situations. For example, what if the path P1 crosses the cycle piece of s (e.g.,
see Fig. 3), what if the path Pm is not in the region Q (e.g., see Fig. 4), what if q1 = qk, etc.

Our divide-and-conquer scheme may be somewhat similar to that for two-vertex shortest
path queries in planar graphs, e.g., [9, 13]. However, a main difference is that in the planar
graph case the query vertices are both from the input graph and the gateways are already
known for each vertex (more specifically, the gateways in the planar graph case are the
“border vertices” of the subgraphs in the decomposition of the input graph by separators),
and thus one can compute certain information for the gateways in the preprocessing (many
other techniques for shortest path queries in planar graphs, e.g., [15, 16, 26], also rely on
this), while in our problem the gateways are only determined “online” during queries because
query points can be anywhere in P. This causes us to develop different techniques to tackle
the problem (especially to resolve the non-ideal situations).

It might be tempting to see whether the Monge matrix searching techniques [1, 23] can
be applied to further shave the logarithmic factor. However, due to the non-ideal situations
such as those shown in Fig. 3 and Fig. 4, it is not clear to us whether this is possible.

SoCG 2019



59:4 Two-Point L1 Shortest Path Queries

With the above O(ns + nt logns) time algorithm, if both ns and nt are bounded by
O(logn), we can only obtain an O(logn log logn) time query algorithm. To reduce the time
to O(logn), we borrow some idea from the previous work [6] to construct a larger graph
G1, so that we can guarantee ns = O(logn) and nt = O(logn/ log logn), which leads to
an O(logn) time query algorithm. The size of G1 is only O(n log2 n/ log logn), which is
slightly larger than the original O(n logn)-sized graph G [7, 11,12] and much smaller than
the O(n

√
logn2

√
logn)-sized enhanced graph GE in [6]. Further, by the techniques similar

to those used in [6], we can reduce the graph size to O(h log2 h/ log log h).
The rest of the paper is organized as follows. In Section 2, we define notation and review

some previous work. In Section 3, we solve the sub-problem discussed above. In Section 4, we
present our overall result. For ease of exposition, we make a general position assumption that
no two vertices of P including s and t have the same x- or y-coordinate. Unless otherwise
stated, “length” refers to L1 length and “shortest paths” refers to L1 shortest paths. Due to
the space limit, proofs and many details are omitted but can be found in the full paper.

2 Preliminaries

We introduce some notation and concepts, some of which are borrowed from the previous
work [6, 7, 11, 12]. Two points p and q are visible to each other if the line segment pq is in
P. For a point p and a vertical line segment l in P, if there is a point q ∈ l such that pq
is horizontal and is in P, then we say p is horizontally visible to l and call q the horizontal
projection of p on l. For any point p in the plane, we use x(p) and y(p) to denote its x- and
y-coordinates, respectively. For a path π in P, we use |π| to denote its length.

For two points p and q in P , we use π(p, q) to denote a shortest path from p to q and define
d(p, q) = |π(p, q)|. For a segment pq, let |pq| denote its length. A path in P is x-monotone
if its intersection with any vertical line is either empty or connected. The y-monotone is
defined similarly. If a path is both x-monotone and y-monotone, then it is xy-monotone.
Note that an xy-monotone path in P is a shortest path. Also, if there is an xy-monotone
path between p and q in P, then d(p, q) = |pq| (although p may not be visible to q).

Let V denote the set of all vertices of P . To differentiate from the vertices/edges in some
graphs we define later, we often refer to the vertices/edges of P as polygon vertices/edges.
Let ∂P denote the boundary of P (including the boundaries of all the holes). For any point
p ∈ P, if we shoot a ray rightwards from p, let pr denote the first point of ∂P hit by the
ray and call it the rightward projection of p on ∂P. Similarly, we can define the leftward,
upward, downward projections of p and denote them by pl, pu, pd, respectively.

A “path-preserving” graph G. Clarkson et al. [11] proposed a graph G for computing L1
shortest paths in P . We sketch G below since our algorithm will use a modified version of it.

To define G, there are two types of Steiner points. For each vertex of P , its four projections
on ∂P are type-1 Steiner points. Hence, there are O(n) Steiner points on ∂P. The type-2
Steiner points are defined on cut-lines, which can be organized into a binary tree T , called
the cut-line tree. Each node u of T corresponds to a set V(u) of vertices of P and stores a
cut-line l(u) that is a vertical line through the median x-coordinate of all vertices of V(u). If
u is the root, then V(u) = V . In general, for the left (resp., right) child v of u, V(v) consists
of all vertices of V(u) to the left (resp., right) of l(u). For each node u ∈ T and each vertex
p of V(u), if p is horizontally visible to l(u), then the horizontal projection of p on l(u) is
a type-2 Steiner point. Therefore, l(u) has at most |V(u)| Steiner points. Since the total
size |V(u)| for all u in the same level of T is O(n) and the height of T is O(logn), the total
number of type-2 Steiner points is O(n logn).
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The graph G is thus defined as follows. First of all, the vertex set of G consists of all
Steiner points (including all polygon vertices). Hence, it has O(n logn) nodes. For the edges
of G, for each vertex p of P, if q is a Steiner point defined by p, then G has an edge pq.
For each polygon edge e of P, e may contain multiple Steiner points, and G has an edge
connecting each adjacent pair of them. Further, for each cut-line l and for any two adjacent
Steiner points on l, if they are visible to each other, then G has an edge connecting them.

Clearly, G has O(n logn) nodes and edges. It was shown in [11, 12] that for any two
polygon vertices of P , the shortest path between them in the graph G is also a shortest path
in P (and thus the graph “preserves” shortest paths of the polygon vertices of P).

Gateways. To answer shortest path queries, Chen et al. [7] “insert” the two query points s
and t into G by connecting them to some “gateways”. Intuitively, the gateways would be
the vertices of G that connect to s and t respectively if s and t were vertices of P, and thus
they control shortest paths from s to t. Specifically, let Vg(s,G) denote the set of gateways
for s, which has two subsets V 1

g (s,G) and V 2
g (s,G) of sizes O(1) and O(logn), respectively.

We first define V 1
g (s,G). For each projection point q of s on ∂P, if v1 and v2 are the two

Steiner points adjacent to q on the edge of P containing q, then v1 and v2 are in V 1
g (s,G).

For V 2
g (s,G), it is defined recursively on the cut-line tree T . Let u be the root of T . If s

is horizontally visible to the cut-line l(u), then l(u) is called a projection cut-line of s and
the Steiner point on l(u) immediately above (resp., below) the horizontal projection s′ of s
on l(u) is a gateway in V 2

g (s,G) if it is visible to s′. Regardless of whether s is horizontally
visible to l(u) or not, if s is to the left (resp., right) of l(u), then we proceed to the left (resp.,
right) child of u until we reach a leaf of T . Clearly, s has O(logn) projection cut-lines, on a
path from the root to a leaf in T . Hence, |V 2

g (s,G)| = O(logn). Similarly we can define the
gateway set Vg(t, G) for t. As will be shown later, for each gateway p of s, sp is in P, and
thus d(s, p) = |sp|. The same applies to t. It is known [7] that if there is a shortest s-t path
containing a vertex of P, then there must be a shortest s-t path containing a gateway of s
and a gateway of t; otherwise, there must exist a shortest s-t path π(s, t) that is xy-monotone
with the following property: either π(s, t) consists of a horizontal segment and a vertical
segment, or π(s, t) consists of three segments: ss′, s′t′, and t′t, where s′ is a vertical (resp.,
horizontal) projection of s and t′ is the horizontal (resp., vertical) projection of t on the same
polygon edge, and we call such a shortest path a trivial shortest path.

A straightforward query algorithm. Given s and t, we can compute d(s, t) as follows. First,
we check whether there exists a trivial shortest s-t path, which can be done in O(logn) time
by using vertical and horizontal ray-shootings, after O(n logn) time (or O(n + h log1+ε h)
time for any ε > 0 [3]) preprocessing to build the vertical and horizontal decompositions of
P. If yes, then we are done. Otherwise, we compute Vg(s,G) and Vg(t, G) in O(logn) time
after certain preprocessing [6, 7]. Suppose we have computed d(u, v) for any two vertices u
and v of G in the preprocessing. Then, d(s, t) = minp∈Vg(s,G),q∈Vg(t,G)(|sp|+ d(p, q) + |qt|)
can be computed in O(log2 n) time since both |Vg(s,G)| and |Vg(t, G)| are O(logn).

The main sub-problem. To reduce the query time, since |V 1
g (s,G)| = O(1) and |V 1

g (t, G)| =
O(1), the main sub-problem is to determine the value minp∈V 2

g (s,G),q∈V 2
g (t,G)(|sp|+ d(p, q) +

|qt|). This is the sub-problem we discussed in Section 1. Note that the case p ∈ V 1
g (s,G) and

q ∈ V 2
g (t, G), or the case p ∈ V 2

g (s,G) and q ∈ V 1
g (t, G) can be handled in O(logn) time.

SoCG 2019
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3 Solving the Main Sub-Problem

In this section, we present an O(ns + nt logns) time algorithm for our main sub-problem,
where ns = |V 2

g (s,G)| and nt = |V 2
g (t, G)|.

We consider the vertices of G also as the corresponding points in P. Note that although
G preserves shortest paths between all polygon vertices of P, it may not preserve shortest
paths for all vertices of G, i.e., for two vertices p and q of G, the shortest path from p to
q in G may not be a shortest path in P. For this reason, as preprocessing, for each vertex
q of G, we compute a shortest path tree T (q) in P from q to all vertices of G using the
algorithm in [24,25], which can be done in O(n log2 n) time since G has O(n logn) vertices.
For each vertex p of G, we use πq(p) to denote the path in T (q) from the root q to p, which
is a shortest path in P, and we refer to the edge incident to p as the last edge of πq(p);
we explicitly store d(p, q) and the last edge of πq(p). Note that πq(p), computed by the
algorithm [24,25], has the following property [24,25]: all vertices of the path other than p
and q are polygon vertices of P. Doing the above for all vertices q of G takes O(n2 log3 n)
time and O(n2 log2 n) space.

Given s and t, following the discussion in Section 2, we assume that there are no trivial
shortest s-t paths and there is a shortest s-t path containing a gateway in V 2

g (s,G) and a
gateway in V 2

g (t, G). To simplify the notation, let V (s) = V 2
g (s,G) and V (t) = V 2

g (t, G).
A gateway of V (s) is called a via gateway if there is a shortest s-t path containing it. Our

goal is to find a via gateway, after which a shortest s-t path can be computed in additional
O(logn) time by checking each gateway of t. In the following, we present an O(ns+nt logns)
time algorithm. Without loss of generality, we assume that the first quadrant of s has a via
gateway. Below, we will describe our algorithm only on the gateways of V (s) in the first
quadrant of s (our algorithm will run on each quadrant of s separately). By slightly abusing
the notation, we still use V (s) to denote the gateways of V (s) in the first quadrant of s.

Before describing our algorithm, we introduce some geometric structures, among which
the most important ones are a gateway region of s and an extended gateway region of t.
Chen et al. [7] introduced the gateway region for rectilinear polygonal domains and here
we extend the concept to the arbitrary polygonal domain case. In particular, our extended
gateway region has several new components that are critical to our algorithm, and it may be
interesting in its own right. Due to the space limit, we only discuss some of their properties
that are needed for describing our algorithm later, and other properties that are used to
prove the correctness of our algorithm are omitted.

The Gateway Region R(s). We define a gateway region R(s) for s. Let p1, p2, . . . , pk be
the gateways of s ordered from left to right (e.g., see Fig. 5). Note that each pi is a type-2
Steiner point on a projection cut-line of s. Let l1, l2, . . . , lk be the projection cut-lines of s
that contain these gateways, respectively, and thus they are also sorted from left to right. It
is known [6,7] that the y-coordinates of p1, p2, . . . , pk are in non-increasing order.

Let s1 be the intersection of l1 with the horizontal line through pk (e.g., see Fig. 6).
For each pi with i ∈ [2, k], project pi leftwards horizontally onto li−1 at a point p′i (note
that p′i = pi−1 if y(pi−1) = y(pi)). Define R(s) as the region bounded by the line segments
connecting the points s1, p1, p′2, p2, . . . , p′k, pk, and s1 in this cyclic order.

We use βs to denote the boundary portion of R(s) from p1 to pk that contains all gateways
of V (s). We call βs the ceiling, s1p′2 the left boundary, and s1p′k the bottom boundary of R(s).
We refer to the region R(s) excluding the points on βs as the interior of R(s).

I Observation 1. R(s) is in P, and the interior of R(s) does not contain any polygon vertex.
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Figure 5 Illustrating the gateways of V (s) and
the cut-lines containing them.
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Figure 6 Illustrating the gateway region R(s).
The red points are gateways of V (s).

t

Figure 7 Illustrating R(t), bounded by the
solid segments. The black points other than t are
all gateways and the three red points are special
gateways.

t

p
q

Figure 8 Illustrating the transparent edges (the
dotted segments). The three red points are special
gateways. For Lemma 1, a point p on a transparent
edge as well as an endpoint q of the edge is also shown.

The Extended Gateway Region R(t). For t, we define an extended gateway region R(t).
Unlike R(s), which does not contain s, R(t) contains t, e.g., see Fig. 7. Instead of giving the
detailed definition of R(t), which is quite lengthy, we only discuss several key properties of it.

Let V1 denote the set consisting of all polygon vertices and their projection points on ∂P .
In general, R(t) is a simple polygon that contains t, with O(logn) vertices. Let ∂R(t)

denote its boundary. Each edge of ∂R(t) is vertical, horizontal, or on a polygon edge. If an
edge of ∂R(t) is not on a polygon edge, then we call it a transparent edge (e.g., see Fig. 8). It
is the transparent edges that separate the interior of R(t) from the outside (i.e., for any point
p of P outside R(t), any path from p to t in P must intersect a transparent edge of R(t)).
All gateways of V (t) are on ∂R(t). In addition, at most four points of V1 are considered as
special gateways that are also on ∂R(t), and we include them in V (t).

I Lemma 1. The point t is visible to each gateway in V (t) and R(t) is in P. For any point
p outside R(t), there is a shortest path from p to t that contains a gateway in V (t). For any
point p on a transparent edge e, one of the endpoints q of e is a gateway in V (t) such that
pq ∪ qt is an xy-monotone (and thus a shortest) path from p to t (e.g., see Fig. 8).

In addition, the properties of R(t) guarantee that for any point p outside R(t), a shortest
path from p to t cannot separate ∂R(t) into two disjoint pieces (see Fig. 9).

If we store the four projections on ∂P for each Steiner point of G (this costs O(n logn)
additional space), then R(t) can be explicitly computed in O(logn) time.

SoCG 2019



59:8 Two-Point L1 Shortest Path Queries

t
p

q

R(t)

Figure 9 The following situation cannot occur: A shortest path from t to a point p outside R(t)
separates the boundary of R(t) (the solid circle) into two or more disjoint pieces.

We remark that R(s) and R(t) are defined differently because s and t are not treated
symmetrically in our algorithm. For example, we need R(t) to have the properties in Lemma 1,
which are not necessary for R(s). Also, as will be clear later, treating s and t differently
helps us to further reduce the complexities of our data structure.

3.1 The Query Algorithm
Consider the gateway region R(s) of s. Note that for any pi ∈ V (s), there is always a shortest
path from s to pi containing s1 as we can show that ss1 in P. Recall that we have assumed
that there exists a shortest s-t path that contains a gateway of V (s). The above implies that
there exists a shortest path from s1 to t that contains a gateway of V (s), and if we can find
such a path, by attaching ss1 to the path, we can obtain a shortest s-t path. For convenience,
in the following, we will focus on finding a shortest path from s1 to t that contains a gateway
of V (s). By slightly abusing the notation, we still use s to represent s1. Again, our goal is to
compute a via gateway of s in V (s). We first check whether there is a trivial shortest s-t
path in O(logn) time. If yes, we are done. Otherwise, we have the following lemma.

I Lemma 2. If R(t) contains a gateway p of V (s), then sp ∪ pt is a shortest s-t path;
otherwise, R(s) does not intersect R(t).

We check whether R(t) contains a gateway of V (s). Due to the properties of R(t), this
can be done in O(nt + ns) time, as follows. We check the four quadrants of t separately. Let
R1(t) be R(t) in the first quadrant of t. To check whether R1(t) contains a gateway of V (s),
we can simply scan the gateways of V (s) and the gateways of V (t) in R1(t) simultaneously
from left to right (somewhat like merge sort). We do the same for other quadrants of t.

If R(t) contains a gateway of V (s), then by Lemma 2, we have found a shortest s-t path.
Otherwise, R(s) and R(t) are disjoint and we proceed as follows. By Lemma 1, for each
p ∈ V (s), d(p, t) = minq∈V (t)(d(p, q) + |qt|), and we call such a gateway q of V (t) minimizing
the above value a coupled gateway of p and use c(p) to denote it.

Our algorithm will compute a “candidate” coupled gateway c′(p) for every gateway p of
V (s) such that if p ∈ V (s) is via gateway, then c(p) = c′(p). Therefore, once the algorithm is
done, the gateway p that minimizes the value |sp|+ d(p, c′(p)) + |c′(p)t| is a via gateway.

For any two points a and b on the ceiling βs of R(s), we use βs[a, b] to denote the
sub-path of βs between a and b, which is xy-monotone. This means that we can compute
d(pi, pj) = |pipj | in constant time for every two gateways pi and pj in V (s).

We consider V (t) as a cyclic list of points in counterclockwise order around t (we use
“counterclockwise” since the list of V (s) = {p1, p2, . . . , pk} are in clockwise order around s).

We first compute c(p1) in a straightforward manner, i.e., check every gateway of V (t).
This takes O(nt) time (since d(p, q) for any p ∈ V (s) and q ∈ V (t) is already computed in our
preprocessing). We also compute c(pk) in the same way. If there are multiple c(pk)’s, then
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Figure 10 The shortest path πq1 (pa1 ) goes through the interior of R(s).

we let c(pk) refer to the first one from c(p1) in the counterclockwise order around t. Further,
if there is more than one c(p1) from the current c(p1) to c(pk) in the counterclockwise order,
then we update c(p1) to the one closest to c(pk). To simplify the notation, let q1 = c(p1)
and qk = c(pk). Note that q1 = qk is possible. The following lemma will be useful for
circumventing the “non-ideal” situation depicted in Fig. 3. Its correctness relies on the fact
that the ceiling βs of R(s) is xy-monotone (and thus is a shortest path).

I Lemma 3. For any pi of V (s), if d(p1, pi)+d(pi, q1) = d(p1, q1), then d(p1, pj)+d(pj , q1) =
d(p1, q1) and c(pj) = q1 for each j ∈ [1, i]; similarly, if d(pk, pi) + d(pi, qk) = d(pk, qk), then
d(pk, pj) + d(pj , qk) = d(pk, qk) and c(pj) = qk for each j ∈ [i, k].

Let a1 be the largest index i ∈ [1, k] such that d(p1, pi) + d(pi, q1) = d(p1, q1), which
can be computed in O(a1) time, as follows. Starting from i = 2, we simply check whether
d(p1, pi) + d(pi, q1) = d(p1, q1), which can be done in O(1) time since d(p1, pi) = |p1pi| can
be computed in constant time and d(pi, q1) has been computed in the preprocessing. If yes,
we proceed with i+ 1; otherwise, we stop the algorithm and set a1 = i− 1. We call the above
a stair-walking procedure. The correctness is due to Lemma 3.

Similarly, define bk to be the smallest index i ∈ [1, k] such that d(pk, pi) + d(pi, qk) =
d(pk, qk). By a symmetric stair-walking procedure, we can compute bk as well. By Lemma 3,
for each i ∈ [1, a1] ∪ [bk, k], c(pi) is known. Hence, if a1 ≥ bk, then c(p) for each p ∈ V (s) is
computed and we can finish the algorithm. Otherwise, we proceed as follows.

Recall that πq1(pa1) is the shortest path from q1 to pa1 obtained from the shortest path
tree T (q1), and πqk

(pbk
) is from T (qk). Lemmas 4 and 5 are for dealing with the non-ideal

situation in which πq1(pa1) (resp., πqk
(pbk

)) goes through the interior of R(s) (see Fig. 10).

I Lemma 4. (1) πq1(pa1) contains a point in the interior of R(s) only if its last edge (i.e.,
the edge incident to pa1) intersects the bottom boundary of R(s). (2) πqk

(pbk
) contains a

point in the interior of R(s) only if its last edge (i.e., the edge incident to pbk
) intersects the

left boundary of R(s).

I Lemma 5. If the last edge of πq1(pa1) intersects the bottom boundary of R(s), or the last
edge of πq1(pbk

) intersects the left boundary of R(s), then pj for each j ∈ [a1 + 1, bk − 1]
cannot be a via gateway.

Due to our preprocessing, we can check in constant time whether the last edge of πq1(pa1)
intersects the bottom boundary of R(s). Similarly, we can check whether the last edge of
πq1(pbk

) intersects the left boundary of R(s). If the answer is yes for either case, then by
Lemma 5, we can stop the algorithm (i.e., no need to compute the coupled gateways for any
pi with i ∈ [a1 + 1, bk − 1]). Otherwise, by Lemma 4, neither πq1(pa1) nor πq1(pbk

) contains
a point in the interior of R(s). We proceed as follows.

SoCG 2019
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Figure 11 Illustrating a schematic view of the indices: a1, bm, m, am, and bk.

Recall that q1 = qk is possible. Depending on whether q1 = qk, there are two cases. In
the sequel, we describe our algorithm for the unequal case q1 6= qk. The equal-case q1 = qk
can be reduced to the unequal case, which is omitted and can be found in the full paper.

In the following, we assume that q1 6= qk. Since q1 6= qk, q1 and qk partition the cyclic
list V (t) into two sequential lists, one of which has q1 as the first point and qk as the last
point following the counterclockwise order around t, and we use Vt(1, k) to denote that list.
Lemma 6 follows from our particular way of defining q1 and qk.

I Lemma 6. The two paths πq1(pa1) and πqk
(pbk

) do not intersect.

For any i and j with 1 ≤ i ≤ j ≤ k, we use the interval [i, j] to represent the gateways
pi, pi+1, . . . , pj . Our algorithm works on the interval [1, k] and Vt(1, k).

I Lemma 7. For any gateway pj with j ∈ [a1 + 1, bk − 1], if pj is a via gateway, then it has
a coupled gateway in Vt(1, k).

By Lemma 7, to compute the candidate coupled gateways for all pi with i ∈ [a1 +1, bk−1],
we only need to consider Vt(1, k). In the following, we work on the problem recursively. We
may consider each recursive step as working on a subproblem, denoted by ([i′, j′], [i, j], Vt(i, j))
with [i′, j′] ⊆ [i, j] ⊆ [1, k], where the goal is to find candidate coupled gateways from a
sublist Vt(i, j) of Vt(1, k) for the gateways in [i′, j′], and further, there exist a shortest path
from pai to the first point of Vt(i, j) and a shortest path from pbj to the last point of Vt(i, j)
such that the two paths do not intersect and neither path contains a point in the interior of
R(s). Initially, our subproblem is ([a1 + 1, bk − 1], [1, k], Vt(1, k)). We proceed as follows.

If bk−1 = a1 +1, then the interval [a1 +1, bk−1] has only one gateway p. We simply check
all gateways of Vt(1, k) to find the point q that minimizes the value d(p, q) + d(q, t) among
all q ∈ Vt(1, k), and then return q as the candidate coupled gateway of p. The algorithm can
stop. Otherwise, we proceed as follows.

Let m = b(a1 + bk)/2c. We compute a gateway in Vt(1, k) that minimizes the value
d(pm, q) + d(q, t) for all q ∈ Vt(1, k), and in case of a tie, we use q1

m and q2
m to refer to the

first and the last such gateways in Vt(1, k), respectively. Let Vt(1,m) and Vt(m, k) denote
the sublists of Vt(1, k) from q1 to q1

m and from q2
m to qk, respectively.

Define am to be the largest index i ∈ [m, bk−1] such that d(pm, q2
m) = d(pm, pi)+d(pi, q2

m)
and bm the smallest index i ∈ [a1 + 1,m] such that d(pm, q1

m) = d(pm, pi) + d(pi, q1
m). See

Fig. 11. We can compute am and bm by a similar stair-walking procedure as before. With
Lemma 7 and similarly as Lemma 3, for each i ∈ [bm,m− 1], if pi is a via gateway, then q1

m

is a coupled gateway of pi, and for each i ∈ [m+ 1, am], if pi is a via gateway, then q2
m is a

coupled gateway of pi. Thus we can set candidate coupled gateways accordingly.
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If am = bk − 1 and bm = a1 + 1, then the candidate coupled gateways of all gateways in
[1, k] have been computed and we can stop the algorithm. If am = bk − 1 but bm > a1 + 1,
we work recursively on the subproblem ([a1 + 1, bm − 1], [1, k], Vt(1, k)) (note that the size of
the first interval is reduced by at least half). Similarly, if bm = a1 + 1 but am < bk − 1, then
we work recursively on the subproblem ([am + 1, bk − 1], [1, k], Vt(1, k)). Otherwise, both
bm > a1 + 1 and am < bk − 1 hold, and we proceed as follows. We have the following two
lemmas that are similar to Lemmas 4 and 5. By definition, either am > bm or am = bm = m.

I Lemma 8. (1) The path πq2
m

(pam
) contains a point in the interior of R(s) only if the

last edge of the path intersects the bottom boundary of R(s), in which the intersection at
the bottom boundary of R(s) has x-coordinate in [x(s), x(pam+1)]. (2) The path πq1

m
(pbm

)
contains a point in the interior of R(s) only if the last edge of the path intersects the left
boundary of R(s), in which case the intersection at the left boundary of R(s) has y-coordinate
in [y(s), y(pbm−1)].

I Lemma 9. (1) If the last edge of πq2
m

(pam) intersects the bottom boundary of R(s), then pi
cannot be a via gateway for any i ∈ [am+1, bk−1]. (2) If the last edge of πq1

m
(pbm

) intersects
the left boundary of R(s), then pi cannot be a via gateway for any i ∈ [a1 + 1, bm − 1].

In constant time we can check whether the two cases in Lemma 9 happen. If both
cases happen, then we can stop the algorithm. If the second case happens and the first
one does not, then we recursively work on the subproblem ([am + 1, bk − 1], [1, k], Vt(1, k)).
If the first case happens and the second one does not, then we recursively work on the
subproblem ([a1 + 1, bm − 1], [1, k], Vt(1, k)). In the following, we assume that neither case
happens. By Lemma 8, neither πq2

m
(pam) nor πq1

m
(pbm) contains a point in the interior of

R(s). Consequently, we have the following lemma.

I Lemma 10. (1) For each i ∈ [am + 1, bk − 1], if pi is a via gateway, then pi has a coupled
gateway in Vt(m, k). If q2

m 6= qk, then πq2
m

(pam) does not intersect πqk
(pbk

). (2) For each
i ∈ [a1 + 1, bm − 1], if pi is a via gateway, then pi has a coupled gateway in Vt(1,m). If
q1
m 6= q1, then πq1

m
(pbm) does not intersect πq1(pa1).

Based on Lemma 10, our algorithm proceeds as follows. If q2
m = qk, then we set qk as the

candidate coupled gateway for each pi with i ∈ [am+1, bk−1]. Otherwise, we call the algorithm
recursively on the subproblem ([am + 1, bk − 1], [m, k], Vt(m, k)). Similarly, if q1

m = q1, then
we set q1 as the candidate coupled gateway for each pi with i ∈ [a1 + 1, bm − 1]. Otherwise,
we call the algorithm recursively on the subproblem ([a1 + 1, bm − 1], [1,m], Vt(1,m)).

For the running time, notice that the stair-walking procedure spends O(1) time on finding
a coupled gateway for a gateway of V (s). Hence, the overall time of the procedure in the
entire algorithm is O(ns). Consider a subproblem ([i′, j′], [i, j], Vt(i, j)). To solve it, after
spending O(|Vt(i, j)|) time, we either reduce the problem to another subproblem in which
the first interval is at most half the size of [i′, j′] and the third gateway set is still Vt(i, j), or
reduce it to two sub-problems such that each of them has the first interval at most half the
size of [i′, j′] and the third gateway sets of the two sub-problems are two disjoint subsets
of Vt(i, j). Hence, if we consider the algorithm as a tree structure, the height of the tree
is O(logns) and the total time we spend on each level of the tree is O(nt). Therefore, the
overall time of the algorithm is O(ns + nt logns).

The above describes our algorithm on the gateways of s in the first quadrant of s. We
run the same algorithm for all quadrants of s, and for each quadrant, we will find an s-t
path. Finally, we return the path with the smallest length as our solution.

I Lemma 11. The running time of the query algorithm is O(logn+ ns + nt logns).

SoCG 2019
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4 Reducing the Query Time to O(log n)

Since both ns and nt are O(logn), the query time of Lemma 11 is O(logn log logn). To
further reduce it to O(logn), we need to change our graph G to a slightly larger graph G1
such that t only needs O(logn/ log logn) gateways while s still has O(logn) gateways, i.e.,
ns = O(logn) and nt = O(logn/ log logn). To this end, we introduce more Steiner points
on the cut-lines. A similar idea was also used in [6] to reduce the number of gateways to
O(
√

logn). However, since we are allowed to have more gateways than O(
√

logn), we do not
need as many Steiner points as those in [6], which is the reason why we use less preprocessing.

Specifically, comparing with G, the new graph G1 has the following changes. As in [6], we
first define “super-levels”. Recall that the cut-line tree T has O(logn) levels (with the root at
the first level). We further partition all levels of the tree into O(logn/ log logn) super-levels:
For any i, the i-th super-level contains the levels from (i − 1) · log logn + 1 to i · log logn.
Hence, each super-level has at most log logn levels.

Let u be a node at the highest level of the i-th super level of T . Let Tu be the sub-tree
of T rooted at u excluding the nodes outside the i-th level (thus Tu has at most logn− 1
nodes). Recall that u is associated with a subset V(u) of polygon vertices and each vertex
v ∈ Tu is associated with a cut-line l(v). For each point p ∈ V(u) and each vertex v ∈ Tu, if
p is horizontally visible to l(v), then p defines a type-3 Steiner point on l(v). In this way,
p defines O(logn) type-3 Steiner points on the cut-lines of Tu (in contrast, p defines only
O(log logn) type-2 Steiner points on the cut-lines of Tu in our original graph G). Hence,
each polygon vertex p defines a total of O(log2 n/ log logn) type-3 Steiner points since T has
O(logn/ log logn) super-levels. The total number of type-3 Steiner points on all cut-lines is
O(n log2 n/ log logn). Note that each type-2 Steiner point in our original graph G becomes
a type-3 Steiner point. For convenience of discussion, those type-3 Steiner points of G1 that
are originally type-2 Steiner points of G are also called type-2 Steiner points of G1.

Type-1 Steiner points are defined in the same way as before, so their number is O(n).
We still use V1 to denote the set of all type-1 Steiner points and all polygon vertices. We use
V2 to denote the set of all type-2 Steiner points of G1.

The edges of G1 are defined with respect to all Steiner points in the same way as G. We
omit the details. In summary, G1 has O(n log2 n/ log logn) vertices and edges. Note that
the original graph G is a sub-graph of G1 in that every vertex of G is also a vertex of G1
and each path of G corresponds to a path in G1 with the same length.

Consider a query point t. The gateway set V 1
g (t, G1) is defined the same as before, and

thus its size is O(1). Thanks to more Steiner points, the size of V 2
g (t, G1) can now be reduced

to O(logn/ log logn). Specifically, V 2
g (t, G1) is defined as follows (similar to that in [6]).

As in [6], we first define the relevant projection cut-lines of t. We only discuss the right
side of t, and the left side is symmetric. Recall that t has at most one projection cut-line
in each level of T . Among all projection cut-lines that are in the same super-level, the one
closest to t is called a relevant projection cut-line of t. Since there are O(logn/ log logn)
super-levels and each super-level has at most one relevant projection cut-line to the right of
t, t has O(logn/ log logn) relevant projection cut-lines. For each such cut-line l, the type-3
Steiner point (if any) immediately above (resp., below) the horizontal projection t′ of t on l
is included in V 2

g (t, G1) if it is visible to t′. Thus, |V 2
g (t, G1)| = O(logn/ log logn).

By Lemma 11, if |V 2
g (t, G1)| = O(logn/ log logn), the query time becomes O(logn) as

long as |V 2
g (s,G1)| = O(logn). This implies that for s, we can simply use its original gateway

set on type-2 Steiner points, i.e., V 2
g (s,G1) = V 2

g (s,G). As will be clear later, this will help
save time and space in the preprocessing. We also define V 1

g (s,G1) in the same way as before.
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I Lemma 12. For any two query points s and t, if there does not exist a trivial shortest s-t
path, then there is a shortest s-t path containing a gateway of s and a gateway of t.

I Lemma 13. With O(n log3 n/ log logn) time and O(n log2 n/ log logn) space preprocessing,
we can compute Vg(s,G1) and Vg(t, G1) in O(logn) time for any two query points s and t.

In the preprocessing, for each vertex q of G1 (which is also considered as a point in
P), we compute a shortest path tree T (q) but only for the points in V1 ∪ V2 using the
algorithm [24, 25]. Since |V1 ∪ V2| = O(n logn), T (p) has O(n logn) vertices and can be
computed in O(n log2 n) time [24, 25]. Since G1 has O(n log2 n/ log logn) vertices, the
preprocessing takes O(n2 log4 n/ log logn) time and O(n2 log3 n/ log logn) space in total.

With Lemma 11 and the new gateway sets, we can reduce the query time to O(logn).
Using the techniques in [6], we can further reduce the complexities of the preprocessing

so that they are functions of h, in addition to O(n), as shown in the following theorem.

I Theorem 14. With O(n+ h2 log4 h/ log log h) time and O(n+ h2 log3 h/ log log h) space
preprocessing, given s and t, we can compute their shortest path length in O(logn) time and
an actual shortest s-t path can be output in time linear in the number of edges of the path.
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