
The Next 700 Semantics: A Research Challenge
Shriram Krishnamurthi
Brown University, Providence, RI, USA
sk@cs.brown.edu

Benjamin S. Lerner
Northeastern University, Boston, MA, USA
blerner@ccs.neu.edu

Liam Elberty
Unaffiliated

Abstract
Modern systems consist of large numbers of languages, frameworks, libraries, APIs, and more.
Each has characteristic behavior and data. Capturing these in semantics is valuable not only for
understanding them but also essential for formal treatment (such as proofs). Unfortunately, most of
these systems are defined primarily through implementations, which means the semantics needs to
be learned. We describe the problem of learning a semantics, provide a structuring process that is
of potential value, and also outline our failed attempts at achieving this so far.
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1 Motivation

Semantics is central to the trade of programming language researchers and practitioners. A
useful semantics for a system helps us understand it better, guides us in building tools, and
provides us a basis for proving valuable properties such as soundness and completeness.

However, there are far fewer semantics than there are objects that need them. A few
languages (notably Scheme [5] and Standard ML [16]) are accompanied by a reasonably
thorough semantic description, but even these rarely cover the behavior of the language
that users use (such as libraries). Nevertheless, these semantics are valuable in that they
provide users a standpoint from which to evaluate an implementation: if it diverges from the
semantics, they can argue that the fault definitively lies with the implementation, since the
semantics was given as part of the process of defining the very language.

However, the need for and value of a semantics extends well beyond what we would
conventionally call a “language”. Consider, for instance, a Web program: there is value
to having a semantics for every layer in the stack, from the hardware’s instruction set to
the operating system’s API to the browser’s APIs to the JavaScript implemented by the
browser to the numerous frameworks that sit atop JavaScript and effectively create their
own ontologies (for page traversal, page transformation, etc.) to the libraries that sit atop
frameworks. Even if we draw a line at, say, the browser, we still need meaningful semantics
for the upper layers to make sense of what a program does. Thus, reasoning about the
security of a Web program effectively demands a “full-stack semantics”, as it were.

Unfortunately, virtually none of these levels enjoy the benefits of originating in a formal
semantics. They are instead defined by an ad hoc collection of implementations, documents,
and test suites. The task of the semanticist then becomes one of reverse engineering a
semantics in a way that ensures its conformance with reality: after all, if there is a divergence
between the semantics and the implementation, the implementors would not agree that they
are to blame and accordingly “fix” their systems. This is essentially a bottom-up discipline
akin to that practiced in the natural sciences.

2 Tested Semantics and a Small Core

Over the past decade, several researchers have begun to create so-called tested semantics:
one where the semantics shows conformance with the real-world artifact [1, 2, 3, 4, 7, 8, 10,
11, 12, 13, 15, 17, 18, 19]. A notable line of work has addressed the semantics of “scripting”
languages, which are ostensibly defined by trying to provide a meaning to as many utterances
as possible, as opposed to the less libertine behavior of more academic languages. Because
of their enormous set of behaviors, many of which are stumbled into by programmers and
exploited by attackers, it becomes especially important that a semantics conform to reality
rather than to a researcher’s mental idea of how the language ought to be.

However, not all tested semantics are equal in value. Some semantics come in the form
of hundreds of rules. In contrast, other projects (such as [11, 18, 19]) have followed the
pattern shown in Figure 1. In this style, the semantics is broken into two components.
The surface language P is reduced to an essential core version, λP , and all P programs are
mapped to λP using a desugaring function. We use the term “desugaring” to evoke the idea
that most of the surface language can be easily rexpressed (i.e., in a structured, recursive,
compositional manner) as idioms of the core language, and can therefore be dismissed as
ergonomic convenience rather than as novel features requiring analysis. (Strictly speaking,
this term is slightly misleading, since the core language λP might be a different language
rather than a subset of P itself; nevertheless, this term captures our design intent better
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Figure 1 Testing Strategy for λP .

than the more general “compilation”.) It is usually very straightforward to implement an
interpreter for λP (an appropriately-sized exercise for undergraduates), and composing this
implementation with desugaring gives us a new implementation of P . Of course, P already
has existing implementations. We can therefore then compare the results of running the two
implementations on a suitably large suite of programs, tweaking desugaring and λP until
the result is in harmony with the existing behavior of P . Since existing P implementations
may have values with opaque internal structure, we may not be able to translate them
directly into λP values; instead we may have to use coarser notions of equivalence (such
as textually comparing the output of two programs), or even more abstract ones, to check
that our desugaring preserves intended behavior.

This style has significant advantages over the brute-force generation of hundreds of rules.
First, it helps us reduce the complexity of the overall problem. Second, it forces us to find
general patterns in the language, which reduces the likelihood of overfitting to a particular
set of programs against which we run tests. Third, it gives us λP , which is a valuable artifact
in its own right. From the perspective of constructing proofs, λP – which might have five to
twenty constructs, in the typical lambda calculus fashion – is a far more accessible target than
having hundreds of rules. Additionally, λP reduces P to an essence (there may, of course, be
multiple λP ’s that provide different essential views of the language), thus accomplishing one of
the jobs of a semanticist: to give insight, not merely brutally reconstruct reality. In that light,
the desugaring function too is a useful artifact, and we want it to be both readable and terse.
An unreadable desugaring function yields no insight into the semantics of constructs in P ,
and in fact casts suspicion on whether all behaviors have been faithfully captured. Likewise,
a readable function that nevertheless has inordinately complicated behavior indicates that
the proposed λP does a poor job of modeling the intrinsically “interesting” parts of P .

The problem remains: how to create these artifacts? The first author has been involved
in several tested semantics efforts, and their labor demands are daunting: for instance, that
for Python [19] took approximately 72 person-months, including recruiting participants from
a mooc. This simply does not scale. Can we instead learn these semantics?

3 Learning a Semantics

Before we apply machine learning techniques, it helps to agree on the appropriate role for
human versus machine. It may be tempting to simply let machine-learning techniques run wild
and reconstruct a set of rules that match an existing implementation, but as we have argued
in Section 2, this would be counter-productive. Instead, we claim Figure 1 provides us with a
clear guide. The place for an expert is in the design of the core λP , using an understanding
of (a) the surface P itself, (b) general design principles in the design of semantics, and (c)
eventual goals for the use of the semantics. In contrast, the act of writing desugaring is
where the grunt work lies, and this is the part that would best be automated. In addition, in
our experience, engineering λP is both interesting and does not consume effort that is not
insightful, whereas constructing desugaring can take months and is only very rarely insightful.
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In our ideal workflow, then, the semantics engineer (who presumably understands P well)
proposes an initial design for λP , alongside an implementation for it (which, depending on
how λP is written, may even be obtained automatically). They also provide a conformance
suite, such as existing test suites for widely-used P implementations.1 A learning system
then attempts to construct the desugaring function.

The space of desugaring functions is of course unbounded. We believe a useful constraint
is given by Felleisen’s expressiveness framework [9], which (loosely) says that if a feature
can be expressed by local macro transformations (i.e. structural, compositional changes),
it is not “expressive”. We believe that (unless a semantics engineer explicitly chooses
otherwise) desugaring should not be expressive: if it is, a non-trivial feature of the language
is not captured by λP .

So long as the search for desugaring succeeds, all is well. But when the search has
proceeded for too long, it seems reasonable to present the input for which no reasonable
desugaring could be found: the semanticist is then in a position either to realize that λP

must grow, or to guide the desugaring system with a hint, or even to provide the desugaring
rule directly. Based on our experience manually constructing semantics in this style, these
interruptions grow far less frequent over time, and the rare situations where a desugaring
can’t easily be found are usually instructive about the nature of P .

Problem Definition

The essential problem, then, is as follows. Assuming we can obtain a parser for P (usually to
be found inside P implementations) and similarly for λP (which should be straightforward),
the goal is to learn a translation from P trees to λP trees – a tree transducer [6, chapter
6] – such that Figure 1 ensues. This problem is not new: it lies at the heart of natural
language translation (nlt).

A critical difference, however, is in the setup of the problem. In nlt, one is typically
translating, say, French to German. To do this, the learning system is given millions of
pairs of the “same” sentences in both languages: obtained from proceedings of national
bodies, book translations, and so on. From this large corpus of examples, an algorithm infers
a transducer. However, there is no oracle for ground truth; some use has been made of
crowdsourcing for this purpose [20], but it may not be straightforward to handle millions of
new proposed translations this way, and it would anyway be slow and somewhat unreliable.

In programming languages, we have the dual situation. The semantics engineer will not
have the patience to write more than a few dozen examples of P -to-λP translations. However,
we do have ground truth! A system can easily generate new instances of P programs and run
them; and also pass them through the candidate desugarer, compute their answer under the
semantics, and compare the two answers. If this succeeds, we have gained further trust in the
desugaring. If it fails, we have a P program for which our desugaring must be revised. The
system can run this loop automatically, correctly, and at scale (with extreme parallelization).

Unfortunately, there seems to be little literature on this problem in the nlt literature.
This is perhaps unsurprising: there is little use in natural languages in creating techniques
that assume perfect, mechanized ground truth. Thus, our dual problem is not only valuable
but also technically interesting.

1 Of course, different implementations may differ slightly. This only further reinforces the need for a
learning-based approach, because innocent programmers might stumble on these differences while
adversaries exploit them.
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x, y ∈ SIdentifiers

n ∈ Number
s ∈ Str
o ∈ SOp ::= 0-

∣∣ not
∣∣ +

∣∣ -
∣∣ and

∣∣ or
∣∣ <

∣∣ >

e ∈ SExp ::= SVar(x)
∣∣ SPrim(o, e⃗)

∣∣ SBetween(e1, e2, e3)∣∣ SNum(n)
∣∣ SStr(s)

∣∣ STrue
∣∣ SFalse∣∣ SIf(e1, e2, e3)

∣∣ SLet(x, e1, e2)
∣∣ SLetRec(x, e1, e2)∣∣ SLam(x⃗, e)

∣∣ SApp(e, e⃗)
∣∣ SAssign(x, e)∣∣ SList(e⃗)

∣∣ SListCase(e1, e2, e3)
∣∣ SFor(e1, b⃗, e2)

b ∈ SForBind ::= SFBind(x, e)

x, y ∈ CIdentifiers

n ∈ Number
s ∈ Str
b ∈ Bool
o ∈ COp ::= 0-

∣∣ not
∣∣ +

∣∣ -
∣∣ and

∣∣ or
∣∣ <

∣∣ >

e ∈ CExp ::= CVar(x)
∣∣ CPrim1(o, e)

∣∣ CPrim2(o, e1, e2)∣∣ CNum(n)
∣∣ CStr(s)

∣∣ CBool(b)∣∣ CIf(e1, e2, e3)
∣∣ CLet(x, e1, e2)

∣∣ CLetRec(x, e1, e2)∣∣ CLam(x⃗, e)
∣∣ CApp(e, e⃗)

∣∣ CAssign(x, e)∣∣ CList(e⃗)
∣∣ CListCase(e1, e2, e3)

Figure 2 Simple Source and Target Core languages.

4 Initial Non-Progress

In addition to formulating the problem, to date we have tried four different existing techniques,
with no real success. The rest of this paper documents what we have learned so far, but we cau-
tion that, since we are not experts in this area, one should not read too much into our failure.

4.1 Notation
We denote source programs (previously P ) in red monospaced text, core programs (pre-
viously λP ) in blue monospaced text, and the desugarers themselves in black sans-serif font.
Additionally, we prefix the names of source AST nodes with a S, and likewise prefix core
AST node names with a C. We use • to denote a hole in a tree, into which another tree may
be merged; when defining a desugarer, subscripts are used to indicate corresponding holes in
source and core terms. Finally, for expressions with arbitrary arity, we use · · · to indicate
the repetition of the preceding term (much as . . . are used in Racket macros).

4.2 Example Languages
Consider the languages in Figure 2. We have tried to learn a desugaring from the source to the
core. Most expression forms are straightforward to translate, and there are some characteristic
“impedance mismatches” between the two languages. The construction SBetween(lo, mid,
hi) is intended to be the chained comparison lo ≤ mid ≤ hi, where each expression
is evaluated at most once. Primitive operations are represented in the source via an

SNAPL 2019
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ds(SVar(•)) = CVar(•)

ds(SPrim(•1, [•2])) = CPrim1(•1, •2)

ds(SPrim(•1, [•2, •3])) = CPrim2(•1, •2, •3)

ds(SBetween(•1, •2, •3)) = CLet(%t1, •1, CLet(%t2, •2, CLet(%t3, •3,

CPrim2(and, CPrim2(<, %t1, %t2),

CPrim2(<, %t2, %t3)))))

ds(SNum(•)) = CNum(•)

ds(SStr(•)) = CStr(•)

ds(STrue) = CBool(true)

ds(SFalse) = CBool(false)

ds(SIf(•1, •2, •3)) = CIf(•1, •2, •3)

ds(SLet(•1, •2, •3)) = CLet(•1, •2, •3)

ds(SLetRec(•1, •2, •3)) = CLetRec(•1, •2, •3)

ds(SLam([•1 · · · ], •2)) = CLam([•1 · · · ], •2)

ds(SApp(•1, [•2 · · · ])) = CApp(•1, [•2 · · · ])

ds(SAssign(•1, •2)) = CAssign(•1, •2)

ds(SList(• · · · )) = CList(• · · · )

ds(SListCase(•1, •2, •3)) = CListCase(•1, •2, •3)

ds(SFor(•1, [SFBind(•2, •3)· · · ], •4)) = CApp(•1, SLam([•2 · · · ], •4), [•3 · · · ])

Figure 3 Intended ground-truth translation from Simple Source to Target Core. %t1 etc are fresh
generated names for temporary variables.

arbitrary-arity SPrim constructor, and must be translated to either unary CPrim1 or binary
CPrim2 constructions. Booleans STrue and SFalse must be translated to actual booleans
inside a CBool constructor, and other primitive values are simply carried across. The SFor
construction is unique to the source language, and must be translated into simpler terms
in the core. Our intended translation is given in Figure 3.

4.3 First attempt: Naïve Tree Matching

4.3.1 Essential Ideas

As an initial guess, we posit that translating the AST of one language into a corresponding
tree in another language will result in a tree “of roughly the same shape”: that is, a source
node with N children will desugar to a tree with N disjoint descendants that correspond to
the source node’s children, respectively. For example, SPrim(+, [•1, •2]) might correspond
to CLet(%t1, •1, CLet(%t2, •2, CPrim2(+, %t1, %t2))).

With this as a guide, our initial attempt is to learn a tree transducer that transforms
source nodes into core subtrees in a uniform, top-down manner. Learning this transducer
from a corpus of tests amounts to learning an explanation for how each test output was
produced from its input. We can simplify the problem further under our assumption that
tree shape is roughly preserved.
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4.3.2 Worked Example
Consider the source program

SIf(SBetween(SNum 3, SNum 4, SPrim(-, [SNum 6, SNum 1])), STrue, SFalse)

Our ground-truth desugaring results in the desugared expression

CIf(CLet(%t1, CNum 3, CLet(%t2, CNum 4, CLet(%t3, CPrim2(-, CNum 6, CNum 1),
CPrim2(and, CPrim2(<, %t1, %t2), CPrim2(<, %t2, %t3))))),

CBool(true), CBool(false))

Graphically, these two trees are:

SIf

SFalseSTrueSBetween

SPrim

SNum

1

SNum

6

-

SNum

4

SNum

3

and

CIf

CBool

false

CBool

true

CLet

CLet

CLet

CPrim2

CPrim2

%t3%t2<

CPrim2

%t2%t1<

and

CPrim2

CNum

1

CNum

6

-

%t3

CNum

4

%t2

CNum

3

%t1

Our goal is to compute all possible alignments between these two trees, ignoring the labels
on the internal nodes. (We draw the core tree inverted, to make drawing the alignments
easier to read.) An alignment is simply a mapping of nodes in one tree to nodes in the other
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that preserves ancestry: if a source node S maps to a core node C, then all descendants
of S must map to descendants of C.

16

-43

falsetrue

%t3%t2<%t2%t1<

and

16

-

%t34

%t23

%t1

Note that in this example, one node (the root of SPrim(-, [SNum 6, SNum 1])) has two
possible alignments (shown in green). This leads to two possible desugarings for SBetween
and SPrim nodes: the correct one presented earlier, and the incorrect

ds(SBetween(•1, •2, •3)) ⇒ CLet(%t1, •1, CLet(%t2, •2, •3))

ds(SPrim(•1, [•2, •3])) ⇒ CLet(%t3, CPrim2(•1, •2, •3)

CPrim2(and,

CPrim2(<, %t1, %t2),

CPrim2(<, %t2, %t3)))

Such a mistake is possible in this test case, because only one instance of either SBetween
or SPrim is seen. With a larger test corpus, this mistaken desugaring could only appear as
part of a non-deterministic desugarer, and so would eventually be discarded by the algorithm.

4.3.3 Requirements on Developer
Developers must provide a corpus of tests that adequately covers the language semantics,
and also manually write the desugared ground-truth versions of the tests. This is potentially
as tedious as writing the desugaring itself, and not a viable long-term improvement.

4.3.4 Shortcomings
Unfortunately, of course, this algorithm is potentially absurdly expensive: if the core tree is
larger than the source (as it most likely will be), there are many possible alignments for
each node, and therefore exponentially many possible alignments in total.
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Additionally, this algorithm cannot learn the intended desugaring for our full language.
The SLam and SApp expressions are variable-arity, which means our desugaring would require
an infinite corpus to learn all the desugarings for every possible arity – when clearly the
desugaring is uniformly defined. Further, the desugaring of SFor expressions examines the
grand-children of the SFor node, and moreover does not preserve the ordering of children.
This is simply beyond the expressive power of this algorithm.

4.4 Second Attempt: Learning a Tree Transducer by Gibbs Sampling
4.4.1 Essential Ideas
To constrain the search-space explosion of the simple algorithm above, we try a sampling
approach instead: we relax our requirement that a desugarer be deterministic, and start
with one alignment, which induces some desugarer. We then perturb that desugarer by
picking some path in the source tree, from root to leaf, and attempting to “re-explain”
it, hoping to find an explanation that is more deterministic than the current one. We
then iterate this process until it converges on a deterministic desugarer that can explain
the full test corpus. Specifically:
1. As before, we start with a corpus of source and ground-truth core programs.
2. For each test, we compute an inclusion from source to core. Combining all these

inclusions produces a non-deterministic desugarer, where each translation rule is weighted
by how often it was used in the current explanations of the tests. Each translation from
source to core yields a derivation tree, whose nodes are labeled by desugarer rules and
whose shape is the same as the source tree. Moreover, these weights induce a probability
that describes how likely this derivation tree was to have occurred.

3. Repeat until convergence:
a. Pick a derivation tree of lowest probability. Pick a path within that tree of lowest

probability.
b. “Truncate” the corresponding source and core trees by removing all side branches

from that derivation path, and all core subtrees corresponding to the removed source
nodes. This produces two narrow trees.

c. Compute all possible inclusions of the truncated source into the truncated core
tree. The roots must obviously correspond, as must the sole remaining leaf and its
counterpart; the only nodes whose alignments could change are therefore the nodes
along the source path. This greatly limits the combinatorial explosion to a manageable
level.

d. Compute the probability of each of these new alignments, using weights that have been
adjusted to remove the existing alignment’s contribution, and choose a new alignment
based on these probabilities. This is essentially assigning a Dirichlet prior to the rules,
and it will tend to reuse explanations that have been used many times in other tests,
and tend to avoid explanations that have not been useful in many other cases.

e. Update the weights of all the relevant rules.

4.4.2 Worked Example
Consider again the example expression in Section 4.3.2, and suppose by step 2 we had
computed the mistaken desugaring shown there. In step 3.a, we would pick a path of lowest
probability: in this example, we choose the path leading to the leaf 6. We then truncate
both the source and core trees and prune away all branches not relevant to that path. (We
give the pruned nodes distinct labels, so we don’t have to worry about mis-aligning them.)

SNAPL 2019
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•6•5

•4

6

•3

•2•1

•6•5

•

•4

6

•3

•

•2•

•1•

Now the two possible alignments are very easy to compute; in fact, they are the only
two possible alignments of these two trees (compared to potentially exponentially many
alignments in the original, non-truncated trees). We then compute the probability of either
alignment occurring given the frequencies with which the relevant desugaring rules have
appeared in other test cases. The correct alignment is seen more frequently in other tests,
leading to a higher probability here, which in turn reinforces the algorithm’s confidence
in the correctness of that alignment.

4.4.3 Requirements on Developer
Just like the naïve algorithm, this one requires the developer to supply a sufficient test corpus
and its ground-truth accompaniment. However, it does not take quite so long to run.

4.4.4 Shortcomings
There are four key failings with this approach. First, just as with the naïve approach, this
algorithm makes the key assumption that source trees will map to core trees of a similar
shape, and SFor breaks that assumption.

Second, as above, the algorithm cannot handle arbitrary-arity nodes such as SLam. (We
could shoehorn languages into fitting a fixed-arity model since no single program will ever
have unbounded-arity source expressions, but even so it is subjectively wrong to provide
completely disparate desugaring rules for binary functions from ternary ones, etc. Moreover,
while any individual program is of fixed arity, the desugaring must handle all possible
programs: the correctness of a single uniform rule is supported by all the programs of all
the arities that it translates correctly, while a set of arity-specific rules necessarily are each
supported by much smaller, independent sets of sample programs.)

Third, the algorithm cannot handle unbounded state during the desugaring process.
In particular, it is quite common to need to generate new names (i.e., gensym) for use in
the translated program. Nothing in the tree-transducer approach – regardless of how the
transducer is constructed – can support such a construction.
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Fourth, translation might sometimes need to inspect “deeply” into the source tree, i.e.,
examine more than just the root node and its immediate children, in order to translate it
correctly (as, for example, with SFor). An extended tree transducer can handle this case, but
the inference problem for extended tree transducers is known to be hard, and the algorithms
above have no representation for such deep rules.

4.5 Third attempt: Genetic Programming

4.5.1 Essential Ideas
We aim to fix the first, second, and fourth problems above, while still remaining tractably
expensive. Our main idea is to develop a domain specific language for describing translations.
Our desugarers are now explicit programs in this language, rather than implicit in the
mappings between two sets of trees. Because they are now explicit, we can mutate them
in various ways, and this leads us to a genetic algorithm for evolving a correct translator.
Our key observation is that rather than relying on extensive programmer effort to supply
the ground truth, we can instead use the evaluators to compute ground truth.

4.5.2 Requirements on Developer
Unlike the algorithms above, we no longer require the programmer to supply a comprehensive
corpus of source or core programs. Instead we can systematically generate source programs,
or generate new source programs from a small number of exemplars via fuzzing. Additionally,
the developer need never manually desugar a complete program.

Instead, our algorithm may ask the developer:
1. To say whether a given desugaring rule is at fault, or else provide a smaller source test

program that still translates incorrectly, and
2. To provide the correct desugaring of a particularly troublesome source language con-

struct, or suggested mutations to try when searching for such desugarings.
This latter point is precisely where the programmer’s attention should be focused – on
constructs whose semantics are not readily captured by “natural” tree transformations.

4.5.3 Shortcomings
Unfortunately, we were unable to make this scale well enough to find our desugaring. In
general, because it is a randomized algorithm that depends heavily on the history of a
particular run, convergence is troublesome, and like all genetic algorithms depends strongly
on the fitness function we use. Since correctness is a boolean property with no gradient
against which to optimize, our attempts at “smoothing” this into a useful fitness function
amounted to counting what fraction of programs were translated correctly. However at the
small scales we could attempt, this function was still too discrete to work well.

4.6 Fourth attempt: Synthesis
The first two approaches tried to exploit the tree-structure of the source and destination
languages. The third approach tried to incorporate the fact that desugaring should be a
computable function, and therefore a program in its own right. Perhaps techniques from
program synthesis might help generate this desugaring? We know of only one attempt in
this direction so far [14]. We highlight both the achievements and simplifications of this
work, to emphasize what makes this problem quite so challenging.
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The starting observation is that, because desugaring should not be expressive, and hence
essentially be a tree homomorphism, the skeleton of any such desugarer is a pattern match
across the source-language AST, followed by recursive desugaring calls to the subtrees, and
finally some core-language constructor(s) to connect the resulting pieces. To make the
problem tractable, the authors deeply embed the correctness criterion from Figure 1 as the
specification of a correct synthesis result. To derive a desugarer such that the results of
evaluation match up, when the authors encounter a subexpression of the outer term they leave
it marked as a symbolic input, so that when attempting to interpret the resulting translated
program, they replace the unknown output with the interpreted original source program.
This “inductive decomposition” provides an order-of-magnitude improvement in performance.

However, the approach there takes some crucial simplifying steps. They rely on a shared
value space for the interpreted answers for both languages; a more accurate representation of
Figure 1 would account for the translation of values across the languages, which defeats the
inductive decomposition property. Additionally, even in the sample language in Figure 3, the
desugaring of SFor is not a trivial tree homomorphism: the translation needs to reach more
deeply into the tree to rearrange binders and bound values. This form of manipulation is
commonplace for languages, and should be part of a full solution here. Finally, the authors
note that incorporating stateful semantics into their interpreters exploded the runtime cost
of their approach, yet state is a necessary component of nearly all language designs.

5 Conclusion

Programming language research is caught between two extremes. On the one hand, we aspire
to have pure, clean-slate designs that are designed well, accompanied by rich specifications,
and implemented faithfully. On the other hand we have the messy world of contemporary
systems, which have evolved haphazardly and democratically, and are encumbered with
awkward edge cases and legacy constraints.

While we applaud those who work to make the former world a reality (and hope to make
our own modest contributions to this effort), we want to call attention to the latter, which
is at least our present reality. In this world, errors and attacks abound. The rich toolkit
of programming languages can do much to defend against these problems, but only if we
can bring these systems within our ambit. A semantics seems a necessary and important
step in that direction. We believe the research program outlined here, with an emphasis
on core languages and on a great deal of accidental complexity swept away by desugaring,
is a smart way to proceed.

Earlier, we referred to (informal) semantics being defined in terms of “implementations,
documents, and test suites”. Our work shows how we can leverage implementations and test
suites to reverse-engineer the formal semantics. It is natural to wonder what documents
can contribute to this process. Do they make things worse, or do they actually make them
better? Might we be able to curtail the combinatorial searches demanded by this paper
by using information in prose? We do not know the answer, but hopefully others far more
qualified can answer that authoritatively.
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