
Searching for the Closest-Pair in a Query
Translate
Jie Xue
University of Minnesota, Twin Cities, Minneapolis, MN, USA
http://cs.umn.edu/~xuexx193
xuexx193@umn.edu

Yuan Li
Facebook Inc., Seattle, WA, USA
lydxlx@fb.com

Saladi Rahul
University of Illinois at Urbana-Champaign, Urbana, IL, USA
http://cs.umn.edu/~rahuls
saladi.rahul@gmail.com

Ravi Janardan
University of Minnesota, Twin Cities, Minneapolis, MN, USA
http://cs.umn.edu/~janardan
janardan@umn.edu

Abstract
We consider a range-search variant of the closest-pair problem. Let Γ be a fixed shape in the plane.
We are interested in storing a given set of n points in the plane in some data structure such that for
any specified translate of Γ , the closest pair of points contained in the translate can be reported
efficiently. We present results on this problem for two important settings: when Γ is a polygon
(possibly with holes) and when Γ is a general convex body whose boundary is smooth. When
Γ is a polygon, we present a data structure using O(n) space and O(logn) query time, which is
asymptotically optimal. When Γ is a general convex body with a smooth boundary, we give a
near-optimal data structure using O(n logn) space and O(log2 n) query time. Our results settle
some open questions posed by Xue et al. at SoCG 2018.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Closest pair, Range search, Geometric data structures, Translation query

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.61

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.09498.

Funding The research of Jie Xue is supported, in part, by a Doctoral Dissertation Fellowship from
the Graduate School of the University of Minnesota.

1 Introduction

The range closest-pair (RCP) problem, as a range-search version of the closest-pair problem,
aims to store a given set S of n points in some data structure such that for a specified query
range X ∈ X chosen from a certain query space X , the closest pair of points in S ∩X can be
reported efficiently. As a range-search problem, the RCP problem is non-decomposable in
the sense that even if the query range X can be written as X = X1 ∪X2, the closest-pair
in S ∩X cannot be determined efficiently knowing the closest-pairs in S ∩X1 and S ∩X2.
The non-decomposability makes the problem quite challenging and interesting, as many
traditional range-search techniques are inapplicable.

The RCP problem in R2 has been well-studied over years [1, 4, 6, 7, 10, 11, 13, 14, 15].
Despite of much effort, the query ranges considered are still restricted to very simple shapes,
typically orthogonal rectangles and halfplanes. It is then interesting to ask what if the query

© Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 61; pp. 61:1–61:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://cs.umn.edu/~xuexx193
mailto:xuexx193@umn.edu
mailto:lydxlx@fb.com
http://cs.umn.edu/~rahuls
mailto:saladi.rahul@gmail.com
http://cs.umn.edu/~janardan
mailto:janardan@umn.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.61
https://arxiv.org/abs/1807.09498
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Searching for the Closest-Pair in a Query Translate

ranges are of more general shapes. In this paper, we consider a new variant of the RCP
problem in which the query ranges are translates of a fixed shape (which can be quite general).
Formally, let Γ be a fixed shape in R2 called base shape and LΓ be the collection of all
translates of Γ . We investigate the RCP problem with the query space LΓ (or the LΓ -RCP
problem). This type of query, which is for the first time mentioned in [15] (as an open
question), is natural and well-motivated. First, in range-search problems, the query spaces
considered are usually closed under translation; in this sense, the query space consisting
of translates of a single shape seems the most “fundamental” query type. Some of the
previously studied query ranges, e.g., quadrants and halfplanes [1, 7, 15], are in fact instances
of translation queries (halfplanes can be viewed as translates of an “infinitely” large disc).
Also, translation queries find motivation in practice. For instance, in many applications, the
user may be interested in the information within a certain distance r from him/her. In this
situation, the query ranges are discs of a fixed radius r, i.e., translates of a fixed disc; or
more generally, if the distance r is considered under a general distance function induced by
a norm ‖·‖, then the query ranges are translates of a ‖·‖-disc of radius r. Finally, there is
another view of the translation queries: the base shape Γ can be viewed as static while the
dataset is translating. With this view, a motivation of the translation queries is to monitor
the information in a fixed region (i.e., Γ) for moving points (where the movement pattern
only includes translation).

We investigate the problem in two important settings: when Γ is a polygon (possibly
with holes) and when Γ is a general convex body whose boundary is smooth (i.e., through
each point on the boundary there is a unique tangent line to Γ). Our main goal is to design
optimal or near-optimal data structures for the problems in terms of space cost and query
time. The preprocessing of these data structures is left as an open question for future study.

Although we restrict the query ranges to be translates of a fixed shape, the problem is still
challenging for a couple of reasons. First, the base shape Γ to be considered is quite general
in both of our settings. When Γ is a polygon, it needs not be convex, and indeed can even
have holes. In the case where Γ is a general convex body, we only need the aforementioned
smoothness of its boundary. Second, we want the RCP data structures to be optimal or
near-optimal, namely, use O(n · poly(logn)) space and have O(poly(logn)) query time. This
is usually difficult for a non-decomposable range-search problem.

1.1 Related work and our contributions
Related work. The closest-pair problem and range search are both classical topics; some
surveys can be found in [3, 12]. The RCP problem in R2 has been studied in prior work
[1, 4, 6, 7, 10, 11, 13, 14, 15]. State-of-the-art RCP data structures for quadrant, strip,
rectangle, and halfplane queries were given in the recent work [15]. The quadrant and
halfplane RCP data structures are optimal (i.e., with linear space and logarithmic query
time). The strip RCP data structure uses O(n logn) space and O(logn) query time, while
the rectangle RCP data structure uses O(n log2 n) space and O(log2 n) query time. The work
[13] considered a colored version of the RCP problem and gave efficient approximate data
structures. The paper [14] studied an approximate version of the RCP problem in which the
returned answer can be slightly outside the query range.

Our contributions. We investigate a new variant of the RCP problem in which the query
ranges are translates of a fixed shape Γ . In the first half of the paper, we assume Γ is a fixed
polygon (possibly with holes), and give an RCP data structure for Γ -translation queries
using O(n) space and O(logn) query time, which is asymptotically optimal. In the second

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:3

half of the paper, we assume Γ is a general convex body with a smooth boundary, and give
a near-optimal RCP data structure for Γ -translation queries using O(n logn) space and
O(log2 n) query time. The O(·) above hides constants depending on Γ . Our results settle
some open questions posed in [15], e.g., the RCP problem with fixed-radius disc queries,
etc. In order to design these data structures, we make nontrivial geometric observations and
exploit the properties of the problem itself (i.e., we are searching for the closest-pair in a
translate). Many of our intermediate results are of independent interest and can probably be
applied to other related problems. We describe our key ideas and techniques in Section 1.3
after establishing relevant notations in Section 1.2.

Organization. Section 1.2 presents the notations and preliminaries used throughout the
paper. Section 1.3 gives an overview of the techniques we use to solve the problems. In
Section 2, we study the problem when Γ is a polygon. In Section 3, we study the problem
when Γ is a general convex body with a smooth boundary. Due to limited space, some proofs
and details are omitted; these can be found in the full version [16]. For the convenience of
the reader, we give short proof sketches for some technical lemmas.

1.2 Preliminaries
Basic notations and concepts. For a, b ∈ R2, we use dist(a, b) to denote the Euclidean
distance between a and b, and use [a, b] to denote the segment connecting a and b. The
length of a pair φ = (a, b) of points, denoted by |φ|, is the length of the segment [a, b], i.e.,
|φ| = dist(a, b). For a shape Γ in R2 and a point p ∈ R2, we denote by Γp the Γ -translate
p+ Γ . We write LΓ = {Γp : p ∈ R2}, i.e., the collection of all Γ -translates.

Candidate pairs. Let S be a set of points in R2 and X a collection of ranges. A candidate
pair in S with respect to X refers to a pair of points in S that is the closest-pair in S ∩X
for some X ∈ X . We denote by Φ(S,X) the set of the candidate pairs in S w.r.t. X .

θ θθ

θ

Figure 1 Examples of wedges and co-wedges.

Wedges and co-wedges. A wedge is a range in R2 defined by an angle θ ∈ (0, π), which
is the intersection of two halfplanes (see the left figure in Figure 1). A co-wedge is a range
in R2 defined by an angle θ ∈ (π, 2π), which is the union of two halfplanes (see the right
figure in Figure 1). The boundary of a wedge or co-wedge W consists of two rays sharing a
common initial point, called the two branches of W . When appropriate, we refer to wedges
and co-wedges collectively as (co-)wedges.

Convex bodies. A convex body in R2 refers to a compact convex shape with a nonempty
interior. If C is a convex body in R2, we denote by ∂C the boundary of C, which is a simple
cycle, and by C◦ the interior of C, i.e., C◦ = C\∂C.
The following two lemmas will be used in various places in this paper.

SoCG 2019

61:4 Searching for the Closest-Pair in a Query Translate

I Lemma 1. Let Γ be a fixed bounded shape in R2, and µ > 0 be a constant. Also, let S be
a set of points in R2. Then for any point p ∈ R2, either the closest-pair in S ∩ Γp has length
smaller than µ, or |S ∩ Γp| = O(1).

I Lemma 2. Let S be a set of points in R2 and X be a collection of ranges in R2. Suppose
(a, b), (a′, b′) ∈ Φ(S,X) are two pairs such that the segments [a, b] and [a′, b′] cross. Then
there exists X ∈ X such that either X ∩ {a, b, a′, b′} = {a, b} or X ∩ {a, b, a′, b′} = {a′, b′}.

1.3 Overview of key ideas and techniques
When Γ is a polygon (possibly with holes), we solve the problem as follows. First, we use a
grid-based approach to reduce the LΓ -RCP problem to the RCP problem with wedge/co-
wedge translation queries and the range-reporting problem with Γ -translation queries. The
range-reporting problem can be easily solved by again reducing to the wedge/co-wedge case.
Therefore, it suffices to study the RCP problem with wedge/co-wedge translation queries.
For both wedge and co-wedge translation queries, we solve the problem by using candidate
pairs. Specifically, we store the candidate pairs and search for the answer among them. In
this approach, the critical point is the number of the candidate pairs, which determines the
performance of our data structures. For both wedge and co-wedge, we prove linear upper
bounds on the number of the candidate pairs. Although the bounds are the same, the wedge
case and co-wedge case require very different proofs, both of which are quite technical and
may be of independent geometric interest. These upper bounds and the above-mentioned
reduction are our main technical contributions for the polygonal case.

When Γ is a general convex body with a smooth boundary, we solve the problem as
follows. First, exploiting the smoothness of ∂Γ , we show that “short” candidate pairs (i.e.,
of length upper bounded by some constant τ) cannot “cross” each other1. It immediately
follows that there are only a linear number of short candidate pairs (because they form
a planar graph). We try to store these short candidate pairs in a data structure D1 such
that the shortest one contained in any query Γq can be found efficiently. However, this is a
nontrivial task, as Γ is quite general here. To this end, we reduce the task of “searching for
the shortest pair in Γq” to several point-location queries for q in planar subdivisions. We
bound the complexity of these subdivisions (and thus the cost of D1) by making geometric
observations for convex translates and using properties of the pseudo-discs. Using D1, we
can answer any query Γq in which the closest-pair is short. What if the closest-pair in Γq is
long (i.e., of length greater than τ)? In this case, Γq contains only O(1) points by Lemma 1.
Therefore, if D1 fails to find the answer, we can simply report the O(1) points contained in
Γq and find the closest-pair by brute-force. The range-reporting is done by point location in
the ≤ k-level of a pseudo-disc arrangement. These are our main contributions for this part.

2 Translation RCP queries for polygons

Let Γ be a fixed polygon (possibly with holes). Assume the boundary of Γ has no self-
intersection2. We investigate the LΓ -RCP problem (where the closest-pair is in terms of the
Euclidean metric). Throughout this section, O(·) hides constants depending on Γ . Our main
result is the following theorem, to prove which is the goal of this section.

1 We say two pairs (a, b) and (a′, b′) cross if the segments [a, b] and [a′, b′] cross.
2 That is, the outer boundary and the boundaries of holes are disjoint simple cycles.

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:5

I Theorem 3. Let Γ be a fixed polygon (possibly with holes) in R2. Then there is an
O(n)-space LΓ -RCP data structure with O(logn) query time.

Let S be the given dataset in R2 of size n. Suppose for convenience that the pairwise
distances of the points in S are distinct (so the closest-pair in any subset of S is unique).

2.1 Reduction to (co-)wedge translation queries
Our first step is to reduce a Γ -translation RCP query to several wedge/co-wedge translation
RCP queries and a range-reporting query. For a vertex v of Γ (either on the outer boundary
or on the boundary of a hole), we define a wedge (or co-wedge) W v as follows. Consider the
two edges adjacent to v in Γ . These two edges define two (explementary) angles at v, one of
which (say σ) corresponds to the interior of Γ (while the other corresponds to the exterior of
Γ). Let W v be the (co-)wedge defined by σ depending on whether σ < π or σ > π.

Let WΓ = {W v : v is a vertex of Γ}. Without loss of generality, suppose that the outer
boundary of Γ consists of at least four edges, and so does the boundary of each hole3; with
this assumption, no three edges of Γ are pairwise adjacent. For two edges e and e′ of Γ , let
dist(e, e′) denote the minimum distance between one point on e and one point on e′. Define
δ = min{dist(e, e′) : e and e′ are non-adjacent edges of Γ}. Clearly, δ is a positive constant
depending on Γ only. Let � be a square of side-length less than δ/

√
2. Due to the choice

of δ, for any q ∈ R2, � cannot intersect two non-adjacent edges of Γq. It follows that �
intersects at most two edges of Γq (as no three edges of Γ are pairwise adjacent); moreover,
if � intersects two edges, they must be adjacent. Thus, � ∩ Γq = � ∩Wq for some W ∈ WΓ .

For a decomposable range-search problem (e.g. range reporting) on S, the above simple
observation already allows us to reduce a Γ -translation query to (co-)wedge translation
queries (roughly) as follows. Let G be a grid of width δ/2 on the plane. For a cell � of G,
we define S� = S ∩�. Due to the decomposability of the problem, to answer a query Γq on
S, it suffices to answer the query Γq on S� for all � that intersect Γq. Since each cell � of
G is a square of side-length δ/2 (which is smaller than δ/

√
2), we have � ∩ Γq = � ∩Wq for

some W ∈ WΓ and thus S� ∩ Γq = S� ∩Wq. In other words, the query Γq on each S� is
equivalent to a (co-)wedge translation query for some (co-)wedge W ∈ WΓ . Applying this
idea to range-reporting, we conclude the following.

I Lemma 4. There exists an O(n)-space range-reporting data structure for Γ -translation
queries, which has an O(logn+ k) query time, where k is the number of the reported points.

However, the above argument fails for a non-decomposable range-search problem, since when
the problem is non-decomposable, we are not able to recover efficiently the global answer
even if the answer in each cell is known. Unfortunately, our RCP problem belongs to this
category. Therefore, more work is required to do the reduction. We shall take advantage of
our observation in Lemma 1. We still lay a planar grid G. But this time, we set the width of
G to be δ/4. A quad-cell � of G is a square consisting of 2× 2 adjacent cells of G. For a
quad-cell � of G, let S� = S ∩�. Note that the side-length of a quad-cell of G is δ/2, and
each cell of G is contained in exactly four quad-cells of G, so is each point in S. Consider a
query range Γq ∈ LΓ . The following observation follows from Lemma 1.

I Lemma 5. For a a quad-cell � of G such that |S� ∩ Γq| ≥ 2, let φ� be the closest-pair in
S� ∩ Γq. Define φ∗ as the shortest element among all φ�. If the length of φ∗ is at most δ/4,
then φ∗ is the closest-pair in S ∩ Γq; otherwise |S ∩ Γq| = O(1).

3 If this is not the case, we can add a new vertex at the midpoint of each edge to “break” it into two.

SoCG 2019

61:6 Searching for the Closest-Pair in a Query Translate

Using the above observation, we are able to do the reduction.

I Theorem 6. Let f, g : N→ N be increasing functions where f(a+ b) ≥ f(a) + f(b). If for
any W ∈ WΓ there is an O(f(n))-space LW -RCP data structure with O(g(n)) query time,
then there is an O(f(n) + n)-space LΓ -RCP data structure with O(g(n) + logn) query time.

Proof. For a quad-cell � of G, let m� be the number of the points in S�. First, we notice
that there are O(n) quad-cells � of G such that m� > 0 since each point in S is contained
in at most four quad-cells; we call them nonempty quad-cells. For each nonempty quad-cell
� and each W ∈ WΓ , we build an LW -RCP data structure on S�; by assumption, this data
structure uses O(f(m�)) space. Now observe that m� ≤ n for all � and

∑
m� ≤ 4n. From

the condition f(a+b) ≥ f(a)+f(b), it follows that
∑
f(m�) = O(f(n)). Since |WΓ | = O(1),

the total space cost of these data structures is O(f(n)). Besides these data structures, we
also build a range-reporting data structure on S for Γ -translation queries. As argued in
Lemma 4, this data structure uses O(n) space.

To answer a query Γq ∈ LΓ , we first find all nonempty quad-cells of G that intersect Γq.
The number of these quad-cells is O(1), as it is bounded by O(∆2/δ2) where ∆ is the diameter
of Γ . These quad-cells can be found in O(logn) time (see [16]). For each such quad-cell �,
we find W ∈ WΓ such that �∩Γq = �∩Wq and query the LW -RCP data structure built on
S� to obtain the closest-pair φ� in S� ∩ Γq, which takes O(g(m�)) time. Since only O(1)
quad-cells are considered, the time for this step is O(g(n)). Once these φ� are computed,
we take the shortest element φ∗ among them. If the length of φ∗ is at most δ/4, then φ∗ is
the closest-pair in S ∩ Γq by Lemma 5 and we just report φ∗. Otherwise, |S ∩ Γq| = O(1)
by Lemma 5. We then compute the O(1) points in S ∩ Γq using the range-reporting data
structure, and compute the closest-pair in S ∩ Γq by brute-force (in constant time). Since
the query time of the range-reporting data structure is O(logn+ k) and k = O(1) here, the
overall query time is O(g(n) + logn), as desired. J

By the above theorem, it now suffices to give efficient RCP data structures for wedge and
co-wedge translation RCP queries. We resolve these problems in the following two sections.

2.2 Handling wedge translation queries
Let W be a fixed wedge in R2 and θ ∈ (0, π) be the angle of W . We denote by r and r′

the two branches of W . For convenience, assume the vertex of W is the origin, and thus
the vertex of a W -translate Wp is the point p. In this section, we shall give an O(n)-space
LW -RCP data structure with O(logn) query time.

The key ingredient of our result is a nontrivial linear upper bound for the number of
the candidate pairs in S with respect to LW . This generalizes a result in [7], and requires a
much more technical proof. Before working on the proof, we first establish an easy fact.

I Lemma 7. Let A ⊆ R2 be a finite set. There exists a (unique) smallest W -translate
(under the ⊆-order) that contains A. Furthermore, a W -translate is the smallest W -translate
containing A iff it contains A and its two branches both intersect A.

We notice that if φ = (a, b) is a pair of points in S and Wp is the smallest W -translate
containing {a, b} described in Lemma 7, then φ ∈ Φ(S,LW) iff φ is the closest-pair in S ∩Wp.
Using Lemma 7, we define the following notions.

I Definition 8. Let φ = (a, b) be a pair of points in R2, and Wp be the smallest W -translate
containing {a, b} described in Lemma 7. If p /∈ {a, b} and the smallest angle of the triangle
4pab is ∠apb, then we say φ is steep; otherwise, we say φ is flat. See Figure 2 for examples.

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:7

p = a b Wp

(a) Flat (as p = a).
a

b

Wpp

(b) Flat (as ∠apb > ∠pba).
a

b

Wpp

(c) Steep.

Figure 2 Examples of flat and steep pairs (the wedge Wp shown in the figures is the smallest
W -translate containing {a, b} described in Lemma 7).

Our first observation is the following.

I Lemma 9. If two candidate pairs φ, φ′ ∈ Φ(S,LW) cross, then either φ or φ′ is steep.

Proof. Suppose φ = (a, b) and φ′ = (a′, b′). Since φ and φ′ cross, by Lemma 2 there
exists some Wt ∈ LW whose intersection with {a, b, a′, b′} is either {a, b} or {a′, b′}; assume
Wt ∩ {a, b, a′, b′} = {a, b}. Let p ∈ R2 be the point such that Wp is the smallest W -translate
containing {a, b}. It follows that Wp ∩ {a, b, a′, b′} = {a, b}, because Wp ⊆Wt. Let c be the
intersection point of the segments [a, b] and [a′, b′]. Since a, b ∈Wp and Wp is convex, c ∈Wp.
The two endpoints a′, b′ of the segment [a′, b′] are not contained in Wp (by assumption), but
c ∈Wp. Hence, the segment [a′, b′] intersects the boundary of Wp at two points, say a∗ and

b
b′

a

b

a′
p′

Wp′
a

b

Wp

c

a∗

p

b∗

(a) The points a∗, b∗, and p′.

a

b
b′

a

b

a′
p′

Wp′

(b) Illustrating why (a′, b′) is steep.

Figure 3 Illustrating Lemma 9.

b∗; assume a∗ (resp., b∗) is the point adjacent to a′ (resp., b′). Clearly, there exists a unique
point p′ ∈ R2 such that 4pa∗b∗ ⊆ 4p′a′b′ and 4pa∗b∗ is similar to 4p′a′b′. See Figure 3a.
It is easy to see that Wp′ is the smallest W -translate containing {a′, b′}. Indeed, Wp′ just
corresponds to the angle ∠a′p′b′, so a′ and b′ lie on the two branches of Wp′ respectively
(see Figure 3b). Thus, by the criterion given in Lemma 7, Wp′ is the smallest W -translate
containing {a′, b′}. Now we have p ∈ Wp′ , which implies Wp ⊆ Wp′ and a, b, a′, b′ ∈ Wp′ .
Since the segments [a, b] and [a′, b′] cross, one of a and b must lie in the triangle 4p′a′b′, say
a ∈ 4p′a′b′. Note that φ′ = (a′, b′) is the closest-pair in Wp′ , thus dist(a′, b′) < dist(a, a′)
and dist(a′, b′) < dist(a, b′). It follows that ∠a′ab′ < ∠ab′a′ and ∠a′ab′ < ∠aa′b′. We further
observe that ∠aa′b′ < ∠p′a′b′ and ∠ab′a′ < ∠p′b′a′, and hence ∠a′ab′ > ∠a′p′b′. Thus, we
have ∠a′p′b′ < ∠p′a′b′ and ∠a′pb′ < ∠p′b′a′, i.e., ∠a′p′b′ is the smallest angle of the triangle
4p′a′b′. As a result, φ′ is steep. J

Lemma 9 implies that the flat candidate pairs in Φ(S,LW) do not cross each other. Therefore,
the segments corresponding to the flat candidate pairs are edges of a planar graph with
vertices in S, which gives a linear upper bound for the number of flat candidate pairs.

It now suffices to bound the number of steep candidate pairs in Φ(S,LW). Unfortunately,
two steep candidate pairs (or even one steep candidate pair and one flat candidate pair) can
cross, making the above non-crossing argument fail. Therefore, we need some new ideas.

I Definition 10. Two pairs φ, φ′ ∈ Φ(S,LW) are adjacent if we can write φ = (a, b) and
φ′ = (a, b′) such that b 6= b′; we call ∠bab′ the angle between φ and φ′, denoted by ang(φ, φ′).

SoCG 2019

61:8 Searching for the Closest-Pair in a Query Translate

b

a
p

Wpb′

rp

r′p

(a) When b′ ∈ 4pab.

b

p
b′

rp

r′p

a

b′ Wp′

p′

r′p′c

(b) When b′ /∈ 4pab.

Figure 4 Illustrating Lemma 11.

I Lemma 11. For adjacent φ, φ′ ∈ Φ(S,LW), if φ and φ′ are both steep, then ang(φ, φ′) ≥ θ.

Proof sketch. Suppose φ = (a, b) and φ′ = (a, b′). Let p ∈ R2 be the point such that Wp

is the smallest W -translate containing {a, b, b′} described in Lemma 7. We denote by rp
and r′p the r-branch and r′-branch of Wp, respectively. Using Lemma 7 and the fact that φ
and φ′ are steep, we can deduce p /∈ {a, b, b′}; see the complete proof in [16] for details. We
distinguish two cases: a is on the boundary of Wp or a is in the interior of Wp. Here we only
discuss the first case. The second one is deferred to the complete proof.

Assume a is on the boundary of Wp. Since p /∈ {a, b, b′}, we have a 6= p. Thus a must lie
on exactly one of rp and r′p, say a ∈ rp. Because Wp is the smallest W -translate containing
{a, b, b′}, one of b and b′ must lie on r′p by the criterion given in Lemma 7. Without loss of
generality, assume b ∈ r′p. Using the criterion in Lemma 7 again, we see that Wp is also the
smallest W -translate containing {a, b}. Thus, φ is the closest-pair in S∩Wp and in particular
we have dist(a, b) < dist(b, b′). It follows that ∠ab′b < ∠bab′ = ang(φ, φ′). If b′ ∈ 4pab, we
are done, because in this case ∠ab′b ≥ ∠apb = θ and thus ang(φ, φ′) = ∠bab′ > ∠ab′b ≥
∠apb = θ. See Figure 4a for an illustration of this case. Next, assume b′ /∈ 4pab. This case
is presented in Figure 4b. Let p′ ∈ R2 be the point such that Wp′ is the smallest W -translate
containing {a, b′}; thus, we have Wp′ ⊆Wp and in particular p′ ∈Wp. Furthermore, p′ must
lie on the segment [p, a], as a ∈ Wp′ . Since φ′ = (a, b′) is steep, a and b′ lie on the two
branches of Wp′ respectively, and ∠p′b′a > ∠ap′b′ = θ. Clearly, b′ lies on the r′-branch of
Wp′ , which we denote by r′p′ . Let c be the intersection point of r′p′ and the segment [a, b].
See Figure 4b. We then have ∠ab′b = ∠ab′c+ ∠cb′b ≥ ∠ab′c = ∠pb′a > ∠ap′b′ = θ. Using
the fact ∠ab′b < ∠bab′ = ang(φ, φ′) obtained before, we conclude ang(φ, φ′) ≥ θ. J

For a point a ∈ S, consider the subset Ψa ⊆ Φ(S,LW) consisting of all steep candidate pairs
having a as one point. We claim |Ψa| = O(1). Suppose Ψa = {ψ1, . . . , ψr} where ψi = (a, bi)
and b1, . . . , br are sorted in polar-angle order around a. By Lemma 11, ang(ψi, ψj) ≥ θ for
any distinct i, j ∈ {1, . . . , r}. Since

∑r−1
i=1 ang(ψi, ψi+1) ≤ 2π, we have r ≤ 2π/θ + 1 = O(1).

As such,
∑
a∈S |Ψa| = O(n), implying that the number of steep candidate pairs is linear. As

the numbers of flat and steep candidate pairs are both linear, we conclude the following.

I Lemma 12. |Φ(S,LW)| = O(n), where n = |S|.

Suppose Φ(S,LW) = {φ1, . . . , φm} where φi = (ai, bi) and φ1, . . . , φm are sorted in increasing
order of their lengths. We have m = O(n) by Lemma 12. Now we only need a data
structure which can report, for a query Wq ∈ LW , the smallest i such that ai, bi ∈ Wq

(note that φi is the closest-pair in S ∩Wq). We design this data structure as follows. Let
W̃ = {(x, y) : (−x,−y) ∈W}, which is a wedge obtained by rotating W around the origin
with angle π. For a point p ∈ R2, it is clear that ai, bi ∈ Wp iff p ∈ W̃ai

∩ W̃bi
. Since the

intersection of finitely many W̃ -translates is a W̃ -translate, we may write W̃ai ∩ W̃bi = W̃ci

for some ci ∈ R2. It follows that φi is contained in Wp iff p ∈ W̃ci
. By successively

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:9

overlaying W̃c1 , . . . , W̃cm , we obtain a planar subdivision whose cells are Σ1, . . . , Σm where
Σi = W̃ci

\
⋃i−1
j=1 W̃cj

. This subdivision has O(m) complexity as overlaying a new W̃ -translate
can create at most two new vertices. The answer for a query Wq is i iff q ∈ Σi. Therefore,
the problem can be solved by building on the subdivision an O(m)-space point-location data
structure with O(logm) query time. Since m = O(n), we have the following conclusion.

I Theorem 13. There is an O(n)-space LW -RCP data structure with O(logn) query time.

2.3 Handling co-wedge translation queries
Let C be a fixed co-wedge in R2 and W be the complementary wedge of C, i.e., the closure
of R2\C. We denote by r and r′ the two branches of C (and also of W). For convenience,
assume r = {(t, 0) : t ≥ 0} and r′ = {(αt, t) : t ≥ 0} for some α ∈ R. With this assumption,
the vertex of C (resp., W) is the origin and the vertex of Cp (resp., Wp) is p for all p ∈ R2.
In this section, we present an O(n)-space LC-RCP data structure with O(logn) query time.

Similar to the wedge case, the key step here is to establish a linear upper bound for
|Φ(S,LC)|. However, the techniques used here are very different. First of all, we exclude from
Φ(S,LC) the candidate pairs with respect to halfplanes. Let H be the collection of halfplanes,
and Φ∗ = Φ(S,LC)\Φ(S,H). It was shown in [1] that |Φ(S,H)| = O(n). Therefore, it suffices
to prove that |Φ∗| = O(n). For a pair φ = (a, b) ∈ Φ∗, define its associated C-translate,
Ass(φ), as the smallest W -translate containing {a, b} (Lemma 7). The pairs in Φ∗ and their
associated C-translates has the following property.

I Lemma 14. Let φ = (a, b) ∈ Φ∗ and Cp = Ass(φ) ∈ LC . Then p /∈ {a, b} and a, b lie on
the two branches of Cp respectively. Furthermore, φ is the closest-pair in S ∩ Cp.

Consider a pair φ ∈ Φ∗ and its associated C-translate Cp = Ass(φ). By Lemma 14, one point
of φ lies on the r-branch of Cp and the other lies on the r′-branch of Cp; we call them the
r-point and r′-point of φ, respectively. Let R ⊆ S (resp., R′ ⊆ S) be the subset consisting of
all the r-points (resp., r′-points) of the pairs in Φ∗.

I Lemma 15. We have R ∩R′ = ∅, and thus the graph G = (S, Φ∗) is bipartite.

For a pair φ = (a, b) ∈ Φ∗ where a ∈ R and b ∈ R′, we define a vector vφ =
−→
ab. Our key

lemma is the following. Let ang(·, ·) denote the angle between two vectors.

I Lemma 16. Let Ψ ⊆ Φ∗ be a subset such that ang(vψ,vψ′) ≤ π/4 for all ψ,ψ′ ∈ Ψ . Then
the graph GΨ = (S, Ψ) is acyclic, and in particular |Ψ | = O(n).

b′

p

b

a

a′

p2

p1

C

r

r′

Figure 5 Illustrating Lemma 16.

Proof sketch. Suppose there is a cycle in GΨ . Let ψ = (a, a′) be the shortest edge in
the cycle where a ∈ R and a′ ∈ R′. Let ψ1 = (b, a′) ∈ Ψ and ψ2 = (a, b′) ∈ Ψ be the
two adjacent edges of ψ in the cycle (so b ∈ R and b′ ∈ R′). Let Cp, Cp1 , Cp2 be the

SoCG 2019

61:10 Searching for the Closest-Pair in a Query Translate

associated C-translates of ψ,ψ1, ψ2, respectively. See Figure 5 for an example. We deduce
that a′, b, b′ ∈ Cp1 , Cp2 ⊆ Cp, and a, a′, b, b′ ∈ Cp; see the complete proof in [16] for an
argument. Since a, a′, b, b′ ∈ Cp and φ is the closest-pair in Cp by Lemma 14, we have
|φ| < dist(a, b) and hence ∠aba′ < ∠aa′b = ang(vψ,vψ1) ≤ π/4. It follows that

ang(
−→
ba,vψ) ≤ ang(

−→
ba,vψ1) + ang(vψ,vψ1) = ∠aba′ + ang(vψ,vψ1) < π/2.

From this we can further deduce that

ang(
−→
bb′,vψ) = ang(

−→
ba + vψ2 ,vψ) ≤ max{ang(

−→
ba,vψ), ang(vψ2 ,vψ)} < π/2.

Next, we establish an inequality that contradicts the above inequality. Let l be the bisector of
[b, b′]. Since a′, b, b′ ∈ Cp1 and ψ1 is the closest-pair in Cp1 , we have dist(a′, b′) > dist(b, a′),
i.e., a′ is on the same side of l as b. Using the same argument symmetrically, we can
deduce that a is on the same side of l as b′. As l is the bisector of [b, b′], this implies
ang(
−→
bb′,vψ) = ang(

−→
bb′,
−→
aa′) > π/2, which is a contradiction. Thus, GΨ is acyclic. J

With the above lemma in hand, it is quite straightforward to prove |Φ∗| = O(n). We evenly
separate the plane into 8 sectors K1, . . . ,K8 around the origin. Define Ψi = {φ ∈ Φ∗ : vφ ∈
Ki} for i ∈ {1, . . . , 8}. Now each Ψi satisfies the condition in Lemma 16 and thus |Ψi| = O(n).
Since Φ∗ =

⋃8
i=1 Ψi, we have |Φ∗| = O(n). Therefore, we conclude the following.

I Lemma 17. |Φ(S,LC)| = O(n), where n = |S|.

Suppose Φ(S,LC) = {φ1, . . . , φm} where m = O(n) and φ1, . . . , φm are sorted in increasing
order of their lengths. Now we only need a data structure which can report, for a query
Cq ∈ LC , the smallest i such that φi is contained in Cq. Similar to the wedge case, we obtain
such a data structure with O(m) space and O(logm) query time (see [16]).

I Theorem 18. There is an O(n)-space LC-RCP data structure with O(logn) query time.

Theorem 3 now follows from Theorem 6, 13, and 18.

3 Translation RCP queries for smooth convex bodies

Let Γ be a fixed convex body whose boundary is smooth (or smooth convex body), that
is, through each point on the boundary there is a unique tangent line to Γ . Assume we
can compute in O(1) time, for any line l in R2, the segment Γ ∩ l. We investigate the LΓ -
RCP problem (under the Euclidean metric). Throughout this section, O(·) hides constants
depending on Γ . Our main result is the following, to prove which is the goal of this section.

I Theorem 19. Let Γ be a fixed smooth convex body in R2. Then there is an O(n logn)-space
LΓ -RCP data structure with O(log2 n) query time.

Let S be the given dataset in R2 of size n. Suppose for convenience that the pairwise
distances of the points in S are distinct (so that the closest-pair in any subset of S is unique).
Also, suppose that no three points in S are collinear. Our data structure is based on the two
technical results presented below, both of which are of geometric interest. The first result
states that sufficiently short candidate pairs do not cross when Γ is a smooth convex body.

I Theorem 20. Let Γ be a smooth convex body. Then there exists a constant τ > 0
(depending on Γ only) such that if (a, b), (c, d) ∈ Φ(S,LΓ) are two pairs whose lengths are
both at most τ , then the segments [a, b] and [c, d] do not cross.

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:11

To introduce the second result, we need an important notion. For two convex bodies C,D in
R2 such that C ∩D 6= ∅, we say C and D intersect plainly if ∂C ∩D and ∂D ∩ C are both
connected; see Figure 6 for an illustration. (The reader can intuitively understand this as
“the boundaries of C and D cross each other at most twice”, but it is in fact stronger.) Note
that a collection of convex bodies in R2 in which any two are disjoint or intersect plainly
form a family of pseudo-discs [2]. Our second result is the following theorem.

(a) Intersect plainly. (b) Not intersect plainly.

Figure 6 An illustration the concept of “intersect plainly”.

I Theorem 21. Let C be a convex body in R2, and p1, p2, p
′
1, p
′
2 ∈ R2 be four points (not

necessarily distinct) such that I◦ 6= ∅ and I ′◦ 6= ∅, where I = Cp1 ∩ Cp2 and I ′ = Cp′
1
∩ Cp′

2
.

Suppose that any three of p1, p2, p
′
1, p
′
2 are not collinear unless two of them coincide. If the

segments [p1, p2], [p′1, p′2] do not cross and I ∩ I ′ 6= ∅, then I and I ′ intersect plainly.

Figure 7 gives an illustration of Theorem 21 in the case where C is a disc. Note that, even
for the disc-case, without the condition that [p1, p2], [p′1, p′2] do not cross, one can easily
construct a counterexample in which I and I ′ do not intersect plainly.

p1 p2

p′2p′1

I◦

I ′◦

Figure 7 Illustration of Theorem 21 when C is a disc.

The proof of Theorem 20 is presented later in Section 3.3. The proof of Theorem 21 is
more involved and is presented the full version [16]. Next, we first assume the correctness
of the two theorems and present our LΓ -RCP data structure. Our data structure consists
of two parts D1 and D2 where D1 handles the queries for which the length of the answer
(closest-pair) is “short” and D2 handles the queries for which the answer is “long”.

3.1 Handling short-answer queries
We describe the first part D1 of our data structure. Let τ > 0 be the constant in Theorem 20
such that any two candidate pairs of lengths at most τ do not cross. For a query Γq ∈ LΓ ,
D1 reports the closest-pair in S ∩ Γq if its length is at most τ , and reports nothing otherwise.

Let Φ≤τ ⊆ Φ(S,LΓ) be the sub-collection consisting of the candidate pairs of lengths at
most τ , and suppose m = |Φ≤τ |. We have m = O(n), because the graph G = (S, Φ≤τ) is
planar by Theorem 20. Define Γ̃ = {(x, y) ∈ R2 : (−x,−y) ∈ Γ}. For a pair θ = (a, b) ∈ Φ≤τ ,
we write Iθ = Γ̃a ∩ Γ̃b. Then θ is contained in a query range Γq ∈ LΓ iff q ∈ Iθ.

SoCG 2019

61:12 Searching for the Closest-Pair in a Query Translate

In order to design D1, we first introduce a so-called membership data structure (MDS).
Let Ψ = {θ1, . . . , θr} ⊆ Φ≤τ and U =

⋃
θ∈Ψ I

θ. An MDS on Ψ can decide, for a given
Γq ∈ LΓ , whether Γq contains a pair in Ψ or not. As argued before, Γq contains a pair in Ψ
iff q ∈ U . Thus, to have an MDS on Ψ , it suffices to have a data structure that can decide if
a given point is in U . By Theorem 20, the segments corresponding to any two pairs θi, θj
do not cross each other. Also, no three points in S are collinear by assumption. Thus, by
Theorem 21, Iθi and Iθj intersect plainly for any i, j ∈ {1, . . . , r} such that Iθi ∩ Iθj 6= ∅. It
follows that {Iθ1 , . . . , Iθr} is a family of pseudo-discs [2], and hence the complexity of their
union U is O(r) by [8]. As such, optimal point location data structures (e.g., [5, 9]) can be
applied to decide whether a point is contained in U in O(log r) time, using O(r) space. We
remark that, although the edges defining the boundary of U are not line-segments (existing
point-location results we know of work on polygonal subdivisions), each edge is a connected
portion of ∂Γ̃ and hence can be decomposed into constant number of “fragments” that are
both x-monotone and y-monotone. Recall our assumption that we can compute (in constant
time) Γ ∩ l for any line l in R2, and thus also Γ̃ ∩ l for any line l. With this assumption, the
existing data structures [5, 9] can be generalized straightforwardly for our purpose. Thus,
we have an MDS on Ψ with O(r) space and O(log r) query time, which we denote byM(Ψ).

With the MDS in hand, we can now design D1. For a sub-collection Ψ = {θ1, . . . , θr} ⊆
Φ≤τ where θ1, . . . , θr are sorted in increasing order of their lengths, let D1(Ψ) be a data
structure defined as follows. If r = 1, then D1(Ψ) simply stores the only pair θ1 ∈ Ψ . If
r > 1, let Ψ1 = {θ1, . . . , θbr/2c} and Ψ2 = {θbr/2c+1, . . . , θr}. Then D1(Ψ) consists of three
parts: D1(Ψ1), D1(Ψ2), and MΨ1 , where D1(Ψ1) and D1(Ψ2) are defined recursively. We
show that we can use D1(Ψ) to find, for a query Γq ∈ LΓ , the shortest pair θ∗ ∈ Ψ contained
in Γq. We first queryM(Ψ1) to see if Γq contains a pair in Ψ1. If so, θ∗ must be in Ψ1, so we
recursively query D1(Ψ1) to find it. Otherwise, we recursively query D1(Ψ2). In this way, we
can eventually find θ∗. Now we simply define D1 = D1(Φ≤τ). A direct analysis shows that
the space of D1 is O(m logm) and the query time of D1 is O(log2 m) (see [16]).

3.2 Handling long-answer queries
If D1 fails to answer the query Γq, then the length of the closest-pair in S ∩ Γq is greater
than τ . In this case, we shall use the second part D2 of our data structure to answer the
query. D2 simply reports all the points in S∩Γq and computes the closest-pair by brute-force.
Since the length of the closest-pair in S ∩ Γq is greater than τ , we have |S ∩ Γq| = O(1) by
Lemma 1 and hence computing the closest-pair takes O(1) time. In order to do reporting,
we consider the problem in the dual setting. Again, define Γ̃ = {(x, y) ∈ R2 : (−x,−y) ∈ Γ}.
Clearly, for any a ∈ R2, a ∈ Γq iff q ∈ Γ̃a. Thus, the problem is equivalent to reporting the
ranges in S = {Γ̃a : a ∈ S} that contain q. Define the depth, dep(p), of a point p ∈ R2 as the
number of the ranges in S containing p. Let A be the arrangement of the ranges in S, and k
be a sufficiently large constant. The ≤ k-level of A, denoted by A≤k, is the sub-arrangement
of A contained in the region R≤k = {p ∈ R2 : dep(p) ≤ k}. By Theorem 21, any two
ranges Γ̃a, Γ̃b ∈ S intersect plainly if they intersect (setting p1 = p2 = a and p′1 = p′2 = b

when applying Theorem 21), which implies that S is a family of n pseudo-discs and A is a
pseudo-disc arrangement. So we have the following well-known lemma.

I Lemma 22. The complexity of A≤k is O(n) for a constant k.

By the above lemma, we can build a point-location data structure on A≤k with O(n) space
and O(logn) query time. Also, we associate to each cell ∆ of A≤k the (at most k) ranges
in S containing ∆. Now we can report the ranges in S containing q as follows. Since

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:13

|S ∩Γq| = O(1) and k is sufficiently large, we have |S ∩Γq| ≤ k and hence q is in A≤k. Using
the point-location data structure, we find in O(logn) time the cell ∆ of A≤k containing
q. Then the ranges associated to ∆ are exactly those containing q. Together with our
argument above, this gives us the desired data structure D2 with O(n) space and O(logn)
time. Combining D2 with the data structure D1 in the last section, Theorem 19 is proved.

3.3 Proof of Theorem 20
We begin with introducing some basic notions and geometric results regarding convex bodies
in R2. Let C be a convex body in R2. For a line l in R2, we denote by lenC(l) the length
of the segment C ∩ l. Suppose l is ax + by + c = 0, then it cuts R2 into two halfplanes,
ax+ by + c ≥ 0 and ax+ by + c ≤ 0 (called the two sides of l hereafter). Let H be one side
of l. For a number t ≥ 0, let lt denote the (unique) line parallel to l satisfying lt ⊆ H and
dist(l, lt) = t. Set λ = sup{t ≥ 0 : C ∩ lt 6= ∅} (if {t ≥ 0 : C ∩ lt 6= ∅} = ∅, set λ = 0).

I Definition 23. We say H is a C-vanishing (resp., strictly C-vanishing) side of l, if
f(t) = lenC(lt) is a non-increasing (resp., decreasing) function in the domain [0, λ].

Figure 8 gives an intuitive illustration of the above definition. Note that for any convex body
C and line l in R2, at least one side of l is C-vanishing due to the convexity of C.

C

l

strictly C-vanishing not C-vanishing

(a) A line with a strictly C-vanishing side
and a side that is not C-vanishing.

C

l

C-vanishing C-vanishing

(b) A line with two C-vanishing sides.

Figure 8 An illustration of “C-vanishing”.

In order to prove Theorem 20, we establish the following key observations.

I Lemma 24. Let C be a convex body in R2, p1, p2 ∈ R2 be two points, and l be an arbitrary
line in R2. Then we have the following facts.
(1) If Cp1 ∩ l (Cp2 ∩ l and V is a Cp1-vanishing side of l, then Cp1 ∩ V ⊆ Cp2 .
(2) If Cp1 ∩ l is contained in the “interior” of Cp2 ∩ l (i.e., Cp2 ∩ l excluding both endpoints)
and V is a Cp1-vanishing side of l, then Cp1 ∩ (V \l) ⊆ Cp2\∂Cp2 .

I Lemma 25. Let C be a smooth convex body in R2. Then there exists a number τ > 0 such
that, for any line l with 0 < lenC(l) < τ and any point r ∈ C on a C-vanishing side of l, the
distance between r and an (arbitrary) endpoint of C ∩ l is less than lenC(l).

Now we are able to prove Theorem 20. Suppose Γ is a smooth convex body in R2. Taking
C = Γ , we can find a constant τ satisfying the condition in Lemma 25. We claim that τ also
satisfies the condition in Theorem 20. Let (a, b), (c, d) ∈ Φ(S,LΓ) be two pairs of lengths
at most τ . Assume that [a, b] and [c, d] cross. By Lemma 2, there exists Γp ∈ LΓ such that
either Γp ∩ {a, b, c, d} = {a, b} or Γp ∩ {a, b, c, d} = {c, d}; assume Γp ∩ {a, b, c, d} = {a, b}.
Suppose (c, d) is the closest-pair in Γq ∈ LΓ . Let l be the line through c, d, and V be a

SoCG 2019

61:14 Searching for the Closest-Pair in a Query Translate

a b

c

d

c′

d′

Γp
Γq

l
V

Figure 9 Illustrating the proof of Theorem 20.

Γp-vanishing side of l. See Figure 9 for an illustration of the notations. Since the segments
[a, b] and [c, d] cross, [c, d] must intersect Γp. But c, d /∈ Γp, thus Γp ∩ l ([c, d]. Furthermore,
because [c, d] ⊆ Γq ∩ l, we have Γp ∩ l (Γq ∩ l. This implies Γp ∩V ⊆ Γq by (1) of Lemma 24.
Note that one of a, b must be contained in Γp ∩ V , say b ∈ Γp ∩ V . Thus b ∈ Γq. We now
show that dist(b, c) < dist(c, d) and dist(b, d) < dist(c, d). As Γp ∩ l ([c, d] and the length of
[c, d] is at most τ , we have lenΓp(l) < τ . We denote by c′, d′ the two endpoints of the segment
Γp ∩ l; see Figure 9. By Lemma 25, the distance from c′ (or d′) to any point in Γp ∩ V is less
than lenΓp(l) = dist(c′, d′). In particular, dist(b, c′) < dist(c′, d′) and dist(b, d′) < dist(c′, d′).
Now dist(b, c) ≤ dist(b, c′) + dist(c′, c) < dist(c′, d′) + dist(c′, c) = dist(c, d′) < dist(c, d). For
the same reason, we have dist(b, d) < dist(c, d). Since b, c, d ∈ Γq, this contradicts the fact
that (c, d) is the closest-pair in Γq. The proof of Theorem 20 is now complete.

References
1 M. A. Abam, P. Carmi, M. Farshi, and M. Smid. On the power of the semi-separated pair

decomposition. In Workshop on Algorithms and Data Structures, pages 1–12. Springer, 2009.
2 P. K. Agarwal, J. Pach, and M. Sharir. State of the union (of geometric objects): A review.

Computational Geometry: Twenty Years Later. American Mathematical Society, 2007.
3 Pankaj K Agarwal, Jeff Erickson, et al. Geometric range searching and its relatives. Contem-

porary Mathematics, 223:1–56, 1999.
4 Sang Won Bae and Michiel Smid. Closest-Pair Queries in Fat Rectangles. arXiv preprint,

2018. arXiv:1809.10531.
5 Herbert Edelsbrunner, Leonidas J Guibas, and Jorge Stolfi. Optimal point location in a

monotone subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.
6 Prosenjit Gupta. Range-aggregate query problems involving geometric aggregation operations.

Nordic Journal of Computing, 13(4):294–308, 2006.
7 Prosenjit Gupta, Ravi Janardan, Yokesh Kumar, and Michiel Smid. Data structures for range-

aggregate extent queries. Computational Geometry: Theory and Applications, 2(47):329–347,
2014.

8 K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-
free translational motion amidst polygonal obstacles. Discrete & Computational Geometry,
1(1):59–71, 1986.

9 N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communica-
tions of the ACM, 29(7):669–679, 1986.

10 Jing Shan, Donghui Zhang, and Betty Salzberg. On spatial-range closest-pair query. In
International Symposium on Spatial and Temporal Databases, pages 252–269. Springer, 2003.

11 R. Sharathkumar and P. Gupta. Range-aggregate proximity queries. Technical Report
IIIT/TR/2007/80. IIIT Hyderabad, Telangana, 500032, 2007.

12 Michiel Smid. Closest-point problems in computational geometry. In Handbook of computational
geometry, pages 877–935. Elsevier, 2000.

http://arxiv.org/abs/1809.10531

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:15

13 Jie Xue. Colored range closest-pair problem under general distance functions. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 373–390. SIAM,
2019.

14 Jie Xue, Yuan Li, and Ravi Janardan. Approximate range closest-pair search. In Proceedings
of the 30th Canadian Conference on Computational Geometry, pages 282–287, 2018.

15 Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan. New Bounds for Range Closest-Pair
Problems. In Proceedings of the 34th International Symposium on Computational Geometry,
pages 73:1–73:14, 2018.

16 Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan. Searching for the closest-pair in a query
translate. arXiv preprint, 2018. arXiv:1807.09498.

SoCG 2019

http://arxiv.org/abs/1807.09498

	Introduction
	Related work and our contributions
	Preliminaries
	Overview of key ideas and techniques

	Translation RCP queries for polygons
	Reduction to (co-)wedge translation queries
	Handling wedge translation queries
	Handling co-wedge translation queries

	Translation RCP queries for smooth convex bodies
	Handling short-answer queries
	Handling long-answer queries
	Proof of Theorem 20

