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—— Abstract

While a mature body of work supports the study of rewriting systems, abstract tools for Probabilistic

Rewriting are still limited. We study in this setting questions such as uniqueness of the result (unique
limit distribution) and normalizing strategies (is there a strategy to find a result with greatest
probability?). The goal is to have tools to analyse the operational properties of probabilistic calculi
(such as probabilistic lambda-calculi) whose evaluation is also non-deterministic, in the sense that
different reductions are possible.
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1 Introduction

Rewriting Theory [39] is a foundational theory of computing. Its impact extends to both
the theoretical side of computer science, and the development of programming languages. A
clear example of both aspects is the paradigmatic term rewriting system, A-calculus, which
is also the foundation of functional programming. Abstract Rewriting Systems (ARS) are the
general theory which captures the common substratum of rewriting theory, independently of
the particular structure of the objects. It studies properties of terms transformations, such
as normalization, termination, unique normal form, and the relations among them. Such
results are a powerful set of tools which can be used when we study the computational and
operational properties of any calculus or programming language. Furthermore, the theory
provides tools to study and compare strategies, which become extremely important when a
system may have reductions leading to a normal form, but not necessarily. Here we need
to know: is there a strategy which is guaranteed to lead to a normal form, if any exists
(normalizing strategies)? Which strategies diverge if at all possible (perpetual strategies)?

Probabilistic Computation models uncertainty. Probabilistic models such as automata
[34], Turing machines [37], and the A-calculus [36] exist since long. The pervasive role it
is assuming in areas as diverse as robotics, machine learning, natural language processing,
has stimulated the research on probabilistic programming languages, including functional
languages [27, 35, 32] whose development is increasingly active. A typical programming
language supports at least discrete distributions by providing a probabilistic construct which
models sampling from a distribution. This is also the most concrete way to endow the
A-calculus with probabilistic choice [13, 10, 16]. Within the vast research on models of
probabilistic systems, we wish to mention that probabilistic rewriting is the explicit base of
PMaude [1], a language for specifying probabilistic concurrent systems.
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Probabilistic Rewriting. Somehow surprisingly, while a large and mature body of work
supports the study of rewriting systems — even infinitary ones [12, 24] — work on the abstract
theory of probabilistic rewriting systems is still sparse. The notion of Probabilistic Abstract
Reduction Systems (PARS) has been introduced by Bournez and Kirchner in [5], and then
extended in [4] to account for non-determinism. Recent work [7, 15, 25, 3] shows an increased
research interest. The key element in probabilistic rewriting is that even when the probability
that a term leads to a normal form is 1 (almost sure termination), that degree of certitude is
typically not reached in any finite number of steps, but it appears as a limit. Think of a
rewrite rule (as in Fig. 1) which rewrites c to either the value T or ¢, with equal probability 1/2.
We write this ¢ — {c'/2, TY/2}. After n steps, ¢ reduces to T with probability % + 2% +-+ 2%
Only at the limit this computation terminates with probability 1 .

The most well-developed literature on PARS is concerned with methods to prove almost
sure termination, see e.g. [4, 19, 3] (this interest matches the fact that there is a growing
body of methods to establish AST [2, 20, 22, 30]). However, considering rewrite rules subject
to probabilities opens numerous other questions on PARS, which motivate our investigation.

We study a rewrite relation on distributions, which describes the evolution of a probabilistic
system, for example a probabilistic program P. The result of the computation is a distribution
B over all the possible values of P. The intuition (see [27]) is that the program P is executed,
and random choices are made by sampling. This process eventually defines a distribution 3
over the various outputs that the program can produce. We write this P = .

What happens if the evaluation of a term P is also non-deterministic? Remember that
non-determinism arises naturally in the A-calculus, because a term may have several redexes.
This aspect has practical relevance to programming. Together with the fact that the result
of a terminating computation is unique, it is key to the inherent parallelism of functional
programs (see e.g. [29]). When assuming non-deterministic evaluation, several questions on
PARS arise naturally. For example: (1.) when is the result unique? (naively, if P = o
and P = 3, is o = 37) (2.) Do all rewrite sequences from the same term have the same
probability to reach a result? (3.) If not, does there exist a strategy to find a result with
greatest probability?

Such questions are relevant not only to the theory, but also to the practice of computing.
We believe that to study them, we can advantageously adapt techniques from Rewrite
Theory. However, we cannot assume that standard properties of ARS hold for PARS. The
game-changer is that termination appears as a limit. In Sec. 4.4 we show that a well-known
ARS property, Newman’s Lemma, does not hold for PARS. This is not surprising; indeed,
Newman’s Lemma is known not to hold in general for infinitary rewriting [23, 26]. Still, our
counter-example points out that moving from ARS to PARS is non-trivial. There are two
main issues: we need to find the right formulation and the right proof technique. It seems
especially important to have a collection of proof methods which apply well to PARS.

Content and contributions. Probability is concerned with asymptotic behaviour: what
happens not after a finite number n of steps, but when n tends to infinity. In this paper we
focus on the asymptotic behaviour of rewrite sequences with respect to normal forms. We
study computational properties such as (1.),(2.),(3.) above. We do so with the point of view
of ARS, aiming for properties which hold independently of the specific nature of the rewritten
objects; the purpose is to have tools which apply to any probabilistic rewriting system.
After introducing and motivating our formalism (Sec. 2 and 3), in Sec. 4, we extend to
the probabilistic setting the notions of Normalization (WN), Termination (SN) and Unique
Normal Form (UN). In the rest of the paper, we provide methods and criteria to establish
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these properties, and we uncover relations between them. In particular, we study normalizing
strategies. To do so, we extend to the probabilistic setting a proposal by Van Oostrom [40],
which is based on Newman’s property of Random Descent [31, 40, 41] (see Sec. 1.1). The
Random Descent method turns out to provide proof techniques which are well suited to
PARS. Specific contributions are the following.

We propose an analogue of UN for PARS. This is not obvious; the question was already
studied in [15] for PARS which are AST, but their solution does not extend to general
PARS.

We investigate the classical ARS method to prove UN via confluence. It turns out that
the notion of confluence does not need to be as strong as the classical case would suggest,
broadening its scope of application. Subtle aspects appear when dealing with limits, and
the proof demand specific techniques.

We develop a probabilistic extension of the ARS notions of Random Descent (€-RD,
Sec. 5) and of being better (R-better, Sec. 7) as tools to analyze and compare strategies,
in analogy to their counterpart in [40]. Both properties are here parametric with respect
to a chosen event of interest. £-RD entails that all rewrite sequences from a term lead to
the same result, in the same expected number of steps (the average of number of steps,
weighted w.r.t. probability). R-better offers a method to compare strategies (“strategy
S is always better than strategy 77) w.r.t. the probability of reaching a result and the
expected time to reach a result. It provides a sufficient criterion to establish that a strategy
is normalizing (resp. perpetual) i.e. the strategy is guaranteed to lead to a result with
maximal (resp. minimal) probability. A significant technical feature (inherited from
[40]) is that both notions of £-RD and R-better come with a characterization via a local
condition (in ARS, a typical example of a local vs global condition is local confluence vs
confluence).

We apply these methods to study a probabilistic A-calculus, which we discuss below
together with the notion of Random Descent. A deeper example of application to probabilistic
A-calculus is in [18]; we discuss it in Sec.8 “Further work and applications”.

» Remark (On the term Random Descent). Please note that in [31], the term Random refers
to non-determinism (in the choice of the redex), not to randomized choice.

Related work. We discuss related work in the context of PARS [4, 5]. We are not aware of
any work which investigates normalizing strategies (or normalization in general, rather than
termination). Instead, confluence in probabilistic rewriting has already drawn interesting
work. A notion of confluence for a probabilistic rewrite system defined over a A-calculus is
studied in [14, 9]; in both case, the probabilistic behavior corresponds to measurement in a
quantum system. The work more closely related to our goals is [15]. It studies confluence of
non-deterministic PARS in the case of finitary termination (being finitary is the reason why
a Newman’s Lemma holds), and in the case of AST. As we observe in Sec. 4.3, their notion of
unique limit distribution (if «, 8 are limits, then o = ), while simple, it is not an analogue
of UN for general PARS; we extend the analysis beyond AST, to the general case, which arises
naturally when considering probabilistic A-calculus. On confluence, we also mention [25],
whose results however do not cover non-deterministic PARS; the probability of the limit
distribution is concentrated in a single element, in the spirit of Las Vegas Algorithms. [25]
revisits results from [5], while we are in the non-deterministic framework of [4].

The way we define the evolution of PARS, via the one-step relation =, follows the
approach in [7], which also contains an embryo of the current work (a form of diamond
property); the other results and developments are novel. A technical difference with [7] is
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that for the formalism to be general, a refinement is necessary (see Sec. 2.2); the issue was
first pointed out in [15]. Our refinement is a variation of the one introduced (for the same
reasons) in [3]; we however do not strictly adopt it, because we prefer to use a standard
definition of distribution. [3] demonstrates the equivalence with the approach in [4].

1.1 Key notions

Random Descent. Newman’s Random Descent (RD) [31] is an ARS property which guar-
antees that normalization suffices to establish both termination and uniqueness of normal
forms. Precisely, if an ARS has random descent, paths to a normal form do not need to
be unique, but they have unique length. In its essence: if a normal form exists, all rewrite
sequences lead to it, and all have the same length!. While only few systems directly verify it,
RD is a powerful ARS tool; a typical use in the literature is to prove that a strategy has RD,
to conclude that it is normalizing. A well-known property which implies RD is a form of
diamond: “4—-— C (—-+)U ="

In [40] Von Oostrom defines a characterization of RD by means of a local property and
proposes RD as a uniform method to (locally) compare strategies for normalization and
minimality (resp. perpetuality and maximality). [41] extends the method and abstracts the
notion of length into a notion of measure. In Sec. 5 and 7 we develop similar methods in a
probabilistic setting. The analogous of length, is the expected number of steps (Sec. 5.1).

Probabilistic Weak A-calculus. A notable example of system which satisfies RD is the
pure untyped A-calculus endowed with call-by-value (CbV) weak evaluation. Weak [21, 6]
means that reduction does not evaluate function bodies (i.e. the scope of A-abstractions). We
recall that weak CbV is the basis of the ML/CAML family of functional languages (and of
most probabilistic functional languages). Because of RD, weak CbV A-calculus has striking
properties (see e.g. [8] for an account). First, if a term M has a normal form N, any rewrite
sequence will find it; second, the number n of steps such that M —™ N is always the same.

In Sec. 6, we study a probabilistic extension of weak CbV, A‘é’aeak. We show that it has
analogous properties to its classical counterpart: all rewrite sequences converge to the same
result, in the same expected number of steps.

Local vs global conditions. To work locally means to reduce a test problem which is global,
i.e., quantified over all rewrite sequences from a term, to local properties (quantified only
over one-step reductions from the term), thus reducing the space of search when testing.

A paradigmatic example of a global property is confluence (CR: b *+ a —* ¢ = 3d s.t.
b —* d *+ c¢). Tts global nature makes it difficult to establish. A standard way to factorize
the problem is: (1.) prove termination and (2.) prove local confluence (WCR: b+ a — ¢ =
3d s.t. b —* d *< ¢). This is exactly Newman’s lemma: Termination + WCR = CR. The
beauty of Newman’s lemma is that a global property (CR) is guaranteed by a local property
(WCR). Locality is also the strength and beauty of the RD method. While Newman’s lemma
fails in a probabilistic setting (see Sec. 4.4), RD methods can be adapted (Sec. 5 and 7).

L or, in Newman’s original terminology: the end-form is reached by random descent (whenever x —ky

and z —" u with » in normal form, all maximal reductions from y have length n — k and end in u).
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1.2 Probabilistic A-calculus and (Non-)Unique Result

Rewrite theory provides numerous tools to study uniqueness of normal forms, as well as
techniques to study and compare strategies. This is not the case in the probabilistic setting.
Perhaps a reason is that when extending the A-calculus with a choice operator, confluence is
lost, as was observed early [11]; we illustrate it in Example 1.1 and 1.2, which is adapted from
[11, 10]. The way to deal with this issue in probabilistic A-calculi (e.g. [13, 10, 16]) has been
to fix a deterministic reduction strategy, typically “leftmost-outermost”. To fix a strategy is
not satisfactory, neither for the theory nor the practice of computing. To understand why
this matters, recall for example that confluence of the A-calculus is what makes functional
programs inherently parallel: every sub-expression can be evaluated in parallel, still, we
can reason on a program using a deterministic sequential model, because the result of the
computation is independent of the evaluation order (we refer to [29], and to Harper’s text
“Parallelism is not Concurrency” for discussion on deterministic parallelism, and how it differs
from concurrency). Let us see what happens in the probabilistic case.

» Example 1.1 (Confluence failure). Let us consider the untyped A-calculus extended with a
binary operator & which models probabilistic choice. Here & is just flipping a fair coin: M &N

reduces to either M or N with equal probability 1/2; we write this as M & N — {M% , N%}.

Consider the term PQ, where P = (Az.z)(Az.z XO0R x) and QQ = (TG F); here XOR is the
standard constructs for the exclusive OR, T and F are terms which code the booleans.

If we evaluate P and @ independently, from P we obtain Az.(x XOR z), while from @

we have either T or F, with equal probability 1/2. By composing the partial results, we

obtain {(T XOR T)2, (F XOR F)2 }, and therefore {F'}.

If we evaluate PQ sequentially, in a standard left-most outer-most fashion, P@Q reduces

to (Az.z XOR x)Q which reduces to (T & F) XOR (T & F) and eventually to {T2,Fz}.

» Example 1.2. The situation becomes even more complex if we examine also the possibility
of diverging; try the same experiment as above on the term PR, with R = (T®F) & AA
(where A = Az.zzx). Proceeding as before, we now obtain either {F2} or {T%,Fs}.

We do not need to loose the features of A-calculus in the probabilistic setting. In fact,
while some care is needed, determinism of the evaluation can be relazed without giving
up uniqueness of the result: the calculus we introduce in Sec. 6 is an example (we relax
determinism to RD); we fully develop this direction in further work [18]. To be able to do
so, we need abstract tools and proof techniques to analyze probabilistic rewriting. The same
need for theoretical tools holds, more in general, whenever we desire to have a probabilistic
language which allows for deterministic parallel reduction.

In this paper we focus on uniqueness of the result, rather than confluence, which is an
important and sufficient, but not necessary property.

2 Probabilistic Abstract Rewriting System

We assume the reader familiar with the basic notions of rewrite theory (such as Ch. 1 of
[39]), and of discrete probability theory. We review the basic language of both. We then
recall the definition of PARS from [5, 4], and explain on examples how a system described
by a PARS evolves. This will motivate the formalism which we introduce in Sec. 3.

Basics on ARS. An abstract rewrite system (ARS) is a pair C = (C, —) consisting of a set C
and a binary relation — on C; —* denotes the transitive reflexive closure of —. An element
u € C'is in normal form if there is no ¢ with 4 — ¢; NF¢ denotes the set of the normal forms
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of C. If ¢ =™ u and u € NF¢, we say ¢ has a normal form u. C has the property of unique
normal form (with respect to reduction)(UN) if Vu,v € Ni¢, (c =* u & ¢ =* v = u =v).
C has the normal form property (NFP) if Vb, c € C,Vu € NFe, (b =*c&b—=>"u=c—"* u).
NFP implies UN. The fact that an ARS has unique normal forms implies neither that all terms
have a normal form, nor that if a term has a normal form, each rewrite sequence converges to
it. A term c is terminating? (aka strongly normalizing, SN), if it has no infinite sequence
¢ — ¢1 = co...; it is normalizing (aka weakly normalizing, WN), if it has a normal form.
These are all important properties to establish about an ARS, as it is important to have a
rewrite strategy which finds a normal form, if it exists.

Basics on Probabilities. The intuition is that random phenomena are observed by means of
experiments (running a probabilistic program is such an experiment); each experiment results
in an outcome. The collection of all possible outcomes is represented by a set, called the
sample space 2. When the sample space € is countable, the theory is simple. A discrete
probability space is given by a pair (€, 1), where € is a countable set, and p is a discrete
probability distribution on Q, i.e. a function p : Q — [0, 1] such that }° o p(w) =1. A
probability measure is assigned to any subset A C Q as u(A) =3 4 p(w). In the language
of probabilists, a subset of §2 is called an event.

» Example 2.1 (Die). Consider tossing a die once. The space of possible outcomes is the set
0 =1{1,2,3,4,5,6}. The probability u of each outcome is 1/6. The event “result is odd" is
the subset A = {1,3,5}, whose probability is u(A4) = 1/2.

Each function F': Q — A, where A is another countable set, induces a probability
distribution " on A by composition: pf'(d) := p(F~1(d)) ie. p{w € Q : F(w) = d}.
Thus (A, p) is also a probability space. In the language of probability theory, F is called
a discrete random variable on (€, ). The expected value (also called the expectation or
mean) of a random variable F' is the weighted (in proportion to probability) average of the
possible values of F. Assume F': Q — A discrete and g : A — R a non-negative function,

then E(g(F)) = > geca 9(d)pr(d).

(Sub)distributions: operations and notation. We need the notion of subdistribution to
account for unsuccessful computations and partial results. Given a countable set €2, a function
w2 — [0,1] is a probability subdistribution if ||u|| := > o u(w) < 1. We write DST(S2)
for the set of subdistributions on 2. With a slight abuse of language, we often use the term
distribution also for subdistribution. The support of u is the set Supp(u) = {a € Q| u(a) > 0}.
DSTF(£2) denotes the set of p € DST(Q) with finite support.

DST(R2) is equipped with the order relation of functions : u < p if u(a) < p(a) for
each a € . Multiplication for a scalar (p - ) and sum (o + p) are defined as usual,
(p-p)(a) =p-pla), (o+p)(a) = o(a) + p(a), provided p € [0,1], and o +[|p] < 1.

We adopt the following convention: if Q' C Q, and u € DST(Q)'), we also write u €
DST(R2), with the implicit assumption that the extension behaves as p on €, and is 0 otherwise.
In particular, we identify a subdistribution and its support.

2 Please observe that the terminology is community-dependent. In logic: Strong Normalization, Weak
Normalization, Church-Rosser (hence the standard abbreviations SN, WN, CR). In computer science:
Termination, Normalization, Confluence.
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1/4- 0
rozcﬁ{cl/z,Tl/Q} 1 0 1/2, 1 1/81 .-
1/2-1 1 2
1 1 2
r / c< . 5 1 3
1/ C T 1 N
C< 1 T 1N 3 1 2 —+/4 stop
1 T 1 4 ... 1/2\ 3
1 4 ...

Figure 1 Almost Sure Ter- Figure 2 Determinis- Figure 3 Non-deterministic
mination. tic PARS. PARS.

» Notation 2.2 (Representation). We represent a (sub)distribution by explicitly indicating
the support, and (as superscript) the probability assigned to each element by p. We write

p=A{ab’,...;akr} if p(ao) = po, ..., pmlan) = pn and p(a;) = 0 otherwise.

2.1 Probabilistic Abstract Rewrite Systems (PARS)

A probabilistic abstract rewrite system (PARS) is a pair A = (A, —) of a countable set A and
a relation — C A x DSTF(A) such that for each (a,3) € —, ||3]| = 1. We write a — 3 for
(a,B8) € — and we call it a rewrite step, or a reduction. An element a € A is in normal form
if there is no 8 with a — 8. We denote by NF 4 the set of the normal forms of A (or simply
NF when A is clear). A PARS is deterministic if, for all a, there is at most one 8 with a — S.

» Remark. The intuition behind a — £ is that the rewrite step a — b (b € A) has probability
B(b). The total probability given by the sum of all steps a — b is 1.

Probabilistic vs Non-deterministic. It is important to have clear the distinction between
probabilistic choice (which globally happens with certitude) and non-deterministic choice
(which leads to different distributions of outcomes.) Let us discuss some examples.

» Example 2.3 (A deterministic PARS). Fig. 2 shows a simple random walk over N, which
describes a gambler starting with 2 points and playing a game where every time he either gains
1 point with probablity 1/2 or looses 1 point with probability 1/2. This system is encoded
by the following PARS on N: n +1 — {n'/? (n + 2)'/2}. Such a PARS is deterministic,
because for every element, at most one choice applies. Note that 0 is a normal form.

» Example 2.4 (A non-deterministic PARS). Assume now (Fig. 3) that the gambler of
Example 2.3 is also given the possibility to stop at any time. The two choices are here
encoded as follows: n+ 1 — {n'/2,(n+2)/?}, n+1 — {stop'}.

2.2 Evolution of a system described by a PARS

We now need to explain how a system which is described by a PARS evolves. An option is
to follow the stochastic evolution of a single run, a sampling at a time, as we have done in
Fig. 1, 2, and 3. This is the approach in [4], where non-determinism is solved by the use of

policies. Here we follow a different (though equivalent) way (see the Related Work Section).

We describe the possible states of the system, at a certain time ¢, globally, as a distribution on
the space of all terms. The evolution of the system is then a sequence of distributions. Since
all the probabilistic choices are taken together, the only source of choice in the evolution is
non-determinism. This global approach allows us to deal with non-determinism by using
techniques which have been developed in Rewrite Theory. Before introducing the formal
definitions, we informally examine some examples, and point out why some care is needed.
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ro:a— {al/2,71/2} 5y ia o {al/2,F1/2} ro:a— {al/2,11/2} vy a0 = {al}
N {al/4,13/4y ... N {al/4,13/4} ...
{al/2,11/2) P {al/2,11/2} <
ro {al/4,11/2 §1/4y ... ro {al/2 11/23. ..
{al} {al}

"1 - {al/% 11/4 F1/2} . 3 (al/2,11/2y ...
{al/4 F3/4y. .. {aly ..

Figure 4 Ex.2.6 Figure 5 Ex.2.7
(non-deterministic PARS). (non-deterministic PARS).

» Example 2.5 (Fig.1 continued). The PARS described by the rule rq : ¢ — {c¢!/2,T/2} (in
Fig. 1) evolves as follows: {c}, {c'/2, T2}, {c!/* T3/4},. ...

» Example 2.6 (Fig.4). Fig. 4 illustrates the possible evolutions of a non-deterministic
system which has two rules: o : a — {a/?,T/2} and r; : a — {a'/? ,F/2}. The arrows are
annotated with the chosen rule.

» Example 2.7 (Fig.5). Fig. 5 illustrates the possible evolutions of a system with rules
ro:a— {a*/?, T?} and 7y : a — {a'}.

If we look at Fig. 3, we observe that after two steps, there are two distinct occurrences of
the element 2, which live in two different runs of the program: the run 2.1.2, and the run
2.3.2. There are two possible transitions from each 2. The next transition only depends on
the fact of having 2, not on the run in which 2 occurs: its history is only a way to distinguish
the occurrence. For this reason, given a PARS (A, —), we keep track of different occurrences
of an element a € A, but not necessarily of the history. Next section formalizes these ideas.

Markov Decision Processes. To understand our distinction between occurrences of a € A
in different paths, it is helpful to think how a system is described in the framework of Markov
Decision Processes (MDP) [33]. Indeed, in the same way as ARS correspond to transition
systems, PARS correspond to probabilistic transitions. Let us regard a PARS step r: a —
as a probabilistic transition (r is here a name for the rule). Let assume ag € A is an initial
state. In the setting of MDP, a typical element (called sample path) of the sample space §2
is a sequence w = (ag,rg,a1,71...) where rg : agp — (1 is a rule, a; € Supp(51) an element,
r1: a1 — B1, and so on. The index t =0,1,2,...,n,... is interpreted as time. On €2 various
random variables are defined; for example, X; = a;, which represents the state at time ¢.
The sequence (X;) is called a stochastic process.

3 A Formalism for Probabilistic Rewriting

We introduce a formalism to describe the evolution of a system described by a PARS. From
now on, we assume A to be a countable set on which a PARS (A, —) is defined.

The sample space. Let m be a list over A, and mA the collection of all such lists. More
formally, we fix a countable index set S, and let m = {(j,m;) | j €S, m; € A} be the graph
of a function from J C S to A (j — m;). We denote by mA the collection of all such m.
DST*(mA) := Uyema DSTF (m) is the collection of finitely supported distributions p onm € mA
(i.e. pp:m— [0,1], with (j,a) — p). For concreteness, here we assume S = N. Hence, if J is
finite, m is simply a list over A.
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flat : (j,a) — a

Z:aw (4, a)
(=)™ DSTF(WAJ - Ds:fl(f) ()T - DSTF(AB) - DSTFﬁ(;nA)
shere w0 =) = (j,%:emﬂ(j’ “ where 87 (j,a) = B{Z"'(j,a)} = B(a)
Figure 6 Flattening. Figure 7 Embedding.

» Notation 3.1. If u € DSTF(mA), we write its support as a list. We write [a,a,b,b] for
{(1,a),(2,a),(3,b), (4,0)} and [a'/*,a'/*, b1/ b1/3] for {(1,a)/4,(2,a)/*, (3,b)"/°, (4,b)'/3}

» Remark 3.2 (Index Set). The role of indexing is only to distinguish different occurrences;
the specific order is irrelevant. We use N as index set for simplicity. Another natural instance
of S is A* i.e. the set of finite sequences on A. This way, occurrences are labelled by their
path, which allows a direct connection with the sample space of Markov Decision Processes
[33] we mention in 2.2 (see Appendix).

Given the PARS A = (A, —), we work with two families of probability spaces: (A, 3), where

[ € DST(A) (used e.g. to describe a rewrite step) and (m, u), where m € mA and p € DSTF (m).

Letters Convention. we reserve the letters a, 3,7 for distributions in DST(A), and the
letters u, v, 0,7, p, € for distributions in DSTF (mA).

Embedding and Flattening. we move between A and subsets of N x A via the maps
flat(—):m — Aand Z: A — n (Fig. 6 and 7), where to define an injection Z, we fix an
enumeration n : N — A, and identify n with its graph. Given a distribution p € DSTF (m),
the function flat induces the distribution pf'** € DSTF(A) (Fig. 6); conversely, given
B € DSTF(A), the function Z : A — n € mA induces the distributions 47 € DSTF(mA)
(Fig. 7). Recall that in Sec. 2 we already reviewed how functions induce distributions; indeed,
with that language, flat(—) :m — A and Z : A — n are random variables.

» Example 3.3. Assume 3 = {a®?2,b%2,¢*%}, and an enumeration of {a,b,c}. Then ¥ =
{(a,1)%3,(6,2)%2, (¢,3)%>} which we also write [a"3, %2, -],

Disjoint sum |#). The disjoint sum of lists is simply their concatenation. The disjoint sum of
sets in mA and of the corresponding distributions is easily defined.

The rewriting relation 3. Let A = (A, —) be a PARS. We now define a binary relation
= on DSTF(mA), which is obtained by lifting the relation —. Several natural choices are

possible. Here, we choose a lifting which forces all non-terminal elements to be reduced.

This plays an important role for the development of the paper, as it corresponds to the the
key notion of one step reduction in classical ARS (see discussion in Sec. 8).

» Definition 3.4 (Lifting). Given a relation —C A x DST(A), its lifting to a relation
=C DSTF(mA) x DSTF(mA) is defined by the following rules, where for readibility we use
Notation 3.1.

aeMa = aoBeA (CHEET) P L3
[a'] = [a'] [a'] = p* | jeJ = _L;JJPJ' by
J
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In rule (L2), #% is the result of embedding 3 € DSTF(A) in DSTF(mA) (see Fig. 7 and
Example 3.3). To apply rule (L3), we choose a reduction step from m; for each j € J. The
disjoint sum of all u; (j € J) is weighted with the probability of each m;.

» Example 3.5. Let us derive the reduction in Fig. 3.
2 — {11/2,31/2} 1 {0%/2 21/2} 3 {21/2 41/2} ... 2 {stop'} 2— {112 3Y/%}

(2! = [11/2731/2] [11/2’31/2] = [01/4)21/4721/4,41/4] [01/4)21/4721/4,41/4] - [“"875()171/4}11/8)31/87 )

Rewrite sequences. We write pg =™ u,, to indicate that there is a finite sequence g, . . . , fin
such that p; = pipq for all 0 < i < n (and pg =" px to specify its length k). We write
(tn)nen to indicate an infinite rewrite sequence.

Figures conventions. We depict any rewrite relation simply as —; as it is standard, we use
—» for —*; solid arrows are universally quantified, dashed arrows are existentially quantified.

Normal Forms. The intuition is that a rewrite sequence describes a computation; a distri-
bution p; such that p =° j1; represents a state (precisely, the state at time 4) in the evolution
of the system with initial state y. Let p € DSTF(mA) represents a state of the system.
The probability that the system is in normal form is described by pf*2*(NF 4) (recall
Example 2.1); the probability that the system is in a specific normal form ¢ is described
by pfet(¢). It is convenient to denote by p"" the restriction of uf'#* to NF 4. Observe that
||| = pta®(NF 4) = uM(NF 4). The probability of reaching a normal form ¢ can only increase
in a rewrite sequence (becaluse of (L1) in Def. 3.4). Therefore the following key lemma holds.

» Lemma 3.6. If 0 = 7 then o™ < 7M.

Equivalences and Order. In this paper we do not need, and do not define, any equality
on lists. If we wanted, the natural one would be equality up to reordering, making lists
into multisets; however, here we are rather interested in observing specific events. Given
u, p € DSTF(mA), we only conside equivalence and order relations w.r.t. the associated (flat)
distribution in DST(A) and in DST(NF4). The order on DST(A) is the pointwise order (Sec. 2).

» Definition 3.7 (Equivalence and Order). Let pu, p € DSTF(mA).

1. Flat Equivalence: Epq:(p, p), if pft = pItot. Similarly, <jiae (p, p) if pftot < pftet.

2. Equivalence in Normal Form: Eye(p, p), if u"* = p". Similarly, <y (11, p), if u"* < p™*
3. Equivalence in the NF-norm: &, (1, p), if || = [|p" ||, and <y, (w, p), if "] < [lp™]

Observe that (2.) and (3.) compare p and p abstracting from any term which is not in
normal form; these two will be the relations which matter to us.

» Example 3.8. Assume T is a normal form and a # c are not. (1.) Let u = [T'/2, TV/2], p =
[T']. &(u,p) holds for & € {Esrar,Enr, &)y} because pflat = pflat — [T1} (2.) Let
p=[a'/2, V2], p = [cM/2, TV6 T2/6]. &, p), €y (11, p) DOth hold, Eeras (1, p) does not.

The above example illustrates also the following.

» Fact 3.9. Epae(pt,p) = Ewe(pp) = &y, (1, p). Similarly for the order relations.
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4 Asymptotic Behaviour and Normal Forms

We examine the asymptotic behaviour of rewrite sequences with respect to normal forms. If
a rewrite sequence describes a computation, the result of the computation is a distribution
on the possible outputs of the probabilistic program. We are interested in the result at the
limit, which is formalized by the (standard) notion of limit distribution (Def. 4.2). What is
less standard here, and demands care, is that each termhas a set of limits. In the section we
investigate the notions of normalization, termination and unique normal form for PARS.

4.1 Limit Distributions

Before introducing limit distributions, we revisit some facts on sequences of bounded functions.

Monotone Convergence. Let (o, )nen be a non-decreasing sequence of (sub)distributions
over a countable set X (the order on subdistributions is defined pointwise, Sec. 2). For each
t € X, the sequence (o, (t))nen of real numbers is nondecreasing and bounded, therefore the
sequence has a limit, which is the supremum: lim,, ,oc @, () = sup,, {a,(t)}. Observe that if
a < o' then [Ja < |||, where we recall that [|a| =3 ¢ a(z).

» Fact 4.1. Given (o, )nen as above, the following properties hold. Define

B(t) = lim a,(t), Vte X
n—oo
L limy o0 lanl| = I8
2. limy o0 [|an|| = sup, {[|axn[l} <1
3. (8 is a subdistribution over X.

Proof.

1. follows from the fact that (o, )nen is a nondecreasing sequence of functions, hence (by
Monotone Convergence, see Thm. A.1 in Appendix) we have :

Jim, > an(t) = 3 Jim an(t)

teX teX
2. is immediate, because the sequence (||, ||)nen is nondecreasing and bounded.
3. follows from (1.) and (2.). Since ||3|| = sup,, ||an|| < 1, then § is a subdistribution. <«
Limit distributions. Let (i, )nen be a rewrite sequence. If ¢ € NF 4, then (ul (t))nen is

nondecreasing (by Lemma 3.6); so we can apply Fact 4.1, with (a,)nen now being (uM),en.

» Definition 4.2 (Limits). Let (jun)nen be a rewrite sequence from p € DSTF(mA). We say
1. (tn)nen converges with probability p = sup,, |u||.
2. {tin)nen converges to 3 € DSTF(NFy) (written (fin)nen = B ), where for t € NF 4

B(t) = supn{p, ()}

We call B a limit distribution of . We write p = f3 if i has a sequence converging to 3,
and define Lim(p) :== {8 | p= B}.
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4.2 Normalization and Termination

Non-determinism implies that several rewrite sequences are possible from the same p €
DSTF(mA). In the setting of ARS, the notion of reaching a result from a term ¢ comes in two
flavours (see Sec. 2): (1.) there exists a rewrite sequence from ¢ which leads to a normal form
(normalization, WN); (2.) each rewrite sequence from c leads to a normal form (termination,
SN). Below, we do a similar 3/V distinction . Instead of reaching a normal form or not, a
sequence does so with a probability q.

» Definition 4.3 (Normalization and Termination). Let p € DSTF(mA), q € [0,1]. We write
oQ . . . . 7.
i =, if there exists a sequence from p which converges with probability p.
w is p-WN° (u normalizes with probability p) if p is the greatest probability to which a
sequence from p can converge.
w is p-SN*° (i terminates with probability p) if each sequence from u converges with
probability p. p is Almost Sure Terminating (AST) if it terminates with probability 1.
A PARS is p-WN°°, p-SN°°, AST, if each p satisfies that property.

» Example 4.4. The system in Fig. 5 is 1-WN°°, but not 1-SN*°. The top rewrite sequence
(in blue ) converges to 1 = limy, 00 D1 5
to 0. In between, we have all dyadic possibilities. In contrast, the system in Fig. 4 is AST.

The bottom rewrite sequence (in red) converges

» Remark (Not only AST). Many natural examples are not limited to termination and AST,
such as those in Fig. 5, in Example 1.2 and 6.3. For this reason, we go beyond AST, and
moreover make a distinction between weak and strong normalization.

4.3 On Unique Normal Forms

How do different rewrite sequences from the same initial ;1 compare w.r.t. the result they
compute? Assume [M'] = a and [M'] = 4, it is natural to wonder how 8 and «a relate.
Normalization and termination are quantitative yes/no properties - we are only interested in
the measure |||, for B limit distribution; for example, if y = {F'} and u = {T'/2 F1/2}
then p converges with probability 1, but we make no distinction between the two -very
different- results. Similarly, consider again Fig. 4. The system is AST, however the limit
distributions are not unique: they span the continuum {T?,F'~P}, for p € [0,1]. These
observations motivate attention to finer-grained properties.

In Sec. 2 we reviewed the ARS notion of unique normal form (UN). Let us now examine
an analogue of UN in a probabilistic setting. An intuitive candidate is the following :

ULD : if o, 8 € Lim(u), then o = 8

which was first proposed in [15], where is shown that, in the case of AST, confluence implies
ULD. However, ULD is not a good analogue in general, because a PARS does not need to be
AST (or SN*°); it may well be that y = o and pu = S, with ||a|| # || 3], as in Ex. 1.2 and in
Fig. 5; similar examples are natural in an untyped probabilistic A-calculus (recall that the
A-calculus is not SN!). In the general case, ULD is not implied by confluence: the system in
Fig. 5 is indeed confluent. We then would like to say that it satisfies UN.

We propose as probabilistic analogue of UN the following property

UN®°: Lim(u) has a unique mazimal element.

» Remark. In the case of SN*° (and AST), all limits are maximal, hence UN*® becomes ULD.
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4.3.1 Confluence and UN®®

We justify that UN*° is an appropriate generalization of the UN property, by showing that it
satisfies an analogue of standard ARS results: “Confluence implies UN” (see Thm. 4.7) and
“the Normal Form Property implies UN” (Lemma 4.6). While the statements are similar to
the classical ones, the content is not. To understand why is different, and non-trivial, observe
that Lim(p) is in general uncountable, hence there is not even reason to believe that Lim(u)
has maximal elements, for the same reason as [0, 1) has no max, even if it has a sup.

» Remark 4.5 (Which notion of Confluence?). To guarantee UN®°, it suffices a weaker form
of confluence than one would expect. Assume o * = y =* p; with the standard notion of
confluence in mind, we may require that 3¢ such that o =* £, p =* £ or that 3¢, &’ such
that o0 = &, p =™ & and Enac(&,E'). Both are fine, but a weaker notion of equivalence
suffices: NF-Confluence (defined below), which only regards normal forms. Obviously, the two
stronger notions of confluence which we just discussed, imply it.

A PARS satisfies the following properties if they hold for each p € DSTF(mA):
NF-Confluence(Confluence in Normal Form):
Vo, p with o *&= u =" p, 3¢, 7 such that ¢ =* &, p = 7, and &V = 7V,

NFP* (Normal Form Property): if a is maximal in Lim(y), and g =* o then ¢ = a.

LimP (Limit Distributions Property): if & € Lim(u) and g =* o, there exists
B € Lim(p) such that 0 =  and a < 3.

The following result (which is standard for ARS) is easy, and independent from confluence.

» Lemma 4.6. For each PARS such that Lim(p) has mazimal elements, NFP®°=> UN®°.

Proof. Let a € Lim(p) be maximal. If 5 € Lim(u), there is a sequence (7,)nen from p such
that 3 = sup,,{7\F}. NFP> implies that Vn, 7,, = a, and therefore 7" < a. We conclude
that 8 < «; hence if § is maximal, 8 = «. |

To prove that NF-Confluence implies UN* is more delicate; the proof is in Appendix. We need
to prove that confluence implies existence and uniqueness of maximal elements of Lim(u).

» Theorem 4.7. For each PARS, NF-Confluence implies UN®°.

Note that the proofs refines those for the analogous ARS properties in a way similar to
the generalization to infinitary rewriting, by approximation; the quantitative character of
probability add specific elements which are reminiscent of calculus.

4.4 Newman’s Lemma Failure, and Proof Technique for PARS

In Prop. 4.6 and 4.7, the statement has the same flavour as similar ones for ARS, but the
notions are not the same. The notion of limit (and therefore that of UN®®, SN*°, and WN°°)
does not belong to ARS. For this reason, the rewrite system (mA, =) which we are studying
is not simply an ARS, and one should not assume that standard ARS properties hold. An
illustration of this is Newman’s Lemma. Given a PARS, let us assume AST and observe
that in this case, confluence at the limit can be identified with UN*°. A wrong attempt: AST
+ WCR™®= UN*°, where WCR™: if = o1 and p = 09, then 3p, with o1 = p, 09 = p. This
does not hold. A counterexample is the PARS in Fig. 4, which does satisfy WCR™. (More in
the Appendix.)

What is at play here is that the notion of termination is not the same in ARS and
in PARS. A fundamental fact of ARS (on which all proofs of Newman’s Lemma rely) is:
termination implies that the rewriting relation is well-founded. All terminating ARS allow
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Figure 8 Random Descent. Figure 9 Diamond. Figure 10 Proof of 5.4.

well-founded induction as proof technique; this is not the case for probabilistic termination.
To transfer properties from ARS to PARS there are two issues: we need to find the right
formulation and the right proof technique.

Our counter-example still leaves open the question “Are there local properties which
guarantee UN>°?” In the rest of the paper, we develop proof techniques to study UN>, WN°°,
SN and their relations. We will always aim at local conditions.

5 Random Descent (RD)

In this section we introduce £ Random Descent (£-RD), a tool which is able to guarantee
some remarkable properties : UN®, p-termination as soon as there exists a sequence which
converges to p, and also the fact that all rewrite sequences from a term have the same expected
number of steps. £-RD generalizes to PARS the notion of Random Descent: after any k
steps, non-determinism is irrelevant up to a chosen equivalence £. Indeed £-RD is defined
parametrically over an equivalence relation £ on DSTF(mA). For concreteness, assume £ to
be either & or &, (see Def. 3.7). Then £-RD implies that all rewrite sequences from j:
have the same probability of reaching a normal form after k steps (for each k € N);
converge to the same limit;
have the same expected number of steps.
Main technical result is a local characterization of the property (Thm 5.4), similarly to [40].

» Definition 5.1 (£ Random Descent). Let £ be an equivalence relation on DSTF(mA). The
PARS A satisfies the following properties (in Fig. 8) if they hold for each p € DSTF(mA).
E-RD: for each pair of sequences {on)nen, (Tn)nen from u, E(1x, 0x) holds, Vk.
local E-RD (E-LRD): if T &= u = o, then for each k there exist oy, 7, with o =k o,
7= 7, and E(ok, T1).

» Example 5.2. In Fig. 4 £&-RD holds for £ = £, but not for & = &.

When &€ € {&;,,Ene}s it is easy to check that £-RD guarantees the following.

» Proposition 5.3.
1. &,,-RD implies Uniformity: p-WN>°= p-SN*°.
2. Eye-RD implies Uniformity and UN®°.

Proof. Uniformity is immediate; UN*° follows from Prop. 4.7. |

While expressive, £-RD is of little practical use, as it is a property which is universally quan-
tified on the sequences from p. The property £-LRD is instead local. Somehow surprisingly,
the local property characterizes E-RD.



C. Faggian

» Theorem 5.4 (Characterization). The following properties are equivalent:
1. £&-LRD;

2. Yk, p, & p if p =8 € and p=F p, then E(€,p);

3. £&-RD.

Proof. (1 = 2). See Fig. 10. We prove that (2) holds by induction on k. If &k = 0, the
claim is trivial. If & > 0, let o be the first step from p to £ and 7 the first step from p to p.
By &-LRD, there exists oy, such that 0=*"1o), and 73, such that 7 =*~! 7, with E(ok, k).
Since o =¥~ ¢, we can apply the inductive hypothesis, and conclude that £(o, €). By using
the induction hypothesis on 7, we have that £(7x, p) and conclude that £(p,£). (2 = 3).
Immediate. (3 = 1). Assume 7 & p =3 0. Take a sequence (7, )nen from 7 and a sequence
(on)nen from o. By (3), E(1x, 01) Vk. <

A diamond. Let £ € {&, &)} A useful case of £&-LRD is the £-diamond property
(Fig. 9): Y, 0,7, if 7 &= u = o, then (o, 7), and 3p, p’ s.t. (T = p,0 = p' and Esa(p, p’)).

» Proposition 5.5. £-diamond = £-LRD.

Observe that while £&-LRD characterizes £-RD, £-diamond is only a sufficient condition.

5.1 Expected Termination Time

Random Descent captures the property (Length) “all mazimal rewrite sequences from a
term have the same length.” By looking at ARS as a special case of PARS (with a — [b!]
for a — b), £,-RD does trivialize to RD. More interesting is that & -RD also implies a
property similar to (Length) for PARS, where we consider not the number of steps of the
rewrite sequences, but its probabilistic analogue, the expected number of steps.

In an ARS, if a maximal rewrite sequence terminates, the number of steps is finite; we
interpret this number as time to termination. In the case of PARS, a system may have
infinite runs even if it is AST; the number of rewrite steps — from an initial state is (in
general) infinite. However, what interests us is its expected value, i.e. the weighted average
w.r.t. probability (see Sec. 2) which we write MeanTime({(in)nen). This expected value can
be finite; in this case, not only the PARS is AST, but is said PAST (Positively AST) (see [4]).

» Example 5.6. In Example 2.5, the sequence from [a'] has MeanTime 2 (see Appendix).

[3] makes a nice observation: the mean number of steps of a rewrite sequence (i, )nen admits
a very simple formulation, as follows: MeanTime({tn)nen)= 14> ,~;(1 —||}7]|). Intuitively,
each tick in time (i.e. each = step) is weighted with its probability to take place, which is
piat{c | c € NF 4} =1 — ||u)¥||. Using this formulation, the following result is immediate.

» Corollary 5.7. Let i € DSTF(mA). &,,-RD implies that all mazimal rewrite sequences
from p have the same MeanTime.

Observe that ) .-, (1 —|[uiF||) < oo implies lim,, oo (1 — || ]|) = 0, hence lim,, o ||y || = 1.

Therefore, Cor. 5.7 means that if a sequence from p with finite MeanTime exists, p is PAST.

6 Analysis of a probabilistic calculus: weak CbV \-calculus

We introduce A#2*, a probabilistic analogue of call-by-value A-calculus (see Sec. 1.1). Evalu-
ation is non-deterministic, because in the case of an application there is no fixed order in the
evaluation of the left and right subterms (see Example 6.1). We show that A#®* satisfies
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Ewr-RD. Therefore it has remarkable properties (Cor. 6.5), analogous to those of its classical
counter-part: the choice of the redex is irrelevant with respect to the final result, to its
approximants, and to the expected number of steps.

Syntax. Terms (M, N, P, Q) and values (V, W) are defined as follows:
M = z|XxM|MM|MoM V = z|lM

Free variables are defined as usual. A term M is closed if it has no free variable. The
substitution of N for the free occurrences of x in M is denoted M|z := NJ.

Reductions. Weak call-by-value reduction — is given as a PARS, and inductively defined
by the rules below; its lifting = is as in Def. 3.4.

Az M)V — {M[z := V]'} N — {N!i|iel} M — {M!|iel}
PaQ—{P/?Q"?} MN — {MNP' |iel} MN — {M;N" |iel}

» Example 6.1 (Non-deterministic evaluation). A term may have several redexes. The
two reductions here join in one step: [Plz := Q|(4 @ B)'] = [(A\z.P)Q)(A® B)'] =
[(A\z.P)QAY? (\z.P)QBY?.

» Example 6.2 (Infinitary reduction). Let R = (\z.zz & T)(Az.2z®T). We have [R'] = {T'}.
This term models the behaviour we discussed in Fig.1.

» Example 6.3. The term PR in Example 1.2 has the following reduction. [PR'] = [P(T ®
F)1/2, P(AN)Y2) = [P(T)V/4, P(F)Y/4, P(AA)Y/?] =* [(T XOR T)'/4, (F XOR F)'/4, AAY/?] =
[F1/4 FY/4 AAY?] ... We conclude that PR = {F'/2}.

» Theorem 6.4. A% satisfies E-RD, with € = &y

Proof. We prove the &-Diamond property, using the definition of lifting and induction on
the structure of the terms (see Appendix). <

Therefore, by Sec. 5 (and the fact that & = &£, ), each p satisfies the following properties:

» Corollary 6.5.
All rewrite sequences from j converge to the same limit distribution.
All rewrite sequences from u have the same expected termination time MeanTime.
If =% 5 and I =k 7, then o™ = 7™, Vo, 1, k.

More diamonds. Other instances of ARS which satisfy Random Descent are surface reduc-
tion in Simpson’s linear A-calculus [38], and Lafont’s interaction nets [28]. We do expect that
their extension with a probabilistic choice satisfy the same properties as Ag’;ak.

7 Comparing Strategies

In this section we provide a method to compare strategies, and a criterion to establish that
a strategy is normalizing or perpetual (Cor. 7.4). When strategy S is better than strategy
T ¢ To study this question we introduce a notion (parametric w.r.t. a relation R) which
generalizes the ARS notion of “better” introduced in [40]. Like in the case of &-RD, we
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Figure 11 R-better.

will provide a local characterization (Th. 7.3). We obtain criteria which concern both

normalization/perpetuity of strategies, and the expected number of steps of rewrite sequences.

Given A = (A, —), a rewrite strategy for — is a relation —sC— such that NF( 4 _, o) =

NF 4. Let = (resp. =g) be the lifting of — (resp. —s); we call =g a rewrite strategy for =.

We indicate by colored arrows =g and =, strategies for =.

» Definition 7.1. Given p, let pmax(t) and pmin(p) be respectively the greatest and least
value in {p | p=>,}. A strategy =4 is normalizing if for each u, each =4 -sequence
starting from p converges with probability pmax(u). A strategy =« is perpetual if for each
1, each =, sequence from p converges with probability pmin(i).

Let R be a reflezive and transitive relation on DSTF(mA). For concreteness, assume R to
be either >, or > (see Def. 3.7).

=N

» Definition 7.2 (R-better). Let R be a relation as stipulated above. We define the following
properties, which are illustrated in Fig. 11.
g 15 R-better than —c, (R-better(=4,—)): for each p and for each pair of a
=g -sequence (pn)nen and a —o-sequence (En)nen from p, R(pr, &) holds (Vk).
— g4 is locally R-better than =, (written R-LB(=g,=o)): if T 4 =p=c0, then for
each k > 0, doy, T, such that o :%ﬁ. ok, T=0" 1, and R(Ty, 01)

By taking R to be >, it is immediate that R-better(=4,=) implies that =4 is
normalizing. We prove that R-LB is sufficient (and under conditions even necessary) to
establish R-better.

» Theorem 7.3. Let R be transitive and reflexive. R-LB(= 4, =) implies that
R-better(= g, =3o). The reverse holds if either =g or ¢ is =.

Proof. The proof is illustrated in Fig. 11. The details are in Appendix. |

As a consequence, we obtain a method to prove that a strategy is normalizing or perpetual
by means of a local condition.

» Corollary 7.4 (Normalizing criterion). Let R(1,0) be >, (7,0) it holds that:
1. R-LB(=4,,=3) implies that =4 is normalizing.
2. R-LB(=, =) implies that = is perpetual.

It is easy to check that if R-better(=4,=), with R as above, and s is a = g-sequence,
then MeanTime(s) <MeanTime(t), for each t =%-sequence. Therefore, with a similar argument
as in Sec.5.1, R-better provides a criterion to establish not only that a strategy is normalizing
(resp. perpetual), but also minimality (resp. maximality) of the expected termination time.
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8 Conclusion and Further Work

We have investigated two properties which are computationally important when studying a
calculus whose evaluation is both probabilistic and non-deterministic: uniqueness of the result
and existence of a normalizing strategy. We have defined a probabilistic analogue UN®® of the
notion of unique normal form, we have studied conditions which guarantee UN*°, and relations
with normalization (WN°°) and termination (SN*°), and between these notions. We have
introduced £-RD and R-better as tools to analyze and compare PARS strategies. £-RD is an
alternative to strict determinism, analogous to Random Descent for ARS (non-determinism
is irrelevant w.r.t. a chosen event of interest). The notion of R-better provides a sufficient
criterion to establish that a strategy is normalizing (resp. perpetual) i.e. the strategy is
guaranteed to lead to a result with maximal (resp. minimal) probability. We have illustrated
the method by studying a probabilistic extension of weak call-by-value A-calculus; it has
analogous properties to its classical counterpart: all rewrite sequences converge to the same
result, in the same expected number of steps.

One-Step Reduction and Expectations. In this paper, we focus on normal forms and
properties related to the event NF 4. However, we believe that the methods would allow
us to compare strategies w.r.t. other properties and random variables of the system. The
formalism seems especially well-suited to express the ezpected value of random variables.
A key feature of the binary relation = is to exactly capture the ARS notion of one-step
reduction (in contrast to one or no step), with a gain which is two-folded.

1. Probability Theory. Because all terms in the distribution are forced to reduce at the same
pace, a rewrite sequence faithfully represents the evolution in time of the system (i.e. if
p =" pi, then p; captures the state at time 4 of all possible paths ag — ... — a;). This
makes the formalism well suited to express the expected value of stochastic processes.

2. Rewrite Theory. The results in Sections 5,6,7, crucially rely on ezactly one-step reduction.

Further work and applications. The motivation behind this work is the need for theoretical
tools to support the study of operational properties in probabilistic computation. As an
example of application, we mention further work [18] where for each, the Call-by-Value,
Call-by-Name, and a linear A-calculus, a fully fledged probabilistic extension is developed.
In each calculus, once establish that given a term, there exists a unique maximal result (the
greatest limit distribution), [18] studies the question “is there a strategy which is guaranteed
to reach the unique result (asymptotic standardization)?”. Key elements in [18] rely on the
abstract tools developed here; in particular, Sec. 5 and 6 allow us to demonstrate, for both
the CbV and CbN probabilistic A-calculi, that the leftmost-outermost strategy reaches the
best possible limit distribution. This is remarkable for two reasons. First -as we already
observed- the leftmost strategy is the deterministic strategy which is typically adopted in the
literature of probabilistic A-calculus, in either its CbV (27, 9]) or its CbN version ([13, 16]),
but without any completeness result with respect to probabilistic computation. [18] offers
an “a posteriori” justification for its use. Second, the result is non-trivial, because in the
probabilistic case, a standardization result for finite sequences using the leftmost strategy
fails for both CbV and CbN. The tools in Sec. 5 allow for an elegant solution.

[40] makes a convincing case of the power of the RD methods for ARS, by using a large
range of examples from the literature, to elegantly and uniformly revisit normalization results
of various A-calculi. We cannot here, because the rich development of strategies for A-calculus
has not yet an analogue in the probabilistic case. Nevertheless, we hope that the availability
of tools to analyze PARS strategies will contribute to their development.
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A  Omitted Proofs and Technical Details

A.1 Appendix to Section 3. A Formalism for Probabilistic Rewriting

The Index Set. A natural choice for the index set S is N. Another natural choice for the
index set S is A* i.e. the set of finite sequences on A. This way, occurrences of a € A are
labelled by their derivation path. This establishes a direct connection with the sample space
of Markov Decision Processes we did mention in Sec. 2.2.

This choice implies that the embedding of A in A* x A is naturally built-in in the
definition of =2. Let us rewrite explicitly the definition of lifting. The key point is that the
index j in (j, a) records the rewriting path of that occurrence of a. In rule (L2), since we
use the rule a — 3, each b € Supp(f) is given as index the path j.a; 8(b) is the probability



C. Faggian

assigned to b by 8. Observe also that all occurrences are automatically distinct.

a € NF 4 a—f ({(j,a)l}:;aj)

— - L1 L2
{G, )"y = {0, a)'} {G:a)'y = {(G.a, 1) | b € Supp(B)} {Ga)yiljedt= Y pi-a;
jeJ

JjEJ

L3

A.2 Appendix to Section 4. Asymptotic Behaviour and Normal Forms

Monotone Convergence. We recall the following standard result.

» Theorem A.1 (Monotone Convergence for Sums). Let X be a countable set, f, : X — [0, 0]
a non-decreasing sequence of functions, such that f(z) := lim,— oo fn(z) = sup,, fn(z) exists
for each x € X. Then

Im 3 fa@) = @)

zeX TEX

A.2.1 Confluence and UN*°: Greatest Limit Distribution

We prove that NF-Confluence implies UN®®(Thm. 4.7) 4.e. confluence implies both existence
and uniqueness of mazimal elements of Lim(u). Both are consequences of LimP and of the
main lemma, Lemma A.2. We recall the definitions.

UN®°: Lim(u) has a unique mazimal element.

NF-Confluence: Vo, p with o *&= u =" p, 3¢, 7 such that ¢ =* £, p = 7, and & = 7%,
LimP: if o € Lim(p) and g =* o, there exists 3 € Lim(p) such that 0 =  and o < S.
NFP*: if o is maximal in Lim(y), and g =* o then ¢ = a.

» Lemma A.2 (Main Lemma). NF-Confluence implies property LimP.

Proof. Fig. 12 illustrates the proof. Let u = py € DSTF(mA), and {p,)nen be a sequence
which converges to a. Assume py =* . As illustrated in Fig. 12, starting from o, we build
a sequence o = o,, X" 0, X" 0,, ..., where 0,,, ¢ > 1 is given by NF-confluence : from
po =" 0, , and pg =" p; we obtain g,, |, =¥ 0,, and p; 2" 7; with (0,,)" = (7). Let
B be the limit of the sequence so obtained; observe that 8 € Lim(pp). By construction,

Py < 7 = o}f; hence Vi, it holds p}" < o}F < 8. From a = sup (p))nen it follows a < 3. <

We already established (Lemma 4.6) that NFP*° implies uniqueness of maximal elements
(if they exist).

» Corollary A.3 (Uniqueness). LimP implies NFP>.
Proof. Immediate. If o is maximal, then g = a. |

» Lemma A.4 (Existence). LimP implies that:
1. Norms(u) = {||8]] | B €Lim(u)} has a greatest element;
2. Lim(p) has mazimal elements.

Proof. (1.) Let p = sup Norms(u). We show that p € Norms(u), by building a rewrite
sequence (fi,)nen from p such that (p,),en = £ and ||| = p.
The following facts are all easy to check:
a. If @ < 8 then [lof < ||B]].
b. If p & Norms(u), then for each ¢, there exists o € Lim(u) such that ||«| > p —e.
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p=sup Lim(p)

L0 —» /)‘1 —> Pg — -
| |
1 T2
O ——»» Op ——p Opy —— o -
Figure 13 A sequence whose limit distri-
Figure 12 NF-Confluence implies LimP. bution is a maximal element of Lim(u).

c. LimP implies that, fixed e, if u = o with |la|| > (p — €), and p =* o, then there exists
Om,, such that ¢ =* o,,,, and ||op,, || > (p — 2€).
(Proof : LimP implies that there is a rewrite sequence (0y,)nen from o which converges

to v > a. Therefore (0,,)neny = v where ||v]| > (p — €) and lim, o0 (||low|]) = ||| (by
Fact 4.1, point 1.). By definition of limit of a sequence, fixed €, there is an index m, such
that if m > m, then |lom|| > (||7]] — €), hence ||om, || > p — 2e. Observe that o =* oy,
as a finite rewrite sequence is given by the the first m. elements of <0n>neN~)

d. V6 € Rt there exists k such that £ <.

For each k € N, let €, = 5. Let 0(® = 4. From here, we build a sequence of reductions
p=* o =% 6 =* | whose limit has norm p, as illustrated in Fig. 13.

For each k > 0, we observe that:

By (b.) there exists a*) € Lim(u) such that ||a® || > (p — 1 5.

From p =* ¢*~1) we use (c.) to establish that there exists o(¥) such that (=1 =* 5(*)

and [|c® || > (p — 4 ). Observe that al®) k=1 (k) yesp. instantiate a, o, o, of

(c.).

Let (ftn)nen be the concatenation of all the finite sequences o*~1) =* ¢(*) and let 8 be
its limit distribution. By construction, lim,, o {||¢x||) = ||8]| = p, hence p € Norms(u).

(1. = 2.) We observe that if (ji,)neny = a and || is maximal in Norms(x), then o
is maximal in Lim(p) (because if v € Lim(u) and v > «, then ||v|| > [|«]]). <

» Theorem 4.7 (restated). For each PARS, NF-Confluence implies UN®°.

Proof. The claim follows from the Main Lemma, A.3 and A.4 (point 2.), using Lemma 4.6. <«

Semi-Confluence. The proof of Thm. 4.7 shows we can weaken confluence even further.

» Proposition A.5. For each PARS, the property below implies LimP.
Semi-Confluence: Vu, o, p with o *&= u =" p, 3o’ such that 0 =™ o’ and p < oM.

Proof. Proof A.2 really only uses Semi-Confluence. Let us revisit the proof, which is now
illustrated in Fig. 14. Let po € DSTF(mA), and a maximal in Lim(pg). Assume py =* o. Let
(pn)nen be a sequence which converges to «. As illustrated in Fig. 14, starting from o, we
build a sequence o = 0,, =" 0,, =" 0,, ..., where 0,,,, i > 1 is given by Semi-Confluence:
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O o Op; —— o Opy - -+

Figure 14 Semi-Confluence implies LimP.

from pg =" p; and pg =* 0, , we obtain o, , =" 0, with p¥ < o)f. Let 3 be the
limit of the sequence so obtained; observe that 5 € Lim(pg). By construction, Vi, it holds
PYF < (0,,)" < B. From a = sup (p}y )nen it follows that o < 3. <

A.2.2 More on Newman’s Lemma and Proof Techniques

We pointed out that to transfer properties from ARS to PARS there are two issues: find the
right formulation and the right proof technique. Newman’s Lemma illustrates both. Can a
different formulation uncover properties similar to Newman Lamma? Another "candidate”
statement we can attempt is : AST + WCR = UN*°. I have no answer here. This property is
indeed an interesting case study. It is not hard to show that this property holds when Lim(yu)
is finite, or uniformly discrete, which also means that a counterexample (if any) cannot be
trivial. On the other side, if the property holds, the difficulty is which proof technique to

use, since well-founded induction is not available to us.

A.3 Appendix to Section 5. Random Descent

£-diamond implies £-LRD. In this section, we assume £ € {Ey, &y, }-

» Lemma A.6. If Es10i(p, p,), there exists a rewrite sequence (fin)nen and a rewrite sequence
<pn>n€N7 with gflat(,u/ia Pz")

Proof. By easy induction on n. It is enough, at each = step as defined in Def. 3.4, to choose
the same reduction ¢ — 3 for all (j,m;) such that m; = c. <

» Proposition A.7. £-diamond = E-LRD.

Proof. By using Lemma A.6. <

Point-wise formulation. In Section 6, we exploit the fact that not only £&-RD admits a

local characterization, but also that the properties £&-LRD and £-diamond can be expressed

point-wise, making the condition easier to verify.

1. pointed E-LRD: Va € A, if 7 & [a'] = o, then Vk, 3o, 73 with 0 = oy, 7 =F 7, and
5(07@7 Tk )

2. pointed £-diamond: Va € A, if 7 & [a'] = o, then it holds that £(o,7), and Jp, p’ such
that 7 = p,0 = p and Enac(p, o))

» Proposition A.8 (point-wise £-LRD). The following hold
E-LRD <= pointed E-LRD;
E-diamond <= pointed &-diamond.

Proof. Immediate, by the definition of =. Given u = [a?* | i € I], we establish the result
for each a;, and put all the resulting distributions together. <
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A.3.1 Section 5.1. Finite expected time to termination

An example of PARS with finite expected time to termination is the one in Fig. 1. We can
see this informally, recalling Sec. 2. Let the sample space 2 be the set of paths ending in a
normal form, and let p be the probability distribution on 2. What is the expected value
of the random variable length :  — N? We have E(length) = >  length(w) - u(w) =
>nen - #{w | length(w) =n} =Y n- 5 =2.

It is immediate to check that in Example 2.5, the (only) rewrite sequence from [a'] has
MeanTime 2 by using the definition of mean number of steps of a rewrite sequence (p,)nen as

MeanTime({ttn)nen) = 1 + Z(l — 11 )
i>1

as formulated in [3] (to which we refer for the details).

A.4 Appendix to Section 6. Weak CbV \-calculus

We prove Thm. 6.4.
» Theorem 6.4 (restated). A4 satisfies the E-diamond property, with € = Ex.

Proof. We show by induction on the structure of the term M that for all pairs of one-step
reductions 7 & [M'] = o, the following hold: (1.) o™ = 7" is 0 everywhere (2.) exists p, p’
such that 7 = p, 0 = p’ and Esac(p, p)).

It is convenient to introduce the following notation. If p = [M;™" | i € I] we define

paQ = [(M;Q)™ | iel] QQu:=[QM)™ [ il

We write the Dirac distribution [m}] simply as [m;]. We write p = p’ for Esat(p, 0',)-
If M = x or M = Ax.P, no reduction is possible.
If M = P @, Q, only one reduction is possible.
If M = PQ is a redex, then P = (Az.N), @Q is a value, and no other reduction is possible
inside either P or Q.
If M = PQ has two different reductions, two cases are possible.
Assume that both P and @ reduce; PQ has the following reductions.

P {PPi|iel} Q—{QY [jeJ}
PQ—o={PQr|iclI} and PQ—7={PQ¥|jcJ}

Observe that none of the P;@ or PQ); is a normal form, hence (1.) holds. By the
definition of reduction, the following holds
Q—{Q7 |jeJ}
PQ = {PQ} |je J}

and therefore by Lifting we have W), p;-[PiQ] = W, pi- (W, ¢;-[PQ;]) = W, ; pig; - [PiQy]-
Similarly we obtain ), g; - [PQ;] = W), ; pigs - [PQ;].

Assume that one subterm has two different redexes; let assume it is the subterm P
(the case of @) is similar):

P—o={S ieI}andP%T:{T;j | j€J}
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N

By inductive hypothesis, two facts hold: (1. ) o™ = 7" is 0 everywhere, therefore no

S; and no T} in the support is a normal form; (2.) exists p, p’ with p = p’ and such
that [S;] = p; with 37, s; - pi = p, and [T}] = p; with >, ¢; - p; = p'. For PQ we have

P {85 | iel} P {1y | jeJ}
PQ— {(SiQ)* | i€l} and PQ— {(T;Q)" | je€J}

First of all, we observe that no S;Q and no T;() is a normal form, hence property
(1.) is verified. Moreover, it holds that S;Q — p;QQ and T;Q — p;QQ. We
conclude by Lifting that [(S;Q)% | i € I] = |, s; - p;QQ. It is easy to check that,
¥, si - pi@QQ = pQQ, and [(T;Q) | j € J) = Wt; - p;QQ = pQQ. It is immediate
also that p@QQ = p’@QQ); hence property (2.) is also verified. <

A.5 Appendix to Section 7. Comparing Strategies

» Theorem 7.3 (restated). Let R be transitive and reflexive. R-LB(= g, =) implies that
R-better(= g, =). The reverse holds if either =g or = is =.

Proof. = . See Fig. 11. We prove by induction on k the following: “R-LB(=4,, =) implies
(Vi p, &, if n=2gkp and p="¢, then R(p, &))" If k = 0, the claim is trivial. If k > 1, let o
be the first step from u to £, and 7 the first step from u to p, as in Fig. 11. R-LB implies
that exist o;,_1 and 7,_1 such that U:&.‘k_lak,l, 7= 71, with R(Tx_1,0%_1). Since
0=o" "1 ¢ we can apply the inductive hypothesis, and obtain that R(ox_1,&). Again by
inductive hypothesis, from T:Z*’“_l p we obtain R(p, 7x—1). By transitivity, it holds that
R(p,€). <« . Assume =, ==, and 7 4 =p = 0. Let (7,)nen and (0, )nen be obtained by
extending 7 and o with a maximal =4 sequence. The claim follows from the hypothesis
that =4 dominates =, by viewing the =4 steps in (o,)nen as = steps. <

» Remark. Observe that E-RD (resp. £-LRD) is a special case of R-better (resp. R-LB).

We have preferred to treat it independently, for the sake of presentation.

A.6 Comments

Finite Approximants. £-RD characterizes the case when (not only at the limit, but also at
the level of the approximants) the non-deterministic choices are irrelevant. The notion of
approximant which we have studied here is “stop after a number k of steps” (k € N ). We
can consider different notion of approximants. For example, we could also wish to stop the
evolution of the system when it reaches a normal form with probability p. Our method can
easily be adapted to analyze this case (see [17]). We believe it is also possible to extend to

the probabilistic setting the results in [41], which would allow to further push this direction.

The beauty of local. In Sec. 5 and 7, by local conditions we mean the following: to show
that a property P holds globally (i.e. for each two rewrite sequences, P holds), we can
show that P holds locally (i.e. for each pair of one-step reductions, there exist two rewrite
sequences such that P holds). This reduces the space of search for testing the property, a
fact that we exploit in the proofs of Sec. 6.
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