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—— Abstract

Quantum computing is a significant threat to classical public-key cryptography. In strong “quantum

access” security models, numerous symmetric-key cryptosystems are also vulnerable. We consider
classical encryption in a model which grants the adversary quantum oracle access to encryption and
decryption, but where the latter is restricted to non-adaptive (i.e., pre-challenge) queries only. We
define this model formally using appropriate notions of ciphertext indistinguishability and semantic
security (which are equivalent by standard arguments) and call it QCCAL in analogy to the classical
CCAL1 security model. Using a bound on quantum random-access codes, we show that the standard
PRF-based encryption schemes are QCCAl-secure when instantiated with quantum-secure primitives.

We then revisit standard IND-CPA-secure Learning with Errors (LWE) encryption and show that
leaking just one quantum decryption query (and no other queries or leakage of any kind) allows the
adversary to recover the full secret key with constant success probability. In the classical setting, by
contrast, recovering the key requires a linear number of decryption queries. The algorithm at the
core of our attack is a (large-modulus version of) the well-known Bernstein-Vazirani algorithm. We
emphasize that our results should not be interpreted as a weakness of these cryptosystems in their
stated security setting (i.e., post-quantum chosen-plaintext secrecy). Rather, our results mean that,
if these cryptosystems are exposed to chosen-ciphertext attacks (e.g., as a result of deployment in
an inappropriate real-world setting) then quantum attacks are even more devastating than classical
ones.
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On Quantum Chosen-Ciphertext Attacks and Learning with Errors

1 Introduction

Large-scale quantum computers pose a dramatic threat to classical cryptography. The ability
of such devices to run Shor’s efficient quantum factoring algorithm (and its variants) would
lead to devastation of the currently deployed public-key cryptography infrastructure [8, 25].
This threat has led to significant work on so-called “post-quantum” alternatives, where a
prominent category is occupied by cryptosystems based on the Learning with Errors (LWE)
problem of solving noisy linear equations over Z, [23] and its variants [8, 22].

In addition to motivating significant work on post-quantum cryptosystems, the threat
of quantum computers has spurred general research on secure classical cryptography in the
presence of quantum adversaries. One area in particular explores security models where
a quantum adversary gains quantum control over portions of a classical cryptosystem. In
such models, a number of basic symmetric-key primitives can be broken by simple quantum
attacks based on Simon’s algorithm [16, 17, 15, 24, 26]. It is unclear if the assumption behind
these models is plausible for typical physical implementations of symmetric-key cryptography.
However, attacks that involve quantumly querying a classical function are always available
in scenarios where the adversary has access to a circuit for the relevant function. This is the
case for hashing, public-key encryption, and circuit obfuscation. Moreover, understanding
this model is crucial for gauging the degree to which any physical cryptographic device
must be resistant to reverse engineering or forced quantum behavior (consider the so-called
“frozen smart card” example [10]). For instance, one may reasonably ask: what happens to
the security of a classical cryptosystem when the device leaks only a single quantum query to
the adversary?

When deciding which functions the adversary might have (quantum) access to, it is worth
recalling the classical setting. For classical symmetric-key encryption, a standard approach
considers the security of cryptosystems when exposed to so-called chosen-plaintext attacks
(CPA). This notion encompasses all attacks in which an adversary attempts to defeat security
(by, e.g., distinguishing ciphertexts or extracting key information) using oracle access to
the function which encrypts plaintexts with the secret key. This approach has been highly
successful in developing cryptosystems secure against a wide range of realistic real-world
attacks. An analogous class, the so-called chosen-ciphertext attacks (CCA), are attacks in
which the adversary can make use of oracle access to decryption. For example, a well-known
attack due to Bleichenbacher [4] only requires access to an oracle that decides if the input
ciphertext is encrypted according to a particular RSA standard. We will consider analogues
of both CPA and CCA attacks, in which the relevant functions are quantumly accessible to
the adversary.

Prior works have formalized the quantum-accessible model for classical cryptography in
several settings, including unforgeable message authentication codes and digital signatures [6,
5], encryption secure against quantum chosen-plaintext attacks (QCPA) [7, 10], and encryption
secure against adaptive quantum chosen-ciphertext attacks (QCCA2) [6].

1.1 OQur Contributions
1.1.1 The model

In this work, we define a quantum-secure model of encryption called QCCAL. This model
grants non-adaptive access to the decryption oracle, and is thus intermediate between QCPA
and QCCA2. Studying weaker and intermediate models is a standard and useful practice in
cryptography. In fact, CPA and CCA2 are intermediate models themselves, being strictly
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weaker than authenticated encryption. Our particular intermediate model is naturally
motivated: it is sufficent for a new and interesting quantum attack on LWE encryption.

As is typical, the “challenge” in QCCAL can be semantic, or take the form of an indis-
tinguishability test. This leads to natural security notions for symmetric-key encryption,
which we call IND-QCCAL and SEM-QCCAL, respectively. Following previous works, it is
straightforward to prove that IND-QCCA1 and SEM-QCCAL are equivalent [7, 10, 6].

We prove IND-QCCA1 security for two symmetric-key encryption schemes, based on
standard assumptions. Specifically, we show that the standard encryption scheme based on
quantum-secure pseudorandom functions (QPRF) is IND-QCCA1l-secure. We remark that
QPRFs can be constructed from quantum-secure one-way functions [28]. Our security proofs
use a novel technique, in which we control the amount of information that the adversary can
extract from the oracles and store in their internal quantum state (prior to the challenge) by
means of a certain bound on quantum random-access codes.

1.1.2 A quantum-query attack on LWE

We then revisit the aforementioned question: what happens to a post-quantum cryptosystem
if it leaks a single quantum query? Our main result is that standard IND-CPA-secure LWE-
based encryption schemes can be completely broken using only a single quantum decryption
query and no other queries or leakage of any kind. In our attack, the adversary recovers the
complete secret key with constant success probability. In standard bit-by-bit LWE encryption,
a single classical decryption query can yield at most one bit of the secret key; the classical
analogue of our attack thus requires n log ¢ queries. The attack is essentially an application of
a modulo-g variant of the Bernstein-Vazirani algorithm [3]. Our new analysis shows that this
algorithm correctly recovers the key with constant success probability, despite the decryption
function only returning an inner product which is rounded to one of two values. We show
that the attack applies to four variants of standard IND-CPA-secure LWE-based encryption:
the symmetric-key and public-key systems originally described by Regev [23], the FrodoPKE
scheme! [18, 1], and standard Ring-LWE [19, 20].

1.1.3 Important caveats

Our results challenge the idea that LWE is unconditionally “just as secure” quantumly as
it is classically. Nonetheless, the reader is cautioned to interpret our work carefully. Our
results do not indicate a weakness in LWE (or any LWE-based cryptosystem) in the standard
post-quantum security model. Since it is widely believed that quantum-algorithmic attacks
will need to be launched over purely classical channels, post-quantum security does not allow
for quantum queries to encryption or decryption oracles. Moreover, while our attack does
offer a dramatic quantum speedup (i.e., one query vs. linear queries), the classical attack is
already efficient. The schemes we attack are already insecure in the classical chosen-ciphertext
setting, but can be modified to achieve chosen-ciphertext security [9].

! FrodoPKE is an IND-CPA-secure building block in the IND-CCA2-secure post-quantum cryptosystem
“FrodoKEM” [1]. Our results do not affect the post-quantum security of Frodo and do not contradict
the CCA2 security of FrodoKEM.

1:3
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1.1.4 Related work

We remark that Grilo, Kerenidis and Zijlstra recently observed that a version of LWE with
so-called “quantum samples” can be solved efficiently (as a learning problem) using Bernstein-
Vazirani [14]. Our result, by contrast, demonstrates an actual cryptographic attack on
standard cryptosystems based on LWE, in a plausible security setting. Moreover, in terms
of solving the learning problem, our analysis shows that constant success probability is
achievable with only a single query, whereas [14] require a number of queries which is at least
linear in the modulus ¢. In particular, our cryptographic attack succeeds with a single query
even for superpolynomial modulus.

1.2 Technical summary of results
1.2.1 Security model and basic definitions

We set down the basic QCCAL security model, adapting the ideas of [5, 10]. An encryption
scheme is a triple II = (KeyGen, Enc, Dec) of algorithms (key generation, encryption, and
decryption, respectively) satisfying Decy (Enci(m)) = m for any key k <+ KeyGen and message
m. In what follows, all oracles are quantum, meaning a function f is accessed by the unitary
|z)ly) — |z)|y ® f(x)). We define indistinguishability and semantic security as follows.

» Definition 1 (informal). II is IND-QCCAL if no quantum polynomial-time algorithm (QPT)

A can succeed at the following experiment with probability better than 1/2 + negl(n).

1. A key k < KeyGen(1™) and a uniformly random bit b<£{0,1} are generated; A gets
access to oracles Ency, and Decy, and outputs (mg,my);

2. A gets Encp(my) and access to an oracle for Ency, and outputs a bit b'; A wins if b=1V'.

» Definition 2 (informal). Consider the following game with a QPT A.

1. A key k + KeyGen(1™) is generated; A gets access to oracles Ency, Dec and outputs
circuits (Samp, h, f);

2. Sample m < Samp; A receives h(m), Enci(m), and access to an oracle for Ency only,
and outputs a string s; A wins if s = f(m).

Then I1 is SEM-QCCAL if for every QPT A there exists a QPT S with the same winning

probability but which does not get Enci(m) in step 2.

» Theorem 3. A symmetric-key encryption scheme is IND-QCCAL if and only if it is
SEM-QCCAL.

1.2.2 Secure constructions

Next, we show that standard pseudorandom-function-based encryption is QCCAl-secure,
provided that the underlying PRF is quantum-secure (i.e., is a QPRF.) A QPRF can be
constructed from any quantum-secure one-way function, or directly from the LWE assump-
tion [28]. Given a PRF f = {fi}x, define PRFscheme[f] to be the scheme which encrypts a
plaintext m using randomness r via Enci(m;r) = (r, f(r) & m) and decrypts in the obvious
way.

» Theorem 4. If f is a QPRF, then PRFscheme[f] is IND-QCCA1-secure.

In the full version of this work, we also analyze a standard permutation-based scheme.
Quantum-secure PRPs (i.e., QPRPs) can be obtained from quantum-secure one-way functions
[29]. Given a PRP P = {Py}, define PRPscheme[P] to be the scheme that encrypts a
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plaintext m using randomness r via Encg(m;r) = P(m]|r), where || denotes concatenation;
to decrypt, apply P, ! and discard r.

» Theorem 5. If P is a QPRP, then PRPscheme[P] is IND-QCCAL-secure.

We briefly describe our proof techniques for Theorems 4 and 5. In the indistinguishability
game, the adversary can use the decryption oracle prior to the challenge to (quantumly)
encode information about the relevant pseudorandom function instance (i.e., fx or Py) in his
private, poly-sized quantum memory. To establish security, it is enough to show that this
encoded information cannot help the adversary compute the value of the relevant function at
the particular randomness used in the challenge. To prove this, we use a bound on quantum
random access codes (QRAC), where, informally, a QRAC is a mapping from N-bit strings x
to d-dimensional states o, such that given g,, and any j € [N], z; can be recovered with
some probability.

» Lemma 6. The average bias of a quantum random access code with shared randomness
that encodes N bits into a d-dimensional quantum state is O(\/N—1logd). In particular, if
N = 2" and d = 2°°Y(") the bias is O(27"/? poly(n)).

1.2.3 Key recovery against LWE

Our attack on LWE encryption uses a new analysis of a large-modulus variant of the Bernstein-
Vazirani algorithm [3], in the presence of a certain type of “rounding” noise.

1.2.4 Quantum algorithm for linear rounding functions

Given integers n > 1 and ¢ > 2, define a keyed family of (binary) linear rounding functions,
LRFgq : Zy — {0,1}, with key k € Zj, as follows:

0 if [{@, k)] < [§],

1 otherwise.

LRFy () := {

Here (-,-) denote the inner product modulo g. Our main technical contribution is the
following.

» Theorem 7 (informal). There exists a quantum algorithm that runs in time O(n), makes
one quantum query to LRFy o (with unknown k € Zg), and outputs k with probability
4/7% - 0(1/q).

We also show that the same algorithm succeeds against more generalized function classes,
in which the oracle indicates which “segment” of Z, the exact inner product belongs to.

1.2.5 One quantum query against LWE

Finally, we revisit our central question of interest: what happens to a post-quantum cryptosys-
tem if it leaks a single quantum query? We show that, in standard LWE-based schemes, the
decryption function can (with some simple modifications) be viewed as a special case of a lin-
ear rounding function, as above. In standard symmetric-key or public-key LWE, for instance,
we decrypt a ciphertext (a, ¢) € Z2 with key k by outputting 0 if |c — (a, k)| < [%] and 1
otherwise. In standard Ring-LWE, we decrypt a ciphertext (u,v) with key k (here u, v,k are
polynomials in Z4[z]/(z™ 4 1)) by outputting O if the constant coefficient of v — k - u is small,
and 1 otherwise.

1:5
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Each of these schemes is secure against adversaries with classical encryption oracle access,
under the LWE assumption. If adversaries also gain classical decryption access, then it’s not
hard to see that a linear number of queries is necessary and sufficient to recover the private
key. Our main result is that, by contrast, only a single quantum decryption query is required
to achieve this total break. Indeed, in all three constructions described above, one can use
the decryption oracle to build an associated oracle for a linear rounding function which hides
the secret key. The following can then be shown using Theorem 7.

» Theorem 8 (informal). Let II be standard LWE or standard Ring-LWE encryption (either
symmetric-key, or public-key.) Let n be the security parameter. Then there is an efficient
quantum algorithm that runs in time O(n), uses one quantum query to the decryption function
Decy, of I1,and outputs the secret key with constant probability.

It’s natural to ask whether a similar quantum speedup can be achieved using encryption
queries. In the full version of this article, we show that this is possible in a model in which
the adversary is allowed to select some of the random coins used to encrypt.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we outline preliminary
ideas that we will make use of, including cryptographic concepts, and notions from quantum
algorithms. In Section 3, we define the QCCAL model, including the two equivalent versions
IND-QCCA1 and SEM-QCCAL. In Section 4, we define the PRF scheme, and show that they
are IND-QCCA1-secure. In Section 5, we show how a generalization of the Bernstein-Vazirani
algorithm works with probability bounded from below by a constant, even when the oracle
outputs rounded values. In Section 6, we use the results of Section 5 to prove that a
single quantum decryption query is enough to recover the secret key in various versions of
LWE-encryption.

2 Preliminaries

2.1 Basic notation and conventions

Selecting an element z uniformly at random from a finite set X will be written as z & X. If
we are generating a vector or matrix with entries in Z, by sampling each entry independently
according to a distribution x on Zg, we will write, e.g., v <= Zg. Given a matrix A, AT will
denote the transpose of A. We will view elements v of Zj as column vectors; the notation
v' then denotes the corresponding row vector. The notation negl(n) denotes some function
of n which is smaller than every inverse-polynomial. We denote the concatenation of strings
x and y by z||ly. We abbreviate classical probabilistic polynomial-time algorithms as PPT
algorithms. By quantum algorithm (or QPT) we mean a polynomial-time uniform family of
quantum circuits, where each circuit in the family is described by a sequence of unitary gates
and measurements. In general, such an algorithm may receive (mixed) quantum states as
inputs and produce (mixed) quantum states as outputs. Sometimes we will restrict QPTs
implicitly; for example, if we write Pr[A(1") = 1] for a QPT A, it is implicit that we are only
considering those QPTs that output a single classical bit.

A function f:{0,1}™ — {0,1}* defines a unitary operator Uy : |z)|y) — |z)|y ® f(z))
on m + £ qubits where z € {0,1}™ and y € {0,1}*. When we say that a quantum algorithm
A gets (adaptive) quantum oracle access to f (written A/), we mean that A can apply Uy.
Recall that a symmetric-key encryption scheme is a triple of classical probabilistic algorithms
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(KeyGen, Enc, Dec) whose run-times are polynomial in some security parameter n. Such a
scheme must satisfy the following property: when a key k is sampled by running KeyGen(1™),
then it holds that Decy(Encg(m)) = m for all m except with negligible probability in n. In
this work, all encryption schemes will be fixed-length, i.e., the length of the message m will
be a fixed (at most polynomial) function of n.

Since the security notions we study are unachievable in the information-theoretic setting,
all adversaries will be modeled by QPTs. When security experiments require multiple rounds
of interaction with the adversary, A is implicitly split into multiple QPTs (one for each
round), and each algorithm forwards its internal (quantum) state to the next algorithm in
the sequence.

2.2 Quantum-secure pseudorandomness

Let f:{0,1}" x {0,1}™ — {0,1}* be an efficiently computable function, where n,m,¢ are
integers and where f defines a family of functions {f}refo,13» with fe(x) = f(k,z). We say
f is a quantum-secure pseudorandom function (or QPRF) if, for every QPT A,

Pr [A*(1")=1] - Pr [49(1")=1]| < negl(n). (1)
k- {0.1}n g T

Here FY, denotes the set of all functions from {0, 1}™ to {0,1}*. The standard method for
constructing a pseudorandom function from a one-way function produces a QPRF, provided
that the one-way function is quantum-secure [13, 12, 28].

2.3 Quantum random access codes

A quantum random access code (QRAC) is a two-party scheme for the following scenario
involving two parties Alice and Bob [21]:

1. Alice gets x € {0, 1}N and encodes it as a d-dimensional quantum state g,.

2. Bob receives g, from Alice, and some index i € {1,..., N}, and is asked to recover the

i-th bit of z, by performing some measurement on g,.

3. They win if Bob’s output agrees with z; and lose otherwise.

We can view a QRAC scheme as a pair of (not necessarily efficient) quantum algorithms:
one for encoding, and another for decoding. We remark that the definition of a QRAC does
not bound on the size of g, ; the interesting question is with what parameters a QRAC can
actually exist.

A variation of the above scenario allows Alice and Bob to use shared randomness in
their encoding and decoding operations [2]. Hence, Alice and Bob can pursue probabilistic
strategies with access to the same random variable.

Define the average bias of a QRAC with shared randomness as € = pyin — 1/2, where pyin
is the winning probability averaged over x ¢ {0,1}" and i & {1,...,N}.

3 The QCCA1 security model

3.1 Quantum oracles

In our setting, adversaries will (at various times) have quantum oracle access to the classical
functions Ency and Decy. The case of the deterministic decryption function Decy is simple:
the adversary gets access to the unitary operator Upec, : |c)|m) — |¢)|m @ Decy(c)). For
encryption, to satisfy IND-CPA security, Ency must be probabilistic and thus does not
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correspond to any single unitary operator. Instead, each encryption oracle call of the adversary
will be answered by applying a unitary sampled uniformly from the family {Ugnc, »}» where

Ukncy.,r : [m)]c) = [m)|ec © Ency(m;7))

and r varies over all possible values of the randomness register of Enci. Note that, since
Enc; and Decy, are required to be probabilistic polynomial-time algorithms provided by the
underlying classical symmetric-key encryption scheme, both Ugnc, » and Upec, correspond to
efficient and reversible quantum operations. For the sake of brevity, we adopt the convenient
notation Enc, and Decy, to refer to the above quantum oracles for encryption and decryption
respectively.

3.2 Ciphertext indistinguishability

We now define indistinguishability of encryptions (for classical, symmetric-key schemes)
against non-adaptive quantum chosen-ciphertext attacks.

» Definition 9 (IND-QCCAL1). Let II = (KeyGen, Enc,Dec) be an encryption scheme, A a
QPT, and n the security parameter. Define IndGame(II, A, n) as follows.

1. Setup: A key k <+ KeyGen(1™) and a bit b {0,1} are generated;

2. Pre-challenge: A gets access to oracles Ency, and Decy, and outputs (mo,m1);

3. Challenge: A gets Ency(my) and access to Ency, only, and outputs a bit V';

4. Resolution: A wins if b=1".

Then II has indistinguishable encryptions under non-adaptive quantum chosen ciphertext
attack (or is IND-QCCAL) if, for every QPT A,

Pr[A wins IndGame(II, A, n)] < 1/2 + negl(n).

By inspection, one immediately sees that our definition lies between the established
notions of IND-QCPA and IND-QCCAZ2 [7, 10, 6]. It will later be convenient to work with a
variant of the game IndGame, which we now define.

» Definition 10 (IndGame'). We define the experiment IndGame'(IT, A,n) as
IndGame(II, A, n), except that in the pre-challenge phase A only outputs a single message m,
and in the challenge phase A receives Enci(m) if b =0, and Enci(z) for a uniformly random
message x if b= 1.

Working with IndGame’ rather than IndGame does not change security. Specifically (as
we show in Appendix B), IT is IND-QCCAL if and only if, for every QPT A,

Pr[A wins IndGame'(I1, A, n)] < 1/2 + negl(n).

3.3 Semantic security

In semantic security, rather than choosing a pair of challenge plaintexts, the adversary
chooses a challenge template: a triple of circuits (Samp, h, f), where Samp outputs plaintexts
from some distribution Dsamp, and h and f are functions with domain the support of Dsymp.
The intuition is that Samp is a distribution of plaintexts m for which the adversary, if
given information h(m) about m together with an encryption of m, can produce some new
information f(m).

» Definition 11 (SEM-QCCA1). Let II = (KeyGen, Enc, Dec) be an encryption scheme, and
consider the following experiment, SemGame(b), (with parameter b € {real,sim}) with a

QPT A:
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1. Setup: A key k <+ KeyGen(1™) is generated;
2. Pre-challenge: A gets access to oracles Ency, and Decy, and outputs a challenge template

(Samp, h, f);
3. Challenge: A plaintext m <& Samp is generated; A receives h(m) and gets access to an
oracle for Ency only; if b = real, A also receives Enci(m); A outputs a string s;
4. Resolution: A wins if s = f(m).
We say II has semantic security under non-adaptive quantum chosen-ciphertext attack (or is
SEM-QCCAL) if, for every QPT A, there exists a QPT S such that the challenge templates
output by A and S are identically distributed, and

|Pr[.A wins SemGame(real)] — Pr[S wins SemGame(sim)]| < negl(n).

Our definition is a straightforward modification of SEM-QCPA [10, 6]; the modification is
to give A and S oracle access to Decy, in the pre-challenge phase.

» Theorem 12. Let IT = (KeyGen, Enc, Dec) be a symmetric-key encryption scheme. Then,
IT is IND-QCCAL-secure if and only if I1 is SEM-QCCA1-secure.

The classical proof of the above (see, e.g., [11]) carries over to the quantum case. This
was already observed for the case of QCPA by [10], and extends easily to the case where both
the adversary and the simulator gain oracle access to Decy, in the pre-challenge phase.?

4  Secure Constructions

4.1 PRF scheme

Let us first recall the standard symmetric-key encryption based on pseudorandom functions.

» Construction 13 (PRF scheme). Let n be the security parameter and let f : {0,1}™ x
{0,1}™ — {0,1}"™ be an efficient family of functions {fx}r. Then, the symmetric-key
encryption scheme PRFscheme[f] = (KeyGen, Enc, Dec) is defined as follows:

1. KeyGen: output k< {0,1}";

2. Enc: to encrypt m € {0,1}", choose r & {0,1}™ and output (r, fr(r) & m);

3. Dec: to decrypt (r,c) € {0,1}" x {0,1}", output ¢ ® fr(r);

We chose a simple set of parameters for the PRF, so that key length, input size, and
output size are all equal to the security parameter. It is straightforward to check that the
definition (and our results) are valid for any polynomial-size parameter choices. We show
that the above scheme satisfies QCCAL, provided that the underlying PRF is secure against
quantum queries.

» Theorem 14. If f is a QPRF, then PRFscheme[f] is IND-QCCA1-secure.

Proof. Fix a QPT adversary A4, split into pre-challenge algorithm .4; and challenge algorithm
As, against IT := PRFscheme[f] = (KeyGen, Enc, Dec). Let n denote the security parameter.

We will work with the single-message variant of IndGame, IndGame’, described below as
GAME 0. In Appendix B, we show that IT is IND-QCCAL1 if and only if no QPT adversary can
win IndGame’ with non-negligible bias. We first show that a version of IndGame’ where we

2 In fact, the proof works even if Decy, access is maintained during the challenge, so the result is really
that IND-QCCA?2 is equivalent to SEM-QCCAZ2.
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replace f with a random function, called GAME 1 below, is indistinguishable from IndGame’,
so that the winning probabilities cannot differ by a non-negligible amount. We then prove
that no adversary can win GAME 1 with non-negligible bias by showing how any adversary
for GAME 1 can be used to make a quantum random access code with the same bias.

m —

m* MI)ﬁ C* A2 > b/

Ay

Figure 1 IndGame’ from Definition 10.

Game 0. This is the game IndGame(II, A, n), which we briefly review for convenience (see
also Figure 1). In the pre-challenge phase, A; gets access to oracles Ency and Decy, and
outputs a message m* while keeping a private state |¢) for the challenge phase. In the
challenge phase, a random bit b<% {0, 1} is sampled, and A is run on input [¢)) and a
challenge ciphertext

¢’ = Qp(m*) = {Enck(m*) ifb=0,
Enci(z) ifb=1.
Here Ency(x) := (r*, fx(r*) ® ) where r* and x are sampled uniformly at random. In the
challenge phase, Az only has access to Ency and must output a bit '. A wins if dpy = 1,
so we call &y the outcome of the game.
Game 1. This is the same game as GAME 0, except we replace fi with a uniformly random
function F : {0,1}" — {0,1}".

First, we show that for any adversary A, the outcome when A plays GAME 0 is at most
negligibly different from the outcome when A plays GAME 1. We do this by constructing a
quantum distinguisher D that distinguishes QPRF { fi }, from a true random function, with
advantage |Pr[l <~ GAME 0] — Pr[1 +- GAME 1]|, which must then be negligible since f is
a QPRF. The distinguisher D gets quantum oracle access to a function g, which is either
fi, for a random k, or a random function, and proceeds by simulating A playing IndGame’
as follows:

1. Run A;, answering encryption queries using calls to g instead of fj, and decryption

queries using quantum oracle calls to g: |r)|c)|m) — |r)|c)m &) — |r)|e)m B e d g(r));
2. Simulate the challenge phase by sampling b < {0,1} and encrypting the challenge using g

in place of fj; run A, and simulate encryption queries as before;
3. When A, outputs ¥, output dpy .

To show that no QPT adversary can win GAME 1 with non-negligible probability, we
design a QRAC from any adversary, and use the lower bound on the bias given in Lemma 6.

Intuition: In an encryption query, A; or As, queries a message, or superposition of
messages »_ . |m), and gets back )" |m)|r,m @ F(r)) for a random r, from which he can
easily obtain (r, F(r)). So in essence, an encryption query is just classically sampling a
random point of F.

In a decryption query, which is only available to Ay, the adversary sends a ciphertext,
or a superposition of ciphertexts, >, . |r,c) and gets back >, |r,c)|c® F(r)), from which
he can learn ) |r, F'(r)). Thus, a decryption query allows A; to query F, in superposition.
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Later in the challenge phase, As gets an encryption (r*,m @ F(r*)) and must decide if
m = m*. Since Ay no longer has access to the decryption oracle, which allows him to query
F, there seem to be two possible ways Ay could learn F(r*):

1. A, gets lucky in one of his poly(n) queries to Ency and happens to sample (r*, F(r*));

2. Or, A is somehow able to use what he learned while he had access to Decy, and thus F,
to learn F'(r*), meaning that the poly(n)-sized quantum memory 4; sends to Ag, that
can depend on queries to F', but which cannot depend on r*, allows A, to learn F(r*).

The first possibility is exponentially unlikely, since there are 2™ possibilities for r*. As we

will see shortly, the second possibility would imply a very strong quantum random access

code. It would essentially allow A; to interact with F', which contains 2™ values, and make

a state, which must necessarily be of polynomial size, such that Ay can use that state to

recover F'(r*) for any of the 2" possible values of r*, with high probability. We now formalize

this intuition. To clarify notation, we will use boldface to denote the shared randomness
bitstrings.

Bits to be encoded: Shared randomness: Bit to be recovered:
bi,...,ban € {0,1} S$,Y1y ey Yon,T1,..., 70 € {0,1}" je{1,...,2"}

QRAC Encoding

)
* T b
Al ! ! * AQ ————
tmT o c
—

Y

m [ (r,m@ f(r) | () |ca f(r) (j,m* ®y;) u

m; | (ri,m; ® f(rz))

Enc query Dec query
r&{0,1}"

i-th Enc query

|
|
!
!
|
| A
|
|
|
|
|
|

)

(r) = Yr ifb, =0 flry),.... f(ro)
"y, @s ifh =1 —

Figure 2 Quantum random access code construction for the PRF scheme.

Construction of a quantum random access code. Let A be a QPT adversary with winning
probability p. Let £ = poly(n) be an upper bound on the number of queries made by As.
Recall that a random access code consists of an encoding procedure that takes (in this case)
2™ bits by, ..., ban, and outputs a state p of dimension (in this case) 2poly(n) guch that a
decoding procedure, given ¢ and an index j € {1,...,2"} outputs b; with some success
probability. We define a quantum random access code as follows (see also Figure 2).

Encoding. Let by,...,ban € {0,1} be the string to be encoded. Let s,yq,...,ysn € {0,1}"
be the first n(1 + 2™) bits of the shared randomness, and let ry,...,7ry € {0,1}" be
the next ¢n bits. Define f : {0,1}" — {0,1}" as follows. For = € {0,1}", we slightly
abuse notation by letting r denote the corresponding integer value between 1 and
2", Define f(r) = Yy, @ bs. Run A;, answering encryption and decryption queries
using f in place of F. Let m* and |¢)) be the outputs of A; (see Figure 1). Output
0= (|w>7m*7 f(rl)’ EEE) f(rl))
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Io(a,b) I (a,b) Io—5(a,b) I.—1(a,b)
l. . e .l l. e .l . l. e .l l. PR .l
IS IS IS IS IS IS IS IS IS
+ + + + + + + |
= = k=l [\ —_ — — [
| T i 70
- L . Lol
= = =
N U J N AN
g e e —
b b b b—(cb—q)

Figure 3 Dividing Z, into ¢ = [¢/b] blocks, starting from a. The first ¢ — 1 blocks, labelled
Io(a,b),...,I.—2(a,b), have size b and the last, labelled I._1(a, b), contains the remaining b—(cb—q) <
b elements of Z,.

Decoding. Let j € {1,...,2"} be the index of the bit to be decoded (so given p as above,
the goal is to recover b;). Decoding will make use of the values s,y,,...,Ygn,71,...,7¢
given by the shared randomness. Upon receiving a query j € {1,...,2"}, run A with
inputs [¢) and (j,m* ©y;). On Ay’s i-th encryption oracle call, use randor~nness 75, SO
that if the input to the oracle is |m, ¢), the state returned is |m,c @ (r;,m @ f(r;))) (note
that f(r;) is given as part of p). Return the bit b’ output by As.

Average bias of the code. We claim that the average probability of decoding correctly,
taken over all choices of by,...,bon € {0,1} and j € {1,...,2"}, is exactly p, the success
probability of A. To see this, first note that from A’s perspective, this is exactly GAME 1:
the function f is a uniformly random function, and the queries are responded to just as in
GAME 1. Further, note that if b; = 0, then m* & y; = m* @ f(j), so~the correct guess for
Az would be 0, and if b; = 1, then m* @ y; = m* @ f(j) © s = x @ f(j) for the uniformly
random string € = m™* & s, so the correct guess for A, would be 1.

Therefore, the average bias of the code is p — 1/2. We also observe that g has dimension
at most 2P°¥(") | since [¢)) must be a poly(n)-qubit state (A; only runs for poly(n) time),
and ¢, the number of queries made by A2 must be poly(n), since Ay only runs for poly(n)
time. As this code encodes 2" bits into a state of dimension 2P°¥(") by Lemma 6 (proven in
Appendix A), the bias is O(27/2 poly(n)) = negl(n), so p < 3 + negl(n). <

5 Quantum algorithm for linear rounding functions

In this section, we analyze the performance of the Bernstein-Vazirani algorithm [3] with a
modified version of the oracle. While the original oracle computes the inner product modulo
g, our version only gives partial information about it by rounding its value to one of [¢/b]
blocks of size b, for some b € {1,...,q— 1} (if b does not divide ¢, one of the blocks will have
size < b).

» Definition 15. Let n > 1 be an integer and g > 2 be an integer modulus. Let a € Zg,
b€ Zy\ {0} and ¢ := [q/b]. We partition Z, into ¢ disjoint blocks (most of them of size b)
starting from a as follows (see Figure 3):

I(a,b) {a+vb,...,a+vb+b—1} ifve{0,...,c—2},
vl@, =
{a+vb,...,a+q—1} ifv=c—1.
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Based on this partition, we define a family LRFg o : Zy — Zc of keyed linear rounding

Junctions, with key k € Zy, as follows:

LRFk o () == v if (x, k) € I,(a,b).

Algorithm 1: Bernstein-Vazirani for linear rounding functions.

Parameters:n, ¢, b € {1,...,9 — 1}, ¢ = [gq/b].

Input : Quantum oracle Ugr : |z)|2) — |x)|z + LRFg . p(x) (mod c¢)) where
x € Ly, z € Zc and LRFg 4 p is the rounded inner product function for
some u{lknown ke Zy arid a € Zy.

Output : String k € Z;; such that k = k with high probability.

1. Prepare the uniform superposition and append % Zg;é w?|z) where w. = e2mi/e;

1 1 &
— ) ® —= > wil2).
ST

TELY

c—1
.1 —LRFp,a.5(x) 1
2. Query oracle Uigr for LRFg 4 ; obtain — we Py @ —= ) wiz).
LY Ly

TELY
3. Discard the last register and apply the quantum Fourier transform QFT%’:.

4. Measure in the computational basis and output the outcome k.

The following theorem shows that the modulo-q variant of the Bernstein-Vazirani algorithm
(Algorithm 1) can recover k with constant probability of success by using only a single quantum
query to LRFg q5. The proof is a fairly straightforward computation through the steps of
the algorithm, and can be found in Appendix C.

» Theorem 16. Let Uirr be the quantum oracle for the linear rounding function LRFg o
with modulus q > 2, block size b € {1,...,q— 1}, and an unknown a € {0,...,q — 1}, and
unknown key k € Zy such that k has at least one entry that is a unit modulo q. Let ¢ = [q/b]
and d = ¢b— q. By making one query to the oracle U rg, Algorithm 1 recovers the key k with
probability at least 4/7% — O(d/q).

6 Key recovery against LWE

In this section, we consider various LWE-based encryption schemes and show using Theorem 16

that the decryption key can be efficiently recovered using a single quantum decryption query.

In the full version of this work, we also show that a single quantum encryption query can be
used to recover the secret key in a symmetric-key version of LWE, as long as the querying
algorithm also has control over part of the randomness used in the encryption procedure.

6.1 Key recovery via one decryption query in symmetric-key LWE

Recall the following standard construction of an IND-CPA symmetric-key encryption scheme
based on the LWE assumption [23].

» Construction 17 (LWE-SKE [23]). Let n > 1 be an integer, let ¢ > 2 be an integer modulus
and let x be a discrete and symmetric error distribution. Then, the symmetric-key encryption
scheme LWE-SKE(n, q,x) = (KeyGen, Enc, Dec) is defined as follows:
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1. KeyGen: output k<& 77
2. Encg: to encrypt b € {0,1}, sample a & 77, e & Ly and output (a, (a, k) +b[ ]| +e);
3. Decg: to decrypt (a,c), output 0 if [c — (a, k)| < | 2], else output 1.

As a corollary of Theorem 16, an adversary that is granted a single quantum decryption
query can recover the key with probability at least 4/7% — o(1):

» Corollary 18. There is a quantum algorithm that makes a single quantum query to
LWE-SKE.Decy, and recovers the entire key k with probability at least 4/7* — o(1).

Proof. LWE-SKE.Decj, coincides with a linear rounding function LRFy ,; for a key K =
(—k,1) € Z;‘H, which has a unit in its last entry. In particular, b = [¢/2], and if ¢ = 3
(mod 4), a = [¢/4], and otherwise, a = —|¢/4]. Thus, by Theorem 16, Algorithm 1 makes
one quantum query to LRFg ,;, which can be implemented using one quantum query
to LWE-SKE.Decg, and recovers k', and thus k, with probability 4/72 — O(d/q), where
d=[q/blb—q<1. <

Note that the key in this scheme consists of nlog g uniformly random bits, and that a
classical decryption query yields at most a single bit of output. It follows that any algorithm
making t classical queries to the decryption oracle recovers the entire key with probability at
most 28771989 A straightforward key-recovery algorithm does in fact achieve this.

6.2 Key recovery via one decryption query in public-key LWE

The key-recovery attack described in Corollary 18 required nothing more than the fact that
the decryption procedure of LWE-SKE is just a linear rounding function whose key contains
the decryption key. As a result, the attack is naturally applicable to other variants of LWE.
In this section, we consider two public-key variants. The first is the standard construction of
IND-CPA public-key encryption based on the LWE assumption, as introduced by Regev [23].
The second is the IND-CPA-secure public-key encryption scheme FrodoPKE [1], which is based
on a construction of Lindner and Peikert [18]. In both cases, we demonstrate a dramatic
speedup in key recovery using quantum decryption queries.

We emphasize once again that key recovery against these schemes was already possible
classically using a linear number of decryption queries. Our results should thus not be inter-
preted as a weakness of these cryptosystems in their stated security setting (i.e., IND-CPA).
The proper interpretation is that, if these cryptosystems are exposed to chosen-ciphertext
attacks, then quantum attacks can be even more devastating than classical ones.

6.2.1 Regev’s public-key scheme

The standard construction of an IND-CPA public-key encryption scheme based on LWE is
the following.

» Construction 19 (LWE-PKE [23]). Let m > n > 1 be integers, let ¢ > 2 be an integer

modulus, and let x be a discrete error distribution over Z,. Then, the public-key encryption

scheme LWE-PKE(n, q, x) = (KeyGen, Enc, Dec) is defined as follows:

1. KeyGen: output a secret key sk = k <& 2} and a public key pk = (A, Ak+e) € Z?X("H),
where A&Z;”X", e Zy', and all arithmetic is done modulo q.

2. Enc: to encrypt b € {0,1}, pick a random v € {0,1}™ with Hamming weight roughly m/2
and output (vT A, vT (Ak + e) +b|%]) € ZI™, where vT denotes the transpose of v.

3. Dec: to decrypt (a,c), output 0 if |c — (a, sk)| < L%J, else output 1.
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Although the encryption is now done in a public-key manner, all that matters for our purposes
is the decryption procedure, which is identical to the symmetric-key case, LWE-SKE. We
thus have the following corollary, whose proof is identical to that of Corollary 18:

» Corollary 20. There is a quantum algorithm that makes a single quantum query to
LWE-PKE.Decg, and recovers the entire key sk with probability at least 4/72 — o(1).

6.2.2 Frodo public-key scheme

Next, we consider the IND-CPA-secure public-key encryption scheme FrodoPKE, which is
based on a construction by Lindner and Peikert [18]. Compared to LWE-PKE, this scheme
significantly reduces the key-size and achieves better security estimates than the initial
proposal by Regev [23]. For a detailed discussion of FrodoPKE, we refer to [1]. We present
the entire scheme for completeness, but the important part for our purposes is the decryption
procedure.

» Construction 21 (FrodoPKE [1]). Let n,m,n be integer parameters, ¢ > 2 an integer power
of 2. Let B denote the number of bits used for encoding, and let x be a discrete symmetric
error distribution. The public-key encryption scheme FrodoPKE = (KeyGen, Enc, Dec) is
defined:

1. KeyGen: generate a matriz A&ZZX" and matrices S, E & ZZ‘”L; compute B=AS +
E € Zy*"; output the key-pair (pk, sk) with public key pk = (A, B) and secret key
sk=S.

2. Enc: to encrypt m € {0,1}5™7" (encoded as a matrizc M € ZJ™" with each entry
having 0s in all but the B most significant bits) with public key pk, sample error matrices
S E' X 77" and E" X 77" compute Cy = S'A + E' € Z7™ and Cy = M +
S'B+ E" ¢ ZTXFL; output the ciphertext (Cq,C3).

3. Dec: to decrypt (C1,Ca) € L™ x Z7*™ with secret-key sk = S, compute M =
Cy— C1S € Z*". For each (i,7) € [m] x [n], output the first B bits of M, ;.

We now show how to recover m of the n columns of the secret key S using a single
quantum query to FrodoPKE.Decg. If m = 7, as in sample parameters given in [1], then this
algorithm recovers S completely.

» Theorem 22. There exists a quantum algorithm that makes one quantum query to
FrodoPKE.Decs and recovers any choice of m of the n columns of S. For each of the
chosen columns, if that column has at least one odd entry, then the algorithm succeeds in
recovering the column with probability at least 4/7>.

We give a formal proof of Theorem 22 in Appendix D, but here we briefly sketch the proof.
Let s',...,s" be the columns of S. Let U denote the map:

U:le)lz1) .. |za) = |e)z1 + LRF g1 g g/08(€)) - . - |2a + LRF g o 425 (c)),

for any ¢ € Zy and 21, ..., z5 € Zyr. By a straightforward calculation, one can show that a
single call to FrodoKEM.Decg, with C set of 0"*™, can be used to implement U®™. Then
we show that one call to U can be used to recover any choice of the columns of S with
probability 4/72, as long as it has at least one entry that is odd. To show this, we show that U

can be used to implement a phase query to LRF,; o , /25, by simply applying U to a state with

— 2-B/252°=1 1.y iy each of 7 registers he j-th d L Y2ty
lp) = > ._o l|z) in each of n registers except the j-th one, an ﬁzzzo wig|z)

in the j-th register. This ensures that the phase corresponding to LRF; o ,/25 is kicked
back, but all other phases, corresponding to LRF; , . /25 for j/ # j are not. For details, see
Appendix D.
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6.3 Key recovery via one decryption query in public-key Ring-LWE

Next, we analyze key-recovery with a single quantum decryption query against Ring-lWE
encryption. Unlike the plain LWE-based encryption schemes we considered in the previous
sections, Ring-LWE encryption uses noisy samples over a polynomial ring. In the following,
we consider the basic, bit-by-bit Ring-LWE public-key encryption scheme introduced in
[19, 20]. It is based on the rings R = Z[z]/{z™ + 1) and R, := R/qR = Z4[z]/{z"™ + 1) for
some power-of-two integer n and poly(n)-bounded prime modulus ¢q. The details of the error
distribution x below will not be relevant to our results.

» Construction 23 (Ring-LWE-PKE [19, 20]). Let n > 1 be an integer, let ¢ > 2 be an

integer modulus, and let x be an error distribution over R. The public-key encryption scheme

Ring-LWE-PKE = (KeyGen, Enc, Dec) is defined as follows:

1. KeyGen: sample a &Ry and e, s & R; output sk = s and pk = (a,c¢ = a-s+e (mod q)) €
Ri.

2. Enc: to encrypt b € {0,1}, sample r,e1,e2 & R and output a ciphertext pair (u,v) € R37
where wu =a-r+e; (mod q) and v=c-r+ey+blg/2| (mod q).

3. Dec: to decrypt (u,v), compute v —u-s=(r-e—s-ey +e2) +blg/2] (mod q) € Ry;
output 0 if the constant term of the polynomial is closer to O than |q/2], else output 1.

We note that our choice of placing single-bit encryption in the constant term of the
polynomial is somewhat arbitrary. Indeed, it is straightforward to extend our results to
encryption with respect to other monomials.

In the full version of the article, we show the following corollary to Theorem 16.

» Corollary 24. There is a quantum algorithm that makes one quantum query to Ring-LWE-
PKE.Dec, and recovers the entire key s with probability at least 4/m — o(1).
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A Bound for quantum random access codes

A variation of quantum random access codes allows Alice and Bob to use shared randomness
in their encoding and decoding operations [2] (note that shared randomness per se does not
allow them to communicate). We are interested in bounding the average bias € = pyin —1/2 of
a quantum random access code with shared randomness, where pyi, is the winning probability
averaged over x <% {0,1}" and i & {1,..., N}.

» Lemma 25. The average bias of a quantum random access code with shared randomness
that encodes N bits into a d-dimensional quantum state is O(y/N~1logd). In particular, if
N = 2" and d = 2°°Y(™) the bias is O(27"/2? poly(n)).

Proof. A quantum random access code with shared randomness that encodes N bits into a
d-dimensional quantum state is specified by the following:

a shared random variable A,

for each = € {0,1}", a d-dimensional quantum state ¢} encoding ,

for each i € {0,..., N}, an observable M;* for recovering the i-th bit.
Formally, o} and M are d x d Hermitian matrices such that ¢} > 0, Tro} = 1, and |[M}|| < 1
where || M7 || denotes the operator norm of M;. Note that both ¢} and M} depend on the
shared random variable A, meaning that Alice and Bob can coordinate their strategies.

The bias of correctly guessing z;, for a given x and 4, is (—1)%Tr(o) M;")/2. If the average
bias of the code is € then Ey E, ;(—1)*Tr(o}M;)) > 2¢. We can rearrange this expression
and upper bound each term using its operator norm, and then apply the noncommutative
Khintchine inequality [27]:

N N

1 _ 1 .
ExE, +Tr(02 D (-)™M}) SErE. > (~1)" 2
i=1 i=1

1 logd
gE,\Nc\/Nlog =c O]%[,

for some constant c. In other words, € < 5 %. In the particular case we are interested in,
d=2PN") and N =2"so e < & %n("), completing the proof. <

B Equivalence of QCCA1 models

Recall that the IND-QCCA1 notion is based on the security game IndGame defined in Defini-
tion 9. In the alternative security game IndGame’ (see Definition 10), the adversary provides
only one plaintext m and must decide if the challenge is an encryption of m or an encryption
of a random string. In this section, we prove the following:

» Proposition 26. An encryption scheme II is IND-QCCAL if and only if for every QPT A,

Pr[A wins IndGame'(I1, A, n)] < 1/2 + negl(n) .
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Proof. Fix a scheme II. For one direction, suppose II is IND-QCCA1 and let A be an
adversary against IndGame'. Define an adversary A, against IndGame as follows: (i.) run A
until it outputs a challenge plaintext m, (ii.) sample random r and output (m,r), (iii.) run
the rest of A and output what it outputs. The output distribution of IndGame'(I1, A, n) is
then identical to IndGame(TI, A, n), which in turn must be negligibly close to uniform by
IND-QCCAT1 security of II.

For the other direction, suppose no adversary can win IndGame’ with probability better
than 1/2, and let B be an adversary against IndGame. Now, define two adversaries By and By
against IndGame’ as follows. The adversary B. does: (i.) run B until it outputs a challenge
(mg,m1), (ii.) output me, (iii.) run the rest of B and output what it outputs. Note that
the pre-challenge algorithm is identical for B, By, and B;; define random variables My, M;
and R given by the two challenges and a uniformly random plaintext, respectively. The
post-challenge algorithm is also identical for all three adversaries; call it C. The advantage of
B over random guessing is then bounded by

IC(Enck (Mo)) — C(Ency, (M) |1
) — C(Enci (M) — C(Ency(R)) + C(Enci(R))|x
) = C(Ency,(R))[[1 + [[C(Ency (M) — C(Ency(R))|lx

where the last inequality follows from our initial assumption, applied to both By and B;. It
follows that IT is IND-QCCAL. <

C Proof of Theorem 16

In this appendix, we prove Theorem 16, restated below for convenience.

» Theorem 16. Let Uirr be the quantum oracle for the linear rounding function LRFg o
with modulus g > 2, block size b € {1,...,q— 1}, and an unknown a € {0,...,q — 1}, and
unknown key k € Zy such that k has at least one entry that is a unit modulo q. Let ¢ = [q/b]
and d = ¢b— q. By making one query to the oracle U rg, Algorithm 1 recovers the key k with
probability at least 4/7% — O(d/q).

Proof. For an integer m, let w,, = e2™"/™ . Several times in this proof, we will make use of
the identity 3071 wrz = wit=1/? (%)

Let ¢ = [¢/b]. Throughout this proof, let LRF(z) = LRFg 4 (). By querying with
% Zi;é w?|z) in the second register, we are using the standard phase kickback technique,

which puts the output of the oracle directly into the phase:

|m>\2;w§|z> Vi m>\}E;wg|z+LRF(m) (mod ¢))

1 c—1 1 c—1
= |z)—= ) Wi F@z) = W@ ) Y wiz).
\/E z2=0 \/E z2=0

Thus, after querying the uniform superposition over the cipherspace with \% Zi;é w
the second register, we arrive at the state

z

Z|z) in

c—1
1 “LRF(z)|\ L
=Y w; ) —= > wilz).
V4 Ve =

wer;
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Note that w. = wg/ If we discard the last register and apply QFT%{]", we get

Z Z —(q/c)LRF(z)+(x,y) |y>

YELr wELY

We then perform a complete measurement in the computational basis. The probability of
obtaining the key k is given by

2 2
c—1

1 — 9LRF(z)+(x,k 1 —4y -
(kI = | % D @rER_ 1 3", Yoo wER| (2)

n
zELD q v=0 x€Z7:LRF(x)=v

We are assuming that k has at least one entry that is a unit modulo ¢. For simplicity,
suppose that entry is k,. Let kj.,—1 denote the first n — 1 entries of k. Then, for any
ve{0,...,c—2}

3 wiEk = 3 Wik

x€Z7:LRF(z)=v z €Ly (x k)L, (a,b)
_ (y,k1:n—1) Tk
= g w¥mm wg™n. (3)
yEZ;71 Ty €Lg:

Tnkn€l,(a—(y,k1:n—1),b)

(Recall the definition of I,(a,b) from Definition 15). Since k, is a unit, for each z €
I,(a — (y,k1.n—1)), there is a unique z, € Z; such that z,k, = z. Thus, for a fixed
y € Zy 7, letting / = a — (y, k1.n—1), we have:

a’+(v+1)b—1 b—1

Tnkn _ z __, .a'+vb z

Z W' " = Z Wg = Wy E :wq’
Tn€Lg:Tnkn€ly(a’,b) z=a’+uvb 2=0

which we can plug into (3) to get:

b—1
(z,k) (y,k1:n— 1) a (y,k1:n—1)+vb n 1, a+wvb z
E Wy g Wy g w Wy E Wq- (4)
z=0

x€Ly: YEZLy ™ L
LRF(x)=v

We can perform a similar analysis for the remaining case when v = ¢ — 1. Recall that
d=cb—q>0sovb=cb—b=d+q—b=—(b—d) (mod ¢q) and we get

—d—

Z wém,k) :qn 1 W (b—d) Z (5)

x€Z7:LRF(z)=c—1 z=0

This is slightly different from the v < ¢ — 1 case, shown in (4), but very similar. If we
substitute v = ¢ — 1 in (4) and compare it to (5), we get

b—d—1
n 1 W (b—d) Z w _qn 1wa (b— d)zw
b—1 d—1 .
n—1 z n—1 z n—1 Sln(ﬂ-d/q>
= T Y Wi =T e ~mirTey
sl = sin(r/4)
d
1T /q qnflﬁd (6)
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Above, we have used the facts sinz < x, and [sinz| > 22/ when |z| < 7/2. Now, plugging
(4) into (2) for all the v < ¢ — 1 terms, and using (6) and the triangle inequality for the
v =c— 1 term, we get:

k > qu/c | n 1 a+vb 7q(c 1)/c nflzd
k)| > Zw Z P
c—1
_ LS g sinlr/a)|  md
q|&" sin(r/q) | 2q
_ 1sin(br/q) Z w(b—q/c) ﬂé' (7)
q sin(r/q) “a 2q
Since b — ¢/c = d/c, we can bound the sum as follows:
i 27 vd
g(b—Q/C) — gd/c > ZCOS ()‘
v=0 a ¢
c—1
2 2nd
> ZCOS (Wd> = |ccos (77)’ (8)
— q q
> /1 —(2nd/q)2. (9)

To get the inequality (8), we used 0 < v < ¢ and the assumption that d/q < 1/4 (if d/q > 1/4,
the claim of the theorem is trivial), which implies that 2’%’% < 5. The last inequality follows

from |cosz| > V1 — 2.

Next, we bound 220™/9  \When b/q < 1/2, brr/q < 7/2, so we have sin(br/q) > 2b/q.

Sin(7/g)
We also have sin(r/q) < 7/q. Thus,

. . 7w(g+d) (7 wd wd 7d\ >
= —_— = — —— | = —_— > 1—(— .
sin(br/q) = sin 5 sin (2 + 54 cos 5 = 5

Since sin(7/q) < w/q and ¢ > 20,

sin(bﬂ'/q)> 1= (g:zi) >2b
sin(w/q) —  7w/q

— 0(d/q).

™

Thus, in both cases, Sslﬁl(b:/;) > 2b,/1—0(d/q). Plugging this and (9) into (7), we get:

! 2b\/l— O(d/q) - cy/1 = 0(d/q) — O(d/q)

(k)| =
B 2bc 2qg+d
= ST owfg) = 2125 - 0lfg) = 2 - 0(d/a).
completing the proof. <
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D Proof of Theorem 22

In this appendix, we prove Theorem 22, restated below for convenience.

» Theorem 22. There exists a quantum algorithm that makes one quantum query to
FrodoPKE.Decg and recovers any choice of m of the n columns of S. For each of the
chosen columns, if that column has at least one odd entry, then the algorithm succeeds in
recovering the column with probability at least 4/m2.

Proof. Let s',...,s" be the columns of S. Let U denote the map:
U:le)lz1) ... |za) = [e)]z1 + LRFg1 g g/28(€)) .. . |27 + LRF4 o 4/28 (),

for any ¢ € Z and 21, ..., 2z € Zys. We first argue that one call to FrodoKEM.Decg can be
used to implement U®™. Then we show that one call to U can be used to recover any choice
of the columns of S with probability 4/72, as long as it has at least one entry that is odd.
Let Trunc : Zq — Zys denote the map that takes x € Z, to the integer represented by
the B most significant bits of the binary representation of x. We have, for any Cy € Z;**",

02 =S OFnXFL7 and any {Zi,j}ie[ﬁz],je[ﬁ] - ZQB:

Urrodokem.vee + [C1[07 ™) @) [zi) = [C1)I0™7) Q) |21 + Trunc([C18):5).  (10)
i€[m],jE€[n) i€[m],jE€[n]

Above, [C1S]; ; represents the ij-th entry of C1S. If ¢!, ..., ™ denote the rows of C1, then
[C18];,; = (¢!, s7). Thus, Trunc([C18S]; ;) = LRFg; ¢ 4/25(c"), the linear rounding function
with block size b = ¢/2B, which is an integer since ¢ is a power of 2, and a = 0. Note that we
have also assumed that the plaintext is subtracted rather than added to the last register; this
is purely for convenience of analysis, and can easily be accounted for by adjusting Algorithm 1
(e.g., by using inverse-QFT instead of QFT.)

Discarding the second register (containing Cs = 0), the right-hand side of (10) becomes

). 0e™ Q) 7+ LRF g,q/25(c)). (11)
i€[m],j€[n]

Reordering the registers of (11), we get:

® (1) @ Iz + LRFw 020 (e) | =07 [ @ Ie) @ Jois)

i€[m) j€ln) ie[m] J€[n]

Thus, we can implement U®™ using a single call to FrodoKEM.Decg.

Next we show that for any particular j € [n], a single call to U can be used to recover s7,
the j-th column of S, with probability at least 4/7%, as long as at least one entry of s/ is
odd. To do this, we show how one use of U can be used to implement one phase query to
LRFgi 0,q/25- Then the result follows from the proof of Theorem 16.

Let |p) =2 5/2 5227112} and define
B

27 -1

. 1 .

B = D20V ——= 3" wiale) @ ) 20,
2B z=0

Then for any ¢ € Zy, we have:

1 281 281

= O I+ LRFug () = \/% S 2 =9,

z=0
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since addition here is modulo 22, and

281

L z— LRFS (c)
\/27 ;) w2B|Z+LRFs] 0(]/25 — z_: JOq/QB | >
Thus:
122 oirr, ()
uelles) = 1ale)®U e —=m 3w ) @ )00
V2B ~—

7LRFSJ‘ 0 q/QB (C)

= Wss h |C>|¢j>
Thus, by the proof of Theorem 16, if we apply U to ¢~"/23" .. |c)|¢;), Fourier transform

the first register, and then measure, assuming s’ has at least one entry that is a unit® we
will measure s/ with probability at least 72/4 — O(d/q), where d = q/2[q/(q/2B)] — q¢ = 0.

Thus, if we want to recover columns ji,. .. jm of S, we apply our procedure for U®™,
which costs one query to FrodoKEM.Decg, to the state

Z |¢j1 "® Z Iqj)Jm

CEZ" cEZ"

Fourier transform each of the c registers, and then measure. |

3 since ¢ is a power of 2, this is just an odd number
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—— Abstract

We define a new query measure we call quantum distinguishing complexity, denoted QD(f) for a
Boolean function f. Unlike a quantum query algorithm, which must output a state close to |0) on a
0-input and a state close to |1) on a 1-input, a “quantum distinguishing algorithm” can output any
state, as long as the output states for any O-input and 1-input are distinguishable.

Using this measure, we establish a new relationship in query complexity: For all total functions
£, Qo(f) = 5(Q(f)5), where Q,(f) and Q(f) denote the zero-error and bounded-error quantum
query complexity of f respectively, improving on the previously known sixth power relationship.

We also define a query measure based on quantum statistical zero-knowledge proofs, QSZK(f),
which is at most Q(f). We show that QD(f) in fact lower bounds QSZK(f) and not just Q(f). QD(/f)
also upper bounds the (positive-weights) adversary bound, which yields the following relationships
for all f: Q(f) > QSZK(f) > QD(f) = Q(Adv(f)). This sheds some light on why the adversary
bound proves suboptimal bounds for problems like Collision and Set Equality, which have low QSZK
complexity.

Lastly, we show implications for lifting theorems in communication complexity. We show that a
general lifting theorem for either zero-error quantum query complexity or for QSZK would imply a
general lifting theorem for bounded-error quantum query complexity.
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1 Introduction

In the model of query complexity, we wish to compute some known Boolean function
f:{0,1}" — {0,1} on an unknown input = € {0,1}" that we can access through an oracle
that knows x. In the classical setting, the oracle responds with x; when queried with an
index i € [n]. For quantum models, we use essentially the same oracle, but slightly modified
to make it unitary. The bounded-error quantum query complexity of a function f, denoted
Q(f), is the minimum number of queries to the oracle needed to compute the function f with
probability greater than 2/3 on any input . In other words, the quantum query algorithm
outputs a quantum state that is close to | f(z)).
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Quantum Distinguishing Complexity

In this paper we study “quantum distinguishing complexity,” a query measure obtained
by relaxing the output requirement of quantum query algorithms. Essentially, a quantum
distinguishing algorithm for f doesn’t need to compute f(x), but merely needs to behave
differently on input x and input y if f(x) # f(y). We claim that this weaker notion
of computation helps shed light on quantum query complexity and various lower bound
techniques for it. We use quantum distinguishing complexity to prove a new query complexity
relationship for total functions: Q,(f) = O(Q(f)®log Q(f)). We also use it to explain why
the non-negative adversary bound fails for some problems, to provide lower bound techniques
for the query version of the complexity class QSZK, and to prove some reductions between
lifting theorems in communication complexity.

1.1 Quantum distinguishing complexity

The quantum distinguishing complexity of a function f : D — {0,1} (where D C {0,1}"),
denoted QD(f), is the minimum number of queries needed to the input 2 € D to produce
an output state |1, ), such that the output states corresponding to O-inputs and 1-inputs
are nearly orthogonal (or far apart in trace distance). Note that the usual bounded-error
quantum query complexity of a function f, denoted Q(f), is defined similarly with the
additional requirement that there should exist a 2-outcome measurement that (with high
probability) accepts states corresponding to 1-inputs and rejects states corresponding to
0-inputs. Since measurements can only distinguish nearly orthogonal states, every quantum
algorithm for computing f satisfies the definition of quantum distinguishing complexity.
Hence for all functions f, we have QD(f) < Q(f). We formally define quantum distinguishing
complexity and establish some basic properties in Section 3.

This is a natural relaxation of bounded-error quantum query complexity and has been
mentioned in passing in several prior works. Indeed, Barnum, Saks, and Szegedy call this
measure DQA(f) in an early technical report [7, Remark 1]. This measure often comes up in
discussions about the (positive-weights) adversary bound,! a lower bound for quantum query
complexity introduced by Ambainis [4]. The (positive-weights) adversary bound, which we
denote by Adv(f), has several variants [4, 5, 8, 23, 37], which are all essentially the same [32].
It was noted in several works [8, 21] that the proof that the adversary bound lower bounds
quantum query complexity only uses the fact that the outputs corresponding to 0-inputs and
1-inputs are nearly orthogonal, and hence for all functions QD(f) = Q(Adv(f)). However,
it is not the case that QD(f) = O(Adv(f)) for all f, and we exhibit functions separating
these measures.

Lastly, we show in Section 3 that this measure is the quantum analogue of a lower bound
method for randomized query complexity called randomized sabotage complexity [11]. Hence
this measure could also be called “quantum sabotage complexity.”

1.2 Fifth power query relation

Our first result establishes a new relation between query measures for total functions. A total
function is a function of the form f : {0,1}™ — {0, 1}, as opposed to a partial function, which
is a function of the form f: D — {0,1}, where D C {0,1}". We show a new upper bound
on the zero-error quantum query complexity of f, denoted Qy(f), in terms of its quantum

! The positive-weights adversary bound should not be confused with the stronger negative-weights
adversary bound (also known as the general adversary bound), which essentially equals quantum query
complexity [21, 24].
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distinguishing complexity, and hence its quantum query complexity. The zero-error quantum
query complexity of f is the minimum number of queries needed by a quantum algorithm
that either outputs the correct answer f(x) on input z, or outputs ? indicating that it does
not know, but does this with probability at most 1/2 on any input x. In Section 4 we prove
the following.

» Theorem 1. For all total functions f: {0,1}" — {0, 1}, we have

Qo(f) = O(QD(£)*1og QD(f)) = O(Q(f)* log Q(f))- (1)
Additionally, the algorithm also outputs a certificate for f(x) when it outputs f(x).

This is an improvement over the previous best relationship between zero-error and
bounded-error quantum query complexity, Qq(f) = O(Q(f)®) [9], which follows from D(f) =
O(Q(f)%), where D(f) is deterministic query complexity. In fact, our result is the first upper
bound on zero-error quantum query complexity that does not follow from an upper bound
on zero-error randomized query complexity. Our proof borrows ideas from the classical result
Ro(f) = OR(f)*logR(f)) [27, 22], which is essentially optimal due to a nearly matching
separation by Ambainis et al. [6].

1.3 Quantum statistical zero knowledge

Next we show that, surprisingly, quantum distinguishing complexity lower bounds a more
powerful model of computation than quantum query complexity: the query complexity of
computing a function using a quantum statistical zero-knowledge (QSZK) proof system. A
QSZK proof system is an interactive protocol between a quantum verifier and a computa-
tionally unbounded, but untrusted prover in which the verifier learns the value of f(x) but
learns essentially no more. QSZK can also be characterized in terms of its complete problem
Quantum State Distinguishability [34, 35].

In Section 5, we discuss the history of quantum statistical zero-knowledge proofs and
define an associated query measure QSZK(f) based on the complete problem Quantum
State Distinguishability. We establish some basic properties of our definition, such as
QSZK(f) < Q(f), which corresponds to the complexity class containment BQP C QSZK.
We then show that quantum distinguishing complexity lower bounds QSZK complexity.

» Theorem 2. For all (partial) Boolean functions f, QD(f) < QSZK(f).

As a corollary of Theorem 2 and QD(f) = Q(Adv(f)), we have for all (partial) functions f,

Q(f) = QSZK(f) = QD(f) = Q(Adv(f)). (2)

This sheds some light on why the adversary bound sometimes proves poor lower bounds: it
lower bounds a more powerful model of computation! For example, it is well known that the
adversary bound cannot prove a super-constant lower bound for the collision problem [3]. It
is also easy to see that the collision problem has a constant-query QSZK (and even classical
SZK) protocol.

On the bright side, this gives us a new way to prove lower bounds on QSZK query
complexity and prove oracle separations against the complexity class QSZK. For example,
since we know the OR function on n bits has Adv(OR) = Q(y/n), this yields an oracle A
such that NP# ¢ QSZK?, since the OR function has small certificates. A similar strategy
was used recently by Menda and Watrous to show oracle separations against QSZK [26].

2:3
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Figure 1 Relationships between measures. An upward line indicates that a measure is asymptot-
ically upper bounded by the other measure. E.g., for all (partial) functions f, Q(f) = O(R(f))-

1.4 Comparison with other lower bounds

We compare quantum distinguishing complexity to the two main lower bound techniques
for quantum query complexity: the (positive-weights) adversary bound and the polynomial
method. Recall that the negative-weights adversary or general adversary completely charac-
terizes quantum query complexity, so we do not compare quantum distinguishing complexity
with it.

As noted earlier, the adversary bound is weaker than quantum distinguishing complexity
since for all (partial) functions f, QD(f) = Q(Adv(f)). This implies that QD(f) coincides
with Q(f) for most functions studied in the literature, since most quantum lower bounds are
proved using the adversary method. Moreover, not only is quantum distinguishing complexity
always larger than the adversary bound, it can be exponentially larger for partial functions
and quadratically larger for total functions as we show in Theorem 3.

Another popular lower bound technique is the polynomial method [9], which uses the
fact that the approximate degree of a function lower bounds Q(f). The approximate degree
of a Boolean function f, denoted &é( f), is the minimum degree of a real polynomial p(x)
over the input variables such that for all inputs « we have |f(z) — p(x)| < 1/3.

We do not know an exponential separation between quantum distinguishing complexity
and approximate degree (for a partial function), since it is not even known if quantum query
complexity can be exponentially larger than approximate degree for a partial function. We
do, however, show in Theorem 3 that quantum distinguishing complexity can be polynomially
larger than approximate degree for total functions.

» Theorem 3. There exist total functions f and g with QD(f) = Q(Adv(f)?) and QD(g) >
deg(g)*~oM. B
There also exists an n-bit partial function h with QD(h) = Q(n'/3) and Adv(h) = O(logn).

This theorem is proved in Section 6. Figure 1 shows the known relationships between all
the measures discussed in this paper. The measures RS and QC are introduced later, and
refer to randomized sabotage complexity and quantum certificate complexity, respectively.

1.5 Lifting theorems

Most measures in query complexity have an analogous measure in communication complexity,
which we denote with the superscript cc, such as Q°°(F') and QSZK®*(F). A lifting theorem is
a result that transfers a lower bound on a query function f to a lower bound in communication
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complexity for a lifted version of the function f, obtained by composing the function f with
a hard communication problem G. For example, a lifting theorem is known for deterministic
protocols, which means there exists a communication problem G such that for all functions
f. D(f 0 G) = Q(D(f)) [29, 19].

Lifting theorems have been shown for some measures, such as nondeterministic query
complexity [18] and (zero-error or bounded-error) randomized query complexity [20], and
remain open for measures like zero-error and bounded-error quantum query complexity.
Our next result, proved in Section 7, shows that if we could prove a lifting theorem for
zero-error quantum query complexity or for QSZK query complexity, then we would get a
lifting theorem for bounded-error quantum query complexity.

» Theorem 4 (informal). If a general lifting theorem holds using some gadget G for either
zero-error quantum query complexity, i.e., Q) (f o G) = Q(Qo(f)), or for quantum statistical
zero-knowledge protocols, i.e., QSZK*(foG) = ﬁ(QSZK(f)), then we obtain a general lifting
theorem for bounded-error quantum query complexity (up to logarithmic factors) with the
same gadget G.

In fact, the same conclusion follows from a weaker assumption. We can assume that the
lifting theorem proves a lower bound on bounded-error quantum communication complexity
assuming a lower bound on quantum distinguishing complexity. In other words, we can
assume a lifting theorem of the form Q“(f o G) = ﬁ(QD(f)), which is weaker than a QSZK
lifting theorem since it assumes a stronger lower bound and proves a weaker one.

2 Preliminaries

We assume the reader is generally familiar with quantum computation [28] and query
complexity (for more details, see [15]). We do not assume the reader is familiar with
statistical zero-knowledge protocols.

For any positive integer n, let [n] = {1,...,n}. We use f(n) = O(g(n)) to mean there

exists a constant k such that f(n) = O(g(n)log" g(n)) and similarly f(n) = Q(g(n)) means
f(n) = Q(g(n)/log" g(n)) for some constant k.

2.1 Distance measures

For any matrix A, we define the spectral norm of A, denoted ||A| as the largest singular
value of A. The 1-norm of A, denoted [|A||;, is defined as Tr (v AT A), which is also equal to
the sum of the singular values of A.

We define the trace distance between two quantum states p and o as ||p—ol|,, =
1|lp = o|l,. The factor of 1/2 makes this distance measure lie between 0 and 1 for density
matrices. Trace distance is a useful distance measure since it exactly captures distinguishab-
ility of states and is non-increasing under quantum operations [28, Th. 9.2]. For pure states
|¢)) and |¢), trace distance is related to their inner product as follows [36, eq. 1.186].

1) (] = [0} (Pl = V1 = (1) 2. (3)

2.2 Quantum query complexity

In query complexity, we wish to compute a Boolean function f on an input x given query
access to the bits of z. In this paper, we will mostly deal with functions with Boolean input
and output. An n-bit function f : {0,1}" — {0,1} is called a total function. An n-bit
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function f: D — {0,1}, where D C {0,1}", is called a partial function since it is defined on
a subset of {0,1}"™. We will also refer to this subset D as the domain of f, or Dom(f). The
goal in query complexity is to compute f(z) while making the fewest queries to the oracle
for the bits of x.

Classical algorithms have access to an oracle that given an index i € [n] outputs z;, the
it™ bit of . A quantum algorithm is allowed access to a unitary map that implements this
oracle, and is usually taken to be the unitary O, which acts as follows on inputs i € [n] and
be {0,1}: O.li,b) = |i,b® z;). A quantum algorithm that uses the gate O, in its circuit &k
times is said to have made k queries to the oracle.

Since we do not count the complexity of any other gates used in the algorithm, we
can assume a k-query quantum algorithm always starts with the all-zeros state |0™) and
applies an oracle-independent unitary Uy followed by the oracle O, and so on. Thus a
k-query quantum algorithm is specified by k& + 1 oracle-independent unitaries Uy, ..., Uy,
which act on m output qubits. The state output by the quantum algorithm is |¢),) =
UpOUk_10; - - - 0,U;0,Uy|0™), where O, is implicitly (O, ® 1) if U; acts on more qubits
than O,. If the quantum algorithm outputs a mixed state, then we assume it traces out
some subset S of the m qubits, and hence outputs Trg(|¢;)(1,|). If the quantum algorithm
outputs a bit, then we assume it measures the first qubit in the standard basis and outputs
the result of that measurement.

We can now define the various complexity measures associated with quantum query
complexity. We say the bounded-error quantum query complexity of computing a Boolean
function f, Q(f), is the minimum k such that there exists a k-query quantum algorithm that
on every x € Dom(f) outputs f(x) with probability greater than or equal to 2/3. As usual,
the constant 2/3 is unimportant as long as it is a constant strictly greater than half, due to
standard error reduction.

A zero-error quantum algorithm (or a Las Vegas quantum algorithm) never outputs an
incorrect answer on an input € Dom(f), but is allowed to claim ignorance and answer
? with probability at most 1/2. The zero-error quantum query complexity of f, Qu(f) is
the minimum number of queries needed for a zero-error quantum algorithm to compute f.
Note that Q(f) < Qu(f), since a zero-error algorithm can be turned into a bounded-error
algorithm by simply outputting a random bit when the zero-error algorithm outputs ?.

For zero-error quantum algorithms, there is a subtlety to do with whether or not the
algorithm also produces a classical certificate for the input z. A certificate for x is a subset
of bits of x, such that the value of f(x) is completely determined by reading these bits alone.
A classical zero-error algorithm can always be assumed to output such a certificate without
loss of generality. However, this is not known to be true for zero-error quantum algorithms,
and zero-error quantum algorithms that also output a certificate when they output a non-?
answer are called self-certifying algorithms [14]. All the zero-error quantum algorithms in
this paper are self-certifying, which makes our results stronger since we only prove upper
bounds on zero-error quantum algorithms.

3  Quantum distinguishing complexity

3.1 Definition

We now define quantum distinguishing complexity more formally. As explained in the
introduction, instead of requiring that the quantum algorithm output the value of the function
f(x), as in standard quantum query complexity, we only want the quantum algorithm’s
outputs to be distinguishable (or nearly orthogonal) for O-inputs and 1-inputs.
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As an example of how these definitions differ, consider the collision problem. In this
problem, we are given an input = € [n|™ and we are promised that if we view z as a function
from [n] — [n], the function is either 1-to-1 or 2-to-1. The goal is to distinguish these two
cases under the assumption that the input satisfies this promise. In this problem, since
every O-input and 1-input differ in exactly half the positions i € [n], our quantum algorithm
can simply create the state |, ) = ﬁ >, i, z;) and the states corresponding to O-inputs
and 1-inputs will have trace distance £2(1). Thus this problem has quantum distinguishing
complexity O(1), but its quantum query complexity is ©(n'/3) [3].

» Definition 5 (Quantum Distinguishing complexity). Let f: D — {0,1}, where D C {0,1}",
be an n-bit partial function. QD(f) is defined as the smallest integer k such that there exists
a k-query quantum algorithm that on input x € D outputs a quantum state p, such that

Vo,y € D with f(x) # f(y), lpz — pylly, > 1/6. (4)

Note that the definition is robust to minor changes. First, we allow outputting mixed

states, although this does not offer any additional power over only outputting pure states.

The reason is that we can always assume that the quantum algorithm is pure until the final
step where some subset of qubits is traced out. But if two states are far apart in trace
distance after a partial trace, then they were far apart to begin with since trace distance is
non-increasing under partial trace.

The constant 1/6 in Definition 5 is also arbitrary and any constant in (0, 1) would not
change the measure by more than a multiplicative constant. This is because we can increase
the trace distance between the states by outputting multiple copies of the states. We choose
the constant 1/6 purely for aesthetic reasons: This choice ensures that the result in Theorem 2
has no constant factors.

3.2 Properties

We can now establish some basic properties of quantum distinguishing complexity. First,
let us formally show that quantum distinguishing complexity lower bounds quantum query
complexity.

» Proposition 6. For all (partial) Boolean functions f, QD(f) < Q(f).

Proof. Let Q(f) = k and consider the k-query algorithm that witnesses this fact. Let p, be
the probability that this k-query algorithm, when run on input x, outputs 1 upon measuring
the first qubit. Since the algorithm computes f with bounded error, we know that for all
1-inputs z, p, > 2/3, and for all O-inputs y, p, < 1/3.

Now consider the single-qubit state p,, which is obtained by taking the final state of this
algorithm, tracing out all the qubits except the first one, and then applying a completely
dephasing channel to it. This state is p, = ("> ) ). Thus for all z,y with f(z) # f(x),
pr_pyHtr: |px_py| > 1/3' <

As noted in the introduction, quantum distinguishing complexity is also lower bounded
by the adversary bound, i.e., QD(f) = Q(Adv(f)).

We do not prove this since this follows from the arguments that establish that the
adversary bound is a lower bound on quantum query complexity [4, 5, 8, 23, 37, 32], since
all these proofs only use the fact that the states output on 0-inputs and 1-inputs are nearly
orthogonal.
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Quantum distinguishing complexity is also superior to quantum certificate complexity
QC(f), as we show in Proposition 8. Quantum certificate complexity is a lower bound
on quantum query complexity defined by Aaronson [1]. It was later shown that quantum
certificate complexity also lower bounds approximate polynomial degree [22].

Before proving Proposition 8, we first define certificate complexity, randomized certificate
complexity, and quantum certificate complexity.

» Definition 7 (Certificate complexity). For any (partial) function f and input © € Dom(f),
consider the partial function f* defined on the domain {x} U{y € Dom(f) : f(y) # f(x)}

that satisfies f*(x) =1 and f*(y) =0 for all y € Dom(f) with f(y) # f(x).
We define the certificate complexity of f, denoted C(f), the randomized certificate com-

plezity of f, denoted RC(f), and the quantum certificate complexity of f, denoted QC(f), as
follows:

C(f)= max D(f%), RC(f)= max R(f*), and QC(f)= max Q(f"). (5)

z€Dom(f) z€Dom(f) z€Dom(f)

The problem f¥ is clearly no harder than computing f itself in any model of computation,
and hence these are lower bounds on their respective measures, i.e., C(f) < D(f), RC(f) <
R(f), and QC(f) < Q(f). We can now prove that QD(f) is a better lower bound on Q(f)

than QC(f).
» Proposition 8. For all (partial) Boolean functions f, QD(f) = Q(QC(f)).

Proof. Let QD(f) = k and consider the k-query quantum algorithm that witnesses this fact.
We can use this algorithm to solve f* for any € Dom(f). Consider the output of the
algorithm on input z before the partial trace operation and call this |1, ). The trace distance
between |¢;) and |¢) for y € Dom(f) with f(y) # f(z) is at least 1/6 since trace distance
is non-increasing under partial trace [28, Th. 9.2].

Now we construct an algorithm for f* from this algorithm to show that Q(f*) = O(QD(f)).
To do so, we run the supposed algorithm and measure whether the output state is |1),) or not
and accept only when the measurement accepts. This yields an algorithm that outputs 1 on
a with probability 1 and accepts inputs y with f(z) # f(x) with some constant probability
strictly less than 1. More precisely, the acceptance probability is |(1,]1y)|* < 1 —(1/6)? due
to the relationship between inner product and trace distance for pure states. Repeating this
algorithm a constant number of times yields a bounded-error quantum algorithm for f*. <=

3.3 Relation with randomized sabotage complexity

We start by reviewing the definition of randomized sabotage complexity, as presented in [11].
Fix a (partial) Boolean function f : D — {0,1} with D € {0,1}". For any pair z,y € Dom(f)
such that f(z) # f(y), let p € {0,1,*}™ be the partial assignment of all bits where x and y
agree (with the symbol * used for the bits where 2 and y disagree). We call p a “sabotaged
input”, imagining that a saboteur replaced bits of z with * symbols until it was no longer
possible to determine f(z).

Let S, C {0,1,%}™ be the set of all sabotaged inputs to f, that is, the set of all partial
assignments that are consistent with both a 0-input and a 1-input to f. Let S; € {0,1,}"
be the same as S,, except that the { symbol is used instead of the * symbol. Finally, let
fsab : S« U St — {0,1} be the function that takes a sabotaged input and identifies whether it
has % symbols or { symbols, promised that it contains only one type of symbol. Intuitively,
fsap is a decision problem that forces an algorithm computing it to find a % or {. We then
define RS(f) := Ro(fsab), the expected running time of a zero-error randomized algorithm
computing fsap-
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To show that RS(f) is larger than QD(f) for all f, we will define a classical measure
analogous to QD(f). We will then show this measure is equivalent to RS(f).

» Definition 9 (Randomized distinguishing complexity). Let f : D — {0,1}, where D C {0,1}",
be an n-bit partial function. RD(f) is defined as the smallest integer k such that there exists
a k-query randomized algorithm that on input x € D outputs a sample from a probability
distribution d, such that

Va,y € D with f(x) # f(y), Drv(de,dy) = 1/6, (6)
where Dy (-, -) stands for the total variation distance between probability distributions.

Since quantum algorithms can simulate classical algorithms, we immediately get that
QD(f) < RD(f). Next, we will show that RD(f) = ©(RS(f)), completing the argument

that QD(f) = O(RS(f)).

» Theorem 10. Let f be a partial Boolean function. Then RS(f)/12 < RD(f) <
(12/11) RS(f).

Proof. First, we show that RS(f) < 12RD(f). Let A be an optimal randomized algorithm
for RD(f), that on input = outputs a sample from the distribution d,.. Let z € Dom(fsap) be
a sabotaged input, and consider running A on z. Since z is sabotaged, there are inputs z and
y with f(z) # f(y) that are both consistent with the non-x, non-{ bits of z. The variation
distance between d, and d, is at least 1/6.

A randomized algorithm can be viewed as a probability distribution over deterministic
algorithms. Split the support of the distribution for A into two parts: a set S consisting
of deterministic algorithms that, when run on z, query a * or {, and a set T' consisting of
deterministic algorithms that don’t query a * or t when run on z. Note that algorithms in T’
behave the same on z and y. If A samples an algorithm from 7" with probability p, the total
variation distance between the run of A on x and the run of A on y must therefore be at
most 2(1 — p). Since this is at least 1/6, we have p < 11/12. Hence when A is run on z, it
queries a x or 1 with probability at least 1/12.

If we repeat A whenever it does not query a x or {, we get an algorithm that always
finds such an entry and uses at most 12 RD(f) queries on expectation. This is a zero-error
randomized algorithm for fgs.n, so RS(f) < 12RD(f).

We now handle the other direction, showing RD(f) < (12/11) RS(f). Let A be an optimal
zero-error randomized algorithm for fs,1,. It makes RS(f) queries on expectation, and always
finds a * or } in any sabotaged input. Consider the algorithm B that, on input 2 € Dom(f),
runs A for at most 2 RS(f) queries and outputs the partial assignment it queried (that is, it
outputs all the pairs (i, ;) that were queried by the algorithm A).

Let = and y be inputs to f with f(x) # f(y). Let z be the sabotaged input defined by
and y, that is, z; = % if x; # y; and z; = x; = y; otherwise. By Markov’s inequality, after
(12/11) RS(f) queries, A finds a * with probability at least 1/12 when it is run on z. This
means that when A is run on z, it queries an index 4 for which x; # y; with probability at
least 1/12. When this happens, the output of B(z) is not in the support of d,,. This means
d, puts weight at least 1/12 on symbols not in the support of d,. Conversely, d, puts weight
at least 1/12 on symbols not in the support of d,. The total variation distance between
the two distributions is therefore at least 1/6, meaning B is a valid RD(f) algorithm. We
conclude that RD(f) < (12/11) RS(f). <

Combined with QD(f) < RD(f), this theorem gives us the following corollary.
» Corollary 11. For all (partial) Boolean functions f, QD(f) = O(RS(f)).
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4 Fifth power query relation

In this section we prove a new relationship between zero-error quantum query complexity and
quantum distinguishing complexity and bounded-error quantum query complexity, restated
below.

» Theorem 1. For all total functions f: {0,1}" — {0, 1}, we have

Qq(f) = O(QD(f)*1og QD(f)) = O(Q(f)* log Q([))- (1)
Additionally, the algorithm also outputs a certificate for f(x) when it outputs f(x).

Our proof uses ideas from an analogous classical result [27, 22] and the main quantum
ingredient used is the hybrid argument of Bennett, Bernstein, Brassard, and Vazirani [12].
We now describe and prove a version of the hybrid argument that we use.

4.1 Hybrid argument

We start by defining the concept of a sensitive block. For a string z € {0,1}™ and a subset of
input bits B C [n], which we call a block, we use 2? to denote the input with all bits in B
flipped. In other words, z® agrees with = on all positions outside B and disagrees on B. For
a function f and an input z € Dom(f), we say a block B is a sensitive block if f(z) # f(2?).

Now any algorithm that computes f must also be able to distinguish x from =, where
B is a sensitive block. Any algorithm that can distinguish 2 from z® must “look at” the
bits in B in some informal sense. For classical algorithms, this simply means the algorithm
has to query a bit from B with high probability. The analogous statement for quantum
algorithms is not so clear, since quantum algorithms can query all input bits in superposition.
Nevertheless, the hybrid argument still allows us to formalize this intuition in the quantum
setting. The hybrid argument asserts that the total weight of queries within the sensitive
block (i.e., the total sum of probabilities of querying within the sensitive block over the
course of the algorithm) cannot be too small [12]:

» Lemma 12 (Hybrid Argument). Let z € {0,1}" be an input, and let B C [n] be a block.
Let Q be a T-query quantum algorithm that accepts x and rejects B with high probability,
or more generally produces output states that are a constant distance apart in trace distance
for z and xB. Let m! be the probability that, when Q is run on x for t queries and then
subsequently measured, it is found to be querying position i of x (i.e., the query register
collapses to |i)). Then

ime—Q(%). (7)

t=14ieB

Note that for a randomized algorithm, we would have (1) on the right-hand side instead
of Q(1/T), since a randomized algorithm must look within B (with high probability) at some
point during its execution. This lemma was implicitly proven in [12]. We reproduce the
proof in Appendix A for the reader’s convenience.

4.2 New upper bound

To prove our result we also need to upper bound the number of minimal sensitive blocks
of a function. It is not too hard to show that any minimal sensitive block has size at most
the sensitivity of f, s(f), which is the maximum number of sensitive blocks of size 1 over all
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inputs x. Since there are at most (S(T})) = O(n*(9) different subsets of n positions of size s(f),
we know that the number of minimal sensitive blocks is at most this quantity. Kulkarni and
Tal [22] improve this simple upper bound replacing n with randomized certificate complexity
RC(f) (Definition 7).

» Lemma 13. For any total function f :{0,1}"™ — {0,1} and any input x € {0,1}", the
number of minimal sensitive blocks of x with respect to f is at most O(RC(f)*()).

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let @ be the optimal quantum distinguishing algorithm for f, that
uses T = QD(f) queries. Consider running the following quantum algorithm P on oracle
input x € {0,1}™

1. Pick ¢ € [T] uniformly at random.

2. Run Q on z for ¢t queries and measure the query register.

3. Write down (on a classical tape) the position ¢ where @ is found to be querying, as well
as the query output x;.

The algorithm P uses t < T quantum queries. Now that the probability P wrote down
the index 7 is (1/7) Zthl m}. For any block B C [n], the probability that P wrote down
some index in B is

1 & ,
Tzzmi' (8)

t=14eB

If B is a sensitive block for the input z, then the hybrid argument (Lemma 12) implies the
probability that our new algorithm P outputs an index in B is Q(1/77).

Next, we repeat the algorithm P several times. We claim that after O(T? s(f)log RC(f))
repetitions, the outputs of P constitute a certificate for x with constant probability.

To see this, note that for any minimal sensitive block B of the input z, the probability
that some run of P (out of the O(T?s(f)log RC(f)) many runs) queries in the block B is
1 — O(RC(f)~*)). This is because T? repetitions boost the probability of querying in a
minimal sensitive block from Q(1/7?) to Q(1), and then s(f)log RC(f) repetitions of this
boosted algorithm further boost the probability to the claimed bound. Hence, by Lemma 13
and the union bound, there is a constant probability that these runs of P query a bit in
every minimal sensitive block of the input . But a set of bits that intersects every sensitive
block of x is a certificate for z. Thus these runs of P output a certificate for the input x
with constant probability.

Any algorithm that finds a certificate with constant probability can be turned into a
zero-error algorithm by repeating whenever a certificate is not found. We therefore get a
zero-error algorithm that works simply by repeating P a sufficient number of times. Note that
P uses O(T) quantum queries and must be repeated O(T?s(f)log RC(f)) times. Recalling
that T = QD(f), we get

Qo(f) = 0(QD(f)’ s(f) log RC(f)). (9)

We can simplify this to Qu(f) = O(QD(f)?logQD(f)), since s(f) = ORC(f)) =
O(QC(f)?) [1] and QC(f) = O(QD(f)) (Proposition 8). <
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5 Quantum statistical zero knowledge

5.1 History

The subject of statistical zero-knowledge proof systems has a rich history in the classical
setting, and the interested reader is referred to the paper of Sahai and Vadhan [30]. Informally,
the complexity class SZK contains problems that can be solved by a probabilistic polynomial-
time verifier interacting with a computationally unbounded prover (like the class IP) with the
additional restriction that the verifier not learn anything from the prover (statistically) other
than the answer to the problem. From this it is clear that BPP C SZK, since the verifier
can simply not interact with the prover, and SZK C IP, since IP is simply SZK without the
zero-knowledge constraint.

More surprisingly, it is also known that SZK = coSZK, and that we can assume without
loss of generality that the interaction is only one round and uses public randomness, which
means SZK C AM N coAM. Another interesting subtlety is that SZK can be defined assuming
an honest verifier, one who does not deviate from the protocol to learn more, or a cheating
verifier, who may deviate from the protocol. It turns out that these definitions lead to the
same complexity class [17]. The class SZK also has a much simpler characterization in terms
of a complete problem called statistical difference, as shown by Sahai and Vadhan [30], which
yields easier proofs of some of these facts. Informally, in the statistical difference problem we
are given two circuits that sample from probability distributions, and the task is determine
whether the distributions are far or close in total variation distance.

On the quantum side, (honest-verifier) QSZK was first defined by Watrous [34], and like the
classical case, it satisfies BQP C QSZK C QIP. The same paper strengthened these obvious
containments by showing that QSZK is closed under complement (i.e., QSZK = coQSZK) and
that the protocol can be assumed to be one round, which gives QSZK C QIP(2). Watrous
also showed that QSZK has a complete problem, called quantum state distinguishability,
which is a quantum generalization of the statistical difference problem of Sahai and Vadhan.
In this problem, we are given two quantum circuits outputting mixed states and have to
decide if the states are far apart or close in trace distance. Later, Watrous [35] also showed
that honest-verifier QSZK and cheating-verifier QSZK are the same, as in the classical case.

5.2 Definition

We now define a query analogue of quantum statistical zero-knowledge. Instead of defining
QSZK(f) in terms of an interactive zero-knowledge protocol for f, we use the complete
problem characterization by Watrous. This yields a considerably simpler definition of QSZK
in the query setting.?

» Definition 14 (QSZK). Let f : D — {0,1}, where D C {0,1}", be an n-bit partial
function. QSZK(f) is defined as the smallest integer k such that there exists two quantum
query algorithms making k queries in total that on input x € D output states p, and o, of
the same size such that

Vo € D with f(x) =1, ||pz — O'a:Htr >2/3,

Vo € D with f(x) =0, |pz — 0zl < 1/3.

2 The complete problem is often used to define SZK (and its variants, like NISZK) in query complexity
and communication complexity (for example, see [13, 33]). It is not obvious whether the definition via
an interactive proof and the definition via the complete problem coincide exactly as the problem is
complete under polynomial-time reductions, which may add polynomial overhead.
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This definition is also robust to some changes. In particular, the constants 2/3 and
1/3 can be replaced by any constants a € [0,1] and 3 € [0,1] as long as a® > 3. Hence
an alternate definition with 0.99 instead of 2/3 and 0.01 instead of 1/3 leads to the same
complexity measure up to multiplicative constants. This follows from the analogous property
of the complexity class QSZK, which was shown by Watrous [34] (see Theorem 1 in the
conference version or Theorem 5 in the full version for more details).

5.3 Properties

As a sanity check, let us prove the query analog of the obvious containment BQP C QSZK.
» Proposition 15. For all (partial) Boolean functions f, QSZK(f) < Q(f).

Proof. Let Q(f) = k and consider the k-query algorithm that witnesses this fact. Let p, be
the probability that this k-query algorithm when run on input x outputs 1 upon measuring
the first qubit. Since the algorithm computes f with bounded error, we know that p, > 2/3
for 1-inputs and p, < 1/3 for 0-inputs.

Now consider the single-qubit state p,, which is obtained by taking the final state of this
algorithm, tracing out all the qubits except the first one, and then applying a completely
dephasing channel to it. This is equivalent to measuring the first qubit in the standard basis
and outputting |b) when the result is b. This state is p, = (1_0” = p(i
as (§9) for all x.

Now let us check that the conditions of Definition 14 are satisfied by these states. For
all inputs z, we have ||p; — 04l,, = |pz|- And we know that p, > 2/3 for l-inputs and
0 < p, < 1/3 for 0-inputs, which completes the proof. <

). Let us also define o,

The measure QSZK(f) also satisfies another useful property, that QSZK(f) =
O(QSZK(—f)). This is the analogue of the result that QSZK = coQSZK [34]. Since we do
not use this property, we only provide a sketch of the proof in Appendix B.

5.4 Relation with adversary bound

We have already showed that QD(f) < Q(f) (Proposition 6) and QSZK(f) < Q(f) (Propos-
ition 15). We now show that QD(f) is actually smaller than QSZK(f).

» Theorem 2. For all (partial) Boolean functions f, QD(f) < QSZK(f).

Proof. Let QSZK(f) = k and consider the quantum algorithms that witnesses this fact. We
claim that the tensor product of outputs of these algorithms already satisfies the conditions
in Definition 5 and hence proves QD(f) < k.

To see this, observe that the algorithm outputs the state p, ® o, on input x, which
satisfies the conditions of Definition 14. More precisely, this means for any x and y such that
f(z) =1and f(y) =0, we know that |[p, — o.|,, >2/3 and ||p, — o ||,, < 1/3. We want to
show that

12 ® 00 — py @ oy, = 1/6. (10)

Since trace distance is non-increasing under partial trace, we have |p, ® 0, — py, ® 7|, >
pw — pyHtr and [[pz ® 07 — py ® Uy”tr > [loy — Uy||tr7 which imply

Pz ® 00w — Py D UyHtr > max{”pz - Py”tra llow — Uy”tr} .
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Now if we can show the right-hand side is at least 1/6, then we are done. To show this,
toward a contradiction assume that max {[|pz — pyll,,,[|0w — oyll,,} < 1/6. Then we have

pr - U:c”tr = ”px —pytpy—oytoy— UacHtr
< ||P:r - Py”tr + pr - O'yHtr + ||Uy - Uzlltr
<1/6+1/3+1/6=2/3,

which contradicts || p; — 05|, > 2/3. <

As noted, as a corollary of this theorem and QD(f) = Q(Adv(f)), we have for all (partial)
functions f, QSZK(f) = Q(Adv(f)).

This can be used to prove lower bounds on QSZK protocols for functions. For example,
consider the OR function and let us try to compute it with an interactive protocol without
the zero-knowledge requirement. It is easy to see that when OR(z) = 1, a computationally
unbounded prover can simply send over the location of a bit ¢ such that z; = 1, which can be
checked using only 1 query. Of course, this protocol leaks information and in particular lets
the verifier know the location of a 1. But is it necessary that an efficient protocol for OR must
leak information? Our lower bound says this must be the case, because Adv(OR) = Q(y/n)
and hence any zero-knowledge protocol for the function must make Q(y/n) queries.

6 Comparison with other lower bounds

In this section, we establish the separations between quantum distinguishing complexity and
the adversary bound and the polynomial method claimed in Theorem 3.

To prove this, we will compose known functions with the index function and establish the
behavior of quantum distinguishing complexity under composition with the index function.
This kind of composition was also studied by Chen [16], who used it to show an oracle
separation between P32X and QSZK.

6.1 Index functions

Let INDy, : {0, 1}¥+2" — {0,1} denote the index function, the function that on input (z,)
with = € {0,1}* and y € {0, 1}2k, outputs the bit of y indexed by the string z. We wish
to study the composition of the index function with an arbitrary Boolean function f, but
composed only on the first k£ bits of the index function. We’ll denote this composition by
INDy, o, f. More precisely, if f is an n-bit function, INDj oy, f is a function on nk + 2* bits
that evaluates f on the first k& n-bit strings to obtain a binary string x of length k, and then
uses z to index into the next 2% bits of the input and outputs the bit indexed by x.

In addition to the index function, which is total, we will also study a function we call
the “unambiguous index function,” UINDy. This is a partial function defined similarly to the
index function, except that the location of the array y pointed to by the first part of the
input is “marked,” and we are promised that no other bits of the array are “marked.” More
explicitly, the function is defined on k + 2 - 2% bits, with the first k bits indexing a pair of
adjacent bits in the remainder of the input. So if the first part of the input represents the
integer x, that means it points to the cells 2z and 2x + 1 in the second part of the input.
The output of UIND is the first bit of the pair pointed to, i.e., it will be the bit stored at
array location 2z. Moreover, we are promised that the second bit of this pair (the bit at
array location 2z 4+ 1) will always be 1, and also that the second bit in every other pair (i.e.,
other than the pair 2z, 2z + 1) will always be 0.
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Intuitively, there is only one strategy to solve INDg, which is to read the first k£ bits and
find the cell pointed to. But to solve UINDy, there are two good strategies: either read the
first k bits (and determine x), or search the remainder of the input for the unique position
where the second bit of a pair is 1, which marks the cell pointed to by x.

6.2 Index function composition

We now examine the behavior of quantum distinguishing complexity under composition with
the Index and Unambiguous Index functions. To prove our result, we need the following
strong direct product theorem for quantum query complexity due to Lee and Roland [25]:

» Theorem 16 (Strong direct product). Let f be a partial Boolean function with Dom(f) C
{0,1}", and let f* : Dom(f)* — {0,1}* be the task of solving k independent inputs to f
simultaneously. Then any quantum algorithm that solves f*) with success probability at least
(5/6)% uses Q(kQ(f)) queries.

We prove the following composition theorem in Appendix C.

» Theorem 17. There is a ¢ > 0 such that for any partial function f, if k > clog Q(f), then

QD(INDy o, f) = O(Q(IND o, f)) = O(k Q(f)) (11)
QD(UINDy, o), f) = O(Q(UINDy, 0% f)) = O(k Q(f)). (12)

In other words, composing a function with a large index gadget makes QD and Q coincide.

6.3 Separations
Using this theorem we can now establish Theorem 3, restated for convenience:

» Theorem 3. There exist total functions f and g with QD(f) = Q(Adv(f)?) and QD(g) >
deg(g)*~°®.

There also exists an n-bit partial function h with QD(h) = Q(n'/3) and Adv(h) = O(logn).
Proof. There exists an n-bit total function f’ with a quadratic separation between quantum
query complexity and the adversary bound, i.e., Q(f") = Q(Adv(f’)2). The function is k-sum
with k ~ logn (see [10, 2] for more details). Now consider the function f = INDy o f’, where
k= Q(log Q(f)). By Theorem 17, the QD of these functions increases to Q. However, since
the adversary bound satisfies a composition theorem [21], its value only increases by a factor
of k. Thus QD(f) = Q(Adv(f)?).

Similarly, if we start with the collision problem which has Q(h’) = ©(n'/?) [3], but
Adv(l) = O(1), and define h = INDg o k' for k = ©(logn), then QD(h) = Q(n'/3) but
Adv(f) = O(logn).

There also exist total functions with Q(g’) > aeé(g’ )4 [2]. Composing this function
with INDy on the first k& bits with & = Q(log Q(f)) yields a function g with the desired
separation, since approximate polynomial degree also composes in the upper bound direc-
tion [31]. <

7 Lifting theorems

7.1 Background

Lifting theorems are results that relate communication complexity measures to query com-
plexity measures. For a fixed query measure, such as D(f), and a communication complexity
measure that intuitively corresponds to it, such as deterministic communication complexity

2:15

TQC 2019



2:16

Quantum Distinguishing Complexity

D(F), we may hope to be able to prove a theorem of the form: there exists some commu-

nication gadget G such that D°°(f o G) = ©(D(f)). In fact, when the size of the gadget G is
allowed to depend on the input size of f and the O is allowed to hide polylog n factors, such
a result is known [19].

We remark that the upper bound direction — showing the communication measure of
f oG is at most the corresponding query measure of f — is usually easy. We can simulate
the query algorithm in the communication complexity world, losing only a multiplicative
factor that depends on the difficulty of computing G. The lower bound direction, which lower
bounds a communication complexity measure by a query complexity measure, is usually
much harder, and is what we will usually refer to when we use the term “lifting theorem.”

The result of [19] gives a lifting theorem for deterministic protocols, which we will denote
by D — D to mean it transfers a lower bound on the first measure to a lower bound on the
second. Recently, lifting theorems have been shown for R and Rg (with the corresponding
communication complexity measures being the obvious ones: randomized communication with
bounded error and randomized communication with zero error, denoted R“ and R{") [20].
We do not know how to lift Q or Q, to their analogous communication measures; this is
likely to be significantly harder.

7.2 Lifting theorem reductions

In this section, we prove several lifting theorem reductions, showing that a lifting theorem
for one measure (such as Q) implies a lifting theorem for another measure (such as Q). Our
work (including prior work [11]) is the first instance we know of where such reductions are
shown; it is perhaps surprising that these reductions can be proven without proving the
lifting theorems themselves.

» Theorem 18. If there is a lifting theorem for Qg with gadget G, then there is also a lifting
theorem for Q with the same gadget G.

Proof. Fix a partial function f. We wish to show that Q°°(f o G) = Q(Q(f)) using a lifting
theorem for Q.

Let g = UINDg, o, f, with k = ©(Q(f)). By Theorem 17, we have Q(g) = Q(Q(f)) Next,
apply the lifting theorem to g to get

6°(90G) = 2Qo(9)) = AQ(9)) = AQ)). (13)

To complete the argument, it remains to show that Q°(g o G)) = O(Q°(f o G)). Note
that g o G = UINDg o f o G. If we have a communication protocol for f o G, we can
simulate it k& times (and use error reduction) to obtain the correct index with constant error.
We can then use the promise of UIND to check if the index is correct, by verifying that
the second bit of the pair at that index is 1. This turns the algorithm into a zero-error
algorithm. Since k = O(log Q(f)), our algorithm uses only O(Q(f o GY)) communication.
Thus Q°°(f o G) = QQ(f)), as desired. <

» Theorem 19. If there is a lifting theorem for QSZK with gadget G, then there is also a
lifting theorem for QQ with the same gadget G.

By a lifting theorem for QSZK, we mean a theorem that lifts it to some communica-
tion complexity analogue QSZK. The only property we use of QSZK is that it lower
bounds Q°°.
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Proof. Let f be a partial function. Let ¢ = INDy o f, where k& = O(logQ(f)). By
Theorem 17, QD(g) = Q(Q(f)). By Theorem 2, QSZK(g) = Q(QD(g)) = Q(Q(f)). Then

Q*“(g0 G) = AQSZK*(g 0 G)) = QQSZK(g)) = AQ(S))- (14)

Also, note that if we had a quantum communication protocol for f oG we could easily convert

it to a communication protocol for go G = INDg of foG. Thus Q*(foG) = QQ* (g0 G) =
Q(Q(f)), as desired. <

» Theorem 20. If there is a lifting theorem that lifts QD — Q¢ with gadget G, then there
s also a lifting theorem for Q with the same gadget G.

By a lifting theorem for QD — Q, we mean a theorem that shows Q“(foG) = ﬁ(QD(f))
for all partial functions f. This is formally easier to prove than a Q(Q(f)) lower bound, but
we show it is actually equivalent.

Proof. Let f be a partial function. Let g = INDy o) f, where k = O(logQ(f)). By
Theorem 17, QD(g) = Q(Q(f)). Then

Q“(g0G) = Q(QD(g)) = AQ(f)). (15)

Also, note that if we had a quantum communication protocol for f oG we could easily convert

it to a communication protocol for go G = INDj o), f o G. Thus Q°(foG)=Q(Q*(goG) =
Q(Q(f)), as desired. <

In summary, what we have shown is that a lifting theorem for Q is implied by a lifting
theorem for either Q,, QSZK, or a QD — Q lifting theorem. In fact, each of these
statements also has a classical analogue which remains true. Proving a lifting theorem for Ry,
SZK, or RS — R would imply a lifting theorem for R. This can be proved analogously; the
only property we need is that RS(UINDy, oy, f) = Q(R(f)) when k is at least polylogarithmic
in R(f). An equivalent statement to this was proven in [11]. However, since lifting theorems
for R and R are already known (with an index gadget [20]), this reduction is less interesting
in the classical case, though it might still be relevant for proving lifting theorems with other
gadgets.
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A Proof of the hybrid argument

In this section, we prove Lemma 12, restated below for convenience.

» Lemma 12 (Hybrid Argument). Let z € {0,1}" be an input, and let B C [n] be a block.
Let Q be a T-query quantum algorithm that accepts x and rejects B with high probability,
or more generally produces output states that are a constant distance apart in trace distance
for z and xB. Let mt be the probability that, when Q is run on x for t queries and then
subsequently measured, it is found to be querying position i of x (i.e., the query register
collapses to |i)). Then

d 1

Zme:Q(T). (7)

t=11ieB
Proof. We start by fixing some notation. Let the quantum query algorithm @ act on m
qubits, initialized in the all-zeros state |0™). A T-query algorithm is specified by T + 1
unitaries Uy, Uy, ..., Ur acting on m qubits. For any input « € {0,1}", the oracle O, acts
as Ozli,b) = |i,0 @ x;) for all ¢ € [n] and b € {0,1}. The output state produced by this
quantum algorithm (before measurement) on input « is

|wac> = UTOxUT—le"'OxU10$U0|Om>7 (16)
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where O, is implicitly O, ® 1 if O, acts on fewer than m qubits. Within the m qubits,
we further group the qubits into three registers, the first register holds an index |i), for
i € [n], the second holds a qubit |b), for b € {0,1}, and the third register contains all the
remaining qubits.

For a quantum algorithm outputting a Boolean function, we assume that the first qubit
of |, ) is measured at the end to determine the output. A quantum distinguishing algorithm
may trace out some qubits of |1),,) before producing an output or it may simply output the
state |1,) without loss of generality, since tracing out qubits cannot increase the distance
between a pair of states.

In our case we have an algorithm @ that accepts = and rejects ¥ with high probability.
To be more concrete, let us assume @ has error probability €. As we saw in Proposition 6,
such an algorithm can be made to output a mixed state p, such that ||p, — p.&|, > 1 — 2e.
Since trace distance is non-increasing under partial trace [28, Th. 9.2], we get that the pure
output states must also be far, and hence ||[1)3)(¥g| — [¢y5)(Y,5]];, = 1 — 2. This is all we
need to assume about the output of the algorithm on these inputs.

We now consider the intermediate states produced by this quantum algorithm after ¢
queries to input x. Let

[¥2) == Uol0™) and  |4)y) = U, Og |5~ "). (17)
for t € [T]. The final state of the algorithm is |¢1) = |+),.), and hence we have
2w | = lge ) sl > 1 - 2e. (1)

We know that the states are far apart in trace distance, but we also want to bound their
closeness in ¢ distance. By (3), we have

Wz [9ze)] < V1= (1 =202 =2v/e(1 —¢) <1—(1/2)(1 - 2¢)*. (19)

Then we have

D) = [WIs)? =2 — (Wls L) — (¥ ¥ 1s)
=2 — 2Re((T5 [0T)) > 2 — 2T [ T)] > (1 — 2¢)2, (20)

and so [||v;) — [U75)]| > 1 — 2.

Hence the final states of the algorithm are far in apart in /5 distance on inputs z and
2B, We also know that the initial states [1/2) and [1)05) are identical. We keep track of how
much this distance d; := [||}) — | 5)|| changes for t € {0,1,...,T}. For each ¢, we have

de1 = [[[957h) = 10,50 = 1U4100[005) = Uei1 O [gs) || = 10a]0z) — Ops [45s)l, (21)

since Uyt is a unitary and preserves norms. This equals
10,8 45) =Ope [tz +(00 = Opm )5) | < [0pn 1) = Opn )| 4+1(Oz = Opz)[Uz)|| (22)
= di + [|(0y = Op5)[P5)|l- (23)

Next, decompose |1L) by the value of the query register. On basis vectors when the query
register is not in B, the unitaries O, and O,z behave the same; such vectors therefore get
mapped to zero. If |1} ’B> denotes the component of |¢%) whose query register is in B, we get

102 = Ous) W) | = 1(Ox = Oum )9 ")l < O )+ 10 [0 %)l = 2[4 7)| (24)
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2. St )
i€B

where the last equality follows from the definition of mf'H, which is defined to be the
probability that the algorithm is found to be querying position ¢ right before making query

t + 1. The increase from d; to dyy1 is therefore upper bounded by 24/ . 5 mﬁ“, SO we
have

T
2 > mb>dp —do>1-2e (26)
t=1 1€EB

Using the Cauchy—Schwarz inequality on the outer sum gives

when € is a constant.? <

B QSZK closed under complement

Sketch of proof of QSZK(f) = ©(QSZK(—f)). To prove this, we would like to reduce the
complete problem to its complement. In other words, we are given two circuits that query an
oracle preparing p, and o, that are either far apart in trace distance (when f(x) = 1) or close
in trace distance (when f(z) = 0). From these circuits, we want to define two new states p/,
and o/, such that these states are far when p, and o, were close, and close when p, and o,
were far. Before starting the transformation, we first boost the parameters 2/3 and 1/3 to
be extremely close to 1 and 0 respectively. For this sketch we will assume the parameters are
exactly 1 and 0, which means when the states are far, they are perfectly distinguishable (i.e.,
llpz — 0zll;, = 1), and when they are close, they are equal (i.e., p; = 05).

To perform this transformation, consider the pure states output by the circuits before
tracing out any qubits. Let |R;)pc and |S;)pc be the pure state on registers B and C,
which yields p, and o, respectively when register B is traced out. More formally, we have

pz = Trp(|Rs)(Rs|Be) and oy = Trp(]9:)(S:]BC). (29)

From the pure states |R,)pc and |S,;)pc, we define two new pure states on registers A, B,
C, and D, as follows:

IR,) = %(\ommmo\om + 1) alS2)pel0)p ) and (30)
EAR %(\mmzmc\om + 1alSe) soll)p). (31)

3 This can be slightly improved to (1 — 24/¢(1 — €))/2T by not using the approximation in (19).
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Note that the only difference between these states is in register D. If we have circuits
preparing states |R;)pc and |Sz) pe, it is easy to see that we can construct circuits preparing
|R.)apcp and |S.) apcp. We now define the states p/, and o, from these states by tracing
out registers C' and D:

Py = Trep(|R,) (R |apep) and o), = Trap(]S;) (S, |aBeD). (32)

We claim that these states satisfy the conditions we require. When f(z) = 1, we have that
llpz — 0z, = 1, i.e., the residual state on register C' for states |R.,) and |S}) is completely
distinguishable. In this case, before we trace out registers C' and D, we could implement
a unitary on these registers which reads register C' and writes onto register D whether the
state in C'is p, or o,. This operation maps the state |R,) to the state |S.) and only acts on
the traced out qubits, which does not affect the qubits that are not traced out, and we have
Py = Og-

When f(x) = 0, we have that p, = o,. In this case we want to show that p/, and o,
are distinguishable. We will show that after applying a specific unitary to these states are
tracing out register B, in the first case we are left with the state |+)(+|4, but in the second
case we have %1 A, which can be distinguished.

Since p, = 0., there is a unitary Up such that (Up ® 1¢)|R:)Bc = |Sz)Bc. Controlled
on the qubit in register A, let us apply the unitary Up to register B of |R.) and |S.) before
we trace out registers C' and D, which is equivalent to applying it after tracing out the
registers. This makes registers BC' unentangled with the rest of the state, and equal to
|S2)Be. In the first case we are left with the state |+)4]|0)p on registers A and D, while in

1

the second case we have 5(|00)ap + |11)ap). Tracing out register D leaves us with the |+)

state in the first case and the maximally mixed state in the second case, as claimed. <

C Proof of Theorem 17

Proof. Recall that quantum query complexity composes perfectly [24], so Q(INDg o f) =
O(Q(INDg) Q(f)) = O(kQ(f)). We argue that Q(INDy o, f) is smaller than Q(INDgo f). This
is because we can convert any algorithm for Q(INDy o f) into an algorithm for Q(INDy oy, f):
fix a O-input 2° and a l-input 2! for f; then, given an input to Q(INDy oy f), pretend that
each 0 bit in the second half of the input is actually 2, and that each 1 bit is actually z!
(the algorithm can do this by applying the appropriate unitary). This converts the input
into an input for Q(INDg o f), completing the reduction.

Thus Q(INDg, of f) = O(kQ(f)). Similarly, Q(UINDy of f) = O(kQ(f)). Since QD is
smaller than Q, it remains only to show that QD(INDg o f) = Q(k Q(f)) and QD(UIND ok,
f)=Q(kQ(f)). We complete the argument for UIND; the argument for IND is similar.

Let @ be an optimal quantum distinguishing algorithm for UIND o f. We turn @ into
a quantum algorithm @’ that uses the same number of queries, and solves all k copies of f
with non-negligible probability; we then apply the direct product theorem (Theorem 16) to
lower bound the number of queries required by @', and hence by Q.

Given k inputs to f, the first thing the algorithm @’ does is append an all-0 array to
turn it into an input to UINDg oy f. (Since the array is all zeros, the new input does not
satisfy the promise of UINDy oy, f, but we will still be able to run @ on it.) Then Q' picks a
random number ¢ between 1 and T uniformly, where T'= QD(UIND, o, f) is the number of
queries used by @, and simulates Q for ¢ queries. The algorithm @’ then measures the state
of @ to determine the position at which @) was going to query. If this position is in the array
part of the input and is inside a pair that has index i € {0, 1}*, the algorithm Q’ will then
output the string i.
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Consider the correct pair in the array (the one really pointed to by the k copies of f).

Flipping the pair from 00 to 01 causes the input to satisfy the promise of UINDg o f, and
causes the output to become a 0-input. On the other hand, flipping the pair from 00 to
11 causes the input to become a 1-input. Let |¢)) be the final state of () when run on the
original, illegal input. Let |¢)p) be the final state of @) when run on the flipped 0-input, and
let |31) be the final state of ) when run on the l-input. We know that |1)g) and |¢)1) are far
in trace distance. Hence |¢) must be a far in trace distance from at least one on them.
Thus by Lemma 12, the probability that @’ finds @ querying inside the correct pair
of the array is ©(1/7?). This means that Q" outputs the correct string of answers to
the k inputs to f is with probability at least Q(1/72). Since Q" uses only T queries,
by Theorem 16 we must have either T = Q(kQ(f)) or 1/T? = O((5/6)*). The latter
implies T = Q((6/5)%/2) = Q((6/5)%/* . (6/5)F/*) = 29K . 2%Kk) " When k > clog Q(f)
for a large enough constant ¢, this gives T > 22" Q(f) = Q(kQ(f)). Recalling that
T = QD(UINDy, oy, f), we get QD(INDy, oy f) = Q(kQ(f)), as desired. <
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Circuit Transformations for Quantum Architectures

1 Introduction

Quantum algorithms are typically formulated in a circuit model in which two-qubit gates
can be performed between any pair of qubits. However, most realistic quantum architectures
impose restrictions on qubit interactions. Thus a natural challenge is to find a way of
implementing a given circuit on a given architecture with low overhead. We can do this by
finding a time-efficient architecture-respecting circuit transformation — a mapping to a new
circuit that preserves the function of the original quantum circuit up to an initial mapping
of circuit qubits to architecture qubits and a final mapping of architecture qubits back to
circuit qubits, where the new circuit is constrained to respect the architecture.

There have been many proposals for the design of quantum processors. Examples
include trapped ion systems that enable interactions between any two ions in a trap [39]
and superconducting qubit architectures with more limited interactions [19, 24, 44]. Many
proposed architectures for scalable devices employ modularity, building a large device from
interconnected subunits [39, 40, 12].

There is also a considerable amount of work on implementing circuits under architectural
constraints. Some examples include implementations of Shor’s algorithm [18], the quantum
Fourier transform on 1D nearest-neighbor architectures [35], and quantum adders on nearest-
neighbor architectures [15, 16]. However, the aforementioned works focus on analyzing specific
circuits. Instead, we wish to find automated circuit transformations that can handle complex
circuits and compare their performance when implemented in various architectures. Bounds
on the efficacy of architecture-respecting circuit transformations and good automated tools for
implementing them may be able to inform architecture design decisions [52]. Unfortunately,
it is challenging to achieve good performance with an automated tool. Indeed, finding even
one optimal placement for a set of gates is NP-hard [34].

Prior Work on Automated Architecture-Respecting Circuit Transformations

Several previous works use exhaustive approaches that take time exponential in the number
of qubits (and hence can only be used for small instances). For example, Saeedi, Wille,
and Drechsler [46] use SAT solvers to decompose circuits so they can be run on the path
architecture; [33] finds an optimal circuit transformation on nearest-neighbor architectures
by formulating the problem as a pseudo-boolean optimization; Venturelli et al. [50] use
temporal planners to schedule gates; and [41] uses satisfiability modulo theory solvers to
find mappings of the circuit with high success probability using calibration data. Other
work has instead proposed minimizing the distance between all qubits in groups of gates
on specific architectures [48, 54, 43], but this is also NP-hard in general. These and other
papers add SWAP gates so that the logical state of a given physical qubit is transferred to
a different physical qubit (henceforth, we simply refer to this as qubit movement, with the
implicit understanding that only the logical state is moved).

As a heuristic solution, we can break the circuit into sets of disjoint gates and move qubits
between each set. Metodi et al. [36] propose polynomial-time heuristic routines that prioritize
gates with many dependents. Hirata et al. [22] propose exhaustive and heuristic searches for
good placements of qubits on the path architecture to construct circuit transformations.

One can also use heuristic qubit placement and movement algorithms on fault-tolerant
2D grid architectures [30] or algorithms that are designed to handle the surface code [28].
We do not consider fault tolerance explicitly and instead work only at the logical level.

An exhaustive search of all permutations of n qubit locations takes time O(n!) but can
work well for small numbers of locations [53], or can be done selectively using A* heuristic
search [57, 58] or local search [34, 8]. By choosing a suitable initial placement of qubits, we
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can further reduce the qubit movement cost. For example, [29] tries to find a good initial
placement by repeatedly transforming the quantum circuit forwards and then backwards,
taking the output qubit placement as input for the next iteration.

Others have considered a model in which one can perform fast measurements and adapt
later parts of the computation based on the outcomes [20]. This model allows the movement
of qubits with just a constant overhead at the cost of extra ancillas [45]. However, realizing
such a model presents significant technical challenges and we do not consider it here.

Various bounds are also known for the cost of moving qubits. Sorting networks provide a
way to upper bound the depth of the qubit movement circuit [27, 7, 13, 21]. We refer to [3]
for a more complete overview of sorting networks.

Contribution

In this paper, we construct architecture-respecting circuit transformations that attempt to
minimize the circuit depth or size overhead and have worst-case time complexity polynomial
in the sizes of the circuit and architecture graph. We model the connectivity of the underlying
hardware as a simple graph where vertices represent the qubits and edges represent places
where a two-qubit gate can be performed.

As a simple and fast approach, we propose the greedy swap circuit transformation
(Section 2.2.2). It inserts SWAPs on edges chosen to minimize the total distance between
qubits involved in two-qubit gates until some gate(s) can be executed.

We then propose building architecture-respecting circuit transformations (Section 2.2.3)
by combining algorithms for two basic subproblems: qubit movement (addressed by permuters,
for which we provide theoretical performance guarantees) and qubit placement (addressed
by mappers). For the latter, we specify a variety of heuristic strategies (Section 4) to find
suitable placements of qubits from the input circuit, attempting to optimize for circuit size
or depth. We implement these algorithms in software, which is publicly available under a
free software license [47].

Consider now the problem of moving qubits on a given architecture graph. A sorting
network sorts any fixed-length sequence of integers with a circuit of comparators, which
compare two inputs and output them in some ordering. While sorting networks can be used
to route qubits [7], they achieve a more general task, and the cost of routing can sometimes be
lower with other methods. Specifically, we suggest ROUTING VIA MATCHINGS [2] (introduced
in Section 3.1) as a more suitable framework for moving qubits in parallel. Deciding whether
there exists a depth-k circuit for ROUTING VIA MATCHINGS is NP-complete in general for

k > 2 [3], but optimal or near-optimal protocols are known for specific graph families [2, 56].

In some cases it is possible to implement any permutation asymptotically more efficiently than
a general sorting network (see Table 1). On complete graphs, for example, any permutation
can be implemented in a depth-2 circuit of transpositions [2], whereas an optimal sorting
network has depth O(logn) [1].

While it is common to consider only the worst-case routing performance, we also wish
to route efficiently in practice. To improve practical performance, we generalize to partial
permutations (permutations only defined on some subdomain) so that we can also move
subsets of qubits efficiently. The destinations of the remaining qubits are unconstrained. In
Section 3.1, we present routing algorithms for the path graph, the complete graph, and the
generalized hierarchical product of graphs [6], which includes the Cartesian product of graphs
and modular architectures as special cases [40]. Graphs obtained as hierarchical products
have many good properties for quantum architectures [5]. We establish an upper bound
on the routing number of a hierarchical product (Theorem 4) that matches prior work for
total permutations on the Cartesian product of graphs [2] and depends on easily computable
properties of the input partial permutation.

3:3

TQC 2019



3:4

Circuit Transformations for Quantum Architectures

Table 1 Performance bounds for sorting networks versus routing via matchings (the routing
number, rt(G); see (6)) where |V| = n. A (A, D)-tree has max degree A and diameter D. The
generalized hierarchical product of the graphs Gi and G2 = (Va, E2) is denoted by II3(G1, G2),
for ¥ € {0, 1}|V2| (see Definition 2). The special cases of the Cartesian product of graphs, the
r-dimensional grid, and the modular graph are also listed. Let T :=[1...1] and & = [10...0].

Worst-case circuit depth

Graph family Sorting (comparators) Routing nr. (transpositions)
path (Py) n [25] n [2]
complete (K,) O(logn) [1] 2 2]
(A, D)-tree O(min (A,log(n/D))n) [4] 3n/2 + O(logn) [56]
I3(G1, G2) not known [half(‘ﬁ)—‘ (rt(G1) + 1t(G2)) + rt(G2)
G1 x G2 =I1;(G1,G2) not known 21t(Gh) + rt(G2) [2]
X _, Pu; ni+23 0, ni+o() [26] ni+2> 0, ni (2]
He, (K, Kny) not known 3ng + 2

We also propose using TOKEN SWAPPING [55] for minimizing the total number of SWAPs,
which is relevant when optimizing for total circuit size (Section 3.2). We generalize this
problem to partial permutations and obtain a 4-approximation algorithm (Theorem 7).

Finally, we evaluate our circuit transformations on large quantum circuits (Section 5) and
compare their performance with the circuit transformation included in the Qiskit software
(Section 2.2.1) [8]. We find that the relative performance varies significantly with the circuit
type and architecture. When minimizing circuit size, the greedy swap circuit transformation
is one of the best, though some improvement may be gained using some of our specialized
circuit transformations. For depth, some of our specialized circuit transformations do best
on random circuits on grid architectures, whereas Qiskit’s circuit transformation does well
on modular architectures. For quantum signal processing circuits [32] we find that the depth
is best minimized by our greedy swap circuit transformation.

2  Constructing Circuit Transformations

Program transformations are algorithms that modify computer programs while retaining
functionality [42]. In a similar vein, we define a circuit transformation as an algorithm
that modifies an input quantum circuit to produce an output quantum circuit with the
same functionality. We represent an architecture by a simple graph G = (V, E), and let
Q@ denote the set of qubits of the input circuit. A circuit transformation is architecture-
respecting if it produces injective initial and final mappings of the form p: @ — V and an
architecture-respecting output circuit. The output circuit is architecture-respecting if for
each two-qubit gate acting on (qubit) vertices vy, vy we have (vy,v2) € E (where the ordering
is irrelevant since G is undirected). Henceforth, we only consider circuit transformations
that are architecture-respecting, and we refer to them simply as circuit transformations. We
propose a construction for a general circuit transformation that may use the properties of
the underlying architecture by relying on a specialized subroutine for moving qubits called a
permuter (Section 3), and a subroutine determining where to place qubits, called a mapper
(Section 4). We show in Appendix C that our circuit transformations are polynomial-time in
the circuit size and architecture graph size.

To be able to transform a circuit, we must have |Q| < |V, and the output circuit must
contain a qubit for every vertex in the architecture. Throughout the circuit transformation,
we keep track of the injective current placement of qubits p: @ — V. The initial and final
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values of p are also the initial and final mappings, respectively, of qubits to the architecture.
A gate is erecuted by appending it to the output circuit. Two-qubit gates with qubits
q1, g2 € Q can only be executed when (p(q1),p(q2)) € E. By adding SWAP gates to the output
circuit, we can change p and thereby unitarily transform quantum circuits for execution on
an architecture.

2.1 Definitions

Partial Functions and Partial Permutations. For sets X and Y, a partial function f: X —
Y is a mapping from dom(f) C X to image(f) = {f(z) | z € dom(f)} C Y. However, f(z)
is undefined for x € X \ dom(f). We consider such elements « unmapped. For x € dom(f),
we write z — f(z) and say that x is mapped to f(x). We can then define any partial function
f as a set of mappings, f = {x— y |z € X,y € Y}, where all preimages must be distinct
(ie,if z—ye fand 2/ — y € f with y # ¢/, then 2 # 2/). A total function f is a partial
function where dom(f) = X and is denoted f: X — Y. By the term “function” we will
mean a total function.

A partial function f is injective iff Vo, 2’ € dom(f) with  # 2/, f(z) # f(2'). A function
f: X — Y is surjective iff Vy € Y,z € X : f(x) = y. A bijective partial function f
is a partial function that is injective and is denoted f: X — Y (note that such an f is
necessarily surjective on its image). A bijective function f is both injective and surjective
and is denoted by f : X & Y. For any bijective (partial) function f there exists an inverse
function f~!: image(f) — dom(f).

A partial permutation 7 is any bijective partial function with the same domain and
codomain, i.e., 7: X « X. Similarly, a total permutation is any ¢: X < X. By “permuta-
tion” we mean a total permutation.

We also define some notions specifically useful for this paper. An unmapped vertex is a
vertex in V' \ dom(7), for a graph G = (V, E) and w: V — V. We define the union of partial
functions f: X =Y and g: X —= Y when dom(f) Ndom(g) = 0 as

(fUg)(@) = {f(x) if z € dom(f), )

g(x) if z € dom(g).

Furthermore, (f U g) is a bijective partial function iff f and g are bijective partial functions
and image(f) Nimage(g) = 0. A completion of m: X -~ X isa #: X +» X = (rUo) for some
o: X = X, where dom(o) = X \ dom(n) and image(c) = X \ image(r).

Directed Acyclic Graph Representation of a Circuit. A quantum circuit can be viewed as
a directed acyclic graph (DAG), where vertices represent gates and directed edges represent
qubit dependencies. We define the first layer of the DAG, L, to be the set of all vertices
without predecessors. By removing L and taking the first layer of the resulting DAG, we can
define the second layer, and so on.

The size of a circuit is the number of gates it contains (i.e., the number of vertices in the
DAG); the depth of a circuit is the number of layers. It is natural to minimize either the
depth, corresponding to the execution time when gates can be applied in parallel, or the size,
corresponding to the total number of operations that must be performed. We are mostly only
interested in two-qubit gates and their qubits. Therefore, let us define tg: Vp — @ x @, where
Vp is the set of DAG vertices, that outputs the pair of qubits acted on by the DAG vertex,
for two-qubit gates. For simplicity, we denote tg(L) := {tg(g) | g € L, g is a two-qubit gate}.
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2.2 Architecture-Respecting Circuit Transformations

We now describe some specific architecture-respecting circuit transformations. We first
describe two basic circuit transformations, one provided by the Qiskit software (Section 2.2.1)
and another that uses a simple greedy approach (Section 2.2.2). Then, in Section 2.2.3 we
specify a family of circuit transformations that builds on specialized procedures for qubit
placement and routing.

2.2.1 Qiskit Circuit Transformation

The open-source quantum computing software framework Qiskit [8] contains a circuit transfor-
mation® that we build upon in one of our mappers (Section 4). We specify this transformation
here and compare it with our other approaches to circuit transformations in Section 5.

We initialize p arbitrarily. Fix a number of trials, k& € N, for each layer. We do the
following in trial ¢ € [k] where [k] == {1,...,k}: For all v,u € V, sample a symmetric
weight d;(v,u) :== (1 + N(0,1/N))d(v,u)? independently for (v,u) € V x V, where N (u, o)
represents a sample from the normal distribution with mean p € R and standard deviation
0 >0,and d: V x V — N is the shortest distance function on the architecture graph. We
define an objective function as the sum of gate distances,

S= Y dilpa) plg))- (2)

(g1,92)€tg(L)

We now try to SWAP pairs of qubits to decrease S. Specifically, we construct a set of SWAPs
by iterating over all edges e € F and greedily adding the corresponding SWAP if it decreases
S and neither endpoint of e is already involved in some SWAP. We execute the set of SWAPs
and update S. We then iterate this process until either S = |tg(L)|; or there is no SWAP that
decreases S; or we reach the upper bound of 2|V| iterations.

Now, if S = |tg(L)| then the algorithm has successfully found a sequence of swapPs and
all gates in L can be executed. The result of trial ¢ is then set to this sequence of SWAPs.
Otherwise, trial 7 is a failure. If there is at least one successful trial out of k trials, we execute
the SWAPs of a successful trial with the fewest SWAPs and then execute all gates in L.

If no trial was successful, we apply the same routine for finding SWAPs that minimize .S,
but taking only a single gate (g1, g2) € tg(L) at a time. Note that this results in a sequence
of swaPs along the shortest path between p(q1) and p(ge). After each such step we execute
the selected gate. We repeat this until all gates in tg(L) have been executed and also execute
all single-qubit gates in L. Finally, we remove the vertices in L from the input circuit DAG
and iterate this process until all gates in the input circuit are executed.

2.2.2 Greedy Swap Circuit Transformation

We also describe a simple greedy approach to circuit transformations. Similar to the Qiskit
circuit transformation described above, we prioritize SWAPs that maximally reduce the total
distance between the qubits tg(L), but now using the simpler objective function

R:= 3 dp(@)pa)- (3)

(g1,92)€tg(L)

Note that this is different from (2), where a randomized distance d; is used.

1 We base our description on qiskit.mapper.swap_mapper from Qiskit version 0.6.1.
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We construct an initial p as follows. Let us consider the first layer L’ of the circuit
consisting of only two-qubit gates (i.e., single-qubit gates are ignored), initialize p’: Q@ =~ V
as undefined everywhere, and set U := () C V. We iteratively construct

P +{a v, (@) el (v,v) e M}, (4)

where M C FE is a maximum matching of G, remove (q1, q2) from L', set U < U U {v1,v2},
and recompute M on the subgraph of G' with the vertices V \ U.? The remaining qubits
Q \ dom(p’) are arbitrarily mapped to the available vertices V' \ image(p’) to obtain p.

In every iteration, we construct a set of disjoint gates to execute. We first execute as

many gates from L as possible given p, and we remove these gates from the input circuit.

Second, let E;, for i € [2], be the set of edges where executing a SWAP would decrease R
by 4, excluding edges which already had a vertex involved in a gate this iteration. We then
greedily execute gates from Fs first and F; second, updating both E;s as we go. If we were
not able to execute a gate from L and no SWAPs were executed, then, as a fallback, we
deterministically pick a two-qubit gate (q1,¢2) € tg(L) and SWAP along the first edge on the
shortest path between p(q1) and p(g2). We update p according to the inserted SwaPs, update
L, and finally update R. This process is repeated until the input circuit is empty.

The fallback routine ensures that this circuit transformation always produces an output
circuit. The value R strictly decreases in every iteration until a gate can be executed unless
the fallback routine is performed, in which case R stays the same. On repeated calls to
the fallback routine, the same two-qubit gate is picked deterministically until it is executed.
This happens within diam(G) + 1 iterations, where diam(G) denotes the diameter of G. By
induction we see that the whole circuit will be executed.

2.2.3 Constructing Architecture-aware Circuit Transformations

We now present our construction for a general circuit transformation and make some
definitions more precise. Let a permuter (Section 3) be a subroutine that, given 7: V.~ V|
outputs a sequence of transpositions that implements = while respecting the architecture
constraints. Let a mapper (Section 4) be a subroutine that, given p, a permuter, and a
quantum circuit, computes a new placement of qubits, p: @Q — V, such that some gates of
the input circuit can be executed.

Initialize p in the same way as the greedy swap circuit transformation. We repeat the
following steps until the entire circuit has been transformed:

1. Use the given mapper to find a placement, p: @ — V, for the remaining input circuit;

2. Let “o” denote partial function composition, i.e., given g: X — Y and f: Y — Z,
(fog)(x) = f(g(x)), for z € dom(g) and g(z) € dom(f). We use the permuter to find
transpositions implementing po p~': V — V and replace the transpositions with SWAP
gates to construct a permutation circuit to execute. We also update p to reflect the new
placement of qubits after running the permutation circuit.

3. Execute all gates in L that can be executed in accordance with p, remove these gates
from the input circuit, and recompute L.

2 This is equivalent to running the greedy depth mapper (Section 4) on the input circuit with only
two-qubit gates, an arbitrary p, and free permutations of qubits. In other words, the greedy depth
mapper will pick a placement of qubits on the architecture unconstrained by movement of qubits, since
this is the initial placement.
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3 Partial Permutations via Transpositions

In this section we provide routing algorithms for implementing partial permutations via
transpositions constrained to edges of a graph. We call such algorithms permuters. The
ROUTING VIA MATCHINGS and TOKEN SWAPPING problems capture exactly our optimization
goals of implementing a permutation of qubits on a quantum architecture while minimizing
the circuit depth and size, respectively.

3.1 Partial Routing Via Matchings

The framework of ROUTING VIA MATCHINGS captures how to permute qubits on a graph using
a circuit of the smallest possible depth [2]. We first define a generalization of ROUTING VIA
MATCHINGS that allows for partial permutations and then provide permuters for implementing
partial permutations for some architectures of interest.

» Definition 1 (PARTIAL ROUTING VIA MATCHINGS). PARTIAL ROUTING VIA MATCHINGS
is the following optimization problem. Given a simple graph G = (V,E) and a m: V =V,
the objective is to find the smallest k € N such that there exist matchings My,..., My, C E
on G, where each matching induces a permutation as a product of disjoint transpositions

k
T, = H (vu), suchthat 7= Hle. (5)
(v,u)eM; i=1

is a completion of .

ROUTING VIA MATCHINGS is the special case of PARTIAL ROUTING VIA MATCHINGS where
7 is constrained to be a (total) permutation. The partial routing number of m: V.~V on G
is rt(G, 7) := k, where k obtains the minimum in Definition 1. The routing number [2] is the
special case of the partial routing number where 7 is total. In this paper, we simply refer to
the partial routing number as the routing number. The routing number of G is defined as
rt(G) = max rt(G,0), 6
(@)= max r(G.0) (6)
where we maximize over all permutations o: V' <> V (here Sym(V') denotes the group of such
permutations). Note that we only optimize over permutations, since for any 7: V — V,

1t(G,m) = minrt(G, 7). (7)

where we minimize over all completions 7 of .

An alternate way to interpret (PARTIAL) ROUTING VIA MATCHINGS is to assign tokens
to all v € dom(7) and destinations 7(v) for the tokens. A token can only by moved through
an exchange of tokens between adjacent vertices. The goal is to move all tokens to their
destination in as few matchings (specifying exchange locations) as possible. If a vertex does
not hold a token at the time of an exchange with a neighbor, as can be the case in PARTIAL
ROUTING VIA MATCHINGS, then after the exchange the neighbor will not hold a token.

We give simple constructions for permuters of the complete graph, K,,, and the path
graph, P,, for n € N. Let V be the vertex set of the respective graph and n: V —~ V
given. For K,,, if |dom(7) Uimage(n)| = 2|dom()| all mappings are disjoint, so we return
{(v,m(v)) | v € dom(m)} as a single matching that implements 7. Otherwise, we construct an
arbitrary completion 7 of 7 and run the standard algorithm for ROUTING VIA MATCHINGS
for complete graphs on # [2], obtaining rt(K,,7) < 2.
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For P,, let V = [n], ordered from one end of the path to the other (picking ends
arbitrarily). Iterate through i € V' in ascending order, setting

(i) = {w(i) if i € dom(7), .

min (V' \ image(#)) otherwise.

(8)

We then run the standard path routing algorithm [2] on 7, obtaining rt(P,,7) < n. It
remains an open question whether a tighter bound can be proven as a function of some
property of 7.

Hierarchical Product

The generalized hierarchical product (henceforth hierarchical product) of graphs [6] produces
various subgraphs of the Cartesian product of graphs that include natural models of quantum
computer architectures [5].

» Definition 2 (Hierarchical Product [6]). For j € {1,2}, let G; = (V;, E;) be a graph with
nj = |V;| vertices and adjacency matriz A; € M,,;, where My, is the set of k x k boolean
matrices for k € N. Then the hierarchical product I13(G1, G2), for ¢ € {0,1}"2, has vertex
set Vi1 x Vo and adjacency matriz A1 ® diag(v) + 1, ® Az, where 1,,, € M, is the ny X nq
identity matriz, My @ My € My, n, is the Kronecker product of My € M,,, and My € M,,,,
and diag(v) € M,,, is the diagonal matriz with the entries of U on the diagonal.

Intuitively, this graph consists of n; copies of G2, where the jth vertices in all copies of
G are connected by a copy of G if ¥; = 1. We restrict ourselves to connected simple graphs,
so A; and Ay are symmetric 0-1 matrices and ¥ is nonzero. An example of the hierarchical
product of two path graphs is

o)
Iy o 1)(Pe, P3) =y ¢ 1 %@—@—@ = “ (9)
00,0

The Cartesian product is IIy, where T:= [1...1], and Il is the rooted product of graphs,
rooted at the ith vertex of Gs.
We define the vertex-induced subgraph of any graph G = (V, E) for vertex set U C V as

GU) = (U,EN (U x U)) . (10)

Now, let G = (V, E) = lI3(G1, G2) and denote the vertices of G by v = (vy,v3) € Vi x Vo = V.

We define G; = (V;,&;) = G[{i} x Vz], for i € V4. Note that each G; is isomorphic to G3, so
the permuter for G5 can be used for G;. We also define the communicator vertices of G; as the
vertices {i} x {j € V2 | ¥; =1} C V; and index them in ascending order (for some ordering
of V). Note that the jth communicator vertex (of any G;) also belongs to G[V4 x {j}], which
is isomorphic to G;.

A useful metric is the maximum number of vertices that need to leave or enter any G; to
implement 7, defined as the degree of T,

deg(m) := max U {|{v € dom(m) N V; | 7(v) & V;}|, [{v € dom(m) \ V; | w(v) € V;}|}. (11)

ieVy

In every iteration of the routing algorithm, we route a set R = {v(® € V; | i € V;} such
that all 7(v), are distinct, for v € R and 7(v) = (7(v)1,7(v)2) € V. Undefined values are
always considered distinct. We call such R a set of representative vertices, and we view v(*)
as the representative vertex of V;.
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Algorithm 3.1: PARTIAL ROUTING VIA MATCHINGS on the hierarchical product

of graphs I13(G1, G2). In Line 1, routing means constructing a partial permutation

o on a subgraph (G or G2), using the applicable permuter to find transpositions

implementing o, and applying those transpositions to update = and each R;.
input :7: V) x V5 =~ V; x V,; permuters on G and Gy

1 Let R;, for ¢ € [deg(m)], be given by Lemma 3

2 fori=1,..., {Sji((?)—‘ :

foreach j € V] :

4 on Gj, for all k& € [ham(7)], route the (unique) vertex v € R;_1).nam(@)+k N V;
to the k-th communicator vertex of G;  // For R, with ¢ > deg(m), do
nothing

foreach communicator vertex (vq,vs) of Gy : // All copies of G
‘ on G[Vi x {ve}] = (V', E'), route each v € V' Ndom(n) to (7(v)1,ve) € V’

‘ route all v € dom(w) N'V; to 7(v) within G;

5
6
7 foreach i € V; :
8
9 return the transpositions that implement this routing

» Lemma 3 (Proof in Appendix A.1). For a graph 13(G1,Gs), m: V =V, let d .= deg(n).
We can find distinct sets of representative vertices R;, for i € [d], such that

{v e dom(n) | vy #7m(v),} C U R;.
i€[d]

Algorithm 3.1 specifies a permuter for the hierarchical product. We prove the following
performance bounds for this algorithm

» Theorem 4. For a graph I13(G1,G2), Algorithm 3.1 finds a sequence of transpositions
that implements w: V. <=V certifying that

deg()
ham(¥)

rt(I3(G1, Ga), m) < [ W (rt(Gh) + rt(G2)) + rt(G2)

where ham(¥) is the Hamming weight of ¥, i.e., the number of ones in ¥.

Proof. In every round of routing, we route ham(%) sets R; to their destination G;s, for j € V.
In each round, we route on all copies of G5 in parallel and then route on all copies of GG; in
parallel. After routing all R; in at most [deg(w)/ham(?¥)] rounds, Lemma 3 ensures that
only permutations local to each G; remain. Finally, we route vertices to their destinations,
as given by , in each G; independently using the permuter for Gs. |

As a possible optimization, we can remove some vertices from the partial permutations in
the routing steps. For each removed vertex, we must ensure that the remaining steps of the
routing algorithm remain valid. Specifically, let there be a uw € G; N Ry, for i € V; and k €
[deg(m)]. If u € dom(7) and 7w (u) € V;, then we remove it since it does not need to be routed
outside of G;. Otherwise, if u & dom(7), we remove it unless { Ry N dom(n) | 7(v) € G;} # 0
since an unmapped vertex is expected at the communicator vertex in the second loop of
the routing round. We apply this optimization in our implementation of the permuter for
modular graphs (Appendix A.2).

We show a lower bound on the routing number of hierarchical products of graphs, which
can be shown to be tight up to constant factors (see full arXiv version on title page).
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» Theorem 5. For a graph I13(G1,G2) and any w: V =~ V|

2 [Sslgn(g)—‘ —1< rt(Hg(Gl, Gg),ﬂ') .
Proof. Let us consider the token-based formulation of PARTIAL ROUTING VIA MATCHINGS.
At most deg(m) tokens need to be moved out of any G;, for ¢ € Vi. Every matching
can move at most ham (%) tokens out of their original G;. Once moved out, a new set of
tokens must be moved onto the ham(¥) communicator vertices. Therefore, it takes at least
2[deg(m)/ham(¥)] — 1 matchings to move deg(m) tokens out of any G;. <

For special cases of interest to quantum architectures, we analyze the modular graph in
Appendix A.2 and provide a permuter specialized to Cartesian products of graphs with some
heuristic optimizations in the full arXiv version.

3.2 Partial Token Swapping

The TOKEN SWAPPING problem is similar to ROUTING VIA MATCHINGS, but minimizes
the total number of transpositions instead of the depth [55]. It follows that the induced
permutation circuit is optimized for circuit size. The decision version of TOKEN SWAPPING
was first shown to be NP-complete [38] and, later, hardness was shown in parametrized
complexity of the number of swaps k [10]. For € > 0, a (1 + €)-approximation algorithm is an
algorithm that produces a solution within a factor (1+¢€) of optimal for all valid inputs. Here,
we define a generalized version of TOKEN SWAPPING that allows for partial permutations,
and then give a 4-approximation algorithm for this problem on connected simple graphs that
generalizes a previous 4-approximation algorithm for total permutations [38].

» Definition 6 (PARTIAL TOKEN SWAPPING). We define PARTIAL TOKEN SWAPPING as
an optimization problem. Given are a graph G = (V, E) and partial permutation 7: V = V.
The objective is to find the smallest k € N such that & = (uy v1)(u2 va)...(ug vg), for #t
some completion of ™ and (u;,v;) € E fori € [k].

Analogous to the routing number, we define the routing size of 7: V.-~V on G, rs(G, ), to
be the minimum £ in Definition 6, and the routing size of G as

rs(G) = aelsg?n)%v) rs(G, o). (12)
TOKEN SWAPPING is the special case of PARTIAL TOKEN SWAPPING where 7 is constrained
to be a total permutation. PARTIAL TOKEN SWAPPING also has an equivalent token-based
formulation, similar to PARTIAL ROUTING VIA MATCHINGS.

We now describe a permuter that aims to minimize the circuit size. Miltzow et al. [38]
gave a 4-approximation algorithm for TOKEN SWAPPING. Here, we generalize their re-
sults to PARTIAL TOKEN SWAPPING and prove that our generalized algorithm is also a
4-approximation algorithm. For this section, we consider the token-based formulation of
PARTIAL TOKEN SWAPPING (recall the notion of tokens introduced in Section 3.1).

The main idea of Miltzow et al. is to perform SWAPs that reduce the sum of all distances
of tokens to their destinations. We use the following definitions from [38]: An unhappy swap
is “an edge swap where one of the tokens swapped is already on its target and the other
token reduces its distance to its target vertex (by one)”; and a happy swap chain is a path
of £+ 1 distinct vertices vivs ... v, such that swapping all (v;,v;11) € E, for i € [{ — 1], in
increasing order strictly reduces the distances of all tokens in the chain to their destinations.
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Algorithm 3.2: Routing tokens to their destinations while minimizing the number
of transpositions. We add an extra step that performs no-token swaps to the
algorithm of [38]. For v € V, N(v) C V denotes the set of neighbors of v. The
partial permutation id |d0m(w): V — V is the restriction of the identity function
id: V <> V to dom(w) (so it is undefined outside of dom(w)).

input :m: V-~V
1 while 7 # id |qom(n) *

2 if there exists a happy swap chain vjvs ... v, then

3 Perform transpositions (v1 vs)(ve v3) ... (vi—1 vg)

4 else if v € dom(7),Ju € N(v) \ dom(r) : d(u, 7(v)) < d(v,7(v)) then

5 ‘ Perform no-token swap (v ) // u has no token
6 else

7 ‘ There exists an unhappy swap; perform it

8 Update 7 according to the transpositions that were performed

9 return The sequence of transpositions that was performed

When considering a partial permutation, not all vertices have a token assigned to them.
We add an extra step to the approximation algorithm for TOKEN SWAPPING to make use
of this: Before considering an unhappy swap, we first try to swap a token to a tokenless
neighbor if it brings the token closer to its destination. We call this a no-token swap. The
approximation algorithm for PARTIAL TOKEN SWAPPING is specified in full in Algorithm 3.2.

» Theorem 7 (Proof in Appendix A.3). Given a simple connected graph G = (V,E) and
w: V=V, Algorithm 3.2 uses at most 4 - rs(G, ) transpositions.

In the full arXiv version we also show that, when restricted to tree graphs, Algorithm 3.2
is a 3-approximation algorithm or worse, even though it is a 2-approximation algorithm on
trees for total permutations [38].

4 Placing Qubits on the Architecture

A mapping algorithm (or mapper) finds an assignment of circuit qubits to architecture
vertices such that gates can be executed efficiently. We specify mappers in terms of the
routing number and the routing size. In practice, we replace these quantities with the upper
bounds that result from applying our permuters.

Mappers construct placements of circuit qubits onto qubits of the architecture. A
placement is a bijective partial function p: @ — V, where G = (V, E) is the architecture
graph. A mapper has access to the current placement p: Q — V provided by the circuit
transformation. Given a placement p and the current placement p, we can compute a partial
permutation pop~!: V « V that implements p. All our mappers construct a placement p
that is initially undefined everywhere and modify it until finished.

We briefly describe the mappers (and their abbreviations) that we implement and evaluate
(see Appendix B for details). We propose mappers optimizing for circuit depth (depth mappers)
and for circuit size (size mappers). For size mappers, specifically, if there is any gate that can
be performed without moving qubits, then there is no disadvantage to doing that immediately
since it will have to be performed eventually. If there is any such gate, we simply return
the empty placement. Thus we assume, for all size mappers, that there are no gates to be
performed in-place. Let L be the first layer of gates of the input circuit.
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The greedy depth mapper (greedy depth) repeatedly places the highest-cost gate in L at
its lowest-cost location, where the cost is the routing number to achieve the placement.

The incremental depth mapper (incremental) guarantees placement of only the lowest-
cost gate, instead of trying to place (almost) all gates in L, and incrementally improves
the situation for the other gates.

The greedy size mapper (greedy size) is the same as the greedy depth mapper, except
that we replace rt(-) with rs() in the objective function.

The simple size mapper (simple) places only the lowest-cost gate at its lowest-cost location.

The extension size mapper (extend) first places one gate using the same approach as the
simple size mapper. We then try to only place another gate if it is cheaper to place now
rather than in a later call to the mapper.

The Qiskit-based size mapper (qiskit) is based on Qiskit’s circuit transformation. We
slightly modify the circuit transformation routine in that it picks edges to SWAP one at a
time instead of finding a maximal matching. Since this is a mapper, we only execute one
iteration of the circuit transformation: for the first layer L. We return the final placement
p that would be induced by executing all SwAPs found during the mapping process.

5 Results

We implement the circuit transformation introduced in Section 2.2.3 with a variety of mappers
and appropriate permuters. We also implement the greedy swap transformation described in
Section 2.2.2. We check the validity of our implementations by testing closeness in fidelity of
the original output state and that of the transformed circuit for random input states of 11
qubits on random circuits [47] (described in the next section).

Evaluation Criteria. When testing the performance of these circuit transformations, each
is allocated at most 8GB of RAM and 2 days to transform all circuits of a data point. For
each data point we transform 10 random circuits and 1 quantum signal processing (QSP)
circuit. We consider a 2-day runtime acceptable, given that classical computational resources
are plentiful compared to quantum ones. We generate the data on a heterogeneous cluster
with Intel Opteron 2354 and Intel Xeon X5560 processors.

The Cartesian permuter (see full arXiv version), the general size permuter (Section 3.2),
and Qiskit’s circuit transformation (Section 2.2.1) are randomized. We run multiple trials
of these permuters and take the best result. Most of the time, trials produce equally good
permutation circuits, although occasionally they deviate by a few SWAP gates. Our mappers
run permuters O(|L||E|) times, so we do only 4 trials to quickly remove any bad outliers. In
contrast, our circuit transformation only directly runs a permuter once per layer of gates, so
in this case we perform a slower 100 trials in an attempt to save a few SWAPs. We leave the
number of trials for Qiskit’s circuit transformation at its default of 40.

We test the performance of circuit transformations for the grid, P,, x P,,, using the
permuter for Cartesian graphs and for the modular architecture (Appendix A.2), Mg(n1,na),
for ni,n9 € N. For an N-qubit circuit, we set n; = no = (\/ﬁ} so that there are enough
qubits in the architecture to contain the circuit. By Theorem 4, we know that taking n, = ns
minimizes the routing time for our routing strategy among all grids with the same number
of qubits. It is less clear how to balance parameters for the modular architecture since
Corollary 8 does not depend on n; and ny. For ny < ny or ne < nq, less movement of
qubits is needed, since many qubits are adjacent to one another. Thus, we take ny = ny in
an attempt to consider a hard case. For some values of N, it may also be possible to find
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parameters n, # n such that N < nin} < [v/N|? = ning, requiring fewer qubits. However,
this introduces unwanted size-dependent behavior in our results when |n}j — nj| > 0 for one
circuit size and n} & n), for the next, so we find it preferable to fix n; = ns.

We compare the transformed circuits in terms of their weighted depth and weighted size.
For both trapped-ion and superconducting qubits, two-qubit gates typically have longer
execution times and lower fidelities than single-qubit gates [31]. Even among two-qubit gates
there is a difference between execution times. Assuming fast local unitaries, the SWAP gate
has 1-3 times the interaction cost of a ¢CNOT depending on the physical interactions used
to realize the gates [51]. For simplicity, we assign unit cost for one-qubit gates, cost 10 for
CONOT, and cost 30 for SWAP. We define the weighted size of a circuit as the sum of all gate
weights and the weighted depth of a circuit as the maximum-weight path in the DAG of the
circuit, where the weight of a path is the sum of the weights of the gates along it.

We consider two circuit families: random circuits and QSP circuits [32]. Random
circuits have been proposed for quantum computational supremacy experiments on near-
term quantum devices [9, 11]. Such proposals typically construct random circuits so that
architecture constraints are automatically obeyed. For our purposes, random circuits provide
a class of examples with little structure for circuit transformations to exploit, so we expect
them to represent a hard case with large overhead. We generate a fixed set of 10 random
circuits of depth 20 for various qubit counts. For each layer, we bin the qubits into pairs
uniformly at random and assign each pair of qubits a Haar-random unitary from SU(4).
Finally, we decompose each unitary into the smallest possible number of cNOT + SU(2)
gates [49]. This random circuit generator is provided by Qiskit [8].

We consider QSP circuits for Hamiltonian simulation as an example of a realistic quantum
algorithm. We use the unoptimized circuits provided in [14], decomposed into Z rotations,
CNOT gates, and single-qubit Clifford gates. The QSP algorithm requires precise angles that
turn out to be expensive to compute. Therefore, [14] uses randomized angles instead, giving
a circuit that does not correctly implement the Hamiltonian simulation. Nevertheless, the
circuit corresponds to an accurate implementation of QSP, up to rotation angles, and can be
used for benchmarking resources. Furthermore, the circuit transformations we construct are
unaffected by those angles. We only consider one pair of phased iterates of the QSP algorithm
(\/'(;TI,JHT‘/(i,F1 as in [14, Eq. 31]). A full QSP circuit for the architecture can be constructed by
iterating the mapped circuit of such phased iterates, a permutation circuit between iterations,
state preparation, and state unpreparation. The cost of the transformed phased iterates
dominates all other costs of the construction, so the total cost can be estimated by taking
our result times the number of iterations.

The circuit transformations from Section 2.2.3 are constructed from a permuter and a
mapper. We denote such circuit transformations by tf: {d,s} x M,, where M, is the set of
all mappers (referred to by their abbreviations, see Section 4), “d” denotes an appropriate
depth permuter (Section 3.1), and “s” denotes the general size permuter (Section 3.2). For
example, by tf(d,greedy depth) we denote a circuit transformation with a depth permuter
for the architecture and the greedy depth mapper (Section 4).

Numerical Results. Figure 1 plots our results. We first consider the random circuit results.
For the grid, we find that tf(d,incremental) shows much slower growth of weighted depth than
circuit transformations that do not use depth-optimized permuters (Section 3.1). We also note
that tf(d,qiskit) performs much better than Qiskit’s circuit transformation (Section 2.2.1),
suggesting that depth-optimized permuters can offer a significant advantage. On the modular
graph, Qiskit’s circuit transformation is much better at minimizing the weighted depth, but
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Figure 1 The weighted depth and weighted size for transformed random circuits (top two
rows) and QSP circuits (bottom two rows) on the grid architecture (left column) and the modular
architecture (right column). We generate fixed sets of 10 random circuits for increasing qubit counts
and plot the mean and standard deviation for each data point. One QSP circuit is considered for
each data point. The metrics for the original circuit are also given to make the overhead introduced
in circuit transformations explicit; note that the original circuit does not respect the architecture
constraints. The notation tf: {d,s} x M, indicates a circuit transformation constructed from either
an appropriate depth (“d”) permuter or the size (“s”) permuter and one of our mappers (Section 4).
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tf(d,qiskit) starts closing the gap for larger sizes. Unfortunately, we do not know if tf(d,qiskit)
performs better at larger sizes because Qiskit’s circuit transformation is not fast enough to
generate the relevant data. Up to 100 qubits tf(s,qiskit) achieves the best weighted size on
grid architectures, and tf(s,simple) does best on modular architectures up to 121 qubits. For
all sizes the greedy swap circuit transformation (Section 2.2.2) performs as one of the best
at optimizing for weighted circuit size. The greedy swap circuit transformation is also able
transform larger circuits within the time limit as expected from its lower time complexity.

For larger QSP circuits, the greedy circuit transformation (Section 2.2.2) is the clear
winner in both weighted depth and weighted size, suggesting that it may be a good approach
for practical quantum circuits. Surprisingly, tf(s,qiskit) also performs fairly well at minimizing
the depth despite targeting the circuit size.

6 Future Work

We would like to better understand what circuit transformations work best for which
architectures, quantum algorithms, and objective functions. We also would like to use the
tools of PARTIAL ROUTING VIA MATCHINGS and PARTIAL TOKEN SWAPPING to establish
bounds on the overhead of specific architectures. Ideally, we could use these tools and circuit
transformations to design architectures that offer good performance subject to realistic
hardware constraints and to compute realistic resource estimates for implementations of
quantum algorithms.

There are many ways our methods could be improved. It would be interesting to know
whether one can do better than just using SWAP gates to route qubits. Our mapper algorithms
may also be improved by including some form of lookahead to consider later layers of the
given circuit, or by specializing mappers to particular architectures.

Modeling the architecture as a simple graph loses information about the underlying
hardware. For example, in the IBM system the architecture edges have directionality
indicating the control and target of CNOTs. In implementations of the modular architecture,
the interconnecting links are probably much noisier and slower than local operations. In
general, gate costs and times can vary significantly across a hardware implementation
and sometimes even vary over time [41]. Adapting to variable costs and keeping track of
operations performed asynchronously is challenging but could be worthwhile for architectures
that support a mixture of fast and slow operations.

Finally, we hope that future progress on the challenges addressed in this paper will be
facilitated by a suitable set of benchmarks of large quantum circuits. We publicly make
available and license our source code, benchmark circuits, and results (in TSV format) [47]
and encourage others to do the same.
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A  Partial Permutations via Transpositions

Here we present proofs and statements that were omitted in the main text of Section 3.

A.1 Hierarchical Product

Proof of Lemma 3. Let G = (U,V, E) be a bipartite multi-graph, with U = V = [n4] the
left and right vertex sets, and the edge multi-set

E = {(v1,7(v);) | v € dom(m)}. (13)

Each vertex k € U belongs to at most d edges (k,1), for [ € V and k # [, and each vertex
' € V belongs to at most d edges (k',1’), for k' € U and k' # I'. However, for any k € U
there could be as many as ns edges (k, k). For all k € U we remove as many (k, k) € E as
necessary to ensure that the maximum degree of any vertex in G is d.

We make G d-regular by repeating the following: If #k € U with deg(k) < d we are done.
Otherwise, such a k exists and 3k’ € V with deg(k’) < d, since

> deg(k) = > deg(k). (14)

k€U k'eV
It follows that there exist vertices u € Vj, \ dom(w) and v € Vy/ \ image(w). For the purposes
of this proof, we set 7(u) = v, effectively adding an edge (k, k') to E.

Now we have modified 7 so that G is d-regular. By Hall’s marriage theorem, there exists
a perfect matching in G, and removing it results in a (d — 1)-regular graph. We iterate
this to find d distinct perfect matchings in G. Each edge (k, k') € E corresponds to some
v € Vg and u € Vi, with w(v) = u. Therefore, each perfect matching corresponds to a set of
representative vertices, R;. Since all perfect matchings are distinct, and all e € E are covered
by some matching, the Lemma follows. <

A.2 Modular Graph

Large-scale quantum computation may benefit from a modular design, with many inter-
connected subunits [39, 40, 12]. As a simple model of a modular quantum processor
consisting of n; modules with ny qubits each, we consider the modular graph Mg (ni,n2) =
Iz (K, , Kpn,) = (V, E), where &; € {0,1}"2, for i € [ng], is the ith standard basis vector. In
this architecture, two qubits in the same module can be directly coupled, and any two modules
can be coupled through their unique communicator qubits. With one minor modification to
Theorem 4, we get the following bounds on the routing number of the modular graph.

» Corollary 8. For ny,ny € N and 7: V = V, we have deg(m) < rt(Mg(ni,ne),m) <
3deg(m) + 2.

Proof. Directly applying Theorem 4 gives rt(Mg(ny,ng),7) < 4deg(w) + 2. However, only
one token needs to be routed to the communicator vertex in every round of Algorithm 3.1. We
note that this can be routed with one set of parallel transpositions (Section 3.1), saving us one
matching every round. To show the lower bound, we apply Theorem 5 with ham(e;) =1. <«
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A.3 Partial Token Swapping

Proof of Theorem 7. The proof is very similar to [38, Theorem 7] with some minor modifi-
cations to account for no-token swaps. Let

S= > dnr(), (15)
vedom()

and let s, sy, sn¢ be the number of unhappy, happy, and no-token swaps, respectively. We
know that rs(G,7) > S/2 since each swap can only reduce S by two. A no-token swap
reduces S by one. A happy swap chain of length ¢ reduces S by £+ 1. As such, over the
course of the algorithm, s, + s,; < S. For an unhappy swap, the token that is swapped
away from its destination must next be involved in a happy swap or a no-token swap, so
Su < Sp + Spt. Thus, we get s, + sp, + spt < 4-18(G, 7) as desired. <

B Specifics of Mappers

Here, we describe our mappers (Section 4) in full. Let M be a maximum matching in the
architecture graph.

B.1 Greedy Depth Mapper

The greedy depth mapper iteratively places the highest-cost gate at its lowest-cost location,
where cost is measured in terms of the routing number to achieve the placement. More
precisely, we initialize the set of used vertices U = ) and find a placement p’ = {q; —
v1, g2 — U2} that attains the optimum

max min  rt(G, (pU V1, qo — va}) o p ), 16
0B 1y T T U1 = v > v} 087) (18)

where we consider both orderings of edges from M, (v,u),(u,v) € M, since edges are
undirected. Then, we update U < U U dom(p’) and recompute M for the graph G[V \ U]
(recall (10)); we remove the gate associated to (¢1,¢2) from L; we set p + pUp’; and we
iterate until tg(L) = 0 or M = (). Finally, we return the placement p.

B.2 Incremental Depth Mapper

Instead of trying to place (almost) all gates in L, the incremental depth mapper guarantees
placement of only the lowest-cost gate, as given by the routing number, and incrementally
improves the situation for the other gates. Specifically, we first find a placement pyi, =
{q1 = v1,q2 — va} that attains the optimum

/

n = min min 1t(G, (pU U1, qa — V2 }) 0 p L), 17
min = Iinmin (G, (pU{q1 = v1,q2 > v2})0p™) (17)

C

where we consider both orderings of E, (u,v),(v,u) € E. We set p <= pmin and define
U = {u,v}. Let cpmin = max{c,;,, 1}

We find a placement for the remaining two-qubit gates that (individually) does not exceed
Cmin. We iterate in arbitrary order over (¢, q2) € tg(L) and do the following: For i € [2], we
construct a set of eligible vertices

Uy ={ve V\U|1t(G,(pU{g— v}) 0p ) < crmin} - (18)

Now we try to find vj # v3 as (v7,v3) = argming,, .. ev, xv, 4(v1,v2). If such (v7,v3) does
not exist, we do not include ¢; and ¢2 in p; otherwise, we set p < pU {q1 — v}, q2 — v3}
and update U + U U {v],v3}. After iterating over all gates in tg(L), we return p.
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B.3 Greedy Size Mapper

The greedy size mapper the same as the greedy depth mapper, except that we replace rt(-)
with rs(+) in (16).

B.4 Simple Size Mapper

The simple size mapper places only the lowest-cost gate at its lowest-cost location. More
precisely, we find a placement p := {g1 + v1,¢2 — v} that attains the optimum

min min rs(G, (pU — U1, g2 > va}) o p L 19
(q1,q2)€tg(L) (v1,v2)EE ( U {n b 2) b ) (19)

where we consider all orderings of the edges of E, and return p. Note that we have replaced
rt(-) with rs(-) in (17).

B.5 Extension Size Mapper

The extension size mapper first finds an initial placement p using (19). Let ¢ ;, be the value

attained at the optimum for (19). After finding the initial placement, we try to only place

another gate if it is cheaper to place now rather than in a later call to the mapper.
Specifically, for the current p and p, we define p’: @Q — V as the placement after performing

the permutation circuit constructed from transpositions achieving rs(G,po p—1). Let U = ().

Now we define a heuristic for the number of saved transpositions, s: @ x Q — N, as
s(q1,q2) = rs(Gﬂp oﬁfl) 4+  min rs(G, {q1 — v1,q2 — va} 0 (]3’)71>

(vi,v2)€EE

—  min rs(G, (pU{q1 — u1,q2 — us}) oﬁ_l) , (20)

(u1,u2)EE’
where E’ is the edge set of G[V \ U] and we consider all orderings of the edges of E and E’.
The extension size mapper iterates the following. We find the gate (¢7,4¢3) € tg(L)
attaining smax = MaxX(q, 4,)etg(L) (1, ¢2), and let (uy,u3) € E' be the edge attaining smax
as given by (20). If spax > 0, we set p < pU {¢f — ui, ¢ — ul}, remove the gate (q7,¢3)

from L, update U < U U {v},v;}, and iterate; otherwise, we stop and return p.

B.6 Qiskit-based Mapper

Finally, we implement a mapper that is based on Qiskit’s circuit transformation (described
in Section 2.2.1). Since this is a mapper, we only execute one iteration of the circuit
transformation: for the first layer L. We also do not modify the output circuit, but instead
return the final p that would be induced by executing all swaps found during the mapping
process.

We make three changes to Qiskit’s circuit transformation. The first is that when mini-
mizing S, instead of choosing a maximal set of SWAPs in every iteration, we choose only one
SWAP along an edge e € E that minimizes S. The second is that the upper bound on the
number of iterations is raised to |V |2, since we only apply one SWAP per iteration. Thirdly,
if no trial is successful, we fall back to the simple size mapper and return the placement it
finds, which places only one gate in this iteration.

C Time Complexity Analysis

To show that our proposed algorithms have polynomial worst case time complexity, we
compute time complexities of our circuit transformations, permuters, and mappers explicitly.
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C.1 Circuit Transformations

Greedy Swap Circuit Transformation. We ignore the initial placement since it is insignif-
icant for large circuits. A gate from L is executed in at most diam(G) iterations, where
diam(G) is the diameter of G. In every iteration, O(|E|) edges are checked to determine gates
that can be executed and SwAPs that will decrease R. Therefore, the total time complexity
is O(|C||E| diam(G)), where |C| denotes the size of circuit C. There is a tighter bound in
terms of output circuit C’ since every iteration creates a layer in the transformed circuit, the
complexity is O(depth(C")|E|), where depth(C’) denotes the circuit depth of C".

Specialized Circuit Transformations (Section 2.2.3). We again ignore the time complexity
of computing the initial placement. Let ¢,, be an upper bound on the time complexity of the
mapper, and let ¢, be an upper bound on the time complexity of the permuter. Computing
pop~! takes time O(|V]). The number of transpositions produced by the permuter is at
most t,, so executing the associated SWAPs takes time O(t,). Only one gate from L may
be executed every iteration so we upper bound the number of iterations by |C|. We find a
time complexity of O(|C| (t,, + |V| +tp)). Clearly, if t,,t,, € poly(|C|,|V]) then our circuit
transformation is also poly-time as desired.

C.2 Permuters

We show that the permuters are polynomial-time in the input size.

Complete Graph. The time complexity of the ROUTING VIA MATCHINGS algorithm for
K, is O(n) [2]. The other operations described above also take time O(n), so we get a time
complexity of O(n) for the complete graph permuter.

Path Graph. Constructing the completion # takes time O(|V|). The total complexity for
running the path permuter is O(|V|2), where the time complexity of the ROUTING VIA
MATCHINGS algorithm [2] dominates the construction of #.

Hierarchical Product. Let ¢; and t5 upper bound the time complexity of algorithms for
PARTIAL ROUTING VIA MATCHINGS on G and Ga, respectively. We first find deg(7) distinct
sets of representative vertices by Lemma 3. The time to find one set of representative vertices
is dominated by the time to find the maximum bipartite matching, O(n?®) [23]. Then, for
[deg(m)/ham(¥)] iterations, we route on all copies of G and then G in parallel. Overall,
we get a time complexity of
deg(r)

0 (deg(w) i+ {ham @

W (ham (¥, + nits) + n1t2) . (21)

Modular Architecture. We evaluate the time complexity of this permuter using Equa-
tion (21). We have t; = O(n1) and t3 = O(n2), giving an overall time complexity of
O(dn?-5 + ning), where we noted that to = O(1) while doing the deg(7) rounds of routing.

Approximation Algorithm for Partial Token Swapping. Computing an all-to-all distance
matrix takes time O(|V|3) using the Floyd-Warshall algorithm [17], but this cost needs only
to be incurred once for a graph so we do not include it. A happy or unhappy swap can be
found in time O(]E|) by finding cycles in an auxiliary directed graph [38]. Similarly, finding
no-token swaps has time complexity O(|E|). Therefore, we get a total time complexity of
O(S|E]) < O([V | E]).
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C.3 Mappers

We give polynomially-sized upper bounds on the time complexity of the mappers as a function
of the time complexity of the permuter, ¢,.

Greedy Depth Mapper. We perform at most min{|L|, |M|} iterations to place gates. In
each iteration, we find a p” according to (16) in time O(|L||M|tp). Thus, the time complexity
for one call of the mapper is

O (min{|L|, [M} (ILlIMIt, + VIVIE])) (22)
where O(+/]V]|E|) is the complexity of computing a maximum matching [37].

Incremental Depth Mapper. We get O(|L| (|E|t, + |V|t, + |V|?)) for the time complexity
of the incremental depth mapper. This assumes we have access to the all-pairs distance matrix
of the architecture graph, which can be precomputed in time ©(]V|?) [17] (independent of
the input circuit).

Simple Size Mapper. The time complexity of the simple size mapper is O(|L||E|t,).

Extension Size Mapper. Calculating s(gi1,¢2) for any ¢1,¢2 € Q takes time O(|E|tp).
Therefore, the total time complexity of the extension size mapper is O(|L|*| E [tp)-

Qiskit-based Mapper. First, we compute an all-to-all distance matrix in time ©(|V|?) [17],
which we ignore since it is a one-time cost dependent only on the architecture. Each of the
O(|V|?) iterations has a time complexity of O(|E||L|). Thus, the Qiskit mapper has time
complexity O(|V|?|E||L]).
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—— Abstract

Introducing the simplest of all No-Signalling Games: the RGB Game where two verifiers interrogate
two provers, Alice and Bob, far enough from each other that communication between them is too
slow to be possible. Each prover may be independently queried one of three possible colours: Red,
Green or Blue. Let a be the colour announced to Alice and b be announced to Bob. To win the
game they must reply colours x (resp. y) such that a # x # y # b.

This work focuses on this new game mainly as a pedagogical tool for its simplicity but also because
it triggered us to introduce a new set of definitions for reductions among multi-party probability
distributions and related non-locality classes. We show that a particular winning strategy for the
RGB Game is equivalent to the PR-Box of Popescu-Rohrlich and thus No-Signalling. Moreover,
we use this example to define No-Signalling in a new useful way, as the intersection of two natural
classes of multi-party probability distributions called one-way signalling. We exhibit a quantum
strategy able to beat the classical local maximum winning probability of 8/9 shifting it up to
11/12. Optimality of this quantum strategy is demonstrated using the standard tool of semidefinite
programming.
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1 The Game

Claude started this research trying to find the simplest example he could think of to illustrate
multi-party distributions achievable via entanglement and No-Signalling in general. His
interest started from the following question on Quora: “Could someone explain quantum
entanglement to me like I'm 5 years old?” Jon Hudson [10], a former Stanford QM student,
had given an answer involving friends choosing to have pizza (or not) on the Moon and on
Earth but he did not quite come up with a crisp No-Signalling situation. Claude cooked up
the RGB example after reading Jon’s answer.

The canonical examples in this area are the Magic Square Game [12, 13] and the so-called
PR-box [14] of Popescu-Rohrlich, both of which require some basic notions of arithmetics to
be introduced, or at least some basic logic as a common background. The purpose now is to
present an example so simple that even a five year old would understand it!
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The RGB No-Signalling Game

The RGB game is as follows:

“ Two people, Alice and Bob, play a game with friends Albert and Boris. Alice and
Albert are on the moon, while Bob and Boris stay on earth. Albert and Boris each
independently picks at random a colour out of three possibilities: Red, Green or Blue,
and locally tells it to Alice or Bob.

Right away Alice and Bob choose a colour different from the one provided by their
local counterpart. For instance, if Albert tells Green to Alice, she may choose Red or
Blue, while if Boris tells Red to Bob, he may choose Blue or Green.

Alice and Bob win the game if they never answer the same colour, either Red-Blue,
Red-Green or Blue-Green in the example above.

b

Figure 1 summarizes the input/output relation that Alice and Bob must satisfy. a is the
colour given to Alice and b is the colour given to Bob. Their answers are x and y respectively.
The condition they are trying to achieve is simply a # = # y # b.

a —> <= b

RGB

Tr =< = Uy

Figure 1 The RGB-box such that a # x # y # b.

Such boxes are a standard way of representing the possible behaviours of Alice and Bob.
Indeed we can think of this box as a channel precisely describing the distribution of x,y
given fixed values of a,b. The box of Figure 1 does not specify the probabilities exactly and
thus the name of the box is in calligraphic letters representing the set of all the distributions
that satisfy the given conditions. There are many distinct ways of fulfilling the conditions of
the game and many distributions that will win the game 100% of the time.

1.1 Winning Strategies

Let’s first consider a deterministic strategy for Alice and Bob’s behaviour as described by
the box of Figure 2.

a —> < b

RGB, {a ifb=a—1

r:=a+1 < >y =
a—1 ifb#a—-1
Figure 2 A deterministic RGBo-box.

In this example we assume the colours are labelled 0, 1 or 2 and that arithmetic operations
are performed modulo 3. When a and b are the same colour u it produces

a=u, z=u+1, y=u—1, b=u.

The values v + 1 and v — 1 are the other two colours, distinct from u. However, when a and
b are the distinct colours u,v it produces either

a=u, x=u+1, y=u, b=v
when the third colourisu+1=v —1 or
a=u, z=u+1, y=u—-1, b=w

when the third colour isu —1=v + 1.
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This deterministic strategy defines completely the probability distribution of the outputs

a ifb=a-1

a—1 ifb#£a—-1

in which case it is precisely one. Therefore we name this box RGB( with bold characters

x,y given a,b: Pr(z,yla,b) is zero except when z =a+ 1 and y =

because it precisely defines a unique probability distribution P, ;4. This box achieves the
prescribed condition a # x # y # b in a unique deterministic way for each a, b.

After complete examination of this condition one realizes that when a = b is a single
colour u the conditions can be satisfied in exactly two ways

a=u, xr=uxtl, y=uF1l, b=u

whereas when a and b are distinct colours u, v the conditions can be satisfied in exactly three
ways

a=u, xt=v, y=u, b=wv

a=u, x=utl, y=vE1l b=wo.

From this we conclude that out of the 9 possible a,b pairs, three of them (a = b) may
have two solutions and six of them (a # b) may have three solutions. This yields a total of
2336 = 183 = 5832 distinct deterministic winning strategies. The above RGB strategy is
only one of these.

We can completely parametrize all the winning strategies as a function of 15 real para-

meters po, p1, P2, Po1, Po2; P10s P12, P20, P21, 401, G025 410, 412 G20, ¢21 in the interval [0, 1] such
that py, + quo < 1 as follows

Pu-l—l,u—l\u,u = Pu and Pu—l,u+1|u,u =1- Du, for u € {Ov 1a 2} (1)

Pw,u|u,v = Puw; Pv,w|u,u = Quv and Pv,u|u,v =1—pPuv — Guo, for {u,v,w} = {0, 172}’- (2)

All the winning strategies to this game are among these probability distributions. They are
all the valid convex combinations of the 5832 distinct deterministic winning strategies.
The deterministic strategy RGBg of Figure 2 is the special case

Do =P1 = P2 =DPo2 = P20 =qo1 = q10 = q12 = q21 = 1

Po1 = P10 = P12 = P21 = Go2 = g20 = 0.

The rest of this paper is going to focus on exactly one of these strategies with a very
remarkable property: it does not require Alice and Bob to signal to implement it (whereas
all the others actually do). This strategy is going to be named Rg—gB‘L and is specified by
the parameters

1
Po =P1 = P2 = Po1 = P10 = Po2 = P20 = P12 = P21 = qo1 = q10 = o2 = 420 = 412 = 421 = 3
In Figure 3, R%B is made precise by enforcing extra conditions on top of a # x # y # b.

We force P, yju, = 0 by adding (z,y) # (b,a). Uniformity finally imposes that all the
remaining non-zero probabilities be exactly %

t The name is a reminder that this strategy has the feature that whenever a and b are distinct, azyb is
abeb or acab (c being the third colour) but never abab. R%B is a combined string of types a-b, a=b.
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a —= )
RGR

BGB

€r = 9y

Figure 3 The RggB-box such that a # x # y # b, and (z,y) # (b, a), uniformly among solutions.

a —> <~ b

PR

T < =Y

Figure 4 The PR-box satisfying the CHSH condition, that a A b = = ® y, uniformly among
solutions.

1.2 Our Results

The contributions of the paper are

1. Novel notion of reducibility among strategies

2. Novel definitions of basic notions such as locality, signalling, one-way signalling and
no-signalling

3. A proof that our notion of no-signalling is equivalent to the generally accepted one

=

A proof of equivalence between R%B and the well-known Popescu-Rohrlich Non-Local
(yet No-Signalling) PR-box (see Figure 4). This Implies that Rg—gB is also complete for
the set of No-Signalling (two-party) distributions

A proof that R%B is the ONLY No-Signalling distribution winning the RGB game

A deterministic (and local) strategy with winning probability 8/9

A proof of optimality of this local strategy

Quantum strategy with winning probability 11/12

©® NG

A proof of optimality of this quantum strategy using semidefinite programming
10. Some related open problems

2 Definitions

In this section we solely focus on the two-party single-round games and strategies that are
sufficient to discuss and analyze the strategies for the RGB game. Definitions and proofs for
complete generalizations to multi-party multi-round games and strategies will appear in a
forthcoming paper with co-authors Adel Magra and Nan Yang.

2.1 Strategies: Two-Party Channels
2.1.1 Games

Let V be a predicate on A x B x X x Y (for some finite sets A, B, X, and Y') and let 7 be a
probability distribution on A x B. Then V and 7 define a (single-round) game G as follows:
A pair of questions (a,b) is randomly chosen according to distribution 7, and a € A is sent
to Alice and b € B is sent to Bob. Alice must respond with an answer € X and Bob with
an answer y € Y. Alice and Bob win if V' evaluates to 1 on (a, b, z,y) and lose otherwise.

2.1.2 Strategies

A strategy for Alice and Bob is simply a probability distribution P, 4,4 describing exactly
how they will answer (z,y) on every pair of questions (a,b). We now breakdown the set of
all possible strategies for Alice and Bob according to their degree of non-locality.
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2.1.3 Deterministic and Local Strategies

A strategy P, ylap) is deterministic if there exists functions fa : A — X, fp : B - Y
such that

1 ifz= fa(a) and y = f5(b)
Paylab) =

0 otherwise

A deterministic strategy corresponds to the situation where Alice and Bob agree on their
individual actions before any knowledge of the values a, b is provided to them. In this case
they use only their own input to determine their individual output.

A strategy P y|a.b) 18 local if there exists a finite set R, functions fa : Ax R — X, fp:
B x R — 'Y and a probability distribution 7., € R, such that

Playlap) = > T

réR:x=f4(a,r) and y=fp(b,r)

A local strategy corresponds to the situation where Alice and Bob agree on a deterministic
strategy selected uniformly among |R| such possibilities. The choice r of Alice and Bob’s
strategy, and the choice of inputs (a, b) provided to Alice and Bob are generally agreed to be
statistically independent random variables.

2.2 Local Reducibility

We now turn to the notion of locally reducing a strategy to another, that is how Alice and
Bob limited to local strategies but equipped with a particular (not necessarily local) strategy
U’ are able to achieve another particular (not necessarily local) strategy U. For this purpose
we introduce a notion of distance between strategies in order to analyze strategies that are
approaching each other asymptotically.

Several distances could be selected here as long as their meaning as it approaches zero
are the same. In the definitions below, U, U’ are strategies and U’ is a finite set of strategies.

» Definition 1. |U,U’'| =" | Py (z,yla,b) — Py (z,yla,b)|.

» Definition 2. |U,U'| = Jnin U, U’|.
/e ’

a,b,z,y

For natural integer n, we define the set LOC™(U) of strategies that are local extensions
(of order n) of U to be all the strategies Alice and Bob can achieve using local strategies
where strategy U may be used up to n times as sub-routine calls®.

» Definition 3. We say that U’ Locally Reduces to U (U' <poc U) iff li_)m |U",LOC™(U)|=0.
n oo

» Definition 4. We say that U’ is Locally Equivalent to U (U =poc U) iff U' <poc U and
U <roc U".

Note: a similar notion of reducibility has been previously defined by Dupuis, Gisin,
Hasidim, Méthot, and Pilpel [8] but without taking the limit to infinity. In their model they
have previously showed that n instances of the PR-box modulo p cannot be used to replicate
exactly the PR-box modulo ¢, for any distinct primes p, q. However, Forster and Wolf [9]
have previously proved that PR is complete for No-Signalling distributions under a similar
(asymptotic) definition.

¥ Done by selecting functions f§ : AX R — A, f4:AXXXxR— A, .., 2_1 CAX X" R A,
f4:Ax X" x R— X to determine the input of each sub-routine from input a and previous outputs.
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2.3 Locality and Non-Locality

We now define the lowest of the non-locality classes LOC. We could define it directly from
the notion of local strategies as defined above, but for analogy with the other classes we later
define, LOC is defined as all those strategies locally reducible to a complete strategy we call
ID (see Figure 5) for obvious reasons. Of course, any strategy is complete for this class.

a —= <~ b

ID

a < )

Figure 5 The ID-box.

» Definition 5. LOC = {U|U <poc ID}.

Note: LOC is the class of strategies that John Bell [4] considered as classical hidden-
variable theories and that he opposed to entanglement. It is also the class of strategies
that BenOr, Goldwasser, Kilian and Wigderson [5] chose to define classical Provers in
Multi-Provers Interactive Proof Systems.

2.4 One-Way Signalling

We now turn to One-Way Signalling which allows communication from one side to the other.
We name the directions arbitrarily Left and Right. We define R-SIG (resp. L-SIG) as all
those strategies locally reducible to a complete strategy we call R-SIG (see Figure 6) (resp.
L-SIG (see Figure 7)). These classes are useful to define what it means for a strategy to
signal as well as the notion of No-Signalling strategies.

a —> < b

R-SIG

a ~< — a

Figure 6 The R-SIG-box.

» Definition 6. R-SIG = {U|U <poc R-SIG}.

» Definition 7. We say that U Right Signals (is R-SIG-verbosed) iff R-SIG <poc U.

a —> < b

L-SI1G

Figure 7 The L-SIG-box.

» Definition 8. L-SIG = {U|U <roc L-SIG}.
» Definition 9. We say that U Left Signals (is L-SIG-verbose) iff L-SIG <yo¢c U.

» Definition 10. We say that U Signals iff U Right Signals or Left Signals.

§ We define the notion of L-verbose in analogy to NP-hard: it means “as verbose as any distribution in
non-locality class L”. In consequence, a distribution U is L-complete if U € L and U is L-verbose.
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We prove a first result that is intuitively obvious. We show that the complete strategy
R-SIG cannot be approximated in L-SIG and the other way around.

» Theorem 11. R-SIG ¢ L-SIG and L-SIG ¢ R-SIG.

Proof. Follows from a simple capacity argument. For all n, all the channels in LOC" (R-SIG)
have zero left-capacity, while L-SIG has non-zero left-capacity. And vice-versa. <
2.5 Signalling

We are now ready to define the largest of the non-locality classes named SIG. Indeed every
possible strategy is in SIG.

» Definition 12. SIG = {U|U <poc SIG}.

a — < b

SIG

Figure 8 The SIG-box.

» Definition 13. We say that U Fully Signals (is SIG-verbose) iff U Right Signals and Left
Signals.

2.6 No-Signalling

We finally define the less intuitive non-locality class NOSIG in relation to classes defined
above.

» Definition 14. NOSIG = R-SIG [ L-SIG.
A similar characterization may be found in [1] Section 3 and [2] Corollary 3.5.

» Theorem 15. The above definition of NOSIG ezxactly coincides with the traditional notion
of No-Signalling [3].

Proof. If U is signalling then it is verbose for at least one of R-SIG or L-SIG. Without
loss of generality, assume it is verbose for R-SIG. Then by theorem 11, U ¢ L-SIG, thus
U ¢ R-SIG [ L-SIG.

If U is no-signalling then Alice’s marginal distribution is independent from Bob’s input b.
Therefore, she can sample an output  according to her input a only as Px|4—, deduced from
Px y|a,p- Alice can now communicate a,r to Bob. Bob given a, b, x can select y according
to the distribution Py 41—, p—p x=, deduced from Px y|4 g. The produced z,y will have
distribution Px y|4—q,B=p as expected. This proves U € R-SIG. Membership to L-SIG is
proven similarly. <

Figure 9 shows the relation of these classes as well as the case obtained via quantum
entanglement (JLOC)) as considered by Bell [4] and via commuting-operators (COMOP) as
defined by Ito, Kobayashi, Preda, Sun, and Yao [11].

» Definition 16. We say that U does not Signal iff U does not Right Signal nor Left Signal
iff U € NOSIG.

» Theorem 17. IfU € R-SIG (or U € L-SIG) and U is symmetric then U does not Signal.
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L-S1G R-SIG
PR, 29
RE:R 29
: 77
ID
SIG

Figure 9 Non-locality Hierarchy and complete (two-party) distributions in certain classes.

Proof. U € R-SIG and U is symmetric imply that U € L-SIG as well. Thus U €
R-SIG N L-SIG. |

» Theorem 18. REEB € NOSIG.
Proof. Rg—lé”B € R-SIG and Rg—gB is symmetric. <

» Theorem 19. REEB = ¢ PR.

Proof. First we show how PR may be achieved from Rg—gB, more precisely that PR €
LOCYREEB). All arithmetic operations are performed modulo 3. Let a’ := f}(a) := a, and
V' := f5(b) := 2b. The possible pairs for (a’,') are therefore (0,0),(0,2), (1,0), (1,2). Let
(2, y) + Rg—gB(a’, V). Let x := fi(a,2’) :=2(z'—a+1),and y := f3(b,y') := 2(y —2b+1).
We leave it as an exercice to check that (z,y) indeed satisfy the CHSH condition that
r®dyYy=aAb.

Secondly, we show how Rg—gB may be achieved from PR, more precisely that Rg’—gB €
LOC*PR). Again, all arithmetic operations are performed modulo 3%. The intuition in this
case is that if @ = b then (z,y) should be either (a + 1,b—1) or (a — 1,b+ 1) at random. If
a # b then (z,y) should be either (a + 1,6+ 1) or (a —1,b — 1) at random. The following
computations achieve precisely this using the identity a = b iff (-a’ ® V') A (ma” $b"), where
a primed variable is the corresponding most significant bit and a double-primed variable is
the corresponding least significant bit.

The first pair of functions compute the negation of the most significant bit of their inputs:
let @’ := fi(a):=1—2(a—1)a, and b’ := f5(b) :==1—2(b— 1)b. Let (z/,y') + PR(d, V).

The second pair of functions compute the negation of the least significant bit of their
inputs: let a” := f3(a,2’) :=1—-2(a—1)(a+ 1), and V" := f3(b,y/) :=1—2(b—1)(b+1).
Let (2”,y") «+ PR(a”,b").

The third pair of functions compute a £ 1,b+ 1 according to the intuitive rule above: let
z = f3(a, 2, 2") = a4 2002+ 2" and y = f3(b,y/, y") == b4 2brxbaty Hy" <

T Therefore modulo 2 for the exponents according to Fermat’s little theorem.
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» Corollary 20. RSEB is NOSIG-Complete.

Proof. Since PR was previously proved NOSIG-Complete by Forster and Wolf [9] , then so
is RGaB . <

» Theorem 21. R%B is the ONLY strategy winning the RGB game that is also No-
Signalling.

Proof. Using the notation of Equations (1) — (2), for No-Signalling on Alice’s side we need
forall 0 <u <2

Pt u—1juu =Pu = Puttu—1juutt T Purtujuutrt =1 = Puut1 = Puttuuu—1 = Puu—1

and symmetrically on Bob’s side

Pyt ustjuu = 1=Pu = Pyt uttjutt,ut Pojutijuriu = 1= Gua1u = Puutiju—1,u = Qu—1u-

Using all 6 sets of equalities we can get rid of all the variables but pg, p1, p2 by setting
Puu—1 = Quitu = Pu 80 Puytr = uo1u =1 = pu, 0 S u < 2.

It follows that
Pyiiwjuut1 = Pu +Pur1 — 1 = =Py utijusiu, 0 Su <2

and since both Py 1 yju,u+1 and Py yq1jus1,. must be greater or equal to zero we conclude
Pyt ujuut1 = Puusijusriw =0and py =1 —pyy1,0 <u < 2.

It results that pg =1 —p; =p2s =1 —pg =p1 =1 — ps and thus

Po =P1 = P2 = Po1 = P1o = P12 = P21 = P20 = Po2 = qo1 = 410 = q12 = 421 = 420 = qo2 =

A DI~

is the only solution as claimed.

» Theorem 22. The mazimum local winning probability pii™, to the RGB game is 8/9.

local

Proof. Consider f(R) = B and f(G) = f(B) = Ras well as g(R) = g(B) = G and g(G) = B.
By inspection of these functions we conclude pi2, . ... > 8/9 because for all inputs a, b we
have f(a) # a and g(b) # b and 8 out of 9 input pairs (a, b) are such that f(a) # g(b). Since
it is a well known fact that pfn, = pyi, . . i, it suffices to show that pjin . . .. <8/9
as well.

To prove this, consider any pair of functions f,g. To obtain f(a) # a for all a, the
image of f must contain at least 2 colours. Similarly for the image of g. Since both f

and g can only take 3 values, their images must have a common colour. Therefore, there

exists an a and a b such that f(a) = g(b). We conclude p¥ir, . . .. <8/9, and therefore
pf(?c?ll = pz)lg?erministic = 8/9 <

Note: somewhat surprisingly Theorem 19 is not good enough to surpass p, in the

quantum case. Since REEB € LOC*(PR) (and not in LOC'(PR)), an optimal quantum

approximation to a PR-box (known to succeed with probability 2+T‘ﬁ) used instead of the
perfect one only yields a % approximation to an RGB-box.
A natural question is therefore to find a quantum strategy that is better than the local

one.
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1)

Figure 10 Alice and Bob’s best quantum strategy is to each make the above projective measure-
ment on their half-singlet. The basis (rectangle) depends on their own input colour. Their output is
the colour of the measured arrow.

3 A Better-than-Local Quantum Strategy

There is indeed a better-than-local quantum strategy which wins with probability 11/12:

Alice and Bob share a singlet state [1)~) , 5. According to their own input colour, they
choose their measurement from the following list:

HRed = |O><O| aHGreen = ‘U+><'U+ 7HB1ue = |U_><U_ 5 (3>
where
1 V3
|Ui>=§|0>:|:7|1>. (4)

These 3 projectors are located in the same plane equidistantly (like the Mercedes-Benz logo).
The colour names can be permutated freely as long as Alice and Bob do the same projection
for the same colour.

If the output of their measurement is positive, they output the colour that comes after
their input colour in the cycle RGB. Otherwise, they output the previous colour. They
never output their own input colour as it leads to a sure loss.

For example, if Alice’s input is Green and she measures a positive result when applying
the projector Igreen, then ¢ = G and & = G + 1 = B (the colour addition is modulo 3).
Figure 10 explains the protocol graphically.

3.1 Proof of Winning Probability

We look at the probability of losing as it is simpler. To simplify notation, we call directly
r=a—-1l<z=0andrz=a+lzrz=1laswellasy=b—-1<y=0andy=>0+1<y=1.
Alice and Bob lose in the following cases:

T=y ifb=a,
r=0Ay=1 ifb=a+1 mod3, (losing cases)
r=1ANy=0 ifb=a—1 mod3.



X. Coiteux-Roy and C. Crépeau

The probability of error E only depends on the relation between a and b and is given by
Eompy=tr (0™ )Xv 7| 5 (e @10) + (I @ IIy))) =0, (5)
Ea+1:b =tr (|¢_><¢_‘AB : (I_IaL ® Hb)) = ; (6)

Bacazp = tr (|07 X0 [ 45 - (Mo ®T15))

co| — 0ol =

And the winning probability of this quantum strategy is (with uniformly random inputs):

. 3E4—p +3E,11—p +3E,_1— 11
p(win) =1 — 9 =13 (8)

The game is therefore won with probability 11/12 using this quantum strategy. |

4 The Bell Inequality Associated to the RGB Game

The above quantum strategy is optimal among quantum strategies. To prove it in Section 5,
we now analyze a Bell inequality associated to the RGB game. Bell game and Bell inequalities
are equivalent formulations of the same phenomenon. We quickly recall how to translate
from one paradigm to the other before defining the inequality and stating the corresponding
bounds for quantum and No-Signalling strategies.

4.1 Bell Game vs Bell Inequality Notations

Up to now, we have analyzed the RGB game in the modern game context, meaning we
treated strategies as probability distributions of the form P, ,,; and showed strategies in
different non-locality classes (i.e., local, quantum or No-Signalling) can achieve different win
rates. To finetune our analysis, we excluded without losing generality the output colour
that always lose (i.e., z = a and y = b) and treated the remaining outputs as binary (i.e.,
0:=u—1and 1:=wu+1). In the next subsections, we will use the notation P(z,yla,b) for the
individual conditional probabilities.

However, another way to see this problem is through Bell inequalities. Instead of looking
at a game with binary outputs, one consider the properties of observables with values
in {—1,1}. An observable is simply a physical quantity one can decide to measure. In
physics, Bell inequalities (e.g., the CHSH inequality) are usually specified by a function
of the expected correlations of different observables. This function defines a quantity to
which classical mechanics (i.e., local hidden-variable models) imposes a limit that can be
broken using quantum mechanics. We remark that all of Alice’s observables need to commute
(meaning the order in which they are measured don’t affect their results) with all of Bob’s
observable to respect the No-Signalling condition shared by LOC, |[LOC) and NOSIG.

The canonical example of a Bell inequality is the CHSH inequality. This Bell inequality
also has a quantum limit: it is Tsirelson’s bound. As we are about to see, there exists a
similar bound for the RGB Bell-inequality.

The relevant point is that one can translate between the two formulations by expressing
the conditional probabilities of the Bell game paradigm as expectancies of correlations
in the Bell-inequality paradigm, and wvice versa. We will in fact only need the following
conversion equation:

14+ (A,By
P(z=y|a,b) = % ) (9)

where we noted (A4,By) the expected correlation between the measurement outcomes of
Alice’s observable A, and Bob’s observable Bj.
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4.2 Intermediate Step: Rewriting the Probability of Winning as a
Function of Expected Correlations

The following lemma will make the subsequent Bell-inequality formulation simple.

» Lemma 23. The probability of a given strategy distribution winning the game is given by

2
win 1 P(z=y|u,u+1 Pz=y|u,u—1

u=0

It depends only on the correlations between Alice’s and Bob’s outputs, not on their marginals.

Proof. By looking at the three losing cases above (see Section 3), we obtain the probability
of a distribution winning the game:

1 2

P=g Z (3 = P(0,0jusu) — P, 1usu) — PO, usut1) — P(1,0[uwu—1)) -

u=0

(winning probability equation)

We rewrite it in terms of the marginals and correlations {p(z=o0[a), P(y=0b)> P(z=y|a,b) }- Here is
how we can transform each term:

P(a=0]a) + P(y=0[b) T P(a=yla,p) — 1

P(0,0]a,b) = 5 ) (11)
P(1,1]ab) = Pla=yla,b) — P(0,0]a,b) 5 (12)
P(0,1]a,b) = P(x=0]a) — P(0,0]a,b) s (13)
P(1,0la,b) = P(y=0[b) — P(0,0]a,b) - (14)
Replacing them into the winning probability equation gives
12
p™ 25 Z 3— P0,0lu,u) — P(1,1]u,u) — P(0,1|u,ut+1) — P(1,0|u,u—1) (15)
u=0
12
=9 Z 3 = D(0,0ju,u) — Pla=y|u,u) T P(0,0]u,u) — P(z=0|a=u) T D(0,0]u,ut1)
u=0
— P(y=0]b=u—1) T P(0,0]u,u—1) (16)
2
1 P(az=0|a=u) +p(y=0|b=u+1) +p(w=y\u,u+1) -1
:§ Z 3 — P(z=y|u,u) — P(z=0|a=u) + 9
u=1
x=0|a=u + =0[b=u— + z=y|u,u—1) — 1
— D(y=ofp=u_1) + D(a=0ja=u) T P(y=0|b 21) D(z=y|u,u—1) (17)
_1 2 9 P(z=y|u,u+1) P(z=y|u,u—1)
S o + Bt | P «
u=0

4.3 The RGB Bell-Inequality

We show a new simple case of a Bell inequality which we call the RGB Bell-inequality. We
define it by reformulating the bound on the local winning probability of the RGB game.
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» Proposition 24. The following quantity is related to the RGB game:

2
= Z —2(4;B;) + (AiBiy1) + (4;Bi—1)| . (RGB Bell-quantity)
i=0

and allows us to express the RGB Bell-inequality:
Riocal < 8. (RGB Bell-inequality)

Proof. We first rewrite the equation describing the probability of winning the RGB game
into a Bell-inequality notation by taking Lemma 23 and making the simple substitution given
in Eq. 9. We obtain
12
pwm = — ZS — 2 <AZB7> + <A¢Bi+1> —|— <AzBl_1> . (18)

36 4
=0

We then define the interesting part as the RGB Bell-inequality:

2
=0

Finally, from Theorem 22 we have pVi», < & which by the last equation implies Rjgeal <

local = 9

8. |

As we showed in Section 3, quantum mechanics allows for better-than-local strategies,
but we will soon show that there is also a limit to how good quantum strategies can be. In
fact, the quantum strategy we described earlier is optimal.

» Theorem 25. The RGB Bell-inequality can be broken by quantum distributions, but there
exists for the RGB game an analogue to Tsirelson’s bound.

Rquantum < 9. (quantum bound)

The inequality is tight.

Proof. The value Rguantum = 9 is possible. It follows directly from the quantum strategy
achieving a win rate of % (as described in Section 3.) The proof one cannot do better is
shown next in Section 5. <

While quantum strategies cannot reach the trivial upper bound, No-Signalling strategies can.

» Proposition 26. No-Signalling physics (i.e., access to R%B) could break mazimally the
RGB Bell-inequality.

Ryo-signalling < 12. (trivial No-Signalling bound)
The inequality is tight.
Proof. The value Rno signalling = 12 is possible by using the No-Signalling strategy described

in Section 1 because it achieves a win rate of 1. The inequality is tight as all expected
correlation terms are here bounded by {—1,1}. <
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5 Tsirelson’s-like Bound and Proof of Optimality of the Quantum
Strategy

We now prove the optimality of the quantum strategy described in Section 3 by finding a
Tsirelson’s-like bound for the RGB Bell-inequality.

5.1 The Optimization Problem

We want to prove that for any |¢), any {A,} and any { B}, the quantum limit for the RGB
Bell-inequality holds:
2

Ryuantum = Z —2(AyBy) + (AyBut1) + (AuBu—1)| <9. (quantum bound)
u=0

We call the value associated to our known quantum strategy R’ = 9 and the optimal value
R*.

5.2 Solving the Bell Inequality Using Semidefinite Programming

We closely follow Wehner’s semidefinite programming technique [15]. The idea is first to
transform the Bell-inequality problem from the quantum realm to the real-vector space using
a result by Tsirelson. Then we use semidefinite programming with Lagrangian duality. The
key point is that the Lagrangian dual problem upper bounds the primal problem. So by
guessing a solution to the dual problem which have the same value as R’, we prove that R’
is optimal.

5.3 A Bell Inequality as a Real Vector Problem

We will use an important theorem by Tsirelson! [7].

» Theorem 27 (Tsirelson). Let Ay,..., A, and By,..., B, be observables with eigenvalues
in the interval {—1,1}. Then for any state |p) € A ® B, there exist real unit vectors
Flyeo s Ty Uiy - Un € R?™ such that for all s,t € {1,...,n}:

<¢\A5®Bt\¢> :fs '3775~ (20)

Conversely, let Ty, € RN be real unit vectors. Let [¢) € A® B be any mazimally entangled
state where dim(A) = dim(B) = 2IV/21. Then there exist observables A; on A and By on B
with eigenvalues £1 such that for all s,t € {1,...,n}:

To G = (Y| As @ Be[¢) (21)

Applying it to our case, we reduce our Bell-inequality problem to maximizing the following
real-vectorial expression:

2
RZZ—Q@-Q}#—@-@H + 2 Yia (22)
i=0
under the constraints Vi, ||Z;|| = ||7:]] = 1.

I We write it as formulated in [15], but fix a small mistake in the quantifiers order (it was correct in the
original paper).
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Proof of Quantum Optimality
5.4 The Primal Problem

We re-write the last statements in a matrix form.

8 Sﬂ Bl

Q
|

(T T B oG o U) - (23)

SIS

We note G can have this form if and only if it is semidefinite positive and that its diagonal
elements are equal to 1 because of the normalization constraints. We also define the matrix
W in a way that %tr GW = Rg where Rg is the R defined in Eq. 22 associated to this
strategy G.

0 0 0 -2 1 1
0 0 0 1 -2 1
0 0 0 1 1 -2
W= -2 1 1 0 0 0 (24)
1 -2 1 0 0 0
1 1 -2 0 0 0
Then the semidefinite optimization primal problem is
1
maximize 2 tr GW subject to G >0 and Vi,g; = 1. (primal problem)

5.4.1 The Primal Solution

The quantum strategy we found previously is associated with the value R’ = 9. For the sake
of completeness, we prove again here this value is achievable.

= NN = N[ =)=

NIFNF = NN =

N = NN = N

G = (primal solution)

—_ NN = NN

NIFNF = NN =

NI = NN = = N

We check that G’ > 0 by looking at its eigenvalues: they are indeed {3,3,0,0,0,0}. G’ is
therefore a feasible solution whose primal value is 9.

5.5 The Dual Problem

We now turn to the dual problem with Lagrange multipliers. The idea is to pose an objective
function £(G, A) which will be equal to R¢g if G is a feasible solution (i.e., G is semidefinite
positive and all the normalization constraints are satisfied) and whose dual can be evaluated
in a non-trivial way.

1
L(G,A) = 3 tr GW —tr A(G — Is) (objective function)
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where A is the diagonal matrix of Lagrange multipliers {\1, ..., A¢}. Note that L(G,A) = Rg
for a valid solution because when the constraints are satistifed: G — I = 0.
We can associate a dual function to the objective function:

1
AA)= max  L(G,A)= max trG(zW —A)+trA. (dual function)
G is feasible G is feasible 2

The crucial fact about this dual function A(A) is that it upper bounds £(G, A), so for any
feasible quantum strategy it also upper bounds R¢g (and therefore R*). This is because [6]:

AA) = | max  L(GA) > LG A) = L(G") = R (25)

5.6 The Dual Solution

We simply exhibit one matrix A such that this upper bound A(A) is 9. Since we can reach it,
then it will be tight.

We observe that A(A) evaluates to infinity if —2W + A # 0, and that otherwise, the G
maximizing £(G, A) is the null matrix. This leads to the following dual problem:

1
minimizetr A subject to — §W +A>0. (dual problem)

We try the solution

N = 216 : (dual solution)

The eigenvalues of —%W + A’ are {3, 3, %, %, 0,0}, confirming it is semidefinite positive
and thus a feasible solution (it does not lead to the trivial bound). The associated dual value

is 9 and confirms the optimality of our quantum solution.

6 Conclusion and Open Questions

We have defined a new game, the RGB Game, that is very simple and there exists a No-
Signalling strategy winning it with probability one. In the sense we have defined, this strategy
is equivalent to the winning strategy to the PR game. We showed the RGB game can be
won with probabilities
in 8 in 11 in
pﬁ])cal = § ’ pg’uantum = E ) pﬁo-Signalling =1

Our main open question is whether there exist |LOC)-complete and COMOP-complete
distributions. Another is to generalize our work to distributions over more than two parties.
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—— Abstract

We introduce a new architecture-agnostic methodology for mapping abstract quantum circuits to
realistic quantum computing devices with restricted qubit connectivity, as implemented by Cambridge
Quantum Computing’s t|ket) compiler. We present empirical results showing the effectiveness of
this method in terms of reducing two-qubit gate depth and two-qubit gate count, compared to other
implementations.
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1 Introduction

There is a significant gap between the theoretical literature on quantum algorithms and the
way that quantum computers are implemented. The simple and popular quantum circuit
model presents the quantum computer as a finite number of qubits upon which quantum
gates act; see Fig. 1 for an example. Typically gates act on one or two-qubits at a time, and
the circuit model allows multi-qubit gates to act on any qubits without restriction. However,
in realistic hardware the qubits are typically laid out in a fixed two or three dimensional
topology where gates may only be applied between neighbouring qubits. In order for a circuit
to be executed on such hardware, it must be modified to ensure that whenever two-qubits are
required to interact, they are adjacent in memory. This is a serious departure from the von
Neumann architecture of classical computers, where operations may involve data at distant
locations in memory without penalty.
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We refer to the task of modifying a circuit to conform to the memory layout of a specific
quantum computer as the qubit routing problem. When non-adjacent qubits are required to
interact we can insert additional SWAP gates to exchange a qubit with a neighbour, moving
it closer to its desired partner. In general many — or even all — of the qubits may need to be
swapped, making this problem non-trivial. Since quantum algorithms are usually designed
without reference to the connectivity constraints of any particular hardware, a solution to the
routing problem is required before a quantum circuit can be executed. Therefore qubit routing
forms a necessary stage of any compiler for quantum software. Current quantum computers —
the so-called NISQ! devices — impose additional constraints. Their short coherence times and
relatively low fidelity gates require that the circuit depth and the total number of gates are
both as low as possible. As routing generally introduces extra gates into a circuit, increasing
its size and depth, it is crucial that the circuit does not grow too much, or its performance
will be compromised.

The general case of the routing problem, also called the qubit allocation problem, is known
to be infeasible. The sub-problem of assigning logical qubits to physical ones is equivalent to
sub-graph isomorphism [14], while determining the optimal swaps between assignments is
equivalent to token-swapping [19] which is at least NP-hard [3] and possibly PSPACE-complete
[10]. Siraichi et al. [14] propose an exact dynamic programming method (with complexity
exponential in the number of qubits) and a heuristic method which approximates it well, at
least on the small (5 qubit) circuits considered. Zulehner et al. [20] propose an algorithm
based on depth partitioning and A* search which is specialised to the architectures of IBM
devices [1]. Other approaches take advantage of the restricted topology typically found
in quantum memories such as linear nearest neighbour [7] or hypercubic [4] which rely on
classical sorting networks; see Appendix A for a discussion of this approach. Lower bound
results for routing are presented by Herbert [5].

In this paper we describe the solution to the routing problem implemented in t|ket), a
platform-independent compiler developed by Cambridge Quantum Computing Ltd2. The
heuristic method in t|ket) matches or beats the results of other circuit mapping systems in
terms of depth and total gate count of the compiled circuit, and has much reduced run time
allowing larger circuits to be routed.

Aside from qubit routing, t|ket) also provides translation from general circuits to any
particular hardware-supported gate set, a variety of advanced circuit optimisation routines,
and support for most of the major quantum software frameworks. These will be described in
future papers. Compilation through t|ket) guarantees hardware compatibility and minimises
the depth and gate count of the final circuit across a range of hardware and software platforms.

In Section 2 we formalise the problem and present an example instance. In Section 3 we
describe the method used by t|ket) to solve the problem. In Section 4 we describe some of
the architectures on which we tested the algorithm and in Section 5 we present empirical
results of t|ket)’s performance, both in terms of scaling and in comparison to other compiler
software. Full tables of results are provided in the Appendix.

2 The Routing Problem

We represent a quantum computer as a graph where nodes are physical qubits and edges
are the allowed two-qubit interactions®. Since the circuit model assumes we can realise a
two-qubit gate between any pair of qubits, it is equivalent to the complete graph (Fig. 2a).

1 “Noisy intermediate-scale quantum” devices; see [13] for a survey.
2 t|ket) is available as a python module from https://pypi.org/project/pytket/.
3 'We don’t consider architectures with multi-qubit interactions involving more than two-qubits.
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ql

q2

q3

q4

Figure 1 Example of a quantum circuit containing one and two-qubit gates acting on four qubits,
ql, q2, ¢3 and g4. This circuit has five timesteps, each with gates acting on disjoint sets of qubits.

Figure 2 Nodes in the graph represent physical qubits and edges are the allowed interactions.
(a) The circuit model assumes all-to-all communication between qubits, i.e. a complete graph and
(b) a physically realistic one-dimensional nearest neighbour cyclic graph, the ring.

Realistic qubit architectures are connectivity limited: for instance, in most superconducting
platforms the qubit interaction graph must be planar; ion traps present more flexibility,
but are still not fully connected. For now we will use the ring graph (Fig. 2b) as a simple
example. Given such a restricted graph, our goal is to emulate the complete graph with
minimal additional cost.

From this point of view, the routing problem can be stated as follows. Given (i) an
arbitrary quantum circuit and (ii) a connected graph specifying the allowed qubit interactions,
we must produce a new quantum circuit which is equivalent to the input circuit, but uses
only those interactions permitted by the specification graph. Provided the device has at least
as many qubits as the input circuit then a solution always exists; our objective is to minimise
the size of the output circuit.

2.1 Example: Routing on a Ring

Let’s consider the problem of routing the circuit shown in Fig. 1 on the ring graph of Fig. 2(b).
The first step is to divide the circuit into timesteps, also called slices. Loosely speaking, a
timestep consists of a subcircuit where the gates act on disjoint sets of qubits and could in
principle all be performed simultaneously (see Section 3.1 for a precise definition). The single
qubit gates have no bearing on the routing problem so can be ignored, and thus a timestep
can be reduced to a set of qubit pairs that are required to interact via some two-qubit gate.

Next, the logical qubits of the circuit must be mapped to the nodes of the graph. For our
example a reasonable initial mapping is ¢1 — 1, ¢3 — 2, ¢2 — 3, ¢4 — 4 as shown in Fig. 3.
This has the advantage that the qubits which interact in the first timestep are adjacent in
the graph, and the same for the second timestep.
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Figure 3 An initial mapping of logical qubits to nodes. Highlighted nodes are labelled with the
mapped qubit.

Figure 4 (a) Qubit mapping to nodes if ¢1 and ¢3 swap positions. (b) Qubit mapping to nodes
if g2 and ¢3 swap positions.

Figure 5 Quantum circuit in Fig. 1 mapped to architecture graph of Fig. 2b.

However at the third timestep our luck has run out: the CNOT gate between ¢l and ¢2
is not possible in the current configuration. We must add SWAP gates to exchange logical
qubits to enable the desired two-qubit interactions. In the example there are two candidates:
swapping nodes 1 and 3, or swapping nodes 2 and 3, yielding the configurations shown in
Fig. 4. Looking ahead to the final slice — slice 4 has no two-qubit gates so can be ignored — we
see that ¢3 and ¢4 will need to interact. In configuration (a) these qubits are distance 3 apart,
and hence two additional swaps will be needed to bring them together. In configuration
(b) however they are already adjacent. As we want to minimise the number of additional
elements to our circuit we choose to swap nodes 2 and 3 to yield the final circuit shown
in Fig. 5.

While this was a tiny example we can see in microcosm all the key elements of the
problem: the need to find a mapping of qubits to nodes; the notion of distance between
qubits at the next timestep; and the need to compute the permutation of the nodes to enable
the next timestep. It should be clear even from this small example that as the size of the
circuit increases the number of candidate swaps increases dramatically. Further, if we have
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to swap several pairs of qubits at the same time, improving the situation for one pair may
worsen the situation for another pair. There is a clear arbitrage to apply to bring all the
pairs together as soon as possible.

In the worst case O(n?) swaps suffice to get from any n-node configuration to any other
[19], although for sufficiently regular graphs much better is possible [4]. A recent lower bound
result states that the minimum number of swaps is O(logn) in the worst case [5], which is
achieved by the cyclic butterfly network [4].

Our goal is to optimise the circuit globally so finding optimal mappings between timesteps
is not sufficient. It is necessary to evaluate candidate mappings across multiple timesteps;
this is the core of the t|ket) routing algorithm.

2.2 SWAP Synthesis and Routing

In the preceding section we described the routing problem in terms of inserting SWAP gates

into the circuit. However not all device technologies offer SWAP as a primitive operation.

Superconducting devices, for example, typically offer a single two-qubit interaction from
which all other gates, including the SWAP, must be constructed. As a further complication,
these interactions may be asymmetric. For example, in some IBM devices [1], the two-qubit

interaction is a CNOT where one qubit is always the control and the other always the target.

The graph representing the machine is therefore directed, as shown in Fig. 6, where the
direction indicates the orientation of the gate.

Figure 6 Architecture with one-way connectivity constraint.

This complication is easily removed by the usual trick of inserting Hadamard gates, as in
Fig. 7. Hence the swap gate can be implemented by three (unidirectional) CNOTS and four

Hadamards, as in Fig. 8.
1 - ol

Figure 7 Inverting a CNOT gate for a directed graph.

Consider running our routed quantum circuit on the directed architecture of Fig. 6. As
this graph constrains the direction of interactions, the quantum circuit we produced is no
longer valid. We account for this using the inversion in Fig. 7, producing the circuit shown
in Fig. 9. Many simplifications are possible on the resulting circuit, but care must be taken
to ensure that the simplified circuit is still conformant to the architecture digraph.
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Figure 8 Representation of a SWAP gate in terms of three consecutive CNOT and its inverted
representation for a directed graph.
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Figure 9 Quantum circuit in Fig. 1 routed for architecture graph in Fig. 6.

3 The t|ket) Routing Procedure

The routing algorithm implemented in t|ket) guarantees compilation of any quantum circuit to
any architecture, represented as simple connected graph. It is therefore completely hardware
agnostic. The algorithm proceeds in four stages: decomposing the input circuit into timesteps;
determining an initial placement; routing across timesteps; and a final clean-up phase.

3.1 Slicing the Circuit Into Timesteps

Before routing we partition the quantum circuit into timesteps. The circuit structure provides
a natural partial ordering of the gates; thus a greedy algorithm starting from inputs can divide
the input circuit into “vertical” partitions of gates which can be executed simultaneously.
We simply traverse the circuit adding the qubits involved in a two-qubit gate to the current
timestep. Since only multi-qubit interactions (such as CNOT or CZ gates) constrain the
problem, single-qubit gates can be ignored®. If a gate requires a qubit already used in the
previous timestep, a new timestep is created. This procedure is repeated until all gates are
assigned to a timestep. A timestep thus consists of a set of disjoint pairs of (logical) qubits
which represent gates scheduled for simultaneous execution.
Applying this method to the example from Fig. 1 would yield the following timesteps.

= {(q1,43),(q2,q4) }
= {(g2,43) }
= {(q1,42),(¢3,44) }
= {(q1,42) }

Note, that this is not the same as the illustrative slicing shown in Fig. 1!

W N

The density of a timestep is a measure of the number of simultaneous gates executed.
For an n-qubit architecture with single and two-qubit gates, the density is

_ ##two-qubit gates

5]

d

4 More accurately: while the single-qubit gates can be ignored for the purposes of routing, they must be
retained for circuit generation; for clarity we ignore them for now.
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Note that d = 1 where every qubit is involved in a two-qubit gate in this timestep; a timestep
is sparse when its density is close to zero. In principle, the density could be constrained to
make routing easier. In practice this seems to make little difference, and we use this quantity
only for the analysis in Section 5.1.

3.2 Initial Mapping

For the routing algorithm to proceed we require an initial mapping of logical qubits (referred
to as qubits) and physical qubits (referred to as nodes). In t|ket) a simple but surprisingly
effective procedure is used.

We iterate over the timesteps to construct a graph whose vertices are qubits. At timestep
n we add the edge (q,q’) to the graph if (7) this pair is present in the timestep and (i7) both
qubits ¢ and ¢’ have degree less than 2 in the current graph. Each connected component of
the resulting graph is necessarily either a line or a ring; the rings are broken by removing an
arbitrarily chosen edge.

Disconnected qubits in this graph correspond either to qubits which never interact at
all, or to those whose first interaction is with a qubit whose first two interactions are with
others. These disconnected qubits are not included in the initial placement at all; they are
added later in the routing procedure.

We then select a subgraph of the architecture with high average degree and low diameter
to start from. If the architecture is Hamiltonian connected — all the common architectures
are® — then it is possible to map the qubit graph to the architecture as one long line starting
from a high degree vertex within this subgraph, and greedily choosing the highest degree
available neighbour. This ensures that most of the gates in the first two timesteps can be
applied without any swaps; the only exceptions are those gates corresponding to the edges
removed when breaking rings.

If the initial mapping cannot be completed as one long line, then the line is split and
mapped as several line segments.

3.3 Routing

The routing algorithm iteratively constructs a new circuit which conforms to the desired
architecture, taking the sliced circuit and the current mapping of qubits to nodes as input.

The algorithm compares the current timestep of the input circuit to the current qubit
mapping. If a gate in the current timestep requires a qubit which has not yet been mapped,
it is allocated to the nearest available node to its partner. All gates which can be performed
in the current mapping — all single-qubit gates and those two-qubit gates whose operands are
adjacent — are immediately removed from the timestep and added to the output circuit. If

this exhausts the current timestep, we advance to the next; otherwise SWAPs must be added.

We define a distance vector d(s,m) which approximates the number of SWAPs needed to
make timestep s executable in the mapping m; these vectors are ordered pointwise. Let sq
denote the current timestep, s; for its successor, and so on, and write o @ m to indicate the
action of swap ¢ upon the mapping m. We compute a sequence of sets of candidate SWAPs
as follows:

Yo = swaps(sp)

Y11 = argmin d(s¢, 0 em)
gEY,

5 See Section. 4 and Refs. [18, §].
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where swaps(sg) denotes all the pertinent swaps available at the initial timestep. The sequence
terminates either when |X;| = 1 or after a predefined cutoff. The selected SWAP is added to
the circuit and the mapping is updated accordingly. We now return to the start and continue
until the entire input circuit has been consumed.

The pointwise ordering of the distance vectors employed by t|ket) is strict in the sense
that d(s,m) > d(s,c e m) implies that for all pairs of qubits (g, ¢’) in s, the longest of the
shortest paths between any two paired qubits in o e m is not longer than the longest of the
shortest paths in m. In other words, the diameter of the subgraph composed of all pairs of
qubits (g,q’) in s should decrease strictly under the action of swap o on the mapping m. In
consequence, in some highly symmetric configurations, the algorithm sometimes gets stuck,
failing to find any candidate swap. We employ two strategies to overcome this. The first is
to attempt the process again with pairs of disjoint swaps instead of individual ones. If this
also fails then we resort to brute force: a pair of maximally distant qubits in the current
timestep are brought together using a sequence of swaps along their shortest connecting
path. This guarantees at least one gate may be performed, and disrupts the symmetry of
the configuration, hopefully allowing the algorithm to escape from the bad configuration.

Remark

In practice there is no need to slice the circuit in advance, and in fact better results are achieved
by computing the timesteps dynamically during routing. The “next slice” is recomputed
immediately after each update of the mapping, avoiding any unnecessary sequentialisation.

3.4 SWAP Synthesis and Clean-Up

If the target hardware does not support SWAP as a primitive operation, after the circuit has
been routed the SWAPs in the routed circuit must be replaced with hardware appropriate
gates, as per Section 2.2. While we assume that the input circuit was already well-optimised
before routing, it is usually possible to remove some of the additional gates which are inserted
during this process in a final clean-up pass.

The essential criterion here is that any changes to the circuit must respect the existing
routing. This can be guaranteed by using any set of rewrite rules between one- and two-qubit
circuits. The routing procedure will not insert SWAPs immediately before a two-qubit gate
on the same two qubits, but it may do so afterwards, so the possibility to, for example,
cancel consecutive CNOT gates exists. However such cancellation rules are the only “true”
two-qubit rewrites which can be applied. In addition, t|ket) uses a small set of rewrites
for fusing single-qubit gates, and commuting single qubit gates past two-qubit gates. The
particular rewrite rules vary according to supported gates of the hardware.

4 Graph Representation of Quantum Computers

We represent the architecture of a given quantum computer as a simple connected graph,
directed or undirected. We now list some specific architecture graphs used in this work.

1. The ring, Fig. 2(b). A one-dimensional cyclic graph where each node is connected to its
two nearest neighbors.

2. The cyclic butterfly, Fig. 10(a). A non-planar graph with n = r x 2" nodes. Each node is
denoted by a pair (w,4) where w is r-bit sequence corresponding to one of the 2" rows
and ¢ represents the column. Two nodes (w, i) and (v, j) are connected if j =i+ 1[r]
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and if w = v or w and v have only one bit difference at position 7, hence the connectivity
is equal to 4 for any node, see Ref. [4].

3. The square grid, Fig. 10(b). A two-dimensional graph with a square shape where nodes
are connected to their four neighbors except at the edges where there can be only two or
three neighbors.

4. The IBM @ 20 Tokyo, Fig. 10(c). The graph supporting the 20-qubit processor produced
by IBM is a two-dimensional graph with 20 nodes, it is rectangular with some extra
connectivity, see Ref. [1].

5. The Rigetti 19Q-Acorn, Fig. 10(d). The graph supporting the quantum processor produced
by Rigetti is a two-dimensional graph with 20 nodes, see Ref. [15].

In Appendix A Table 3 we present the basic properties of these graphs such as their

degree and diameter, and the depth overhead of classical sorting algorithms on these graphs.

column column column column
0 1 2 0

row 000

row 001
row 010
row 011
row 100

row 101
row 110

row 111

Figure 10 (a) a cyclic butterfly graph with n = 3 x 23 nodes (the first column is represented
twice to improve the readibility of the connectivity), (b) a 2-dimensional square grid with n = 32
nodes, (c) the IBM Q 20 Tokyo chip (Ref. [1]). and (d) the Rigetti 19Q-Acorn chip (Ref. [15]). The
edges represent the allowed interactions between qubits.
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5 Results

The current generation of quantum computers, the NISQ devices [13], are characterised by
small numbers of qubits and shallow circuit depths. In this setting constant factors are
more important than asymptotic analysis, so we present two sets of empirical results on the
performance of tlket)’s routing algorithm. In the first set of results we evaluate the scaling
behaviour on synthetic inputs of increasing size. In the second we compare the performance
of tlket) against competing compiler implementations on a set of realistic circuits. Note that
while the t|ket) algorithm is very efficient, we report on the quality of the results rather than
the time or memory requirements.

5.1 Scaling

The routing algorithm described in Section 3 can handle circuits of arbitrary depth, and
architectures corresponding to any connected graph. We now evaluate how increasing the
circuit depth, as well as the size and connectivity of the architecture graph influence the
depth of the routed circuit.

As described above, routing adds SWAP gates to the circuit, increasing both its total
gate count and the depth of the circuit. Since the total gate count depends on the particular
gate set supported by the architecture, we will consider only the increase in circuit depth
here. Therefore a reasonable figure of merit is the depth ratio:

number of output timesteps

number of input timesteps ’

where timesteps are computed as described in Section 3.1. We define the mean depth
overhead as

N = number of output timesteps — number of input timesteps.

For a fair comparison to classical sorting algorithms, we consider that a SWAP gate counts
as only one additional gate rather than, for example, three when decomposed into CNOT
gates, and hence will induce at most one additional timestep.

5.1.1 Scaling With Depth

To assess the performance of t|ket) with respect to increasingly deep circuits we perform the
following protocol for each of the selected architectures.
We randomly generate 1000 circuits of density d = 1 and ¢ initial timesteps for ¢ € [2, 10].
Note that requiring d = 1 implies there are no single-qubit gates in the circuit.
Use t|ket) to route the circuit on the chosen architecture.
Compute R for the routed circuit.

We tested using the following five architectures:
a ring of size r = 64;

a square grid of size r? = 64;

a cyclic butterfly of size r2" = 64;

the IBM Q 20 Tokyo (n = 20);

the Rigetti 19Q-Acorn® (n = 20).

5 The Rigetti Acorn has only 20 qubits, but due a manufacturing defect which only 19 are usable. This is
not relevant to our tests [12].
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Figure 11 Multiple timesteps measurement and architecture comparison. The mean and standard
deviation of the ratio R are represented. The left plot overlaps results for the ring, square grid and
cyclic butterfly for 64 nodes. The right plot overlaps results for IBM and Rigetti architectures with
20 nodes. Results generated with random initial (dense) circuits with density equal to unity.

The number of nodes for the ring, square grid and cyclic butterfly architectures is chosen
for fair comparison and similarly for the IBM and the Rigetti cases. To eliminate sampling
bias, a single set of 64-qubit circuits was generated for the all the n = 64 architectures, and
similarly for the n = 20 architectures.

Figure. 11 represents the mean and standard deviation of the ratio R for the graphs.

The ratio R is approximately constant and the effect of circuit depth is dominated by the
influence of the architecture’s connectivity. This ratio seems to converge for circuits of depth
greater than 5 and we report in Table 2 the values of R obtained for the largest number of
input timesteps. While the ratios obtained seem rather large, it is worth remembering that
d =1 circuits are the worst case for routing.

5.1.2 Scaling With Architecture Size

To evaluate the scaling with respect to the size of the architecture we consider single-timestep
random quantum circuits of varying density, which are routed on architectures of increasing
size. Initial qubit mapping is disabled for these tests so that only the routing procedure is
evaluated. While this is an important part of the algorithm, in this case we are interested in
the scaling, to which the initial mapping only provides an initial offset.

For each architecture of size n generate 10n random circuits of depth one, for each
d € {0.5,0.67,1.0}.

Generate a random initial mapping of qubits on the architecture.

Route the timestep using t|ket), using the given mapping.

Compute N for the routed circuit.

The following architectures were evaluated:
Rings of size r € [10, 200]

Square grids of size r2, r € [3,13]

Cyclic butterflies of size r2", r € [2,6].

The results are shown in Fig. 12 and the best fit parameters are given in Table 1. The
prior results for the ring and square grid are determined with a regression in log-log space

5:11
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Table 1 Scaling of the depth overhead with architecture size for single-timestep random circuits.

Graph d=20.5 d=0.67 d=1.0

Ring 0.2451 x n 0.2451 x n 0.2451 x n

Square 0.5501 x n%5° 0.8050 x n?-5¢ 0.8991 x n?-%8
Cyclic Butterfly 0.3496 x log(n)'-%° 0.3002 x log(n)* 0.1510 x log(n)*™

Table 2 Summary of our scaling results for dense circuits (d = 1).

Graph Depth overhead N for single- Ratio output - input timesteps R
timestep circuits

Ring 0.2451 x n'%° 16.42 £ 0.25 (n = 64)

Square grid 0.8991 x n?°® 11.09 4 0.56 (n = 64)

Cyclic butterfly 0.1510 x log(n)*™ 7.1440.61 (n = 64)

Rigetti 19Q-Acorn 0 7.00 +0.47

IBM Q 20 Tokyo 0 6.08 + 0.47

and the cyclic butterfly in log - log(log) space (represented in the insets for d = 1). In each
case we see that the overhead appears to grow with the diameter of the graph, although with
an exponent that varies (slightly) with the density.

5.2 Realistic Benchmarks

Random circuits have an essentially uniform structure, which circuits arising from quantum
algorithms typically lack. In certain cases this can make random circuits easier to route
— although in the preceding section we have largely avoided this by using circuits of high
density. To give tlket) a more realistic test we have also evaluated its performance on a
standard set of 156 circuits which perform various algorithms. These range in size from 6 to
16 qubits, and 7 to more than half a million gates.

We ran t|ket) on each circuit of the benchmark set, with the 16-qubit ibmqx5 Rueschlikon,
which is a 2 x 8 rectangular grid, as the target architecture. We then repeated the same test
set using the 20-qubit IBM Tokyo as the target architecture. Since both these architectures
have CNOT as their only two-qubit operation, and since it has lower fidelity than the
single-qubit operations, we selected figures of merit based on minimising the CNOT count
and depth of the output circuit. In this test we do perform SWAP synthesis, to get a more
realistic evaluation of the output for these devices. Let Cx (c¢) be the total number of CNOT
gates in circuit ¢, and let Do x(c) be the depth of the circuit counting only the CNOT gates.
The two measures of interest are

. Dex (out)

Rp — Re — Cex (out)

Dcx(in) N ch(in)
where in and out are the input and output circuits respectively. The results are shown in
Fig. 13. We can see that t|ket) achieves approximately linear overhead across the entire test
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Figure 12 Variation of depth overhead with architecture size for single timestep random circuits.

Plots from left to right: the ring, square and cyclic butterfly architectures. The mean and standard
deviation of the depth overhead versus number of nodes (or qubits) is represented. The inset plots
represent the log-log linear fit for the ring and the square (resp. log-loglog fit for the butterfly) for
the data set of density d = 1.
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Figure 13 Performance of t|ket) on realistic test examples. (left) Mean ratio of output to input
CX depth as a function of circuit depth (averaged in bins) (right) Mean ratio of output to input CX
count (averaged in bins).

set. The mean Rp of 2.64 and R¢c of 2.61 for ibmgx5, and a mean Rp of 1.73 and R¢ of
1.69 for IBM Tokyo.

We also compared the performance of t|ket) to a selection of other freely available quantum
compiler systems: IBM’s QISKit [9], Project Q [16], and Rigetti Computing’s Quilc [15]7.
None of the other compilers was able to complete the test set in the time allotted, despite
being given at least an hour of compute time per example on a powerful computer®. For
comparison, tlket) completed the entire benchmark set in 15 mins on the same hardware.
In addition, Project @ does not support routing for the IBM Tokyo architecture due to its
unusual graph structure; therefore it was only tested on the ibmqx5 architecture. Therefore
comparison of all four compilers is only available for circuits of fewer than 2000 total gates.
The comparative results are shown in Fig. 14. We can see that t|ket), Qiskit and Quile
exhibit approximately linear overhead, while Project Q appears somewhat worse than linear.
A line of best fit calculated using the least squares method is shown for each compiler in
Fig. 14. Quilc and tlket) exhibit very similar performance; the others show significantly
higher overhead.

Finally, we compared the results to the published data of Zulehner et al. [20] who use
the same benchmark set, but use total gate count and depth as the metric. Since Quilc does
not generate the same gate set as the others, it was excluded from this comparison. The
algorithm of Zulehner et al. [20] achieves comparable performance to t|ket). The results are
presented in Appendix B.

The test set we used for this work was published by IBM as part of the QISKit Developer
Challenge?, a public competition to design a better routing algorithm. The competition was
won by Zulehner et al. [20]. The test circuits are available from http://iic.jku.at/eda/
research/ibm_qgx_mapping/.

7 Since Quilc emits CZ as its preferred two-qubit gate we computed its figures using Doz and Coz
instead.

8 See Appendix B for more details.

9 https://qx-awards.mybluemix.net/#qiskitDeveloperChallengeAward
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Figure 14 Comparison of performance between different compilers. Top row: routing on the
ibmqgx5 architecture. Bottom row: routing on the IBM Tokyo architecture. Left column: input
CX count against output CX count. Right column: input CX depth against output CX depth.
The benchmark is done against the test set available on http://iic.jku.at/eda/research/ibm_
gx_mapping/ and the results are averaged in bins when the initial count or depth is equal.

6 Conclusion

As better NISQ machines with the potential to effectively run quantum algorithms become
available, the need for software solutions that allow users to easily run quantum circuits on
them becomes more apparent. The t|ket) routing module is one such solution and provides
hardware compatibility with minimal extra gate overhead. It is flexible, general and scalable.
In this work we have outlined how the routing procedure works and the figures of merit we
use to assess routing performance for different graphs.

Finally, we consider possible extensions of this work. Firstly, we note that reinforcement
learning offers an alternative approach to the qubit routing problem [6]. Eventually we foresee
implementing several approaches to routing in t|ket) to best adapt to differing algorithms
and architectures.

Secondly, when considering the routing problem, we made the implicit assumption that
all gates were equal. In real devices, notably superconducting devices, each gate has its own
fidelity and run time and this has to be taken into account. Splitting a quantum circuit into
timesteps becomes more complex as we introduce the different run times and we also have
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to ensure that the overhead in the error rate encountered by qubits is as small as possible.
Additionally, in real life experiments, it has been observed in [17] and [11] that even the
properties of the qubits can fluctuate intra-days. This calls for a general protocol that could

accommodate this constraint. Addressing these different constraints transforms the problem

from a routing one to a scheduling one, which we plan to address with t|ket). Implementing

these constraints and measuring t|ket) performance on this matter will be the object of

future work.
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A Dynamical Routing Versus Sorting Networks

The routing problem described in this work can be solved using classical sorting algorithms.
One of these is the cyclic odd-even sort for the ring of Fig. 2b). Starting from an architecture
with n nodes, one compares sequentially all even and odd labeled edges. After exactly n — 1
timesteps, the input will be sorted regardless of input.

? S S
* * ¢

Figure 15 An example of sorting network on 8 inputs : odd-even sort over a ring.

For the ring, square and cyclic butterfly graphs presented in Section 4, we summarize in
Table 3 some details on the degree and diameter these graphs and the depth overhead of
classical sorting algorithms (precisely the quantity N introduced in Section 5).

The downside of classical sorting algorithms is that they are unadapative: they compute
the same sequence of comparisons regardless of input. As circuits are usually sparse, see
Section 3.1, this leaves many unecessary comparisons, and would treat quantum circuits
as sequences of hard timesteps. Indeed, routing solutions derived from classical sorting
algorithms tend to pack a quantum circuit into multiple timesteps and then insert SWAP
gates in between timesteps. Solving the routing problem sequentially timestep by timestep
produces a concatenation of locally optimal solutions which can be very far from the globally
optimal one. A good solution should be dynamic, consider a SWAP gate’s influence on
multiple timesteps, and optimize the global problem rather than the local one. See Ref. [21]
for an additional discussion on this matter. Additional details on sorting networks in quantum
computing are available in Ref. [2, 4].

Table 3 Comparison of different networks with n nodes.

Graph Degree Diameter N
Ring 2 2l n—1
Square grid 4 2y/n—1 3vn

Cyclic butterfly (n =r x 2") 4 31%2(") 6log,(n)
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B Detailed Benchmark Results

The table rows are the names of the benchmark QASM circuits, which are available from
www.github.com/iic-jku/ibm_gx_mapping. Benchmark data for Zulehner et al. is collected
from results presented in their paper [20] — note they do not present data for the complete
set of examples. An example Jupyter workbook which demonstrates the benchmarking
procedure is found at https://github.com/CQCL/pytket/blob/master/examples/tket_
benchmarking. ipynb.

All computations were run on a Google Cloud virtual machine with the following specifi-
cation: machine type nl-standard-2 (2 vCPUs, 7.5GB Memory), Intel Broadwell, 16GB RAM
and Standard Persistent Disk. Each example was run until completion, the computation
aborted, or until 60 minutes of real time had passed, whichever came first. Note that Quilc
aborts in much less than 60 minutes.

In the tables, ¢g indicates the gate count of the circuit; in Table 4 this means all gates;
in Table 5 and 6 this means CX count only. The circuit depth is labelled d; in Table 4
this means total depth; in Table 5 and 6 this means CX depth only. The bold values are
the best performance on the each row. The “tlket) comparison” column shows the ratio
between t|ket)’s performance and the best other compiler; values less than 1 indicate that
t|ket) performs better.

NOTE

The example circuit “ground_ state_ estimation” gives anomalously low values after routing.
This is due to an error in the circuit, which allows the post-routing clean-up pass of t|ket) to
eliminate almost the entire circuit.

B.1 All Gates Comparison on ibmgx5

Table 4 All gates comparison on ibmgx5.

%1S7k(1)t Zulehner et al. || CQC’s t]ket) Contlt:zson
Name Gin din||  Gout dout GJout dout GJout dout [Tgate Tdepth
xorb_ 254 7 5 45 24 * * 25 14/0.56 0.58
graycode6_ 47 5 5 13 7 * * 15 9/1.15 1.29
ex1_ 226 7 5 56 32 * * 25 14/0.45 0.44
4gt11_84 18 11 59 34 * * 48 32/0.81 0.94
4mod5-v0_ 20 20 12 64 35 * * 50 31/0.78 0.89
ex-1_166 19 12 53 36 * * 53 34/1.00 0.94
4mod5-vl_ 22 21 12 75 46 * * 64 40(0.85 0.87
modbdl_ 63 22 13 94 53 * * 65 39/0.69 0.74
ham3_ 102 20 13 62 39 * * 47 32/0.76 0.82
4gt11_83 23 16|| 100 57 * * 75 46/0.75 0.81
4gt11_82 27 20| 109 61 * * 86 55/0.79 0.90
rd32-v0_ 66 34 20| 116 73 * * 70 46/0.60 0.63
alu-v0_ 27 36 21| 163 86 * * 96 61/0.59 0.71
4mod5-vl_ 24 36 21| 142 80 * * 97 62/0.68 0.78
4mod5-v0_19 35 21|| 143 88 * * 103 66/0.72 0.75
modbmils_ 65 35 21| 137 &4 * * 93 59/0.68 0.70
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%I?két Zulehner et al. | CQC’s t|ket) Contltzzson
Name Gin din|| Gout dout GJout dout GJout dout [Tgate Tdepth
rd32-v1_ 68 36 21 130 76 * * 70 46/0.54 0.61
alu-vl_ 28 37 22 142 &4 * * 99 66/0.70 0.79
alu-v2_ 33 37 22 138 80 * * 91 57/0.66 0.71
alu-v4_ 37 37 22| 130 75 * * 103 64/0.79 0.85
alu-v3_ 35 37 22 143 79 * * 103 64/0.72 0.81
3_17_13 36 22 127 88 * * 89 62/0.70 0.70
alu-vl_ 29 37 22| 135 78 * * 101 66/0.75 0.85
miller 11 50 29 158 107 * * 139 92/0.88 0.86
alu-v3_34 52 30| 212 126 * * 146 99/0.69 0.79
decod24-v2_ 43 52 30|| 206 123 * * 136 89/0.66 0.72
decod24-v0_ 38 51 30 173 108 * * 127 84/0.73 0.78
modbd2_ 64 53 32 185 110 * * 158 105/0.85 0.95
4gt13_92 66 38|| 263 158 * * 187 119(0.71 0.75
4gt13-v1_93 68 39|| 281 164 * * 168 105/0.60 0.64
4mod5-v0__18 69 40| 272 160 * * 181 122{0.67 0.76
decod24-bdd_ 294 73 40| 262 147 * * 205 129(0.78 0.88
one-two-three- 69 40|| 256 151 * * 194 129(0.76 0.85
v2_ 100
one-two-three- 70 40| 268 165 * * 199 129|0.74 0.78
v3_101
4modb-vl_ 23 69 41 283 154 * * 196 136/0.69 0.88
4modb-bdd_ 287 70 41 283 152 * * 212 133/0.75 0.88
rd32_ 270 84 47| 289 167 * * 220 148/0.76  0.89
4gt5_ 75 83 47| 315 175 * * 227 143|0.72 0.82
alu-bdd_ 288 84 48| 319 170 * * 253 160(0.79 0.94
alu-v0_ 26 84 49| 331 188 * * 230 145/0.69 0.77
decod24-v1l_41 85 50| 355 198 * * 221 139(0.62 0.70
rd53_ 138 132 56| 642 269 * * 416 217/0.65 0.81
4gt5_ 76 91 56|| 360 195 * * 266 168/0.74 0.86
4gt13_91 103 61| 410 229 * * 269 181{0.66 0.79
cnt3-5_ 179 175 61|| 684 275 * * 569 221|0.83 0.80
qft_ 10 200 63|| 692 214 447 170 345 154/0.77 0.91
4gt13_90 107 65| 427 250 * * 284 190(0.67 0.76
alu-v4_ 36 115 66| 410 232 * * 286 184/0.70 0.79
mini_alu_ 305 173 69| 829 317 474 225 524 243|1.11  1.08
ising__model_ 10 480 70{ 235 41 251 47 255 41(1.09 1.00
ising__model__16 786 71 391 41 426 48 426 41(1.09 1.00
ising__model_ 13 633 71 313 41 329 47 398 110{1.27 2.68
4gtd_ 77 131 74| 451 266 * * 356 226(0.79 0.85
sys6-v0__111 215 75| 975 365 613 250 675 264/1.10 1.06
one-two-three- 132 76/ 501 299 * * 354 233/0.71 0.78
vl 99
one-two-three- 146 82|| 578 343 * * 376 250(0.65 0.73
v0_ 98
decod24-v3_ 45 150 84|| 551 318 * * 383 247|0.70 0.78
4gt10-v1_81 148 84|| 555 310 * * 377 248 0.68 0.80
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%likét Zulehner et al. || CQC’s t|ket) Contltzzson
Name Gin din||  Gout dout GJout dout GJout dout [Tgate Tdepth
aj-ell_165 151 86| 541 309 * * 402 260(0.74 0.84
4mod7-v0_94 162 92|| 641 374 * * 442 291|0.69 0.78
alu-v2_ 32 163 92|| 587 340 * * 458 292|0.78 0.86
rd73_140 230 92(| 1008 416 656 301 675 329/1.03 1.09
4mod7-vl_96 164 94| 617 351 * * 443 284|0.72 0.81
4gt4-v0__80 179 101 704 373 * * 458 293(0.65 0.79
mod10_176 178 101|| 685 384 * * 459 293(0.67 0.76
0410184_169 211 104|| 846 399 758 336 739 347/0.97 1.03
qft_16 512 105(| 2131 532 1341 404 1233 446/0.92 1.10
4gt12-v0_88 194 108|| 793 432 * * 499 320(0.63 0.74
rd84 142 343 110|| 1660 548 971 353 1166 506/1.20 1.43
rd53_ 311 275 124{| 1358 560 942 469 959 452(1.02 0.96
4 49 16 217 125|| 783 459 * * 610 398(/0.78 0.87
sym9_ 146 328 127|| 1584 640 955 425 999 451/1.05 1.06
4gt12-v1_89 228 130|| 855 473 * * 592 381(0.69 0.81
4gt12-v0_ 87 247  131|| 919 484 * * 650 396(0.71 0.82
4gt4-v0_ 79 231 132|| 893 495 * * 622 399(0.70 0.81
hwb4_ 49 233 134]| 929 540 * * 621 405|0.67 0.75
sym6_ 316 270 135|| 1381 625 852 456 890 471/1.04 1.03
4gt12-v0_ 86 251 135 992 512 * * 668 410(/0.67 0.80
4gtd-v0_ 72 258 137|| 903 485 * * 658 401|/0.73 0.83
4gt4-v0_ 78 235 137|| 935 492 * * 641 411/0.69 0.84
mod10_ 171 244 139|| 859 496 * * 640 417/0.75 0.84
4gtd-vl_ 74 273 154{| 1008 570 * * 732 469(0.73 0.82
rd53 135 296 159|| 1132 604 * * 854 536(0.75 0.89
mini-alu_ 167 288 162|| 953 557 * * 748 480(0.78 0.86
one-two-three- 290 163|| 1060 610 * * 737 487/0.70 0.80
v0_97
ham7_104 320 185|| 1327 697 * * 896 550(0.68 0.79
decod?24- 338 190|| 1280 730 * * 894 586(/0.70 0.80
enable 126
mod8-10_178 342 193|| 1341 722 * * 879 561(0.66 0.78
cnt3-5_180 485 209 1833 822| 1376 669 1560 819|1.13 1.22
ex3_ 229 403 226|| 1566 859 * * 1057 663(0.67 0.77
4gt4-v0_ 73 395 227 1413 799 * * 1037 671/0.73 0.84
mod8-10_ 177 440  251|| 1494 884 * * 1169 750/0.78 0.85
C17_204 467  253|| 1789 950 * * 1318 812(0.74 0.85
alu-v2_ 31 451  255|| 1499 874 * * 1171 762|0.78 0.87
rd53_ 131 469  261| 18751016 * * 1238 776/0.66 0.76
alu-v2_ 30 504  285|| 1746 982 * * 1335 850(0.76  0.87
modbadder_ 127 555 302 20941135 * * 1407 903(0.67 0.80
rd53_ 133 580 327 21491172 * * 1623 986|0.76 0.84
cm82a,_ 208 650  337| 26241303 * * 1777 1036/0.68 0.80
majority_ 239 612 344\ 24371267 * * 1648 1022/0.68 0.81
ex2_ 227 631 355 2568 1340 * * 1722 1092/0.67 0.81
st 276 778  435|| 28951615 * * 2012 1312{0.69 0.81
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%likét Zulehner et al. || CQC’s t[ket) Contltzzson
Name Gin din|| Gout dout GJout dout GJout dout [Tgate Tdepth
sf 274 781 436|| 28751577 * * 1989 1293(0.69 0.82
conl_ 216 954 508|| 3836 1966 * * 2815 1689(0.73 0.86
wim_ 266 986 514|| 37771921 2985 1711 2861 1707/0.96 1.00
rdb3_130 1043 569 37832049 * * 2872 1756/0.76 0.86
f2_232 1206 668|| 47372459 * * 3529 2208/0.74 0.90
cml152a_ 212 1221 684|| 4791 2499 3738 2155 3580  2195/0.96 1.02
rd53_ 251 1291 712|| 4868 2668 * * 3665 2279/0.75 0.85
hwb5_ 53 1336 758|| 4917 2766 * * 3577 2287/0.73 0.83
cmd2a_ 207 1776 940|| 6862 3507 5431 3013 5066  3043/0.93 1.01
pml_ 249 1776 940|| 7274 3744 5431 3013 5066  3043/0.93 1.01
del_ 220 1914 1038|| 76323973 5946 3378 5433 3180(0.91 0.94
squarb_ 261 1993 1049|| 80194006 6267 3448 6110 3532/0.97 1.02
z4_ 268 3073 164412567 6352 9717 5335 9379  5532/0.97 1.04
sqrt8_ 260 3009 1659128526615 9744 5501 8869 5355/0.91 0.97
radd_ 250 3213 1781(|13098 6880 10441 5872 9831 5892/0.94 1.00
adr4_ 197 3439 183913966 7050{ 11301 6205 10074 5910{0.89 0.95
sym6_ 145 3888  2187(|14078 7794 * * 10961 6858/0.78 0.88
misex1_ 241 4813 2676 - —| 15185 8729 14411 8834/0.95 1.01
rd73_ 252 5321 2867 - - * * 15666 9288
cyclel0_2_110 6050 3386 - —| 19857 11141 18361 11314{0.92 1.02
hwb6_ 56 6723 3736 - - * * 18688 11650
square__root_ 7 7630 3847 - —| 25212 13205 23258 13305/0.92 1.01
ham15_ 107 8763 4819 - —| 28310 15891 26551 15951/0.94 1.00
dc2_ 222 9462 5242 - —| 30680 17269 29784 18303/0.97 1.06
sqn__258 10223 5458 -~ 32095 17801 29740 17456/0.93 0.98
inc_ 237 10619 5863 - —| 34375 19176 32096 19523/0.93 1.02
cm85a_ 209 11414 6374 - —| 37746 21189 34467 21014/0.91 0.99
rd84_ 253 13658 7261 — = 45497 24473|| 41770 24147|0.92 0.99
cold_ 215 17936 8570 - —| 63826 30366 57906 30807/0.91 1.01
root_ 255 17159 8835 - —| 57874 30068 52900 30448/0.91 1.01
mlp4_ 245 18852 10328 - - * * 59020 35251
urf2_ 277 20112 11390 - - * * 64763 37903
sym9_ 148 21504 12087 - —| 66637 38849 61342 37448/0.92 0.96
life_ 238 22445 12511 - —| 74632 41767|| 67852 40987/0.91 0.98
hwb7_59 24379 13437 - - * * 68463 41787
max46_ 240 27126 14257 - —| 84914 46270 80329 46590/0.95 1.01
clip_ 206 33827 17879 — —| 114336 60882|| 104857 61053/0.92 1.00
9symml__ 195 34881 19235 - —| 116508 64279|| 106669 63651|/0.92 0.99
sym9_ 193 34881 19235 - —| 116508 64279|| 106669 63651|/0.92 0.99
sa02_ 257 38577 19563 - —| 131002 66975|| 120587 68114/0.92 1.02
dist_ 223 38046 19694 - —| 125867 66318|| 117367 67731/0.93 1.02
urf5_ 280 49829 27822 - - * *| 155513 92045
urfl_ 278 54766 30955 - - * *|| 178380104583
sym10_ 262 64283 35572 - —| 215569 118753|| 197690118233|/0.92 1.00
hwb8_ 113 69380 38717 - - * *|| 201013 122660
urf2_ 152 80480 44100 - - * *|| 221274139339
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%likét Zulehner et al. || CQC’s t|ket) Contlt:zson
Name Gin din||  Gout dout GJout dout GJout dout [Tgate Tdepth
urf3_ 279 125362 70702 - —| 440509 239702| 406738 237181|0.92 0.99
plus63mod4096_ 163128744 72246 - —| 439981 243861| 402395243814|0.91 1.00
urf5_ 158 164416 89145 - - * *| 465129 284825
urf6_ 160 171840 93645 — | 580295313011|| 541013 313653/0.93 1.00
urfl__ 149 184864 99585 - - * *| 525310321185
plus63mod8192_ 164187112 105142 - —| 640204 354076|| 585116 355168/0.91 1.00
hwb9_ 119 207775116199 —  —| 655220 375105|| 608175 369246/0.93 0.98
urf3__ 155 423488 229365 - - * *111211536 735676
ground__state _ esti-390180 245614 —  —| 520010 376695 12243 6804(/0.02 0.02
mation_ 10
urf4 187 512064 264330 —  —|1650845 878249(|1487289867091(/0.90 0.99

g: the number of quantum gates (elementary operations), d: depth of the quantum circuits,

— are time-outs and * are data not provided by the Zulehner et al.
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Table 5 CX gates only comparison on ibmgx5.

iskit Project uile 1.1.1 t|ket

%.7.0 OJ.4.1 ° Pquuil 2.1.1 CQC's tlket) com|pari>son
Name Jin din Gout dout Gout dout Gout dout Jout dout Tgate Tdepth
xor5_ 254 5 5| 17 14 58 31 17 12 8 8/0.47 0.67
graycode6_ 47 5 5 5 5 5 5 5 5 5 5/1.00 1.00
ex1_ 226 5 5| 20 16 58 31 17 12 8 8(0.47 0.67
4got11_84 9 8| 22 18 58 33| 25 18 18 17/0.82 0.94
4mod5-v0_ 20 10 9| 22 19 43 28| 20 17 19 18/0.95 1.06
ex-1_166 9 9| 19 19 18 18| 27 21 18 18/1.00 1.00
4mod5-v1_ 22 11 10{| 29 27 60  41] 29 21 23 22/0.79 1.05
modbd1_ 63 13 11} 37 29 48 36| 40 28 25 22/0.68 0.79
ham3_ 102 11 11 24 22 20 20| 24 20 18 18/0.90 0.90
4gt11_ 83 14 14i| 36 30 71 38| 34 28 29 26/0.85 0.93
4gt11_ 82 18 18| 42 33 91 50| 43 34 36 33/0.86 1.00
rd32-v0_ 66 16 16| 43 40 36 31 39 32 24 2410.67 0.77
alu-v0_ 27 17 15|| 60 46 71 50| 52 39 38 36/0.73 0.92
4mod5-v1_24 16 15| 53 44 78 51| 46 38 34 33|0.74 0.87
4mod5-v0_19 16 16| 53 49 106 72| 44 37 37 36/0.84 0.97
modbdmils_ 65 16 16|| 52 47 43 41] 46 36 34 33/0.79 0.92
rd32-v1l_ 68 16 16|| 47 40 36 31| 36 29 24 24/0.67 0.83
alu-vl_ 28 18 16|| 52 44 42 36| 50 40 39 37/0.93 1.03
alu-v2_ 33 17 15| 53 45 72 51| 52 39 35 33|0.67 0.85
alu-v4_ 37 18 16| 51 43 49 43| 53 40 39 37/0.80 0.93
alu-v3_35 18 16| 55 45 49 43| 54 40 39 37/0.80 0.93
3_17_13 17 17| 47 47 41 41/ 50 39 35 35/0.85 0.90
alu-vl_29 17 15| 51 42 71 50 51 38 38 36/0.75 0.95
miller_ 11 23 23|| 57 57 52 52| 77 59 50 50{0.96 0.96
alu-v3_34 24 23| 81 71 156 96| 73 62 57 56/0.78 0.90
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iskit Project uile 1.1.1 t|ket

%.7.0 ()J.4.1 ° }quuﬂ 91| CQC's tlket) com|pari>son
Name Jin din|| Gout dout Jout  dout| Gout dout GJout dout [Tgate Tdepth
decod24-v2_ 43 22 22| 73 65 81 67 63 53 49 49(0.78 0.92
decod24-v0__38 23 23|l 62 56 88 65| 66 52 48 48(0.77 0.92
modbd2_ 64 25 25| 70 61 179 104, 63 55 61 60/0.97 1.09
4gt13_92 30 26| 98 85 177 110 86 69 66 64/0.77 0.93
4gt13-v1_93 30 27| 104 89 185 109 79 61 60 57/0.76 0.93
4mod5-v0__18 31 31| 103 90 158 109] 91 70 70 68/0.77 0.97
decod24-bdd_ 294 32 31| 97 79 170 105| 98 77 7T 71/0.79 0.92
one-two-three- 32 29| 96 83 191 116] 69 62 71 71/1.03 1.15
v2_100
one-two-three- 32 29|11 102 91 182 116| 78 68 72 69/0.92 1.01
v3_ 101
4mod5-vl_ 23 32 30|| 106 86 178 106| 102 79 74 73/0.73 0.92
4mod5-bdd_ 287 31 31{| 106 83 170 115| 100 76 82 75/0.82 0.99
rd32_270 36 35(| 109 92 210 124| 101 82 84 82/0.83 1.00
4gth_ 75 38 33| 121 98 223  135| 116 83 83 770.72 0.93
alu-bdd_ 288 38 35(| 122 96 206 140 124 90 95 88/0.78 0.98
alu-v0_ 26 38 35(| 125 103 224 135| 115 80 83 78/0.72 0.97
decod24-v1_41 38 35(| 133 106 225 150 118 93 83 76/0.70 0.82
rdb3_138 60 42(| 242 146 460 193| 170 104 156 118(0.92 1.13
4gth_ 76 46 42(| 135 107 257 172 112 79 97 92/0.87 1.16
4gt13_91 49 46| 154 126 309 178 131 100 106 101{0.81 1.01
cnt3-5_179 85 43| 260 153 450 215|216 121 219 121|1.01 1.00
gft_10 90 34| 273 123 432 167|129 45 147 85/1.14 1.89
4gt13_90 53 50|| 158 135 372 210 144 106 113 108(0.78 1.02
alu-v4_ 36 51 47(| 154 125 303 190| 136 110 106 101|0.78 0.92
mini__alu_ 305 77 53| 320 176 410 201 - — 196 134/0.61 0.76
ising_ model__10 90 20/ 90 20 90 20| 90 20 90 20(1.00 1.00
ising_ model__16 150 201150 20| 150 20| 150 20 150 20(1.00 1.00
ising__model_ 13 120 20/ 120 20| 120 20| 120 20 144 58/1.20 2.90
4gthb_ 77 58 51|| 165 143 371 239| 158 121 136 125/0.86  1.03
sys6-v0__ 111 98 55|| 369 204 691 274 279 137 254 147/0.91 1.07
one-two-three- 59 56|| 187 163 314  205| 174 135 131 128/0.75 0.95
vl 99
one-two-three- 65 59| 207 182 324 229| 192 145 146 140{0.76 0.97
v0_98
decod24-v3_ 45 64 57| 208 178 422 264| 177 146 139 133/0.79 0.91
4gt10-v1_81 66 60(| 215 174 426 250 179 138 144 138/0.80 1.00
aj-ell_165 69 63(| 205 168 354 252 190 141 153 144/0.81 1.02
4mod7-v0_94 72 66(| 239 205 372 228 217 160 162 157/0.75 0.98
alu-v2_ 32 72 64(| 225 191 416  269| 211 157 165 157/0.78 1.00
rd73_140 104 68| 384 228 640 302 304 170 257 182(0.85 1.07
4mod7-v1l_96 72 65(| 234 192 458  299| 205 162 160 155/0.78 0.96
4gt4-v0__80 79 71| 268 207 572 300[ 218 162 178 166/0.82 1.02
mod10_176 78 70| 257 211 541 309| 238 175 174 163/0.73 0.93
0410184_169 104 70|| 323 221 828 387 293 171 284 190(0.97 1.11
qft_16 240 58|| 835 298 900 265|369 111 504 24411.37 2.20
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On the Qubit Routing Problem

iskit Project uile 1.1.1 t|ket

%.7.0 041 ° r?yquﬂ 91| CQCstlket) comlparison
Name Gin din|| Gout dout Jout  dout| Gout dout Gout dout [Tgate Tdepth
4gt12-v0__88 86 77| 291 232 599 335| 231 182 188 180({0.81 0.99
rd84_ 142 154 81|| 629 303 869 370|410 228 442 277/1.08 1.21
rd53_311 124 92|| 519 314 871 443| 390 246 370 252(0.95 1.02
449 16 99 91|| 300 256 536 353| 262 208 226 217/0.86 1.04
sym9_ 146 148 91|| 604 355 780 385| 410 229 382 251/0.93 1.10
4gt12-v1_89 100 88|| 325 257 756  428| 277 210 229 214/0.83 1.02
4gt12-v0_87 112 94|| 345 266 772 440] 298 226 248 221/0.83 0.98
4gt4-v0_T79 105 94| 341 278 708 439| 274 223 236 222(0.86 1.00
hwb4_ 49 107 99|| 348 294 553  348| 302 229 231 220(0.76  0.96
sym6_ 316 123 98|| 522 343 738 396| 392 254 337 259/0.86 1.02
4gt12-v0__86 116 98| 371 284 820 460| 283 227 258 231/0.91 1.02
4gt4-v0_ 72 113 95(| 340 265 858 466| 295 220 251 224/0.85 1.02
4gt4-v0_ 78 109 99| 353 271 713 447 328 237 243 229(0.74 0.97
mod10_ 171 108 97|| 323 272 753 425| 301 226 240 229/0.80 1.01
4gtd-vl_T4 119 108|| 375 312 937 522| 367 266 278 258(0.76  0.97
rd53_ 135 134 114|| 434 338 918 507| 424 290 323 297/0.76  1.02
mini-alu_ 167 126 111}| 357 311 925 536| 338 262 282 264/0.83 1.01
one-two-three- 128 116|| 397 335 812 474| 380 281 287 270(0.76 0.96
v0_97
ham?7_104 149 134|| 506 393 954  562| 397 316 343 312/0.86 0.99
decod?24- 149 134)| 472 397 908 553| 428 323 341 322/0.80 1.00
enable_ 126
mod8-10_178 152 135|| 510 400 1030 605 449 331 338 315/0.75 0.95
cnt3-5_180 215 148|| 683 451| 1327 691585 390 601 461/ 1.03 1.18
ex3_ 229 175 157|| 588 470| 1269 T718| 539 391 403 371(0.75 0.95
4gt4-v0_73 179 160(| 535 445| 1180 690 470 370 401 376/0.85 1.02
mod8-10_177 196 178|| 573 498| 1354 T775| 563 424 448 418/0.80 0.99
C17_204 205 173|| 673 523| 1892 891| 614 447 502 454/ 0.82  1.02
alu-v2_ 31 198 172|| 564 476| 1350 816| 547 406 438 413/0.80 1.02
rd53_ 131 200 175|| 701 554 1230 749| 624 421 474 432/0.76  1.03
alu-v2_ 30 223 199|| 664 546| 1595 878 682 491 502 472|0.76  0.96
modbadder_ 127 239 208|| 793 633| 1705 1022| 702 528 533 499/0.76  0.95
rd53_ 133 256 221|| 805 640[ 1703 977| 739 543 615 554/0.83 1.02
cm82a_ 208 283 234((1003 724| 2092 1081| 848 581 665 576(/0.78 0.99
majority_ 239 267 232(| 932 704| 1985 1102| 805 581 624 568/0.78 0.98
ex2_ 227 275 241(| 965 737| 1907 1107| 789 584 656 603|0.83 1.03
sf 276 336 301{[1104 902| 2083 1290| 935 743 762 727/0.81 0.98
sf 274 336 300([1095 878| 2145 1287| 922 686 757 725/0.82 1.06
conl_ 216 415 346((1454 1078 3593 18721288 891 1075 940{0.83 1.05
wim_ 266 427 352((14321058| 3482 18231209 870 1089 951/0.90 1.09
rd53_130 448 383((14301132| 3563 1905[1300 930 1099 976/0.85 1.05
f2_ 232 525 449(|1796 1364| 4409 2187|1563 1154 1309 1205/0.84 1.04
cmlb2a_ 212 532 461|(18131374| 5455 2557|1510 1078 1364 1221{0.90 1.13
rd53_ 251 564 492((1851 1474| 5391 25551629 1221 1405 12680.86 1.04
hwb5_ 53 598 535([1850 1525| 6201 2717|1713 1320 1360 1276/0.79 0.97
cmd2a_ 207 771 634((2607 1926| 8818 3910[2284 1600 1920 1691/0.84 1.06
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iskit Project uile 1.1.1 t|ket

%.7.0 041 ° }quuﬂ 91| CQCstlket) com|pari>son
Name Jin din|| gout dout Jout  dout| Gout dout Jout dout|Tgate Tdepth
pml_ 249 el 634((27132043| 8818 3910(2220 1555 1920 1691/ 0.86 1.09
dcl_220 833 705(|12895 2194| 11741 4784|2351 1690 2077 1770{0.88 1.05
squarb_ 261 869 720||13015 2189| 10135 4466|2676 1845 2358 1954/ 0.88 1.06
z4_ 268 1343  1112({4744 3473| 22664 8032(4104 2870 3583 3059/ 0.87 1.07
sqrt8_ 260 1314  1121{]4853 3633| 22130 82094107 2937 3416 2985/0.83 1.02
radd_ 250 1405 12104952 3782| 23920 8909(4290 3027 3768 3281/0.88 1.08
adrd_ 197 1498 1249|5284 3883| 22303 8649(4538 3142 3871 3279/0.85 1.04
sym6__145 1701 1499|5356 4324 40194 118794910 3675 4170 3820{0.85 1.04
misex1_ 241 2100 1797 - —| 20756 10450(5798 4367 5578 494110.96 1.13
rd73_252 2319 1963 - —| 45433 15172 - — 6007 5173/0.13 0.34
cyclel0_2_110 2648 2276 - —| 5077717976 - — 7084 6316/0.14 0.35
hwb6_ 56 2952 2559 - —| 7295521358 - — 7125 6496/0.10 0.30
square_root_ 7 3089 2520 — —| 3727516316 - — 8928 7401/0.24 0.45
ham15_ 107 3858 3273 — —| 4686021421 - —|| 10206 8884(0.22 0.41
dc2_ 222 4131 3518 — —| 4520021119 — —|{| 11545 10210]/0.26 0.48
sqn_ 258 4459 3719 - — 9339429983| - —|| 11425 9743|0.12 0.32
inc_ 237 4636 3928 - —| 3943221180 - —|| 12381 10872/0.31 0.51
cm85a,_ 209 4986 4256 — | 7174429352 — || 13297 11722/0.19 0.40
rd84_ 253 5960 4917 — 11847340259 — —|| 16027 13432|0.14 0.33
cold 215 7840 5759 - —| 8443136897 — —|| 22357 17144/0.26 0.46
root_ 255 7493 5965 - —12832447123| - —-|| 20332 16951|0.16 0.36
mlp4d_ 245 8232 6930 - —| 5010731076 — —|| 22759 19640/0.45 0.63
urf2_ 277 10066 8312 - —243218 71917 — —|| 25127 21186/0.10 0.29
sym9_ 148 9408 8062 - —24172573636| — —-|| 23489 20883|0.10 0.28
life 238 9800 8356 - 22122072011 — —|| 26064 22788/0.12 0.32
hwb7_59 10681 9112 —  —|264057 78857 — -|| 26033 23163/0.10 0.29
max46_ 240 11844 9657 - —269243 84007 - —|| 30709 25891(0.11 0.31
clip_ 206 14772 12028 - —213901 85381 - —|| 40504 34045/0.19 0.40
9symml_ 195 15232 12849 - - - - - —|| 40897 35349
sym9_ 193 15232 12849 - - - - - —|| 40897 35349
sao2_ 257 16864 13209 - - - - - —|| 46536 37963
dist_ 223 16624 13274 - - - - - —|| 45230 37762
urf5_ 280 23764 19888 - - - - - —|| 60233 51479
urfl_ 278 26692 22307 - - - - - —|| 69370 58597
syml10_ 262 28084 23736 - - - - - —|| 76180 65905
hwb8 113 30372 26041 - - - - - —|| 77247 68560
urf2_ 152 35210 32247 - — - — - —|| 84345 77320
urf3_ 279 60380 50568 - — - - - —|1158115 132770
plus63mod4096_ 16356329 48265 - — - - - —1155209 135715
urf5_ 158 71932 64750 - — - - - —||177757 158774
urf6_ 160 75180 67637 — — — — - —{|209231 174548
urfl 149 80878 72933 — — — — - —{/200949 179071
plus63mod8192_ 16481865 70222 - - - - - /1226354 198162
hwb9 119 90955 77968 — — — — — —11233049 205682
urf3_ 155 185276 167215 - - - - - /463538 409727
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Qiskit | Project Q Quil(? 1.1.1 CQC’s tlket) t|ket?
0.7.0 0.4.1 Pyquil 2.1.1 comparison
Name Jin din Jout dout Jout dout Jout dout Jout dout Tgate Tdepth
ground__state _es-154209 151095 — - — - — — 5039 3897
timation 10
urf4d 187 224028 185975 - — - — — —||1568938 481368
g: the number of quantum gates (elementary operations),
d: depth of the quantum circuits and — are time-outs
B.3 CX Only Comparison on IBM Tokyo
Routed for architecture 'IBM Tokyo' Routed for architecture 'IBM Tokyo'
Compiler : v Compiler :
° tlket> ° tlket>
oo | N 0] T
_— - _—
x  Quil Voo X Quil
& 6001 ====" /)'/ s3004 """
S v"_/‘/- ! v 3
5 i x5
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Initial CX count

Initial CX depth

Figure 18 Routing comparison on IBM Tokyo, CX count and CX depth when counting only CX
gates. The charts are a zoomed in version of the initial segment of lower charts of Fig. 14.

Table 6 CX gates only comparison on IBM Tokyo.

iskit uile 1.1.1 t|ket

%.7.0 P(’quuil 2.1.1 CQC’s tlket) com‘pari>son
Name Gin din|| gout dout| Gout dout Jout dout|Tgate Tdepth
xorb_ 254 5| 14 11 7 7 5 5/0.71 0.71
graycode6_ 47 5 17 11 5 5 5 5/1.00 1.00
ex1l 226 5/ 18 12 7 7 5 5/0.71 0.71
4gt11_84 8|| 27 24| 15 14 9 8/0.60 0.57
4mod5-v0_ 20 10 9 25 19 16 15 19 18/ 1.19 1.20
ex-1_166 9 9]| 28 25 18 15 9 9/0.50 0.60
4mod5-v1_ 22 11 10| 26 25| 20 18 23 22(1.15 1.22
mod5d1l_ 63 13 11| 43 31| 28 23 13 11{0.46 048
ham3_ 102 11 11| 25 25 18 15 9 9/ 0.50 0.60
4gt11_83 14 14| 41 32| 20 20 17 16|/ 0.85 0.80
4gt11_82 18 18| 49 34| 30 27 24 23/0.80 0.85
rd32-v0_ 66 16 16| 57 43| 21 20 12 12|/ 0.57 0.60
alu-v0_ 27 17 15| 63 48| 53 34 20 19/0.38 0.56
4mod5-vl_24 16 15| 66 49| 28 27 16 15/ 0.57 0.56
4mod5-v0_19 16 16| 67 51| 25 25 25 25/1.00 1.00
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iskit uile 1.1.1 tlket

%.7.0 P(’quuil 2.1.1 CQC’s tlket) com‘pari>son
Name Gin din|| gout dout| Gout dout Jout dout |Tgate Tdepth
modbmils_ 65 16 16| 71 48| 28 28 25 25/0.89 0.89
rd32-v1_68 16 16|| 53 45 24 17 12 12/ 0.50 0.71
alu-vl_28 18 16| 60 35| 40 26 21 20/ 0.53 0.77
alu-v2_ 33 17 15| 59 44| 29 28 20 19/ 0.69 0.68
alu-v4_ 37 18 16(| 67 45 52 33 21 20/ 0.40 0.61
alu-v3_35 18 16(| 57 43| 52 33 21 20/ 0.40 0.61
3_17_13 17 17(| 46 38| 26 25 17 17/ 0.65 0.68
alu-vl_29 17 15(| 57 43| 53 34 20 19|/ 0.38 0.56
miller_ 11 23 23|| 65 53| 32 29 23 23/0.72 0.79
alu-v3_ 34 24 23(| 109 74| 37 36 27 27/0.73 0.75
decod24-v2_ 43 22 22| 57 55 28 28 22 22/0.79 0.79
decod24-v0__38 23 231 79 BTl 27 25 21 21/0.78 0.84
mod5d2_ 64 25 25| 94 77| 38 38 40 40/ 1.05 1.05
4gt13_92 30 26| 84 65| 39 35 42 38/ 1.08 1.09
4gt13-v1_93 30 27| 106 70| 37 34 39 36/ 1.05 1.06
4mod5-v0_ 18 31 31| 91 71 58 46 43 40(0.74 0.87
decod24-bdd_ 294 32 31|| 102 85| 44 37 53 52(1.20 1.41
one-two-three- 32 29| 86 75| 46 41 53 5211.15 1.27
v2_100
one-two-three- 32 29]| 108 91 53 50 42 39(0.79 0.78
v3_101
4mod5-v1_ 23 32 30(| 113 82 50 49 47 4210.94 0.86
4mod5-bdd_ 287 31 31|| 103 84| 46 39 43 43/0.93 1.10
rd32_ 270 36 35|| 117 98| 45 38 54 53(1.20 1.39
4gth_ 75 38 33|| 99 74| 56 53 56 54(1.00 1.02
alu-bdd_ 288 38 35|| 140 110/ 65 45 74 72(1.14 1.60
alu-v0_ 26 38 35|| 115 85| 56 48 57 56(1.02 1.17
decod24-v1_41 38 35|| 127 100/ 56 50 62 62| 1.11 1.24
rd53_138 60 42]| 202 130 111 87 111 91/ 1.00 1.05
4gth5_ 76 46 42|| 115 84| 67 55 68 66| 1.01 1.20
4gt13_91 49 46|| 147 113] 62 59 70 65/ 1.13 1.10
cnt3-5_ 179 85 43|| 327 150| 182 920 179 109/ 0.98 1.21
qft_ 10 90 34| 342 140 75 45 73 50(0.97 1.11
4gt13_90 53 50(| 158 120| 67 64 7 72(1.15 1.12
alu-v4_ 36 51 47|| 158 112| 67 62 67 63| 1.00 1.02
mini_ alu_ 305 77 53|| 265 137| 125 93 158 129/ 1.26 1.39
ising_ model__ 10 90 20(| 222 78| 111 41 105 50{0.95 1.22
ising_ model__ 16 150 20(| 540 160| 172 31 234 110 1.36  3.55
ising_ model 13 120 20(| 381 121} 171 68 150 61/ 0.88 0.90
4gth 77 58 51|| 156 121 73 67 91 82/ 1.25 1.22
sys6-v0__ 111 98 55(| 302 144| 170 117 176 137(1.04 1.17
one-two-three-vl 99 59 56|| 211 166 95 7 84 81/ 0.88 1.05
one-two-three-v0_ 98 65 59|| 202 156 94 86 92 84/0.98 0.98
decod24-v3_ 45 64 57(| 189 130 103 94 92 90/ 0.89 0.96
4gt10-v1_81 66 60|| 234 177| 100 92 105 99/ 1.05 1.08
aj-ell 165 69 63|| 199 161 93 89 88 87/0.95 0.98
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iskit uile 1.1.1 t|ket

%.7.0 P(’quuil 2.1.1 CQC’s tlket) com‘pari>son
Name Gin din|| gout dout| Gout dout Jout dout |Tgate Tdepth
4mod7-v0_94 72 66|| 200 144| 97 87 111 110/ 1.14 1.26
alu-v2_ 32 72 64(| 250 178| 92 84 109 106]1.18 1.26
rd73_140 104 68|| 341 186| 179 122 182 148 1.02 1.21
4mod7-vl_96 72 65(| 230 181 100 89 91 85/0.91 0.96
4gt4-v0_80 79 71(| 196 145| 112 920 115 106 1.03 1.18
mod10_176 78 70(| 285 197 120 104 118 1141 0.98 1.10
0410184_169 104 70(| 362 209 257 135 184 122/0.72  0.90
qft_16 240 58| 934 311| 243 90 303 153/ 1.25 1.70
4gt12-v0__88 86 77|l 267 195 137 106 140 133/ 1.02 1.25
rd84_ 142 154 81|| 539 240| 280 172 286 176/ 1.02 1.02
rd53_311 124 92| 422 256 — - 253 191/ 0.60 0.75
4_49 16 99 91|| 2563 190| 140 129 166 162{1.19 1.26
sym9_ 146 148 91|| 497 272| 259 177 259 200/ 1.00 1.13
4gt12-v1_89 100 88|| 323 228/ 153 139 151 138/0.99 0.99
4gt12-v0_87 112 94|| 384 267| 166 152 136 123/0.82 0.81
4gt4-v0_ 79 105 94|| 262 190| 116 105 133 128/ 1.15 1.22
hwb4_ 49 107 99|| 306 228/ 142 133 150 1411 1.06 1.06
sym6_ 316 123 98| 422 269| 229 165 232 192/ 1.01 1.16
4gt12-v0__86 116 98|| 356 238/ 170 156 143 130/0.84 0.83
4gtd-v0_ 72 113 95(| 379 252| 170 139 131 120/0.77 0.86
4gt4-v0_ 78 109 99|| 247 195| 135 120 140 135/ 1.04 1.12
mod10_ 171 108 97/| 305 215| 133 114 165 161)1.24 1.41
4dgtd-vl_T74 119 108|| 365 274| 168 138 182 175/ 1.08 1.27
rd53_135 134 114 442 305| 241 186 194 179/0.80 0.96
mini-alu_ 167 126 111} 369 282| 167 153 174 157{1.04 1.03
one-two-three-v0_ 97 128 116|| 367 263| 188 175 189 184/ 1.01 1.05
ham?7_104 149 134(| 309 236/ 209 169 236 221|11.13 1.31
decod24-enable_ 126 149 134|| 363 280| 215 194 227 219/ 1.06 1.13
mod8-10_178 152 135]| 331 263| 188 167 224 209/ 1.19 1.25
cnt3-5__180 215 148 822 439| 377 234 379 285/ 1.01 1.22
ex3_ 229 175 157|| 460 354| 319 231 214 197/ 0.67 0.85
4gt4-v0_T73 179 160|| 451 356| 259 227 242 22210.93 0.98
mod8-10_177 196 178]| 609 423| 248 218 277 2611 1.12  1.20
C17_204 205 173|| 664 474| 384 295 268 236/ 0.70 0.80
alu-v2_31 198 172]| 553 426| 402 287 306 289/ 0.76 1.01
rd53_131 200 175]| 604 437| 300 227 267 243/ 0.89 1.07
alu-v2_ 30 223 199 482 373| 293 269 358 338/ 1.22 1.26
modbadder_ 127 239 208|| 650 476| 356 292 311 288(0.87 0.99
rd53_133 256 221|| 703 499| 359 308 348 328/ 0.97 1.06
cm82a_ 208 283 234|| 914 607| 393 317 451 391|1.15 1.23
majority_ 239 267 232|| 720 528| 402 328 348 311({0.87 0.95
ex2_ 227 275 241|| 886 648| 443 371 416 3911094 1.05
sf_ 276 336 301|| 989 731| 372 340 489 453(1.31 1.33
sf 274 336 300|| 863 643| 457 391 357 328(0.78 0.84
conl_ 216 415 346(|1389 916| 659 486 736 626)1.12 1.29
wim_ 266 427 352||1145 793| 763 501 772 688 1.01 1.37
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iskit uile 1.1.1 t|ket

%.7.0 P(’quuil 2.1.1 CQC’s tlket) com‘pari>son

Name Gin din|| gout dout| Gout dout Jout dout |Tgate Tdepth

rd53_ 130 448 383(11242 899| 695 547 646 608/ 0.93 1.11

2232 525 4491|1443 1069| 722 621 854 77211.18 1.24

cmlb2a_ 212 532 461(|1491 1051| 805 633 793 717/0.99 1.13

rd53_ 251 564 4921487 1058| 960 659 805 715/ 0.84 1.08

hwbb5_ 53 598 535(|1568 1179| 941 765 808 757/0.86 0.99

cmd42a_ 207 771 6342333 1593| 1411 996 1102 968(0.78 0.97

pml_ 249 771 6342303 1574| 1411 996 1102 968(0.78 0.97

dcl_ 220 833 705(|12450 1715] 1532 1049 1436 1261/0.94 1.20

squarb_ 261 869 720(/12902 19481463 1063 1631 1372 1.11  1.29

z4 268 1343 1112|4185 2828| 2282 1632 2235 1914/ 0.98 1.17

sqrt8_ 260 1314  1121(]4079 2846| 2406 1665 2235 1964/ 0.93 1.18

radd_ 250 1405 1210({4346 3050 — — 2697 2361|0.62 0.77

adrd 197 1498 1249|4584 3110|2333 1720 2737 2368(1.17 1.38

sym6_ 145 1701 1499|4872 3517| 2554 2042 2301 2145(0.90 1.05

misex1 241 2100 1797 — —(3249 2435 4291 3760(1.32 1.54

rd73_ 252 2319 1963 — —| 3854 2798 3748 3276/ 0.97 1.17

cyclel0_2_110 2648 2276 — —| 4511 3463 4342 3802(0.96 1.10

hwb6_ 56 2952 2559 - —| 4405 3575 4205 3904/ 0.95 1.09

square_root_ 7 3089 2520 — —|4967 3427 5790 4833| 1.17 1.41

ham15_ 107 3858 3273 - —| 6649 4828 6485 5605/ 0.98 1.16

dc2 222 4131 3518 — — — — 7694 6708

sqn__258 4459 3719 — - - — 6863 5984

inc_ 237 4636 3928 — - - — 8274 7176

cm85a_ 209 4986 4256 - - - - 8166 7093

rd84 253 5960 4917 — - - - 9506 8154

cold 215 7840 5759 — — — —|| 14415 11195

root_ 255 7493 5965 — — — —|| 11971 9940

mlp4_ 245 8232 6930 — — — —|| 15156 13061

urf2_ 277 10066 8312 — — — —|| 17367 15384

sym9_ 148 9408 8062 — — — —|| 13893 12321

life 238 9800 8356 — — — —|| 15944 13926

hwb7_59 10681 9112 — — — —|| 17655 15828

max46_ 240 11844 9657 — — — -l 19519 16979

clip_ 206 14772 12028 — — — —|| 25499 21345

9symml__195 15232 12849 — — — —|| 24532 21295

sym9_ 193 15232 12849 — — — —|| 24532 21295

sao2_ 257 16864 13209 — - - —|| 28799 23847

dist_ 223 16624 13274 - - - —|| 27953 23342

urf5_ 280 23764 19888 — — — —|| 41610 36329

urfl_ 278 26692 22307 — — — —|| 46023 40020

syml0_ 262 28084 23736 — — - —|| 44383 38132

hwb8 113 30372 26041 — — — —|| 50008 44245

urf2 152 35210 32247 — — — —|| 58307 53905

urf3_ 279 60380 50568 — - - —||105870 91838

plus63mod4096_ 163 56329 48265 — - - —|| 95107 82375

urf5_ 158 71932 64750 - - - —||122288 110318
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iskit uile 1.1.1 t|ket

%.7.0 P(’quuil 2.1.1 CQC’s tlket) com‘pari>son
Name Gin din|| gout dout| Gout dout Jout dout |Tgate Tdepth
urf6__160 75180 67637 - - - —|{141416 120999
urfl_ 149 80878 72933 - - - —||137791 123873
plus63mod8192_ 164 81865 70222 - - - —1|145872 125957
hwb9_ 119 90955 77968 - - - —|/149106 131678
urf3__155 185276 167215 - - - —|[317732 285000

ground__state _ esti- 154209 151095
mation_ 10

urf4d_ 187 224028 185975

1015 776

385355 330368

g: the number of quantum gates (elementary operations),

d: depth of the quantum circuits and — are time-outs.
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1 Introduction

Quantum query algorithms are remarkably described by span programs [15, 16], a linear
algebraic object originally created to study classical logspace complexity [12]. However,
finding optimal span program algorithms can be challenging; while they can be obtained
using a semidefinite program, the size of the program grows exponentially with the size of
the input to the algorithm. Moreover, span programs are designed to characterize the query
complexity of an algorithm, while in practice we also care about the time and space complexity.

One of the nicest span programs is for the problem of undirected st-connectivity, in which
one must decide whether two vertices s and t are connected in a given graph. It is “nice” for
several reasons:

It is easy to describe and understand why it is correct.

It corresponds to a quantum algorithm that uses logarithmic (in the number of vertices

and edges of the graph) space [4, 11].

The time complexity of the corresponding algorithm is the product of the query complexity,

and the time required to implement a unitary that applies one step of a quantum walk

on the underlying graph [4, 11]. On the complete graph, for example, the quantum walk

step introduces only an additional logarithmic factor to the complexity [4].
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Applications of the Quantum Algorithm for st-Connectivity

The query complexity of the algorithm is determined by two well known graph functions,
the effective resistance and effective capacitance [10].

Thus one strategy for designing other “nice” quantum algorithms is to reduce a given
problem to st-connectivity, and then use the span program st-connectivity algorithm. This
strategy has proven to be quite successful, and in fact has produced several optimal or nearly
optimal algorithms. There is a reduction from Boolean formula evaluation to st-connectivity
[14] that produces an optimal quantum algorithm for read-once formulas [11]. There is
an optimal reduction from graph connectivity to st-connectivity [10]. Cade et al. use an
st-connectivity subroutine to create nearly query-optimal algorithms for cycle detection and
bipartiteness [7]'. Finally, the st-connectivity span program algorithm underlies the learning
graph framework [3], one of the most successful heuristics for span program algorithm design.

In this work, we follow precisely this strategy for creating “nice” quantum algorithms:
we reduce the graph problems of cycle detection, odd-length path detection, bipartiteness,
and even-length cycle detection to st-connectivity. In our reductions, solving the related
st-connectivity problem comprises the whole algorithm; in other words, we create a new
graph that has an st-path if and only if the original graph has the property in question.

Additionally, there is an an estimation algorithm closely related to the st-connectivity
algorithm that determines the size of the effective resistance or effective capacitance of the
graph [9, 10]. Not only is it often useful to estimate the effective resistance or effective
capacitance of a graph, as these quantities bound the shortest path length and smallest cut
size respectively, but sometimes one can encode quantities of interest as either the effective
capacitance or effective resistance. For example, given a graph G, it is possible to create a
new graph whose effective resistance is the average effective resistance (Kirchoff index) of
the original graph [10]. Using this strategy of reduction to effective resistance estimation, we
also create an algorithm to estimate the circuit rank of a graph.

1.1 Contributions and Comparison to Previous Work

All of our algorithms are in the adjacency matrix model (see Section 2), in which one can
query elements of the adjacency matrix of the input graph. This contrasts with work such as
[7] which study similar problems in the adjacency list model.

We note all of our algorithms are space efficient, in that the number of qubits required
are logarithmic in the number of edges and vertices of the graph. (This property is inherited
directly from the basic st-connectivity span program.) We do not analyze time complexity,
but, as mentioned above, it is the product of the query complexity, which we analyze, and
the time required to implement certain quantum walk unitaries. (We leave this analysis for
future work.)

We next discuss the context of each of our results in turn. In this section, we assume the
underlying graph is the complete graph on n vertices to more easily compare to previous
work, although in the main body of the paper, we show our results apply more to generic
underlying graphs with n vertices and m edges.

Cycle Detection

Cade et al. [7] describe a nearly optimal O(n3/ 2) quantum query algorithm for cycle detection
via reduction to st-connectivity, almost matching the lower bound of Q(n?/2) [8]. In this
work, we find an algorithm that removes the log-factors of the previous result, giving an

! In Ref. [2], Aring designed algorithms for connectivity and bipartiteness which, while not strictly
reductions to st-connectivity, are very closely related.
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algorithm with optimal O(n3/ 2) query complexity. Moreover, our algorithm is simpler than
that in Ref. [7]: their approach requires solving an st-connectivity problem within a Grover
search, while our approach is entirely based on solving an st-connectivity problem.

We furthermore prove that if promised that (in the case of a cycle) the circuit rank of
the graph is at least r or (in the case of no cycles) there are at most u edges, then the query
complexity of cycle detection is O(uy/n/r).

Bipartiteness

An optimal quantum query algorithm for bipartiteness was created by Arins [2], matching the
lower bound of Q(n?/?) [19]. However, this algorithm was not known to be time efficient (and
did not use a reduction to st-connectivity, although the ideas are quite similar to the approach
here and in [7]). In Ref. [7], Cade et al., using similar ideas as in their cycle detection
algorithm, create a bipartiteness checking algorithm using a reduction to st-connectivity
that is again embedded in a search loop, which is optimal up to logarithmic factors in query
complexity. Our algorithm for bipartiteness removes the logarithmic factors of 7], and so
recovers the optimal query complexity of [2], while retaining the simplicity of the reduction
to st-connectivity.

Even-length Cycle Detection

The problem of detecting an even-length cycle can provide insight into the structure of the
graph. For example, it is straightforward to see that in a graph with no even cycles, no edge

can be involved in more than one cycle. Classically this problem requires ©(n?) queries [17].

We are not aware of an existing quantum algorithm for this problem; we provide an O(n?/?)
query algorithm.

Estimation of Circuit Rank

Circuit rank parameterizes the number of cycles in a graph: it is the number of edges that
must be removed before there are no cycles left in a graph. It has also been used to describe
the complexity of computer programs [13]. We give an algorithm to estimate the circuit rank

r to multiplicative error € with query complexity 9] (6*3/ 2y/nt/ r) in the generic case and

query complexity 9] (6_3/ 2y/n3/ T) when promised that the graph is a cactus graph. When
additionally promised that the circuit rank is large, these algorithms can have non-trivial
query complexity. We are aware of no other classical or quantum query algorithms that
determine or estimate this quantity.

Odd-length Path

We provide an algorithm to determine whether there is an odd-length path between two
specified vertices that uses O(n3/ %) queries. While perhaps not the most interesting problem
on its own, we effectively leverage this algorithm as a subroutine in several of our other
constructions.

1.2 Open Problems

Throughout this paper, our strategy is to take a graph G, use it to create a new graph G’,
such that there is an st-path through G’ if and only if G has a certain property. We analyze
the query complexity of the algorithms we create in detail, but not the time complexity. The
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time complexities of our algorithms depend on the time required to implement one step of a
quantum walk on the graph G’ (see U from Theorem 4 and Ref. [11]) 2. We strongly suspect
that the highly structured nature of the graphs G’ we consider would yield time-efficient
algorithms, but we have not done a full analysis.

In the case of our algorithm for cycle detection, we create a graph G’ whose effective
resistance is the circuit rank of the original graph G. For the graphs we design for the
other algorithms in this paper, do the effective resistance or effective capacitance have
relevant meanings?

The query complexity of our algorithm for estimating the circuit rank of a graph depends
on bounding a quantity called the approximate negative witness. While the best bound we
currently have is O(n?*), we believe this is not tight. Obtaining a better bound would not
only be interesting for these results, but could provide insight into more general quantum
estimation algorithms.

Several of our results rely on a graph that tests for paths of odd length, i.e. those
whose length modulo 2 is 1. Is there a way to adapt our algorithm to test for paths of
arbitrary modulus?

Ref. [1] provides a list of complete problems for symmetric logarithmic space (SL), of which
st-connectivity is one such problem. It would be interesting to study the query complexity
of these problems to see if reducing to st-connectivity always gives an optimal approach.

Finally, it would be nice to improve the quantum lower bounds and classical bounds
for several of these problems. In particular, we would like to obtain better quantum lower
bounds for the even-length cycle detection and odd-length path detection problems. (For
the later, the best quantum lower bound is Q(n) [4].) We expect that the promise of large
circuit rank also aids a classical algorithm for cycle detection, and it would be interesting to
know by how much, in order to compare to our quantum algorithm.

2 Preliminaries

We consider undirected graphs G = (V, E) where V is a set of vertices and E a set of edges;
we often use E(G) and V(G) to denote the sets of edges and vertices of a graph G when
there are multiple graphs involved. If clear which graph we are referring to, we will use n for
the number of vertices in the graph, and m for the number of edges. For ease of notation, we
associate each edge with a unique label £. For example, we refer to an edge between vertices
u and v labeled by ¢ as {u,v}, or simply as ¢. In general, we could consider a weighting
function on the edges or consider graphs with multi-edges (see [10] for more details on how
these modifications are implemented) but for our purposes, we will always consider all edges
to have weight 1, and we will only consider graphs with a at most a single edge between any
two vertices.

We will use the following notation regarding spanning trees: if GG is a connected graph
and £ € E(G), then we use t;(G) to denote the number of unique spanning trees of G that
include edge ¢, and we use t(G) to denote the total number of unique spanning trees of G.

In Section 3 we describe a quantum algorithm for estimating the circuit rank of a graph,
which is a quantity that is relevant for a number of applications, like determining the
robustness of a network, analyzing chemical structure [18], or parameterizing the complexity
of a program [13].

2 In Ref. [7], they claim that their algorithms are time efficient, but their time analysis only considers the
case of the underlying graph being the complete graph, while the actual graph used in their algorithms
is not the complete graph. We expect that their algorithms can be implemented efficiently, but more
work is needed to show this.
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» Definition 1 (Circuit Rank). The circuit rank of a graph with m edges and n vertices is
m —n+ Kk where K is the number of connected components. Alternatively, the circuit rank of
a graph is the minimum number of edges that must be removed to break all cycles and turn
the graph into a tree or forest.

We also consider a special class of graphs called cactus graphs:

» Definition 2. A cactus graph is a connected graph in which any two simple cycles share at
most one common vertex.

We will in particular use cactus forests, in which all components of the graph are cacti. For
cactus forests, the circuit rank is simply the total number of cycles in the graph.
The final type of graph we need is the bipartite double graph:

» Definition 3. Given a graph G, the bipartite double of G, denoted K€, is the graph that
consists of two copies of the vertices of G (with vertex v € V(G) labeled as vy in the first
copy and vy in the second), with all original edges removed, and edges {ug,v1} and {vo,u1}
created for each edge {u,v} € E(G). This graph is also known as the Kronecker cover of G,
or G x Ky, and its adjacency matriz is given by G @ X (where X is the Pauli X operator.)

We associate edges of G with literals of a string = € {0,1}", where N < |E|, and a literal
is either x; or T; for i € [N]. The subgraph G(z) of G contains an edge ¢ if ¢ is associated
with z; and x; = 1, or if ¢ is associated with Z; and z; = 0. (See [10] for more details on
this association.)

We assume that we have complete knowledge of G, and access to x € {0,1}" via a black
box unitary (oracle) O,. This oracle acts as O,i)|b) = |i)|b® x;), where z; is the i*" bit of z.
Then our goal is to use O, as few times as possible to determine a property of the graph G(z).
The number of uses of O, required for a given application is called the query complexity.

We will be applying and analyzing an algorithm for st-connectivity, which is the problem
of deciding whether two nodes s,t € V(@) are connected in a graph G(z), where G is initially
known, but z must be determined using the oracle, and we are promised x € X, where
X C {0,1}". An st-path is a series of edges connecting s to t.

Given two instances of st-connectivity, they can be combined in parallel, where the two
s vertices are identified and labeled as the new s, and the two t vertices are identified and
labeled as the new ¢. This new st-connectivity problem encodes the logical OR of the original
connectivity problems, in that the new graph is connected if and only if at least one of the
original graphs was connected. Two instances of st-connectivity can also be combined in
series, where the s vertex of one graph is identified with the ¢ vertex of the other graph,
and relabeled using a label not previously used for a vertex in either graph. This new
st-connectivity encodes the logical AND of the original connectivity problems, in that the
new graph is connected if and only if both of the original graphs were connected. This
correspondence was noted in [14] and applied to quantum query algorithms for Boolean
formulas in [11] and for determining total connectivity in [10].

The key figures of merit for determining the query complexity of the span-program-based
st-connectivity quantum algorithm are effective resistance and effective capacitance [10]. We
use R;;(G(x)) to denote the effective resistance between vertices s and ¢ in a graph G(z),

and we use C, (G(x)) to denote the effective capacitance between vertices s and ¢ in G(z).

These two functions were originally formulated to characterize electrical circuits, but are also
important functions in graph theory. For example, effective resistance is related to the hitting
time of a random walk on a graph. (See [6] for more information on effective resistance
and capacitance in the context of graph theory.) For this paper, we don’t require a formal
definition of these functions, but can instead use a few of their well known and easily derived
properties (see [10] for formal definitions):
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Effective Resistance

1. If G consists of a single edge between s and ¢, and G(z) = G, then R, ;(G(x)) = 1.

2. If s and ¢ are not connected in G(z), then R, ;(G(x)) = oo.

3. If G consists of subgraphs GG; and G2 connected in series as described above, then
Ry y(G(x)) = Rou(Gr(2)) + Ry t(Ga(2)).

4. If G consists of subgraphs G and G5 connected in parallel as described above, then
(Roa (G(@))) ™" = (Rou (G (@)™ + (R (Gala)) .

5. If G(z) is a subgraph of G(y), then R, (G(x)) > Rs+(G(y)).

6. If s and ¢ are connected in G(z), then R, .(G(z)) < d, where d is the length of the
shortest path from s to .

Effective Capacitance

1. If G consists of a single edge between s and ¢, and G(x) does not include the edge {s,t},
then C, .(G(x)) = 1.

2. If s and t are connected in G(x), then Cs(G(z) = oo.

3. If G consists of subgraphs G; and G5 connected in series as described above, then
(Rot(G(@)) " = (Rot(G1(2)) " + (Rep(Ga(2)))

4. If G consists of subgraphs G'; and G5 connected in parallel, then
R 1(G(2)) = Re 1(Gr(x)) + Ro 1 (Ga())-

5. If G(z) is a subgraph of G(y), then C;(G(z)) < Cs (G (y)).

6. If s and ¢ are not connected in G(z), Cs +(G(x)) is less than the size of the smallest cut
in G between s and t.

We analyze our algorithms using these properties rather than first principles to demon-
strate the relative ease of bounding the query complexity of span program algorithms for
st-connectivity problems.

Now we can describe the performance of the span program algorithm for deciding
st-connectivity:

» Theorem 4. [10] Let G = (V,E) be a graph with s,t € V(G). Then there is a span
program algorithm whose bounded-error quantum query complexity of evaluating whether s
and t are connected in G(z) promised x € X and X C {0,1}" is

0 max R, (G(x)) x max Cs1(G(2)) | - (1)
Rs,t(G(z))#00 Cs.t(G(z))#0

Furthermore, the space complezity is

O(max{log(|E1), log([V'])}), (2)

and the time complexity is U times the query complexity, where U is the time required to
perform one step of a quantum walk on G (see [11]).

Ito and Jeffery describe an algorithm that can be used to estimate R, (G (z)). It depends
on a quantity called the negative witness size, which we denote R_(x, G) (this is the quantity
w—(x) of [9] tailored to the case of the st-connectivity span program). Let £(U,R) be the
set of linear maps from a set U to R. Then we have the following definition:
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» Definition 5 (See Theorem 4.2, [9]). Let G = (V, E) with s,t € V. If G(x) is connected
from s tot, let V, CV be the set of vertices connected to both s and t. Then there is a unique
map Vi € L(Vz,R) such that Vy(s) =1, Va(t) =0, and 3¢, yepc)) Valu) — Ve(v))? is
minimized. Then the negative approrimate witness size of input x on the graph G is

R_(z,G) = min > Ww) - V). (3)

VEL(V,R):V(u)=Vs (u) if u€Vy (wo]€E

» Theorem 6. Let G be a graph with s,t € V(G). Then the bounded-error quantum
query complezity of estimating R, (G(x)) to multiplicative error ¢ promised s and t are

connected in G(z) and z € X for X C {0,1} is O (6_3/2 Rs}t(G(x))]TZ) , where R_ =

maxgex B_(z,G).

3 Quantum Algorithms for Detecting and Characterizing Cycles
In this section, we prove the following results on detecting and characterizing cycles:

» Theorem 7. Let G be the complete graph on n vertices. If we are promised that either
G(x) is connected with circuit rank at least v, or G(x) is not connected and contains at most
u edges, then the bounded-error quantum query complexity of detecting a cycle in G(x) is

O(pr/n/T).

» Theorem 8. Given a generic graph G with m edges, and a parameter ¢ < 1 (here ¢ can
be a constant or can depend on the input) there is a quantum algorithm that estimates the

circuit rank v of G(x) to multiplicative error € using 0 (6_3/2\/771/1/7") applications of O,
under the promise that G(x) has at most p edges.

A few notes on these theorems:

Theorem 7 has a worst case upper bound of O(n3/ 2), which matches the optimal lower
bound. This is because r > 1 (r takes value 1 in the case of a single cycle) and p <n —1
(since a graph without cycles must be a forest).

In Theorem 8, if r and € are O(1) and if nothing is known about u (in which case it could
be as large as m), one would need to query all edges of the graph. However, given a
promise that r is large, for example if 7 = Q(m?) for a positive constant 3, or a promise
on u, we can do better than the trivial classical algorithm of querying all edges.

We prove both of these results using a reduction from cycle detection to st-connectivity.
Specifically we construct a graph Gy such that Geyc(x) has an st-path if and only if G(z)
has a cycle. We note that there is a cycle in G(z) if and only if an edge {u,v} is present
in G(z) and there is a path from u to v in G(z) that does not use the edge {u,v}. Thus,

our reduction tests every edge in G to determine whether these two conditions are satisfied.

We use the encoding of logical AND and OR into st-connectivity using serial and parallel
composition, as described in Section 2 and in Refs. [14, 11].

We now describe how to build up Gy, from simpler graphs. For an edge ¢ = {u,v} € E(G)
let G, be the graph that is the same as G, except with the edge £ removed, and the vertex
u labeled as s, and the vertex v labeled as t. (The choice of which endpoint of ¢ is s and
which is ¢ is arbitrary - either choice is acceptable). Each edge in G, is associated with the
same literal of x as the corresponding edge in G. Thus there is an st-path in G, (x) if and
only if there is a path between u and v in G(x) that does not go through {u,v}.
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Next, for an edge ¢ € E(G) let G} be the graph with exactly two vertices labeled s and t,
and one edge between them. The one edge in thz is associated with the same literal bit of =
as ¢. Thus there is an st-path in G} () if and only if £ € E(G(x)).

Next, we create the graph Gy by connecting G} and G, in series, while leaving the
associations between edges and literals the same. Then because connecting st-connectivity
graphs in series is equivalent to logical AND, there is an st-path through G(z) if and only if
there is a cycle in G(z) passing through ¢.

Finally, we create the graph Gey. by connecting all of the graphs G, (for each ¢ € E(G))
in parallel, again retaining the association between edges and literals. Since attaching graphs
in parallel is equivalent to logical OR, Gecyc(z) has an st-path if and only if there is a cycle
through some edge of G(x). See Figure 1 for an example of the construction of Geye.

(b)

Figure 1 (a) A graph G(z), where edges 2, 3, 5, and 6 are present (solid lines indicate the
presence of an edge, dashed lines indicate the absence of an edge). (b) The graph Geyc(z) that G(x)
produces. There is a cycle involving the edges 2, 3, and 6 in G(z), and thus there are paths from s
to t in the subgraphs G2, Gs, and G¢ in Geyc(z).

In order to use Theorem 4 to determine the query complexity of deciding st-connectivity
on Geye(z), we next analyze the effective resistance (respectively capacitance) of Geye()
in the presence (resp. absence) of cycles in G(z). We first show the following relationship
between effective resistance and circuit rank:

» Lemma 9. Let r be the circuit rank of G(z). Then

1

Roa(Geyela) = - (4)

The proof of Lemma 9 uses the following result from Ref. [5] relating effective resistance
and spanning trees:

» Theorem 10 ([5]). Let {u,v} = ¢ be an edge in a connected graph G. Then the effective
resistance between vertices u and v is equal to the number of spanning trees that include an
edge £, divided by the total number of spanning trees:

Run(@) =15 9

Proof of Lemma 9. Using the rules that the effective resistance of graphs in series adds,
(Effective Resistance Property 3), and the inverse effective resistance of graphs in parallel
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adds, (Effective Resistance Property 4), we have:
-1
R 1(Geye(x)) = > 1-R,(G@)] . (6)
(u,v)EE(G(x))
(We include this relatively straightforward calculation in Appendix A.)

We next relate the righthand side of Equation (6) to the circuit rank. Let G(z) be a
graph with & connected components. Let g;(x) be a subgraph consisting of the " connected
component of G, with n; vertices. We count the number of times edges are used in all
spanning trees of ¢;(z) in two ways. First, we multiply the number of spanning trees by the
number of edges in each spanning tree. Second, for each edge we add the number of spanning
trees that include that edge. Setting these two terms equal, we have,

(@) =)= Y telgi(@)). (7)
0 E(g:(x))

Rearranging, and using Theorem 10 we have

mo1= Y M@)o s g (), ®)

t(gi
tes@en (@) @

where if the sum has no terms (i.e. E(g;(z)) = @), we define it to be zero.
Summing over all £ components of G(z), we have

n—k= Z R, (G(x)), 9)

{u,v}€E(G)

Finally, using the fact that

Z 1=m, (10)

{uv}€E(G(2))

where m is the number of edges in G(z), and combining with Equation (9), and Definition 1,
we have

> 1-Ru(G@) =T (11)

{u,v}eE(G(x))

Finally Equation (11) and Equation (6) give the result. <

We next analyze the effective capacitance of Geyc(x) in the case of no cycles in G(z):

» Lemma 11. If G is the complete graph on n vertices and G(x) has no cycles and at most
w edges, then, Cs (G eye(x)) = O(np?).

Proof. We first analyze the effective capacitance of the subgraph Gy(z) in two cases, when
¢ € E(G(x)) and when £ ¢ E(G(x)).

When ¢ € E(G(z)), then using Effective Capacitance Properties 2 and 3, we have
Cs+(Gy(z)) = Cs4(G, (x)). Then using Effective Capacitance Property 6, we have that
Cs+(G, (x)) is less than the size of the cut between vertices s and t in G, (x). Since there
are p edges and n vertices in G(z), this quantity is bounded by O(nu). (The worst case is
when there are Q(u) vertices connected to s, e.g.)

When ¢ ¢ E(G(z)), then using Effective Capacitance Properties 1 and 3, Cs 1 (Ge(x)) =
o(1).

Since there are n—pu graphs Gy(x) with ¢ ¢ F(G(x)) and p graphs Gy(z) with £ € E(G(x)),
using Effective Capacitance Property 4 for graphs connected in parallel, we have that
Cot (Geyel)) = O(un). “
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In order to prove Theorem 8, we need to analyze R_(z, Goye):

» Lemma 12. For a graph G with m edges, let X = i:c : G(x)contains a cycle and
|E(G(x))| < p} and let R = maxgex R_(x,Gcye). Then R_ = O(mp).

Proof. Looking at Equation (3), for £ ¢ E(G(x)), we have that all v € V(Gy) (except s
and t) are not in V,, so any choice of ¥V on these vertices will give an upper bound on
the minimizing map. We choose V(v) = 0 for these vertices to give us our bound, which
contributes 1 to the sum for each such subgraph. Thus edges in these subgraphs contribute
m — p to the total.

For ¢ € E(G(x)), for vertices in these subgraphs which are also part of V,,, they will
get mapped by V, to values between 0 and 1 inclusive (since V, can be seen as the voltage
induced at each point by a unit potential difference between s and ¢). If we choose the
remaining vertices to also get mapped to values between 0 and 1 by V, we will again have an
upper bound on the minimum. Then (V(u) — V(v))® < 1 across all edges in these subgraphs.
Since there are m edges in each subgraph, and p such subgraphs, edges in these subgraphs
contributes mu to the total.

Combining the two terms, we have that R_(z, Goye) <m — p+mp = O(mp). <

Now we can put these results together to prove Theorem 8:

Proof of Theorem 8. Using Theorem 6, Lemma 9, and Lemma 12, we can estimate one
over the circuit rank (i.e. 1/r) to multiplicative error e. That is, we get an estimate of 1/r
within (1 £ ¢€)/r. Now if we take the inverse of this estimate, we get an estimate of of r
within r/(1 £ €). But since € < 1, taking the Taylor expansion, we have 1/(1t¢) =~ (1 +¢)
to first order in e. <

4  Algorithms for Detecting Odd Paths, Bipartiteness, and Even
Cycles

In this section, we note that a slight variation on one of the st-connectivity problems
considered by Cade et al. in Ref. [7] can be used to detect odd paths and bipartiteness;
furthermore the bipartiteness testing algorithm we describe is optimal in query complexity,
and far simpler than the bipartiteness algorithm in [7]. We then use a similar construction
to create a reduction from even-length cycle detection to st-connectivity.

All of these algorithms involve the bipartite double graph of the original graph. Given a
graph G with vertices u and v, let KEU be the bipartite double graph of G, with vertex ug
relabeled as s, and vertex vy relabeled as ¢. To define K¢ (), if {z,y} € E(G) is associated
with a literal, then {zo,y1} and {21,y0} in E(KS,) are associated with the same literal.

We first show a reduction from detecting an odd-length path to st-connectivity on K¢:

» Lemma 13. Let G be a graph with vertices u and v. There is an odd-length path from u
to v in G(x) if and only if there is an st-path in KS ()

u,v

Proof. Suppose there is an odd-length path from u to v in G(x). Let the path be
w,n*,n%,...,n% v where k is an even integer greater than or equal to 0. Then there is
a path s,ni,m2,...,nk t, in Kﬁv(x) (where the path goes through n! . .). For the other
direction, if there is a path from s to ¢ in ng (x), there is an odd-length path from u to v
in G. Note that any path in KS’Z »(z) must alternate between 0- and 1-labeled vertices. If
there is a path that starts at a 0-labeled vertex and ends at a 1-labeled vertex, it must be an
odd-length path. Then there must be the equivalent path in G(z), but without the labeling.
See Figure 2 for an example of this reduction. <
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(b)

Figure 2 (a) A simple example of a graph G with an odd-length path between green and red
vertices. (b) The bipartite double graph K )4 4 with a path between s and ¢.

green,re

» Theorem 14. Let G be a graph with n vertices and m edges, with vertices w and v. Then
there is a bounded-error quantum query algorithm that detects an odd length path from u to v
in G using O(y/nm) quertes.

Proof. Using Lemma 13 we reduce the problem to st-connectivity on Kﬁw Then using
Theorem 4, we need to bound the largest effective resistance and effective capacitance of
K¢, (z) for any string z. The longest possible path from s to t in K¢, () is O(n) so by
Effective Resistance Property 6, Rs,t(Kﬁv (z)) = O(n). The longest possible cut between s
and ¢ is O(m), so by Effective Capacitance Property 6, Cy (K&, (2)) = O(m). This gives the
claimed query complexity. |

Note ug is connected to u; in K (z) if and only if there is an odd-length path from u
to itself in G(x), where this path is allowed to double back on itself, as in Figure 3. This
odd-length path in turn occurs if and only if the connected component of G(z) that includes
u is not bipartite (has an odd cycle)! Thus if we are promised that G(x) is connected, we
can pick any vertex in G, run the algorithm of Theorem 14 on Kf +(2), and determine if the
graph is bipartite, which requires O(y/nm) queries.

(a)
(b)

Figure 3 (a) A graph G with an odd cycle. (b) The bipartite double graph K¢ with a path
between the two green vertices.

On the other hand, if we are not promised that G(z) is connected, we simply need to
check whether there is an odd path from any of the n vertices of G to itself, and we now
show that doing this check does not increase the query complexity. We use a similar strategy
as with cycle detection:

6:11
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» Theorem 15. Let G be a graph with n vertices and m edges. Then there is a bounded-
error quantum query algorithm that detects an odd cycle (in effect, non-bipartiteness) in

O(y/nm) queries.

Proof Sketch. Let Gy, be the graph that consists of the the graphs Kﬁu composed in
parallel for all u € V(G). This amounts to evaluating the logical OR of there being an odd
cycle connected to any vertex in G.

A similar analysis as in cycle detection shows that the effective resistance of Gpip, is O(1),
if there is an odd cycle. On the other hand, since there are n copies of K¢ in this new graph,
and each copy has m edges, the largest possible cut is O(nm). Applying Theorem 4 gives

the result. |

()
(b)

Figure 4 (a) An simple example of a graph G with an even-length cycle. (b) The bipartite double

graph Kﬁem,md connected in series with G%md’grem}. We see there is a path from s to ¢ in this

graph, corresponding to an even-length cycle passing through £.

Finally, we show how to detect even cycles:

» Theorem 16. Let G be a graph with n vertices and m edges. Then there is a bounded-error
quantum query algorithm that detects an even-length cycle in O(y/nm) queries.

Proof. For an edge ¢ = {u,v} € E(G), note that there is an st-path in Kff_, if and only
if there is an odd-length path from w to v that does not use the edge ¢ itself. Thus if we

consider the graph composed of G} and Kﬁ % in series, which we denote Gf , there is an
st-path if and only if there is an even-length cycle through ¢. Finally, if we compose the
graphs Gf in parallel for all £ € E(G), we obtain a graph that has an st-path if and only if
there is an even cycle passing through some edge in G, as in Figure 4.

As in our previous analyses of cycle detection and bipartiteness, if there is an even cycle,
the effective resistance will be O(1). On the other hand, if there is no even-length cycle, then
it is a fairly well known fact that the number of edges in G is O(n). Then similar to previous
analyses, for each graph GF such that £ € E(G), we have that the cut is O(m). Otherwise,
for each graph GEF such that ¢ € E(G), we have that the cut is O(1). Thus a bound on
the size of the total cut is O(n? + nm) = O(nm) (assuming that n = O(m).) Applying
Theorem 4 gives the result. |
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of a sum of R, ,(G) where (u,v,¢) is an edge on a cycle in G.
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Consider an edge {u,v} € E(G). Then using Effective Resistance Property 4 (for graphs
composed in parallel), we have

1 1
Ruo(G) b R (G)) (12)

Rearranging, we have

R, .(G)

T 1= Rul(G) (13)

R, (Gy)

Then using Effective Resistance Property 3 (for graphs composed in series), we have that

R, +(Gy) = Re+ (G, ) +1

__ Ruo(G)
T Ry
1
- 1 - Ru,U(G) . (14)

Finally, using Effective Resistance Property 4 (graphs composed in parallel) again, we have

1
s,t( CyC) {u,v,}€E(G)
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—— Abstract
We provide an algorithm that uses Bayesian randomized benchmarking in concert with a local
optimizer, such as SPSA, to find a set of controls that optimizes that average gate fidelity. We
call this method Bayesian ACRONYM tuning as a reference to the analogous ACRONYM tuning
algorithm. Bayesian ACRONYM distinguishes itself in its ability to retain prior information from
experiments that use nearby control parameters; whereas traditional ACRONYM tuning does not
use such information and can require many more measurements as a result. We prove that such
information reuse is possible under the relatively weak assumption that the true model parameters
are Lipschitz-continuous functions of the control parameters. We also perform numerical experiments
that demonstrate that over-rotation errors in single qubit gates can be automatically tuned from 88%
t0 99.95% average gate fidelity using less than 1kB of data and fewer than 20 steps of the optimizer.
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1 Introduction

Tuning gates in quantum computers is a task of fundamental importance to building a
quantum computer. Without tuning, most quantum computers would have insufficient
accuracy to implement a simple algorithm let alone achieve the stringent requirements on
gate fidelity imposed by quantum error correction [12, 4]. Historically, qubit tuning has
largely been done by experimentalists refining an intelligent initial guess for the physical
parameters by hand to account for the ideosyncracies of the device. Recently, alternatives
have been invented that allow devices to be tuned in order to improve performance on
real-world estimates of gate quality. These methods, often based on optimizing quantities
such as average gate fidelities, are powerful but come with two drawbacks. At present all such
methods require substantial input data to compute the average gate fidelity and estimate its
gradient, and at present no method can use information from the history of an optimization
procedure to reduce such data needs. Our approach, which we call Bayesian ACRONYM
tuning (or BACRONYM), addresses these problems.

BACRONYM is based strongly on the ACRONYM protocol invented by Ferrie and
Moussa [11]. There are two parts to the ACRONYM gate tuning protocol. The first uses
randomized benchmarking [25] to obtain an estimate of gate fidelity as a function of the
controls. The second optimizes the average gate fidelity using a local optimizer such as Nelder-
Mead or stochastic gradient descent. While many methods can be used to estimate the average
? John Gamble, Christopher Granac%e, and Nathan Wiebe;
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gate fidelity, randomized benchmarking is of particular significance because of its ability
to give an efficient estimate of the average gate fidelity under reasonable assumptions [30],
and because of its amenability to experimental application [17]. The algorithm then uses a
protocol, similar to SPSA (Simultaneous Perturbation Stochastic Approximation) [33], to
optimize the estimate of the gate fidelity by changing the experimental controls and continues
to update the parameters until the desired tolerance is reached.

The optimization used in ACRONYM simply involves varying a parameter slightly and
applying the fidelity estimation protocol from scratch every time. When the a quantum system
is evaluated at two nearby points in parameter space, an operation performed repeatedly in
descent algorithms, the objective function does not typically change much in practice. Since
ACRONYM does not take this into account, it requires more data than is strictly needed.
Thus, if ACRONYM could be modified to use prior information extracted from the previous
iteration in SPSA, the data needed to obtain an estimate of the gradient can be reduced.

Bayesian methods provide a natural means to use prior information within parameter
estimation and have been used previously to analyze randomized benchmarking experiments.
These methods, yield estimates of the average gate fidelity based on prior beliefs of about the
randomized benchmarking parameters as well as the evidence obtained experimentally [13].
To use a Bayesian approach, we begin by taking as input a probability distribution for the
average gate fidelity (AGF) as function of the control parameters 8, Pr(AGF|6). This is our
prior belief about the average gate fidelity. In addition to a prior, we need a method for
computing the likelihood of witnessing a set of experimental evidence E. This is known as the
likelihood function; in the case of Bayesian randomized benchmarking, it is Pr(F|AGF; ).
Given these as input, we then seek to output an approximation to the posterior probability
distribution, i.e., the probability with which the AGF takes a specific value conditioned on
our prior belief and E. To accomplish this, we use Bayes’ theorem, which states that

Pr(AGF|0) Pr(E|AGF;6) 1
Pr(E19) ’ )

Pr(AGF|E;0) =

where Pr(E|0) is just a normalization constant. From the posterior distribution Pr(AGF|E; 0)
we can then extract a point estimate of the AGF (by taking the mean) or estimate its
uncertainty (by computing the variance).

Our work combines these two ideas to show that provided the quantum channels that
describe the underlying gates are continuous functions of the control parameters then the
uncertainty in parameters like AGF that occurs from transitioning from 6 — 6’ in the
optimization process is also a continuous function of ||@ — 6||. This gives us a rule that
we can follow to argue how much uncertainty we have to add to our posterior distribution
Pr(AGF|E; 0) to use it as a prior Pr(AGF|6’) at the next step of the gradient optimization
procedure.

1.1 Notation

The notation that we use in this paper necessarily spans several fields, most notably Bayesian
inference and randomized benchmarking theory. Here we will introduce the necessary notation
from these fields in order to understand our results. For any distribution Pr(x) over a vector
x of random variables, we write supp(Pr(x)) to mean the set of vectors & such that Pr(x) > 0.
When it is clear from context, we will write supp(x|y) in place of supp(Pr(x|y)).

Let # = C? be a finite-dimensional Hilbert space describing the states of a quantum system
of interest, and let L(#) be the set of linear operators acting on H. Let Herm(#H) € L(H) and
U(H) € L(H) be the sets of Hermitian and unitary operators acting on H, respectively. For the
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most part, however, we are not concerned directly with pure states |¢)) € H, but with classical

distributions over such states, described by density operators p € D(H) C Herm(H) C L(H).

Whereas H transforms under U(H) by left action, D(H) transforms under U(#) by the
group action e : U(H) x L(H) — L(H), given by U e p := UpU'. We note that e is linear
in its second argument, such that for a particular U € U(H), Ue : L(H) — L(H) is a
linear function. We thus write that U ¢ € L(L(#)). Moreover, since U e is a completely
positive and trace preserving map on L(H), we say that U e is a channel on H, written
C(H) C L(L(H)) € L(H) — L(H). More generally, we take C(?) to be the set of all such
completely positive and trace preserving maps acting on L(H).

1.2 Problem Description

Before proceeding further, it is helpful to carefully define the problem that we address
with BACRONYM. In particular, let G = (Vp,...,V,—1) C U(H) be a group and a unitary
2-design [5], such that G is appropriate for use in standard randomized benchmarking. Often,
G will be the Clifford group acting on a Hilbert space of dimension d, but smaller twirling
groups may be chosen in some circumstances [18]. We will consider that the generator 7' is
a gate, which we would like to tune to be V without loss of generality, as a function of a
vector @ of control parameters, such that T'= T'(0). We write that V; 1L 6 for all ¢ > 0 to
indicate that the generators {Vp, ..., Vp_1} are not functions of the controls @ (note that Vj is
manifestly not a function of the controls because it represents the ideal action). Nonetheless,
it is often convenient to write that V; = V;(6)) with the understanding that 9y, V; = 0 for all
i > 0 and for all control parameters 6;.

In order to reason about the errors in our implementation of each generator, we will write
that the imperfect implementation V' € C(#) of a generator V € {V,...,V;_1} is defined as

V=Ay(Ve) (2)
which acts on p as

Vipl = Av[VpVT], (3)

where Ay is the discrepancy channel describing the errors in V. Note that for an ideal
implementation, Ay is the identity channel.

We extend this definition to arbitrary elements of G in a straightforward fashion. Let
U := Hi@.(U) Vi, where 4(U) is the sequence of indices of each generator in the decomposition
of U. For instance, if G = (H, S) for the phase gate S = diag(1,4), then v X = HSH is
represented by ¢(U) = (0,1,0). Combining the definition of U with Eq. (2), the imperfect

composite action U is

U= [] Vi= J] Avi(Vie):=Ay(Ue), (4)
i€i(U) i€i(U)

R

where the final point defines the composite discrepancy channel Ay. By rearranging the
equation above, we obtain

Av=UWe)= [ [] AvVie)| (U'e). (5)
i€i(U)

7:3
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Returning to the example v X = HSH, we thus obtain that

Ay =An(He)As(Se)Ay(He)(HISTH) o) (6)

is the discrepancy channel describing the noise incurred if we implement v/ X as the se-
quence HSH.

Equipped with the discrepancy channels for all elements of G, we can now concretely
state the parameters of interest to randomized benchmarking over G. Standard randomized
benchmarking without sequence reuse [13], in the limit of long sequences [35], depends only
on the state preparation and measurement (SPAM) procedure and on the average gate fidelity
AGF(Ayet), where

1
Aver = Eyounio) [Au] = €] Z Ay (7)
UeG

is the reference discrepancy channel, obtained by taking the expectation value of the discrep-
ancy channel Ay over U sampled uniformly at random from G, and where the average gate
fidelity is given by the expected action of a channel A over the Haar measure d,

AGF(A) :=/d¢<¢ | A @D [¥]) (8)

When discussing the quality of a particular generator, say T := Vj, we unfortunately cannot
directly access AGF(Ar) experimentally. However, interleaved randomized benchmarking
allows us to rigorously estimate AGF(ArAef) in the limit of long sequences and without
sequence reuse.

Our goal here is to find a set of control parameters that optimizes AGF(ArA,cf). To
state this more formally, suppose that T is a function of a vector 8 of control parameters
such that T'= T'(0). For all ideal generators, we write that V; L @ for all ¢ > 0 to indicate
that the other generators {Vp,...,V,_1} are not functions of the controls 8. We also assume
that V; 1L @ for all i > 0, so that T() = Ay, (8)V; is the sole generator we are optimizing.
We therefore aim to find 8 such that 8 = argmax (AGF(AT(@)Arcf)).

This problem has previously been considered by [7] and later by [22], who proposed
the use of interleaved randomized benchmarking with least-squares fitting to implement an
approximate oracle for AGF(Ar(6)Aer(6)). Taken together with the bounds showed by
[26] and later improved by [23], this approximate oracle provides an approximate lower bound
on AGF(A,er(0)). This lower bound can then be taken as an objective function for standard
optimization routines such as Nelder-Mead to yield a “fix-up” procedure that improves gates
based on experimental evidence. [11] showed an improvement in this procedure by the use
of an optimization algorithm that is more robust to the approximations incurred by the
use of finite data in the underlying randomized benchmarking experiments. In particular,
the simultaneous pertubative stochastic approximation (SPSA) [33], while less efficient for
optimizing exact oracles, can provide dramatic improvements in approximate cases such as
that considered by [11]. This advantage has been further shown in other areas of quantum
information, such as in tomography [10, 2].

We improve this result still further by using a Lipschitz continuity assumption on the
dependence of A1 on 0 to propagate prior information between optimization iterations. This
assumption is physically well-motivated: it reflects a desire that our control knobs have a
smooth (but not known) influence on our generators. Since small gradient steps cannot
greatly modify the average gate fidelity of interest under such a continuity assumption, the
prior distribution for each randomized benchmarking experiment is closely related to the
posterior distribution from the previous optimization iteration.
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Recent work has shown, however, that this approach faces two significant challenges. First,
the work of [30] has shown explicit counterexamples in which reconstructing AGF(Ar(0))
from AGF(A7(0)Ac:(0)) can yield very poor estimates due to the gauge dependence of this
inverse problem. Second, the work of [19] has shown that the statistical inference problem
induced by randomized benchmarking becomes considerably more complicated with sequence
reuse, and in particular, depends on higher moments such as the unitarity [34]. While
the work of [19] provides the first concrete algorithm that allows for learning randomized
benchmarking parameters with sequence reuse, we will consider the single-shot limit to
address the [30] argument, as this is the unique randomized benchmarking protocol that
provides gauge invariant estimates of AGF(A7(0)A£(0)) [31], and as this model readily
generalizes to include the effects of error correction [3].

In this work, we adopt as our objective function

F(6) = AGF(A7(6)Aet(6)). (9)

This choice of objective represents that we want to see improvements in the interleaved
average gate fidelity, regardless of whether they occur from a more accurate target gate or a
more accurate reference channel. In practice, these two contributions to our objective function

can be teased apart by the use of more complete protocols such as gateset tomography [27, 1].

We proceed in three steps. First, we demonstrate that the Lipschitz continuity of Az (8)
implies the Lipschitz continuity of F(0). We then proceed to show that this implies an
upper bound on Var[F (0 + d0)|data] in terms of Var[F(€)|data], such that we can readily
produce estimates F'(8) at each step of an optimization procedure, while reusing much of
our data to accelerate the process. Finally, we conclude by presenting a numerical example
for a representative model to demonstrate how BACRONYM may be used in practice.

2  Lipschitz Continuity of F'(0)

Proving Lipshitz continuity of the objective function is an important first step towards
arguing that we can reuse information during BACRONYM'’s optimization process. We need
this fact because if the objective function were to vary unpredictably at adjacent values of
the controls then finding the optima would reduce to an unstructured search problem, which
cannot be solved efficiently. Our aim is to first argue that continuity of A implies continuity
of F'. We then will use this fact to argue about the maximum amount that the posterior
variance can grow as the control parameters are updated, which will allow us to quantify how
to propagate uncertainties of F' at adjacent points later. We begin by recalling the definition
of Lipschitz continuity for functions acting on vectors.

» Definition 1 (Lipschitz continuity). Given a Euclidean metric space S, a function f : S — R
1s said to be Lipschitz continuous if there exists £ > 0 such that for all x,y € S,

[f(@) = f(y)| < L@ -y (10)
If not otherwise stated, we will assume || - || on vectors to be the Fuclidean norm || - ||2.

As an example, f(x) = y/z is not Lipschitz continuous on [0,1], but any differentiable
function on a closed, bounded interval of the real line is. We now generalize the notion of
Lipschitz continuity to channels. Let L(#) be the set of all linear operators acting on the
Hilbert space H, and let L(L(H)) be the set of linear operators acting on all such linear
operators (often referred to as superoperators).

7:5
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» Definition 2 (Lipschitz continuity of channels). Given a metric space S and a Hilbert space
H, we say that a function A : S — L(L(H)) is L-continuous or Lipschitz continuous in the %
distance if there exists £ > 0 such that for all x,y € S and p € D(H),

[A()[p] = Aol < L& -yl (11)
If not specified explicitly, the trace norm || - || = || - || is assumed for operators in L(H).

From the definition, we immediately can show the following:

» Lemma 3 (Composition of Lipschitz continuous channels). Let A, ® : S — L(L(#H)) be
Lipschitz continuous in the trace distance with constants L and M, respectively. Then,
(PA) : @ — O(x)A(x) is Lipschitz continuous in the trace distance with constant £ + M.

Proof. The proof of the lemma follows immediately after a few applications of the triangle
inequality under the assumption of continuity of the individual channels.

[(@A)(@)[p] — (PA)(y)lplllre = [[@(2)[A(2)[p]] — 2(y)[A(y)p]][lx
= [|2(2)[Az)[pl] — @()[A(y)]p]]
+@(2)[A(y)[pl] - 2(y)[A(y)[p]]]x
< || @(@)[A()[pl] — @(2)[Ay)[pl] [~

+ [ (@) [A(y)lpl] — 2(y)[Ay) [Pl
< [|@ () [A(2)[p]] — (@) [AY)[plllle + Mz -yl
< [[A@)[p] = A(y)[plllme + M|z -y
< Lz -yl + Mz —yl,
where the second-to-last line follows from contradiction on Helstrom’s theorem [36]. <
We note that the above lemma immediately implies that if A(@) is Lipschitz continuous

in the trace distance with constant £, then so is (PA)(0) for any channel & I 6, since ¢ can
be written as a channel that is Lipschitz continuous in the trace distance with constant 0.

» Corollary 4 (Composition of multiple Lipschitz continuous functions and channels). Let
Aoy A1,y A 0 S — L(L(H)) be Lipschitz continuous in the trace distance with constants L;
with i € [0,1,...,k]. Then, (AgA1---Ag) : & — Ao(x)A1(x) - - - Ap(x) is Lipschitz continuous
in the trace distance with constant Zf:o L.

» Lemma 5. Let A: S — L(L(H)) be a convex combination of channels,

where {p;} are nonnegative real numbers such that ), p; = 1, and where each A; : S —
L(L(#H)) 4s Lipschitz continuous in a norm || - ||, with constant L;. Then, A is Lipschitz
continuous with constant L =Y, p;L;

Proof. Consider an input state p € D(#). Then,

[A(8)[p] — AO")[p]ll. =

Zpi (Ai(8)[p] — Ai(6)[p])
< Zpi (|| As(8)[p] — As(8")[pl]],)
< ZPiCiHG Al

=L||6 -] <
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Table 1 A partitioning of the twirling group G = (H, S) based on the number of occurrences of
the target gate T'= S in the expansion of each element.

Go {1, H}

G {S,HS,SH,HSH}

G> {SS,HSS,SHS,SSH,HSHS, HSSH}

Gs {SSS,HSSS,SHSS,SSHS, HSHSS, HSSHS, SHSSH, HSHSSH}
G. {SHSSS,SSHSS, HSHSSS, HSSHSS}

The above lemmas can then be used to show that AGF (A7 (0)) is Lipschitz continuous
with constant £ when Ar(8) is Lipschitz continuous in the trace distance with constant £,
as we formally state in the following theorem.

» Theorem 6. Let A(0) be Lipschitz continuous in the trace distance with constant L. Then
AGF(A(0)) is Lipschitz continuous with constant L.

Proof. Recall that

AGE(A(6) = [ du(wlA ()] vl (13)

AGF(A(6) ~ AGP(A(®)| = | [ dw(wlA®)¥)(w] ~ A ) wllv] ) (14
< [ v |wIA® 0w - M)l (15

< [ v l|a@)w) @) - A1) @]l (16)

< [avcio-eo| (17)

—c|6— ¢ <

As noted in the introduction, we do not have direct access to AGF(Ar(0)), but rather to
AGF(Ar(0)A.et(0)). In particular, F'(0) := AGF(A7r(0)Aer(0)) may be estimated from the
interleaved randomized benchmarking parameters:

_dF(9) -1

p(0) : a1 (18a)
A(B) = Tr(BA(O)]p ~ 5)) (18b)
and B(0) := Tr(EAI.ef(Q)[%]), (18¢)

where d = dim(H), p is the state prepared at the start of each sequence, and E is the
measurement at the end of each sequence. We consider A and B later, but note for now
that up to a factor of d/(d — 1), Lipschitz continuity of F(@) immediately implies Lipschitz
continuity of p(@). Thus, we can follow the same argument as above, but using the channel
A1(0)Ae£(0) instead to argue the Lipschitz continuity of experimentally accessible estimates.

We proceed to show the Lipschitz continuity of F' and hence of p by revisiting the
definition Equation 7 of Ayer. In particular, we partition the twirling group as G = Uy, Gn,
where G, is the set of elements of G whose decomposition into generators {T,V,...,Vo_1}
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requires at least n instances of the target gate T. For instance, if G = (S, H) and the target
gate is T' = S, then Z € G4 since Z = S is the decomposition of Z requiring the least
copies of S. The partition of G in this example is shown as Table 1.

Using this partitioning of G, we can define an analogous partition on the terms occuring
in the definition of A,f(8),

0o Gn
Aet(0) =3 '|G'Aref,n<0>, (19)
n=0
1
where Ayer ,,(0) := Gl Z Ay (0). (20)
"uea,

» Theorem 7. If Ap(0) is Lipschitz continuous in the trace distance with constant L, then

Aves n(0) is Lipschitz continuous in the trace distance with constant nL. Furthermore Aycr(0)

is Lipshitz continuous with constant i := Y~ , n'l%"ll.

Proof. Consider one of the summands from Equation 20, and without loss of generality let
U=V,V;, -V, for the sequence of integer indices @ = (ig,%1,...,%). Then, by Equation 5,

Ay(0) = Ay, (0)(Vi, @)+ Ay, (0)(Vi, o) (UT o). (21)

Note that, Vi, V; L 0 since these are ideal channels and hence independent of the control
vector 6; these channels are Lipschitz continuous in the trace distance with constant O.
Further, each Ay, L 6 for ¢ > 0; these channels are also Lipschitz continuous in the trace
distance with constant 0. By assumption, we have Ay; is Lipschitz continuous in the trace
distance with constant £. Hence, each factor in Ay is Lipschitz continuous in the trace
distance with constant £ or 0, as detailed above.

By Corollary 4, Ay is Lipschitz continuous in the trace distance with constant mL, where
m counts the number of 0s in ¢ (corresponding to the number of times the target gate occurs
in the decomposition of U). By construction, m < n, so Ay is also Lipschitz continuous in
the trace distance with constant nL.

Using Lemma 5 to, we now have that Ae (@) is Lipschitz continuous in the trace
distance with constant ﬁ >_veg, "L = nL, which is what we wanted to show.

We thus have that A,e(0) is Lipschitz continuous in the trace distance with constant n.LC,
wherein

o, 1G]
n.f;n i (22)

is the average number of times that the target gate T appears in decompositions of elements

of the twirling group G. |

» Corollary 8 (Lipschitz continuity of A.¢(6)). Let

= Zn'%l (23)

n=0

be the average number of times that the target gate Vi appears in decompositions of elements
of the twirling group G. Then, Awt(0) is Lipschitz continuous in the trace distance with
constant nL.

Combining with the previous argument, we thus have our central theorem.
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» Theorem 9. Let Ap(0) be Lipschitz continuous in the trace distance with constant L.
Then, F(0) = AGF(0) is Lipschitz continuous with constant (1 4+ n)L, and p(0) is Lipschitz
continuous with constant d(1 +n)L/(d — 1), and A(0) and B(0) are Lipschitz continuous
with constant nL.

Proof. First, F/(6) = AGF(Ar(0)A,c(0)). By assumption, Ap(0) is Lipschitz continuous
with constant £, and by Corollary 8, Aye(0)) is Lipschitz continuous with constant nL.
Hence, by Theorem 6, F() is Lipschitz continuous with constant (1 + n)L.

Next, recall that p(8) = % Then, it follows that p(@) is Lipschitz continuous with
(1+n)£
constant ————
For B(H), we have
|B(0') = B(O)] = |Tr(EAres (8')[1/d]) — Tr(EAser(6)[11/d]) (24)
= |T (E(Aref(ol) - Aref(e))[]l/d])| . (25)

Letting (eo, €1, .., €4) be the ordered singular values of E and (Ao, A1, ..., A¢) be the ordered
singular values of (Aef(0") — Arer(0))[11/d], we have

)| (Arer(8) — Arer(0))[1L/d] |7 < RL,

(26)

d
|B(0') — B(9)| < Z €;A\; < max(e)

I
>

Since E and C' are both Hermitian, EC is also Hermitian, and thus ||EC| 1, = Tr(|EC]) >
|Tr(EC)|. The argument is completed by Hoélder’s inequality [36], which states that for all
X and Y, || XY |t < || X||1e[]Y ||spec, where || - ||spec is the spectral norm (a.k.a. the induced
(2 = 2)-norm or Schatten co-norm). In particular, we note that since E is a POVM effect,
| E]lspec < 1, such that | EC||r < [|C|lm < 1.

Finally, we note that this argument goes identically for the state p — %, as we did not use
any special properties of %. Hence, we also have that [A(6") — A(8)| < nL. <

We are thusly equipped to return to the problem of estimating F'(6+488) from experimental
data concerning F(6).

» Theorem 10. Suppose that f(0,y) is a Lipschitz continuous function of @ with constant
L where y is a variable in a measurable set S with correspondz’ng probability distm’bution on
that set of Pr(y) and for any functzon g : S = R define Ey( fsg y)dy and

Vary(9(y)) = By (9(y) —Ey(9(y )) . For all @ and 0" such that EHO’ 0| < Vary(f(e,y)),
it holds that

/ 2L)6" - 6|
Vary[f(0",y)] < Vary[f(0,y)] (1 + VWM) . (27)

Proof. Note that since f is Lipschitz continuous as a function of 8,
£(6",y) — f(6.y)| < L[6" -0, (28)
so there exists a function ¢ such that |c(8,0’,y)| < 1 for all 8, 8’ and y:

f0' y) = f(0.y)+ L]0 —0]c(6,6",y). (29)
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—— AGF(Ae(0))  —— %(6) —p —A B
1-1072%-
1-107%-
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0

6 6

Figure 1 The objective function F(0) and the average gate fidelity versus the overrotation angle
0 for Example 11 is given in the left figure. The right figure gives the calculated RB parameters as a
function of 6 where the optimal solution # = 0 is unknown to the optimizer a priori.

Thus, Vary[c] < 1, and by addition of variance, we have that

Vary[f(0',y)] = Vary[f (0, y)] + L£2]0 — 0'||*Vary (c(6, 6", y))
+2L]|6 — 0[|Covy (f(6,y), c(0,0",y))

< Vary[f(8,y)] + L]0 — 6> + L[]0 — 0[]/ Vary (f(6. y).

< Var, [£(8,y)] +2£]0 — 6|/ Var, (£(6. y). (30)

The result then follows from elementary algebra. |

2.1 Examples

» Example 11 (Lipschitz Continuity of Unitary Overrotation). Consider G = (S, H), where
T = S is the target gate. For a control parameter vector consisting of a single overrotation
parameter @ = (360), suppose that Ar[p] = (e~7%97=) @ p. Since this is a unitary channel, its
Choi-Jamitkowski rank® is 1. Thus, the AGF of Az can be calculated as the trace [28, 21, 8]

|Tr(e=#%%7=)2 +2 2 1
AGF(A = = 4 - cos(266). 1
GF (A (86)) o 5+ 3 cos(200) (31)

On the other hand, F(d6) isn’t as straightforward, and so we will consider its Lipschitz
continuity instead. To do so, we note that for all p € D(C?), we wish to bound the trace
norm

A = [Ar(66)[p) — Ar(56) o). (32)

! Sometimes informally called a “Kraus rank.”
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Expanding p in the unnormalized Pauli basis as p = 1/2 + r - /2, we note that since
Ar(00)[1] = 1 and Ar(d6)[o.] = o, for all 66, the above becomes

1

A= §||AT(59)[7"I0$ +ryoy +120.] — Ap(00')[rpoy + ryoy + 1202 || Ty (33)
1

= §||AT(59)[7'IJz +ryoy] — Ar(60")[ryop + ryoy] || (34)

= 4]sin(60 — 660)|,/r2 + 12 (35)

< 4|sin(660 — 66")| (36)

< 4/66 — 50'|, (37)

where the last line follows from that |sin(x)| < |z|. Thus, we conclude that Ar is Lipschitz
continuous in the trace distance with constant 4.

We can then find 7 for occurrences of T' in decompositions of elements of G to find the
Lipschitz constant for F'(§6) in this example. In particular, as shown in the Supplementary
Material, n = 13/6 for the presentation of the Clifford group under consideration, such that
F is Lipschitz continuous with constant (d/(d — 1)) x 4 x (19/6) = 76/3 in this case.

We note that a more detailed analysis of the Lipschitz continuity of A7 or a presentation of
G that is less dense in T would both yield smaller Lipschitz constants for F', and hence better
reuse of prior information. Thus by Theorem 9, a change in overrotation of approximately
1/100 the current standard deviation in F' would result in at most a doubling of the current
standard deviation.

We can easily include the effects of noise in other generators in numerical simulations. In
particular, suppose that Ag is a depolarizing channel with strength 0.5%. Then, simulating
F(0) for this case shows that F' is Lipschitz continuous with a constant of approximately
1.48, as illustrated in Figure 1.

3 Approximate Bayesian Inference

An important implication of Theorem 10 is that the uncertainty quantified by the variance of

the posterior distribution yielded by Bayesian inference grows by at most a constant factor.

However, while the theorem specify how the variance should grow in the worst case scenario

it does not give us an understanding of what form the posterior distribution should take.

Our goal in this section is to provide an operationally meaningful way to think about how

the posterior distribution evaluated at 6 changes as the control parameters transition to 6’.

Let the posterior probability distribution for the objective function F' evaluated at
parameters 6 be Pr (F(6)). In practice, we do not generally estimate the objective function

F directly, but estimate F' from a latent variable y, such as the RB parameters Equation 18.

Marginalizing over this latent variable, we obtain the Bayesian mean estimator for F’,

F= /FPr (F|0)dF = /FPr (F|6,y) Pr(y)dy. (38)

For the RB case in particular, the objective function F does not depend on the control
parameters 6 if we know the RB parameters y exactly. That is, we write that F' L 0|y for the
RB case, such that Pr(F|6,y) = Pr(F|y). Moreover, Pr(F|y) is a d§-distribution supported
only at F = (dp+ 1)/(d + 1) where y = (p, A, B). We may thus abuse notation slightly
and write that F' = F(y) is a deterministic function. Doing so, our estimator simplifies
considerably, such that

o / FPr (F|8,y) Pr(y)dy = / Fy) Pr(y)dy. (39)
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In exact Bayesian inference, the probability density Pr(y) is an arbitrary distribution,
but computation of the estimator Equation 39 is in general intractable. Perhaps the most
easily generalizable distribution is the sequential Monte Carlo (SMC) approximation [6], also
known as a particle filter, which attempts to approximate the probability density as

Pr (F|0,y) Pr(y|6) = Pr(F,y|0) ~ Zw] (y —y;)0(F; — F), (40)

where § is the Dirac-delta distribution and }; w; = 1. This representation is convenient for
recording on a computer, as it only needs to store (w;,y,, F;) for each particle. If F' = F(y)
is a deterministic function of the RB parameters then we need not even record F' with each
particle, such that

Pr (F|0,y) Pr(y|6) ~ ng y—y,;)0(F(y) - F). (41)

More generally, the SMC approximation allows us to approximate expectation values
over the probability distribution using a finite number of points, or particles, such that the
expectation value of any continuous function can be approximated with arbitrary accuracy
as N, — oo. In particular, we can approximate the estimator F within arbitrary accuracy.

The uncertainty (mean squared error) of this estimator is given by the posterior variance,

V(F) = / F2Pr(F|0,y) Pr(y)dy — F2. (42)

The posterior variance can be computed as the variance over the variable y induced from
the sequential Monte Carlo approximation to the probability distribution,

2
Z wi F y7 (Z w; F(y, ) ) (43)

where we have assumed that F' I 6|y and that Pr(F|0) is a J-distribution, as in the RB
case. This observation is key to our implementation of Bayesian ACRONYM tuning.

A final note regarding approximate Bayesian inference is that the learning process can
be easily implemented. From Equation 1 if Pr(F|0,y)Pr(y) = Z;VZ”I w;o(y —y,;) and if
evidence F is obtained in an experiment, then Bayes’ theorem when applied to the weights
w; yields

Pr(Ely;)w;
> Pr(Ely;)w;

This update procedure is repeated iteratively over all data that is collected from a set of
experiments. In practice, if an accurate estimate is needed then an enormous number of
particles may be needed because the weights shrink exponentially with the number of updates.
This causes the effective number of particles in the approximation to shrink exponentially and
with it the accuracy of the approximation to the posterior. We can address this by moving
the particles to regions of high probability density. In practice, we use a method proposed by
[24] to move the particles but other methods exist and we recommend reviewing [6, 15, 20]
for more details. Here, we will use the implementation of particle filtering and Liu—West
resampling provided by the QInfer package [14].

(44)
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3.1 Reusing Priors from Nearby Experiments

We have argued above that the posterior variance of the probability distribution is Lipshitz
continuous, which allows us to reason that the variance of the probability distribution at most
expands by a fixed multiplicative constant when transitioning information between different
points. Operationally though, it is less clear how we should choose the posterior distribution
over the average gate fidelity in Bayesian ACRONYM training given prior information at
a single point. Theorem 9 provides us with an intuition that can be used for this: each
element in the support of the probability distribution is shifted by at most a fixed amount
that is dictated by the Lipshitz constants for the channels. Here, we build on this intuition
by showing that the prior at each step in a Bayesian ACRONYM tuning protocol can be
related to the previous step in terms of the Minkowski sum and convex hull.

» Definition 12 (Convex hull). Let A be a set of vectors. Then the convex hull of A, written
Conv(A) is the smallest convex set containing A,

Conv(A) :={da+(1—-A)b:a,bec A,0<A<1}. (45)
» Definition 13 (Minkowski sum). Let A and B be sets of vectors. Then the Minkowski sum
A+ B is defined as the convolution of A with B,

A+B:={a+b:acAbec B}. (46)

With these concepts in place we can now state the following Corollary, which can be used
to define a sensible prior distribution for y(6 + 68) given a posterior distribution for y(8).

» Corollary 14. Let Ap(0) be Lipshitz continuous in the trace distance with constant L,
and let Pr(y|0) be a probability distribution over the RB parameters y = (p, A, B) for Ar
evaluated at some particular @. Then, for any 60 € R™, let

A= |68, (47)

D::{iAW}x{iA(l+ﬁ)£}x{iA(1+ﬁ)L}, (48)

and Pr(y|@ + 60) := éz Pr(y — s|6). (49)
s€S

The following statements then hold:

1. Pr(y|O@ + 80) is a valid prior probability distribution for y(0 + 80).

2. j= [yPr(y|l@)dy = [yPr(y|6 + 56)dy.

3. If Pr(y|@) has support only on A C R3, then Pr(y|@ + 80) has support only on Conv(A +
D).

4. If Yyrue(0) € A then yup,.(0 + 60) € Conv(A + D).

Proof. The proof of the first claim is trivial and follows immediately from the fact that
Pr(y|0) is a probability distribution. The proof of the second claim is also straightforward.
Note that

N 1
y::/yPr(y|9+50)dy :g/ Z yPr(y — s/6)dy

se{y}+D
1
=2 2 (w+s)Pr(ylo)dy
se{y}+D
- / y Pr(y|6)dy. (50)
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To consider the third claim, let ¢ = (¢p,ca,cp) be a vector such that |c,| < dL(1 +
n)/(d — 1) and max{|cal,|cp|} < L(1+ n). The convex hull Conv(D) consists of a convex
region of identical dimensions. Since the set is convex it then follows that ¢ € Conv(D).

Put differently, we can express Definition 1 and Definition 2 in terms of the Minkowski
sum, such that

y(Ar (6 + 80)) € Conv ({y(Ar(6)} + D). (51)
Taking the union over all vectors a in the support of Pr(y|@), we obtain that

supp(y|@ + 0) C Conv (supp(y|@) + D). (52)
From the linearity of convex hulls under Minkowski summation,

Conv(supp(y|@) + D) = Conv(supp(y|0)) + Conv(D). (53)
The fourth and final statement then immediately follows from Equation 53. <

This shows that if we follow the above rule to generate a prior distribution for the RB
parameters at 8 4+ 0 then the resultant distribution does not introduce any bias into the
current estimate of the parameters, which is codified by the mean of the posterior distribution.
We also have that if the true model is within the support of the prior distribution at 8 then
it also will be at @ 4+ §6. This is important because it states that we can use the resulting
distribution to give a credible region for the RB parameters. Thus this choice of prior is well
justified and furthermore if the measurement process reduces the posterior variance faster
than it expands when 6 is updated, it will allow us to get very accurate estimates of the true
RB parameters without needing to extract redundant information.

4  Numerical Experiments

The above analysis shows that, under assumptions of Lipshitz continuity of the likelihood
function, the posterior distribution found at a given step of the algorithm can be used to
provide a prior for the next step. This holds provided that we form a new prior that expands
the variance of the posterior distribution.

While the above analysis shows that prior information can be reused in theory, we will
now show in practice that this ability to re-use prior information can reduce the information
needed to calibrate a simulated quantum device. The Clifford gates in the device, which we
take to be the generators of the single-qubit Clifford group, are H and S. We assume that
H can be implemented exactly but that S has an over-rotation error such that

S(0) = e 075, (54)

for some value of #. While this is called an “over-rotation” we make no assumption that
6 > 0. We further apply depolarizing noise at a per-gate level to the system with strength
0.005 meaning that we apply the channels

Ag : pr 0.995HpH +0.005(1/2),
Agey : p = 0.995¢~ 7 SpSTei®? 1 0.005(1/2). (55)

We assume that the user has control over the parameter § but we do not assume that
they know the functional form and thus do not know that setting § = 0 will yield optimal
performance. The goal of our Bayesian ACRONYM algorithm is then to allow the method
to discover that 6 = 0 yields the optimal performance via local search.
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Figure 2 Observed survival probabilities as a function of sequence lengths using 20 measurements
(shots) per length for an overrotation model with § = 0.04. Solid orange line represents the true
value for the survival probability, (A — B)p£ + B, as a function of the sequence length £ and the
dashed line represents the estimate of the survival probability. The prior was set to be uniform for p
and A on [0, 1] and the prior B was set to be the normal distribution A(0.5,0.05%).

Figure 2 shows the impact that using Bayesian inference to estimate RB parameters can
have in data limited cases of the over-rotation problem. Specifically, we apply Bayesian
ACRONYM training to calibrate the over—rotation to within an error of 0.005 which is
equal to the dephasing error that we included in the channels in Equation 55. A broad
prior was taken and despite the challenges that we would have learning a good model
from least-squares fitting, we are able to accurately learn the survival probability. We
can then learn the parameters A, B and p, the latter of which gives us the average gate
fidelity needed for ACRONYM training via Equation 18a. As the required accuracy for the
estimate of p increases, the advantages gleaned from using Bayesian methods relative to
fitting disappear [19]. However, in our context this observation is significant because we wish
to tune the performance of quantum devices in the small data limit rather than the large
data limit and use prior information from previous experiments to compensate.

Local search is implemented using SPSA with learning rate 0.05, a step of 0.05 used to
compute approximate gradients and a maximum step size of 0.1. We repeat the method
until the posterior variance in the average gate fidelity is less than 0.005%. We use a
Lipshitz constant of 1.48, which was numerically computed as a bound to give an appropriate
amount of diffusion for the posterior distribution during an update. Bayesian inference is
approximated using a particle filter with 256 000 particles and Liu—West resampling with
a resample threshold of 1/256 as implemented by QInfer [14]. Single shot experiments are
used with a maximum number of sequences of 500 per set of parameters.

Perhaps the key observation is that throughout the tuning process the true parameters
for the overrotation error remain within the 70% credible region reported by Qlnfer, which
suggests if anything that the credible region is pessimistic. The estimate of F' also closely
tracks the true throughout the learning process and also the amount of data required for the
tuning process is minimal, less than 1 kB.
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Figure 3 Over-rotation angle and objective function values for an over-rotation model with a
0.35 radian over-rotation initially with a target error of 0.005 in F' as measured by the posterior
standard-deviation. (Left) Over-rotation angle as a function of number of iterations of SPSA taken.
(Right) Estimated Average gate infidelity as a function of the number of SPSA iterations and the
total number of sequences used to achieve that level of infidelity. The shaded region represents a
70% credible region for the infidelity.

5 Conclusion

The main result of our work is to show that, under weak assumptions of Lipshitz continuity,
Bayesian inference can be used to piece together evidence gained from experiments at nearby
experimental settings to accelerate learning of optimal control parameters for quantum
devices. We further demonstrate the success of this approach numerically by using a Bayesian
ACRONYM tuning protocol (BACRONYM) to tune a rotation gate that suffers from an
unknown overrotation. We find that by use of evidence from nearby experimental settings for
the gate, we can learn optimal controls with fewer than 1 kilobit of data which is a reduction
of nearly a factor of 20 relative to the best known non-Bayesian approach [22].

Looking forward, there are a number of ways in which this work can be built upon.
Firstly, upper bounds on the Lipshitz constant and variance are needed to properly use
evidence from nearby points within the optimization loop; however, tight estimates are not
known a priori for either quantity. Finding approaches that yield useful empirical bounds
would be an important contribution beyond what we provide here. Secondly, an experimental
demonstration of Bayesian ACRONYM tuning would be useful to demonstrate the viability
of such tuning parameters in real-world applications. Finally, while we have picked SPSA as
an optimizer for convenience, there may be better choices within the literature. This raises an
interesting issue because the number of times that the objective function needs to be queried is
not the best metric when information is reused. This point is important not just for choosing
the best optimizer to minimize experimental costs for tuning hardware, it also potentially
reveals a new way of optimizing parameters in variational quantum eigensolvers [29], as well
as QAOA [9] and quantum machine learning algorithms [32].
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A Pseudocode for BACROYNM Tuning

Algorithm 1 Bayesian ACRONYM tuning procedure.

function BACRONYM
6¢: initial control parameters
Nshots: NUumber of measurements per seq. length
Oreq: Tequired accuracy for F
(a,b,s,t): SPSAL parameters
largest allowed step in the parameter 6
Fiarger: target objective function value
mo: initial prior
L: Lipschitz continuity assumed for F
T <— T, 0« 00
collect RB data at 6 until Var[F] < o2,
F « E[F(0)|data]
iiter 0
B Main body
while F' < Fapger do
iiter ++
B SPSA1
A <+ a random +1 vector the same length as 6
step < a/(1 + i)
gain «— b/(l + Z-Iifter)
00 < step- A
estimate F'(0 + 80) using Corollary 14
u + gain - A(F(0 + 60) — F(9))
if any component of u larger than max update then
U 4 U/ MaXyecqy U]

if |F(0 + 80) — F(6)| > Var[F(6 + 860)] then

0+=u

else if F(0 + 6) < F(6) then
0—=step- A

else
O+=step- A

B Final estimate
return 6, F

/ Initialization

/ Complete the SPSA step.
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—— Abstract

We show how to approximately represent a quantum state using the square root of the usual

amount of classical memory. The classical representation of an n-qubit state v consists of its inner
products with O(1/27) stabilizer states. A quantum state initially specified by its 2" entries in the
computational basis can be compressed to this form in time O(2"poly(n)), and, subsequently, the
compressed description can be used to additively approximate the expectation value of an arbitrary
observable. Our compression scheme directly gives a new protocol for the vector in subspace problem
with randomized one-way communication complexity that matches (up to polylogarithmic factors)
the optimal upper bound, due to Raz. We obtain an exponential improvement over Raz’s protocol
in terms of computational efficiency.
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1 Compressing a quantum state

A pure n-qubit state v is fully specified by its 2 amplitudes in the computational basis.
Here we are interested in a compressed representation of size < 2™ that can be used to
approximately recover some of its features.

Aaronson described a compressed representation that can be used to approximate the
expectation value of any observable from a known set [1]. He showed that for any n-qubit
state ¥ and any finite set S' of n-qubit observables, there is a compressed representation of
¥ of size O(nlog(n)log(|S])) which suffices to additively approximate expectation values
of any observable in S. So for example even if |S| = exp(poly(n)), then one obtains a
remarkable exponential reduction in the classical description size!! There are two limitations

! We note that a different compression method which achieves similar performance to Aaronson’s (in
terms of the parameters described above) can be inferred from Ref. [3]. In this case the compressed
representation is a classical description of the state produced at the output of Algorithm 5.
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of Aaronson’s scheme that we address here. The first is its efficiency: the algorithm used to
compress an n-qubit quantum state scales as £2(¢|S|) for some constant ¢ > 2, which can
be impractical. A second drawback is that one must first fix the set of observables S and
the compressed representation of 1) then depends on this set. In this sense the compressed
representation cannot be viewed as an unbiased description of .

Below we present a compressed representation which can be computed quickly, that
is, in O(2"poly(n)) time, given the 2™ amplitudes which fully describe a quantum state
1. This renders our method practical. Moreover, we do not fix a set of observables a
priori—it is possible to approximate the expectation value of an arbitrary observable with
high probability.

We note that Montanaro has recently ruled out the possibility of a more powerful kind
of compressed representation of i that would allow one to sample from the probabilty
distribution obtained by measuring an observable [12].

A compression scheme of the type we consider has two components. First, there is a
classical compression algorithm which takes an n-qubit state v specified by its amplitudes
in the computational basis, along with two parameters €,p € (0,1), and computes the
compressed representation which we denote D(v, ¢, p). The compression algorithm may be
probabilistic in which case D(%,¢,p) is a random variable. Secondly, there is a classical
expectation value algorithm which takes as input D(v, €, p) along with an n-qubit Hermitian
operator M satisfying || M]| < 1, and outputs an estimate E such that

|E— ($[M[|¢)| < e (1)

with probability at least 1 — p, over the randomness used in both the compression and
expectation value algorithms. The classical description size is the number of bits |D (1, €, p)|.
We want this to be as small as possible. As we now explain, the best we can hope for is a
classical description size which scales mildly exponentially with n.

Indeed, a limitation follows from related work concerning the communication complexity
of the wvector in subspace problem [10, 14, 15]. Suppose Alice can send Bob information
over a classical channel and that they may share a random bit string. Alice is given a
(classical description) of an n-qubit quantum state i) and Bob is given an n-qubit projector
II. How much classical information does Alice need to send Bob so that he can compute
the expectation value (¥|II|y)? Suppose that we are promised that either (¢|IIy) < 1/3
or (Y|IIjyy) > 2/3, so that Bob’s goal is to compute just this one bit of information; we
allow him to err with probability at most %, say. The number of bits that Alice needs to
send for them to jointly succeed at this task is called the one-way (randomized) classical
communication complexity of the vector in subspace problem.

Raz showed that Alice need only send O(1/2") bits for them to succeed [14]. He proposed
the following simple protocol which achieves this bound. Using the shared random bit
string Alice computes a set of W = 22""* Haar random n-qubit states ¢1, @2, ..., pw and
then computes the inner products (¢1|¢), ..., (¢w|y). She identifies the state ¢; such that
|{(#;]9)| is maximal and sends the index j to Bob, encoded as a bit string of length on/2,
Using the index j along with the shared random string Bob can compute the state ¢;. He
then computes (¢;|II|¢;) and outputs 1 if it is larger than a certain threshold value and zero
otherwise. A detailed analysis of this protocol is provided in Ref. [12]. Note that it is not a
practical method of compressing a quantum state as its runtime is doubly exponential in n.

Raz’s protocol is optimal in terms of the number of bits communicated. Indeed, a
matching lower bound of ©(1/2") for the one-way classical communication complexity of
the vector in subspace problem can be inferred from the work of Gavinsky et al. [6] (the



D. Gosset and J. Smolin

following argument was suggested to us by R. Kothari). In that work the authors describe a
communication task called the 1/4-Partial Matching problem. Let N = 2™, In this problem
Alice is given an N-bit string 2 € {0, 1}V, and Bob is given an N/4-bit string w € {0, 1}V/4
as well as a “partial matching” which is a set of N/4 disjoint pairs

{(i17j1>7 (i2;j2)> R (iN/4>jN/4)}

such that 1 <ig,jr < N for all k =1,2,..., N/4. We are promised that there exists a bit
b € {0,1} such that

wr ® x5, Dy, =b 1<k<N/4. (2)

The goal is to compute the bit b. Gavinsky et al. establish that the classical one-way
communication complexity of the 1/4-Partial Matching problem is ©(v/N), and also provide
a one-way quantum communication protocol using only O(log(N)) qubits. As we now show,
the latter protocol can be recast as a protocol for a specific class of instances of the vector in
subspace problem with n qubits. Let us write

V = span {[ir), [jr) : 1 < j, k < N/4}

for the N/2-dimensional subspace spanned by basis vectors contained in Bob’s matching,
and let Y+ be the orthogonal subspace, which is also N/2-dimensional. Finally, let P be a
projector onto a subspace of Y+ of dimension N/4 which is spanned by N/4 basis vectors
(these can be any N/4 basis vectors which are not contained in Bob’s matching). Then
consider the n-qubit state 1) and projector II defined as follows.

1 Y .
lv) = ﬁ;(_l) i)
N/4

=P+ 2 (i) — (1" [ (el — (~1)** Gl
k=1

Using Eq. (2) and the definition of P we see that (4|II|1)) = (1 + 2b) for b € {0,1}. Thus
when b =1 we have (¢|II|¢)) > 2/3 and when b = 0 we have (|II|¢)) < 1/3. This provides
the desired reduction from the 1/4-Partial Matching problem with N = 2" to the vector
in subspace problem with n qubits and Ref. [6] then implies a lower bound Q(1/2") on its
one-way classical communication complexity.

This lower bound directly provides a limitation on compression schemes of the type
described above. Indeed, any such compression scheme can be trivially converted into a
protocol for solving the vector in subspace problem, with one-way communication complexity
|D(1,¢€,p)| for e,p =©(1). 2 Thus any compression scheme must have classical description
size scaling as (y/27), so we can only hope to match Raz’s upper bound in our slightly more
general setting. Finally, although here we will not go beyond the one-way setting, we note
that Ref.[15] establishes an exponential lower bound on the total classical communication
used to solve the vector in subspace problem allowing for multiple rounds of communication.

In the remainder we present our compression scheme for quantum states. We assume basic
knowledge of quantum computation and write C,, for the n-qubit Clifford group (see, e.g.,
[7]). Recall that an n-qubit unitary C' is an element of C,, if and only if it can be expressed

2 Given 1, Alice computes D(1), ¢ = 1/100,p = 1/4) and sends it to Bob, who then uses it to compute an
estimate E such that |E — (¢|II]¢)| < 1/100 with probability at least §. Bob outputs 1 if £ > 1/2 and
0 otherwise.
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as a quantum circuit composed of single-qubit Hadamard gates, single-qubit phase gates
S = diag(1,4), and two-qubit CNOT gates. In the following we shall use the fact that (A)
the group C,, of Clifford unitaries forms a unitary 2-design [5], and (B) every Clifford unitary
has a short classical description as a quantum circuit consisting of O(n?) elementary gates.

Let 9 be an n-qubit state. A stabilizer sketch of v of size 2F is a classical description of a
Clifford unitary C' € C,, along with the vector of 2¥ amplitudes

(0"=kz|C) z € {0,1}*%. (3)

A random stabilizer sketch of size 2¥ is obtained by choosing C' € C,, uniformly at random.
If ¢ is stored in computer memory as a list of 2" amplitudes in the computational basis,
then a random stabilizer sketch of 1) can be computed as follows. The random Clifford C
can be drawn [9] and expressed as a circuit consisting of O(n?) one- and two-qubit Clifford
gates [2], using a total runtime of O(n?). This circuit can be applied to v to obtain C|t))
using O(2"n?) elementary arithmetic operations. We retain only 2% computational basis
amplitudes of this state along with the classical description of C.

We now show that a handful of random stabilizer sketches of ¥ can serve as a compressed
representation of ¥. In particular, given parameters €, p > 0, our compressed representation
D(v, €,p) consists of O(log(p~!)) independent random stabilizer sketches of v, each of size

2 = O(VZTe ) (4)

Here and below we use the O notation to hide poly(n,log(e~1)) factors, and it is sufficient
that the amplitudes Eq.(3) provided in the stabilizer sketches are specified to O(1) bits of
precision. We shall also assume e > 27™/2, since otherwise the scaling from Eq. (4) is no
better than the trivial O(2"). Our scheme therefore achieves a classical description size:

[D(¥,e,p)| = O(V2e  og(p™")), ()

matching Raz and the lower bound from Ref. [6] up to the factors hidden in the O. Moreover,
the compression algorithm is to simply compute these random stabilizer sketches which takes
time O(2") as described above.

It remains to exhibit the expectation value algorithm, which takes as input such a
compressed representation D(v, €, p) along with an n-qubit observable M and computes an
approximation F satisfying Eq. (1) with probability at least 1 — p. The following lemma
describes a slightly more general algorithm which has an improved performance if the
observable M has low rank; the claimed expectation value algorithm achieving Eqs. (4,5) is
the unrestricted case r = 2" (note that Eq. (6) matches Eq. (4) whenever € > 27"/2).

» Lemma 1. There is a deterministic classical algorithm which takes as input positive
integers n,r with 1 < r < 2" and real numbers e,p € (0,1), along with
An n-qubit Hermitian operator M satisfying | M| < 1 and rank(M) < r.
O(log(p™')) independent random stabilizer sketches of an n-qubit state 1, each of size
2% where k is the largest integer satisfying

2F <24 max {e %, re '}. (6)
The algorithm outputs an estimate E such that, with probability at least 1 — p
|E — (|M[y)| <e.

The runtime of the algorithm is 200 log(p~).
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This completes our description of the compression scheme for quantum states. We pause for
a few remarks before giving the proof below.

As noted above, taking r = 2" in the Lemma, our compression scheme gives a protocol
for the vector in subspace problem. In the opposite extreme case where r = 1 we have
M = |¢)(¢| for some n-qubit state ¢. Here we obtain a one-way communication complexity
protocol for approximating the inner product between two vectors ¢ (Alice’s input) and ¢
(Bob’s input) to some additive error e. Choosing e = O(1), the communication complexity of
this protocol is then O(1) which is known to be optimal [11].

The compressed representation can be used to simultaneously approximate expectation
values of multiple observables with low probability of failure. Suppose we choose p = % for
some ¢ > 0 and positive integer K. By a union bound, with probability at least 1 — d, the
compressed representation can be used to compute estimates of the expectation values for all
observables in any set S of size K, such that all are within the desired approximation error e.
Crucially, the compressed representation does not depend on the set S, which highlights the
difference between our setting and the one considered by Aaronson [1].

Finally, an interesting special case is when the observable M is a stabilizer projector, i.e.,

M = CH(0)(01"™ @ L)

for some Clifford C' € C,, and integer 0 < m < n. For example, to approximate the
expectation value of any n-qubit Pauli P it suffices to approximate the expected value of
the stabilizer projector (I + P)/2. As we explain in more detail below, if M is a stabilizer
projector then the algorithm from the Lemma has an improved runtime of O(r log(p~1)) and

only uses O(y/rlog(p~')) space.
We now present the proof of the lemma.

Proof. Note that since k is the largest positive integer satisfying Eq.(6), we have
2¥ > 12 - max {e %, re '}. (7)

Suppose first that we are given just 2 independent random stabilizer sketches of i of
size 2¥. The two sketches comes with n-qubit Cliffords C, D € C,,; we define the associated
stabilizer code projectors

P=CH|0)(0l,-r @ Ix)C Q=D (|0){0—1 @ It) D. (8)

Since C, D are uniformly random, P and ) are uniformly random n-qubit stabilizer projectors
of rank 2*. Therefore

E[P] = E[Q] = 2"1. (9)

Using the fact that the n-qubit Clifford group is a unitary 2-design [5] one can also directly
show the following fact (we provide a proof for completeness below).

> Claim 2.
EP®P)=EQ®Q]=a-I+0b-SWAP (10)
where
4k:+n _ 2k:+n 4n2k _ 2n4k:
= % <ykn b= ———— <2kq™, 11
a 42n _ gn — 42n _ yn - ( )
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Here and below we write SWAP for the unitary which swaps two n-qubit registers, defined
by its action on computational basis states: SWAP|z ® y) = |y ® x).
From the two stabilizer sketches we may compute

F = 4""*Re (| PMQJ)) (12)
—tRe( 3 IO ) "Rl CM Do) 0" D) ) "
z,ye{0,1}F

Indeed, Eq. (13) expresses F' in terms of the amplitudes (0|Ct|0"~*z), (0" ~*y|D|+) from the
two given stabilizer sketches as well as matrix elements (0" ~*x|CM DT|0"*y) which can be
computed from the classical descriptions of Cliffords C, D and the given observable M. Note
that the computation of F involves a summation of 22¢ terms and each term involves the
computation of a matrix element (0"~ *2|C'M Dt|0"~*y), which takes time 2°(). Therefore
the total time to compute F given the two stabilizer sketches is 2°("). We note that in the
special case where M is a stabilizer projector the matrix element (0"~ *z|CM Dt|0"~*y) is
equal to the inner product between stabilizer states (0" ~*z|C and M DT|0"~*y) and can be
computed in time O(n?) (see e.g., Ref. [4]). Thus in this case F' can be computed using time

0O(2%%) = O(r) and space O(y/7).
Using Egs. (9,12) we see that

E[F] = (¢|M]y). (14)
We now bound the variance of F'. First note that

AR R < [ PMQIY)I*. (15)
We use the identity

Tr(a®7vy-8Q46- SWAP) = Tr (afv9)

which holds for square matrices «, 3,7,d (all of the same dimensions). Using this fact in
Eq. (15) we get

472R F2 < T ((jy) (0] @ M) (P ® Q) SWAP)|® 1o

=Tr((J)(¥|®@ M @M @ [¢)()]) (P ® Q ® P® Q) SWAP1,SWAPsy).
(17)

Now taking the expectation value of both sides and using Eq. (10) we obtain
472 RE [F2] < Te(C- ()] @ M @ M @ [)(4)))

where
I'=(a-I+b-SWAP13)(a-I+b-SWAP24)SWAP,SWAP3,

and a,b are defined in Eq. (11). Evaluating the trace term by term we arrive at

472 OE [F2] < a? (Y| M)* + 2ab(p| M2[y) + 6> Tr(M?) (18)
< A72R) (| M|y))? + 2 20472 (| MP[y) + 4F 2T (M) (19)

—~

where in the last line we used Eq. (11). Therefore

| v

Var(F) =E [F?] — (JE[F])2 <3 (Y| M2y + 4ikTr(M2). (20)

=
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Using the bounds
Tr(M?) < ||M||*rank(M) < 7,

and (Y[M?[¢) < [M|]* <1 in Eq.(20) gives

[ V)

2 r €2 €2 €
2 T e e 8 (21)

F) <
Var(F) Ak =6 T12 =y

where we used Eq. (7).
Putting together Eqgs. (14,21) and applying Chebyshev’s inequality we get

Pr|F — (|M[y)] > €] <

| =

We have shown that just two stabilizer sketches of size 2% suffice to compute an estimate F
which, with probability at least 3/4, achieves the desired precision e. The success probability
can be amplified by taking the median of multiple independent estimates [8]. That is,
now using 2L random stabilizer sketches (of the same size 2¥), we compute L independent
estimates F1, ..., F, as above and compute the median

E = Median(F1, Fy, ..., FL).

Note that if [E — ()|M|¢)| > € then at least 1(L — 1) of the estimates Fj lie outside the
interval ((¢|M|¢) — €, (| M) 4 €). Since these events are independent and each occurs
with probability at most 1/4 we have

pip-wizas 2 (H)(3) (L) (22)

LL-1=e<L

By a Chernoff bound the right-hand side of Eq. (22) can be made < p by choosing
L = O(log(p™").

The algorithm which computes E simply uses Eq. (13) to compute the independent
estimates F1,...,Fr and then takes the median. The computation of each F} takes time
20(n) as discussed above. |

This compression scheme may be useful as a memory-saving means of storing or trans-
mitting the output of classical simulations of large quantum circuits. Suppose the n-qubit
output state [t)) of such a simulation is compressed and sent to a client with at most O(v/2")
memory available on her local machine. With this much memory the client cannot store the
full state 1) but she can store its compressed representation and use it to approximate the
expectation value of any stabilizer projector (as discussed above). The amount of memory
savings that could be achieved in practice is determined by the size 2¥ of the stabilizer
sketches which should be used for a given number of qubits n and error €. Let us suppose for
simplicity we are willing to accept a failure probability of p = 1/4 so that only 2 stabilizer
sketches are needed using the above scheme. To obtain a more precise estimate of this k
than the one from Eq. (6), we may solve for Var(F') < €2/4 using the upper bound on Var(F')
from Eq. (20). For example, for a very large state of n = 50 qubits we may choose k = 35 to
obtain error € = 0.0039. This corresponds to a memory savings of a factor of 2'* = 16384.

Fig. 1 shows the distribution of the estimator F' from Eq. (12) in three examples where
n=12,r =13, and k = 7,8,9. In all of these examples the standard deviation of the samples
is within a factor of 2 of the upper bound on the standard deviation computed from Eq. (20),
showing that this upper bound cannot be improved much further.
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Figure 1 These histograms show the distribution of the random variable F' defined in Eq. (12) in
three examples where n = 12 and k = 7,8,9 (left to right). Here ¢ was chosen to be a random state
in the 12-qubit symmetric subspace and II was chosen to be the projector onto this subspace, which
has rank r = 13. Thus E[F] = (¢|II|¢)) = 1. For each k = 7,8,9 we computed 1000 realizations of F'.
The upper bound on the standard deviation computed from Eq. (20) gives 0.1259,0.0887,0.0626
respectively while the standard deviation of the samples was computed to be 0.0875,0.0637,0.0399.
These figures were generated using Python libraries for Clifford manipulations which will soon be
available in QISKit[13].

Proof of Claim 2. The n-qubit Clifford group C,, is a unitary 2-design [5]. This means that if
C € C, is uniformly random then for any 2n-qubit operator p we have

E[CT® CTpC @ C] :/ dUUT @ UpU o U
Haar
where the right-hand side is integrated over the Haar measure on the unitary group U(2").
Define projectors w4 = (I = SWAP)/2 onto the symmetric and antisymmetric subspaces of
two n-qubit registers. Using Schur’s lemma the right-hand side of the above expression can
be further simplified to

_ o Tlpry) | Tr(pm-)
* Tr(ry) T Tr(ro)

/ dUUT @ UpU @ U
Haar

Eq. (10) is obtained by applying this formula in the case p = R® R, where R = |0)(0],,— ® I,
and substituting

Tr(R)? + Tr(R) 2% +2F
2 - 2

4™ £ 2"
Tr(ry) = — <

Tr(RQR-7y) =
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—— Abstract

In a breakthrough, Hastings [10] showed that there exist quantum channels whose classical Holevo
capacity is superadditive i.e. more classical information can be transmitted by quantum encoding
strategies entangled across multiple channel uses as compared to unentangled quantum encoding
strategies. Hastings’ proof used Haar random unitaries to exhibit superadditivity. In this paper
we show that a unitary chosen uniformly at random from an approximate n? 3_design gives rise to
a quantum channel with superadditive classical Holevo capacity, where n is the dimension of the
unitary exhibiting the Stinespring dilation of the channel superoperator. We do so by showing that
the minimum output von Neumann entropy of a quantum channel arising from an approximate

unitary n?/3

-design is subadditive, which by Shor’s work [26] implies superadditivity of classical
Holevo capacity of quantum channels.

We follow the geometric functional analytic approach of Aubrun, Szarek and Werner [3] in order
to prove our result. More precisely we prove a sharp Dvoretzky-like theorem stating that, with
high probability under the choice of a unitary from an approximate ¢-design, random subspaces of
large dimension make a Lipschitz function take almost constant value. Such theorems were known
earlier only for Haar random unitaries. We obtain our result by appealing to Low’s technique [16] for
proving concentration of measure for an approximate t-design, combined with a stratified analysis of
the variational behaviour of Lipschitz functions on the unit sphere in high dimension. The stratified
analysis is the main technical advance of this work.

Haar random unitaries require at least Q(n?) random bits in order to describe them with good
precision. In contrast, there exist exact n%/3-designs using only O(n?/®logn) random bits [15]. Thus,
our work can be viewed as a partial derandomisation of Hastings’ result, and a step towards the
quest of finding an explicit quantum channel with superadditive classical Holevo capacity.
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1 Introduction

For the past two decades, additivity conjectures have been extensively studied in quantum
information theory e.g. [5, 22, 1, 20, 26, 11]. In this paper, we concentrate on the issue of
additivity of classical Holevo capacity of a quantum channel @, denoted henceforth by C(®).
© Aditya Nema and Pranab Sen;

oY licensed under Creative Commons License CC-BY
14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019).
Editors: Wim van Dam and Laura Mancinska; Article No. 9; pp. 9:1-9:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:aditya.nema30@gmail.com
http://www.tcs.tifr.res.in/~pgdsen/
mailto:pranab.sen.73@gmail.com
https://doi.org/10.4230/LIPIcs.TQC.2019.9
https://arxiv.org/abs/1902.10808
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Super Additivity with ¢-Designs

The quantity C'(®) is the number of classical bits of information per channel use that can
reliably be transmitted in the limit of infinitely many independent uses of ®. Capacities
of classical memoryless channels are known to be additive, that is, the capacity of two
channels ® and V¥, used independently, is the sum of the individual capacities. In other words,
C(P®V)=C(P)+ C(P). This additivity property leads to a single letter characterization
of the capacity of classical channels viz. the capacity is nothing but the mutual information
between the input and channel output maximised over all possible input distributions for
one channel use [27]. For a long time, in analogy with the classical setting, it was generally
believed that the classical Holevo capacity of a quantum channel is additive. In fact, this
belief was proven to be true for several classes of quantum channels e.g. [13, 8, 12, 25, 14].
Thus, it came as a major surprise to the community when Hastings, in a major breakthrough,
showed that there are indeed quantum channels with superadditive classical Holevo capacity
[10] i.e. there are quantum channels ®, ¥ such that C'(® ® ¥) > C(P) + C(T).

Hastings’ proof proceeds by showing that a Haar random unitary leads to such channels
with high probability, in the sense that the unitary, when viewed suitably, is the Stinespring
dilation of a quantum channel with superadditive classical Holevo capacity. The drawback of
using Haar random unitaries is that they are inefficient to implement. In fact, it takes at
least Q(n?log(1/€)) random bits in order to pick an n x n Haar random unitary to within a
precision of € in the fo-distance [28]. Hence, it is of considerable interest to find an explicit
efficiently implementable unitary that gives rise to a quantum channel with superadditive
classical Holevo capacity.

In this paper, we take the first step in this direction. We show that with high probability
a uniformly random n x n unitary from an approximate n?/3-design leads to a quantum
channel with superadditive classical Holevo capacity. Though no efficient algorithms for
implementing approximate n?/3-designs are known, nevertheless, it is known that a uniformly
random unitary from an exact n?/3-design can be sampled using only O(n?/3logn) random
bits [15, Theorem 3.3]. Also, efficient constructions of approximate (logn)®™)-designs are
known [24, 6]. Thus, our work can be viewed as a partial derandomisation of Hastings’ result,
and a step towards the quest of finding an explicit quantum channel with superadditive
classical Holevo capacity.

Hastings’ proof was considerably simplified by Aubrun, Szarek and Werner [3] who
showed that existence of channels with subadditive minimum output von Neumann entropy
follows from a sharp Dvoretzky-like theorem which states that, under the Haar measure,
random subspaces of large dimension make a Lipschitz function take almost constant value.
Dvoretzky’s original theorem [7] stated that any centrally symmetric convex body can be
embedded with low distortion into a section of a high dimensional unit £5-sphere. Milman
[17] extended Dvoretzky’s theorem by proving that, with high probability, Haar random
subspaces of an appropriate dimension make a Lipschitz function take almost constant value.
Dvoretzky’s theorem becomes the special case of Milman’s theorem where the Lipschitz
function happens to be norm induced by the centrally symmetric convex body i.e. the
norm under which the convex body becomes the unit ball. Milman’s work started a whole
body of research sharpening the various parameters of the extended Dvoretzky theorem
e.g. [23, 9] etc. However, all these works use Haar random subspaces. A Haar random
subspace of C" of dimension d can be obtained by applying a Haar random unitary to a
fixed subspace of dimension d e.g. the subspace spanned by the first d standard basis vectors
of C™. Our work is the first one to replace the Haar random unitary in any Dvoretzky-type
theorem by a uniformly random unitary chosen from an approximate ¢-design for a suitable
value of ¢. In other words, our main technical result is an Aubrun-Szarek-Werner style
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result for approximate ¢-designs instead of Haar random unitaries. As a corollary, we obtain
the subadditivity of minimum output von Neumann entropy for unitaries chosen from an
approximate n?/3-design. As another corollary, we obtain the subadditivity of minimum
output Rényi p-entropy for all p > 1 for quantum channels arising from unitaries chosen from

2
5+ log n-design. Such a unitary can in fact be chosen from

. . 4

approximate unltarzy p3n 9
P 54 2p

+§+ 3 (

an exact pPndr st log n-design using only pPndr logn)? random bits [15], which is
much less than ©(n?) random bits required to choose a Haar random unitary. Subadditivity
of minimum output Rényi p-entropy for all p > 1 was originally proved for Haar random

unitaries by Hayden and Winter [11].

To prove our main technical result, we use a concentration of measure result by Low [16]
for approximate unitary t-designs, combined with a stratified analysis of the variational
behaviour of Lipschitz functions on the unit sphere in high dimension. We need such a
fine grained stratified analysis for the following reason. Aubrun, Szarek and Werner [3]
worked with the function f(M) := |[MMT — (I/k)|2, where the argument M is a k3-tuple
rearranged to form a k x k? matrix. They found subspaces of dimension k? where f took
almost constant value. For this, they had to do a two step analysis. The global Lipschitz
constant of f was 2 which, under naive Dvoretzky type arguments, would only guarantee the
existence of subpaces of dimension % where f is almost constant. This does not suffice
to find a counter example to minimum output von Neumann entropy. In order to shave off
the log k term in the denominator, they had to use several sophisticated arguments. One
of them was the observation that there is a high probablity subset 1" of Sixs on which the
Lipschitz constant of f was k~'/2. They exploited this by their two step analysis, where they
separately analysed the behaviour of f on T and on T¢, and managed to shave off the log k&

term. For us, since we are working with designs, we need the function to be a polynomial.

Hence, instead of f, we have to work with f2. This seemingly trivial change introduces
severe technical difficulties. The main reason behind them is that the Lipschitz constant
of f? is about twice the Lipschitz constant for f but the variation that we are looking to
bound is around square of the earlier variation! This contradiction lies at the heart of the
technical difficulty. In order to overcome this, we have to partition S;.s into a number
of sets Q1,Qa, ..., Qog, called ‘layers’, with local Lipschitz constants for f? running as
k=3/2,2353/2 33k=3/2 . (log k)*k—3/2. We have to bound the variation of f2 individually

on §2; as well as put them together to bound the variation on large subspheres of S;ys.

This leads to a challenging stratified analysis, which forms the main technical advance of
this paper.

Another tool developed in this work which should find use in other situations also, is a
systematic way to approximate a monotonic differentiable function and its derivative using
moderate degree polynomials. This tool is crucially used to prove strict subadditivity of
Rényi p-entropy for any p > 1 for channels whose unitary Stinespring dilation is chosen from
an approximate design instead of a Haar random unitary.

The power of our stratified analysis shows up in the consequence that the dimension
of the subspace on which the Lipschitz function is almost constant depends only on the
smallest local Lipschitz constant, provided some mild niceness conditions are satisfied. This
gives larger dimensional subspaces than a naive analysis which would depend on the global
Lipschitz constant. In fact, the stratified analysis allows us to prove a sharper Dvoretzky-type
theorem even for the Haar measure. As a result, we can recover Aubrun, Szarek and Werner’s
result for the function f directly and elegantly instead of applying their Dvoretzky-type
result twice which is rather messy. Another powerful consequence of our stratified analysis
is that with probability exponentially close to one random, via Haar or ¢-design, subspaces
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make the Lipschitz function almost constant. In contrast, Aubrun, Szarek and Werner could
only guarantee constant probability close to one.

The rest of the paper is organised as follows. Section 2 contains notations, symbols
definitions and preliminary tools required for the paper. Section 3 states and proves the main
technical theorems viz. the stratified analyses for Haar measure and approximate t-designs.
Section 4 describes the application to subadditivity of minimum output von Neumann entropy.
Section B describes the application to subadditivity of minimum output Rényi p-entropy
for p > 1. The detailed proofs of all the lemmas and propositions can be found in the full
version [19].

2 Preliminaries

All Hilbert spaces used in this paper are finite dimensional. The n dimensional space over
complex numbers, C", is endowed with the standard inner product aka the dot product:
(z,y) == > x}y;. The unit radius sphere in C" is denoted by Scn. The symbol My 4
denotes the Hilbert space of k x d linear operators over the complex field under the Hilbert-
Schmidt inner product (M, N) := Tr [MTN], and M, := Mg 4. Let U(n) denote the set of
n X n unitary matrices with complex entries. For a composite Hilbert space C* @ C?, the
notation Tr ca[-] denotes the operation of taking partial trace i.e. tracing out the mentioned
subsystem C?. We use Tr [-] to denote the trace of the underlying operator. Fix standard
bases for Hilbert spaces A = CF, B =2 C?. Let |e;)4, |e;)? denote standard basis vectors of
A, B respectively. Any vector € A® B can be written as z =}, ; aijlei) @ le;)B. We
use op,_,;(7) to denote the operator }_, ; aijlei)? @ (ej|P in My, 4. Conversely, given an
operator M =3, mi;lei)? @ (e;|B in My, 4, we let vec(M) := > i mi;lei)? @ |e;)B denote
the vector in C* @ C?.

For Hermitian positive semidefinite operators M, we define M“ for any o > 0 to be the
unique Hermitian operator obtained by keeping the eigenbasis same and taking the ath power
of the eigenvalues. We can define log M similarly. For p > 1, the notation ||M]||, denotes
the Schatten p-norm of the matrix M, which is nothing but the £,-norm of the vector of its
singular values. Alternatively, || M|, = (Tr [(MTM)P/2])1/P. Then p = 2 gives the Hilbert
Schmidt norm aka the Frobenius norm which is nothing but | M|z = ||vec(M)||2. Also, p = o0
gives the operator norm aka spectral norm which is nothing but || M || = max,.|jy|,=1/|Mv||2.

Unless stated otherwise, the symbol p denotes a quantum state aka density matrix which
is nothing but a Hermitian, positive semidefinite matrix with unit trace. A rank one density
matrix is called a pure state. By the spectral theorem, any density matrix is a convex
combination of pure states. The notation D(C?) denotes the convex set of all d x d density
matrices. We use |-) to denote a unit vector. By a slight abuse of notation, we shall often
use a unit vector |¢) to denote a pure state |){)|. A linear mapping & : M,, — My
is called a superoperator. A superoperator is trace preserving if Tr ®(M) = Tr M for all
M € M,,. Tt is said to be positive if ®(M) is positive semidefinite for all positive semidefinite
M. Furthermore, ® is said to be completely positive if ® ® I is a positive superoperator
for identity superoperators I of all dimensions. Completely positive and trace preserving
(CPTP) superoperators are referred to as quantum channels. Unless stated otherwise, ®, ¥
are used to denote quantum channels.

A compact convex set S in C” is called a convex body. The radius r(S) of a convex body
S is defined as

S) := mi — .
r(S) glelgglggllx yll2
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Any point z € S achieving the minimum above is said to be a centre of S. The convex body
S is said to be centrally symmetric iff for every x € C", 2 € S +» —z € S. The zero vector is
a centre of a centrally symmetric convex body. A centrally symmetric convex body lying in
C™ can be thought of as the unit sphere of a suitable notion of norm in C". Conversely for
any norm in C”, the unit sphere under the norm forms a centrally symmetric convex body.

2.1 Entropies and norms

» Definition 1. The von Neumann entropy of a quantum state p is defined as

S(p) == —Tr[plog p].
For all p > 1, the Rényi p-entropy of a quantum state p is defined as

1

log Tr p? = — P
-p p—1
It turns out that S(p) = lim, ;1 Sy(p) =: S1(p).

Also, it can be shown that for p > 1, S,(-) is concave in its argument.

Splp) = 1 log||pllp-

» Definition 2. For p > 1, the minimum output Rényi p-entropy of a quantum channel ® is
defined as :

SMN(P) .= min S, (P
Pn@) = min S,(2(0)
By an easy concavity argument it can be seen that above minimum is achieved on a pure
state. Equivalently, to obtain S;™(®) for p > 1 we must maximise || ®(p)]|,, for all input
states p. This quantity is also known as the 1 — p superoperator norm of superoperator

d: M, > Mygy:

P = a S(M)|p.
@y =, e 20D

By an easy convexity argument it can be seen that the above maximum is achieved on a
pure state i.e.

d = ma. ) {(xl|l,.
@l = mox ) el

Thus, the additivity conjecture for minimal output p-Rényi p-entropy, p > 1, for quantum

channels ® and ¥ is equivalent to multiplicativity of 1 — p-norms of quantum channels viz.

12T 1p L |1®li5p - || ¥|l1—p. This equivalence will be used in Section B to give a counter
example to additivity conjecture for all p > 1 where the Stinespring dilation of the quantum
channel will be described from a unitary chosen uniformly at random from an approximate
t-design. The equivalent result for Haar random unitaries was originally proved by Hayden
and Winter [11].

We heavily use the one-one correspondence between quantum channels and subspaces
of composite Hilbert spaces, originally proved by Aubrun, Szarek and Werner [4], in this
paper. Let W be a subspace of C*¥ @ C? of dimension m. Identify YW with C™ through an
isometry V : C™ — CF ® C¢ whose range is W. Then, the corresponding quantum channel
dyy : M,, — My, is defined by ®yy(p) := Trca(VpVT). Using this equivalence and the
fact that for p > 1 the 1 — p-superoperator norm is achieved on pure input states, we can
write [4]

(0] = max Tr calz) (x|, = max 0 A IE 1
[@wliy = s [ Trealo)(alll, = max _ opau(e)ld, (1)
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In an important paper, Shor [26] proved that several additivity conjectures for quantum
channels were in fact equivalent to the additivity of minimum output von Neumann entropy of
a quantum channel. More specifically, Shor showed that if there is a quantum channel ® whose
minimum output von Neumann entropy is subadditive, then there are quantum channels ¥,
U, exhibiting superadditive classical Holevo capacity viz. C(¥; ® ¥y) > C(¥;) + C(T3).
This equivalence was used as a starting point by Hastings [10] in his proof that there are
channels with superadditive classical Holevo capacity. Aubrun, Szarek and Werner [3], as
well as this paper also have the same starting point. For this, we need the following fact.

» Fact 3 ([3, Lemma 2]). Let a quantum channel @y : M,, — My, be described by a subspace
W < Ck® C? of dimension m. Then,

1
min P = 1 — R d — 3
Snin(Pw) ogk —k peg?gm)ll (p) k||2

.1
= logh—k- max [(0pa(#))(0Paor(®))" = 7l

We will need the following result proved by Hayden and Winter [11] that upper bounds
S]I,ni“(@ ® <f>) where ® denotes the CPTP superoperator obtained by taking complex conjugate
of the CPTP superoperator ®.

» Fact 4. Let V : C™ — CF ®@ C? be an isometry describing the quantum channel ® : p
Trca[VpVT]. Let |¢) denote the maximally entangled state in C™ @ C™. Suppose m < d.
Then (® ® ®)(|¢)(#|) has a singular value not less than 1. Hence for all p > 1,

_ — m
1 1y > @@ B0 = 1

Moreover,

- m m d 1
. < —_— —_ —_ — .
Smin (P ® ) < 2logk kdlongrO(kdlongrk)

2.2 Concentration results for Lipschitz functions

We now state some basic definitions and facts from geometric functional analysis that will
be used in the proof of our main result.

» Definition 5. A function f : X — C defined over a metric space X is said to be L-Lipschitz
if Ve, y € X it satisfies the following inequality:

[f(z) = f(y)l < L-d(z,y).

» Definition 6. Let X be a compact metric space. An e-net N' of X is a finite set of points
such that for any point x € X, there is a point ©' € N such that d(z,z') < e.

Note that compactness guarantees that finite sized e-nets exist for all € > 0.
We will need the following definition and fact from [3].

» Definition 7. A function f : X — C defined over a normed linear space X is said to be
circled if f(e?z) = f(z) for all@ €R and x € X.

» Fact 8. Let f: X — R be a function defined on a metric space X. Suppose there exists a
subset Y C X such that f restricted to Y is L-Lipschitz. Then there is a function f X =R
that is L-Lipschitz on all of X satisfying f(y) = f(y) for ally € Y. If X is a normed linear
space over real or complex numbers and f is circled then the extension f is also circled.
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Proof Sketch. Define f(z) := infyey [f(y) + Ld(z,y)]. <

In this paper, we endow C™ with the f3-metric and U(n) with the Schatten fo-metric aka
Frobenius metric. The following fact gives a reasonably tight upper bound on the size of an
e-net of Scn.

» Fact 9 (|28, Corollary 4.2.13]). Let ¢ > 0. There exists an e-net of Scn of size less than

(2.

A fundamental result about concentration of Lipschitz functions defined on the unit sphere
or the unitary group, known as Levy’s lemma, lies at the heart of all proofs of Dvoretzky-type
theorems via the probabilistic method. We now state the version of Levy’s lemma that will
be used in this paper.

» Fact 10 (Levy's lemma, [2, Corollary 4.4.28]). Consider the Haar probability measure on
Scn. Let f: Scn — C be an L-Lipshitz function. Let = E,[f(x)] and A > 0. Then

2
n

P —ul >N <2 ——).
1(|f(z) = ul 2 A) < Zexp(—775)
An elementary proof of the above fact, without explicitly calculated constants, can be found
in [28, Theorem 5.1.4].

For our work, we need a measure concentration inequality like Levy’s lemma for difference
of function values on two distinct arbitrary points which is sensitive to the distance between

those points. Such an inequality is stated in the following fact.

» Fact 11 ([3, Lemma 9]). Let f : Scn — C be a circled L-Lipschitz function. Consider the
Haar probability measure on U(n). Then for any x,y € Scn, © # y and for any A > 0,

An

BlfW2) = FUy) > A < 20l —gpor— s

).

The derandomisation in our paper is carried out by replacing the Stinespring dilation
unitary of a quantum channel, which is chosen from the Haar measure in [3], with a unitary
chosen uniformly at random from a finite cardinality approximate unitary ¢-design for a
suitable value of t. The next few statements lead us to the definition of an approximate
unitary ¢-design.

» Definition 12 ([16, Definition 2.2]). A monomial in the entries of a matriz U is of degree
(r, 8) if it contains r conjugated elements and s unconjugated elements. The evaluation of
monomial M at the entries of a matriz U is denoted by M(U). We call a monomial balanced
if r = s, and say that it has degree t if it is of degree (t,t). A polynomial is said to be balanced
of degree t if it is a sum of balanced monomials of degree at most t.

» Definition 13 ([16, Definition 2.3]). A probability distribution v supported on a finite set
of d x d unitary matrices is said to be an exact unitary t-design if for all balanced monomials
M of degree at most t, Ey,[M(U)] = Ey~taar [ M (U)].

» Definition 14 ([16, Definition 2.6]). A probability distribution v supported on a finite set
of d x d unitary matrices is said to be an e-approximate unitary t-design if for all balanced
monomials M of degree at most t

[Etrmn (M (U)) = Eycttaar (M (U))] < ;
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We will need the following fact.

» Fact 15 ([16, Lemma 3.4]). Let Y : U(n) — C be a balanced polynomial of degree a in
the entries of the unitary matriz U that is provided as input. Let o(Y) denote the sum of
absolute values of the coefficients of Y. Let r, t be positive integers satisfying 2ar < t. Let v
be an e-approximate unitary t-design. Then

T moea(Y)?r
]EU"’VH}/U|2 } < IEUNHaarHY—U‘2 ]+ (Tt)

3 Sharp Dvoretzky-like theorems via stratified analysis

In this section, we prove our main technical results viz. sharp Dvoretzky-like theorems for
Haar measure as well as approximate t-designs using stratified analysis. We start by stating
the following three lemmas, with their proofs in Appendix A which are ‘baby stratified’
analogues of Fact 11 for Haar measure and approximate unitary t-designs.

» Lemma 16. Let Y : Scn — R be a circled function with global Lipschitz constant L.
Suppose that there exists a subset } C Scn such that Y restricted to Q) has a smaller Lipschitz
constant Ly. Let x,y € Scn. Let Y, := Y (Uzx), Y, := Y (Uy) be two correlated random
variables, under the choice of a Haar random unitary U. Let A\ > 0. Then

2
UNI?IraarHYw =Y, > < 2exp(—8L§”T;)\_y”%) +2 ZNli’{lgar[z € 0.

» Lemma 17. Let Y : Scn — R be a circled function with global Lipschitz constant L.
Suppose that there exists a subset 0 C Scn such that Y restricted to Q has a smaller Lipschitz
constant Lo. Let Z : Scn — R be a balanced polynomial of degree a in entries of the vector
x € C" that is provided as input. Let 6 > 0. Let f : R — R be a non-decreasing function.
Suppose that |Z(x) — f(Y(z))| < ¢ for all x € Scn. Let x,y € Scn. Let Z, = Z(Ux),
Zy = Z(Uy) be two correlated random variables, under the choice of a unitary U chosen
uniformly at random from an e-approximate unitary t-design v. Let r be a positive integer

t—r 2 2\7r
satisfying 2ar <t. Let 0 < e < - (421("5‘)@.7?’”2) . Then

2 2\ "
BolZ, - 2, <3 (TREZYEY oy by e ot (2o - uif
n z~Haar
» Lemma 18. Let Y : Scn — R be a balanced polynomial of degree a in entries of the
vector x € C" that is provided as input. Let a(Y') denote the sum of absolute values of the
coefficients of Y. Suppose Y has global Lipschitz constant Li. Suppose that there exists
a subset @ C Scn such that Y restricted to Q0 has a smaller Lipschitz constant Lo. Let
z,y € Scn. LetY, ==Y (Ux), Y, :=Y (Uy) be two correlated random variables, under the
choice of a unitary U chosen uniformly at random from an e-approximate unitary t-design v.

—-r 2 2\7
Let r be a positive integer satisfying 2ar <t. Let 0 < € < %. Then

z~Haar

- drL3||e —yl|3\" . -
Bo ¥ - v <3 (MR by e o (nhle - uiBy

We also need a so-called chaining inequality for probability similar to Dudley’s inequality in
geometric functional analysis [3, 21]. The original Dudley’s inequality bounds the expectation
of the supremum, over pairs of correlated random variables, of the difference between them
in terms of an integral, over 7, of a certain function of the size of an 7-net of Sgn. Our
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chaining lemma differs from it in two important respects. First, instead of the expectation it
bounds a tail probability of the supremum, over pairs of correlated random variables, of the
difference between them. Second, it replaces the integral by a finite summation over 7n-nets
of Sgn with geometrically decreasing 7. Despite the fancy name, our chaining lemma is a
simple consequence of the union bound of probabilities. Nevertheless, it is crucial to proving
our main result as it allows us to efficiently invoke powerful measure concentration results in
order to bound the variation of a Lipschitz function on subspaces of C".

» Lemma 19 (Chaining). Let {Xs}scs be a family of correlated complex valued random
variables indexed by elements of a compact metric space S. Let A\, L1 > 0. The family is said
to be Ly-Lipschitz if for all s,t € S, | Xs — X¢| < L1d(s,t) for all points of the sample space.
Define ig to be the unique integer such that the radius of S lies in the interval (2-%—1 27%],
Define i1 := max{ig, [log %1} Let p:Z — Ry be a non-decreasing function. Suppose the

lilp(3)
>0 21

infinite series y is convergent with value C. Then,

i1+1 B B
A/
Pr[sup |Xs — X¢| > A\ < E E Pr[|Xu—Xu/|>M],

4C - 21
StES i=io+1 (u,u')EN; —1 XN;:d(u,u')<2-i+2
for a sequence of 27 -nets N, ig < i <1y, [N;| =1, of S.

Proof. For every i € Z, let N; be a 27 %net of S. Let iy be such that radius of S lies in
(2~ (o+1) 9=%0] The net N, consists of a single element, say so. For every s € S and i € Z,
let m;(s) be an element of N; satisfying d(s,m;(s)) < 27¢. We have the following chaining
equation for every s € S:

i

Xs = XSO + (Z(Xm+1(s) - Xﬂi(é‘))) + (XS - X7T1‘1+1(S))'

i=ig

Lipschitz property of the family implies that

i1
sup |Xs - Xt| < 2 Z Sup‘Xﬂi+1(S) - le(s)‘ + L27"
s,teS i=io €S

i1

< 2 sup |Xu - Xu’| + L127i1
i—io (u,u’ ) ENG XN p1:d(u,u’)<2—i+1
11+1 A
< 2 sup |Xu—Xur|+§.

i=ig+1 (u,u’)EN; —1 XNjid(u,u’)<2—i+2

Now if sup; 45| Xs — X¢| > A, there must exist an 4, ip +1 < i <4y + 1 such that

)\ /T~ T
‘Xu_Xu’| > |Z‘p(7’).

sup _
(w,u’)EN;—1 X Njd(u,u’) <2742 4C - 2¢
Applying the union bound on probability leads us to the conclusion of the lemma. <

We now prove our sharp Dvoretzky-like theorem for subspaces chosen from the Haar
measure using stratified analysis.

9:9
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» Theorem 20. Let p: N — Ry be a non-decreasing function. Suppose the infinite series

Y is0 ;71:(2) is convergent with value C. Let f : Scn — R have global Lipschitz constant L.

Let Lo, cq,c0,c3,A > 0. Define m := (%1 Suppose there is an increasing sequence of
subsets Q1 C Qy C --- of Scn such that with probability at least 1 — coe™%™, a Haar random
subspace of dimension m lies in ; and f restricted to €); has Lipschitz constant Lo \/m
Then there exists a constant ¢ depending on c3, C, 0 < ¢ < 1, such that for m' := cm with
probability at least 1 — (co + 1)2”"/, a subspace W of dimension m' chosen with respect to
Haar measure satisfies the property that |f(w) — p| < A for all points w € W N Scn.

Proof. In this proof Sc» denotes the unit ¢o-length sphere in C™ together with the origin
point 0. The radius of S¢n is one which makes ig = 0 in Lemma 19. Consider a canonical
embedding of Si..s into Scm and further into Scn. Define

B;:={U €U(n) : Vz € Scm,Uz € Q;}.

For s € Sgms, define the random variable Y := f(Us) — u, where the randomness arises
solely from the choice of U € U(n). Then Prygaar[Bi] > 1 — coe ™™,
Let i1 := [log %1 Let V;, i =0,1,...,41 be a sequence of 27 %-nets in Sg,.s of minimum

cardinality, where Ay := {0} and Yy := 0. We can take |Nj] < Q2it2m’ by Fact 9. By
Lemma 19

i1+1 . .
Z Z M/ip(i
UNPI){raar[ Sep |Y'S_Y;| - A} = 2 UNI;-IraarHYu_Yu/| o T;Z)]
$:t€8em/ =1 (u,u/)ENi 1 XNy |Ju—u ||y <2-i+2

Applying Lemma 16 to the set B; gives, for u, u’ satisfying ||u — u’||z < 272

I R A L)
\Zin(i
s 2exp ( 2702221'T[L/§pz(]z?')(|2|)u - u’|§> 2 z~1l){1;ar[z € ]
< 2exp (2971(?)2\2%) + 2z~1:}’11;ar[z € Q7]
<

m . .
2 exp <—2902> + 2co exp(—cgmi) < 2(cg + 1) exp(—cqami),
for a constant ¢4 depending only on C' and cs.

This gives us

Pr [ sup [V, Y| > )]

U~Haar 51t€SCm’

i1+1 i1+1
< Uty ) e < Aoy 1 1) Y N G e
i=1 (u,u’)EN;—1 XNj:||lu—u’||2<27+2 i=1
i1+1
< 4(02 + 1) Z 24m’(i+2)€764mi < (02 + 1)27717,"
=1

where the third inequality follows from (a) and the fourth inequality follows from the definition
m' := cm for an appropriate choice of ¢ depending only on c¢4. In other words, ¢ depends

only on C and c3.
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Taking ¢ = 0, we see that with probability at least 1 — (co + 1)2_’”/ over the choice of a
Haar random unitary, we have that for all s € S¢../, |Ys| < A. This completes the proof of
the theorem. <

Remark

The sets €; and the Lipschitz constants Lgy/p(i) for 1 < i < [log %1 + 1 formalise the idea
of stratified analysis mentioned intuitively in the introduction. As 7 increases the relevant
Lipschitz constant increases. So we need a finer net i.e. a 2 %-net for the ith layer €); in
order to control the variation of f for subspaces lying inside ;. With exponentially high
probability, we thus get a Haar random subspace of dimension m/, slightly smaller than m,
where f is almost constant. Note that the definition of m involves only the smallest local
Lipschitz constant Ls. Thus the dimension of the space m’ that we obtain is larger than what
would be obtained by a naive analysis which would be constrained by the global Lipschitz
constant L;. Moreover, a naive analysis would not give exponentially high probability, just
an arbitrary constant close one. These two properties underscore the power of our stratified
analysis. However, applying the stratified analysis to a concrete function is not always
straightforward. We need to define the layers €1, s, ..., properly and show separately that
Haar random subspaces of dimension m lie in €2; with probability 1 — coe=%™¢. But for
several interesting functions this can be done without much difficulty. This will become
clearer in Section 4 where we will show how to recover Aubrun, Szarek and Werner’s result
for the Haar measure directly from Theorem 20, without having to apply a Dvoretzky-style
theorem twice in a messy fashion as in the original paper [3]. Moreover, we get success
probability exponentially close to one unlike Aubrun, Szarek and Werner who could get only
a constant close to one. Furthermore, our methods extend to approximate t-designs and
allows us to prove exponentially close to one probability even for that setting.

We now prove our sharp Dvoretzky-like theorem for subspaces chosen from approximate
t-designs using stratified analysis.

» Theorem 21. Let p: N — Ry be a non-decreasing function. Suppose the infinite series

Yo ;7@(1) is convergent with value C. Let f : Scn — R be a balanced degree ‘a’ polynomial
with global Lipschitz constant Ly. Let 0 < Lo < 1, ¢1,¢9,¢3,A > 0. Define m := [%1
Suppose there is an increasing sequence of subsets Q1 C Qo C -+- of Scn such that with
probability at least 1 — coe™ ™, a Haar random subspace of dimension m lies in Q; and f
restricted to Q; has Lipschitz constant L \/m Suppose

A 2m (2a=1)m(120(1))™
R R it e
414 max{a(f)?™, 1}

Then there exists a constant ¢ depending on c1, cs, C, p(1), 0 < ¢ < 1 such that for

1 1 02l2
0og log L
m = Cmixzp(l) y

c2L?
[log m]

with probability at least 1 — (co + 1)2‘”’, a subspace W of dimension m’ chosen under
an e-approzimate (2am)-design v satisfies the property that |f(w) — p| < A for all points
w € W NScn.
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Proof. In this proof Scn» denotes the unit f5-length sphere in C™ together with the origin
point 0. The radius of S¢n» is one which makes ig = 0 in Lemma 18. Consider a canonical
embedding of S¢.v into Scm and further into Scr». Define

Bi = {U € U(n) :Vz € S(Cm, Uz € Qz}

For s € Sgms, define the random variable Y := f(Us) — u, where the randomness arises
solely from the choice of U € U(n). Then Prymaar[Bi] > 1 — coe ™™,

Let i1 := [log %] Let Aj, i = 0,1,...,4; be a sequence of 2~ *-nets in S¢,,» of minimum
cardinality, where Ny := {0} and Yy := 0. We can take |\j] < g2(i+2)m’ by Fact 9. By
Lemma 19

Pr sup |V,—Yi| >\ <

U~v S,tES(Em/

i1+1 Y

2> > Pr (Y, = Yu| > ﬁ_}’;)]. (2)

i=1 (u,u')EN;_1 X Niz[lu—u/[|2 <270 F2

Let 7 be a positive integer such that r(i; + 1) < m. Applying Lemma 18 to the set B;
gives, for u, u’ satisfying ||u — u'||s < 272

A ip(i)
Pr[|Y, — Y| > 2
Frll 1> 9 ]
o NZip(i) \ " 2242\ " -
- —Y s ( SV < | S [V = Y|
UPNI‘UHYU Y. | > (24022% ] = )\%]?(i) Ey [|Yu Ya | ]
220N [ (ariL3p)lu = w3\ | i ey oz
< 3(/\%1)(,0) < n > + e 7 (L1||u_u||2)
< 3 22002 L3 ||u — '3 ”+3626_03mi 22”402@?”9—@6'”3 B
nA2 A%ip(i)
2100213\ " (280213
< 3 3 —C3mi 1 A
= ( e ) o (Azp(1)>
=1 =:1I

We now analyse the two terms in the above expression. Take

canA? 1
re

= 21002[/3 |—log 2;6:&)?1

for a constant ¢4, 0 < ¢4 < 1, ¢4 depending only on C, ¢1, c3, p(1) chosen to be small enough
2
so that (i1 + 1) < m and % < @ Substitute r back in I and II to get
2

2
ilog 1 2802L% e 4
I < 3. 2*7‘2 oglog A2Zp(1) , 11 < 3626_03””27 < 3026—037717,/2.
‘We choose
SCQLQ c
" 1 31
m” :=rloglo < 2
898 32,1 T2

This gives us

[<3.27™" I1< 3coe ™"
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Thus, we have shown that

)\\/p(l) o
v, VIV « m’i
UPNI“VHYu Y| > ic o ] <3(ce+1)2

Substituting above in Equation 2, we get

Pr| sup [Y,—Yi>\
Unv s t€8
i1+1

< 2y > 3(co +1)27™"

1=1 u,u' €EN;_1 XN;:||lu—u/||<2—i+2

i1+1 i1+1
< 6(cr+1) Z INi_q| - NG| -27™"F < 6(co + 1) Z gdm’(i+2)9-m"i (ca+1)27™
=1 =1

if m’ is chosen as indicated above for a small enough constant ¢, 0 < ¢ < 1, ¢ depending only
on ¢4, ¢1, C i.e. ¢ depending only on C, ¢, c3, p(1).

Taking ¢ = 0, we see that with probability at least 1 — (¢g + 1)2*’"/ over the choice of a
uniformly random unitary from the approximate (2am)-design, we have that for all s € S¢/,
|Ys| < A. This completes the proof of the theorem. <

4  Strict subadditivity of minimum output von Neumann entropy for
approximate t-designs

We first apply Theorem 20 in order to directly recover Aubrun, Szarek and Werner’s result
[3] that channels with Haar random unitary Stinespring dilations exhibit strict subadditivity
of minimum output von Neumann entropy. In fact, we go beyond their result in the sense

that we obtain exponentially high probability close to one as opposed to constant probability.

After this warmup, we apply Theorem 21 in order to show that channels with approximate
n?/3-design unitary Stinespring dilations exhibit strict subadditivity of minimum output von
Neumann entropy with exponentially high probability close to one.

Let k be a positive integer. Consider the sphere Si.s. Define the k x k? matrix M to be
the rearrangment of a k3-tuple from Scws. Note that the £2-norm on C*’ is the same as the
Frobenius norm on CK***,

In Step I, we define the function f: S — R as f(M) := || M||«. The function f has
global Lipschitz constant L; = 1 since

[f(M) = f(N)] < |[M = Nljoo < |M = N2

For large enough k the mean p of f, under the Haar measure, is less than 2k~1/2 3,

Corollary 7]. We use the notation of Theorem 20. Define Ly := 1, p(i) := 1 for all i € N.

Then C' < 2. Define the layers Q1,(s,..., to be all of Spis. Let j, 4 < j <k be a positive
integer. Let \; := \/% Define ¢; := 1, m = k%, ¢y := 0, c3 := 1. Trivially, a Haar random
subspace of dimension mj lies in €; with probability at least 1 — coe~%™J%, Theorem 20 tells

us that there is a universal constant ¢; such that for m’ := ¢, k2, with probability at least
1—92-m' , a Haar random subspace W of dimension m’j satisfies

v 2 j \ﬁ
oo = 7 2 A
1] <\/E+\/;< k

for all M € W.
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In Step II, we define the function f:Sgs — Ras f(M) = [|[MMT — %”2 The function
f has global Lipschitz constant L = 2 since
QL) — F(N)| < MM — NNy < [ MM~ MN, 4+ [MNT - NN,
< Mlool|MT = N2 + | N[l [[M = N2
= (IMlloc + [Nllo)IM = Nll2 < 2||M — Nfz.

The mean y of f, under the Haar measure, is less than cok ! for a universal constant ¢y [3,
Corollary 7]. We use the notation of Theorem 20. Let j, ¢ < j < k be a positive integer.

Define Lo := 4\/%, p(i) == i+ 3 for all i € N. Then C < 4. Define the layers ©1,9,..., to
be the subsets

(i3
Q= {MeSCks:HMHOOgQ J(Z: )}.

It is easy to see that f restricted to £2; has local Lipschitz constant at most Lo \/m Let
A= % Define ¢; := 16¢;, m = ¢1jk?, cp := 1, c3 := In2. By the previous paragraph, a Haar
random subspace of dimension m(i + 3) lies in Q; with probability at least 1 — cgecam(i+3) >
1—coe ™ Theorem 20 tells us that there is a universal constant ¢y such that for m’ := ék2,
with probability at least 1 — 9—m'j , a Haar random subspace W of dimension m’j satisfies

1 co  J 2
f(M) = ||MMT*E||2<?+% %
for all M € W. Setting j = 1 allows us to recover Aubrun, Szarek and Werner’s technical
result [3] with probability exponentially close to one viz. with probability at least 1 — 2*’”/,
a Haar random subspace W of dimension m’ satisfies || M Mt — %Hg < 2 forall M € W. We
will see below how this implies the existence of a channel with strictly subadditive minimum
output von Neumann entropy.

In Step III, we define the function f: Sgs — Ras f(M) == [|[MMT — %H% i.e. this f is
the square of the f defined in the last paragraph. Now, f is a balanced polynomial of degree
a=2and 1< a(f) < kS as can be seen by considering f(J) where J is the k x k? all ones

matrix. The function f has global Lipschitz constant L; = 4 since

1 1 1 1
SO = FN] < MM = Ll = INNT = 2ol - [IMMT = Lz + [NNT = o
1 1
< (1Moo + INla) (IMMT = Zlla + [NNT = 2 [2)[M = Nl
< 4||M — N||2.

The mean p of f under the Haar measure is less than c¢3k~2 for the same universal constant
co [3, Corollary 7). We use the notation of Theorem 21. Define Ly := 16k~%/2, p(i) := i* for
all i € N. Then C' < 5. Define the layers Q1,Qso, ..., to be the subsets

1 1 21
Qi = {MESck3 : ||M||oo SQ\/;,IMMT—ka < k}

It is easy to see that f restricted to €2; has local Lipschitz constant at most Lo \/m Let
A = k2. Define c¢; := 28¢y, m = é&k? < ¢1k%, ¢o := 2, c3 := In2. By the previous
two paragraphs, a Haar random subspace of dimension mi lies in €2; with probability at
least 1 — cpe™ ™. In particular, a Haar random subspace of dimension m lies in Q; with
probability at least 1 — coe™ ™. Let

2m 19m1.—3m
1 .
0<e< ( ) RO (4k)~1002K"

16k2 lem



A.Nema and P.Sen

Theorem 21 tells us that there is a universal constant ¢s such that for

loglog k

/ — k2
mn e logk ’

with probability at least 1 — 3 - 2””/, a subspace W of dimension m’ chosen from an
e-approximate (4éok?)-design v satisfies
5,1 g+l

1 C
M) = MM = T < 5+ = D

for all M € W.
We shall now see how this result gives us a channel with strict subadditivity of minimum

output von Neumann entropy. Consider the channel ® corresponding to the subspace W.

The output dimension is k. The input dimension is dim W = m/. The Stinespring dilation of
the channel @ is the k2 x k® unitary matrix that defines the subspace W’. The subspace
W' is obtained by taking the first m’ columns of the unitary matrix. This unitary matrix
is chosen uniformly at random from a k~8¢2*_approximate unitary (4é;k2)-design. From
Fact 3, we get

Sin(®) > log s — k max f(M) > logh — D1
min -~ 10g ]{/[Heag[(/ 2 log A .
And from Fact 4, with d = k2, we get
5 m/ m/ d 1
min P ) < 21 k——1 k —1 — -
Siin (P ® @) og 1d 108 +O(kd0gm’+k>
¢sloglog k (loglogk)? 1
= 2logk — —
o8 K O( Klogk &

< Smin(q)) + Smin((i))v

for large enough k. Thus, we have shown that for large enough n approximate unitary
n?/3-designs give rise to channels exhibiting strict subadditivity of minimum output von
Neumann entropy, implying that classical Holevo capacity of quantum channels can be
superadditive.

If instead we were to use the existence of a Haar random subspace W of dimension
m := ék? proved at the end of Step II above, we will recover Aubrun, Szarek and Werner’s
result on strict subadditivity of minimum output von Neumann entropy with probability
exponentially close to one. Consider the channel ® corresponding to the subspace W. The
output dimension is k. The input dimension is dim W = m. The Stinespring dilation of
the channel ® is the k® x k3 unitary matrix that defines the subspace W. The subspace W
is obtained by taking the first m columns of a Haar random unitary matrix. From Fact 3,
we get

1 4
Simin(®) > logh — k max [ MM — |5 > logh — .

And from Fact 4, with d = k2, we get

m m d 1

Smin (@@ ®) < 2logk kdlongrO(kdlongrk)
éologk 1
= 2logk——7">"—4+0| -
og A + (k

< Smin(q)) + Smin((i))v
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for large enough k. Thus, we have shown that for large enough n Haar random unitaries give
rise to channels exhibiting strict subadditivity of minimum output von Neumann entropy,
implying that classical Holevo capacity of quantum channels can be superadditive. Observe
that the counter example we get for additivity conjecture for classical Holevo capacity of

quantum channels, when the channel is chosen from an approximate unitary ¢-design has

weaker parameters than a channel chosen from Haar random unitaries. Nevertheless, as

explained in the introduction our work is the first partial derandomisation of a construction

of quantum channels violating additivity of classical Holevo capacity.
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Proofs of Lemmas used in stratified analysis

Proof of Lemma 16. By Fact 8, there is a circled function Y’ that agrees with Y on Q
and is Lo-Lipschitz on all of Sgn. Define correlated random variables Y, Yy’ in the natural
manner. Then using Fact 11, we get

Pr [V, —Y,| > )

U~Haar

= . Pl’{r [(Uz,Uy) € 2 x Q] v Pl’{r 1Yz — Yy > AUz, Uy) € Q2 x Q]

+ P [(UnUy) ¢ QX0 Pr [V~ ¥,| > MU, Uy) €2 x 9
_ . !/ _ U
= UNP;Iraar[(U:E,Uy) € Qx Q] UNPI’{raarHYm Y, > MUz, Uy) € Q x Q]

+ P [(Un,Uy) Q%0 Pr [V, =Yy > A[(Us,Uy) € 2 x 0]
< Pr Y=Y >MN+2 Pr [z€Q]

U~Haar z~Haar

nA?
< 2exp(—=—=5——5)+2 Pr [z€Q°.
SL%”(E — y”% z~Haar
This finishes the proof of the lemma. <

Proof of Lemma 17. Since Z, — Z, is a balanced polynomial in the entries of the unitary

matrix U, from Fact 15 we have

EUNV“Z{D - Zy‘Zr] S EUNHaarHZw - Zy|2r] +

ea(Z)?r
nt
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2r b 2 2\ T
By choosing € small enough to satisfy the constraint above, we get m(nzt) < (MLzlffylb) .

Combining (a) and (b) gives

s - 4rL2||lz — ylI2\"
Eveul|Ze — 2] < Evmttaar (12 — Z,[*") + (zlyllz) .

n
Now we find Eptaar[|Ze — Zy|*"]-
By Fact 8, there is a circled function Y’ that agrees with Y on € and is Lo-Lipschitz on

all of Sgn. Define correlated random variables Y, Yy' in the natural manner. Then using
Fact 11, we get

Pr [|V, —Y,|> )

U~Haar
= . ].:I){l"” (Uz,Uy) € Q x Q] - P;Ir” Yz =Y, > AUz, Uy) € 2 x Q]
+ Pr [(Uz,Uy)€QxQ]- Pr [|Y,-Y,|>\(Uz,Uy) ¢&QxQ]
U~Haar U~Haar
_ 3 / _ !
= UNl?{raar[(Ux,Uy) €N x Q] UNliIraarHYm Y, > AUz, Uy) € Q x Q]
—l—UliIr [(Uz,Uy) ¢ Q x Q]U%r [[Ye =Yy > AUz, Uy) ¢ 2 x Q]
< Pr [[Y,-Y,[>)+2 Pr [z€Qf
U~Haar z~Haar
nA?
2exp(—==57——35)+2 Pr [z€Q°.
8L%”.’L‘ — y”% z~Haar
This finishes the proof of the lemma. <

Proof of Lemma 18. Since Y, — Y/, is a balanced polynomial in the entries of the unitary
matrix U, from Fact 15 we have

ea(Y)?r

EUM/“Y:& - Yy|2r] < I['EUNHaarHYﬂE - Yy|2r] + nt

2r b 2 2\ T
By choosing e small enough to satisfy the constraint above, we get m(:;) < (MLzlffylb) .

Combining (a) and (b) gives

P> r drL2||lz — ylI2\ "
EUNV“YI - Yy|27] < EUNHaar(|Yz - Yy|2 ) + <2||y||2) .

n

Now we find Eypaar[|Ya — Yy|?"]. Since Y is a balanced polynomial, it is circled. By
Fact 8, there is a circled function Y’ such that Y’ agrees with Y on Q and Y is Lo-Lipschitz
on all of Scn. Define correlated random variables Y, Y, in the natural manner. Then

EUNHaarHY;c - Yy|2r]
= Pr [(Uz,Uy) € Qx Q) EyonaarlYe — Yy [*|(Uz,Uy) € Q x Q]

U~Haar

+ UNPI){raar[(Ux’ Uy) ¢ Q2 x Q] 'EUNHaarHY:C - Yy|2r|(va Uy) ¢ Q1 x Q]
= 5 1?{( [(Uz,Uy) € 2 x Q- Eycnaarl|Ys — Y, |7 |(Uz,Uy) € Q x Q)

+ UN};II;M[(U'% Uy) Z Q2 x Q] 'EUNHaarHYI - Yy|2r|(U'rv Uy) Z Q0 x Q]

A2

Evetaar(Ye = Yy 1+2 Pr [z € Q- (Lillz —yl3)".

z~Haar
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Now we find Eypaar(|Yy — Y, |*"] using Fact 11 and Low’s method [16, Lemma 3.3].
IEUNHauar“Yvw/ - Y;|2r}

= / Pr [|Y1§ —ny|2r > Ad\ = / Pr ny/ —Yy'\ N )\1/(27‘)]d)\
0 0

U~Haar U~Haar
00 AL/ rL2le — ull2\"
< 2/ exp— 2 yin & 2<Tzllzyllz> .
0 8L3[|lx — yll3 n

Combining inequalities (d) and (e), we have

ArL|x _y||§)7"

- +2 Pr [2€ Q- (Lille —yl3)"-

z~Haar

EUNHaarHYz - Yy|2r} S 2 <

Further combining with (c) gives us the desired conclusion of the lemma. |

B  Strict subadditivity of minimum output Rényi p-entropy for
approximate t-designs

We now give a general proposition showing how to approximate a continuous non-decreasing

function by a polynomial of moderate degree. The proof can be found in the full version in [19].

» Proposition 22. Let f : [0, A] — [0,1] be a continuous non-decreasing onto function
that has left and right derivatives everywhere. Define the global Lipschitz constant L :=
maxyeco,a] [ (y), where henceforth we use f'(y) to denote the maximum of the the left and
right derivatives of f aty. Fiz 0 < € < 1. Define the e-smoothed local Lipschitz constant at
z,

L = max "(y).
yef T ((f(w)—e.f(2)+e))

1
Let n be the minimum positive odd integer satisfying mA < 6"2‘5, where m := 2£y/Ine—2.
Define my, := 2L: /Ine2. Then there is a polynomial p(x) of degree at most 2n+ 1 such that

€

p(x) — 26 < f(z) < p(x) +3e, —me? <p'(x) < emy +me?, Va0, Al

Moreover the sum of absolute values of the coefficients of p(x), denoted by a(p(x)), is at
2((A+1)m)*

most e
In this section, we applg Proposition 22 and Theorem 21 in order to show that channels with
approximate p3 ndTotE log n-design unitary Stinespring dilations exhibit strict subadditivity
of minimum output Rényi p-entropy for p > 1 with exponentially high probability close to
one.

Let k be a positive integer. Consider the sphere Sqis. Define the k& x k? matrix M to be
the rearrangment of a k3-tuple from Scws. Note that the £2-norm on C*’ is the same as the
Frobenius norm on CF***. Let p>1.

In Step I, we define the function f: Sy — R as f(M) := || M]|2p. The function f has
global Lipschitz constant L; = 1 since

[f(M) = f(N)| < [[M = Nll2p < [|M = Ns.

For large enough k the mean p of f, under the Haar measure, is less than 2k 3 [4,
Section VIII], [3, Corollary 7]. We use the notation of Theorem 20. Define Lo :=1, p(i) :=1
for all i € N. Then C' < 2. Define the layers Q1,2,..., to be all of Sq.us. Let j, 4 < j < k be
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a positive integer. Let \; := j%k%_%. Define ¢; :=1, m = /<:2+%, cg =0, c3 := 1. Trivially,
a Haar random subspace of dimension mj lies in §; with probability at least 1 — coe™ ™%,
Theorem 20 tells us that there is a universal constant ¢; such that for m’ := élk2+%, with
probability at least 1 — 2-m'i a Haar random subspace W of dimension m'j satisfies

1

IMllos < IMllap < 20773 + j2 k%74 < 252 h3

Nl

g etd _
for all M € W. In particular, with probability at least 1 —2~¢17k* 2 (logk) 1, a Haar random
4 5
subspace W of dimension &7k 73 (log k)~ ! satisfies

1

111
[Mlloo < [[M|l2p < 2j2 k272

for all M € W.
Let j, 4 < j < k be a positive integer. Define the function f : [0,1] — [0,1] as f(z) := aP.
Set € := k7P in Proposition 22. Let n be the minimum positive odd integer satisfying

_r
2pkP+/In k2r < %; n < 27p?k?P log k. Proposition 22 implies that there is a polynomial
p(x) of degree at most 2n + 1 < 2?p3k2P log k such that

p(z) — 2k77 < a? < p(x) + 3k, va € [0,1],
P/ (@)] < dp(j + )P~ VInkZRS 5P, Ve € [0, kY, 3)
[P/ ()] < 4p(5))" VInRPR PR, Ve e (kS 5k,

Also, Proposition 22 guarantees that a(p(z)) < 2 PPk logk

In Step II, we define the function f : Sqe — R as f(M) = Tr[p(MM?")], where
p is the polynomial defined in Equation 3. Now, f is a balanced polynomial of degree
a=2n+1<2%3k%logk and

o(f) = Te[p(JIh)] = KPa(p(x)) < X7 F" sk,

where J is the k x k? all ones matrix. For a k x k matrix X, define Sing(X) to be the k x k
diagonal matrix consisting of the singular values of X arranged in decreasing order. The
function f has global Lipschitz constant L; = 2*p3/2,/logk since

F(M) = F(N)| = [Tr[p(Sing(M)?)] — Tr [p(Sing(N)2)]| = [Tr [p(Sing(M)?) — p(Sing(N)2)]]
< 8p¥2/logk - ||Sing(M)* — Sing(N)?
< 8p*2/logk - ||Sing(M) — Sing(N)||2 - |Sing(M) + Sing(N)]|»
< 277 \/logk - [Sing(M) — Sing(N)l2 - /| M]3 + | N3
< 22\/loghk - M = Nllo.

Above, the first inequality follows from Equation 3, the second inequality is Cauchy-Schwarz
and the last inequality follows from [18, Section 4]. By setting j = 4 in Step I, we conclude
that the mean p of f under the Haar measure is less than 27k'~P. We use the notation of
Theorem 21. Let A := k!~P. Define

Ly = 24P3p3/2 flog k - k3P~ 55

p(i) := (i +4)*~! for all i € N. Then C < p?’. Define the layers Q1,s,..., to be the
subsets

Nl

Q; = {M € Spus ¢ | M]l2p < 2(i+ 3)3 k7~
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We will now show that f restricted to 2; has local Lipschitz constant at most Lo \/m . Note
that for any M € Q, ||MH<>o < 2(2 +3)z 5k 7. Let B denote the number of singular values
of M larger than (i + 3)2 5k 3. Let by,...by be the singular values of M in descending
order. Then

2% (i + 3K > M| p>2b2”> (Zb2> PO,

which gives Y27, bf g 22p (i+3)k% 5. Let C denote the number of singular values of N

larger than (i + 3) 53 2. Without loss of generality, B > C. Restricting M, N to belong
to ©;, we get from Equation 3 that

|f(M) = f(N)]
= ITr [p(Sing(M)?) = p(Sing(N)?)]|
B k
< le ®) = p(E)+ > p®) —p)+ > Ip®}) —p(c})]
i=C+1 i=B+1
C
< 8p¥2(5(i +3))P W logk - k2P Y |02 — ¢
=1
. B
+8p°2(5(i + 3))P " logk - k2P (b — cf|
i=C+1
5 2 k
+8p° (i + 4P logk - k37P75 Y [p(b7) — ()|
i=B+1
C C
< 8p¥2(5(i 4+ 3)P Wogk kP | Y (0 — )2 | S (b +ci)?
=1 =1
. B B
+8p°2(5(i 4+ 3))P " logk - KPTPTE YT (bi—ei)? | Y (bi i)
i=C+1 i=C+1
3 ) k k
+8p7 (i + )P logk - k3P | > (i — i)y | D (bt )
i=B+1 i=B+1
k C
< 272251 4 3))P W logk - KPR | S (b — )2 | (07 + ¢2)
1=1 1=1
L k B
+ 27282 (5(i 4 3))P " logk - KPP | S (b —ei)? | Y (B2 +c2)
=1 i=C+1
5 , k k
+ 272372 ((i + 4))P~ 1 log k- k3 P75 Z 24| D> (B2 +c2)
i=1 i=1
1 1

w

< 2254 3)7 7 logh - KTPTE kS - [Sing(M) — Sing(N) |2
+24p¥29757 1 (i 4+ 373 \log k- vtk |Sing(M) — Sing(N)]|2
404 3/2((1'_’_4))17—1\/7 k%*p*%HSjng( M) — Sing(N)||2

2°p%/22P50 (i 4 4)7 ™5 logk - k3775 - |Sing(M) — Sing(N)]l2

24P +33/2(; 4 4)P=3 . flogk - k3P - |M — N|».

INIA
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This completes the proof of the claim above that f restricted to §2; has local Lipschitz
constant at most Lgm. Define ¢; := 28776p3¢;, m = 61k£+%(log k)"l ep:i=1,c3:=In2.
By Step I, a Haar random subspace of dimension mi lies in €2; with probability at least
1 — coe™™ Let

1—p\ 2™ 1.3(2a—1)mg(2p—1)m 7 2m
0<ec< k k ) L3
4L, a(f)m

Theorem 21 tells us that there is a universal constant és such that for

wl = oyl 2BIOBN
(log k)?
with probability at least 1 — 2 - Q’m,, a subspace W of dimension m’ chosen from an
e-approximate (2am)-design v satisfies

F(M) =Tr [p(MM?)] < 2%k ~P 4 1P < 2% H1gl—Pp
for all M € W. By Equation 3, this implies that
Tr [(MM')P] < Tr [p(MM)] + 3k17P < 24PF31-P

for all M € W. In other words, ||M||3, < 27k~ for all M € W.

We shall now see how this result gives us a channel with strict supermultiplicativity of
the ||-|[1p-norm or equivalently, strict subadditivity of minimum output Rényi p-entropy for
p > 1. Consider the channel ® corresponding to the subspace W. The output dimension is k.
The input dimension is dim W = m/. The Stinespring dilation of the channel ® is the k3 x k3
unitary matrix that defines the subspace W’. The subspace W' is obtained by taking the
first m’ columns of the unitary matrix. This unitary matrix is chosen uniformly at random
from an e-approximate unitary 61210p3k%+%+2p log k-design. From Equation 1, we get

D1y = M|3, < 27kv 1.
(@1 = a3, <
From Fact 4,
= m' 4 _aloglogk
I8 @1y > 7 = ok ™S EED > (f0lo)

for large eznough k. Thus, we have shown that for large enough n approximate unitary
4 5 D
p3n% 7973 logn-designs give rise to channels exhibiting strict subadditivity of minimum

output Rényi p-entropy for any p > 1.
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—— Abstract

We present a conceptually clear and algorithmically useful framework for parameterizing the costs of
tensor network contraction. Our framework is completely general, applying to tensor networks with
arbitrary bond dimensions, open legs, and hyperedges. The fundamental objects of our framework
are rooted and unrooted contraction trees, which represent classes of contraction orders. Properties
of a contraction tree correspond directly and precisely to the time and space costs of tensor network
contraction. The properties of rooted contraction trees give the costs of parallelized contraction
algorithms. We show how contraction trees relate to existing tree-like objects in the graph theory
literature, bringing to bear a wide range of graph algorithms and tools to tensor network contraction.
Independent of tensor networks, we show that the edge congestion of a graph is almost equal to the
branchwidth of its line graph.
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1 Introduction

Tensor networks are widely used in chemistry and physics. Their graphical structure provides
an effective way for expressing and reasoning about quantum states and circuits. As a model
for quantum states, they have been very successful in expressing ansatzes in variational
algorithms (e.g., PEPS, MPS, and MERA). As a model for quantum circuits, they have
been used in state-of-the-art simulations [27, 19, 18, 20, 24]. In the other direction, quantum
circuits can also simulate tensor networks, in the sense that (additively approximate) tensor
network contraction is complete for quantum computation [3].

The essential computation in the application of tensor networks is tensor network con-
traction, i.e., computing the single tensor represented by a tensor network. Tensor network
contraction is #P-hard in general [6] but fixed-parameter tractable. Markov and Shi [22]
defined the contraction complexity of a tensor network and showed that contraction can be
done in time that scales exponentially only in the treewidth of the line graph of the tensor
network. Given a tree decomposition of the line graph of a tensor network, a contraction
order can be found such that the contraction takes time exponential in the width of the
decomposition, and vice versa. However, the translation between contraction orders and
tree decompositions does not account for polynomial prefactors. This is acceptable in the-
ory, where running times of O(n2") and of O(2") are both “exponential”; in practice, the
difference between ©(n2"™) and ©(2") can be the difference between feasible and infeasible.

© Bryan O’Gorman;
37 licensed under Creative Commons License CC-BY

14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019).
Editors: Wim van Dam and Laura Mancéinska; Article No. 10; pp. 10:1-10:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://orcid.org/0000-0001-5164-8083 
mailto:bogorman@berkeley.edu
https://doi.org/10.4230/LIPIcs.TQC.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Parameterization of Tensor Network Contraction

We give an alternative characterization of known results in terms of tree embeddings
of the tensor network rather than tree decompositions of the line graph thereof. In this
context, we call such tree embeddings contraction trees. While one can efficiently interconvert
between a contraction tree of a tensor network and a tree decomposition of the line graph,
contraction trees exactly model the matrix multiplications done by a contraction algorithm in
an abstract way. That is, the time complexity of contraction is exactly and directly expressed
as a property of contraction trees, in contrast to tree decompositions of line graphs, which
only capture the exponent. Our approach is thus more intuitive and precise, and easily
applies to tensor networks with arbitrary bond dimensions and open legs.

We show that contraction trees also capture the space needed by a matrix-multiplication-
based contraction algorithm. In practice, space often competes with time as the limiting
constraint. Even further, we can express the time used by parallel algorithms as a property of
rooted contraction trees, which are to contraction orders as partial orders are to total orders.

In a contraction tree, tensors are assigned to the leaves and each wire is “routed” through
the tree from one leaf to another. The congestion of a vertex of the contraction tree is the
number of such routings that pass through it, and similarly for the congestion of an edge.
The vertex congestion of a graph G, denoted ve(G), is the minimum over contraction trees
of the maximum congestion of a vertex, and similarly for the edge congestion, denoted ec(G).
Formally, our main results are the following two theorems.

» Theorem 1. A tensor network (G, M) can be contracted in time n2"S)*1 and space
n2v(@+L or in time 215G+ and space 2299t More precisely, the tensor network can
be contracted in time minr ) ZteT 2ve(®) where the minimization is over contraction trees
(T,b). The contraction can be done using space equal to the minimum weighted, directed
modified cutwidth of a rooted contraction tree using edge weights w(f) = 221, If the
contraction is done as a series of matriz multiplications, these precise space and time bounds
are tight (though not necessarily simultaneously achievable).

» Theorem 2. A parallel algorithm can contract a tensor network (G, M) in time
min p ) max; ), 2vet) where the minimization is over rooted contraction trees (T,b), the
mazximization is over leaves | of T, and the summation is over vertices of t on the unique path
from the leaf l to the root r. In other words, the time is the minimum vertex-weighted height
of a rooted contraction tree, where the weight of a vertex is w(t) = 2ve®) | If the contraction
is done as matrixz multiplications in parallel, this is tight.

Given a tree decomposition of a line graph with width k£ — 1, we can efficiently construct
a contraction tree of the original graph with vertex congestion k. Thus one immediate
application of our framework is as a way of precisely assessing the costs of contraction
implied by different tree decompositions (even of the same width) computed using existing
methods. This is especially useful in distinguishing between contraction orders that have
the same time requirements but different space requirements; prior to this work, there
was no comprehensive way of quantifying the space requirements, which in practice can
be the limiting factor. Alternatively, one can start with existing algorithms for computing
good branch decompositions, which can be converted into contraction trees of small edge
congestion. More broadly, identifying the right abstraction (i.e., contraction trees) and
precise quantification of the space and time costs is a foundation for minimizing those costs
as much as possible.

In Section 2, we go over the graph-theoretic concepts that are the foundation of this work.
In Section 3, we present seemingly unrelated graph properties in a unified framework that
may be of independent interest. Section 3, while strictly unnecessary for understanding the
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Figure 1 Two unrooted contraction trees for a tensor network with 6 tensors. Each color
corresponds to a wire of the tensor network. The inclusion of a color in the representation of a
vertex or edge of the contraction tree indicates the contribution of the corresponding wire’s weight
to the congestion of the vertex or edge, respectively.

main results, helps explain the relationship between our work and prior work. In Section 4,
we introduce the cost model on which our results are based. In Section 5, we give our main
results. In Section 6, we discuss extensions and generalizations of the main ideas. In Section 7,
we conclude with some possible directions for future work. In Appendix A, we prove that
the edge congestion of a graph is almost equal to the branchwidth of its line graph.

2 Background

Let [i,n] = {j€Zli<j<n}, [n] = [1,n], and [n] = [n1] X [ng] X --+ x [n,] for n =
(n1,...,n.) € (ZT)". Let G[S] = (V, En (g)) be the subgraph of G induced by a subset of
the vertices S C V(G). For two disjoint sets of vertices of an edge-weighted graph, w(S,S") =
> {uvyeEluesves W({u,v}) is the sum of the weights of the edges between S C V and
S’ C V. More generally, for r disjoint sets of vertices, w(S1,...,S,) = Z{M}E([g]) w(S;,S;)
is the sum of the weights of the edges with endpoints in distinct sets. In this context, we will
denote singleton sets by their sole arguments, e.g., w(u,v) = w({u}, {v}) = w({u,v}).

2.1 Tensor networks and contraction

A tensor can be defined in several equivalent ways. Most concretely, it is a multidimensional
array. Specifically, a rank-r tensor is an r-dimensional array of size d = (dy, ..., d,.). More
abstractly, a tensor is a collection of numbers indexed by the Cartesian product of some
set of indices, e.g., [Til7i2"'7iT](i1,i2,...,ir)€[d1]X[dQ]X'--X[dT] indexed by i € [n]. Alternatively,
a tensor can be thought of as a multilinear map T : [d] — C. (Our focus will be on
complex-valued tensors.)

» Definition 3 (Tensor network). A tensor network (G, M) is an undirected graph G with
edge weights w and a set of tensors M = {M,|v € V(G)} such that M, is a |N(v)|-rank
tensor with 29°8(") entries, where deg(v) = Yuen(w) W{u, v}) is the weighted degree of v.
FEach edge e corresponds to an index i € [2“’(6)] along which the adjacent tensors are to
be contracted.
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Figure 2 Three ways of viewing the contraction of two tensors. Left: multiplication of a dr, X dwm-

rank tensor with a dy X dr-rank tensor, resulting in a di, X dgr-rank tensor. Middle: contraction
of a degree wi, + wnm vertex with a degree wy + wr vertex, resulting in a degree wi, + wr vertex.
Right: removing a close pair of leaves (with congestions wr, + wn and wam + wr) of a contraction
tree, leaving a new leaf with congestion wr, + wr.

The contraction of two tensors is the summation over the values of their shared indices.
Graphically, this is like an edge contraction of the edge adjacent to the two tensors. The
result is a new tensor that takes the place of the two original ones. ! See Figure 2. Let v; and
v2 be the vertices contracted into the new vertex vy 23. The weight of an edge between the
new vertex and any other vertex v’ is w (v(y,2y,v’) = w ({v1,v2},v") = w (v1,V') + w (v2, V).

Except in Section 6, we assume that all tensor networks have no “open legs”, i.e., every
edge connects two vertices (tensors). In this case, the value of a tensor network is the single
number that results from contracting all of its edges. Each contraction reduces the number
of vertices (tensors) by one, so the network is fully contracted by n — 1 contractions. We
call a sequence of such contractions a contraction order. The value of the tensor network is
independent of the contraction order, but the cost of doing the contraction can vary widely
depending on the contraction order. Each contraction is identified by an edge, but that edge
may not be in the original graph, i.e., its adjacent vertices may have been formed by earlier
contractions. One way of specifying a contraction order is by a sequence of edges of the
original graph that constitute a spanning tree thereof. In Section 5, we introduce the notion
of contraction trees, which allow for a conceptually clear way of expressing contraction orders
that makes manifest the associated temporal and spatial costs.

Exactly computing the value of a tensor network is #P-hard [5], as a tensor network can
be constructed that counts the number of satisfying assignments to a satisfiability instance or
the number of proper colorings of a graph. Even multiplicative and additive approximation is
NP-hard [3]. Interestingly, approximating the value of a tensor network with bounded degree
and bounded bond dimension is BQP-complete [3]. That is, not only can tensor networks
simulate quantum circuits, but quantum circuits can simulate tensor networks as well. In
this sense, tensor networks and quantum circuits are computationally equivalent.

1 Note that this is a “paralle]” model of contraction, whereas Markov and Shi use “one-edge-at-a-time”
contraction of multigraphs. They are equivalent in the sense that an edge with integer weight can be
considered as that number of (unweighted) parallel edges. The parallel model more closely matches how
contraction is done in practice. It also allows for arbitrary bond dimension, whereas the multigraph
model requires that all bond dimensions be powers of the same base.
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2.2 Treewidth and branchwidth

This section is intended primarily to establish notation and recapitulate the standard
definitions of the graph properties used in the present work. For a more thorough and
pedagogical treatment, see Diestel’s excellent textbook [17]. Many instances of graph
problems that are hard in general are actually easy when instance graphs are restricted to
trees. In many such cases, this generalizes in the sense that it is possible to characterize the

hardness of an instance by how “tree-like” it is, as captured by the treewidth of the graph.

The treewidth of a graph is defined in terms of an optimal tree decomposition. Treewidth has
several alternative characterizations; one of these, elimination width, is the basis of Markov
and Shi’s result equating treewidth and contraction complexity.

» Definition 4 (Tree decomposition). A tree decomposition of a graph G = (V, E) is a tuple
(T, X) of a tree T and a tuple X = (Xt)teV(T) of subsets (called bags) of the vertices of G
with the following properties.

1. For every edge {u,v} € E(QG), there is some bag X € X that contains both endpoints:

u,v € X.
2. For every vertexr v € V(G) of G, the subtree T[S,] of T induced by the bags S, =
{X € X|v € X} containing v is non-empty and connected.

» Definition 5 (Width and treewidth). The width of a tree decomposition (T, X) of a graph

G is one less than the size of the largest bag: width(G, T, X) = width(X) = maxxcx | X|— 1.

The treewidth of a graph is the minimum width of a tree decomposition of the graph.

A related concept is that of path decompositions and pathwidth, defined analogously to tree
decompositions and treewidth, except restricted to paths rather than trees.

» Definition 6 (Path decomposition and pathwidth). A path decomposition of a graph G is a
tree decomposition (T, X) of G such that T is a path. The pathwidth pathwidth(G) of G is
the minimum width of a path decomposition of G.

» Definition 7 (Branch decomposition). A branch decomposition of a graph G = (V, E) is a
tuple (T,b) of a binary tree T and a bijective function b : E(G) — V(T) between the edges E
of G and the leaves of T.

For each vertex v € V(G) of G, let S, C V(T') be the minimal spanning tree of T' that
contains all the leaves corresponding to edges adjacent to v.

» Definition 8 (Branchwidth). The width, denoted widthg(T,b,{s,t}), of an edge {s,t} €
E(T) of a branch decomposition (T,b) of a graph G is |[{v € V(G)|{s,t} C Sy,}|, i.e., the
number of vertices of G such that the subtree T[S,] contains {e,t}. The width of the branch

decomposition is the largest width of an edge, widthg(T,b) = max e gy widthg(T,b, f).

The branchwidth branchwidth(G) = min p ) widthe (T, b) of a graph is the minimum width
of a branch decomposition thereof.
2.3 Congestion

There is an alternative but less explored way of quantifying how “tree-like” a graph is: the
minimum congestion of a tree embedding, introduced by Bienstock [7].2

2 Note that this is entirely distinct from a different type of congestion problem in which the goal is find
routings for some specified set of pairs of terminals.
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» Definition 9 (Tree embedding). A tree embedding of a graph G is a tuple (T,b) of a binary
tree T and a bijection b: V(G) — V(T) between the vertices of G and the leaves of T.

Let S, ,, be the unique path between the leaves b(v) and b(w) of T.

» Definition 10 (Congestion). The congestion of a vertex v € V(T) (resp., edge f € E(T))
is the total weight of the edges e € E(G) whose subtrees S. include v (resp., f).

2.4 Cutwidth

» Definition 11 (Cutwidth). Let f : V — [n] be a linear ordering of the vertices of a graph
G = (V,E). The cutwidth of f is the mazimum number of edges that cross a gap:

max, [{{u, v} € Blf(u) <i < f(u)}].

i€n—1

The modified cutwidth of f is the maximum number of edges that cross a vertex:

max [{{u,v} € E|f(u) <i < f(v)}.

i€[n]

The cutwidth (resp., modified cutwidth) of a graph is the minimum cutwidth (resp., modified
cutwidth) of a linear ordering. For edge weighted graphs, the weighted cutwidth and modified
cutwidth count the total weights of the relevant edge sets rather than their cardinalities. For
a directed acyclic graph, the directed cutwidth (resp., modified cutwidth) is the minimum
cutwidth (resp., modified cutwidth) of a linear ordering that is topologically sorted according
to the graph.

2.5 Parameterized complexity

Approximating both treewidth and pathwidth to within a constant factor is NP-hard,
though there exist efficient algorithms for logarithmic and polylogarithmic approximations,
respectively [10, 11]. However, deciding whether or not the treewidth is at most some
constant can be done in linear time (albeit it with an enormous prefactor) [8]. For many
graph problems, e.g., Maximum Independent Set, there exist algorithms whose run time is
exponential only in the treewidth or pathwidth, i.e., given the instance graph and a tree
decomposition thereof of width k, the algorithm runs in time 2Fn°®) [4]. The Exponential
Time Hypothesis (ETH) implies that several such parameterized complexity results are
optimal, in the sense that there exists no 2°(®)n°M) algorithm [16].

The situation is similar for branchwidth. Computing the branchwidth of a graph is in
general NP-hard, but can be done efficiently for planar graphs [26]. (Whether computing the
treewidth of a planar graph is NP-hard is an open question.) As is the case for treewidth,
there is a constructive linear time algorithm for deciding whether or not the branchwidth
is at most some constant (and in this case with better constant factors) [12]. Good branch
decompositions can be used to implement dynamic programming algorithms for problems
such as the traveling salesman problem [15].

Computing the vertex congestion of a graph is claimed to be NP-hard [7], but no proof
appears in the literature.

Computing the (edge) cutwidth is NP-hard, but for any constant k, a linear ordering of
cutwidth & (for all variants) can be found in linear time if one exists [9].



B. O’Gorman

Target family
Leaves | Subtrees | Minimization over Trees Caterpillars
Edges Vertices Vertices Treewidth Pathwidth
Edges Vertices Edges Branchwidth
Vertices Edges Vertices Vertex congestion | Modified cutwidth
Vertices Edges Edges Edge congestion

Figure 3 Table of graph properties. Each row corresponds to an instantiation of Equation 1.

3 Unified framework of graph properties

In this section, we present a unified framework of various graph properties, as captured in
the following combined definition:

tree embedding

tree decomposit‘io'n vertex
A branch decomposition of a {vee(ritg%x}_weighted graph Gis a tuple (T7 b) of a binary tree T’

tree embedding edge
edges
and a bijection b between the leaves of T" and the {sztgli;} of G. The bijection b implies a
vertices

ver%jces btreev};ridfihh
subtree for every {Vgégg?} of the graph. The {Vertgi“gogge;ﬁon} of the graph is the minimum
edges edge congestion
tree decompositions

branch decompositions : : . sos
over all { tree embeddings } of the maximum total weight of all subtrees containing any

tree embeddings

vertex vertex congestion
edge —

T is restricted to be a caterpillar.

Veecrltgeex pathwidth . . treewidth
. The 4 odified cutwidath (15 defined in the same way as except that

(1)

Let’s unpack this. For branchwidth and congestions, (1) is the standard definition. For
the others, (1) is non-standard but equivalent to the standard definitions. Writing them
all in this way helps elucidate the relationships between them, which are obscured by the
standard definitions.

Note that both the vertex and edge congestions of a graph G are defined as optimal
properties of the same type of object, namely a tree embedding (7T,b). For every edge
e € E(G), the mapping b : V(G) — V(T) of the vertices to leaves of the tree implies a
minimal subtree S, connecting the leaves of T' corresponding to its endpoints in G. (For an
edge of size 2, this subtree S, is a path, but the definition allows for hyperedges as well.)
The vertex and edge congestions are then the maximum total weight of subtrees that contain
any vertex or edge, respectively, of the tree T

There is a similar relationship between treewidth and branchwidth. Usually, we think of
a tree decomposition of a graph G = (V, E) as a tree T' and a subtree .S, for every vertex in
V(G) such that the subtrees for every pair of adjacent (in G) vertices overlap. In (1), S, is
specified implicitly as the (unique) minimal spanning subtree of T' that connects the leaves
of T corresponding to the edges of G that are incident to v. By design, this tree T" and set
of subtrees is the same as that for a branch decomposition. The treewidth and branchwidth
are the maximum total weight of subtrees (now corresponding to vertices of G) that contain
any vertex or edge, respectively, of the tree T

So we see that the congestions are defined by the overlap of subtrees of T' corresponding
to edges of G and that the tree- and branchwidths are defined by the overlap of subtrees of T'
corresponding to vertices of G, the former implied by a mapping from vertices of G to leaves
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of T and the latter by a mapping from edges of G to leaves of T. The vertex congestion
and treewidth are concerned with the overlap at vertices of T, and the edge congestion
and branchwidth with the overlap on edges of 7. Thus we have made the analogy that
treewidth : branchwidth :: (vertex congestion) : (edge congestion). For example, that [25]
bw(G) < tw(G) < 2bw(G) and [7] ec(G) < ve(G) < 3ec(G) is no coincidence.

Now consider the line graph L(G) = (E,{{e,e'} C Elene’ # 0}) of a graph G = (V, E).
Suppose we have a tree embedding (7, b) of the original graph G, with an implied subtree
T. for every edge e € E(G). Because the vertices of the line graph L(G) correspond to
the edges of G, this can be considered as a branch decomposition of the line graph L(G).
For every pair of edges e, e’ € E(G) = V(L(G)) that are adjacent in the line graph, the
corresponding subtrees S., S.: intersect at the leaf b(v) € V(T'), where v € e, e’ is the
vertex of G adjacent to e and e¢’. The vertex congestion of the tree embedding (T,b) is
the width of (T,b) interpreted as a tree decomposition, and the edge congestion of the
tree embedding is the width of (T,b) interpreted as a branch decomposition. This implies
that tw(L(G)) < ve(G) and bw(L(G)) < ec(G). Actually, these inequalities are tight or
almost so: tw(L(G)) = ve(G) and bw(L(G)) < ec(G) < bw(L(G)) + LdegT(G)J The other
direction, going from a tree decomposition to a tree embedding, requires seeing that a tree
decomposition of a line graph can be made to have a particular structure, specifically that
the edges of L(G) corresponding to each vertex of G can be mapped to disjoint subtrees of T
The equality was shown by Harvey and Wood [21] and captures how our characterization of
the temporal costs of tensor network contraction relates to earlier characterizations. However,
our characterization in terms of tree embeddings, while mathematically equivalent to that
in terms of tree decompositions of line graphs, allows for a conceptually cleaner and more
fine-grained perspective. We prove the inequalities in Appendix A.

» Theorem 12. The edge congestion of graph G is at least the branchwidth of its line graph
and at most the same plus a third of its mazximum degree. Furthermore, a tree embedding
with edge congestion k+ |deg(G)/3] can be efficiently computed from a branch decomposition
of width k and a branch decomposition of width k can be efficiently computed from a tree
embedding with edge congestion k.

For vertex congestion and treewidth (which concern the overlap of subtrees at vertices),
the requirement that the mapping be a bijection with the leaves of the tree can be dropped,
as can the requirement that the tree be binary. Yet these requirements are without loss of
generality, as any tree embedding or tree decomposition can be modified to satisfy these
without increasing its vertex congestion or treewidth, respectively. For edge congestion
and branchwidth, which concern overlap over edges, the bijection and degree requirements
are essential.

The usual definitions for pathwidth and modified cutwidth are in terms of paths (or,
equivalently, linear orderings), whereas in (1) we allowed them to be caterpillars. This is
equivalent, and allows us to relate the properties just discussed with their linear variants.
In particular, the relationship between the bubblewidth of a tensor network (G, M) and its
“contraction complexity” is almost the same as that between the modified cutwidth of the
graph and its vertex congestion, in the sense that the bubblewidth is exactly equal to the
cutwidth and cw(G) < mew(G) < ew(G) + deg(G).

We can make another analogy, that treewidth : (vertex congestion) :: pathwidth :
(modified cutwidth) . For example, [9, 21] 3 (tw(G) + 1) < vc(G) 4+ 1 < deg(G) (tw(G) + 1)
and pw(G) < mew(G) + 1 < deg(G) (pw(G) + 1).

The (unmodified) cutwidth is a linear analog to what Ostrovskii called the “tree congestion”
of a graph [23]; the tree congestion is the same as the edge congestion except that there is a
bijection between all the vertices of the binary tree, rather than just the leaves.
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4  Contraction costs

Our primary motivation is minimizing the time and space costs of tensor network contraction.
Ideally, for instances of interest we would like to provably minimize the cost, which entails
tight lower bounds and the corresponding constructions that meet them. Given the formal
hardness of tensor network contraction and the informal hardness of proving lower bounds,
we restrict our attention to minimizing the cost of tensor network contraction as it is most
commonly done: as a series of matrix multiplications.

First, how much space is required to store a tensor network (G, M)? Each tensor M,
consists of 29°8» numbers; this is the main component of the space requirements. Technically,
we must also keep track of the graph G and the weights of its edges F(G) as well as a dope
vector for each tensor indicating how the tensor is laid out in memory; these will be negligible.
Our memory accounting will be in units of whatever is used to store a single entry of a
tensor. While in general, the bit depth of an entry may scale non-trivially with instance size,
practical implementations will use a fixed-width data type.

Then, what do we need to do a contraction of two tensors? Suppose we want to contract
a (dr,, dm) tensor with a (dy, dr) tensor along their shared dimension dy. The input tensors
require a total of dy(dr, + dr) space and the output tensor di,dgr. In theory, it should be
possible to do the contraction using no more space than that required by the larger of the
input tensors and output tensor. In practice, new memory is allocated for the new tensor, it
is populated with the appropriate data from the input tensors, and then the memory for
the latter is freed. We assume the second cost model, in which memory is simultaneously
allocated both for the tensors to be contracted and for the tensor that results from their
contraction, but our ideas are straightforwardly modifiable for plausible variants.

The contraction itself is essentially matrix multiplication, and a straightforward im-
plementation will take time dy, - dy; - dg. There exist Strassen-like algorithms for matrix
multiplication with better asymptotic runtime, but the constant pre-factors are so large and
the straightforward algorithm so heavily optimized that they are of little practical value
given the size of currently available machines.

Lastly, in order to implement a tensor contraction as a matrix multiplication, the tensors
must be laid out commensurately in memory. If they are not, then the data of one tensor or
both must be permuted to make them so. This permutation can effectively be done in place
and in linear time. In practice, the permutation time is negligible compared to the matrix
multiplication time.

5 Contraction orders and trees

In this section, we present our main contribution: a graph-theoretic characterization of the
temporal and spatial costs of families of contraction orders.

5.1 Linear contraction orders

We start with a special case of contraction orders. Let a linear contraction order be one
specified by an ordering of the vertices (v1,vs,...,v,). That is, the first contraction is of
vertices v; and v to form a new vertex vy 2. The second contraction is of v; 2 and vs to form
v1,2,3, and so on. We represent such a contraction order by what we call a rooted contraction
tree. The contraction tree of a linear contraction order is a binary caterpillar tree with n + 1
leaves, one for each vertex of the original graph and a special leaf called the root, as shown in
Figure 4. The root leaf is at one of the “ends” of the tree. Each vertex v; for ¢ € [2,n] is at
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Figure 4 Two series of contraction trees (unrooted and rooted on left and right, respectively)
for a tensor network with 5 tensors. From top to bottom, the contraction trees for the initial,
intermediate, and final tensor networks. The pair of leaves corresponding to the next pair of tensors
to be contracted are highlighted in green.

distance n + 2 — ¢ from the root, and vertex v; is at distance n therefrom. We denote such a
contraction tree by (T,b), where T is the tree and b : V(G) — V(T) U {r} is the bijection
between the vertices of G and the leaves of T' together with the root r.

Recall that for a tensor network (G, M), we are using the convention that the weight
w(u,v) of an edge {u,v} is the logarithm of the bond dimension of wire connecting tensors
M, and M,,. For each edge {u,v} of G there is a unique path in T" between b(u) and b(v),
which we call a routing. Assign the weight w(u,v) to every vertex and edge on this path,
including the endpoints b(u) and b(v). We say that the congestion of a vertex or edge of T,
denoted con(v) or con(e), is the sum of the weights of all the routings that include it. Label
the non-root leaves of T by [; = b(v;) and the internal vertices by ¢; for i € [n — 1], where
t,_1 is closest to the root and t; is farthest. For concision, identify to with ¢;.

Figure 5 The intermediate states of a contraction procedure. The tree pictured is a rooted
contraction tree, with the root at the left. The dashed line crosses edges of the contraction tree
adjacent to tensors held in memory.
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We now show that these congestions capture the costs of the contraction order. First,
note that for each vertex v € G, the congestion con(e) of the edge e € E(T') adjacent to
b(v) gives the size of the tensor My, in the sense that con(e) = 3_ cv(q) w(v, u) = deg,, so
that 2¢°7(¢) is the product of the bond dimensions of the tensor M,. Now, consider the first
contraction, of vertices vy and vs, i.e., tensors M,, and M,,. The bond dimension of the
wire between them is 2¢(“1:¥2). The product of the bond dimensions of M,, with tensors
besides vy is 29801 (%) and similarly for M,,. As discussed in Section 4, the contraction
can be done in time 298w ~w(Wv) L gu(uw) | gdeg,, —w(via) — guw(viv,V(G\{v1,02})  where
w(vy,ve, V(G)\ {v1,v2}) is the total weight of edges across the tripartite cut. This is exactly
the congestion of the vertex t € V(T') adjacent to both b(v;) and b(ve). Suppose that we
have done the contraction, yielding a new tensor network containing the contracted vertex
v1,2. The size of this new tensor M,, , is gw({vr,v2},VA{o1,02}) — gcon({t1:t2}) | f we continue
with the contractions, we notice an exciting pattern. We can identify each contraction with
an internal vertex of T'. The congestion of that vertex gives the time to do the contraction,
and the congestion of the adjacent edge nearest the root gives the space of the resulting
contracted tensor. The congestion of the leaves, which is equal to the congestions of the
adjacent edges and gives the size of the corresponding tensors, can be interpreted as giving

the time required to simply read in the tensors of the initial network to be contracted.

Overall, the total time of all the contractions is ZteV(T) gcon(t) < 9p . 2"6”‘30““’(@, where
vertconr () = max,cy(r)con(t). Furthermore, each edge e € E(T') corresponds to a
tensor M, that appears at some point in the series of contractions; those adjacent to leaves

correspond to the initial tensors and internal edges to tensors resulting from contractions.

The congestion of each edge gives the size of the corresponding tensor, in the sense that the
size of My is 2¢on(f) - At any point point in the contraction order, there are at most n tensors,

so the required memory is at most n2¢48°°°n7.+(%) where edgecony ,(G) = max seg(r) con(f).

As shown in Section 3, the minimum vertex congestion over all linear contraction orders is
exactly equal the vertex cutwidth of G. It is closely related to the bubblewidth of earlier
work [3], which is exactly equal to the edge cutwidth. The minimum edge congestion over all
linear contraction orders is exactly equal to the edge cutwidth of G.

5.2 General contraction orders

We now turn our attention to general (i.e., not necessarily linear) contraction orders. The
first generalization we make is to remove the root. In other words, for each linear contraction
order we form an unrooted contraction tree exactly as before except that leaves of T are in
unqualified bijection with the vertices of G. This unrooted contraction tree can be interpreted
as corresponding to 2"~2 different contraction orders in the following way. Define a pair of
leaves in a binary tree to be close if they are at distance 2. In the caterpillar binary trees

we have considered thus far, there are two pairs of close leaves, at each “end” of the tree.

Before, we used a rooted caterpillar contraction tree to represent the unique contraction
order given by contracting the two non-root close leaves until we got to the root. Now, the
unrooted caterpillar contraction tree represents the family of contraction orders that can
be specified by contracting either pair of a close leaves of the contraction tree until a single
vertex remains. Importantly, it remains true that every one of these contraction orders takes
time exactly 3=, ¢y (p 2¢on(t) = O (2verteonrn(D) and space O (ZGdgeconT=b(G)).

The second generalization we make is to remove the restriction to caterpillar trees.

» Definition 13. A rooted contraction tree (T,b0) of a tensor network (G, M) is a rooted
binary tree T and a bijection b: V(G) — V(T') between the vertices (tensors) of G and the
(non-root) leaves of T. An unrooted contraction tree (T,b) is an unrooted binary tree T and
a bijection b : V(G) — V(T) between the vertices of G and the leaves of T'.
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An unrooted contraction tree represents a set of contraction orders in the following way.
Suppose we have a contraction order ey, ..., e,_1; Each edge can be written as e; = {vg, vs }
for some disjoint S, 8" C V(G), where vg is the vertex formed by contracting the vertices in S.
We start with an empty forest T; = (V(G), ?). For each contraction e; = {vg,vg: }, we add a
new vertex vgyus: to the forest, as well as edges from the new vertex to vg and vg:. That
is, T; = (V(T;—1) U{vsus' }, E(Ti—1) U {{vs,vsus }, {vs’, vsus' }}). For the last contraction,
instead of adding a new vertex, we only add an edge between vg and vg:. Doing this yields
an unrooted contraction tree for the given contraction order. We say that an unrooted
contraction tree represents the set of contraction orders from which it can be constructed in
this way. If for the last contraction, we added not only a new vertex vy connected to vg and
vg: but a second vertex r connected vy, we would have a rooted contraction tree.

We can easily go the other way as well. Suppose we have a rooted contraction tree. Then
we can iteratively build a contraction order. We select an arbitrary close pair of non-root
leaves, and add to the contraction order the contraction corresponding to the adjacent
internal vertex (of the tree). We then remove the two leaves and their adjacent edges. The
internal vertex now becomes a leaf, and corresponds to the vertex resulting from contracting
the two vertices (of the tensor network) in the new contraction tree. We repeat until only a
single edge of the tree remains, corresponding to the completely contracted tensor network
and the root. This is the same procedure visualized in Figure 4, except that, when the
contraction tree is not restricted to be a caterpillar, there may be many more than two pairs
of close leaves to choose from at each step.

Given an unrooted contraction tree, we can turn it into a rooted contraction tree by
splitting any edge (i.e., removing an edge, adding a new vertex and adding edges between
the new vertex and the vertices adjacent to the removed one), and then adding a root vertex
and connecting it to the first newly inserted vertex.

Proof of Theorem 1. In a contraction tree, either rooted or unrooted, each internal vertex
corresponds to a contraction. In rooted contraction trees, there is a clear directionality; two
of the neighbors are “inputs” and the third is “output”. However, the congestion of the vertex,
the exponential of which gives the time to do the matrix multiplication, is independent of
this directionality. Similarly, each edge of a contraction tree corresponds to a tensor that
exists at some point in the contraction (specifically, when the edge is adjacent to a leaf).
Again the congestion of this edge is independent of its direction, and the size of the tensor is
the exponential of the congestion. Without loss of generality, we prove the theorem using
rooted contraction trees.

Suppose we have a rooted contraction tree (T,b) of a tensor network (G, M). Each
internal vertex ¢ € V(T') corresponds to a matrix multiplication, which takes time ove(d),
Each leaf I € V(T') corresponds to an initial tensor of size 2°(), where vc(l) = degg (b71(1)).
Overall, the total time then is ZteV(T) ove(t) < opove(T)

The rooted contraction tree gives a partial ordering of its vertices, which represent
contractions (or initial tensors). Any topologically sorted linear ordering (t1,ts,. .. ,t2,—2)
of the vertices of the contraction tree can be considered uniquely as a contraction order
consistent with the contraction tree, and vice versa. For a given contraction order, consider
the intermediate state at some point in the overall contraction procedure. Let ¢; be the last
tensor contracted and t;11 the next one to contract. Each edge f € E(T) from {t1,...,t;}
to {tit1,-..,tan—2} corresponds to a tensor that needs to be stored at this point. The size
of the tensor is exactly 2°°(/). The size of the next tensor (resulting from the contraction
corresponding to t;11) is 2°¢") where f’ is the edge from t;; towards the root of T. Using
the convention that the weight of an edge f € E(T) of T is w(f) = 2°°Y), then the directed,
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weighted modified cutwidth of a vertex t;11 in a linear ordering (¢1,. .., t2,—2) of the vertices
of T is exactly equal to the space needed to store the remaining tensors to be contracted
and make room for the tensor resulting from the next contraction. Once the contraction is
done, the memory allocated for the two tensors that were contracted can be freed. For the
coarser space bound, we can just pre-allocate memory for every tensor that will arise during
the procedure, in total space ZfeE(T) 2¢c(f) < opgee(T),

Overall, if we choose a contraction tree 7 with minimum vertex congestion, i.e., vc(G) =
ve(T) > ec(T), we get time at most 72V°(%) and space at most n2V°(%). If instead we choose
a contraction tree T' with minimum edge congestion, i.e., ec(G) = ec(T) > (2/3)ve(T), we

21:5e¢(G)+1 and space at most n2°¢(4). Tightness follows from the fact

get time at most n
that for any contraction order, we can construct a rooted contraction tree whose properties

give the stated bounds. |

Proof of Theorem 2. Suppose we have a rooted contraction tree (T,b) and that I* € V(T
is a leaf on a longest path from a leaf to the root using the vertex weight w(t) = 2v¢®). Call
this path from [* to the root the critical path Px. The vertices on Px, ordered from the leaf
to the root, represent a series of contractions. This series of contractions can be done in
time Ztev( P 2ve(®) | the vertex-weighted length of the P*, which by definition is the longest
such path. We prove the claim for general contraction trees by induction. The base case is a
tensor network of just two tensors, so that there is just a single contraction and the critical
path has 3 vertices. The inductive step is that if the claim is true for a contraction tree whose
critical path has k vertices, it is true for a contraction tree whose critical path has k£ + 1
vertices. Consider the last vertex ¢t on P* nearest the root. It corresponds to a contraction
of a tensor from an earlier contraction Px and a tensor from the remaining subtree of T,
i.e., the part of tree not containing P*. By definition, the length of the critical path of this
subtree is no more than the length of the subpath from [* to ¢; otherwise P* would not be
the longest path. Therefore, this subtree can be contracted in less time than the earlier parts
of P*. These can be done in parallel, so the overall time is simply that for P*. |

As shown in Appendix A, a branch decomposition of L(G) with width &k can be efficiently
converted into a contraction tree of G with edge congestion k + |deg(G)/3]. Similarly, a
tree decomposition of L(G) with width & — 1 can be efficiently converted into a contraction
tree of G with vertex congestion k [21]. Thus one way of utilizing these results is to use an
existing algorithm for finding tree decompositions or branch decompositions as a starting
point. Theorems 1 and 2 can then be used to construct minimum-cost contraction orders in a
more precise way than previous results allow. Developing empirically good implementations
of algorithms for finding tree decompositions is a particularly active area research [2]. These
are already exploited in much recent work on tensor network contraction [13, 14, 27]. The
framework presented here can significantly augment the effectiveness of such techniques. For
instances with a lot of structure, as typical ones do, the intuitiveness of contraction trees
also empowers manual construction of contraction trees.

There are also techniques for certifying the optimality of tree decompositions and branch
decompositions (namely, brambles and tangles) that can be ported to certify the optimality of
contraction trees with respect to vertex and edge congestion, respectively. For planar graphs,
the exact edge congestion can be computed (non-constructively) in polynomial time [26]. In
addition to serving as a lower bound for calculations, the structure of such obstructions may
help with understanding the complexity of quantum states as represented by tensor networks.
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Figure 6 Contraction tree representation of the Schrodinger algorithm for computing

(#|G1G2 -+ Gmly).

6 Extensions and generalizations

Heretofore, we have assumed that all tensor networks under consideration had no open legs,
i.e., that they contract to a single number (O-rank tensor). More generally, we can consider
tensor networks with open legs that contract to non-trivial tensors. For such tensors, we
treat any open legs as wires to a single “environment” tensor, which we then identify with the
root of a rooted contraction tree. For the purposes of minimizing the congestion, the graph
will simply have one more vertex. All previous results regarding the costs of contraction then
follow exactly as before without modification.

We can also allow tensor networks (G, M) in which G is a hypergraph. Recall how we
defined the congestions of a contraction tree (T,b). Each vertex v € V(G) was identified
with a leaf of T' through the bijection b. Then each edge {u,v} € E(G) contributed its
weight to the congestions of the vertices and edges on the routing (unique path) between
b(u) and b(v) in T. For a hyperedge {v1,..., v}, there is a unique subtree of T' connecting
the adjacent vertices (which is equal to the union of the paths connecting each pair of edges).
Then the hyperedge contributes its weight to the congestions of the vertices and edges on
this subtree. The hyperedge corresponds to a so-called “copy” tensor with k legs of the same
bond dimension b [5]. The copy tensor is one when all indices have the same value and is
zero otherwise. Such a tensor arises, e.g., in a decomposition of a controlled quantum gate.

Decompositions of tensors highlight the main limitation of the present work. While our
upper bounds are unconditional, our lower bounds hold only within what we call the matrix
multiplication model, in which the only operations allowed are matrix multiplications. This
takes advantage only of the topological properties of G and, importantly, not of the properties
of the tensor M. However, in many cases of practical interest, the tensors have structure
that can be exploited. For example, a tensor corresponding to a quantum gate can be split
into two tensors connected by a wire with bond dimension equal to the Schmidt rank across
some bipartition of the qubits on which it acts. For gates with less-than-full Schmidt rank,
this can help with contraction significantly. Once such a decomposition is made, the sparser
graph structure can be exploited by the methods presented here.

Tree-based methods for tensor network contraction are used in state-of-the-art simulations
of quantum circuits, where “simulation” here means calculation a single matrix element
(x|Cly) for a pair of basis states (|x),|y)) and the circuit C. In addition to providing a
precise analysis of such methods, we can also analyze algorithms not usually expressed in
such terms. For example, consider the “Schréodinger” algorithm: a state vector of size 2™ is
kept in memory and for each of m gates in sequence. Suppose each gate acts on at most [
qubits. Let the circuit be represented as a tensor network with m + 2 tensors: one for each
gate, one for the output |x), and one for the input |y). In the corresponding graph G, the
vertex |x) is adjacent to each of the gate vertices that first act on a qubit, with weight equal
to the number of qubits that are first acted on by the gate. Similarly for |y). The Schrodinger
algorithm is then a linear contraction order using the vertex ordering (|x),G1,...,Gm,|y)).
Each internal vertex of the contraction tree adjacent to the vertex corresponding to the
l;-local gate G; has congestion n + [;: n — [; from the qubits not acted on by the gate,
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then I; each from the input and output wires. The total time for the contraction is thus
S 2ntl < m2ntt = O(m2m), where [ = O(1) is the maximum locality of a gate. Each
internal edge has congestion n, so the contraction can be done using space O(2™).

An alternative approach is the “Feynman”, or path integral, algorithm, which inserts
resolutions of the identity after every gate and sums. Now we consider the tensor network
corresponding to (x|Cly) slightly differently. For simplicity, assume all gates are 2-local.
Instead of having a single vertex |x) for the input, we have n vertices |z;), one for each qubit.
Similarly, we have n output vertices {|y;)}. First, we contract the input vertices |z;) into
the adjacent gate vertices. This leaves 2m wires, 2 from each gate to the next or an output.
Suppose that instead of contracting the entire tensor network, we remove a single wire and
replace it with |b) (b| for b € {0,1}. The value of the original network is the sum of the values
of the reduced networks over b € {0,1}. The Feynman algorithm is then to do this for all
wires. For each value b € {0, l}zm, we have a tensor network of m tensors and no wires,
which we can “contract” in O(m) time and O(1) space. But we need to do this for every b
and sum them up, meaning overall it takes O (m4™) time. We need O(n + m) space to keep
track of x, y, and b. We can generalize this approach to arbitrary tensor networks. First, we
remove some set S C E(G) of edges, with total weight W = > _cw(e). There are 2"V values
of the corresponding wires, and for each one we contract the reduced tensor network. Let

G = (V,E\ S) be the reduced network. Overall, for a sequential algorithm, this takes time
0) <2W+VC(G)> and space O (W + m2c"(é)>. Moreover, we consider the cuts S as allowing

trivial parallelization, by doing the 2V contractions of the reduced network in parallel on
the same number of processors. This idea was used, for example, by Villalonga et al. to

balance time and memory usage in their simulation of grid-based random quantum circuits.

Aaronson and Chen [1] show that for carefully chosen cuts that form nested partitions, the
contributions W to the time and space from the cuts can be significantly reduced.

7 Conclusion

We introduced a graph-theoretic framework for precisely quantifying the temporal and spatial
costs of tensor network contraction, with the ultimate goal of minimizing these costs. We
conclude with several possible directions for future work:

Proving the hardness of exactly or approximately computing the vertex or edge congestion
of a graph, including of special cases like planar graphs.

Inventing algorithms (that aren’t simply disguised treewidth or branchwidth algorithms)
for finding small-congestion contraction trees.

Exploring the space-time trade-off of vertex and edge congestions. They are always
within a small multiplicative constant of each other, but can they be exactly minimized
simultaneously? If not, what does the trade-off look like, particularly for graphs of
practical interest like 2D and 3D grids.

Parallelizing at larger scale. In our discussion of parallelized algorithms, we neglected
communication costs. While this is probably reasonable at a relatively small number
of parallel processes (i.e., that can be on a single multi-processor node of a cluster), at
larger scales it may become material and worth trying to minimize.

Adapting our methods to approximate tensor network contraction.

Finding analogous methods for optimizing tensor-network ansatzes. For example, it is
known that optimizing (bounded-bond dimension) tree tensor networks is easy. Can this
be generalized in a parameterizable way as we did for tensor network contraction?
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A Branchwidth and edge congestion

Proof of Theorem 12. First, we show how to compute a branch decomposition of L(G)
with width & given a tree embedding of G with congestion k, implying bw(L(G)) < ec(G).
Suppose we have a tree embedding (T,b) of G with edge congestion k. Let T” be a copy
of T and ¥ : E(L(G)) — V(T) be a mapping from edges of the line graph to vertices of
T. In particular, for an edge e = {{u,v}, {v,w}} of L(G) set V' : {{u,v}, {v,w}} > b(v),
i.e., b’ maps adjacent pairs of edges of G to the same leaf mapped to from their common
vertex by b. Interpreted as a branch decomposition of L(G), (T7,b') has width k, except
that &’ is not injective. We will now introduce a series of modifications to (77,b') that
will turn it into a proper branch decomposition with width k. Note that b'(e) = ¥'(f) if
and only if e and f correspond to the same vertex of G. For each vertex v of G, we will
replace the corresponding leaf of T with a subtree whose leaves are one-to-one with the edges
of E(L(G)) corresponding to the vertex v. Consider a particular vertex v. Let Iy be the

corresponding leaf of T and tg its neighbor. Let (e1,ea, ..., edegc(v)) be an arbitrary ordering
of the edges adjacent to v in G. First, we replace the leaf [y with a subcubic caterpillar graph
with internal vertices (f1,t2,...,tdeg,(v)—2) and leaves (I1,lz, ..., lqeg, (v)—1) Such that ; is

adjacent to t; 1 and I; for i € [degg(v) — 2] and tgeg . (v)—2 is adjacent to lgeg,, (v)—1- Then
we set b : {ej, ej} = Lyingij)-

At this point ‘b’_l(li)| = |{{ei,e;}|7 > i}| = degg(v) —i. For each I; we do the following.
Relabel its neighbor t; as t; . Replace [; with another subcubic caterpillar graph with
internal vertices (£i,1, %2, b degg (v)—i—2) and leaves (L 1,12, 1; deg, (v)—i—1) such that t; ; is
adjacent to l; j and t; j_; for j € [degg(v) — 2] and #; geg . (v)—2 18 adjacent to l; deg, (v)—1-
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Figure 7 From a tree embedding of G to a branch decomposition of L(G). Left: a leaf Iy and
neighboring vertex to of a tree embedding. Middle: Replacement of the leaf [y with a caterpillar
subtree. Right: Replacement of each leaf with a caterpillar subtree.

Figure 8 From a branch decomposition of L(G) to a tree embedding of G. Left: Part of a branch
decomposition. Right: Modified part to form a tree embedding.

Then set

Lij—iy <7,

b {el—,ej} — { (2)

lj,i—j, 7> j

At this point, (77,b') is a proper branch decomposition of the line graph L(G). What is
its width? Let S! be the subtree connecting v’({e, f}) for all neighbors f of e in L(G). In
the part of T” that we didn’t change, this coincides with S, of the tree embedding (7}, b).
The number of subtrees including the edge {¢o,%1,0} of 7" is the same as that including the
edge {to,lo} of T, which is at most the edge congestion of (T,b). In particular, it is exactly
degs(v). These are the only subtrees that contain any part of the new parts of the tree T’
that we created. The contstruction is shown for a degree 5 vertex in Figure 7.
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Now, we show how to compute a tree embedding with congestion k from a width-k
branch decomposition the line graph, implying ec(G) < bw(G). Suppose we have a width-k

branch decomposition (T,b) of L(G). Let T be a tree and b’ a function from V(G) to V(T”).

Initially we set (T7,b’) = (T,b) and iteratively modify it into a tree embedding. For each

vertex v € V(G), the neighboring edges E, C E(G) = V(L(G)) form a clique of size deg(v).

Therefore, there must be some vertex tg of T' such that S, contains tq for all e € E,. Let
t1,ta,t3 be the three neighbors of ty and partition E, into four (potentially empty) parts:
Ey contains those edges e such that S, contains all of tg,%1,t2,t3 and F; contains those
edges e such that S, does not contain ¢;, for ¢ = 1,2,3. Without loss of generality, assume
w(E1) < w(By) < w(Es). Note that deg(v) = i w(E;) > S, w(E;) > 3w(Ey). Now,
subdivide the edge between to and t;, introducing a new vertex t', and add a new leaf I’
adjacent thereto. For all e € E,,, set b'(e) = I’; this leaf will correspond to vertex v in the
tree embedding. Note that the congestion of the edge between I’ and ¢’ is deg(v), and that
the congestion of the edge between t' and ¢ is w(E;) < deg(v)/3 more than the congestion
of the edge {to,t1} that it replaced. If we do this for every vertex, we get a tree embedding
whose congestion is at most deg(G)/3 more than the width of the branch decomposition we
started with. This is illustrated in Figure 8. |

It cannot be the case that for every graph G, bw(L(G)) = ec(G). Consider, for example,
the star graph Sj. Its edge congestion is at least its maximum degree k, but its line graph is
the complete graph, whose branchwidth is [2£].

Consider an alternative, what we’ll call the line hypergraph, denoted L*(G), with a vertex
for each edge of E(G) and a hyperedge for each vertex of V(G) (rather than a clique as in
the usual line graph). Then it is trivially true that bw(L*(G)) = ec(G).

10:19

TQC 2019






	p000-Frontmatter
	Charter, Previous Editions, Steering Committee
	Organization TQC 2019
	Outstanding Paper Award
	Accepted Workshop Talks

	p001-Alagic
	Introduction
	Our Contributions
	The model
	A quantum-query attack on LWE
	Important caveats
	Related work

	Technical summary of results
	Security model and basic definitions
	Secure constructions
	Key recovery against LWE
	Quantum algorithm for linear rounding functions
	One quantum query against LWE

	Organization

	Preliminaries
	Basic notation and conventions
	Quantum-secure pseudorandomness
	Quantum random access codes

	The QCCA1 security model
	Quantum oracles
	Ciphertext indistinguishability
	Semantic security

	Secure Constructions
	PRF scheme

	Quantum algorithm for linear rounding functions
	Key recovery against LWE
	Key recovery via one decryption query in symmetric-key LWE
	Key recovery via one decryption query in public-key LWE
	Regev's public-key scheme
	Frodo public-key scheme

	Key recovery via one decryption query in public-key Ring-LWE

	Bound for quantum random access codes
	Equivalence of QCCA1 models
	Proof of Theorem 16
	Proof of Theorem 22

	p002-Ben-David
	Introduction
	Quantum distinguishing complexity
	Fifth power query relation
	Quantum statistical zero knowledge
	Comparison with other lower bounds
	Lifting theorems

	Preliminaries
	Distance measures
	Quantum query complexity

	Quantum distinguishing complexity
	Definition
	Properties
	Relation with randomized sabotage complexity

	Fifth power query relation
	Hybrid argument
	New upper bound

	Quantum statistical zero knowledge
	History
	Definition
	Properties
	Relation with adversary bound

	Comparison with other lower bounds
	Index functions
	Index function composition
	Separations

	Lifting theorems
	Background
	Lifting theorem reductions

	Proof of the hybrid argument
	QSZK closed under complement
	Proof of Theorem 17

	p003-Childs
	Introduction
	Constructing Circuit Transformations
	Definitions
	Architecture-Respecting Circuit Transformations
	Qiskit Circuit Transformation
	Greedy Swap Circuit Transformation
	Constructing Architecture-aware Circuit Transformations


	Partial Permutations via Transpositions
	Partial Routing Via Matchings
	Partial Token Swapping

	Placing Qubits on the Architecture
	Results
	Future Work
	Partial Permutations via Transpositions
	Hierarchical Product
	Modular Graph
	Partial Token Swapping

	Specifics of Mappers
	Greedy Depth Mapper
	Incremental Depth Mapper
	Greedy Size Mapper
	Simple Size Mapper
	Extension Size Mapper
	Qiskit-based Mapper

	Time Complexity Analysis
	Circuit Transformations
	Permuters
	Mappers


	p004-Coiteux-Roy
	The Game
	Winning Strategies
	Our Results

	Definitions
	Strategies: Two-Party Channels
	Games
	Strategies
	Deterministic and Local Strategies

	Local Reducibility
	Locality and Non-Locality
	One-Way Signalling
	Signalling
	No-Signalling

	A Better-than-Local Quantum Strategy
	Proof of Winning Probability

	The Bell Inequality Associated to the RGB Game
	Bell Game vs Bell Inequality Notations
	Intermediate Step: Rewriting the Probability of Winning as a Function of Expected Correlations
	The RGB Bell-Inequality

	Tsirelson's-like Bound and Proof of Optimality of the Quantum Strategy
	The Optimization Problem
	Solving the Bell Inequality Using Semidefinite Programming
	A Bell Inequality as a Real Vector Problem
	The Primal Problem
	The Primal Solution

	The Dual Problem
	The Dual Solution

	Conclusion and Open Questions

	p005-Cowtan
	Introduction
	The Routing Problem
	Example: Routing on a Ring
	SWAP Synthesis and Routing

	The t|ket> Routing Procedure
	Slicing the Circuit Into Timesteps
	Initial Mapping
	Routing
	SWAP Synthesis and Clean-Up

	Graph Representation of Quantum Computers
	Results
	Scaling
	Scaling With Depth
	Scaling With Architecture Size

	Realistic Benchmarks

	Conclusion
	Dynamical Routing Versus Sorting Networks
	Detailed Benchmark Results
	All Gates Comparison on ibmqx5
	CX Only Comparison on ibmqx5
	CX Only Comparison on IBM Tokyo


	p006-DeLorenzo
	Introduction
	Contributions and Comparison to Previous Work
	Open Problems

	Preliminaries
	Quantum Algorithms for Detecting and Characterizing Cycles
	Algorithms for Detecting Odd Paths, Bipartiteness, and Even Cycles
	Effective Resistance of {G_cyc}

	p007-Gamble
	Introduction
	Notation
	Problem Description

	Lipschitz Continuity of F(theta)
	Examples

	Approximate Bayesian Inference
	Reusing Priors from Nearby Experiments

	Numerical Experiments
	Conclusion
	Pseudocode for BACROYNM Tuning

	p008-Gosset
	Compressing a quantum state

	p009-Nema
	Introduction
	Preliminaries
	Entropies and norms
	Concentration results for Lipschitz functions

	Sharp Dvoretzky-like theorems via stratified analysis
	Strict subadditivity of minimum output von Neumann entropy for approximate t-designs
	Proofs of Lemmas used in stratified analysis
	Strict subadditivity of minimum output Rényi p-entropy for approximate t-designs

	p010-OGorman
	Introduction
	Background
	Tensor networks and contraction
	Treewidth and branchwidth
	Congestion
	Cutwidth
	Parameterized complexity

	Unified framework of graph properties
	Contraction costs
	Contraction orders and trees
	Linear contraction orders
	General contraction orders

	Extensions and generalizations
	Conclusion
	Branchwidth and edge congestion


