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Abstract
Cubical type theory provides a constructive justification of homotopy type theory and satisfies
canonicity: every natural number is convertible to a numeral. A crucial ingredient of cubical type
theory is a path lifting operation which is explained computationally by induction on the type
involving several non-canonical choices. In this paper we show by a sconing argument that if we
remove these equations for the path lifting operation from the system, we still retain homotopy
canonicity: every natural number is path equal to a numeral.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Proof theory; Theory of computation → Computability

Keywords and phrases cubical type theory, univalence, canonicity, sconing, Artin glueing

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.11

Funding Simon Huber : I acknowledge the support of the Centre for Advanced Study (CAS) in
Oslo, Norway, which funded and hosted the research project Homotopy Type Theory and Univalent
Foundations during the academic year 2018/19.

Introduction

This paper is a contribution to the analysis of the computational content of the univalence
axiom [34] (and higher inductive types). In previous work [2, 4, 6, 7, 23], various presheaf
models of this axiom have been described in a constructive meta theory. In this formalism,
the notion of fibrant type is stated as a refinement of the path lifting operation where one not
only provides one of the endpoints but also a partial lift (for a suitable notion of partiality).
This generalized form of path lifting operation is a way to state a homotopy extension
property, which was recognized very early (see, e.g. [10]) as a key for an abstract development
of algebraic topology. The axiom of univalence is then captured by a suitable equivalence
extension operation (the “glueing” operation), which expresses that we can extend a partially
defined equivalence of a given total codomain to a total equivalence. These presheaf models
suggest possible extensions of type theory where we manipulate higher dimensional objects
[2, 6]. One can define a notion of reduction and prove canonicity for this extension [16]: any
closed term of type N (natural number) is convertible to a numeral. There are however several
non-canonical choices when defining the path lifting operation by induction on the type,
which produce different notion of convertibility.1 A natural question is how essential these
non-canonical choices are: can it be that a closed term of type N, defined without use of such
non-canonical reduction rules, becomes convertible to 0 for one choice and 1 for another?

1 For instance, the definition of this operation for “glue” types is different in [6] and [23].
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11:2 Homotopy Canonicity for Cubical Type Theory

Π(A,B)′(w) = Π(u : |A|)Π(u′ : A′u).B′uu′(app(w, u))
Σ(A,B)′(w) = Σ(u′ : A′(fst(w))).B′(fst(w))u′ (snd(w))
fillψ,b(u)′ = fillψ,b(u′)
Path(A, a0, a1)′(w) = Pathλi.A′ i (ap(w,i)) a

′
0 a

′
1

Glue(A,ψ 7→ (B,w))′v = Glue (A′(app(unglue, v))) [ψ 7→ (B′v, (w′.1 v, . . .))]

Figure 1 The main rules for the sconing model.

The main result of this paper, the homotopy canonicity theorem, implies that this cannot
be the case. the value of a term is independent of these non-canonical choices. Homotopy
canoncity states that, even without providing reduction rules for path lifting operations at
type formers, we still have that any closed term of type N is path equal to a numeral. (We
cannot hope to have convertibility anymore with these path lifting constant.) We can then
see this numeral as the “value” of the given term.

Our proof of the homotopy canonicity can be seen as a proof-relevant extension of the
reducibility or computability method, going back to the work of Gödel [14] and Tait [32]. It
is however best expressed in an algebraic setting. We first define a general notion of model,
called cubical category with families, defined as a category with families [9] with certain
special operations internal to presheaves over a category C (such as a cube category) with
respect to the parameters of an interval I and an object of cofibrant propositions F.

We describe the term model and how to re-interpret the cubical presheaf models as
cubical categories with families. The computability method can then be expressed as a
general operation (called “sconing”) which applied to an arbitrary model M produces a
new model M∗ with a strict morphism M∗ → M. Homotopy canonicity is obtained by
applying this general operation to the initial model, which we conjecture to be the term
model. This construction associates to a (for simplicity, closed) type A a predicate A′ on the
closed terms |A|, and each closed term u a proof u′ of A′u. The main rules in the closed case
are summarized in Figure 1.

Some extensions and variations are then described:

Our development extends uniformly to identity types and higher inductive types (using
the methods of [7]) (Sections 5.1 and 5.2).

Our development applies equally to the case where one treats univalence instead of glue
types as primitive (Appendix C.1). We expect that a similar sconing argument (glueing
along a global sections functor to simplicial sets) works to establish homotopy canonicity
for the initial split univalent simplicial tribe in the setting of Joyal [17].

A similar sconing argument adapts to canonicity of cubical type theory with computation
of filling at type formers, originally proved by [16] (Appendix C.2).

Assuming excluded middle, a version of the simplicial set model [18] forms an instance of
our development, and distributive lattice cubical type theory interprets in it (Appendix D).

Using our technique, one may also reprove canonicity for ordinary Martin-Löf type theory
with inductive families in a reduction-free way.

Shulman [27] proves homotopy canonicity for homotopy type theory with a truncatedness
assumption using the sconing technique. This proof was one starting point for the present
work. Some of his constructions may be simplified using our techniques, for example the
construction of the natural number type in the sconing.
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Parametricity interpretation

As pointed out in [8], there is a strong analogy between proving canonicity via (Artin)
glueing and parametricity. For readers more familiar with parametricity than the general
(Artin) glueing technique, we motivate our proof by briefly presenting a parametricity
interpretation [3] of cubical type theory [6]. The parametricity interpretation is a purely
syntactical interpretation which associates by structural induction a family A′ x where x : A
to any type A and a term t′ : A′ t to any term t : A. In general, if A is defined over the
context x1 : A1, . . . , xn : An, then A′(x1, x1, . . . , xn, x

′
n) will be defined over the context

x1 : A1, x
′
1 : A′1 x1, x2 : A2(x1), x′2 : A′2(x1, x

′
1)x′2, . . . . The interpretation of Π, Σ, and

universes is the same as for ordinary type theory. For instance,

(Π(x : A)B)′ w = Π(x : A)(x′ : A′x).B′(x, x′) (w x)

with (λ(x : A).t)′ = λ(x : A)(x′ : A′x).t′ and (t u)′ = t′ uu′.
For inductive types, we use the “inductive-style” interpretation [3], so that for instance

N ′ x is the inductive family with constructors 0′ of type N ′ 0 and S′ of type Π(x : N).N ′x→
N ′ (S x). (The other “deductive-style” presentation will not work for the canonicity proof.)

This interpretation works as well for cubical type theory. There is a natural interpretation
of path types: (PathAa0 a1)′ ω is Pathi (A′ (ω i)) a′0 a′1 given a′0 in A′ a0 and a′1 in A′ a1. We
also take (〈i〉 t)′ = 〈i〉 t′ and (t r)′ = t′ r for r : I.

Consider T = GlueA [ψ 7→ (B,w)] where A is a “total” type and w a “partial” equivalence
between B and A of extent ψ, so a pair of w.1 : B → A and w.2 proving that w.1 is an
equivalence. We define T ′ u = GlueA′ (unglueu) [ψ 7→ (B′ u, (w.1′ u, c u)]. We have unglue :
T → A and we can then define unglue′ : Π(u : T ).T ′ u → A′ (unglue u) by unglue′ uu′ =
unglue u′. For this, we need to build a proof c u that w.1′ u is an equivalence. This is possible
by showing that the map Σ(y : B)B′y → Σ(x : A)A′ x sending (u, u′) to (w.1u,w.1′ uu′) is
an equivalence. We can then use Theorem 4.7.7 of [33] about equivalences on total spaces.

There is a problem however at this point: this interpretation does not need to validate
the computation rules for the filling operation of the “Glue” type. We can notice however
that this problem is solved (in a somewhat trivial way) if we consider a system where the
filling operation is given as a primitive constant, without any computation rule.

One way to understand the parametricity interpretation is that it is (Artin) glueing of
the syntactic model along the identity map. For proving canonicity, we instead glue the
initial model with the cubical set model along the global section functor. As in [8], we think
that this interpretation is best described in an algebraic way, using what is essentially a
generalized algebraic presentation of type theory.

Setting

We work in a constructive set theory (as presented e.g. in [1]) with a sufficiently long
cumulative hierarchy of Grothendieck universes. However, our constructions are not specific
to this setting and can be replayed in other constructive metatheories such as extensional
type theory. In Appendix D, we assume classical logic for the discussion of models in
simplicial sets.

1 Cubical categories with families

We first recall the notion of categories with families (cwf) [9] equipped with Π- and Σ-types,
universes and natural number types. This notion can be interpreted in any presheaf model.
In a presheaf model however, we can consider new operations. A cubical cwf will be such a
cwf in a presheaf model with extra operations which make use of an interval presheaf I and
a type of cofibrant propositions F as introduced in [7, 23].

FSCD 2019



11:4 Homotopy Canonicity for Cubical Type Theory

1.1 Category with families
Categories with families form an algebraic notion of model of type theory. In order to later
model universes à la Russell, we define them in a stratified manner where instead of a single
presheaf of types, we specify a filtration of presheaves of “small” types.2 The length of the
filtration is not essential: we have chosen 1 + ω so that we may specify constructions just at
the top level.

A category with families (cwf) consists of the following data.
We have a category of contexts Con and substitutions Hom(∆,Γ) from ∆ to Γ in Con. The
identity substitution on Γ in Con is written id, and the composition of δ in Hom(Θ,∆)
and σ in Hom(∆,Γ) is written σδ.
We have a presheaf Type of types over the category of contexts. The action of σ in
Hom(∆,Γ) on a type A over Γ is written Aσ. We have a cumulative sequence of
subpresheaves Typen of types of level n of Type where n is a natural number.
We have a presheaf Elem of elements over the category of elements of Type, i.e. a
type Elem(Γ, A) for A in Type(Γ) with aσ in Elem(∆, Aσ) for a in Elem(Γ, A) and σ in
Hom(∆,Γ) satisfying evident laws.
We have a terminal context 1, with the unique element of Hom(Γ, 1) written ().
Given A in Type(Γ), we have a context extension Γ.A. There is a projection p in
Hom(Γ.A,Γ) and a generic term q in Elem(Γ.A,Ap). Given σ in Hom(∆,Γ), A in
Type(Γ), and a in Elem(∆, Aσ) we have a substitution extension (σ, a) in Hom(∆,Γ.A).
These operations satisfy p(σ, a) = σ, q(σ, a) = a, and (pσ, qσ) = σ. Thus, every element
of Hom(∆,Γ.A) is uniquely of the form (σ, a) with σ and a as above.

We introduce some shorthand notation related to substitution. Given σ in Hom(∆,Γ)
and A in Type(Γ), we write σ+ = (σp, q) in Hom(∆.Aσ,Γ.A). Given a in Elem(Γ, A), we
write [a] = (id, a) in Hom(Γ,Γ.A). Thus, given B in Typen(Γ.A) and a in Elem(Γ, A), we
have B[a] in Type(Γ). Given furthermore b in Elem(Γ.A,B), we have b[a] in Elem(Γ, B[a]).
We extend this notation to several arguments: given ai in Elem(Γ, Ai) for 1 ≤ i ≤ k, we write
[a1, . . . , ak] for [ak][ak−1p] · · · [a1p . . . p] in Hom(Γ,Γ.A1. . . . .Ak).

Given a cwf as above, we define what it means to have the following type formers. In
addition to the specified laws, all specified operations are furthermore required to be stable
under substitution in the evident manner.

Dependent products. For A in Type(Γ) and B in Type(Γ.A), we have Π(A,B) in
Type(Γ), of level n if A and B are. Given b in Elem(Γ.A,B), we have the abstraction
λ(b) in Elem(Γ, Π(A,B)). Given c in Elem(Γ, Π(A,B)) and a in Elem(Γ, A), we have the
application app(c, a) in Elem(Γ, B[a]). These operations satisfy app(λ(b), a) = b[a] and
λ(app(cp, q)) = c.
Given A and B in Type(Γ) we write A→ B for Π(A,Bp).
Dependent sums. For A in Type(Γ) and B in Type(Γ.A), we have Σ(A,B) in Type(Γ),
of level n if A and B are. Given a in Elem(Γ, A) and b in Elem(Γ, B[a]), we have the
pairing pair(a, b) in Elem(Γ, Σ(A,B)). Given c in Elem(Γ, Σ(A,B)), we have the first
projection fst(c) in Elem(Γ, A) and second projection snd(c) in Elem(Γ, B[fst(c)]). These
operations satisfy fst(pair(a, b)) = a, snd(pair(a, b)) = b, and pair(fst(c), snd(c)) = c.
Thus, every element of Elem(Γ, Σ(A,B)) is uniquely of the form pair(a, b) with a and b
as above.

2 We note that this non-algebraic aspect of the definition does not interfere with the otherwise algebraic
character. Subset inclusions and equalities of sets Elem(Γ, Un) = Typen could in principle be replaced
by injections and natural isomorphisms, respectively. Then our cwfs become models of a generalized
algebraic theory without sort equations [5].
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Given A and B in Type(Γ) we write A×B for Σ(A,Bp).
Universes. We have Un in Typen+1(Γ) such that Typen(Γ) = Elem(Γ, Un), and the action
of substitutions on Elem(Γ, Un) is compatible with that on Typen(Γ).
Natural numbers. We have N in Type0(Γ) with zero 0 in Elem(Γ, N) and successor
S(n) in Elem(Γ, N) for n in Elem(Γ, N). Given P in Type(Γ.N), z in Elem(Γ, P [0]), s in
Elem(Γ.N.P, P (p, S(q))p), and n : Elem(Γ, N), we have the elimination natrec(P, z, s, n) in
Elem(Γ, P [n]) with natrec(P, z, s, 0) = z, natrec(P, z, s, S(n)) = s[n, natrec(P, z, s, n)].

A structured cwf is a cwf with type formers as above.
A (strict) morphism M → N of cwfs is defined in the evident manner and consists

of a functor F : ConM → ConN and natural transformations u : TypeM → TypeNF and
v : ElemM → ElemN (F, u) such that v restricts to types of level n and the terminal context
and context extension is preserved strictly. A morphism M → N of structured cwfs
additionally preserves the operations of the above type formers. We obtain a category of
structured cwfs.

1.2 Internal language of presheaves
For the rest of the paper, we fix a category C in the lowest Grothendieck universe. As in
[2, 23, 21], we will use the language of extensional type theory (with subtypes) to describe
constructions in the presheaf topos over C.

In the interpretation of this language, a context is a presheaf A over C, a type B over A
is a presheaf over the category of elements of A, and an element of B is a section. A global
type is a type in the global context, i.e. a presheaf over C. Similarly, a global element of a
global type is a section of that presheaf.

Given a dependent type B over a type A, we think of B as a family of types B a indexed
by elements a of A. We have the usual dependent sum Σ(a : A).B(a) and dependent product
Π(a : A).B a, with projections of s : Σ(a : A).B a written s.1 and s.2 and application of
f : Π(a : A).B a to a : A written f a. We also the categorical pairing 〈f, g〉 : X → Σ(a : A).B
given f : X → A and g : Π(x : X).B (f a) and other commonly used notations. The hierarchy
of Grothendieck universes in the ambient set theory gives rise to a cumulative hierarchy
U0,U1, . . . ,Uω of universes à la Russell. We model propositions as subtypes of a fixed type 1
with unique element tt. We have subuniverses Ωi ⊆ Ui of propositions for i ∈ {0, 1 . . . , ω}.

When working in this internal language, we refer to the types as “sets” to avoid ambiguity
with the types of (internal) cwfs we will be considering.

1.3 Cubical categories with families
We now work internally to presheaves over C. We assume the following:

an interval I : U0 with endpoints 0, 1 : I,
an object F : U0 of cofibrant propositions with a monomorphism [−] : F→ Ω0.

As in [7, 23], a partial element of a set T is given by an element ϕ in F and a function
[ϕ]→ T . We say that a total element v of T extends such a partial element ϕ, u if we have
[ϕ]→ u tt = v.

Given A : I→ Uω, we write hasFill(A) for the set of operations taking as inputs ϕ in F,
b ∈ {0, 1}, and a partial section u in Π(i : I).[ϕ]∨ (i = b)→ A i and producing an extension of
u to a total section in Π(i : I)A i. Given a set X and Y : X → Uω, we write Fill(X,Y ) for the
set of filling structures on Y , producing an element of hasFill(Y ◦ x) for x in I→ X. Given
s in Fill(X,Y ) and x, ϕ, b, u as above, we write s(x, ϕ, b u) for the resulting total section in
Π(i : I).Y (x i).

FSCD 2019



11:6 Homotopy Canonicity for Cubical Type Theory

We now interpret the definitions of Section 1.1 in the internal language of the presheaf
topos. A cubical cwf is a structured cwf denoted as before that additionally has the following
cubical operations and type formers. Again, all specified operations are required to be stable
under substitution.

Filling operation. We have fill in Fill(Type(Γ), λA.Elem(Γ, A)) for Γ in Con. Let
us spell out stability under substitution: given A : I → Type(Γ), ϕ in F, b ∈ {0, 1},
u in Π(i : I). [ϕ] ∨ (i = b) → Elem(Γ, A i), and σ in Hom(∆,Γ) and r : I, we have
(fill(A,ϕ, b, u) r)σ = fill(λi. (A i)σ, ϕ, b, λi x. (u i x)σ) r.

Note that we do not include computation rules for fill at type formers. This corresponds
to our decision to treat fill as a non-canonical operation.

Dependent path types. Given A in I → Type(Γ) with ab in Elem(Γ, Ab) for b ∈
{0, 1}, we have a type Path(A, a0, a1) in Type(Γ), of level n if A is. Given u in Π(i :
I).Elem(Γ, Ai), we have the path abstraction 〈〉(u) in Elem(Γ, Path(A, u 0, u 1)). Given p
in Elem(Γ, Path(A, a0, a1)) and i in I, we have the path application ap(p, r) in Elem(Γ, Ai).
These operations satisfy the laws ap(p, b) = ab for b ∈ {0, 1}, ap(〈〉(u), i) = u i, and
〈〉(λi. ap(p, i)) = p. Thus, every element of Elem(Γ, Path(A, a0, a1)) is uniquely of the
form 〈〉(u) with u in Π(i : I).Elem(Γ, Ai) such that u 0 = a0 and u 1 = a1.

Using path types, we define isContr(A) in Type(Γ) for A in Type(Γ) as well as isEquiv in
Type(Γ.A→ B) and Equiv in Type(Γ) for A,B in Type(Γ) as in [6]. These notions are used
in the following type former, which extends any partially defined equivalence (given total
codomain) to a totally defined function.

Glue types. Given A in Type(Γ), ϕ in F, T in [ϕ] → Type(Γ) and e : [ϕ] →
Elem(Γ,Equiv(T tt, A)), we have the glueing Glue(A,ϕ, T, e) in Type(Γ), equal to T on [ϕ]
and of level n if A and T are. We have unglue in Elem(Γ,Glue(A,ϕ, T, e)→ A) such that
unglue = fst(e) tt on [ϕ]. Given a in Elem(Γ, A) and t in [ϕ] → Elem(Γ, T ) such that
app(fst(e) tt, t tt) = a on [ϕ], we have glue(a, t) in Elem(Γ,Glue(A,ϕ, T, e)) equal to t on
[ϕ]. These operations satisfy app(unglue, glue(a, t)) = a and glue(app(unglue, u), λx.u)
= u. Thus, every element of Elem(Γ, Glue(A,ϕ, T, e)) is uniquely of the form glue(a, t)
with a and t as above.

The notion of morphism of structured cwfs lifts to an evident notion of morphism of
cubical cwfs. We obtain, internally to presheaves over C, a category of cubical cwfs. We
now lift this category of cubical cwfs from the internal language to the ambient theory by
interpreting it in the global context: externally, a cubical cwf (relative to the chosen base
category C, interval I, and cofibrant propositions F) consists of a presheaf Con over C, a
presheaf Type over the category of elements of Con, etc.

I Remark 1. Fix a cubical cwf as above. Assume that I has a connection algebra structure
and that F forms a sublattice of Ω0 that contains the interval endpoint inclusions. As in [6],
it is then possible in the above context of the glue type former to construct an element
of Elem(Γ, isEquiv[unglue]). From this, one derives an element of Elem(Γ, iUnivalencen)
where iUnivalencen = Π(Un, isContr(Σ(Un, Equiv(q, qp)))) for n ≥ 0, i.e. univalence is
provable. One may also show that the path type applied to constant families I→ Type(Γ)
interprets the rules of identity types of Martin-Löf with the computation rule for the eliminator
J replaced by a propositional equality. Thus, we obtain an interpretation of univalent type
theory with identity types with propositional computation in any cubical cwf.
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2 Two examples of cubical cwfs

In this section we give two examples of cubical cwfs: a term model and a particular cubical
cwfs formulated in a constructive metatheory, the latter with extra assumptions on I and F.

2.1 Term model
We sketch how to give a cubical cwf T built from syntax, and refer the reader to Appendix A
for more details. All our judgments will be indexed by an object X of C and given a judgment
Γ `X J and f : Y → X in C we get Γf `Y J f . Here, f acts on expressions as an implicit
substitution, while for substitutions on object variables we will use explicit substitutions.

The forms of judgment are:

Γ `X Γ `X A Γ `X A = B Γ `X t : A Γ `X t = u : A σ : ∆→X Γ

The main rules are given in the appendix. This then induces a cubical cwf T by taking,
say, the presheaf of contexts at stage X to be equivalence classes of Γ for Γ `X where the
equivalence relation is judgmental equality.

Some rules are a priori infinitary, but in some cases (such as the one considered in [6]) it
is possible to present the rules in a finitary way.

This formal system expresses the laws of cubical cwfs in rule form. It defines the term
model. Following [29, 24] developed in an intuitionistic framework, we conjecture that this
can be interpreted in an arbitrary cubical cwf in the usual way:

I Conjecture 2. With chosen parameters C, I,F, the cubical cwf T is initial in the category
of cubical cwfs.

However, our canonicity result is orthogonal to this conjecture: It is a result about the
initial model, without need for an explicit description of this model as a term model.

2.2 Developments in presheaves over C

We now assume that I and F satisfy the axioms ax1, . . . , ax9 of [23], internally to presheaves
over C. We also make an external assumption, namely that the endofunctor on presheaves
over C of exponentiation with I has a right adjoint R that preserves global types of level n.
This is e.g. the case if I is representable and C is closed under finite products.

Most of the arguments will be done in the internal language of the presheaf topos. At
certain points however, we need to consider the set of global sections of a global type F ; we
denote this by �F . We stress that statements involving � are external, not to be interpreted
in the internal language. Crucially, the adjunction (−)I a R cannot be made internal [21].

Recall the global type hasFill : UI
ω → Uω from Section 1.3. Taking the slice over Uω, the

adjunction (−)I a R descends to an adjunction between categories of types over Uω and
UI
ω. Applying the right adjoint of this adjunction to hasFill, we obtain global C : Uω → Uω

such that naturally in a global type X with global Y : X → Uω, global elements of
Π(x : XI).hasFill(Y ◦ x) are in bijection with global elements of Π(x : X).C(Y x). Given a
global type X and global Y : X → Uω, we thus have a logical equivalence (maps back and
forth)

�Fill(X,Y )←→ �Π(x : X) C(Y x) (1)

FSCD 2019



11:8 Homotopy Canonicity for Cubical Type Theory

natural inX.3 Note that C descends to C : Un → Un for n ≥ 0. We write Ufib
i = Σ(A : Ui) C(A)

for i ∈ {0, 1, . . . , ω}; we call Ufib
i a universe of fibrant sets. Now set X = Ufib

ω and Y (A, c) = A

in (1). We trivially have �Π(x : X) C(Y x), thus get

fill : Fill(Ufib
ω , λ(A, c).A). (2)

This is essentially the counit of the adjunction defining C. Note that [21] use modal extensions
of type theory to perform this reasoning internal to presheaves over C.
I Remark 3. Internally, a map Fill(X,Y ) → Π(x : X) C(Y x) does not generally exist
for a set X and Y : X → Uω as for X = 1 one would derive a filling structure for any
“homogeneously fibrant” set, which is impossible (see [23, Remark 5.9]). However, from (2)
we get a map Π(x : X) C(Y x)→ Fill(X,Y ) natural in X using closure of filling structures
under substitution (see below).

We recall some constructions of [6, 23] in the internal language.
Given A : I → Uω and ab : Ab for b ∈ {0, 1}, dependent paths PathA a0 a1 are the set
of maps p : Π(i : I).A i such that p 0 = a0 and p 1 = a1. We use the same notation for
non-dependent paths.
For A : Uω, we have a set isContr(A) of witnesses of contractibility, defined using paths.
Given A,B : Uω with f : A → B, we have the set isEquiv(f) with elements witnessing
that f is an equivalence, defined using contractibility of homotopy fibers. We write
Equiv(A,B) = Σ(f : A→ B).isEquiv(f).
Given A : Uω, ϕ : F, B : [ϕ]→ Uω, and e : [ϕ]→ Equiv(B tt, A), the glueing GlueA [ϕ 7→
(B, e)] consists of elements glue a [ϕ 7→ b] with a : A and b : [ϕ]→ B such that e.1 (b tt) = a

on [ϕ] and is defined in such a way that GlueA [ϕ 7→ (B, e)] = T tt and glue a [ϕ 7→ b] = b tt
on [ϕ]. The canonical map unglue : GlueA [ϕ 7→ (B, e)]→ A is an equivalence.

These operations are valued in Un if their inputs are. We further recall basic facts from [23]
about filling structures in the internal language.

Filling structures are closed under substitution: given f : X ′ → X and Y : X → Uω, any
element of Fill(X,Y ) induces an element of Fill(X ′, Y ◦ f), naturally in X ′.
Filling structures are closed under exponentiation: given sets S,X and Y : X → Uω, any
element of Fill(X,Y ) induces an element of Fill(XS , λx.Π(s : S).Y (x s)), naturally in S.
Filling structures are closed under Π,Σ,Path,Glue. E.g. for dependent products, given
A : Γ→ Uω with Fill(Γ, A) and B : Π(ρ : Γ).A ρ→ Uω with Fill(Σ(ρ : Γ).A ρ, λ(ρ, a).B ρ a),
we have Fill(Γ, λ(ρ : Γ).Π(a : Aρ).B ρ a).

From the last point, we deduce using that C is closed under Π,Σ,Path,Glue, and that C(A)
implies C(AS) for A,S : Uω.4 Let us explain this in the case of dependent products. We ap-
ply (1) with a suitable “generic context” X = Σ((A, c) : Ufib

ω ).A→ Ufib
ω and Y ((A, c), 〈B, d〉) =

Π(a : A).B a. Using the map of Remark 3 and closure of filling structures under depend-
ent product, we have �Fill(X,Y ) and can conclude C(Π(a : A).B a) for (A, c) : Ufib

ω and
〈B, d〉 : A → Ufib

ω . Note that in the case of Glue with (A, c) : Ufib
ω , ϕ : F, 〈B, d〉 : [ϕ] → Ufib

ω ,
and e : [ϕ]→ Equiv(B tt, A), naturality of the forward map of (1) is needed to see that the
element c : C(GlueA [ϕ 7→ (B, e)]) constructed in the same fashion as above for dependent
products equals d tt : C(B tt) on [ϕ].

3 We record only the logical equivalence instead of an isomorphism so that it will be easier to apply our
constructions in situations where the right adjoint R fails to exist, see Appendix D. Naturality is only
used at a one point below, for the forward map, to construct suitable elements of C applied to glueings.

4 Note that naturality in S of the latter operation is used in substitutional stability of universes in the
sconing in Section 3.
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As in [6, 23, 21], glueing shows Fill(1,Ufib
n ) for n ≥ 0. Using (1), we conclude C(Ufib

n ).
Let N denote the natural number object in presheaves over C, the constant presheaf with

value the natural numbers. From [6, 23], we have Fill(1,N). Using (1), we conclude C(N).
We justify fibrant indexed inductive sets in Appendix B.

2.3 Standard model

Making the same assumptions on C, I,F as in Section 2.2, we can now specify the standard
model S of cubical type theory in the sense of the current paper as a cubical cwf (with
respect to parameters C, I,F) purely using the internal language of the presheaf topos. The
cwf is induced by the family over Ufib

ω given by the first projection as follows.
The category of contexts is Uω, with Hom(∆,Γ) the functions from ∆ to Γ.
The types over Γ are maps from Γ to Ufib

ω ; a type 〈A, p〉 is of level n if A is in Γ→ Un.
This is clearly functorial in Γ.
The elements of 〈A, p〉 : Γ→ Ufib

ω are Π(ρ : Γ).A ρ. This is clearly functorial in Γ.
The terminal context is given by 1.
The context extension of Γ by 〈A, p〉 is given by Σ(ρ : Γ).A ρ, with p, q given by projections
and substitution extension given by pairing.

We briefly go through the necessary type formers and operations, omitting evident details.
The dependent product of 〈A, c〉 : Γ→ Ufib

ω and 〈B, d〉 : Σ(ρ : Γ).A ρ→ Ufib
ω is 〈λρ.Π(a :

Aρ).B(ρ, a), e〉 where e ρ : C(Π(a : Aρ).B(ρ, a)) is induced by c ρ : C(Aρ) and d ρ a :
C(B(ρ, a)) for a : A as discussed above.
The dependent sum of 〈A, c〉 : Γ → Ufib

ω and 〈B, d〉 : Σ(ρ : Γ).A ρ → Ufib
ω is 〈λρ.Σ(a :

Aρ).B(ρ, a), e〉 where e is induced by c and d.
The universe Un : Γ→ Ufib

n+1 is constantly (Ufib
n , c) with c : C(Ufib

n ) as above.
The natural number type N : Γ→ Ufib

0 is constantly (N, c) with c : C(N) as above. The
zero and successor constructors and eliminator are given by the corresponding features of
the natural number object N.

We now turn to the cubical aspects.
The filling operation fill : Fill(Γ → Ufib

ω , λ〈A, p〉.Π(ρ : Γ).A ρ) is derived from (2) by
closure of filling structures under exponentiation.
Given 〈A, c〉 : I → Γ → Σ(A : Uω) C(A) and ab : Π(ρ : Γ).A b ρ for b ∈ {0, 1}, we
define Path(A, a0, a1) : Γ → Σ(A : Uω) C(A) as 〈Π(ρ : Γ).Pathλi.A i ρ c0 c1), d〉 where
d ρ : C(Pathλi.A i ρ c0 c1)) induced by λi.c i ρ.

Before defining glue types, we note that the notions isContr and isEquiv in the cubical
cwf we are defining correspond to the notions isContr and isEquiv. For example, given a type
A : Γ → Ufib

ω , then the elements of isContr(A), given by Π(ρ : Γ). isContr(A).1 ρ, are in
bijection with Π(ρ : Γ).isContr(A.1 ρ) naturally in Γ.

Given 〈A, c〉 : Γ → Ufib
ω , ϕ : F, 〈T, d〉 : [ϕ] → Γ → Ufib

ω and e : [ϕ] → Equiv(T tt, A), we
define Glue(〈A, c〉, ϕ, 〈T, d〉, e) : Γ→ Ufib

ω as λρ.(Glue (Aρ)[ϕ 7→ (T tt ρ, e′ tt ρ)], q ρ) where
e′ tt ρ : Equiv(T tt ρ,A ρ) is induced by e tt ρ and q ρ is induced by c ρ and λx.d x ρ.

We have thus verified the following statement.

I Theorem 4. Assuming the parameters C, I,F satisfy the assumptions of Section 2.2, the
standard model S forms a cubical cwf.
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3 Sconing

We make the same assumptions on our parameters C, I,F as in Section 2.2. LetM be a cubical
cwf (with respect to these parameters) denoted Con,Hom, . . . as in Section 1.3. We assume
thatM is size-compatible with the standard model, by which we mean Hom(∆,Γ) : Uω for
all Γ,∆ and Elem(Γ, A) : Ui for i ∈ {0, 1, . . . , ω} and all Γ and A : Typei(Γ). We will then
define a new cubical cwfM∗ denoted Con∗,Hom∗, . . ., the (Artin) glueing ofM with the
standard model S along an (internal) global sections functor, i.e. the sconing ofM.

Recall from Section 1.3 the operation fill ofM. Instantiating it to the terminal context,
we get �Fill(Type(1), λA.Elem(1, A)). Using the forward direction of Equation (1), we thus
have an internal operation k : Π(A : Type(1)).C(Elem(1, A)).

From now on, we will work in the internal language of presheaves over C. We start by
defining a global sections operation |−| mapping contexts, types, and elements of M to
those of S.

Given Γ : Con, we define |Γ| : Uω as the set of substitutions Hom(1,Γ). Given a
substitution σ : Hom(∆,Γ), we define |σ| : |∆| → |Γ| as |σ|ρ = σρ. This evidently defines
a functor.
Given A : Type(Γ), we define |A| : |Γ| → Ufib

ω as |A| ρ = (Elem(1, Aρ), k (Aρ)). This
evidently natural in Γ. If A is of level n, then |A| : |Γ| → Ufib

n .
Given a : Elem(Γ, A) we define |a| : Π(ρ : Γ). (|A| ρ).1 as |a| ρ = aρ. This is evidently
natural in Γ.

Note that |−| preserves the terminal context and context extension up to canonical isomorph-
ism in the category of contexts. One could thus call |−| an (internal) pseudomorphism cwfs
fromM to S. The sconingM∗ will be defined as essentially the (Artin) glueing along this
pseudomorphism, but we will be as explicit as possible and not define (Artin) glueing at the
level of generality of an abstract pseudomorphism.

For convenience, we also just write |A| : |Γ| → Uω instead of λρ. (|A| ρ).1, implicitly
applying the first projection. We also write just |A| for |A| |()| if Γ is the terminal context.

3.1 Contexts, substitutions, types and elements
We start by defining the cwfM∗.

A context (Γ,Γ′) : Con∗ consists of a context Γ : Con inM and a family Γ′ over |Γ| (which
in the context of Artin glueing should be thought of as a substitution in S from some
context to |Γ|). We think of Γ′ as a proof-relevant computability predicate. A substitution
(σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) consists of a substitution σ : ∆ → Γ in M and a map
σ′ : Π(ν : |∆|).∆′(ν)→ Γ′(σν). This evidently has the structure of a category.
A type (A,A′) : Type∗(Γ,Γ′) consists of a type A : Type(Γ) inM and

A′ : Π(ρ : |Γ|)(ρ′ : Γ′ ρ).|A| ρ→ Ufib
ω .

We think of A′ as a fibrant proof-relevant computability family on A. In the abstract
context of Artin glueing for cwfs, we should think of it as an element of Type(Σ(ρ : |Γ|)(ρ′ :
Γ′ ρ).|A| ρ) in S, but this point of view is not compatible with the universes à la Russell
we are going to model. Recalling Ufib

ω = Σ(X : Uω).C(X), we also write 〈A′, fibA′〉 instead
of A′ if we want to directly access the family and split off its proof of fibrancy.
The type (A,A′) is of level n if A and A′ are.
The action of a substitution (σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) on (A,A′) is given by

(Aσ, λν ν′ a.A′ (σν) (σ′ ν ν′) a).
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An element (a, a′) : Elem∗((Γ,Γ′), (A, 〈A′, fibA′〉)) consists of a : Elem(Γ, A) inM and

a′ : Π(ρ : |Γ|)(ρ′ : Γ′ ρ). A′(ρ, ρ′, aρ).

In the context of Artin glueing (with types inM∗ presented correspondingly), this should
be thought of as an element a′ : Elem(Σ(ρ : |Γ|).Γ′ ρ, λ(ρ, ρ′).A′(ρ, ρ′, |a| ρ)) of S.
The action of a substitution (σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) on the element (a, a′) is given
by (aσ, λν ν′.a′ σν (σ′ ν ν′)).
The terminal context is given by (1, 1′) defined by 1′ () = 1.
The extension inM∗ of a context (Γ,Γ′) by a type (A,A′) is given by (Γ.A, (Γ.A)′) where
(Γ.A′)(ρ, a) = Σ(ρ′ : Γ′ ρ). (A′ ρ ρ′ a).1. The projection p∗ : Hom∗((Γ,Γ′).(A,A′), (Γ,Γ′))
is (p, p′) where p′ (ρ, a) (ρ′, a′) = ρ′ and the generic term q∗ : Elem((Γ,Γ′).(A,A′)p∗) is
(q, q′) where q′ (ρ, a) (ρ′, a′) = a′. The extension of (σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) with
(a, a′) : Elem∗((∆,∆′), (A,A′)(σ, σ′)) is ((σ, a), λν ν′.(σ′ ν ν′, a′ ν ν′)).

3.2 Type formers and operations

3.2.1 Dependent products

Let (A, 〈A′, fibA′〉) : Type∗(Γ,Γ′) and (B, 〈B′, fibB′〉) : Type∗((Γ,Γ′).(A, 〈A′, fibA′〉)). We
define the dependent product Π∗((A, 〈A′, fibA′〉), (B, 〈B′, fibB′〉)) = (Π(A,B), 〈Π(A,B)′,
fibΠ(A,B)′〉) where

Π(A,B)′(ρ, ρ′, f) = Π(a : |A| ρ)(a′ : A′ ρ ρ′ a).B′ (ρ, a) (ρ′, a′) (app(f, a))

and fibΠ(A,B)′(ρ, ρ′, f) is given by closure of C under dependent product applied to (|A| ρ).2,
fibA′ ρ ρ′ a for a : |A| ρ, and fibB′ (ρ, a) (ρ′, a′) (app(f, a)) for additionally a′ : A′ ρ ρ′ a.

Given an element (b, b′) of (B, 〈B′, d〉)) inM∗, we define the abstraction lam∗(b, b′) =
(lam(b), lam(b)′) where lam(b)′ ρ ρ′ a a′ = b′ (ρ, a) (ρ′, a′).

Given elements (f, f ′) of Π∗((A, 〈A′, c〉), (B, 〈B′, d〉)) and (a, a′) of (A, 〈A′, fibA′〉)) inM∗,
we define the application app∗((f, f ′), (a, a′)) = (app(f, a), app(f, a)′) where app(f, a)′ ρ ρ′ =
f ′ ρ ρ′ aρ (a′ ρ ρ′).

3.2.2 Dependent sums

Let (A, 〈A′, fibA′〉) : Type∗(Γ,Γ′) and (B, 〈B′, fibB′〉) : Type∗((Γ,Γ′).(A, 〈A′, fibA′〉)). We
define the dependent sum Σ∗((A, 〈A′, fibA′〉), (B, 〈B′, fibB′〉)) = (Σ(A,B), 〈Σ(A,B)′,
fibΣ(A,B)′〉) where

Σ(A,B)′ ρ ρ′ (pair(a, b)) = Σ(a′ : A′ ρ ρ′ a).B′ (ρ, a) (ρ′, a′) b

and fibΣ(A,B)′ ρ ρ′ (pair(a, b)) is given by closure of C under dependent sum applied to
fibA′ ρ ρ′ a and fibB′ (ρ, a) (ρ′, a′) b.

Given elements (a, a′) of (A, 〈A′, fibA′〉) and (b, b′) of (B, 〈B′, fibB′〉)[(a, a′)] inM∗, we
define the pairing pair∗((a, a′), (b, b′)) = (pair(a, b), 〈a′, b′〉).

Given an element (pair(a, b), 〈a′, b′〉) of Σ∗((A, 〈A′, fibA′〉), (B, 〈B′, fibB′〉)) in M∗, we
define the projections fst∗(pair(a, b), 〈a′, b′〉) = (a, a′) and snd∗(pair(a, b), 〈a′, b′〉) = (b, b′).
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3.2.3 Universes
We define the universe U∗n : Type∗(Γ,Γ′) as U∗n = (Un, 〈U′n, fibU′

n
〉) where U′n ρ ρ

′A = |A| ρ→
Ufib
n and fibU′

n
ρ ρ′A is given by C(Ufib

n ) and closure of C under exponentiation (note that
fibrancy of |A| ρ is not used). We have carefully chosen our definitions so that we get
Elem∗((Γ,Γ′), U∗n) = Type∗n(Γ,Γ′) and see that this identity is compatible with the action in
M∗ of substitution on both sides.

3.2.4 Natural numbers
As per Appendix B, we have a fibrant indexed inductive set N′ : |N| → Ufib

0 (where N : Type0(1),
hence |N| : U0) with constructors 0′ : N′ 0 and S′ : Π(n : |N| ρ).N′ n → N′ (Sn). In context
(Γ,Γ′) : Con∗, we then define N∗ = (N, λρ ρ′.N′). We have 0∗ = (0, λρ ρ′.0′) and S∗(n, n′) =
(S(n), λρ ρ′.S′ nρ n′) for (n, n′) : Elem∗((Γ,Γ′), N∗).

Given (P, P ′) : Type((Γ,Γ′).N∗) with

(z, z′) : Elem∗((Γ,Γ′)(P, P ′)[0∗]), (s, s′) : Elem∗((Γ,Γ′).N∗.(P, P ′), (P, P ′)(p, S∗(q))p)

and (n, n′) : Elem∗((Γ,Γ′), N∗), we define the elimination

natrec∗((P, P ′), (z, z′), (s, s′), (n, n′)) = (natrec(P, z, s, n), λρ ρ′.h′ nρ (n′ ρ ρ′))

where h′ : Π(m : |N|)(m′ : N′m).P ′ (ρ,m) (ρ′,m′) (natrec(Pρ+, zρ, sρ+++,m)) is given by
induction on N′ with defining equations

h′ 0 0′ = z′ ρ ρ′, h′ (S(n)) (S′ nn′) = s′ (ρ, n, natrec(P, z, s, n)) (ρ′, n′, h′ nn′).

3.2.5 Dependent paths
Let 〈A,A′〉 : I→ Type∗(Γ,Γ′) and (ab, a′b) : Elem∗((Γ,Γ′), (Ab,A′ b)) for b ∈ {0, 1}. We then
define the dependent path type Path∗(〈A,A′〉, (a0, a

′
0), (a1, a

′
1)) : Type∗(Γ,Γ′) as the tuple

(Path(A, a0, a1), 〈Path(A, a0, a1)′, fibPath(A,a0,a1)′〉) where

Path(A, a0, a1)′ ρ ρ′ (〈〉(u)) = Pathλ(i:I). (A′ i ρ ρ′ (u i)).1(a′0 ρ ρ′)(a′1 ρ ρ′)

and fibPath(A,a0,a1)′ ρ ρ′ (〈〉(u)) is closure of C under Path applied to (A′ i ρ ρ′ (u i)).2 for i : I.
Given 〈u, u′〉 : Π(i : I).Elem∗((Γ,Γ′), (A i,A′ i)), we define the path abstraction as

〈〉∗(〈u, u′〉) = (〈〉(u), λρ ρ′ i.u′ i ρ ρ′).
Given (p, p′) : Elem∗((Γ,Γ′), Path∗(〈A,A′〉, (a0, a

′
0), (a1, a

′
1))) and i : I, we define the path

application ap∗(p, i) = (ap(p, i), λρ ρ′.u′ ρ ρ′ i).

3.2.6 Filling operation
Given 〈A,A′〉 : I → Type∗(Γ,Γ′), ϕ : F, b ∈ {0, 1}, and 〈u, u′〉 : Π(i : I).[ϕ] ∨ (i = b) →
Elem∗((Γ,Γ′), (A i,A′ i)), we have to extend u to

fill∗(〈A,A′〉, ϕ, b, 〈u, u′〉) : Π(i : I).Elem∗((Γ,Γ′), (A i,A′ i)).

We define fill∗(〈A,A′〉, ϕ, b, 〈u, u′〉) = 〈fill(A,ϕ, b, u), fill(A,ϕ, b, u)′〉 where

fill(A,ϕ, b, u)′ i ρ ρ′ : A′ i ρ ρ′ (fill(A,ϕ, b, u) i)ρ

is defined using fill from (2) as

fill(A,ϕ, b, u)′ i ρ ρ′ = fill(λi.A′ i ρ ρ′ (fill(A,ϕ, b, u) i)ρ, ϕ, b, λi x.u′ i x ρ ρ′).
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3.2.7 Glue types
Before defining the glueing operation inM∗, we will develop several lemmas relating notions
such as contractibility and equivalences inM with the corresponding notions of Section 2.2.
Given f : Elem(Γ, A→ B) inM, we write |f | : Π(ρ : |Γ|).|A| ρ→ |B| ρ for |f | ρ a = app(fρ, a).
This notation overlaps with the action of |−| on elements, but we will not use that one here.

Just in this subsection, we will use the alternative definition via given left and right
homotopy inverses instead of contractible homotopy fibers of both equivalences Equiv in the
cubical cwfM and equivalences Equiv in the (current) internal language. In both settings,
there are maps back and forth to the usual definition, which are furthermore natural in the
context in the case of the cubical cwfM. The statements we will prove are then also valid
for the usual definition.

I Lemma 5. Given f : Elem(Γ, A → B) in M with Elem(Γ, isEquiv(f)), we have Π(ρ :
|Γ|).isEquiv(|f | ρ). This is natural in Γ.

Proof. A (left or right) homotopy inverse g : Elem(Γ, B → A) to f inM becomes a (left or
right, respectively) homotopy inverse |g| ρ to |f | ρ for ρ : |Γ|. J

I Lemma 6. Given (f, f ′) : Elem((Γ,Γ′), (A,A′)→ (B,B′)) inM∗, the following statements
are logically equivalent, naturally in (Γ,Γ′):

Elem((Γ,Γ′), isEquiv∗(f, f ′)), (3)
Elem(Γ, isEquiv(f))×Π(ρ : |Γ|)(ρ′ : Γ′ ρ).isEquiv(Σ|f | ρf ′ ρ ρ′), (4)
Elem(Γ, isEquiv(f))×Π(ρ : |Γ|)(ρ′ : Γ′ ρ)(a : |A| ρ).isEquiv(f ′ ρ ρ′ a) (5)

where Σ|f | ρf ′ ρ ρ′ : Σ(a : |A| ρ)A′ ρ ρ′ a→ Σ(b : |B| ρ)B′ ρ ρ′ b.

Proof. Let us only look at homotopy left inverses.
For (3) → (4), a homotopy left inverse (g, g′) to (f, f ′) in M∗ gives a homotopy left

inverse Σ|g| ρg′ ρ ρ′ to Σ|f | ρf ′ ρ ρ′ for all ρ, ρ′.
For (4) → (5), we use Lemma 5 and note that a fiberwise map over an equivalence is

a fiberwise equivalence exactly if it is an equivalence on total spaces (the corresponding
statement for identity types instead of paths is [33, Theorem 4.7.7]).

For (5)→ (3), given a homotopy left inverse g to the equivalence f inM and a homotopy
left inverse g′ ρ ρ′ a : B′ ρ ρ′ (|f | a)→ A′ ρ ρ′ a to f ′ ρ ρ′ a for all ρ, ρ′, a, we use Lemma 5 to
transpose g′ to the second component g′ ρ ρ′ b : B′ ρ ρ′ b → A′ ρ ρ′ (|g| b) for all ρ, ρ′, b of a
homotopy left inverse (g, g′) to (f, f ′) inM∗. J

We can now define glue types in M∗. Let (A,A′) : Type(Γ,Γ′), ϕ : F, b ∈ {0, 1},
〈T, T ′〉 : [ϕ]→ Type(Γ,Γ′), and 〈e, e′〉 : [ϕ]→ Elem((Γ,Γ′), Equiv∗((T tt, T ′tt), (A,A′))).

We define Glue∗((A,A′), ϕ, b, 〈T, T ′〉, 〈e, e′〉) = (Glue(A,ϕ, b, T, e), 〈G′, fibG′〉) where

G′ ρ ρ′ (glue(a, t)) = Glue (A′ ρ ρ′ a).1 [ϕ 7→ (T ′ tt ρ ρ′ (t tt), ((e′ tt ρ ρ′).1 (t tt), w tt ρ ρ′))]

using the witness w tt ρ ρ′ that (e′ tt ρ ρ′).1 (t tt) is an equivalence provided by the direction
from (3) to (5) of Lemma 6 and fibG′ ρ ρ′ (glue(a, t)) is given by closure of C under Glue
applied to (A′ ρ ρ′ a).2 and T ′ tt ρ ρ′ (t tt) on [ϕ].

We define unglue∗ = (unglue, unglue′) where unglue′ ρ ρ′ (glue(a, t)) = unglue.
Given (a, a′) : Elem((Γ.Γ′), (A,A′)) and (t, t′) : [ϕ] → Elem((Γ,Γ′), (T tt, T ′ tt)) such

that app∗(fst∗(e, e′) tt, (t, t′) tt) = (a, a′) on [ϕ], we define glue∗((a, a′), (t, t′)) as the pair
(glue(a, t), glue(a, t)′) where glue(a, t′) ρ ρ′ = glue (a′ ρ ρ′) [ϕ 7→ t′ tt ρ ρ′].
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3.3 Main result
One checks in a mechanical fashion that the operations we have defined above satisfy the
required laws, including stability under substitution in the context (Γ,Γ′). We thus obtain
the following statement.

I Theorem 7 (Sconing). Assume the parameters C, I,F satisfy the assumptions of Section 2.2.
Then given any cubical cwfM that is size-compatible in the sense of the beginning of Section 3,
the sconingM∗ is a cubical cwf with operations defined as above. We further have a morphism
M∗ →M of cubical cwfs given by the first projection.

4 Homotopy canonicity

We fix parameters C, I,F as before. To make our homotopy canonicity result independent
of Conjecture 2 concerning initiality of the term model, we phrase it directly using the
initial model I, initial in the category of cubical cwfs with respect to the parameters C, I,F.
Its existence can be justified generically following [28, 25]. It is size-compatible in the
sense of Section 3: internally, HomI(∆,Γ) and ElemI(Γ, A) live in the lowest universe U0
for all Γ,∆, A.

I Theorem 8 (Homotopy canonicity). Assume the parameters C, I,F satisfy the assumptions of
Section 2.2. In the internal language of presheaves over C, given a closed natural n : Elem(1, N)
in the initial model I, we have a numeral k : N with p : Elem(1, Path(N, n, Sk(0))).

Proof. We start the arguing reasoning externally. Using Theorem 7, we build the sconing
I∗ of I. Using initiality, we obtain a section F of the cubical cwf morphism I∗ → I.

Let us now proceed in the internal language. Recall the construction of Section 3.2.4 of
natural numbers in I∗. We observe that Σ(n : |N|).N′ n forms a fibrant natural number set
(in the sense of Appendix B). It is thus homotopy equivalent to N. Under this equivalence,
the first projection Σ(n : |N|).N′ n→ |N| implements the map sending k : N to Sk(0).

Inspecting the action of F on n : Elem(1, N), we obtain n′ : N′ n. By the preceding
paragraph, this corresponds to k : N with a path p′ : I→ |N| from n to Sk(0). Now p = 〈〉(p′)
is the desired witness of homotopy canonicity. J

5 Extensions

5.1 Identity types
Our treatment extends to the variation of cubical cwfs that includes identity types.

Identity types in a cubical cwf denoted as in Section 1.3 consist of the following operations
and laws (omitting stability under substitution), internal to presheaves over C. Fix A in
Type(Γ). Given x, y in Elem(Γ, A), we have Id(A, x, y) in Type(Γ), of level n if A is. Given a in
Elem(Γ, A), we have refl(a) in Elem(Γ, Id(A, a, a)). Given P in Type(Γ.A.Ap.Id(App, qp, q))
and d in Elem(Γ.A, P [q, q, refl(q)]) and x, y in Elem(Γ, A) and p in Elem(Γ, Id(A, x, y)), we
have J(P, d, x, y, p) in Elem(Γ, P [x, y, p]). We have J(P, d, a, a, refl(a)) = d[a].

We can interpret univalent type theory in such any such cubical cwf as per Remark 1.
The standard model of Section 2.3 has identity type Id(〈A, fibA〉, x, y) : Type(Γ) given by

Π(ρ : Γ).IdAρ (x ρ) (y ρ) using Andrew Swan’s construction of Id referenced in Appendix B.
We omit the evident description of the remaining operations.

To obtain homotopy canonicity in this setting, it suffices to extend the sconing construction
M∗ of Section 3 to identity types. Given A : Type(1) and A′ : |A| → Ufib

ω , we define Id′A,A′

as the fibrant indexed inductive set (as per Appendix B) over x, y : |A|, p : |Id(A, x, y)|,
x′ : A′ x, y′ : A′ y with constructor refl′ : Π(a : |A|)(a′ : A′ a).Id′A,A′ a a (refl(a)) a′ a′.
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Now fix (A,A′) : Type∗(Γ,Γ′). Given ρ : |Γ|, ρ′ : Γ′ ρ, and elements (x, x′), (y, y′) of
(A,A′) inM∗, we define

Id∗((A,A′), (x, x′), (y, y′)) = (Id(A, x, y), λρ ρ′ p.Id′Aρ,A′ ρ ρ′ xρ yρ p (x′ ρ ρ′) (y′ ρ ρ′)).

Given an element (a, a′) of (A,A′) in M∗, we define refl∗(a, a′) = (refl(a), refl(a)′)
where refl(a)′ ρ ρ′ = refl′ aρ (a′ ρ ρ′). The eliminator J((C,C ′), (d, d′), (x, x′), (y, y′), (p, p′))
is defined as (J(C, d, x, y, p), λρ ρ′.h′ xρ yρ pρ (x′ ρ ρ′) (y′ ρ ρ′) (p′ ρ ρ′)) where

h′ : Π(x y : |A| ρ)(p : |Id(A, x, y)| ρ)(x′ : A′ ρ′)(y′ : A′ ρ′)(p′ : Id′Aρ,A′ ρ ρ′ x y p x′ y′).
P ′ (ρ, x, y, p) (ρ′, x′, y, p′) (J(Pρ+++, dρ+, x, y, p))

is given by induction on Id′Aρ,A′ ρ ρ′ via h′ a a (refl(a)) a′ a′ (refl′ a a′) = d′ (ρ, a) (ρ′, a′).

5.2 Higher inductive types
Our treatment extends to higher inductive types [33], following the semantics presented in [7].
Crucially, we have fibrant indexed higher inductive sets in presheaves over C as we have what
we would call fibrant uniformly indexed higher inductive sets in the same fashion as in [7] and
fibrant identity sets [6, 23], mirroring the derivation of fibrant indexed inductive sets from
fibrant uniformly indexed inductive sets and fibrant identity sets recollected in Appendix B.5

Let us look at the case of the suspension operation in a cubical cwf, where Susp(A) :
Type(Γ) has constructors north, south and merid(a, i) for a : A and i : I with merid(a, 0) =
north and merid(a, 1) = south.

For the sconing model of Section 3, we define for A : Type(1) and A′ : |A| → Ufib
ω the

indexed higher inductive set Susp′A,A′ over |Susp(A)| with constructors

north′ : Susp′A,A′ north south′ : Susp′A,A′ south

merid′ a a′ i : (SuspA)′(merid(a, i))[i = 0 7→ north′, i = 1 7→ south′]

for a : |a| and a′ : A′ a and i : I (using the notation of [7]). In the above translation to a
uniformly indexed higher inductive set, the constructor north′ will for example be replaced
by north′′ : Id|Susp(A)| u north→ Susp′A,A′ u.

Given (A,A′) : Type∗(Γ,Γ′), we then define Susp∗(A,A′) = (Susp(A), λρρ′.Susp′Aρ,A′ ρ ρ′),
with constructors and eliminator treated as in Section 5.1.
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A Rules of the term model

We denote the objects of our base category C by X,Y, Z and its morphisms by f, g, h. In
the term model T morphisms f : Y → X act on judgments at stage X via an implicit
substitution, while for substitutions on object variables we will use explicit substitutions.
For this to make sense we first define the raw expressions as a presheaf: at stage X this is
given by

Γ,∆ ::= ε | Γ.A
A,B, t, u, v ::= q | tσ | Un | Π(A,B) | lam(u) | app(u, v)

| Σ(A,B) | pair(u, v) | fst(u) | snd(u)
| Path(Ā, u, v) | 〈〉ū | ap(u, r)
| Glue(A,ϕ, B̄, ū) | glue(v, ū) | unglue(u)
| fill(Ā, ϕ, b, ū, r) | . . .

Ā, B̄, ū, v̄ ::= (Af,r)f,r | (Af )f∈[ϕ]
σ, τ, δ ::= p | id | στ | (σ, u) | ()

where b ∈ {0, 1}, ϕ ∈ F(X), and we skipped the constants for natural numbers. Above,
we have families of expressions, say Ā = (Af,r)f,r, whose index set ranges over certain Y ,
f : Y → X, and r ∈ I(Y ), and Af,r is a raw expression at stage Y ; likewise (Af )f∈[ϕ](X)
consists of raw expressions Af at stage Y for f : Y → X in the sieve [ϕ] on X. (The exact
index sets will be clear from the typing rules below.) All other occurrences of r above
have r ∈ I(X). The restrictions along f : Y → X on the raw syntax then leave all the
usual cwf structure untouched, so we have qf = q and (Π(A,B))f = Π(Af,Bf), and uses
the restrictions in I and F accordingly, e.g., (ap(u, r))f = ap(uf, rf), and we will re-index
families according to Āf = (Agf,rf ) for Ā = (Ag,r)g,r.

To get the initial cubical cwf we in fact need more annotations to the syntax in order to
be able to define a partial interpretation (cf. [29, 15]) on the raw syntax. But to enhance
readability we suppress these annotations.

We will now describe a type system indexed by stages X. The forms of judgment are:

Γ `X Γ `X A Γ `X A = B Γ `X t : A Γ `X t = u : A σ : ∆→X Γ

where the involved expressions are at stage X.
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I Remark 9. In cubical type theory as described in [6] we did not index judgments by objects
X but allowed extending context by interval variables instead. Loosely speaking, a judgment
Γ `{i1,...,in} J corresponds to i1 : I, . . . , in : I,Γ ` J given the setting of [6].
As mentioned above we have the rule:

Γ `X J f : Y → X

Γf `Y J f

At each stage we have all the usual rules valid in a cwf with Π-types, Σ-types, universes,
and natural numbers. We will present some of the rules, but skip all congruence rules.

ε `X

Γ `X Γ `X A

Γ.A `X

Γ `X A σ : ∆→X Γ
∆ `X Aσ

Γ `X t : A σ : ∆→X Γ
∆ `X tσ : Aσ

Γ `X A

Γ.A `X q : Ap
Γ `X t : A Γ `X A = B

Γ `X t : B
Γ `X

id : Γ→X Γ
Γ `X

() : Γ→ ε

Γ `X A

p : Γ.A→X Γ
σ : ∆→X Γ τ : Θ→X ∆

στ : Θ→X Γ

σ : ∆→X Γ Γ `X A ∆ `X u : Aσ
(σ, u) : ∆→X Γ.A

Γ.A `X B

Γ `X Π(A,B)
Γ.A `X B Γ.A `X b : B

Γ `X lam(b) : Π(A,B)
Γ `X w : Π(A,B) Γ `X u : A

Γ `X app(w, u) : B[u]

where we write [u] for (id, u) and σ+ for (σp, q). The judgmental equalities (skipping suitable
premises, types, and contexts) are:

idσ = σ id = σ (στ)δ = σ(τδ) ()σ = () (σ, u)δ = (σδ, uδ) p(σ, u) = σ

q(σ, u) = u (p, q) = id A id = A (Aσ)δ = A(σδ) u id = u (uσ)δ = u(σδ)

(Π(A,B))σ = Π(Aσ,Bσ+) (lam(b))σ = lam(bσ+) app(w, u)δ = app(wδ, uδ)

app(lam(b), u) = b[u] w = lam(app(wp, q))

We skip the rules for Σ-types and natural numbers as they are standard, but simply indexed
with an object X as we did for Π-types. The rules for universes are:

Γ `X
Γ `X Un

Γ `X
Γ `X Un : Un+1

Γ `X A : Un
Γ `X A : Un+1

Γ `X A : Un
Γ `X A

and we skip the rules for equality and closure under the type formers Π,Σ, natural numbers,
Path, and Glue.

To state the rules for dependent path-types we introduce the following abbreviations. We
write Γ.I `X Ā if Ā = (Af,r) is a family indexed by Y , f : Y → X, and r ∈ I(Y ) such that

Γf `Y Af,r and Γfg `Z (Af,r)g = Afg,r.

Given Γ.I `X Ā we write Γ.I `X ū : Ā whenever ū = (uf,r) is a family indexed by Y ,
f : Y → X, and r ∈ I(Y ) such that

Γf `Y uf,r : Af,r and Γfg `Z (uf,r)g = ufg,rg : Afg,rg.
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The rules for the dependent path type are:

Γ.I `X Ā Γ `X u : AidX ,0 Γ `X u : AidX ,1

Γ `X Path(Ā, u, v)
Γ.I `X Ā Γ.I `X ū : Ā

Γ `X lam(ū) : Path(Ā, uidX ,0, uidX ,1)

Γ `X t : Path(Ā, u, v) r ∈ I(X)
Γ `X ap(t, r) : AidX ,r

ap(lam(ū), r) = uid,r t = lam(ap(tf, r)f,r) Path(Ā, u, v)σ = Path((Af,rσf)f,r, uσ, vσ)

(lam(ū))σ = lam((uf,rσf)f,r) (ap(t, r))σ = ap(tσ, r)

Note that in general these rules might have infinitely many premises. We get the non-
dependent path type for Γ `X A by using the family Af,r := Af .

Given Γ.I `X Ā and b ∈ {0, 1} we write Γ.I `ϕ,bX ū : Ā for ū = (uf,r) a family indexed
over all Y , f : Y → X, and r ∈ I(Y ) such that either f is in the sieve [ϕ] or r = b and we
have

Γf `Y uf,r : Af,r and Γfg `Z (uf,r)g = ufg,rg : Afg,rg

for all g : Z → Y . The rule for the filling operation is given by:

Γ.I `X Ā ϕ ∈ F(X) b ∈ {0, 1} Γ.I `ϕ,bX ū : Ā r ∈ I(X)
Γ `Y fill(Ā, ϕ, b, ū, r) : Aid,r

with judgmental equality

fill(Ā, ϕ, b, ū, r) = uid,r whenever [ϕ] is the maximal sieve or r = b.

For the glueing operation we only present the formation rule; the other rules are similar
as in [6] but adapted to our setting. We write Γ `ϕX B̄ if B̄ is a family of Bf for f : Y → X

in [ϕ] with Γf `Y Bf which is compatible, i.e. Γfg `Z Bfg = Bfg. In this case, we write
likewise Γ `X ū : B̄ if ū is a compatible family of terms Γf `Y uf : Bf .

Γ `X A ϕ ∈ F(X) Γ `ϕX B̄ Γ `ϕX ū : isEquiv(B̄, A)
Γ `X Glue(A,ϕ, B̄, ū)

and the judgmental equality Glue(A,ϕ, B̄, ū) = Bid in case [ϕ] is the maximal sieve, and an
equation for substitution.

This formal system gives rise to a cubical cwf T as follows. First, define judgmental equality
for contexts and substitutions as usual (we could also have those as primitive judgments).
Next, we define presheaves Con and Hom on C by taking, say, Con(X) equivalence classes
[Γ]∼ of Γ with Γ `X modulo judgmental equality; restrictions are induced by the (implicit)
substitution: [Γ]∼f = [Γf ]∼. Types Type(X, [Γ]∼) are equivalence classes of A with Γ `X A

modulo judgmental equality, and elements are defined similarly as equivalence classes.
For type formers in T let us look at path types: we have to give an element of Type(Γ)

in a context (w.r.t. the internal language) Γ : Con, A : I → Type(Γ), u : Elem(Γ, A 0), v :
Elem(Γ, A 1). Unfolding the use of internal language, given [Γ]∼ ∈ Con(X), a compat-
ible family [Af,r]∼ ∈ Type(Y, [Γ]∼f) (for f : Y → X and r ∈ I(Y )) and elements [u]∼ ∈
Elem([Γ]∼, [Aid,0]∼) and [v]∼ ∈ ([Γ]∼, [Aid,1]∼), we have to give an element of Type(X, [Γ]∼),
which we do by the formation rule for Path.
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The remainder of the cubical cwf structure for T is defined in a similar manner, in fact
the rules are designed to reflect the laws of cubical cwfs. We conjecture that we can follow a
similar argument as in [29] to show that T is the initial cubical cwf. Given a cubical cwfM
over C, I,F we first have to define partial interpretations of the raw syntax and then show that
each derivable judgment has a defined interpretation inM, and for equality judgments both
sides of the equation have a defined interpretation inM and are equal. In an intuitionistic
framework, this partial interpretation should be described as an inductively defined relation,
which is shown to be functional. The partial interpretation J−K assigns meanings to raw
judgments with the following signature:

JΓ `XK ∈ ConM(X)
Jσ : ∆→ ΓK ∈ HomM(X, J∆ `XK, JΓ `XK)
JΓ `X AK ∈ TypeM(X, JΓ `XK)
JΓ `X u : AK ∈ ElemM(X, JΓ `XK, JΓ `X AK)

where among the conditions for the interpretation on the left-hand side to be defined is that
all references to the interpretation on the right-hand side are defined. This proceeds by
structural induction on the raw syntax and for JΓ `X J K to be defined we assume all the
ingredients needed are already defined. E.g. for the path type JΓ `X Path(Ā, u, v)K we in
particular have to assume that the assignment f, r 7→ JΓf `Y Af,rK is defined and gives rise
to a suitable input of PathM.

B Indexed inductive sets in presheaves over C

We work in the setting of Section 2.2 given by presheaves over C.
Given a set I, a family A over I, a family B over i : I and a : A i, and a map

s : Π(i : I)(a : A i).B i a→ I,

the indexed inductive set WI,A,B,s is the initial algebra of the polynomial endofunctor [12]
on the (internal) category of families over I sending a family X to the family

JI, A,B, sK i = Σ(a : A i).Π(b : B i a).X(s i a b).

Its constructive justification as an operation in the internal language of the presheaf topos
using inductive constructions of the metatheory is folklore (in a classical setting, one would
use transfinite colimits [20]). If I, A,B are small with respect to a universe Ui with i ∈
{0, 1, . . . , ω}, then WI,A,B,s : I → Ui.

Let I, A,B now be small with respect to Uω. Given elements of Fill(I, A) and Fill(Σ(i :
I).A i, λ(i, a).B i a), we may use induction (i.e. the universal property of WI,A,B,s) to derive
an element of Fill(I,WI,A,B,s). As in Section 2.2 for dependent products, this implies (using
external reasoning) the internal statement C(WI,A,B,s i) for i : I given C(A i) for all i and
C(B i a) for all i, a. We then call WI,A,B,s a fibrant uniformly indexed inductive set. The
qualifier uniformly indexed indicates that A is a fibrant family over I rather than a fibrant
set with a “target” map to I that indicates the target sort of the constructor sup.

Given A : Uω with Fill(1, A), we may use the technique of Andew Swan [30, 23] to
construct a (level preserving) identity set IdA a0 a1 for a0, a1 : A (different from the equality
set a0 = a1) with Fill(A×A, λ(a0, a1).IdA a0 a1)) and constructor refla : IdA a a for a : A that
has the usual elimination with respect to families P : Π(a0 a1 : A).IdA a0 a1 → Uω that satisfy
Fill(Σ(a0 a1 : A).IdA a0 a1, P ). Using external reasoning as before, one has C(IdA a0 a1) given
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C(A), justifying calling IdA a0 a1 a fibrant identity set; using (2) one has elimination with
respect to families P of the previous signature with C(C a0 a1 p) for all a0, a1, p.

Using a folklore technique, we may use fibrant identity sets to derive fibrant indexed
inductive sets from fibrant uniformly indexed inductive sets, by which we mean the following.
Given (I, fibI) : Ufib

ω , (A, fibA) : Ufib
ω , 〈B, fibB〉 : A → Ufib

ω with maps t : A → I and
s : Π(a : A).B a→ I, we have 〈WI,A,B,s,t, fibW 〉 : I → Ufib

ω (we omit the subscripts to W for
readability), W living in Ui if I, A,B do, with

sup : Π(a : A)(f : Π(b : B a).W (s a b)).W (t a).

Given 〈P, fibP 〉 : Π(i : I).W → Ufib
ω with

h : Π(a : A)(f : Π(b : B a).W (s a b)).(Π(b : B a).P (s a b) (f b))→ P (t a) (sup a f),

we have v : Π(i : I)(w : W i).P iw such that

v (t a) (sup a f) = h a f (λb.v (s a b) (f b).

Fibrant indexed inductive sets are used for the interpretation in the sconing model of
natural numbers in Section 3, higher inductive types in Section 5.2, and identity types in
Section 5.1. In practise, we will usually not bother to bring the fibrant indexed inductive set
needed in into the above form and instead work explicitly with the more usual specification
in terms of a list of constructors, each taking a certain number non-recursive and recursive
arguments.6 For convenience, we explain concretely the example needed in Section 3 of the
fibrant indexed inductive set N′ over

As an example, we construct the fibrant indexed inductive set N′ needed in Section 3.
There, we have a fibrant set |N| : U0 (satisfying C(|N|)) with an element 0 : |N| and an
endofunction S : |N| → |N|. We wish to define the fibrant indexed inductive set N′ : |N| → U0
with constructors 0′ : N′ 0 and S′ : Π(n : |N| ρ).N′ n→ N′ (Sn). We let N′ be the uniformly
indexed inductive set over m : |N| with constructors

0′′ : Id|N|m 0→ N′m,
S′′ : Πn:|N|.Id|N|m (Sn)→ N′ n→ N′m.

and define 0′ = 0′′ refl0 and S′ nn′ = S′′ n reflS(n) n
′. Fibrancy of Id ensures fibrancy of N′

(i.e. C(N′ n) for n : |N|). For elimination, we are given a fibrant family P nn′ for n : |N| and
n′ : N′ n with z′ : P 0 0′ and s′ nn′ x : P (Sn) (S′ nn′) for all n, n′ and x : P nn′. We have to
define h′ nn′ : P nn′ for all n, n′ such that h′ 0 0′ = z′ and h′ (Sn) (S′ nn′) = s′ nn′ (h′ nn′).
We define h′ by induction on the uniformly indexed inductive set N′ and fibrant identity sets
(using fibrancy of P ) via defining equations

h′ 0′′ refl0 = z,

h′ (Sn) (S′′ n reflSn n
′) = s′ nn′ (h′ nn′).

6 Note that the latter is really an instance of the former since our dependent sums, dependent products,
and finite coproducts are extensional (satisfy universal properties). Conversely, the former is an instance
of the latter with a single constructor taking a non-recursive and a recursive argument.
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11:22 Homotopy Canonicity for Cubical Type Theory

C Variations

C.1 Univalence as an axiom
Our treatment extends to the case where the glue types in a cubical cwf as in Section 1.3 are
replaced by an operation Elem(Γ, iUnivalencen) for Γ : Con and n ≥ 0, with iUnivalencen
defined in Remark 1.

To define this operation in the sconing model of Section 3, one first shows analogously
to Lemmas 5 and 6 that |−| preserves contractible types and that (A,A′) : Type∗(Γ,Γ′) is
contractible exactly if A is contractible and A′ ρ ρ′ a for ρ : |Γ| and ρ′ : Γ′ ρ where a : |A| is
the induced center of contraction. We have analogous statements for types of homotopy level
n ≥ 0i inM, in which case we instead have to quantify over all a : |A|.

Given (A,A′) : Type∗n(Γ,Γ′), we have show that the type (S, S′) = Σ∗(Un,Equiv∗(q, A))
over (Γ,Γ′) is contractible inM∗. Without loss of generality, we may assume the center of
contraction of univalence inM is given by the identity equivalence. Using the observations
of the preceding paragraph, it suffices to show that V ′ = S′ ρ ρ′ (pair(Aρ, (lam(q), w))) is
contractible for ρ : |Γ| and ρ′ : Γ′ ρ where w denotes the canonical witness that the identity
map lam(q) on Aρ is an equivalence in M. Inhabitation is evident, and so it remains to
show propositionality. By the case of the preceding paragraph for propositions, the second
component of V ′ is a proposition, and thus we can ignore it for the current goal, which then
becomes

isProp
(
Σ(T ′ : |A| → Un).Π(a : |A|).Equiv(T ′ a,A′ ρ ρ′ a)

)
and follows from univalence in the standard model, justified by glueing.

C.2 Canonicity
A similar sconing argument may be used to provide a reduction-free canonicity argument for
cubical type theory with computation rules for filling at type formers alternative to the one
of [16]. The key difference is that we now want the filling operation itself to be computable.
In the sconing, we then define a type (A, 〈A′, fibA′〉) : Type(Γ,Γ′) to consist of A : Type(Γ)
and A′ ρ ρ′ a : Uω as before, but with fibA′ ρ ρ′ : C(Σ(a : |A| ρ).A′ ρ ρ′ a) such that the first
projection relates fibA′ ρ ρ′ with the proof of fibrancy of |A| ρ. This is easiest formulated by
defining an appropriate dependent version C′ : Π(A : Uω)(A′ : A → Uω).C(A) → Uω of C
using the methods of Section 2.2.

D Simplicial set model

Choosing for C the simplex category ∆, for I the usual interval ∆1 in simplicial sets, and
for F a small copy Ω0,dec of the sublattice of Ω0 of decidable sieves, we obtain a notion of
cubical cwf with a simplicial notion of shape.

Assume now the law of excluded middle. The above choice of C, I,F satisfies all of the
assumptions of Section 2.2 but one: the existence of a right adjoint to exponentiation with I.
However, the only place our development makes use of this assumption is in establishing (1).
We will instead give a different definition of C that still satisfies (1). Then the rest of our
development applies to simplicial sets.

A Kan fibration structure on a family Y : X → Uω in simplicial sets consists of a choice
of diagonal fillers in all commuting squares of the form
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Λmk //

��

Σ(x : X).Y x

��
∆m //

88

X

with left map a horn inclusion. Note that the codomains of horn inclusions are rep-
resentable. It follows that the presheaf of Kan fibration structures indexed over the slice
of simplicial sets over Uω is representable. Given [n] ∈ ∆ and A ∈ (Uω)n (i.e. an ω-small
presheaf on ∆/[n]), we define C([n], A) as the set of Kan fibration structures on A : ∆n → Uω.
This defines a level preserving map C : Uω → Uω. Then the representing object of the above
presheaf is given by the first projection Ufib

ω → Uω where Ufib
ω = Σ(X : Uω).C(X) is defined

as before.
Let us now verify (1). Given a simplicial set X with Y : X → Uω, a global element of

Fill(X,Y ) corresponds to a uniform Kan fibration structure on Σ(x : X) (Y x)→ X in the
sense of [13]. A uniform Kan fibration structure induces a Kan fibration structure naturally
in X, giving the forward direction of (1). For the reverse direction, it suffices to give a
uniform Kan fibration structure in the generic case, i.e. a global element of Fill(Ufib

ω , λ(A, c).A).
This is [13, Theorem 8.9, part (ii)] together with the fact proved in [11, Chapter IV] that
Kan fibrations lift against pushout products of interval endpoint inclusions with (levelwise
decidable) monomorphisms.7

Having verified (1), the rest of our development applies just as well to the case of
simplicial sets. In particular, we obtain in the standard model S of Section 2.3 a version of
the simplicial set model [18] of univalent type theory (using Section 5.1 for identity types).8
As per Section 5.2, we furthermore obtain higher inductive types in the simplicial set model
in a way that avoids (as suggested by Andrew Swan [31]) the pitfall of fibrant replacement
failing to preserve size encountered in [22].

Seeing simplicial sets as a full subtopos of distributive lattice cubical sets as observed
in [19], there is a functor from cubical cwfs with (C, I,F) = (∆,∆1,Ω0,dec) to cubical cwfs
where C is the Lawvere theory of distributive lattices, I is represented by the generic object,
and F is the (small) sublattice of Ω0 generated by distributive lattice equations. The
cubical cwfs in the image of this functor satisfy a sheaf condition, which can be represented
syntactically as an operation allowing one to e.g. uniquely glue together to a type Γ `{i,j} A
coherent families of types Γf `X Af for f a map to X from the free distributive lattice on
symbols {i, j} such that f i ≤ f j or f j ≤ f i (compare also the tope logic of [26]).

Applying this functor to the simplicial set model S discussed above, we obtain an
interpretation of distributive lattice cubical type theory (with I and F as above) in the
sense of the current paper (crucially, without computation rules for filling at type formers)
in simplicial sets. Thus, this cubical type theory is homotopically sound: can only derive
statements which hold for standard homotopy types.

7 This is the only place where excluded middle is used, to produce a cellular decomposition in terms of
simplex boundary inclusions of such a monomorphism.

8 Instead of Kan fibration structures, we can also work with the property of being a Kan fibration. Then
C is valued in propositions and we would obtain in S a version of the simplicial set model in which
being a type is truly just a property. However, choice would be needed to obtain (1).
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