
Quasi-Linear-Time Algorithm for Longest
Common Circular Factor
Mai Alzamel
Department of Informatics, King’s College London, UK
Department of Computer Science, King Saud University, Riyadh, Saudi Arabia
https://nms.kcl.ac.uk/mai.alzamel/
mai.alzamel@kcl.ac.uk

Maxime Crochemore
Department of Informatics, King’s College London, UK
Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est, Marne-la-Vallée, France
http://www-igm.univ-mlv.fr/~mac/
maxime.crochemore@kcl.ac.uk

Costas S. Iliopoulos
Department of Informatics, King’s College London, UK
https://nms.kcl.ac.uk/costas.iliopoulos/
costas.iliopoulos@kcl.ac.uk

Tomasz Kociumaka
Institute of Informatics, University of Warsaw, Poland
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
https://www.mimuw.edu.pl/~kociumaka/
kociumaka@mimuw.edu.pl

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Poland
https://www.mimuw.edu.pl/~jrad
jrad@mimuw.edu.pl

Wojciech Rytter
Institute of Informatics, University of Warsaw, Poland
https://www.mimuw.edu.pl/~rytter
rytter@mimuw.edu.pl

Juliusz Straszyński
Institute of Informatics, University of Warsaw, Poland
j.straszynski@mimuw.edu.pl

Tomasz Waleń
Institute of Informatics, University of Warsaw, Poland
https://www.mimuw.edu.pl/~walen
walen@mimuw.edu.pl

Wiktor Zuba
Institute of Informatics, University of Warsaw, Poland
w.zuba@mimuw.edu.pl

Abstract
We introduce the Longest Common Circular Factor (LCCF) problem in which, given strings S and
T of length at most n, we are to compute the longest factor of S whose cyclic shift occurs as a factor
of T . It is a new similarity measure, an extension of the classic Longest Common Factor. We show
how to solve the LCCF problem in O(n log4 n) time using O(n log2 n) space.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases longest common factor, circular pattern matching, internal pattern matching,
intersection of hyperrectangles

© Mai Alzamel, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7590-9919
https://nms.kcl.ac.uk/mai.alzamel/
mailto:mai.alzamel@kcl.ac.uk
https://orcid.org/0000-0003-1087-1419
http://www-igm.univ-mlv.fr/~mac/
mailto:maxime.crochemore@kcl.ac.uk
https://orcid.org/0000-0003-3909-0077
https://nms.kcl.ac.uk/costas.iliopoulos/
mailto:costas.iliopoulos@kcl.ac.uk
https://orcid.org/0000-0002-2477-1702
https://www.mimuw.edu.pl/~kociumaka/
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
https://www.mimuw.edu.pl/~jrad
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-9162-6724
https://www.mimuw.edu.pl/~rytter
mailto:rytter@mimuw.edu.pl
https://orcid.org/0000-0003-2207-0053
mailto:j.straszynski@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
 https://www.mimuw.edu.pl/~walen
mailto:walen@mimuw.edu.pl
https://orcid.org/0000-0002-1988-3507
mailto:w.zuba@mimuw.edu.pl
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Quasi-Linear-Time Algorithm for Longest Common Circular Factor

Digital Object Identifier 10.4230/LIPIcs.CPM.2019.25

Related Version https://arxiv.org/abs/1901.11305

Funding Tomasz Kociumaka: Supported by ISF grants no. 824/17 and 1278/16 and by an ERC
grant MPM under the EU’s Horizon 2020 Research and Innovation Programme (grant no. 683064).
Jakub Radoszewski: Supported by the “Algorithms for text processing with errors and uncertainties”
project carried out within the HOMING programme of the Foundation for Polish Science co-financed
by the European Union under the European Regional Development Fund.
Juliusz Straszyński: Supported by the “Algorithms for text processing with errors and uncertainties”
project carried out within the HOMING programme of the Foundation for Polish Science co-financed
by the European Union under the European Regional Development Fund.

1 Introduction

We introduce a new variant of the Longest Common Factor (LCF) Problem, called the
Longest Common Circular Factor (LCCF) Problem. In the LCCF problem, given two strings
S and T , both of length at most n, we seek for the longest factor of S whose cyclic shift
occurs as a factor of T . The length of the LCCF is a new string similarity measure that is
2-approximated by the length of the LCF. We show that the exact value of LCCF can be
computed efficiently.

A linear-time solution to the LCF problem is one of the best-known applications of the
suffix tree [2]. Just as the LCF problem was an extension of the classical pattern matching,
the LCCF can problem be seen as an extension of the circular pattern matching. The
latter can still be solved in linear time using the suffix tree and admits a number of efficient
solutions based on practical approaches [4, 10, 17, 21, 28, 32], also in the approximate
variant [6, 7, 18, 20], as well as an indexing variant [3, 21, 22], and the problem of detecting
various circular patterns [29]. The LCCF problem is further related to the notion of
unbalanced translocations [9, 11, 31, 33, 34].

One can formally state the problem in scope as follows.

Longest Common Circular Factor (LCCF)
Input: Two strings S and T of length at most n each.
Output: A pair of longest factors, F of S and F ′ of T , for which there exist strings U
and V such that F = UV and F ′ = V U ; we denote LCCF(S, T) = (F, F ′).

This problem can be solved in a straightforward way in O(n2 logn) time and O(n) space
using period queries [26, 27, 24]; see Section 2.1. Our main result is the following.

I Theorem 1 (Main Result). The Longest Common Circular Factor problem on two strings
of length at most n can be solved in O(n log4 n) time and O(n log2 n) space.

Henceforth, we assume for simplicity that |S| = |T | = n; otherwise, the shorter string
can be padded with a special character # that does not occur in either of the strings.

Our approach. We apply local consistency techniques from the area of internal pattern
matching (in case U and V are not highly periodic; Section 3) and Lyndon roots (otherwise;
Section 4). The LCCF problem is reduced to finding configurations satisfying conjunction of
four conditions of type i ∈ Occ(X), where Occ(X) is the set of occurrences of a factor X.

Each configuration can be decomposed into two subconfigurations (pairs of consecutive
fragments), one in S and one in T . We guarantee that the number of subconfigurations is

https://doi.org/10.4230/LIPIcs.CPM.2019.25
https://arxiv.org/abs/1901.11305

M. Alzamel et al. 25:3

nearly linear so that we can compute them all for both S and T . Then, the task reduces
to finding two subconfigurations which agree (produce a full configuration) and constitute
an optimal solution. This is done using geometric techniques in Section 6. Each condition
i ∈ Occ(X) can be seen as membership of a point in a range since Occ(X) forms an interval
in the suffix array. This gives a reduction of the LCCF problem to an intersection problem
for 4D-rectangles. The latter task is solved efficiently using a sweep line algorithm.

2 Preliminaries

We consider strings over an integer alphabet Σ. If W is a string, then by |W | we denote
its length and by W [1], . . . ,W [|W |] its characters. By x = W [i . . j] we denote a fragment
of W between the ith and jth character, inclusively. We also denote this fragment x by
W [i . . j + 1), and we define first(x) = i as well as last(x) = j. If first(x) = 1, then x is
a prefix, and if last(x) = |W |, it is a suffix of W . Fragments x and y are consecutive if
last(x) + 1 = first(y); we then also say that y follows x.

The string W [i] · · ·W [j] that corresponds to the fragment x is a factor of W . We say
that two fragments match if the corresponding factors are the same. Let us note that a
fragment can be represented by its endpoints in O(1) space; this representation can also be
used to specify the corresponding factor.

By WR we denote the reversal of a string W . We say that a positive integer p is a
period of a string W if W [i] = W [i+ p] for all i = 1, . . . , |W | − p. By per(W) we denote the
shortest period of W . A string W is called (weakly) periodic if its shortest period satisfies
2per(W) ≤ |W |. Fine and Wilf’s Periodicity Lemma [16] asserts that if a string W has
periods p and q such that p+ q ≤ |W |, then gcd(p, q) is also a period of W .

2.1 O(n2 log n)-Time and O(n)-Space Algorithm
A period query [26] is an internal query that is defined on a text W as follows: Given a
fragment x of the text, report all periods of x (represented as several arithmetic progressions).
In particular, the answer gives the shortest period p = per(x) and the longest border
U = x[1 . . |x| − p] = x[1 + p . . |x|]. Period queries can be answered in O(logn) time using a
data structure of size O(n). A randomized O(n)-time construction of this data structure
was presented in [27], whereas a deterministic variant appeared in [24, Theorem 1.1.12].

I Proposition 2. The Longest Common Circular Factor problem on two strings of length n
can be solved in O(n2 logn) time and O(n) space.

Proof. Let us set W = S#T#S, where # is a special character that occurs neither in S nor
in T . For every pair of positions i, j ∈ [1 . . n], we ask a period query for x = W [i . . n+ j] =
S[i . . n]#T [1 . . j) and y = W [n+ j + 1 . . 2n+ 1 + i] = T [j . . n]#S[1 . . i). This lets us recover
the longest borders U of x and V of y so that (UV, V U) is a common circular factor of S and
T . The longest of these factors over all pairs of positions (i, j) corresponds to the LCCF. J

2.2 Synchronizing Sets
In this section, we present the notion of synchronizing sets recently introduced by Kociu-
maka and Kempa [23] for BWT construction and answering LCE queries. Intuitively, a
τ -synchronizing set P of a string W is a subset of position of W such that:

the choice whether i ∈ P is made based on a context of 2τ subsequent characters,
P contains at least one in every τ positions of each region of W whose period exceeds 1

3τ .

CPM 2019

25:4 Quasi-Linear-Time Algorithm for Longest Common Circular Factor

The underlying idea of making a locally consistent selection based on fixed-length contexts
originates from internal pattern matching [27]. Later, the construction has been used for
LCE queries [8] and derandomized [24]. We formalize our results using synchronizing sets as
they provide a cleaner interface compared to that of the synchronizing functions of [24].

I Definition 3 (Kempa and Kociumaka [23, Definition 3.1]). Let W be a string of length n and
let τ ≤ 1

2n be a positive integer. We say that a set P ⊆ [1 . . n− 2τ + 1] is a τ -synchronizing
set of W if it satisfies the following conditions (see Figure 1):

if W [i . . i+2τ) = W [i′ . . i′+2τ), then i ∈ P if and only if i′ ∈ P (for i, i′ ∈ [1 . . n−2τ+1]),
P ∩ [i . . i+ τ) = ∅ if and only if per(W [i . . i+ 3τ − 2]) ≤ 1

3τ (for i ∈ [1 . . n− 3τ + 2]).

b a a a a a b b a b a b a a a a a a a a b b a b a b a b a b

Figure 1 A 3-synchronizing set P = {1, 2, 5, 8, 11, 12, 16, 19, 22, 24} of a string W of length 30.
The 10 positions in P are the starting positions of the occurrences of length-(2 · 3) factors aabbab,
aaaaab, baaaaa, bababa, and abaaaa (marked as rectangles, listed top-down). Out of each three
consecutive positions in [1 . . 25], at least one belongs to P . The only exception is [13 . . 16) due to
the fact that per(W [13 . . 20]) = 1 ≤ 1

3 · 3.

A key technical result is a deterministic linear-time construction of a synchronizing set of
optimal size O(nτ). The linear running time is improved in [24, 23] to O(n

logσ n
) for small

alphabet size σ and parameter τ = Θ(logσ n), but that is not relevant for this paper.

I Lemma 4 ([23, Proposition 8.10], [24, Lemma 4.4.9]). Given a string W of length n and a
positive integer τ ≤ 1

2n, in O(n) time one can construct a τ -synchronizing set of size O(nτ).

The central property of a synchronizing set P is that if a factor X is sufficiently long
and not highly periodic, then most of the positions of P contained in the occurrences of X
are located consistently. In our applications, we actually use the leftmost of these positions
only. Hence, for an integer i and a set P , we define succP (i) = min{p ∈ P : p ≥ i} to be the
successor of i in P . We assume that min ∅ =∞ so that succP (i) =∞ if i > maxP .

I Lemma 5. Let P be a τ -synchronizing set in a string W . If W [i . . j] = X = W [i′ . . j′],
where |X| ≥ 3τ − 1 and per(X) > 1

3τ , then succP(i)− i = succP(i′)− i′ ≤ |X| − 2τ .

Proof. First, suppose for a proof by contradiction that succP(i)−i > |X|−2τ = j−i+1−2τ .
Consequently, P∩ [i . . j − 2τ + 2) = ∅, which yields P∩ [p . . p+ τ) = ∅ for p ∈ [i . . j − 3τ + 2].
Hence, Definition 3 implies per(W [p . . p + 3τ − 2]) ≤ 1

3τ for p ∈ [i . . j − 3τ + 2]. Due
to j − i + 1 = |X| ≥ 3τ − 1, this range is non-empty, so the Periodicity Lemma yields
1
3τ < per(X) = per(W [i . . j]) ≤ 1

3τ , contradicting our assumption that succP(i)−i > |X|−2τ .
Due to succP(i) − i ≤ |X| − 2τ , we now conclude that W [succP(i) . . succP(i) + 2τ) =

W [i′−i+succP(i) . . i′−i+succP(i)+2τ). Therefore, succP(i) ∈ P implies i′−i+succP(i) ∈ P
in the light of Definition 3. Consequently, succP(i′)− i′ ≤ succP(i)− i. A symmetric argument
shows that succP(i)− i ≤ succP(i′)− i′, which completes the proof. J

M. Alzamel et al. 25:5

2.3 Types of Factors
We define the type of a (non-empty) stringW as type(W) = blog(|W |+ 1)−1c. We denote by
LCCFa,b(S, T) the longest common circular factor (UV, V U) of S and T such that type(U) = a

and type(V) = b. We also say that it is the type-(a, b) LCCF. Moreover, we denote by
LCF(S, T) the (ordinary) longest common factor of S and T (corresponding to U = ε or
V = ε). Our basic strategy is to compute LCCFa,b(S, T) independently for every pair (a, b) and
report the longest alternative among the obtained common circular factors, including (F, F)
for F = LCF(S, T). However, we observe that if LCCF(S, T) = LCCFa,b(S, T) = (UV, V U),
then 1

2 |F | ≤
1
2 |UV | ≤ max(|U |, |V |) ≤ |F |, and therefore type(F)− 1 ≤ max(a, b) ≤ type(F).

Consequently, it suffices to iterate over O(log |F |) pairs (a, b) satisfying the latter condition.
For each type a, we introduce a synchronizing set Pa of the concatenation ST . For a = 0,

we set P0 = [1 . . |ST |], while for 1 ≤ a ≤ type(ST), let us define Pa as a 2a−1-synchronizing
set ofW . Using Lemma 4, we make sure that |Pa| = O(n2a) and the set Pa can be constructed
in O(n) time, which sums up to O(n logn) across all types a.

Moreover, let us define

Pa(S) = {p ∈ Pa : p ≤ |S|} and Pa(T) = {p− |S| : p ∈ Pa, p > |S|}.

Intuitively, Pa(S) and Pa(T) represent the subsets of Pa corresponding to S and T , respectively.
The following result relates these notions to the common factors of S and T .

I Corollary 6. If S[i . . j] = F = T [i′ . . j′], where F is a type-a string satisfying per(F) > 1
6 2a,

then succPa(S)(i)− i = succPa(T)(i′)− i′ < |F |.

Proof. The claim is trivial for a = 0 due to succP0(S)(i) − i = succP0(T)(i′) − i′ = 0.
Otherwise, we have |F | ≥ 2a+1 − 1 > 3 · 2a−1 − 1 and per(F) ≥ 1

6 2a = 1
3 2a−1, so Lemma 5

yields succPa(S)(i)− i = succPa(T)(i′)− i′ ≤ |F | − 2 · 2a−1 < |F |. J

3 Nonperiodic Case

We say that a string U of type a is highly periodic if per(U) ≤ 1
6 2a. We consider now

LCCFa,b(S, T) = (F, F ′) such that F = UV , F ′ = V U , U is of type a, V is of type b, and
neither U nor V is highly periodic. We call it the nonperiodic case.

For a pair of fragments (u, v), by Γu,v we denote a condition which states that u is
followed by a fragment that matches v and by ∆u,v we denote a condition which states that
v follows a fragment that matches u. We say that two pairs of consecutive fragments, (x, y)
in S and (z, t) in T , agree if and only if

Γy,z and ∆y,z and Γt,x and ∆t,x.

We reduce the LCCF problem in this case to the following abstract problem; see Figure 2.

Fragment-Families-Problem
Input: Two collections F1 and F2 of pairs of consecutive fragments of a string W of
length n, with m = |F1|+ |F2|
Output: (x, y) ∈ F1 and (z, t) ∈ F2 that agree and maximize |x|+ |y|+ |z|+ |t|

For a string W ∈ {S, T} and a type a, we introduce the following set of synchronizers:

LeftSynca(W, i) = Pa(W) ∩ [i− 2a+2 + 2 . . i− 1],
RightSynca(W, i) = Pa(W) ∩ [i . . i+ 2a+2 − 3].

CPM 2019

25:6 Quasi-Linear-Time Algorithm for Longest Common Circular Factor

adba baa aba bac bc baaccS

t

x y

z

baac bac bc baa aba baccaT

y

z t

x

Figure 2 Pairs (x, y) and (z, t) agree; txyz and yztx form a common circular factor of S and T .

S

2a+2 − 2 2b+2 − 2

• • •

x

• •

y

••U V

iα β

T

2b+2 − 2 2a+2 − 2

• •• •

z

• •

t

• •V U

i′β′ α′

Figure 3 Assume that α ∈ LeftSynca(S, i), β ∈ RightSync′
b(S, i), β′ ∈ LeftSynca(T, i′), β′ ∈

RightSync′
b(T, i′). Then ΨS(α, i, β) = (x, y) agrees with ΨT (β′, i′, α′) = (z, t) if and only if there is

a common circular factor of S and T : F = UV , F ′ = V U , where U = tx and V = yz.

By RightSync′a(W, i) we denote the singleton of the leftmost position in RightSynca(W, i) or
an empty set if there is no such position. For positions α ≤ i ≤ β in W , by

ΨW (α, i, β) = (W [α . . i),W [i . . β))

we denote a pair of consecutive fragments of W that are delimited by these positions. We
then define the set of candidates (see Figure 3):

CANDa,b(W) = {ΨW (α, i, β) : α ∈ LeftSynca(W, i), β ∈ RightSync′b(W, i), i ∈ [1 . . |W |]}.

Using this terminology, an informal scheme of a general algorithm is as follows:

Algorithm 1: Compute-LCCFa,b(S, T).
1 Compute the sets CANDa,b(S), CANDb,a(T)
2 Find two pairs (x, y) ∈ CANDa,b(S), (z, t) ∈ CANDb,a(T) which agree and have

maximum |t|+ |x|+ |y|+ |z|
3 return txyz

I Lemma 7 (Correctness for Nonperiodic Case). The LCCFa,b problem in the nonperiodic
case can be reduced to the Fragment-Families-Problem (FS ,FT) for FS = CANDa,b(S)
and FT = CANDb,a(T).

M. Alzamel et al. 25:7

Proof. Take a pair of fragments fS of S and fT of T such that fS is an occurrence of a
factor F = UV and fT is an occurrence of a factor F ′ = V U such that U is of type a, V is of
type b, and none of them is highly periodic. Denote by uS and vS the consecutive fragments
of fS corresponding to U and V , and similarly by vT and uT the consecutive fragments of
fT corresponding to V and U , and let i = first(vS) and j = first(uT). Moreover, consider
α = succPa(S)(first(uS)) and α′ = succPa(T)(first(uT)). By Corollary 6, α − first(uS) =
α′ − first(uT) ≤ |U |. Consequently, α ∈ LeftSynca(S, i) and α′ ∈ RightSync′a(T, j). Moreover,
the relative position of α within uS coincides with the relative position of α′ within uT .
Symmetrically, β = succPb(S)(first(vS)) ∈ RightSync′b(S, i) and β′ = succPb(T)(first(vT)) ∈
LeftSyncb(T, j). Moreover, the relative position of β within vS coincides with the relative
position of β′ within vT . This means that there exists a pair (x, y) ∈ CANDa,b(S) such
that x = S[α . . i) = T [α′ . . i′ + |U |) and y = S[i . . β) = T [i′ − |V | . . β′), and a pair (z, t) ∈
CANDb,a(T) such that z = T [β′ . . i′) = S[β . . i + |V |) and t = T [i′ . . α′) = S[i − |U | . . α).
The equalities listed above imply that the two pairs agree.

Conversely, for every two pairs (x, y) ∈ CANDa,b(S), (z, t) ∈ CANDb,a(T) that agree, there
exists a factor F in string S matching txyz and a factor F ′ matching yztx in T . Thus, there
is a one-to-one correspondence between pairs that agree and fragments of strings of right type
that are cyclic shifts. Hence, by finding two pairs that agree and maximize |x|+ |y|+ |z|+ |t|,
we construct a solution to the LCCFa,b problem. J

I Lemma 8 (Complexity for Nonperiodic Case). In the nonperiodic case, the LCCF problem
can be reduced in O(n logn) time to O(logn) instances of the Fragment-Families-Problem
with m = O(n).

Proof. For each type a ∈ [0 . . type(LCF(S, T))], we compute the synchronizing sets Pa(S)
and Pa(T) in O(n) time using Lemma 4 as described in Section 2.3. Observe that each
position p ∈ Pa(W) may belong to just O(2a) sets LeftSynca(W, i). Consequently, the total
size of the sets LeftSynca(W, i) (for a fixed type a) is O(n), and we can compute them in
O(n) time using a sliding window. The running time across all types a is O(n logn).

The family CANDa,b(W) is constructed straight from the definition based on the sets
LeftSynca(W, i) and the synchronizing set Pb(W). As |CANDa,b(W)| ≤

∑
i |LeftSynca(W, i)|,

the size of this family is O(n), and the construction time is also linear. Across all O(logn)
pairs a, b ≥ 0 with type(LCF(S, T)) − 1 ≤ max(a, b) ≤ type(LCF(S, T)), the overall time
complexity is O(n logn). J

4 Periodic Case

We consider now LCCFa,b(S, T) = (F, F ′) such that F = UV , F ′ = V U , U is of type a, V is
of type b, and both U and V are highly periodic.

Recall that a Lyndon string is a string that is lexicographically smaller than all its
non-trivial cyclic shifts. If W is a weakly periodic string with the shortest period p, then its
Lyndon root λ is the Lyndon string that is a cyclic shift ofW [1 . . p]. A Lyndon representation
of W is then (c, e, d) such that W = λ′λeλ′′ where |λ′| = c < |λ| and |λ′′| = d < |λ|; see [13].
Lyndon strings have the following synchronization property that follows from the periodicity
lemma: if λ is a Lyndon string, then it has exactly two occurrences in λ2; see [12].

For a stringW , by HPerPrefa(W) and HPerSufa(W) we denote the longest highly periodic
type-a prefix and type-a suffix ofW , respectively (or the empty string if there is no appropriate
prefix or suffix). Let us start with the following simple observation; see Figure 4.

CPM 2019

25:8 Quasi-Linear-Time Algorithm for Longest Common Circular Factor

W

λ

|λ|

*
W ′

λ

|λ|

Figure 4 Illustration of Observation 9. A highly periodic suffix of W that is also a prefix of W ′

of length at most min(|X|, |Y |)− |λ| can be extended by |λ| characters.

I Observation 9. Let W and W ′ be two strings for which the strings X = HPerSufa(W)
and Y = HPerPrefa(W ′) have the same Lyndon root λ. Then the longest suffix of W that is
also a prefix of W ′ has length greater than min(|X|, |Y |)− |λ|.

For a position i in a stringW and a type a, we denote by LeftLyna(W, i) the set of positions
where the first, second, and last occurrence of the Lyndon root start in HPerSufa(W [1 . . i)).
If the latter string is empty, we assume that LeftLyna(W, i) is also empty. Similarly, we define
RightLyna(W, i) as the set of positions where the first, second to last, and last occurrence of
the Lyndon root start in HPerPrefa(W [i . . |W |]). We can redefine the set of candidates as
follows (see Figure 5)

CANDa,b(W) = {ΨW (α, i, β) : α ∈ LeftLyna(W, i), β ∈ RightLynb(W, i), i ∈ [1 . . |W |]}.

The following lemma implies the correctness of our algorithm in this case.

I Lemma 10 (Correctness for Periodic Case). The LCCFa,b problem in the periodic case
can be reduced to the Fragment-Families-Problem (FS ,FT) for the redefined sets FS =
CANDa,b(S) and FT = CANDb,a(T).

Proof. Take a pair of fragments fS of S and fT of T such that fS is an occurrence of a
factor F = UV and fT is an occurrence of a factor F ′ = V U ((F, F ′) = LCCFa,b(S, T)) such
that U is of type a, V is of type b, and both U and V are highly periodic. Denote by uS
and vS the consecutive fragments of fS corresponding to U and V , and similarly by vT and
uT the consecutive fragments of fT corresponding to V and U , and let i = first(vS) and
j = first(uT).

Let X = HPerSufa(S[1 . . i)) and Y = HPerPrefa(T [j . . n]). Note that uS is a highly
periodic suffix of X and that X has the same period as U (a different period would contradict
the periodicity lemma). Symmetrically, uT is a highly periodic prefix of Y and Y has the
same period as U . Let λ be the Lyndon root of U , and observe that λ is also the Lyndon
root of X and Y . By Observation 9, we have

|X| − |U | < |λ| or |Y | − |U | < |λ|,

as otherwise we would be able to find a Common Circular Factor of type (a, b) that is longer
by |λ|, thus contradicting our choice of fS ad fT .

•
α1

•
α2

•
α3

•
β1

•
β2

•
β3i

2b+1 − 1
2b+2 − 2

2a+1 − 1
2a+2 − 2

Figure 5 In this case, CANDa,b(W) contains ΨW (αp, i, βq) for p, q ∈ {1, 2, 3}.

M. Alzamel et al. 25:9

λ

•
i

2a+2 − 2
2a+1 − 1

*

•
λ

j
2a+2 − 2

2a+1 − 1

•
i

•
j

* •
i

*•
j

•
i

•
j

Figure 6 Four cases from the proof of Lemma 10.

If |X|− |U | < |λ|, then the first occurrence of λ in uS is also the first or second occurrence
of Lyndon root inX. This is due to the synchronization property of Lyndon strings. Moreover,
the first λ in uT is also the first occurrence of λ in Y . On the other hand, if |Y | − |U | < |λ|,
then the last occurrence of λ in uT is the last or the second to last occurrence of λ in uT ,
whereas the last occurrence of λ in uS is also the last occurrence of λ in X. In either case,
uS and uT contain a pair of corresponding occurrences of λ whose starting positions belong
to LeftLyna(S, i) and RightLynb(T, j), respectively; see Figure 6.

As the same reasoning can be applied to vS and vT , there exist pairs (x, y) ∈ CANDa,b(S)
and (z, t) ∈ CANDb,a(T) which correspond to our choice of occurrences of the Lyndon roots.
These pairs agree and |x| + |y| + |z| + |t| = |F |; thus, Fragment-Families-Problem
(FS ,FT) will find a solution at least that good.

The converse direction is identical to the one from the proof of Lemma 7. J

We proceed with an efficient implementation. A run in string W is a maximal weakly
periodic fragment W [i . . j] with a given period p. We use 2-period queries which, given
a weakly periodic fragment u of a string, compute its shortest period and the run of the
same period it belongs to. Such queries can be answered in O(1) time after O(n)-time
preprocessing [27, 24] (for a simplified solution, see [5]). Let us also recall that the Lyndon
representation of a run can be computed in constant time after linear-time preprocessing [13].

I Lemma 11 (Complexity for Periodic Case). In the periodic case, the LCCF problem can be
reduced in O(n logn) time to O(logn) instances of the Fragment-Families-Problem with
m = O(n).

CPM 2019

25:10 Quasi-Linear-Time Algorithm for Longest Common Circular Factor

Proof. First, we spend O(n logn) time in total to construct the sets LeftLyna(W, i) and
RightLyna(W, i) for each W ∈ {S, T} and a ≤ type(W). For this, we use the following result:

B Claim 12. After O(n)-time preprocessing of a string W , each set LeftLyna(W, i) and
RightLyna(W, i) can be constructed in O(1) time.

Proof. To compute HPerPrefa(u) for a fragment u of W , it suffices to ask a 2-period query
for u[1 . . 2a+1 − 1] (see [27, 5]), determine the Lyndon representation of the resulting run
(see [13, 5]), and then trim its Lyndon representation to u. A symmetric solution works for
HPerSufa(u). This allows us to construct the sets LeftLyna and RightLyna. C

Now, the family CANDa,b(W), which is of size at most 9n, can be computed in O(n) based
on the sets LeftLyna(W, i) and RightLynb(W, i). Our reduction to the Fragment-Families-
Problem problem relies on O(logn) such families constructed for pairs a, b ≥ 0 such that
type(LCF(S, T))− 1 ≤ max(a, b) ≤ type(LCF(S, T)); see Section 2.3 and Lemma 8. J

5 General Case

Finally, we consider the general problem of computing LCCFa,b(S, T) = (F, F ′). It can be
reduced to several instances of the Fragment-Families-Problem directly by combining
the techniques of the previous two sections.

I Lemma 13 (Correctness for General Case). The LCCFa,b problem can be reduced to the
Fragment-Families-Problem (FS ,FT).

Proof. In the proofs of Lemmas 7 and 10 the U and V parts of the factors were considered
separately. Hence, it is enough to define CANDa,b(W) as

CANDa,b(W) = {ΨW (α, i, β) : α ∈ LeftSynca(W, i) ∪ LeftLyna(W, i),
β ∈ RightSync′b(W, i) ∪ RightLynb(W, i), i ∈ [1 . . |W |]}.

Depending on whether U or V is highly periodic or not, the existence of an agreeing pair
(x, y) ∈ FS and (z, t) ∈ FT can be shown be repeating the arguments in the proofs of
Lemma 7 or Lemma 10, respectively. J

I Lemma 14 (Complexity for General Case). The LCCF problem can be reduced in O(n logn)
time to O(logn) instances of the Fragment-Families-Problem with m = O(n).

Proof. The families can be computed combining the methods from Lemmas 8 and 11,
obtaining the desired complexities and sizes. J

6 Solution to Fragment-Families-Problem

In this section we show how to solve the Fragment-Families-Problem for a string W of
length n by a reduction to intersecting special 4-dimensional rectangles.
First, we give a geometric interpretation of two predicates:

a factor U has an occurrence in W starting at position q (is a prefix of the suffix starting
at position q), and
U has an occurrence ending at position q (is a suffix of the prefix ending at position q)

relating them to the membership of q in a corresponding subinterval of [1 . . n].
Let us recall that the suffix array [30] of a string W , SAW , is a permutation of [1 . . n]

such that W [SAW [i] . . n] < W [SAW [i+ 1] . . n] for every i ∈ [1 . . n− 1]. By FirstPos(U) let us
denote the set of starting positions of occurrences of U in W . Our geometric interpretation
is possible due to the following well known fact (see [12]).

M. Alzamel et al. 25:11

I Observation 15. The set FirstPos(U) consists of consecutive elements in SAW .

Let LastPos(U) be the set of ending positions of occurrences of U in W . We also use the
FirstPos, LastPos notation for fragments which means operations on corresponding factors.

I Observation 16.
1. A fragment u is a prefix/suffix of the suffix starting (prefix ending) at position q if and

only if q ∈ FirstPos(u), q ∈ LastPos(u), respectively.
2. Γu,v ≡ ((last(u) + 1) ∈ FirstPos(v)) and ∆u,v ≡ ((first(v)− 1) ∈ LastPos(u)).

We define a d-rectangle (d ≥ 2) as a Cartesian product of d closed intervals, such that at
least d− 2 of them are singletons. E.g., {3} × [2 . . 5]× [1 . . 7]× {0} is a 4-rectangle. In other
words, a d-rectangle is an isothetic hyperrectangle of dimension at most 2.

By I(U) and J (U) we denote the subintervals of [1 . . n] that correspond to the intervals
of FirstPos(U) in the suffix array SAW and of LastPos(U) in the (analogously defined) prefix
array of W , PAW , respectively, as stated in Observation 15. (PAW is a permutation of [1 . . n]
such that W [1 . .PAW [i]]R < W [1 . .PAW [i+ 1]]R for every i ∈ [1 . . n− 1].) For pairs (x, y)
and (z, t) of consecutive fragments, we denote:

RECT(x, y) = I(x)× J (y)× {SA−1
W [last(y) + 1]} × {PA−1

W [first(x)− 1]},
RECT′(z, t) = {SA−1

W [last(t) + 1]} × {PA−1
W [first(z)− 1]} × I(z)× J (t).

Observation 16.2 now implies the following.

I Observation 17. Two pairs of consecutive fragments (x, y), (z, t) agree if and only if
RECT(x, y) ∩ RECT′(z, t) 6= ∅.

Two d-rectangles [a1 . . b1]×· · ·×[ad . . bd] and [a′1 . . b′1]×· · ·×[a′d . . b′d] are called compatible
if, for each i ∈ {1, . . . , d}, [ai . . bi] or [a′i . . b′i] is a singleton. Let us note that the 4-rectangles
in the above observation are compatible.

6.1 Intersecting 4D Rectangles
We consider two families of 4-rectangles with weights and wish to find a pair of intersecting
rectangles, one per family, with maximum total weight. The general problem of finding
such an intersection of two families of m weighted hyperrectangles in d dimensions can be
solved in O(m log2dm) time by an adaptation of a classic approach [14]. Below, we consider
a special variant of the problem that has a much more efficient solution.

Max-Weight Intersection of Compatible Rectangles in 4D
Input: Two families R1 and R2 of 4-rectangles in Z4 with integer weights containing
m rectangles in total, such that each R1 ∈ R1 and R2 ∈ R2 are compatible
Output: Check if there is an intersecting pair of 4-rectangles R1 ∈ R1 and R2 ∈ R2
and, if so, compute the maximum total weight of such a pair

A very similar problem was considered as Problem 3 in [19] for an arbitrary d. The sole
difference is that the weight of an intersection of two d-rectangles R1 ∈ R1 and R2 ∈ R2 in
that problem was the maximum `1-norm of a point in R1 ∩ R2. A solution to Problem 3
for d = 4 in the case that the 4-rectangles are compatible working in O(m log3 m) time and
O(m log2 m) space was given as [19, Lemma 5.8]. The algorithm presented in that lemma
actually solves the Max-Weight Intersection of Compatible Rectangles in 4D
problem and applies it for specific weight assignment of the 4-rectangles on the input. It
uses hyperplane sweep and a variant of an interval stabbing problem. Henceforth, we will
use the following result.

CPM 2019

25:12 Quasi-Linear-Time Algorithm for Longest Common Circular Factor

I Fact 18 (see [19, Lemma 5.8]). Max-Weight Intersection of Compatible Rect-
angles in 4D can be solved in O(m log3 m) time and O(m log2 m) space.

6.2 Algorithm for Fragment-Families-Problem
Let us recall that the suffix tree [35] of a string W , STW , is a compacted trie of all the
suffixes of W . It can be computed in O(n) time (see [15]) and reading the suffixes of W in its
preorder traversal yields the suffix array of W . An efficient implementation of Observation 15
is known; see [1, 25].

I Lemma 19. The sets I(u) and J (u) can be computed in O(n+m) total time for a batch
of m fragments u of a length-n string W .

Proof. Without loss of generality, it suffices to show how to compute I(u). For every explicit
node of STW , we can compute the interval of elements of SAW that are located in its subtree.
This can be done in a bottom-up order in O(n) time.

A weighted ancestor query in STW , given a terminal node w and positive integer d,
returns the ancestor of w located at depth d (being an explicit or implicit node). A batch
of m such queries (for any tree of n nodes with positive integer weights of edges) can be
answered in O(n+m) time; see [25, Section 7.1].

A weighted ancestor query can be used to compute, given a fragment u of W , the
corresponding (explicit or implicit) node w of STW . The interval stored in the nearest
explicit descendant of w equals I(u). J

We are now ready to show a solution to the Fragment-Families-Problem.

I Lemma 20. The Fragment-Families-Problem can be solved in O(n+m log3 m) time
and O(n+m log2 m) space.

Proof. We construct families R1 and R2 of weighted 4-rectangles. For every (x, y) ∈
F1, we add RECT(x, y) to R1 with weight |x| + |y|. For every (z, t) ∈ F2, we add
RECT′(z, t) to R2 with weight |z|+ |t|. By Observation 17, the solution to Max-Weight
Intersection of Compatible Rectangles in 4D for R1 and R2 is the solution to
Fragment-Families-Problem(F1,F2).

Note that we have |R1| = |F1| and |R2| = |F2|. Using Lemma 19 and a linear-time
algorithm for constructing SAW and PAW (and SA−1

W and PA−1
W) [15], computation of 4-

rectangles RECT, RECT′ can be done in O(n + m) time in total. Finally, Max-Weight
Intersection of Compatible Rectangles in 4D can be solved in O(m log3 m) time
and O(m log2 m) space. J

As a consequence of Lemmas 13 and 14 and the above lemma, we obtain the main result.

I Theorem 1 (Main Result). The Longest Common Circular Factor problem on two strings
of length at most n can be solved in O(n log4 n) time and O(n log2 n) space.

7 Conclusions

We have presented an O(n log4 n)-time algorithm for computing the Longest Common
Circular Factor (LCCF) of two strings of length n. Let us recall that the Longest Common
Factor (LCF) of two strings can be computed in O(n) time. We leave an open question if
the LCCF problem can also be solved in linear time.

M. Alzamel et al. 25:13

References
1 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static

pattern matching. ACM Transactions on Algorithms, 3(2):19, 2007. doi:10.1145/1240233.
1240242.

2 Alberto Apostolico, Maxime Crochemore, Martin Farach-Colton, Zvi Galil, and S. Muthukrish-
nan. 40 years of suffix trees. Communications of the ACM, 59(4):66–73, 2016. doi:
10.1145/2810036.

3 Tanver Athar, Carl Barton, Widmer Bland, Jia Gao, Costas S. Iliopoulos, Chang Liu, and
Solon P. Pissis. Fast circular dictionary-matching algorithm. Mathematical Structures in
Computer Science, 27(2):143–156, 2017. doi:10.1017/S0960129515000134.

4 Md. Aashikur Rahman Azim, Costas S. Iliopoulos, Mohammad Sohel Rahman, and
M. Samiruzzaman. A fast and lightweight filter-based algorithm for circular pattern match-
ing. In Pierre Baldi and Wei Wang, editors, 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics, BCB 2014, pages 621–622. ACM, 2014.
doi:10.1145/2649387.2660804.

5 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “Runs” Theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

6 Carl Barton, Costas S. Iliopoulos, and Solon P. Pissis. Fast algorithms for approximate circular
string matching. Algorithms for Molecular Biology, 9:9, 2014. doi:10.1186/1748-7188-9-9.

7 Carl Barton, Costas S. Iliopoulos, and Solon P. Pissis. Average-Case Optimal Approximate
Circular String Matching. In Adrian-Horia Dediu, Enrico Formenti, Carlos Martín-Vide, and
Bianca Truthe, editors, Language and Automata Theory and Applications, LATA 2015, volume
8977 of LNCS, pages 85–96. Springer, 2015. doi:10.1007/978-3-319-15579-1_6.

8 Or Birenzwige, Shay Golan, and Ely Porat. Locally Consistent Parsing for Text Indexing in
Small Space. ArXiv preprint, 2018. arXiv:1812.00359.

9 Domenico Cantone, Simone Faro, and Arianna Pavone. Sequence Searching Allowing for Non-
Overlapping Adjacent Unbalanced Translocations. ArXiv preprint, 2018. arXiv:1812.00421.

10 Kuei-Hao Chen, Guan-Shieng Huang, and Richard Chia-Tung Lee. Bit-Parallel Algorithms
for Exact Circular String Matching. The Computer Journal, 57(5):731–743, 2014. doi:
10.1093/comjnl/bxt023.

11 Da-Jung Cho, Yo-Sub Han, and Hwee Kim. Alignment with non-overlapping inversions
and translocations on two strings. Theoretical Computer Science, 575:90–101, 2015. doi:
10.1016/j.tcs.2014.10.036.

12 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007. doi:10.1017/cbo9780511546853.

13 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Extracting powers and periods in a word from its runs structure.
Theoretical Computer Science, 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

14 Herbert Edelsbrunner. A new approach to rectangle intersections, Part I. International Journal
of Computer Mathematics, 13(3–4):209–219, 1983. doi:10.1080/00207168308803364.

15 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000. doi:10.1145/355541.
355547.

16 Nathan J. Fine and Herbert S. Wilf. Uniqueness Theorems for Periodic Functions.
Proceedings of the American Mathematical Society, 16:109–114, 1965. doi:10.1090/
S0002-9939-1965-0174934-9.

17 Kimmo Fredriksson and Szymon Grabowski. Average-optimal string matching. Journal of
Discrete Algorithms, 7(4):579–594, 2009. doi:10.1016/j.jda.2008.09.001.

18 Kimmo Fredriksson and Gonzalo Navarro. Average-optimal single and multiple approximate
string matching. ACM Journal of Experimental Algorithmics, 9:1.4:1–1.4:47, 2004. doi:
10.1145/1005813.1041513.

CPM 2019

http://dx.doi.org/10.1145/1240233.1240242
http://dx.doi.org/10.1145/1240233.1240242
http://dx.doi.org/10.1145/2810036
http://dx.doi.org/10.1145/2810036
http://dx.doi.org/10.1017/S0960129515000134
http://dx.doi.org/10.1145/2649387.2660804
http://dx.doi.org/10.1137/15M1011032
http://dx.doi.org/10.1186/1748-7188-9-9
http://dx.doi.org/10.1007/978-3-319-15579-1_6
http://arxiv.org/abs/1812.00359
http://arxiv.org/abs/1812.00421
http://dx.doi.org/10.1093/comjnl/bxt023
http://dx.doi.org/10.1093/comjnl/bxt023
http://dx.doi.org/10.1016/j.tcs.2014.10.036
http://dx.doi.org/10.1016/j.tcs.2014.10.036
http://dx.doi.org/10.1017/cbo9780511546853
http://dx.doi.org/10.1016/j.tcs.2013.11.018
http://dx.doi.org/10.1080/00207168308803364
http://dx.doi.org/10.1145/355541.355547
http://dx.doi.org/10.1145/355541.355547
http://dx.doi.org/10.1090/S0002-9939-1965-0174934-9
http://dx.doi.org/10.1090/S0002-9939-1965-0174934-9
http://dx.doi.org/10.1016/j.jda.2008.09.001
http://dx.doi.org/10.1145/1005813.1041513
http://dx.doi.org/10.1145/1005813.1041513

25:14 Quasi-Linear-Time Algorithm for Longest Common Circular Factor

19 Szymon Grabowski, Tomasz Kociumaka, and Jakub Radoszewski. On Abelian Longest
Common Factor with and without RLE. Fundamenta Informaticae, 163(3):225–244, 2018.
doi:10.3233/FI-2018-1740.

20 Tommi Hirvola and Jorma Tarhio. Bit-Parallel Approximate Matching of Circular Strings
with k Mismatches. ACM Journal of Experimental Algorithmics, 22:1.5:1–1.5:22, 2017. doi:
10.1145/3129536.

21 Costas S. Iliopoulos, Solon P. Pissis, and M. Sohel Rahman. Searching and Index-
ing Circular Patterns. In Mourad Elloumi, editor, Algorithms for Next-Generation Se-
quencing Data, Techniques, Approaches, and Applications, pages 77–90. Springer, 2017.
doi:10.1007/978-3-319-59826-0_3.

22 Costas S. Iliopoulos and M. Sohel Rahman. Indexing Circular Patterns. In Shin-Ichi Nakano
and Md. Saidur Rahman, editors, Algorithms and Computation, WALCOM 2008, volume 4921
of LNCS, pages 46–57. Springer, 2008. doi:10.1007/978-3-540-77891-2_5.

23 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: Sublinear-time BWT
construction and optimal LCE data structure. In Edith Cohen, editor, 51st Annual ACM Sym-
posium on Theory of Computing, STOC 2019. ACM, 2019. doi:10.1145/3313276.3316368.

24 Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis,
University of Warsaw, October 2018. URL: https://www.mimuw.edu.pl/~kociumaka/files/
phd.pdf.

25 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
A Linear Time Algorithm for Seeds Computation. ArXiv preprint, 2019. arXiv:1107.2422v2.

26 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Efficient Data
Structures for the Factor Periodicity Problem. In Liliana Calderón-Benavides, Cristina N.
González-Caro, Edgar Chávez, and Nivio Ziviani, editors, String Processing and Information
Retrieval, SPIRE 2012, volume 7608 of LNCS, pages 284–294. Springer, 2012. doi:10.1007/
978-3-642-34109-0_30.

27 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal
Pattern Matching Queries in a Text and Applications. In Piotr Indyk, editor, 26th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages 532–551. SIAM, 2015.
doi:10.1137/1.9781611973730.36.

28 Jie Lin and Donald A. Adjeroh. All-Against-All Circular Pattern Matching. The Computer
Journal, 55(7):897–906, 2012. doi:10.1093/comjnl/bxr126.

29 Jie Lin, Yue Jiang, and Don Adjeroh. Circular Pattern Discovery. The Computer Journal,
58(5):1061–1073, 2015. doi:10.1093/comjnl/bxu009.

30 Udi Manber and Eugene W. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

31 Hideaki Ogiwara, Takashi Kohno, Hirofumi Nakanishi, Kazuhiro Nagayama, Masanori Sato,
and Jun Yokota. Unbalanced translocation, a major chromosome alteration causing loss of
heterozygosity in human lung cancer. Oncogene, 27(35):4788–4797, 2008. doi:10.1038/onc.
2008.113.

32 Robert Susik, Szymon Grabowski, and Sebastian Deorowicz. Fast and Simple Circular Pattern
Matching. In Aleksandra Gruca, Tadeusz Czachórski, and Stanisław Kozielski, editors, Man-
Machine Interactions, ICMMI 2013, volume 242 of Advances in Intelligent Systems and
Computing, pages 537–544. Springer, 2013. doi:10.1007/978-3-319-02309-0_59.

33 Dorothy Warburton. De novo balanced chromosome rearrangements and extra marker chro-
mosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints.
The American Journal of Human Genetics, 49(5):995–1013, 1991. PMID:1928105.

34 Brooke Weckselblatt, Karen E. Hermetz, and M. Katharine Rudd. Unbalanced transloca-
tions arise from diverse mutational mechanisms including chromothripsis. Genome Research,
25(7):937–947, 2015. doi:10.1101/gr.191247.115.

35 Peter Weiner. Linear Pattern Matching Algorithms. In 14th Annual Symposium on Switching
and Automata Theory, SWAT 1973, pages 1–11, Washington, DC, USA, 1973. IEEE Computer
Society. doi:10.1109/SWAT.1973.13.

http://dx.doi.org/10.3233/FI-2018-1740
http://dx.doi.org/10.1145/3129536
http://dx.doi.org/10.1145/3129536
http://dx.doi.org/10.1007/978-3-319-59826-0_3
http://dx.doi.org/10.1007/978-3-540-77891-2_5
http://dx.doi.org/10.1145/3313276.3316368
https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
http://arxiv.org/abs/1107.2422v2
http://dx.doi.org/10.1007/978-3-642-34109-0_30
http://dx.doi.org/10.1007/978-3-642-34109-0_30
http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1093/comjnl/bxr126
http://dx.doi.org/10.1093/comjnl/bxu009
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1038/onc.2008.113
http://dx.doi.org/10.1038/onc.2008.113
http://dx.doi.org/10.1007/978-3-319-02309-0_59
http://www.ncbi.nlm.nih.gov/pubmed/1928105
http://dx.doi.org/10.1101/gr.191247.115
http://dx.doi.org/10.1109/SWAT.1973.13

	Introduction
	Preliminaries
	O(n^2 log n)-Time and O(n)-Space Algorithm
	Synchronizing Sets
	Types of Factors

	Nonperiodic Case
	Periodic Case
	General Case
	Solution to Fragment-Families-Problem
	Intersecting 4D Rectangles
	Algorithm for Fragment-Families-Problem

	Conclusions

