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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 19041 “New Horizons
in Parameterized Complexity”.

Parameterized Complexity is celebrating its 30th birthday in 2019. In these three decades,
there has been tremendous progress in developing the area. The central vision of Parameterized
Complexity through all these years has been to provide the algorithmic and complexity-theoretic
toolkit for studying multivariate algorithmics in different disciplines and subfields of Computer
Science. These tools are universal as they did not only help in the development of the core of
Parameterized Complexity, but also led to its success in other subfields of Computer Science such
as Approximation Algorithms, Computational Social Choice, Computational Geometry, problems
solvable in P (polynomial time), to name a few.

In the last few years, we have witnessed several exciting developments of new parameterized
techniques and tools in the following subfields of Computer Science and Optimization: Mathemat-
ical Programming, Computational Linear Algebra, Computational Counting, Derandomization,
and Approximation Algorithms. The main objective of the seminar was to initiate the discussion
on which of the recent domain-specific algorithms and complexity advances can become useful in
other domains.
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In 2019 the parameterized complexity (PC) community is celebrating two round dates: 30
years since the appearance of the paper of Abrahamson, Ellis, Fellows, and Mata in FOCS
1989, which can be considered as the starting point of PC, and 20 years since the appearance
of the influential book of Downey and Fellows “Parameterized Complexity”.
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In these three decades, there has been tremendous progress in developing the area. The
central vision of Parameterized Complexity through all these years has been to provide the
algorithmic and complexity-theoretic toolkit for studying multivariate algorithmics in different
disciplines and subfields of Computer Science. To achieve this vision, several algorithmic and
complexity theoretic tools such as polynomial time preprocessing, aka kernelization, color-
coding, graph-decompositions, parameterized integer programming, iterative compression,
or lower bounds methods based on assumptions stronger than P=NP have been developed.
These tools are universal as they did not only help in the development of the core of
Parameterized Complexity, but also led to its success in other subfields of Computer Science
such as Approximation Algorithms, Computational Social Choice, Computational Geometry,
problems solvable in P (polynomial time) to name a few.

All cross-discipline developments result in flow of ideas and methods in both directions.
In the last few years, we have witnessed several exciting developments of new parameterized
techniques and tools in the following subfields of Computer Science and Optimization:
Mathematical Programming, Computational Linear Algebra, Computational Counting,
Derandomization, and Approximation Algorithms. A natural question is whether these
domain-centric methods and tools are universal. That is, can they permeate boundaries
of subfields and be employed wherever Parameterized Complexity approach can be used?
The main objective of the seminar was to initiate the discussion on which of the recent
domain-specific algorithms and complexity advances can become useful in other domains.

The seminar collected 46 participants from 18 countries. The participants presented their
recent results in 26 invited and contributed talks. Open problems were discussed in open
problem and discussion sessions.
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3 Overview of Talks

3.1 Polynomial Kernel for Interval Vertex Deletion
Akanksha Agrawal (Hungarian Academy of Sciences – Budapest, HU)

License Creative Commons BY 3.0 Unported license
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Joint work of Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, Meirav Zehavi

Given a graph G and an integer k, the Interval Vertex Deletion (IVD) problem asks whether
there exists a vertex subset S of size at most k, such that G–S is an interval graph. The
existence of a polynomial kernel for IVD remained a well-known open problem in Parameter-
ized Complexity. In this talk we look at a sketch of polynomial kernel for the problem (with
the parameter being the solution size). Over the course of talk, we will mainly focus on a
kernel for IVD, when parameterized by the vertex cover number. The ideas in discussed in
the above kernel is one of the key ingredients in our kernel for IVD, when parameterized by
the solution size.

3.2 FPT inspired Approximation Algorithms
Henning Fernau (Universität Trier, DE)

License Creative Commons BY 3.0 Unported license
© Henning Fernau

Approximation algorithms predate parameterized algorithms by quite some time. Therefore,
several algorithmic ideas have been transfered from approximation to FPT. However, there
are also opportunities to translate typical FPT ideas into algorithmic ideas for approximation.
We will showcase this by looking at data reductions. One of the nice features that come with
using approximative data reductions is that the approximation algorithm can monitor itself
during execution, thereby proving that the actual approximation ratio is (possibly far) better
than the typical worst-case analysis would show. We will also present experimental results
that prove that this approach could work very well in practice.

References
1 Henning Fernau. FPT inspired approximations. To appear in the proceeding of “Aspects

of Computation”, World Scientific, 2019.

3.3 On the Parameterized Complexity of Graph Modification to
First-Order Logic Properties

Petr A. Golovach (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
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Joint work of Petr A. Golovach, Fedor V. Fomin, Dimitrios M. Thilikos
Main reference Fedor V. Fomin, Petr A. Golovach, Dimitrios M. Thilikos: “On the Parameterized Complexity of

Graph Modification to First-Order Logic Properties”, CoRR, Vol. abs/1805.04375, 2018.
URL https://arxiv.org/abs/1805.04375

We establish new connections between parameterized/kernelization complexity of graph
modification problems and expressibility in logic. For a first-order logic formula ϕ, we consider
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the problem of deciding whether an input graph can be modified by removing/adding at most
k vertices/edges such that the resulting modification has the property expressible by ϕ. We
provide sufficient and necessary conditions on the structure of the prefix of ϕ specifying when
the corresponding graph modification problem is fixed-parameter tractable (parameterized
by k) and when it admits a polynomial kernel.

3.4 Parameterized Resiliency Problems via ILP
Gregory Gutin(Royal Holloway, University of London, GB)

License Creative Commons BY 3.0 Unported license
© Gregory Gutin

Joint work of Jason Crampton, Gregory Gutin, Martin Koutecký, Remi Watrigant
Main reference Jason Crampton, Gregory Z. Gutin, Rémi Watrigant: “An Approach to Parameterized Resiliency

Problems Using Integer Linear Programming”, CoRR, Vol. abs/1605.08738, 2016.
URL https://arxiv.org/abs/1605.08738

We introduce an extension of decision problems called resiliency problems. In resiliency
problems, the goal is to decide whether an instance remains positive after any (appropriately
defined) perturbation has been applied to it. To tackle these kinds of problems, some of
which might be of practical interest, we introduce a notion of resiliency for Integer Linear
Programs (ILP) and show how to use a result of Eisenbrand and Shmonin (Math. Oper. Res.,
2008) on Parametric Linear Programming to prove that ILP Resiliency is fixed-parameter
tractable (FPT) under a certain parameterization.

To demonstrate the utility of our result, we consider natural resiliency versions of several
concrete problems, and prove that they are FPT under natural parameterizations. Our first
results concern a four-variate problem which generalizes the Disjoint Set Cover problem
and which is of interest in access control. We obtain a complete parameterized complexity
classification for every possible combination of the parameters. Then, we introduce and
study a resiliency version of the Closest String problem, for which we extend an FPT result
of Gramm et al. (Algorithmica, 2003). We also consider problems in the fields of scheduling
and social choice. We believe that many other problems can be tackled by our framework.

3.5 0/1/all CSPs, Half-Integral A-path Packing, and Linear-Time FPT
Algorithms

Yoichi Iwata (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
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Joint work of Yoichi Iwata, Yutaro Yamaguchi, Yuichi Yoshida
Main reference Yoichi Iwata, Yutaro Yamaguchi, Yuichi Yoshida: “0/1/All CSPs, Half-Integral A-Path Packing,

and Linear-Time FPT Algorithms”, in Proc. of the 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pp. 462–473, IEEE Computer
Society, 2018.

URL https://doi.org/10.1109/FOCS.2018.00051

0/1/all CSPs can be solved in linear time by a simple DFS called a unit propagation. We
consider an optimization variant of the CSPs where the objective is to delete the minimum
subset of variables to make the given instance satisfiable. When the instance is unsatisfiable,
the unit propagation finds a walk leading to a contradiction, and the size of the maximum
half-integral packing of such walks gives a lower bound on the solution size. We provide an
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O(km)-time algorithm for computing the maximum half-integral packing, where k is the size
of the packing and m is the number of constraints, and we show that a branch-and-bound
method using this lower bound can solve the problem in linear FPT time. We also discuss
several other applications.

3.6 Computing the Chromatic Number Using Graph Decompositions
via Matrix Rank

Bart Jansen (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
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Joint work of Bart M.P. Jansen, Jesper Nederlof
Main reference Bart M.P. Jansen, Jesper Nederlof: “Computing the Chromatic Number Using Graph

Decompositions via Matrix Rank”, in Proc. of the 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, LIPIcs, Vol. 112, pp. 47:1–47:15,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.ESA.2018.47

Computing the smallest number q such that the vertices of a given graph can be properly
q-colored is one of the oldest and most fundamental problems in combinatorial optimization.
The q-Coloring problem has been studied intensively using the framework of parameterized
algorithmics, resulting in a very good understanding of the best-possible algorithms for
several parameterizations based on the structure of the graph. For example, algorithms are
known to solve the problem on graphs of treewidth tw in time O∗(qtw), while a running time
of O∗((q − ε)tw) is impossible assuming the Strong Exponential Time Hypothesis (SETH).
While there is an abundance of work for parameterizations based on decompositions of the
graph by vertex separators, almost nothing is known about parameterizations based on
edge separators. We fill this gap by studying q-Coloring parameterized by cutwidth, and
parameterized by pathwidth in bounded-degree graphs. Our research uncovers interesting
new ways to exploit small edge separators.

We present two algorithms for q-Coloring parameterized by cutwidth cutw: a deterministic
one that runs in time O∗(2ω·cutw), where ω is the matrix multiplication constant, and a
randomized one with runtime O∗(2cutw). In sharp contrast to earlier work, the running
time is independent of q. The dependence on cutwidth is optimal: we prove that even
3-Coloring cannot be solved in O∗((2− ε)cutw) time assuming SETH. Our algorithms rely
on a new rank bound for a matrix that describes compatible colorings. Combined with a
simple communication protocol for evaluating a product of two polynomials, this also yields
an O∗((bd/2c+ 1)pw) time randomized algorithm for q-Coloring on graphs of pathwidth pw
and maximum degree d. Such a runtime was first obtained by Bjorklund, but only for graphs
with few proper colorings. We also prove that this result is optimal in the sense that no
O∗((bd/2c+ 1− ε)pw)-time algorithm exists assuming SETH.
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3.7 N-fold IP: FPT algorithm and applications
Martin Koutecký (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
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Joint work of Dušan Knop, Martin Koutecký, Asaf Levin, Shmuel Onn
Main reference Martin Koutecký, Asaf Levin, Shmuel Onn: “A Parameterized Strongly Polynomial Algorithm for

Block Structured Integer Programs”, in Proc. of the 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, LIPIcs,
Vol. 107, pp. 85:1–85:14, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.85

Integer Linear Programming is a fundamental optimization problem. Basic FPT results about
ILP have been shown in the 80’s by Papadimitriou and Lenstra, and Lenstra’s algorithm
has been applied extensively in parameterized complexity since 2003. A new class of IPs of
variable dimension called n-fold IPs has been extensively studied since the 2000’s, culminating
in an FPT algorithm in 2013, which has been used in parameterized complexity for the
first time in 2016. Since then, several important applications as well as extensions and
improvements of this algorithm have been found.

In this talk I will define n-fold IPs, briefly overview the FPT algorithm solving it, and then
focus on two classes of application. The first class concerns Closest String-type problems
and Bribery-type problems, for which the application of n-fold IP has led to the first single-
exponential algorithms. The second class concerns problems from scheduling, where n-fold
IP is the only known technique which yields FPT results for several fundamental problems
such as minimization of sum of weighted completion times, or makespan minimization when
machines have many different speeds. Finally, I will point out what I believe to be the two
most important open problems in the area.

3.8 Parameterized Inapproximability: A (Semi-)Survey
Pasin Manurangsi (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© Pasin Manurangsi

Joint work of Parinya Chalermsook, Marek Cygan, Karthik C. S., Guy Kortsarz, Bundit Laekhanukit, Pasin
Manurangsi, Danupon Nanongkai, Luca Trevisan

Main reference Karthik C. S., Bundit Laekhanukit, Pasin Manurangsi: “On the parameterized complexity of
approximating dominating set”, in Proc. of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pp. 1283–1296, ACM, 2018.

URL https://doi.org/10.1145/3188745.3188896
Main reference Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,

Danupon Nanongkai, Luca Trevisan: “From Gap-ETH to FPT-Inapproximability: Clique,
Dominating Set, and More”, in Proc. of the 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pp. 743–754, IEEE
Computer Society, 2017.

URL https://doi.org/10.1109/FOCS.2017.74

In this talk, I will survey some of the recent results on parameterized inapproximability, with
focus on the total inapproximability of k-Dominating Set and k-Clique.
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3.9 Decompositions of Unit Disk Graphs and Algorithmic Applications
Meirav Zehavi(Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 3.0 Unported license
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Joint work of Fedor Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Meirav Zehavi
Main reference Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh: “Excluded Grid Minors and Efficient

Polynomial-Time Approximation Schemes”, J. ACM, Vol. 65(2), pp. 10:1–10:44, 2018.
URL https://doi.org/10.1145/3154833

Main reference Fedor V. Fomin, Danile Lokshtanov, Fahad Panolan, Saket Saurabh, Meirav Zehavi: “Finding,
Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs”, in Discrete and
Computational Geometry, 2019.

URL https://doi.org/10.1007/s00454-018-00054-x
Main reference Fahad Panolan, Saket Saurabh, Meirav Zehavi: “Contraction Decomposition in Unit Disk Graphs

and Algorithmic Applications in Parameterized Complexity”, in Proc. of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pp. 1035–1054, SIAM, 2019.

URL https://doi.org/10.1137/1.9781611975482.64

In this talk, I will discuss decompositions of unit disk graphs with applications in the design
of subexponential and exponential time parameterized algorithms.

3.10 Hitting Long Directed Cycles is Fixed-Parameter Tractable
Matthias Mnich (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Alexander Göke, Dániel Marx, Matthias Mnich

The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph G
and seeks a minimum-size vertex set S that hits all cycles in G; this is one of Karp’s 21
NP-complete problems. Resolving the parameterized complexity status of the DFVS problem
was a long-standing open problem until Chen et al. (STOC 2008, J.ACM 2008) showed its
fixed-parameter tractability via a 4kk!nO(1) -time algorithm, where k = |S|. We give consider
the wide generalization of the DFVS problem where we want to intersect/long/ directed
cycles: find a minimum-size set S of arcs or vertices such that every simple directed cycle of
G−−S has length at most `. Our main result is an algorithm which solves this problem
in time 2O(`3k3 log k+k6 log k log `)nO(1). Our algorithm therefore provides an exact version of
the Erdős-Pósa property for long cycles in directed graphs, which was recently proved by
Kreutzer and Kawarayabashi [STOC 2015].

3.11 New Algorithms for Planar Subgraph Isomorphism
Jesper Nederlof (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
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Main reference Jesper Nederlof: “Detecting and Counting Small Patterns in Planar Graphs”, CoRR,

arXiv:1904.11285v1 [cs.DS], 2019.
URL https://arxiv.org/abs/1904.11285v1

We present sub exponential time algorithms for finding and counting (induced) patterns in
planar graphs.
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3.12 Integer Programming in Parameter-Tractable
Strongly-Polynomial Time

Shmuel Onn (Technion – Haifa, IL)
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Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, LIPIcs,
Vol. 107, pp. 85:1–85:14, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.85

Integer programming has been a powerful tool in classical combinatorial optimization due to
its broad modeling power.

We establish a new fundamental FPT result on integer programming and hope it will
provide a new tool that may allow to establish new FPT results for a variety of combinatorial
optimization problems. We will be happy to learn of any such progress that may occur.

The result, which extends, improves, unifies and simplifies many results of the last decade,
is the following.

Theorem: Integer programming can be solved in fixed parameter-tractable strongly-
polynomial time f(a,d)poly(n), for some polynomial of the number n of variables, and some
function f of the maximum absolute value a of any entry of the matrix A defining the integer
program and the minimum d between the treedepth of A and the treedepth of its transpose.

The slides of the talk are available below and on my homepage.

3.13 Approximation Schemes for Low-Rank Binary Matrix
Approximation Problems

Fahad Panolan (University of Bergen, NO)
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URL https://arxiv.org/abs/1807.07156

We provide a randomized linear time approximation scheme for a generic problem about
clustering of binary vectors subject to additional constrains. The new constrained clustering
problem encompasses a number of problems and by solving it, we obtain the first linear
time-approximation schemes for a number of well-studied fundamental problems concerning
clustering of binary vectors and low-rank approximation of binary matrices. Our algorithm
runs in time f(k, ε) · n ·m, where f is some computable function, k is the number of clusters,
n is the number of binary vectors in the input and m is the dimension of these vectors.
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3.14 On Subexponential Parameterized Algorithms for Steiner Tree
and Directed Subset TSP on Planar Graphs

Marcin Pilipczuk (University of Warsaw, PL)
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Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
pp. 474–484, IEEE Computer Society, 2018.
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There are numerous examples of the so-called “square root phenomenon” in the field of
parameterized algorithms: many of the most fundamental graph problems, parameterized by
some natural parameter k, become significantly simpler when restricted to planar graphs
and in particular the best possible running time is exponential in O(

√
k) instead of O(k)

(modulo standard complexity assumptions). We consider two classic optimization problems
parameterized by the number of terminals. The Steiner Tree problem asks for a minimum-
weight subtree connecting a given set of terminals T in an edge-weighted graph. In the
Subset Traveling Salesman problem we are asked to visit all the terminals T by a
minimum-weight closed walk. We investigate the parameterized complexity of these problems
in planar graphs, where the number k = |T | of terminals is regarded as the parameter. Our
results are the following:

Subset TSP can be solved in time 2O(
√
k log k) · nO(1) even on edge-weighted directed

planar graphs. This improves upon the algorithm of Klein and Marx [SODA 2014] with
the same running time that worked only on undirected planar graphs with polynomially
large integer weights.
Assuming the Exponential-Time Hypothesis, Steiner Tree on undirected planar graphs
cannot be solved in time 2o(k) · nO(1), even in the unit-weight setting. This lower bound
makes Steiner Tree the first “genuinely planar” problem (i.e., where the input is only
planar graph with a set of distinguished terminals) for which we can show that the square
root phenomenon does not appear.
Steiner Tree can be solved in time nO(

√
k) · W on undirected planar graphs with

maximum edge weight W . Note that this result is incomparable to the fact that the
problem is known to be solvable in time 2k · nO(1) even in general graphs.

A direct corollary of the combination of our results for Steiner Tree is that this problem
does not admit a parameter-preserving polynomial kernel on planar graphs unless ETH fails.

3.15 Hitting minors on bounded treewidth graphs
Ignasi Sau Valls (CNRS – Montpellier, FR)

License Creative Commons BY 3.0 Unported license
© Ignasi Sau Valls

Joint work of Julien Baste, Ignasi Sau, Dimitrios M. Thilikos
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For a fixed collection of graphs F, the F-M-Deletion problem consists in, given a graph
G and an integer k, decide whether there exists S ⊆ V (G) with |S| ≤ k such that G \ S
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does not contain any of the graphs in F as a minor. We are interested in its parameterized
complexity when the parameter is the treewidth of G, denoted by tw. Our objective is to
determine, for a fixed F , the smallest function fF such that F-M-Deletion can be solved
in time fF (tw) · nO(1) on n-vertex graphs. We prove that fF (tw) = 22O(tw·log tw) for every
collection F , that fF (tw) = 2O(tw · log tw) if all the graphs in F are connected and at least
one of them is planar, and that fF (tw) = 2O(tw) if in addition the input graph G is planar
or embedded in a surface. When F contains a single connected planar graph H, we obtain a
tight dichotomy about the asymptotic complexity of H-M-Deletion. Namely, we prove that
fH(tw) = 2θ(tw) if H is a minor of the banner (that is, the graph consisting of a C4 plus a
pendent edge) that is different from P5, and that fH(tw) = 2θ(tw·log tw) otherwise. All the
lower bounds hold under the ETH. We also consider the version of the problem where the
graphs in F are forbidden as topological minors, and prove similar results, except that, in
the algorithms, instead of requiring F to contain a planar graph, we need it to contain a
subcubic planar graph. We also prove that, for this problem, fK1,i(tw) = 2θ(tw) for every
i ≥ 1, while for the minor version it holds that fK1,i(tw) = 2θ(tw·log tw) for every i ≥ 4.

3.16 On a polynomial kernel for Directed Feedback Vertex Set
Roohani Sharma (Institute of Mathematical Sciences – Chennai, IN)
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In the Directed Feedback Vertex Set (DFVS), the input is a directed graph D and an
integer k, and the question is to determine whether there exists a set of vertices of D of
size at most k whose removal makes the digraph acyclic. The problem concerning the
existence of a polynomial kernel for DFVS is an interesting and challenging open problem in
the field of parameterized complexity. We take a step towards answering this question by
giving a polynomial kernel for DFVS with an enriched parameter. In particular, we study
DFVS parameterized by the solution size (k) and the size of a treewidth-η modulator of
the underlying undirected graph of D (say `). In particular, we give a kernel for DFVS of
size (k + `)O(1). This result also generalizes the result by Bergougnoux et al. that gives a
polynomial kernel for DFVS parameterized by the feedback vertex set of the underlying
undirected graph of D. As a corollary, our result implies a polynomial kernel for DFVS on
instances that are kO(1) vertices away from having bounded treewidth.
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4 Open Problems

4.1 Shortest Three Disjoint Path
Andreas Björklund (Lund University, SE)
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Decide the complexity of the Shortest Three Disjoint Paths problem: Given an
undirected unweighted graph G = (V,E) and three pairs of distinct terminal vertices (s1, t1),
(s2, t2), and (s3, t3) ∈ V × V , find three pairwise vertex disjoint paths connecting si with
ti for i = 1, 2, 3 in G, respectively, of minimum total length (the number of edges in the
three paths). Already the restriction to planar graphs of maximum degree three is open. For
Shortest Two Disjoint Paths, a randomized polynomial time algorithm is known [1], and in
the planar maximum degree three case there is a deterministic polynomial time algorithm
that also counts the number of solutions [2]. For Shortest Three Disjoint Paths in planar
graphs a deterministic polynomial time algorithm is known when all terminals lie on the
same face [3].

References
1 Andreas Björklund and Thore Husfeldt. Shortest two disjoint paths in polynomial time.

In International Colloquium on Automata, Languages, and Programming, pages 211–222.
Springer, 2014.

2 Andreas Björklund and Thore Husfeldt. Counting shortest two disjoint paths in cubic
planar graphs with an nc algorithm. arXiv preprint arXiv:1806.07586, 2018.

3 Samir Datta, Siddharth Iyer, Raghav Kulkarni, and Anish Mukherjee. Shortest k-disjoint
paths via determinants. arXiv preprint arXiv:1802.01338, 2018.

4.2 Counting forests with few components
Mark Jerrum (Queen Mary University of London, GB)
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Suppose G is an undirected graph on n vertices. Kirchhoff’s Matrix-tree Theorem expresses
the number of spanning trees in G as the determinant of an (n − 1) × (n − 1) matrix,
thus providing a polynomial-time algorithm for counting (exactly) the spanning trees in G.
Building on this, Liu and Chow [2] gave a method to count the number of (k+ 1)-component
(spanning) forests in G, for any k ≥ 0. Their recursive procedure is polynomial-time for any
fixed k, but the exponent grows with k. In modern terminology, they showed that counting
(k+ 1)-component forests is in XP. My question is whether counting (k+ 1)-component
forests is in FPT.

The general form of this open problem is: Start with a set of structures having some
property Π, for example, Π might be the property of being a spanning tree of a graph G.
Assume that there is a polynomial-time algorithm for counting structures with property Π.
Now perturb the property Π to Π′, and consider the derived problem of counting structures
with property Π′. Introduce a parameter k to measure the extent of the perturbation, for
example, k might be the number of “missing edges” in a spanning tree. It is natural to ask
whether this perturbed counting problem is in FPT or XP, or is #W[1]-hard, etc., regarded
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as a problem parameterized by k. An example of a solved problem of this type is counting
matchings in a planar graph with 2k uncovered vertices or “monomers”, which was shown to
be #W[1]-hard by Curticapean [1].

Returning to spanning trees, it is natural to perturb the structures in the opposite direction
and consider trees with “excess edges”, in other words, connected spanning subgraphs with
n+ k − 1 edges. (The parameterization is chosen so that spanning tress correspond again to
k = 0). Surprisingly, despite the obvious similarity to counting forests (indeed the problems
are dual in matroid theoretic terms), it is not even known whether the counting problem is
in XP. Note that there is no contradiction here: the class of graphic matroids is not closed
under taking duals.

References
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4.3 Makespan Minimization on Identical Machines (P ||Cmax) by #job
types

Martin Koutecký (Technion, Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Martin Koutecký

In the Makespan Minimization on Identical Machines (P ||Cmax) by #job types, we are given
m identical machines, τ types of jobs, nj ∈ N jobs of type j ∈ [τ ], where each job of type
j ∈ [τ ] has processing time pj ∈ N, and the question is to find a schedule minimizing the
makespan Cmax, i.e., the time when the last job finishes.

Goemans and Rothvoss [1] have shown that the problem is solvable in time roughly
O∗((log pmax)2τ ), where pmax = maxj pj . With respect to τ this is an XP algorithm, or an
FPT algorithm if pmax has size polynomial in the encoding length of the instance. It remains
open whether the problem is FPT or W[1]-hard.
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4.4 Stochastic bounding box
Sergio Cabello (University of Ljubljana, SI)
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Let P be a set of n points in Rd and assume that each point p of P has a number π(p) ∈ (0, 1]
associated to it. We construct a random subset R of P where we include each point p of P
with probability π(p), where the decision for each point is made independently. We want
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to compute the expected volume of the minimum axis-parallel box that contains R. In the
plane this can be done in O(n logn) time [1], assuming that each arithmetic operation takes
constant time. Using the 2-dimensional case as base case, one can solve the problem in
O(nd−1 logn) time for each d ≥ 3. The non-stochastic version can be solved in O(dn) trivially.
Is the problem W[1]-hard or FPT when parameterized by the dimension d?

References
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4.5 Tight bound for the number of multibudgeted important separators
Marcin Pilipczuk (University of Warsaw, PL)
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Consider a directed graph G with distinguished source s ∈ V (G), sink t ∈ V (G), and a
partition E(G) = E1 ] E2 ] . . . ] E` of the arc set. A set C ⊆ E(G) is an s− t separator if
there is no path from s to t in G − C. An s − t separator C is a minimal s − t separator
if no proper subset of C is an s − t separator. A minimal s − t separator D dominates a
minimal s− t separator C if every vertex reachable from s in G−C is also reachable from s

in G−D and for every i ∈ [`] we have |C ∩ Ei| ≥ |D ∩ Ei|. A minimal s− t separator D is
important if no other minimal s− t separator dominates it. The classic result asserts that
for the single-budget case ` = 1 there are at most 4k important separators of size at most
k [3, 1].

In our recent IPEC’18 paper [2] we show a generalization of this result for multibudgeted
case with a bound of 2O(k2 log k) for the number of multibudgeted important separators of
size at most k. However, the best known lower bound is 2Ω(k log k) attained via the following
simple construction. Let ` = k and let G consist of k paths (Pj)kj=1; each path Pj starts in s,
ends in t, and consists of k edges (eij)ki=1 in this order such that eij ∈ Ei for every i, j ∈ [k].
Then any minimal s − t separator in G is a multibudgeted important separator. Please
close the gap.
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4.6 Three disjoint paths that are each shortest paths
Marcin Pilipczuk (University of Warsaw, PL)
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Let G be an edge-weighted graph and let (si, ti)ki=1 be terminal pairs in G. The task is to
find paths (Pi)ki=1 such that each Pi is a shortest path in G from si to ti and the paths Pi are
pairwise vertex-dijoint. The problem has been introduced by Eilam-Tzoreff [2] who showed
that it is polynomial-time solvable for k = 2 in undirected graphs with strictly positive
edge weights. Bérczi and Kobayashi [1] generalized this result to k = 2 in directed graphs
with strictly positive edge weights and later two independent groups [3, 4] showed also a
generalization to k = 2 in undirected graphs with nonnegative edge weights. However, the
three terminal pair case remains widely open, even in undirected unweighted graphs.
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4.7 k-exchange TSP parameterized by k + d

Yoichi Iwata (National Institute of Informatics, Tokyo, JP)
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In the k-exchange TSP problem, given as input an undirected graph G = (V,E) with
maximum degree d, a TSP tour C ⊆ E, and an integer k, the goal is to decide if there is a
shorter TSP tour C ′ with |C \ C ′| ≤ k?

Local search with the above k-exchange neighborhoods is widely used in heuristic TSP
solvers. When parameterized by k only, Marx [2] proved W[1]-hardness. In order to make
the local search practical, state-of-the-art local search solvers use the following two heuristics.
1. Sparsify the graph by picking top-d important incident edges for each vertex. For example,

LKH [1] uses α-nearness as the importance measure and reduces the degrees to d = 5.
2. Focus on sequential moves. A k-exchange move C ′ is called sequential if the symmetric

difference C∆C ′ forms a simple cycle. When the maximum degree is d, the exhaustive
search for sequential k-moves runs in dO(k)n time.

If k-exchange TSP parameterized by k + d is W[1]-hard, we can justify focusing on
the sequential moves, and if it is FPT, we may have practical improvements.
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4.8 Count k-Walks
Holger Dell (Universität des Saarlandes, DE)
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Given a graph G with n vertices and m edges, and a number k, the goal is to compute the
number of all k-step walks in G. If A is the adjacency matrix of G, this number is just the
sum of all entries in Ak. It can thus be computed in time O(log k · nω) where ω is the matrix
multiplication constant. It can also be computed in time O(k(n+m)). The open question is:
can the problem be computed in time o(k) · (n + m) or even O(n + m)? Or would
this violate some complexity hypothesis?

4.9 Shortest Vector Problem (SVP) in `1 Norm
Pasin Manurangsi (University of California – Berkeley, USA)
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Definition: Given a lattice L ⊆ Zn (specified by its basis), determine whether there exists
a nonzero vector x ∈ L whose `1 norm is at most k (i.e.

∑
i∈[n] |xi| ≤ k). Here k is our

parameter. Relevant Literature: The non-parameterized version of the problem is very
well-studied. In particular, the NP-hardness (under randomized reductions) was proved by
Ajtai [1]. Later, it was shown to be hard to approximate to factor of (2−−ε) by Micciancio [6].
Subsequently, the factor was dramatically improved to 2(logn)0.5−ε by Regev and Rosen [7]
and then to 2(logn)1−−o(1) by Haviv and Regev [4].

The issue in adapting these proofs is that the aforementioned reductions inherently
produce non-integral lattices. In particular, the lattices in [1] and [6] are irrational, whereas
the lattices from [7, 4] comes from norm embeddings from `2 to `1 which, if discretize, does
not result in any valuable parameter anymore.

In recent works [2, 3], it was shown that SVP in `p is W[1]-hard (under randomized
reductions) for all p > 1, but the proof fails for p = 1. The approach taken there was adapted
from the work of Khot [5], which fails for p = 1 due to technical reasons. (Note that this is
true even for the non-parameterized case.)

It would be nice if the parameterized hardness of SVP in `1 norm can be established.
On the other hand, any non-trivial positive results would be interesting. For instance,
even an f(k)-FPT-approximation (for some function f) would be very nice, since this
would also lead to a g(k)-FPT-approximation (for some function g) for SVP in `2 norm as
well.
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4.10 Polynomial kernel for Bicolored P3-Deletion
Christian Komusiewicz (Universität Marburg, DE)

License Creative Commons BY 3.0 Unported license
© Christian Komusiewicz

In the Bicolored P3-Deletion problem, given a graph G = (V,E), where E is partitioned
into a set Er of red edges and a set Eb of blue edges, and an integer k ∈ N, the goal is
to decide whether we can delete at most k edges from G such that the remaining graph
contains no bicolored P3 as induced subgraph? Here a bicolored P3 is a path on three vertices
with one blue and one red edge. The open question is : Does Bicolored P3-Deletion
parameterized by k admit a polynomial-size problem kernel?
The reference for this is [1].
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4.11 Metric TSP with Deadlines
Matthias Mnich (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Matthias Mnich

In the Metric TSP with Deadlines problem, we are given an instance of Metric TSP
with n cities, out of which a subset of k � n cities is distinguished. Additionally, an integer
D is provided as input. The goal is to find a minimum-cost tour that visits all distinguished
cities before the deadline D, or concludes that no such tour exists.

Böckenhauer et al. [1] showed that this problem admits a 2.5-approximation in time
f(k) · nO(1), and also proved a lower bound of 2 on the approximability of the problem by
fixed-parameter algorithms under the assumption that P 6= NP. The open problem is to
close the gap between 2 and 2.5 on the fixed-parameter approximability of this
problem.
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4.12 Optimization over Degree Sequences
Shmuel Onn (Technion, Haifa, IL)
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We consider Optimization over Degree Sequences problem defined below. Given functions
f1, . . . , fn : {0, 1, . . . , n} → R, find a graph G on [n] maximizing

∑n
i=1 fi(di(G)), where di(G)

is the degree of vertex i in G.
We know quite a little about the complexity of this problem. If all the functions are

the same f1 = · · · = fn = g1 then we can solve it in polynomial time [2]. What is
the complexity if each fi equals one of two given functions g1, g2? What is the
(parameterized) complexity if each fi equals one of k given functions g1, . . . , gk?
What is the (parameterized) complexity for restricted classes of functions (e.g.,
convex, concave, k-piecewise linear)?

The problem can obviously be generalized to r-uniform hypergraphs. However, then
some severe restrictions on the functions should be applied, since already the following
decision problem is NP-complete: given d1, . . . , dn, is there a 3-uniform hypergraph H with
di(H) = di for all i? (The NP-completeness of this is shown in [2] solving a long open
problem from [1].)

We will be happy to learn of any progress on this problem that you may come up with.

References
1 Charles J Colbourn, William L Kocay, and Douglas R Stinson. Some np-complete problems

for hypergraph degree sequences. Discrete applied mathematics, 14(3):239–254, 1986.
2 Antoine Deza, Asaf Levin, Syed M Meesum, and Shmuel Onn. Optimization over degree

sequences. SIAM Journal on Discrete Mathematics, 32(3):2067–2079, 2018.

4.13 Dynamic Cluster Editing
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We consider the following “dynamic version” of a well-studied graph-based data clustering
problem.
Dynamic Cluster Completion with Edge-Based Distance: In this problem the input is an
undirected graph G and a cluster graph1 Gc over the same vertex set, and two nonnegative
integers, a budget k and a distance bound d. The question is to decide if there exists a
cluster graph G′c with E(G) ⊆ E(G′c) such that
|E(G)⊕ E(G′c)| ≤ k and
|E(Gc)⊕ E(G′c)| ≤ d?

Herein, ⊕ denotes the symmetric difference between two sets. This is a simple (still NP-hard)
version of Dynamic Cluster Editing (where adding and deleting edges from G is allowed
in order to generate a cluster graph) restricted to edge additions.

1 That is, a disjoint union of cliques.
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It is open whether Dynamic Cluster Completion with Edge-Based Distance
is fixed-parameter tractable when parameterized by k. Notably, in the conference
version of Luo et al. [1] at FSTTCS 2018 Dynamic Cluster Completion with Edge-
Based Distance was erroneously claimed to be fixed-parameter tractable for parameter k;
the proof was flawed.

Dynamic Cluster Completion with Edge-Based Distance is known to be fixed-
parameter tractable when parameterized by d and it has a polynomial kernel when para-
meterized by k + d [1]. Refer to Luo et al. [1] for motivation in terms of compromise
clustering, local search, and target cluster graphs. Luo et al. study several variants of
Dynamic Cluster Editing, listing some further open problems.
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4.14 Resolution
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The incidence graph of a CNF formula F is the bipartite graph between the clauses and
the variables of F , where a clause C and a variable x are adjacent if x appears negated or
unnegated in C. The primal graph of F has as vertices the variables of F , two variables are
adjacent of they appear together negated or unnegated in a clause of F . By resolution we
can obtain from clauses C ∨ x and D ∨ ¬x the clause C ∨D. A resolution refutation of F
of size t is a sequence C1, . . . , Ct of clauses such that Ct is the empty clause and for each
i ∈ [t], either Ci ∈ F or Ci can be obtained from Cj and C` for some 1 ≤ j, ` < i. The open
question is: Do unsatisfiable CNF formulas have FPT-sized resolution refutations,
parameterized by the treewidth of the incidence graph?

Known results: (i) CNF formulas have FPT-sized resolution refutations, parameterized
by the pathwidth of the incidence graph [1], and (ii) parameterized by the treewidth of the
primal graph [3]. (iii) If F is a 3CNF formula, then it has an FPT-sized resolution refutation
parameterized by the treewidth k of the incidence graph, since the treewidth of the primal
graph is then at most 3k + 2 [2]. (iv) One can transform in polynomial time a CNF formula
F whose incidence graph has treewidth k into an equisatisfiable 3CNF formula F ′ whose
primal graph has treewidth at most 3k + 3 [4]; if F ′ is unsatisfiable it has an FPT-sized
resolution refutation by (iii) but contains additional variables that where not in F .
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