Path Contraction Faster Than 2"
Akanksha Agrawal

Ben-Gurion University of the Negev, Beersheba, Israel
agrawal@post.bgu.ac.il

Fedor V. Fomin

University of Bergen, Bergen, Norway
fomin@ii.uib.no

Daniel Lokshtanov
University of California Santa Barbara, Santa Barbara, California
daniello@Qucsb.edu

Saket Saurabh

Institute of Mathematical Sciences, HBNI and UMI ReLaX Chennai, India
University of Bergen, Bergen, Norway

saket@imsc.res.in

Prafullkumar Tale
Institute of Mathematical Sciences, HBNI, Chennai, India
pptale@imsc.res.in

—— Abstract

A graph G is contractible to a graph H if there is a set X C E(G), such that G/X is isomorphic to H.
Here, G/ X is the graph obtained from G by contracting all the edges in X. For a family of graphs F,

the F-CONTRACTION problem takes as input a graph G on n vertices, and the objective is to output
the largest integer t, such that G is contractible to a graph H € F, where |V (H)| =t. When F is
the family of paths, then the corresponding F-CONTRACTION problem is called PATH CONTRACTION.
The problem PATH CONTRACTION admits a simple algorithm running in time 2" - n®M In spite
of the deceptive simplicity of the problem, beating the 2" - n°® bound for PATH CONTRACTION
seems quite challenging. In this paper, we design an exact exponential time algorithm for PATH
CONTRACTION that runs in time 1.99987" - n®1). We also define a problem called 3-DISJOINT
CONNECTED SUBGRAPHS, and design an algorithm for it that runs in time 1.88" - n®®). The above
algorithm is used as a sub-routine in our algorithm for PATH CONTRACTION.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms; Theory of
computation — Graph algorithms analysis; Theory of computation — Parameterized complexity
and exact algorithms

Keywords and phrases path contraction, exact exponential time algorithms, graph algorithms,
enumerating connected sets, 3-disjoint connected subgraphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.11
Category Track A: Algorithms, Complexity and Games

Funding Akanksha Agrawal: During some part of the work, the author was supported by ERC
Consolidator Grant SYSTEMATIC-GRAPH (No. 725978).

Saket Saurabh: This work is supported by the European Research Council (ERC) via grant LOPPRE,
reference no. 819416.

1 Introduction

Graph editing problems are one of the central problems in graph theory that have received
a lot of attention in algorithm design. Some of the natural graph editing operations are
vertex/edge deletion, edge addition, and edge contraction. For a family of graphs F, the

© Akanksha Agrawal, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and
37 Prafullkumar Tale;
licensed under Creative Commons License CC-BY
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 11; pp.11:1-11:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:agrawal@post.bgu.ac.il
mailto:fomin@ii.uib.no
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:pptale@imsc.res.in
https://doi.org/10.4230/LIPIcs.ICALP.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

Path Contraction Faster Than 2™

F-EDITING problem takes as input a graph G, and the objective is to find the minimum
number of operations required to transform G into a graph from F. In fact, the F-Editing
problem, where the edit operations are restricted to one of vertex deletion, edge deletion, edge
addition, or edge contraction have also received a lot of attention in algorithm design. The
F-EDITING problems encompass several classical NP-hard problems like VERTEX COVER,
FEEDBACK VERTEX SET, ODD CYCLE TRANSVERSAL, etc.

The F-EDITING problem where the only allowed edit operation is edge contraction, is
called F-CONTRACTION. For a graph G and an edge e = uwv € E(G), contraction of an
edge uv in G results in a graph G/e, which is obtained by deleting u and v from G, adding
a new vertex w, and making w, adjacent to the neighbors of u or v (other than u,v). A
graph G is contractible to a graph H, if there exists a subset X C E(G), such that if we
contract each edge from X, then the resulting graph is isomorphic to H. For several families
of graphs F, early papers by Watanabe et al. [18, 19] and Asano and Hirata [1] showed that
F-CONTRACTION is NP-hard. The NP-hardness of problems like TREE CONTRACTION and
PATH CONTRACTION, which are the F-CONTRACTION problems for the family of trees and
paths, respectively, follows easily from [1, 3]. A restricted version of PATH CONTRACTION,
is the problem P, CONTRACTION, where t is a fixed constant. P.-CONTRACTION is shown
to be NP-hard even for ¢t = 4, while for ¢ < 3, the problem is polynomial time solvable [3].
P,-CONTRACTION alone had received lot of attention for smaller values of ¢, even when the
input graph is from a very structured family of graphs (for instance, see [3, 17, 10, 6, 8, 13],
and the references therein).

Several NP-hard problem like SAT, k-SAT, VERTEX COVER, HAMILTONIAN PATH, etc.
are known to admit an algorithm running in time O*(2")!. These results are obtained by
techniques like brute force search, dynamic programming over subsets, etc. One of the main
questions that arise in this context is: can we break the O*(2") barrier for these problems.
In fact, the hardness of SAT gives rise to the Strong Exponential Time Hypothesis (SETH)
of ITmpagliazzo and Paturi [12, 11], which rules out existence of O*((2 — €)™)-time algorithm
for SAT, for any € > 0. SETH has been used to obtain such algorithmic lower bounds for
many other NP-hard problems (see for example, [4, 14]). Not all NP-hard problems seem
to be as “hard” as SAT. For many NP-hard problems, it is possible to break the O*(2")
barrier. For instance problems like VERTEX COVER and (undirected) HAMILTONIAN PATH
are known to admit algorithms running in time O*((2 — €)™), for some € > 0 [2, 15]. Thus,
one of the natural question is for which NP-hard problems can we avoid the “brute force
search”, and say obtain algorithms that are better than O*(2").

In this article, we focus on the problem PATH CONTRACTION, which is formally defined
below.

PAaTH CONTRACTION
Input: Graph G.
Output: Largest integer ¢, such that G is contractible to P;.

PATH CONTRACTION is known to admit a simple algorithm that runs in time O*(2™). Such
an algorithm can be obtained by coloring the input graph with two colors and contracting
connected components in the colored subgraphs. For a deceptively simple problem like
PATH CONTRACTION, it seems quite challenging to break the O*(2™) barrier. The problem
2-D1sJOINT CONNECTED SUBGRAPHS (2-DCS), can be “roughly” interpreted as solving
P,-CONTRACTION. (We can use the algorithm for 2-DCS to solve Py-CONTRACTION.) There

! The O* notation hides polynomial factors in the running time expression.

A. Agrawal, F. Fomin, D. Lokshtanov, S. Saurabh, and P. Tale

have been studies, which break the O*(2™) brute force barrier, for 2-DCS. In particular, Cygan
et al. [5] designed a 0*(1.933™) algorithm for 2-DCS. This result was improved by Telle and
Villanger, who designed an algorithm running in time O*(1.7804™), for the problem [16]. The
main goal of this article is to break the O*(2™) barrier for PATH CONTRACTION. Obtaining
such an algorithm for PATH CONTRACTION was stated as an open problem in [17].

Our Results. We design an algorithm for PATH CONTRACTION running in time
0*(1.99987™), where n is the number of vertices in the input graph. To the best of our
knowledge, this is the first non-trivial algorithm for the problem, which breaks the O*(2")
barrier. To obtain our main algorithm for PATH CONTRACTION, we design four different
algorithms for the problem, which are used as subroutines to the main algorithm. We exploit
the property that certain types of algorithms are better for certain instance, but may be
inefficient for certain other instances. Roughly speaking, we look for solutions using different
algorithms, and then the best suited algorithm for the instance is used to return the solution.
When one of the four algorithms is called as a subroutine, it does not necessarily return
an optimum solution for the instance, rather it only looks for solutions that satisfy certain
conditions. These conditions are quantified by fractions associated with the input graph. We
note that for appropriate values of these “fractions”, each of our subroutine still serve as
an algorithm for PATH CONTRACTION (and thus, can compute the optimal solution). We
argue that there is always a solution which satisfies the conditions for one of the subroutines,
by setting the values of the fractions appropriately. A saving over O*(2"), in the running
time achieved by our algorithm, also exploits the property that “small” connected sets with
bounded neighborhood can be enumerated “efficiently”.

In the following we very briefly explain the type of solutions we look for, in our subroutines.
Consider a path P;, such that G can be contracted to P;, where t is the largest such integer.
The solution ¢, can be “witnessed” by a partition W = {Wy, Wa,--- , W} of V(G), where the
vertices from W; “merge” to the ith vertex of P, (a formal definition for it can be found in
Section 2). Such a “witness” is called a P;-witness structure. The first (subroutine) algorithm
for PATH CONTRACTION searches for a solution where the Pi-witness structure can be “split”
into two connected disjoint parts which are “small”. Then, it exploits the “smallness” of
the parts to compute solutions efficiently, and combines them to compute the solution for
whole graph. The second subroutine searches for a pair of sets in the P;-witness structure
which are very dense. Then it exploit the sparseness of the remaining graph to efficiently
compute partial solutions for them. Moreover, the pair of dense parts are resolved using the
algorithm of Telle and Villanger for 2-D1sJOINT CONNECTED SUBGRAPH [16]. The third
routine works with a hope that the total number of vertices in one of odd/even sets from
W can be bounded. Finally, the fourth subroutine work by exploiting a similar odd/even
property as the third subroutine, but it relaxes the condition to “nearly” small odd/even set.

To design our algorithm, we also define a problem called 3-DisjoINT CONNECTED
SUBGRAPHS (3-DCS), which is a generalization of the 2-DISJOINT CONNECTED SUBGRAPHS
(2-DCS) problem. 3-DCS takes as input a graph G and disjoint sets Z1, Zy C V(G), and
the goal is to partition V(G) into three sets (V1, U, V3), such that graphs induced on each of
the parts is connected and Z; C V;, for i € [2]. We design an algorithm for 3-DCS running
in time O*(1.88™). The fourth subroutine of our algorithm uses the algorithm for 3-DCS as
a subroutine. As a corollary to our O*(1.88")-time algorithm for 3-DCS, we obtain that
P5-CONTRACTION admits an algorithm running in time O*(1.88™).

Due to space limitation, most proofs appear in full version of the paper.

11:3

ICALP 2019

11:4

Path Contraction Faster Than 2™

2 Preliminaries

In this section, we state some basic definitions and introduce terminologies from graph theory.
We use standard terminology from the book of Diestel [7] for the graph related terminologies
which are not explicitly defined here. We also establish some notations that will be used
throughout. We note that all graphs considered in this article are connected graphs on at
least two vertices (unless stated otherwise).

We denote the set of natural numbers by N (including 0). For k& € N, [k] denotes the
set {1,2,...,k}. A graph G is isomorphic to a graph H if there exists a bijective function
¢ :V(G) = V(H), such that for v,u € V(G), ww € E(G) if and only if (¢(v), p(u)) € E(H).
A graph G is contractible to a graph H if there exists F' C FE(G), such that G/F is isomorphic
to H. In other words, G is contractible to H if there is a surjective function ¢ : V(G) — V(H),
with W(h) ={v € V(G) | ¢(v) = h}, for h € V(H), with the following properties:

for any h € V(H), the graph G[W (h)] is connected, and

for any two vertices h,h' € V(H), hh/ € E(H) if and only if W (h) and W (h') are adjacent

in G.

Let W= {W(h) | h € V(H)}. The sets in W are called witness sets, and W is an H-witness
structure of G.

In this paper, we will restrict ourselves to contraction to paths. This allows us to use an
ordered notation for witness sets, rather than just the set notation. This ordering of the sets in
witness set is given by the ordering of vertices in the path. That is, for a P, = (hy, ha, -+, hy)-
witness structure, W = {W(hq1), W(hs), - , W (ht)} of a graph G, we use the ordered witness
structure notation, (W (hy), W (hg),- -+, W(h:)), or simply, (W, Wa,--- , W;). We note that
we use both unordered and ordered notation, as per the convenience.

In the following, we give some useful observations regarding contraction to paths.

» Observation 2.1. Let G be a graph contractible to P,. Then, there is a P;-witness structure,
W= (Wi,...,Wy), of G such that W1 is a singleton set. Moreover, if t > 3, then there is a
Py-witness structure, W = (Wh,...,Wy), of G such that both Wy and W, are singleton set.

» Observation 2.2. For a set U with n elements and a constant 6 < 1/2, the number
of subsets of U of size at most én is bounded by O*([g(0)]"™), where g(8) =
Moreover, all such subsets can be enumerated in the same time.

1
Fa=e) "

For a graph G, a non-empty set @ C V(G), and integers a,b € N, a connected set A in G
is a (@, a,b)-connected set if Q C A, |A| = a, and |[N(A)| < b. Moreover, a connected set A
in G is an (a,b)-connected set if |A| < a and |[N(A)| < b. Next, we state results regarding
(@, a,b)-connected sets and connected sets, which follow from Lemma 3.1 of [9]. (We note
that their result give slightly better bounds, but for simplicity, we only use the bounds stated
in the following lemmas.)

» Lemma 1. For a graph G, a non-empty set Q C V(G), and integers a,b € N, the
number of (Q, a,b)-connected sets in G is at most 20+t0=1Ql " Moreover, we can enumerate all
(Q, a,b)-connected sets in G in time 2°T0~1Q1 . pOM)

» Lemma 2. For a graph G and integers a,b € N the number of (a,b)-connected sets in G
is at most 2070 . nOW) | Moreover, we can enumerate all such sets in 290 . n@M) time.

3 3-Disjoint Connected Subgraph

In this section, we define a generalization of 2-DISJOINT CONNECTED SUBGRAPHS (2-DCS),
called 3-D1sJOINT CONNECTED SUBGRAPHS (3-DCS). We design an algorithm for 3-DCS

A. Agrawal, F. Fomin, D. Lokshtanov, S. Saurabh, and P. Tale

running in time O*(1.88™), where n is number of vertices in input graph. This algorithm
will be useful in designing our algorithm for PATH CONTRACTION.
In the following, we formally define the problem 2-DCS which is studied in [5, 16].

2-D1sJOINT CONNECTED SUBGRAPHS (2-DCS)

Input: A connected graph G and two disjoint sets Z; and Zs.

Question: Does there exist a partition (V7,Va) of V(G), such that for each i € [2],
Z; CV; and G[V;] is connected?

In the following we state a result regarding 2-DCS which will be useful later sections.

» Proposition 3 ([16] Theorem 3). There exists an algorithm that solves 2-DISJOINT CONNEC-
TED SUBGRAPHS problem in O*(1.7804™) time where n is number of vertices in input graph.

In the 3-DCS problem, the input is same as that of 2-DCS, but we are interested in a
partition of V(@) into three sets, rather than two. We formally define the problem below.

3-D1sJOINT CONNECTED SUBGRAPHS (3-DCS)

Input: A connected graph G and two disjoint sets Z; and Zs.

Question: Does there exist a partition (Vi, U, Vo) of V(G), such that 1) for each ¢ € [2],
Z; C V; and G[V;] is connected, 2) G[U] is connected, and 3) G — U has exactly two
connected components, namely, G[V;] and G[V2]?

We note that the problem definitions for 2-DCS and 3-DCS do not require the sets
Z1, 75 to be non-empty. If either of this set is empty, we can guess a vertex for each of the
non-empty sets. Since there are at most n? such guesses, it will not affect the running time
of our algorithm. Thus, here after we assume that both Z; and Zs are non-empty sets.

In the following theorem, we state our result regarding 3-DCS.

» Theorem 4. 3-DCS admits an algorithm running in time O*(1.88"), where n is number
of vertices in the input graph.

4 Exact Algorithm for Path Contraction

In this section we design our algorithm for PATH CONTRACTION running in time O*(1.99987"),
where n is the number of vertices in the input graph. To design our algorithm, we design
four different subroutines each solving the problem PATH CONTRACTION. Each of these
subroutines are better than the other when a specific “type” of solution exists for the input
instance. Thus the main algorithm will use these subroutines to search for solutions of the
type they are the best for. We also design a sub-routine for enumerating special types of
partial solution, which will be used in some of our algorithms for PATH CONTRACTION.

In the following we briefly explain the four subroutines and describe when they are useful.
Let G be an instance for PATH CONTRACTION, where G is a graph on n vertices. Let ¢ be
the largest integer (which we do not know a priori), such that G is contractible to P; with
(W1, Wa,--- ,W;) as a P-witness structure of G. We let 0S and ES be the union of vertices

in odd and even witness sets, respectively. That is, 0S = ULt:/f] Ws,—1 and ES = UH:/?J Wog.

We now give an intuitive idea of the purposes of each of our subroutines in the main
algorithm, while deferring their implementations to the subsequent sections. We also describe
a subroutine which will help us build “partial solutions”, and this subroutine will be used in
two of our subroutines for PATH CONTRACTION. (We refer the reader to Figure 1 for an
illustration of it.)

11:5

ICALP 2019

11:6

Path Contraction Faster Than 2™

2-UnioN Heavy PC YN
:_ Wi Wy Wy Wiy Wi Wiy Wi Wi Wiy Wi |
| |
| |
|
1—v/2nl =2 - L - =L o [R G G g
L IIIIIIIIIIIIE (.
SMALL Opp/EVEN PC :
W Wy F % W Wi—s /i
W W W AN W N W N ow {
1
1
i
1
s | e
O< 62 (small 0S) O< fnj2 (small ES)
'NEAR SMALL Opp/EvEN PC T
. W Wi W, tW; W Wi Wy W
‘W L Wi o LW N W % > W {
. 1
: i
H ! .
O< en (¢ odd) ! O< en (i even)

Figure 1 Various subroutines for the algorithm and their usage.

Balanced PC. This subroutine is useful when we can “break” the graph into two parts
after a witness set, such that the closed neighborhood for each of the parts have small size,
or in other words, the parts are “balanced”. The quantification of the “balancedness” after
a witness set will be done with the help of a rational number 0 < o < 1, which will be
part of the input for the subroutine. The subroutine will only look for those P;-witness
structures for G for which there is an integer i € [t], such that the sizes of both N[U;e W]
and N[Ujep\ W] are bounded by an. Moreover, the algorithm will return the largest such
t. Our algorithm for BALANCED PC will run in time O*(2%"). Note that when o = 1,
BALANCED PC is an algorithm for PATH CONTRACTION running in time O*(2").

2-Union Heavy PC. This subroutine will be used when “large” part of the graph is
concentrated in two consecutive witness sets and the neighborhood of the rest of the graph
into them is “small”. The quantification of term “large/small” will be done by a a fraction
0 < v < 1, which will be part of the input. The algorithm will only search for those
P,-witness structure of G where there is an integer ¢ € [t — 1], such that |W; UW;11| > yn,
and [N [Ujei—qWill, IN[Ujer ey Will < (1 —v/2)n. Moreover, the algorithm will return
largest such t.

Small Odd/Even PC. Roughly speaking, this subroutine is particularly useful when one of
0S or ES is “small”. The “smallness” of 0S/ES is quantified by a rational number 0 < 8 < 1,
which will be part of the input. The subroutine will only look for those P;-witness structures
for G where one of 0S| < fn/2 or |ES| < fn/2 holds. Moreover, the algorithm will return the
largest integer ¢ > 1, for which such a P;-witness structure for G exists. SMALL ODD/EVEN
PC will run in time O*(c"), where ¢ = g(8/2). We note that when § = 1, then one of
|0S| < Bn/2 or |ES| < Bn/2 definitely holds. Thus, for 5 =1, SMALL ODD/EVEN PC is an
algorithm for PATH CONTRACTION running in time O*(2") (see Observation 2.2).

A. Agrawal, F. Fomin, D. Lokshtanov, S. Saurabh, and P. Tale

Near Small Odd/Even PC. In the case when both 0S and ES are “large”, it may be the
case that for one of 0S/ES, there is just one witness set which is large. That is, when we
remove this large witness set, then one of 0S/ES becomes “small”. The “smallness” of the
remaining 0S/ES (after removing a witness set) will be quantified by a rational number
0 < € <1, which will be part of the input. The subroutine will only look for those P;-witness
structures for G where the size of one of |0S| or |ES| after removal of a witness set is bounded
by en. Moreover, the algorithm will return the largest such t.

Our subroutines BALANCED PC and 2-UNION HEAVY PC use a subroutine called
ENUM-PARTIAL-PC for enumerating solutions for “small” subgraphs. The efficiency of the
algorithm for ENUM-PARTIAL-PC is centered around the bounds for (Q, a,b)-connected
sets. In Section 4.1 we (define and) design an algorithm for ENUM-PARTIAL-PC. In Sec-
tion 4.2, 4.3, 4.4 and 4.5 we present our algorithms for BALANCED PC, 2-UNION HEAVY
PC, SMALL OpD/EVEN PC, and NEAR SMALL ODD/EVEN PC, respectively. Finally, in
Section 4.6 we show how we can use the above algorithms to obtain an algorithm for PATH
CONTRACTION, running in time O*(1.99987").

4.1 Algorithm for Enum-Partial-PC

In this section, we describe an algorithm which computes “nice solution” for all “p-small”
subset of vertices of an input graph. In an input graph G, for a set S C V(G), by ®(S) we
denote the set of vertices in S that have a neighbor outside S. That is, ®(S) = {s € S |
N(s)\ S #£0}. Aset SCV(G) is p-small if N[S] < pn. For an p-small set S C V(G), the
largest integer tg is called the nice solution if G[S] is contractible to P, with all the vertices
in ®(95) in the end bag. That is, there is a P;,-witness structure (Wy, Wa, --- Wy,) of G[S],
such that ®(S) C W;,. We formally define the problem ENUM-PARTIAL-PC in the following
way.

ENUM-PARTIAL-PC

Input: A graph G on n vertices and a fraction 0 < p < 1.

Output: A table I" which is indexed by p-small sets. For any p-small set S, T'[S] is the
largest integer ¢ for which G[S] has a P;-witness structure W = (W, Wa, --- | W), such
that ®(S) C W;.

We design an algorithm for ENUM-PARTIAL-PC running in time O*(2°"). We briefly
explain how we can compute nice solutions for p-small set. Consider an p-small set S. Note
that |S| < pn. Thus, by the method of 2-coloring (as was explained in the introduction), we
can obtain the nice solution in time 2°”. This would lead us to an algorithm running in time
O*(2P"g(p)™). By doing a simple dynamic programming we can also obtain an algorithm
running in time O*(3™). We will improve upon these algorithms by a dynamic programming
algorithm where we update the values “forward” instead of looking “backward”.

The Algorithm. We start by defining the tables entries for our dynamic programming
routine, which is used for computation of nice solutions. Let S be the set of all connected sets S
in G, such that |N[S]| < pn. That is, S = {S C V(G) | G[S] is connected and |[N[S]| < pn}.
For each S € S, we have an entry denoted by I'[S]. T'[S] is the largest integer ¢ > 1 for which
G[S] can be contracted to P, with a P,-witness structure W = (W1, Wa, -+, W,) of G[S5],
such that ®(S) C W,. The algorithm starts by initializing I'[S] = 1, for each S € S.

In the following we introduce some notations that will be useful in stating the algorithm.
Consider S € §. We will define a set A[S], which will be the set of all “potential extenders
bags” for S, when we look at contraction to paths for larger graphs (containing S). For the

11:7

ICALP 2019

11:8

Path Contraction Faster Than 2™

<an <an
[<<
:] ~ G-
|
I
|
I W s Wi W, P Wivi Wigo Wiy Wy

Figure 2 An illustration of construction of the solution using solutions for instances of smaller
sizes.

sake of notational simplicity, we will define A, [S] C A[S], where the sets in A, ,[S] will be
of size exactly a and will have exactly b neighbors outside S. We will define the above sets
only for “relevant” as and bs. We now move to the formal description of these sets. Consider
S € S and integers a, b, such that |S| 4+ a+ b < pn and |[N(S)| <b. We let A, ,[S] = {AC
V(G - S) | G— S[4] is connected, Ng(S) C A, |A| = a, and |[Ng_s(A)| = b}.

The algorithm now computes nice solutions. The algorithm considers sets from S € S,
in increasing order of their sizes and does the following. (Two sets that have the same size
can be considered in any order.) For every pair of integer a, b, such that |[S|+a+b < pn
and |N(S)| < b, it computes the set A, ;[S]. Note that A, ,[S] can be computed in time
O*(20+4=151) using Lemma 1. Now the algorithm considers A € A, ;[S]. Intuitively speaking,
A is the "new” witness set to be “appended” to the witness structure of G[S], to obtain a
witness structure for G[S U A]. Thus, the algorithm sets I'[S U A] = max{T'[SU A],T'[S] +1}.
This finishes the description of our algorithm.

In the following few lemmas we establish the correctness and runtime analysis of the
algorithm.

» Lemma 5. For each S € S, the algorithm computes T'[S] correctly.

» Lemma 6. The algorithm presented for ENUM-PARTIAL-PC runs in time O*(2P™).

4.2 Algorithm for Balanced PC

We formally define the problem BALANCED PC in the following.

BALaNceD PC

Input: A graph G on n vertices and a fraction 0 < a < 1.

Output: Largest integer ¢ > 2 for which G has a Pi-witness structure W = (Wy, W,
-+, Wy), such that there is i € [t] with N[Ujc;yW;] < an and N[UjeppgWjl < an.
Moreover, if no such ¢ exists, then output 1.

We design an algorithm for BALANCED PC running in time O*(2°"). Let (G, «) be an
instance of BALANCED PC.

We begin by explaining the intuition behind the algorithm. Recall that for a a-small set
S C V(G), integer tg is called the nice solution if G[S] is contractible to Py, with all the
vertices in ®(S) in the end bag. That is, there is a P;,-witness structure (Wy, Wa, - W)
of G[S], such that ®(S) C W;,. Suppose that we know the value of tg for every a-small set
S. Now we see how we can use these nice solutions for a-small sets to solve our problem (see
Figure 2). Recall that we are looking for the largest integer ¢, such that G is contractible to
Py, with W = (W, Wa, --- , ;) as a Pi-witness structure of G, such that there is ¢ € [¢] with

A. Agrawal, F. Fomin, D. Lokshtanov, S. Saurabh, and P. Tale

Figure 3 An intuitive illustration of the algorithm for 2-Union HEavy PC.

| Ujelit) Wj| < an and | Ujel\[i-1] Wj| < an. Let S = Uje[i]Wj- As | Ujelit) Wj| < an
and N(S) C W;4q, the set S is an a-small set. Similarly, we can argue that V(G) \ S
is an a-small set. Thus, for S and V(G) \ S, we know the nice solutions t5 and ty (s,
respectively. Notice that the solution to the whole graph is actually ts + ty(g)\s-

The Algorithm. The algorithm initializes ¢t = 1. (At the end, ¢ will be the output of the
algorithm.) The algorithm computes table I' =ENUM-PARTIAL-PC(G, a) using algorithm

from Section 4.1. Let S be the set of all connected sets S in G, such that |[N[S]| < an.

That is, § = {S C V(G) | G[5] is connected and |N[S]| < an}. For each S € S, we have
an entry denoted by I'[S]. The algorithm considers each S € S for which V(G)\ SeS. It
sets t = max{t,T'[S] + T[V(G) \ S]}. Finally, the algorithm returns ¢ as the output. This
completes the description of the algorithm.

» Lemma 7. The algorithm presented for BALANCED PC is correct.

» Lemma 8. The algorithm presented for BALANCED PC runs in time O*(2°™).

4.3 Algorithm for 2-Union Heavy PC

We formally define the problem 2-UNION HEAVY PC in the following (also see Figure 1).

2-UNioN HEAvy PC

Input: A graph G on n vertices and a fraction 0 < v < 1.

Output: Largest integer ¢ > 3 for which G has a P;-witness structure W = (W1, Wa,
.-+, W), such that there is ¢ € [t — 1] for which the following conditions hold: 1)
Wi UWip1]| > yn and 2) [N [Ujei—yWill, IN[Ujer ey Will < (1 —v/2)n. Moreover, if
no such ¢ exists, then output 2.

We design an algorithm for 2-UN1oN HEAVY PC running in time O*(2(1=7/2)7 4 ¢,
where ¢ = max,<;5<1{1.7804% - g(1 — §)}. The first term in the running time expression will
be due to a call made to ENUM-PARTIAL-PC with p = (1 — v/2), and the second term will
be due to enumerating sets of size at most (1 — v)n and running the algorithm for solving
2-Di1sJoINT CONNECTED SUBGRAPHS for an instance created for each of them, using the
algorithm of Telle and Villanger [16].

Let (G,) be an instance of 2-UNION HEAVY PC. We start by explaining the intuitive idea
behind our algorithm (see Figure 3). Consider a P;-witness structure W = (Wy, Wa, - -+ | W;)
of G, such that there is ¢ € [t —1] for which the following conditions hold: 1) |[W;UW, 1| > yn
and 2) ‘N[Uje[ifl]WjHa |N[Uj€[t]\[i+1]Wj]| <(1—9/2)n. Let S =W, UW,;11. As W, UW, 4
is “large”, the number of vertices in S = V(G) \ (W; UW,;11) is “small”. That is, we can
bound |S| by (1 —7)n. Note that G[S] has exactly two connected components, which we

11:9

ICALP 2019

11:10

Path Contraction Faster Than 2™

denote by G[S;] and G[Ss]. Also note that N[S1], N[S2] < (1 —/2)n. The algorithm starts
by enumerating all such “potential candidates” for S. As for each of the two components of
G|S], the sizes of N[S1] and N[S3] can be bounded, the algorithm computes the “optimum
solution” for them using the algorithm for ENUM-PARTIAL-PC. In the above we use the
algorithm for ENUM-PARTIAL-PC because we are only interested in those solutions where
the vertices of ®(51) and ®(S3) are contained in one of the “end bags” of their respective
solutions. Now we see how we can use these solutions to obtain the solution for the whole
graph. Note that we have to “split” vertices in V(G) \ S into two “connected sets”, where
the first set must contain all the vertices from N(S;) and the second set must contain all the
vertices from N(S7). For the above we employ the algorithm for 2-D1SJOINT CONNECTED
SUBGRAPHS (see Section 3 for its definition) by Telle and Villanger [16].

We now formally describe our algorithm. The algorithm will output an integer ¢, which is
initially set to 2. Let S = {S C V(G) | |S] < (1 —v)n and G[S] has exactly two connected
components G[S1], G[Ss], s.t. [N[S1]],|N[Ss]| < (1—~/2)n}. Let S = {S C V(G) | [N[S]| <
(1 —~/2)n and G[S] is connected}. The algorithm will now computes a table I', which has
an entry F[g], for ecach S € 8. The definition of T is the same as that in Section 4.2,
where p = 1 — /2. That is, for Ses, F[g] is the largest integer ¢ > 1 for which G[§}
can be contracted to P, with a P,-witness structure W = (W1, Wy, --- ,W,) of G[S], such
that ®(5) C W,. Compute the value of I[S), for each S € 8, by using ENUM-PARTIAL-
PC(G,1 — v/2). For each S € S, the algorithm does the following. Recall that G[5]
has exactly two connected components. Let the two connected components in G[S] be
G[S1] and G[Sz2], where S; U Sz = S. Recall that |[N[S;]|, N[S1]] < (1 —v/2)n. Thus,
81,8, € 8. If (G — S, Ng(S1), Na(S2)) is a yes-instance of 2-DCS, then the algorithm sets
t = max{t,T'[S1] + I'[S2] + 2}, and otherwise, it moves to the next set in S. Finally, the
algorithm outputs t. This completes the description of the algorithm.

In the following two lemmas we present the correctness and runtime analysis of the
algorithm, respectively.

» Lemma 9. The algorithm presented for 2-UNION HEAVY PC is correct.

» Lemma 10. The algorithm presented for 2-UNION HEAVY PC runs in time O*(201=7/2)n 4
), where ¢ = max,<5<1{1.7804° - g(1 — §)}.

4.4 Algorithm for Small Odd/Even PC

We formally define the problem SMALL ODD/EVEN PC in the following.

SMALL Opp/EVEN PC

Input: A graph G on n vertices and a fraction 0 < g < 1.

Output: Largest integer t for which G can be contracted to P;, with W =
(W1, Wa, -, W) as a P-witness structure of G, such that |0Syy| < An/2 or |ESyy| <
Bn/2, where 08yy = Uie”’t/Q"]WQi_l and ESyy = Uie[[t/2J]W2i~

In this section, we design an algorithm for SMALL ODD/EVEN PC running in time
O*(c™), where ¢ = g(5/2).

Let (G, B) be an instance of SMALL ODD/EVEN PC. The algorithm is fairly simple. It
starts by enumerating all “potential candidates” for 0Syy (resp. ESyy), i.e., the set of all
subsets of V(G) of size at most Sn/2. Then, for each such “potential set”, it contracts G
appropriately, and finds the length of the path to which G is contracted (and stores 0, if the
contracted graph is not a path). Finally, it returns the maximum over such path lengths.

A. Agrawal, F. Fomin, D. Lokshtanov, S. Saurabh, and P. Tale

Wi

O<en

Figure 4 An intuitive illustration of the algorithm for NEAR SMALL ODD/EVEN PC.

We now move to formal description of the algorithm. We start by enumerating the set
of all subsets of V(G) of size at most fn/2. That is, S = {S C V(G) | |S| < pn/2}. Note
that S can be computed in time O*(g(/5/2)™), using Observation 2.2. For each S € S the
algorithm does the following. Let Cs and Cg be the set of connected components of G[S] and
G — S, respectively. Let G be the graph obtained from G by contracting each C' € Cg UCg
to a single vertex. Set leng = |V (Gg)|, if G is a path, and leng = 0, otherwise. Finally, the
algorithm returns maxgegs leng.

In the following lemma we prove the correctness and runtime analysis of the algorithm.

» Lemma 11. The algorithm presented for SMALL ODD/EVEN PC is correct and runs in
time O*(g(6/2)").
4.5 Algorithm for Near Small Odd/Even PC

We formally define the problem NEAR SMALL ODD/EVEN PC in the following (also see
Figure 1).

NEAR SMALL ODD/EVEN PC

Input: A graph G on n vertices and a fraction 0 < e < 1.

Output: Largest integer ¢ > 3 for which there is a P,-witness structure W =
(W1, Wa,--- ;W) of G, for which there is i € {2,3,---,¢t — 1}, such that if 4 is odd,
then [0Sy \ W;| < en and otherwise, |[ESyy \ Wi| < en. Here, 0Syy = U;e[r¢/21)Wai—1 and
ESyy = Uje[|t/2))Wai- If no such ¢ > 3 exists, then output 2.

We design an algorithm for NEAR SMALL ODD/EVEN PC running in time O*(¢") where
¢ = maxg<s<.{1.88107% . g(4)}. The second term in multiplicative factor will be due
enumeration of sets, and the first term will be due to calls made to the algorithm for
3-D1sJoINT CONNECTED SUBGRAPHS, from Section 3.

Let (G,€) be an instance of NEAR SMALL ODD/EVEN PC. We start by explaining
the intuitive idea behind our algorithm (see Figure 4). Consider a Pi-witness structure
W= Wy, Wy, --- W) of G, for which there is i € {2,3,--- ,#—2}, such that if ¢ is odd, then
|0Syy \ Wi| < en and otherwise, [ESyy \ W;| < en. In the above, 0Syy = Uje[rs/27Wai—1 and

ESyy = Uje|t/2))W2i- Let us consider the case when ¢ is odd (the other case is symmetric).

Let S = 0Syy \ W;. (The union of vertices from yellow sets in Figure 4 is the set S.) As
|S| < en, the algorithm starts by enumerating all “potential candidates” for the set S. All the
components of G — S, except for the component C, containing W;, must each be contracted
to a single vertex. Similarly, the components of G[S] must each be contracted to a single
vertex. Moreover, the component containing W; must be “split” into three sets. The first and

the last sets in the “split” must contain the neighbors of W;_o and W; 2 in C, respectively.

To obtain such a “split”, we use the algorithm for 3-D1sSJOINT CONNECTED SUBGRAPHS that
we designed in Section 3.

11:11

ICALP 2019

11:12

Path Contraction Faster Than 2™

We now formally describe our algorithm. The algorithm will output an integer ¢, which
is initially set to 2. Let S = {S C V(G) | |S| < en}. For each S € S, the algorithm does
the following. Let Cs and Cg be the sets of connected components in G[S] and G — S,
respectively. Let Hg be obtained from G by contracting component in Cg UCg to single
vertices. That is, Hg has a vertex v for each C' € Cs UCg, and two vertices v, ver € V(Hg)
are adjacent in Hg if and only if C' and C’ are adjacent in G. If Hg is not a path, then the
algorithm moves to the next set in S. Otherwise, for each C* € Cg it does the following.
Intuitively speaking, C* is the current guess for the component containing vertices from W;
for the witness structure that we are looking for. Note that C* can be adjacent to at most
two components from Cg, as Hg is a path. Moreover, C* must be adjacent to at least one
component from Cg, as G is connected and S is a strict subset of V(G), i.e., S # V(G). Let
C be a component from Cg that is adjacent to C* in G, and Z; = N(Cy) N V(C*). Let
Cy € Cs\ {C1} be a component of G[S] that is adjacent to C*, and Zy = N(Ce) NV (C*). If
such a Cy does not exist, then we set Zo = 0. If (G[C*], Z1, Z3) is a yes-instance of 3-DCS,
then the algorithm updates t = max{t, |V (Hg)| 4+ 2}. After finishing the processing for each
S € S, the algorithm outputs ¢. This finishes the description of our algorithm.

In the following two lemmas we present the correctness and runtime analysis of the
algorithm, respectively.

» Lemma 12. The algorithm presented for NEAR SMALL ODD/EVEN PC is correct.

» Lemma 13. The algorithm presented for NEAR SMALL ODD/EVEN PC runs in time
O*(c"), where ¢ = maxg<s<.{1.88179) . g(3)}.

4.6 Algorithm for Path Contraction

We are now ready to present our algorithm for PATH CONTRACTION. The algorithm calls
four of the subroutines SMALL ODD/EVEN PC, BALANCED PC, 2-UNioN HEAvY PC, and
NEAR SMALL ODD/EVEN PC for appropriate instances, and returns the maximum of their
outputs. In the following theorem, we present the algorithm, which is the main result of this
paper.

» Theorem 14. PATH CONTRACTION admits an algorithm running in time O*(1.99987"),
where n is the number of vertices in the input graph.

5 Conclusion

We generalized the 2-DisJOINT CONNECTED SUBGRAPHS problem, to a problem called
3-Di1sJOINT CONNECTED SUBGRAPHS, where instead of partitioning the vertex set into two
connected sets, we are required to partition it into three connected sets. We gave an algorithm
for 3-D1sJOINT CONNECTED SUBGRAPHS running in time O*(1.88™). We believe that this
algorithm can be of independent interest and may find other algorithmic applications. We
designed an algorithm for PATH CONTRACTION which breaks the O*(2") barrier. It was
surprising that even for a simple problem like PATH CONTRACTION, there was no known
algorithm that solves it faster than O*(2"). Our algorithm for PATH CONTRACTION relied
the fact that the number of (Q, a, b)-connected sets can be bounded by O*(2¢+~IQl). This
gives us savings in the number of states that we consider, in our dynamic programming
routine (for enumerating partial solutions). We designed four different algorithms for PATH
CONTRACTION and used them for appropriate instances, to obtain the main algorithm for
Patan CONTRACTION.

A. Agrawal, F. Fomin, D. Lokshtanov, S. Saurabh, and P. Tale

—— References

1

10

11

12

13

14

15

16

17

18

19

Takao Asano and Tomio Hirata. Edge-Contraction Problems. Journal of Computer and
System Sciences, 26(2):197-208, 1983.

Andreas Bjorklund. Determinant Sums for Undirected Hamiltonicity. SIAM J. Comput.,
43(1):280-299, 2014.

Andries Evert Brouwer and Hendrik Jan Veldman. Contractibility and NP-completeness.
Journal of Graph Theory, 11(1):71-79, 1987.

Marek Cygan, Holger Dell, Daniel Lokshtanov, Daniel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlstrém. On Problems as Hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41:1-41:24, 2016.

Marek Cygan, Marcin Pilipczuk, Michat Pilipczuk, and Jakub Onufry Wojtaszczyk. Solving
the 2-disjoint connected subgraphs problem faster than 2". Algorithmica, 70(2):195-207, 2014.

Konrad K Dabrowski and Daniél Paulusma. Contracting bipartite graphs to paths and cycles.

Information Processing Letters, 127:37-42, 2017.

Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.

Springer, 2012.

Jifi Fiala, Marcin Kaminski, and Daniél Paulusma. A note on contracting claw-free graphs.

Discrete Mathematics and Theoretical Computer Science, 15(2):223-232, 2013.

Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics.

Combinatorica, 32(3):289-308, 2012.

Pinar Heggernes, Pim van ’t Hof, Benjamin Lévéque, and Christophe Paul. Contracting chordal
graphs and bipartite graphs to paths and trees. Discrete Applied Mathematics, 164:444-449,
2014.

Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367-375, 2001.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001.
Walter Kern and Daniel Paulusma. Contracting to a Longest Path in H-Free Graphs. arXiv
preprint, 2018. arXiv:1810.01542.

Daniel Lokshtanov, Déaniel Marx, and Saket Saurabh. Known Algorithms on Graphs of

Bounded Treewidth Are Probably Optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, 2018.
Robert Endre Tarjan and Anthony E. Trojanowski. Finding a Maximum Independent Set.

SIAM J. Comput., 6(3):537-546, 1977.

Jan Arne Telle and Yngve Villanger. Connecting terminals and 2-disjoint connected subgraphs.
In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 418—428.

Springer, 2013.

Pim van’t Hof, Daniél Paulusma, and Gerhard J Woeginger. Partitioning graphs into connected
parts. Theoretical Computer Science, 410(47-49):4834-4843, 20009.

Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the removal of forbidden graphs
by edge-deletion or by edge-contraction. Discrete Applied Mathematics, 3(2):151-153, 1981.
Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the NP-hardness of Edge-Deletion
and Contraction Problems. Discrete Applied Mathematics, 6(1):63-78, 1983.

11:13

ICALP 2019

http://arxiv.org/abs/1810.01542

	Introduction
	Preliminaries
	3-Disjoint Connected Subgraph
	Exact Algorithm for Path Contraction
	Algorithm for Enum-Partial-PC
	Algorithm for Balanced PC
	Algorithm for 2-Union Heavy PC
	Algorithm for Small Odd/Even PC
	Algorithm for Near Small Odd/Even PC
	Algorithm for Path Contraction

	Conclusion

