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Abstract
Maximal independent set (MIS), maximal matching (MM), and (∆ + 1)-(vertex) coloring in graphs
of maximum degree ∆ are among the most prominent algorithmic graph theory problems. They
are all solvable by a simple linear-time greedy algorithm and up until very recently this constituted
the state-of-the-art. In SODA 2019, Assadi, Chen, and Khanna gave a randomized algorithm for
(∆ + 1)-coloring that runs in Õ(n

√
n) time1, which even for moderately dense graphs is sublinear

in the input size. The work of Assadi et al. however contained a spoiler for MIS and MM: neither
problems provably admits a sublinear-time algorithm in general graphs. In this work, we dig deeper
into the possibility of achieving sublinear-time algorithms for MIS and MM.

The neighborhood independence number of a graph G, denoted by β(G), is the size of the largest
independent set in the neighborhood of any vertex. We identify β(G) as the “right” parameter
to measure the runtime of MIS and MM algorithms: Although graphs of bounded neighborhood
independence may be very dense (clique is one example), we prove that carefully chosen variants
of greedy algorithms for MIS and MM run in O(nβ(G)) and O(n logn · β(G)) time respectively on
any n-vertex graph G. We complement this positive result by observing that a simple extension of
the lower bound of Assadi et al. implies that Ω(nβ(G)) time is also necessary for any algorithm
to either problem for all values of β(G) from 1 to Θ(n). We note that our algorithm for MIS is
deterministic while for MM we use randomization which we prove is unavoidable: any deterministic
algorithm for MM requires Ω(n2) time even for β(G) = 2.

Graphs with bounded neighborhood independence, already for constant β = β(G), constitute a
rich family of possibly dense graphs, including line graphs, proper interval graphs, unit-disk graphs,
claw-free graphs, and graphs of bounded growth. Our results suggest that even though MIS and
MM do not admit sublinear-time algorithms in general graphs, one can still solve both problems in
sublinear time for a wide range of β(G)� n.

Finally, by observing that the lower bound of Ω(n
√
n) time for (∆ + 1)-coloring due to Assadi

et al. applies to graphs of (small) constant neighborhood independence, we unveil an intriguing
separation between the time complexity of MIS and MM, and that of (∆ + 1)-coloring: while the
time complexity of MIS and MM is strictly higher than that of (∆ + 1) coloring in general graphs,
the exact opposite relation holds for graphs with small neighborhood independence.
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1 Introduction

Maximal independent set (MIS) and maximal matching (MM) are two of the most prominent
graph problems with a wide range of applications in particular to symmetry breaking.
Algorithmic study of these problems can be traced back to at least four decades ago in the
pioneering work of [33, 41, 1, 32] on PRAM algorithms. These problems have since been
studied extensively in various models including distributed algorithms [40, 46, 31, 34, 38,
10, 9, 21, 19], dynamic algorithms [43, 11, 50, 45, 5, 6], streaming algorithms [18, 27, 15, 4],
massively parallel computation (MPC) algorithms [37, 22, 12], local computation algorithms
(LCA) [48, 2, 21, 20, 39, 23], and numerous others.

In this paper, we consider the time complexity of MIS and MM (in the centralized
setting) and focus on one of the most basic questions regarding these two problems:

How fast can we solve maximal independent set and maximal matching problems?

At first glance, the answer to this question may sound obvious: there are text-book greedy
algorithms for both problems that run in linear time and “of course” one cannot solve these
problems faster as just reading the input takes linear time. This answer however is not quite
warranted: for the closely related problem of (∆ + 1)-(vertex) coloring, very recently Assadi,
Chen, and Khanna [4] gave a randomized algorithm that runs in only Õ(n

√
n) time on any

n-vertex graph with high probability2. This means that even for moderately dense graphs,
one can indeed color the graph faster than reading the entire input, i.e., in sublinear time.

The Assadi-Chen-Khanna algorithm hints that one could perhaps hope for sublinear-time
algorithms for MIS and MM as well. Unfortunately however, the work of [4] already contained
a spoiler: neither MIS nor MM admits a sublinear-time algorithm in general graphs.

In this work, we show that despite the negative result of [4] for MIS and MM, the hope for
obtaining sublinear-time algorithms for these problems need not be short lived. In particular,
we identify a key parameter of the graph, namely the neighborhood independence number,
that provides a more nuanced measure of runtime for these problems and show that both
problems can be solved much faster when neighborhood independence is small. This in turn
gives rise to sublinear-time algorithms for MIS and MM on a rich family of graphs with
bounded neighborhood independence. In the following, we elaborate more on our results.

1.1 Our Contributions
For a graph G(V,E), the neighborhood independence number of G, denoted by β(G), is
defined as the size of the largest independent set in the graph in which all vertices of the
independent set are incident on some shared vertex v ∈ V . Our main result is as follows:

B Result 1. There exist algorithms that given a graph G(V,E) find (i) a maximal
independent set of G deterministically in O(n ·β(G)) time, and (ii) a maximal matching
of G randomly in O(n logn · β(G)) time in expectation and with high probability.

When considering sublinear-time algorithms, specifying the exact data model is important
as the algorithm cannot even read the entire input once. We assume that the input graph
is presented in the adjacency array representation, i.e., for each vertex v ∈ V , we are given
degree deg(v) of v followed by an array of length deg(v) containing all neighbors of v in

2 We say an event happens with high probability if it happens with probability at least 1− 1/poly(n).
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arbitrary order. This way, we can access the degree of any vertex v or its i-th neighbor for
i ∈ [deg(v)] in O(1) time. We also make the common assumption that a random number
from 1 to n can be generated in O(1) time. This is a standard input representation for graph
problems and is commonly used in the area of sublinear-time algorithms (see, e.g. [25, 26, 44]).
We elaborate on several aspects of Result 1 in the following.

Optimality of Our Bounds. Assadi et al. [4] proved that any algorithm for MIS or MM
requires Ω(n2) time in general3. These lower bounds can be extended in an easy way to
prove that Ω(n · β) time is also necessary for both problems on graphs with neighborhood
independence β(G) = β. Indeed, independently sample t := n/β graphs G1, . . . , Gt each on
β vertices from the hard distribution of graphs in [4] and let G be the union of these graphs.
Clearly, β(G) ≤ β and it follows that since solving MIS or MM on each graph Gi requires
Ω(β2) time by the lower bound of [4], solving t independent copies requires Ω(t · β2) = Ω(nβ)
time. As such, our Result 1 is optimal for every β ranging from a constant to Θ(n) (up to a
constant factor for MIS and O(logn) for MM).

Our Algorithms. Both our algorithms for MIS and MM in Result 1 are similar to the
standard greedy algorithms, though they require careful adjustments and implementation.
Specifically, the algorithm for MIS is the standard deterministic greedy algorithm (with
minimal modification) and for MM we use a careful implementation of the (modified)
randomized greedy algorithm (see, e.g. [16, 3, 42, 47]). The novelty of our work mainly
lies in the analysis of these algorithms. We show, perhaps surprisingly, that already-known
algorithms can in fact achieve an improved performance and run in sublinear-time for graphs
with bounded neighborhood independence even when the value of β(G) is unknown to the
algorithms. Combined with the optimality of our bounds mentioned earlier, we believe that
this makes neighborhood independence number an ideal parameter for measuring the runtime
of MIS and MM algorithms.

Determinism and Randomization. Our MIS algorithm in Result 1 is deterministic which
is a rare occurrence in the realm of sublinear-time algorithms. But for MM, we again fall
back on randomization to achieve sublinear-time performance. This is not a coincidence
however: we prove in Theorem 11 that any deterministic algorithm for MM requires Ω(n2)
time even on graphs with constant neighborhood independence number. This also suggests a
separation in the time complexity of MIS and MM for deterministic algorithms.

Bounded Neighborhood Independence. Our Result 1 is particularly interesting for graphs
with constant neighborhood independence as we obtain quite fast algorithms with running
time O(n) and O(n logn) for MIS and MM, respectively. Graphs with constant neighborhood
independence capture a rich family of graphs; several illustrative examples are as follows:

Line graphs: For any arbitrary graph G, the neighborhood independence number of its
line graph L(G) is at most 2. More generally, for any r-hyper graph H in which each
hyper-edge connects at most r vertices, β(L(H)) ≤ r.

3 We note that the lower bound for MIS only appears in the full version of [4].
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17:4 When Algorithms for MIS and MM Run in Sublinear Time

Bounded-growth graphs: A graph G(V,E) is said to be of bounded growth iff there exists
a function such that for every vertex v ∈ V and integer r ≥ 1, the size of the largest
independent set in the r-neighborhood of v is bounded by f(r). Bounded-growth graphs
in turn capture several intersection graphs of geometrical objects such as proper interval
graphs [30], unit-disk graphs [28], quasi-unit-disk graphs [36], and general disc graphs [29].
Claw-free graphs: Graphs with neighborhood independence β can be alternatively defined
as β-claw-free graphs, i.e., graphs that do not contain K1,β as an induced subgraph.
Claw-free graphs have been subject of extensive study in structural graph theory; see
the series of papers by Chudnovsky and Seymour, starting with [14], and the survey by
Faudree et al. [17].

Above graphs appear naturally in the context of symmetry breaking problems (for
instance in the study of wireless networks), and there have been numerous works on MIS
and MM in graphs with bounded neighborhood independence and their special cases (see,
e.g. [36, 49, 28, 7, 8, 29, 19] and references therein).

1.2 Other Implications
Despite the simplicity of our algorithms in Result 1, they lead to several interesting implica-
tions, when combined with some known results and/or techniques:

(a) Approximate vertex cover and matching: Our MM algorithm in Result 1 combined
with well-known properties of maximal matchings implies an O(n logn · β(G)) time
2-approximation algorithm to both maximum matching and minimum vertex cover.
For graphs with constant neighborhood independence, our results improve upon the
sublinear-time algorithms of [44] that achieve (2 + ε)-approximation to the size of the
optimal solution to both problems but did not find the actual edges or vertices in Õε(n)
time on general graphs.

(b) Caro-Wei bound and approximation of maximum independent set: The Caro-Wei bound
[13, 51] states that any graph G(V,E) contains an independent set of size at least∑
v∈V

1
deg(v)+1 , and there is a substantial interest in obtaining independent sets of this

size (see, e.g. [27, 29, 15] and references therein). One standard way of obtaining such
independent set is to run the greedy MIS algorithm on the vertices of the graph in the
increasing order of their degrees. As our Result 1 implies that one can implement the
greedy MIS algorithm for any ordering of vertices, we can sort the vertices in O(n) time
and then run our deterministic algorithm with this order to obtain an independent set
with Caro-Wei bound size in O(nβ(G)) time. Additionally, it is easy to see that on
graphs with β(G) = β, any MIS is a β-approximation to the maximum independent set
(see, e.g. [35, 49]). We hence also obtain a constant factor approximation in O(n) time
for maximum independent set on graphs with bounded neighborhood independence.

(c) Separation of (∆ + 1)-coloring with MIS and MM: Assadi et al. [4] gave an Õ(n
√
n) time

algorithm for (∆+1) coloring and an Ω(n2) time lower bound for MIS and MM on general
graphs. It is also shown in [4] that (∆ + 1) coloring requires Ω(n

√
n) time and in fact

the lower bound holds for graphs with constant neighborhood independence. Together
with our Result 1, this implies an interesting separation between the time-complexity
of MIS and MM, and that of (∆ + 1)-coloring: while the time complexity of MIS and
MM is strictly higher than that of (∆ + 1) coloring in general graphs, the exact opposite
relation holds for graphs with small neighborhood independence number.
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(d) Efficient MM computation via MIS on line graphs: The line graph L(G) of a graph G
contains m vertices corresponding to edges of G and up to O(mn) edges. Moreover, for
any graph G, β(L(G)) ≤ 2. As an MIS in L(G) corresponds to an MM in G, our results
suggest that despite the larger size of L(G), perhaps surprisingly, computing an MM of
G through computing an MIS for L(G) is just as efficient as directly computing an MM
of G (assuming direct access to L(G)). This observation may come into play in real-life
situations where there is no direct access to the graph but rather only to its line graph.

Preliminaries and Notation
For a graph G(V,E) and vertex v ∈ V , N(v) and deg(v) denote the neighbor-set and degree
of a vertex v, respectively. For a subset U ⊆ V , degU (v) denotes the degree of v to vertices
in U . Denote by β(G) the neighborhood independence number of graph G.

2 Technical and Conceptual Highlights

Our first (non-technical) contribution is in identifying the neighborhood independence
number as the “right” measure of time-complexity for both MIS and MM. We then show
that surprisingly simple algorithms for these problems run in sublinear-time on graphs with
bounded β(G).

The textbook greedy algorithm for MIS works as follows: scan the vertices in an arbitrary
order and add each scanned vertex to a set M iff it does not already have a neighbor in
M. Clearly the runtime of this algorithm is Θ(

∑
v∈V deg(v)) = Θ(m) and this bound does

not improve for graphs with small β. We can slightly tweak this algorithm by making every
vertex that joinsM to mark all its neighbors and simply ignore scanning the already marked
vertices. This tweak however is not useful in general graphs as the algorithm may waste time
by repeatedly marking the same vertices over and over again without making much further
progress (the complete bipartite graph is an extreme example). The same problem manifests
itself in other algorithms, including those for MM, and is at the root of the lower bounds
in [4] for sublinear-time computation of MIS and MM.

We prove that this issue cannot arise in graphs with bounded neighborhood independence.
Noting that the runtime of the greedy MIS algorithm that uses “marks” is Θ(mM), where
we define mM :=

∑
v∈M deg(v), a key observation is that mM is much smaller than m when

β is small. Indeed, as the vertices ofM form an independent set, all the edges incident on
M lead to V \M, and so if mM is large, then the average degree of V \M toM cannot be
“too small”; however, the latter average degree cannot be larger than β as otherwise there is
some vertex in V \M that is incident to more than β independent vertices, a contradiction.
This is all we need to conclude that the runtime of the greedy MIS algorithm that uses marks
is bounded by O(n · β).

Both the MIS algorithm and its analysis are remarkably simple, and in hindsight, this is
not surprising since this parameter β is in a sense “tailored” to the MIS problem. Although
MM and MIS problems are intimately connected to each other, the MM problem appears
to be much more intricate for graphs with bounded neighborhood independence. Indeed,
while the set U of unmatched vertices in any MM forms an independent set and hence total
number mU of edges incident on U cannot be too large by the above argument, the runtime
of greedy or any other algorithm cannot be bounded in terms of mU (as mU can simply be
zero). In fact, it is provably impossible to adjust our argument for MIS to the MM problem
due to our lower bound for deterministic MM algorithms (Theorem 11) that shows that any
such algorithm must incur a runtime of Ω(n2) even for β = 2.

ICALP 2019



17:6 When Algorithms for MIS and MM Run in Sublinear Time

The main technical contribution of this paper is thus in obtaining a fast randomized MM
algorithm for graphs with bounded β. Our starting point is the modified randomized greedy
(MRG) algorithm of [16, 3] that finds an MM by iteratively picking an unmatched vertex u
uniformly at random and matching it to a uniformly at random chosen unmatched neighbor
v ∈ N(u). On its own, this standard algorithm does not benefit from small values of β:
while picking an unmatched vertex u is easy, finding an unmatched neighbor v for u is too
time consuming in general. We instead make the following simple but crucial modification:
instead of picking v from unmatched neighbors of u, we simply sample v from the set of all
neighbors of u and only match it to u if it is also unmatched; otherwise we sample another
vertex u and continue like this (additional care is needed to ensure that this process even
terminates but we postpone the details to Section 4).

To analyze the runtime of this modified algorithm, we leverage the above argument for
MIS and take it to the next step to prove a basic structural property of graphs with bounded
neighborhood independence: for any set P of vertices, a constant fraction of vertices are such
that their inner degree inside P is “not much smaller” than their total degree (depending
both on β and size of P ). Letting P to be the set of unmatched vertices in the above
algorithm allows us to bound the number of iterations made by the algorithm before finding
the next matching edge, and ultimately bounding the overall runtime of the algorithm by
O(n logn · β) both in expectation and with high probability.

Technical Comparison with Prior Work
Our work is most closely related to the Õ(n

√
n)-time (∆ + 1)-coloring algorithm of Assadi,

Chen, and Khanna [4] (and their Ω(n2) time lower bounds for MIS and MM on general
graphs), as well as the series of work by Goel, Kapralov, and Khanna [25, 24, 26] on finding
perfect matchings in regular bipartite graphs that culminated in an O(n logn) time algorithm.

The coloring algorithm of [4] works by non-adaptively sparsifying the graph into
O(n log2(n)) edges in Õ(n

√
n) time in such a way that a (∆ + 1) coloring of the origi-

nal graph can be found quickly from this sparsifier. The algorithms in [25, 24] were also
based on the high-level idea of sparsification but the final work in this series [26] instead used
a (truncated) random walk approach to speedup augmenting path computations in regular
graphs. The sparsification methods used in [4, 25, 24] as well as the random walk approach
of [26] are all quite different from our techniques in this paper that are tailored to graphs
with bounded neighborhood independence. Moreover, even though every perfect matching is
clearly maximal, our results and [25, 24, 26] are incomparable as d-regular bipartite graphs
and graphs with bounded neighborhood independence are in a sense the exact opposite of
each other: for a d-regular bipartite graph, β(G) = d which is the largest possible for graphs
with maximum degree d.

3 Maximal Independent Set

The standard greedy algorithm for MIS works as follows: Iterate over vertices of the graph
in an arbitrary order and insert each one to an initially empty setM if none of its neighbors
have already been inserted toM. By the time all vertices have been processed,M clearly
provides an MIS of the input graph. See Algorithm 1 for a pseudo-code.

We prove that this algorithm is fast on graphs with bounded neighborhood independence.

I Theorem 1. The greedy MIS algorithm (as specified by Algorithm 1) computes a maximal
independent set of a graph G given in adjacency array representation in O(n · β(G)) time.
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Algorithm 1: The (Deterministic) Greedy Algorithm for Maximal Independent
Set.

1 Input: An n-vertex graph G(V,E) given in adjacency array representation.
2 Output: An MISM of G.
3 InitializeM = ∅ and mark[vi] = FALSE for all vertices vi ∈ V where

V := {v1, . . . , vn}.
4 for i = 1 to n do
5 if mark[vi] = FALSE then
6 add vi toM and set mark[u] = TRUE for all u ∈ N(vi).
7 end
8 end
9 Return M.

Proof. Let G(V,E) be an arbitrary graph. Suppose we run Algorithm 1 on G and obtain
M as the resulting MIS. To prove Theorem 1, we use the following two simple claims.

B Claim 2. The time spent by Algorithm 1 on a graph G(V,E) is O(n+
∑
v∈M deg(v)).

Proof. Iterating over vertices in the for loop takes O(n) time. Beyond that, for each vertex
joining the MISM, we spend time that is linear in its degree to mark all its neighbors. C

B Claim 3. For any independent set I ⊆ V in G,
∑
v∈I deg(v) ≤ n · β(G).

Proof. Let E(I) denote the edges incident on vertices in the independent set I. Since I is an
independent set, these edges connect vertices of I with vertices of V \ I. Suppose towards a
contradiction that |E(I)| =

∑
v∈I deg(v) > n · β(G). By a double counting argument, there

must exist a vertex v in V \ I with at least |E(I)| / |V \ I| > β(G) neighbors in I. But since
I is an independent set, this means that there exists an independent set of size > β(G) in the
neighborhood of v, which contradicts the fact that β(G) is the neighborhood independence
number of G. C

Theorem 1 now follows from Claims 2 and 3 asM is an independent set of G. J

4 Maximal Matching

We now consider the maximal matching (MM) problem. Similar to MIS, a standard greedy
algorithm for MM is to iterate over the vertices in arbitrary order and match each vertex to
one of their unmatched neighbors (if any). However, as we show in Section 5 this and any
other deterministic algorithm for MM, cannot run in sublinear-time even when β(G) = 2.

We instead consider the following variant of the greedy algorithm, referred to as the
(modified) randomized greedy algorithm, put forward by [16, 3] and extensively studied in
the literature primarily with respect to its approximation ratio for the maximum matching
problem (see, e.g. [42, 47] and the references therein). Pick an unmatched vertex u uniformly
at random; pick an unmatched vertex v incident on u uniformly at random and add (u, v) to
the matching M ; repeat as long as there is an unmatched edge left in the graph. It is easy
to see that at the end of the algorithm M will be an MM of G.

ICALP 2019
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As it is, this algorithm is not suitable for our purpose as finding an unmatched vertex v
incident on u is too costly. We thus instead consider the following variant which samples
the set v from all neighbors of u and only match it to u if v is also unmatched (we also
change the final check of the algorithm for maximality of M with a faster computation). See
Algorithm 2 for a pseudo-code after proper modifications.

Algorithm 2: The (Modified) Randomized Greedy Algorithm for Maximal Match-
ing.

1 Input: An n-vertex graph G(V,E) given in adjacency array representation.
2 Output: A maximal matching M of G.
3 Initialize M = ∅ and U = V .
4 while U 6= ∅ do
5 Define the threshold τ := τ(U) = 4n·β(G)

|U | .

6 Sample a vertex u uniformly at random from U .
7 if deg(u) < τ then
8 Choose a random vertex v from N(u)∩U (if non-empty), add (u, v) to M and

set U ← U \ {u, v}. If N(u) ∩ U = ∅, set U ← U \ {u}.
9 else

10 Sample a vertex v uniformly at random from N(v).
11 if v ∈ U then
12 add (u, v) to M and set U ← U \ {u, v}.
13 end
14 end
15 Return M .

We remark that the first if condition in Algorithm 2 is used to remove the costly operation
of checking if any unmatched edge is left in the graph. It is easy to see that this algorithm
always output an MM.

We prove that Algorithm 2 is fast both in expectation and with high probability on
graphs with bounded neighborhood independence. We also note that as stated, Algorithm 2
actually assumes knowledge of β(G) (needed for the definition of the threshold parameter τ).
However, we show at the end of this section that this assumption can be lifted easily and
obtain a slight modification of Algorithm 2 with the same asymptotic runtime that does not
require any knowledge of β(G).

I Theorem 4. The modified randomized greedy MM algorithm (as specified by Algorithm 2)
computes a maximal matching of a graph G given in adjacency array representation in
O(n logn · β(G)) time in expectation and with high probability.

Let t denote the number of iterations of the while loop in Algorithm 2. We can bound
the runtime of this algorithm based on t as follows.

B Claim 5. Algorithm 2 can be implemented in O(n logn · β(G) + t) time.

Proof. First, we would like to store the set U in a data structure that supports random
sampling and deletion of a vertex from U , as well as determining whether a vertex is currently
in U or not, in constant time. This data structure can be easily implemented using two
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arrays A1 and A2; we provide the rather tedious details for completeness. The arrays are
initialized as A1[i] = A2[i] = i for all i = 1, . . . , n, where A2[i] holds the index of the cell in
A1 where vi is stored, or -1 if vi is not in U , while A1 stores the vertices of U in its first |U |
cells, identifying each vi with index i. When any unmatched vertex vi is removed from U , we
first use A2[i] to determine the cell where vi is stored in A1, then we move the unmatched
vertex stored at the last cell in A1, A1[|U |], to the cell currently occupied by vi by setting
A1[A2[i]] = A1[|U |], and finally set A2[A1[|U |] = A2[i], A2[i] = −1. Randomly sampling a
vertex from U and determining whether a vertex belongs to U can now be done in O(1) time.

Using these arrays each iteration of the while loop in which deg(u) ≥ τ can be carried
out within O(1) time. Iterations for which deg(u) < τ are more costly, due to the need
to determine N(u) ∩ U . Nonetheless, in each such iteration we spend at most O(τ) time
while at least one vertex is removed from U , hence the time required by all such iterations
is bounded by

∑n
k=1 O(n·β(G)

k ) = O(n logn · β(G)). It follows that the total runtime of the
algorithm is O(n logn · β(G) + t). C

The main ingredient of the analysis is thus to bound the number t of iterations. Before
proceeding we introduce some definition. We say that an iteration of the while loop succeeds
iff we remove at least one vertex from U in this iteration. Clearly, there can be at most
n successful iterations. We prove that each iteration of the algorithm is successful with a
sufficiently large probability, using which we bound the total number of iterations.

To bound the success probability, we shall argue that for sufficiently many vertices u in
U , the number of its neighbors in U , referred to as its internal degree, is proportionate to
the number of its neighbors outside U , referred to as its external degree; for any such vertex
u, a random neighbor v of u has a good chance of belonging to U . This is captured by the
following definition.

I Definition 6 (Good vertices). For a parameter δ ∈ (0, 1), we say a vertex u ∈ U is δ-good
iff degU (u) ≥ δ · degV \U (u) or deg(u) < 1/δ.

Clearly, if we sample a δ-good vertex u ∈ U in some iteration, then with probability ≥ δ
that iteration succeeds. It thus remains to show that many vertices in U are good for an
appropriate choice of δ. We use the bounded neighborhood independence property (in a
more sophisticated way than it was used in the proof of Theorem 1) to prove the following
lemma, which lies at the core of the analysis.

I Lemma 7. Fix any choice of U in some iteration and let δ := δ(U) = 1/τ(U) (for the
parameter τ(U) defined in Algorithm 2). Then at least half the vertices in U are δ-good in
this iteration.

Proof. Let us say that a vertex u ∈ U is bad iff it is not δ-good (for the parameter δ in the
lemma statement). Let B denote the set of bad vertices and let b := |B|.

B Claim 8. There exists an independent set I ⊆ B with at least b
2δ edges leading to V \ U .

Proof. We prove this claim using a probabilistic argument. Pick a random permutation σ
of vertices in B and add each vertex v ∈ B to an initially empty independent set I = Iσ
iff v appears before all its neighbors in B according to σ. Clearly, the resulting set I is an
independent set inside B.

Let E(I) denote the set of edges that connect vertices of I with vertices of V \ U . For
any vertex v ∈ B, define a random variable Dv ∈

{
0, degV \U (v)

}
which takes value equal to

ICALP 2019
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the external degree of v iff v is added to I. Clearly, |E(I)| =
∑
v∈V Dv. We have,

E |E(I)| =
∑
v∈B

E [Dv] =
∑
v∈B

Pr (v ∈ I) · degV \U (v)

=
∑
v∈B

1
degB(v) + 1 · degV \U (v)

(v is only chosen in I iff it is ranked first by σ among itself and its degB(v) neighbors)

≥
∑
v∈B

1
δ · degV \U (v) + 1 · degV \U (v) (as B ⊆ U and vertices in B are all bad)

≥
∑
v∈B

1
2δ · degV \U (v) · degV \U (v) = b

2δ .

(as deg(v) ≥ 1
δ and hence δ · degV \U (v) ≥ 1)

It follows that there exists a permutation σ for which the corresponding independent set
I = Iσ ⊆ B has at least b

2δ edges leading to V \ U , finalizing the proof. C

We next prove Lemma 7 using an argument akin to Claim 3 in the proof of Theorem 1.
Let I be the independent set guaranteed by Claim 8. As at least b

2δ edges are going from
I to V \ U , a double counting argument implies that there exists a vertex v ∈ V \ U with
degree to I satisfying:

degI(v) ≥ b

2δ · |V \ U | ≥
b · τ(U)

2n = 2b · β(G)
|U |

, (1)

where the equality is by the choice of τ(U). Suppose towards a contradiction that b > |U | /2.
This combined with Eq (1) implies that degI(v) > β(G). Since I is an independent set,
it follows that N(v) contains an independent set of size larger than β(G), a contradiction.
Hence b ≤ |U | /2, and so at least half the vertices in U are δ-good, as required. J

We now use Lemma 7 to bound the expected number of iterations t in Algorithm 2. Let
us define the random variables X1, . . . , Xn, where Xk denotes the number of iterations spent
by the algorithm when |U | = k. Clearly, the total number of iterations t =

∑n
k=1 Xk. We

use these random variables to bound the expected value of t in the following claim. The next
claim then proves a concentration bound for t to obtain the high probability result.

B Claim 9. The number of iterations in Algorithm 2 is in expectation E [t] ≤ 8β(G) · n logn.

Proof. As stated above, E [t] =
∑n
k=1 E [Xk] and hence it suffices to bound each E [Xk]. Fix

some k ∈ [n] and consider the case when |U | = k. Recall the function δ(U) in Lemma 7. As
δ(U) is only a function of size of k, we slightly abuse the notation and write δ(k) instead of
δ(U) where k is the size of U .

By Lemma 7, at least half the vertices in U are δ(k)-good. Hence, in each iteration,
with probability at least half, we sample a δ(k)-good vertex u from U . Conditioned on this
event, either deg(u) < 1/δ(k) which means this iteration succeeds with probability 1 or
degU (u) ≥ δ(k) · degV \U (u), and hence with probability at least δ(k) the sampled vertex v
belongs to U and again this iteration succeeds. As a result, as long as U has not changed,
each iteration has probability at least δ(k)/2 to succeed.
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By the above argument, Xk statistically dominates a Poisson distribution with parameter
δ(k)/2 and hence E [Xk] ≤ 2/δ(k). To conclude,

E [t] =
n∑
k=1

E [Xk] ≤
n∑
k=1

2/δ(k) = 8β(G) · n ·
n∑
k=1

1
k
≤ 8β(G) · n logn.

which finalizes the proof. C

Claim 9 combined with Claim 5 is already enough to prove the expected runtime bound in
Theorem 4. We now prove a concentration bound for t to obtain the high probability bound.
We note that it seems possible to prove the following claim by using standard concentration
inequalities; however doing so requires taking care of several boundary cases for the case
when |U | become o(logn), and hence we instead prefer to use the following direct and more
transparent proof.

B Claim 10. The number of iterations in Algorithm 2 is t = O(β(G) · n logn) with high
probability.

Proof. Recall from the proof of Claim 9 that t =
∑n
k=1 Xk and that each Xk statistically

dominates a Poisson distribution with parameter δ(k)/2 (as defined in Claim 9). Define
Y1, . . . , Yn as independent random variables where Yk is distributed according to exponential
distribution with mean µk := 2

δ(k) . For any x ∈ R+,

Pr (Xk ≥ x) ≤
(
δ(k)

2

)x
= Pr (Yk ≥ x) .

As such, the random variable Y :=
∑n
k=1 Yk statistically dominates the random variable

t for number of iterations. Moreover by Claim 9, µ := E [Y ] = 8β(G) · n logn (the equality
for Y follows directly from the proof).

In the following, we prove that with high probability Y does not deviate from its
expectation by much. The proof follows the standard moment generating function idea (used
for instance in the proof of Chernoff-Hoeffding bound). Let y ∈ R+. For any s > 0,

Pr (Y ≥ y) = Pr
(
esY ≥ esy

)
≤

E
[
esY
]

esy
, (2)

where the inequality is simply by Markov bound. Additionally, since Y =
∑n
k=1 Yk and and

Yk’s are independent, we have for any s > 0,

E
[
esY
]

esy
=

E
[
es·
∑n

k=1
Yk

]
esy

=
∏n
k=1 E

[
es·Yk

]
esy

. (3)

Recall that for every i ∈ [n], E [Yk] = µk and Yk is distributed according to exponential
distribution. Thus, for any s < 1/µk,

E
[
esYk

]
=
∫ ∞
y=0

esy ·Pr (Yk = y) dy = 1
µk

∫ ∞
y=0

esy · e−y/µkdy = 1
1− sµk

. (4)

Recall that µk = 2/δ(k) for every k ∈ [n] and δ(1) < δ(2) < . . . < δ(n) by definition. Pick
s∗ = 1/2µ1 and so s∗ < 1/µk for all k ∈ [n]. By plugging in the bounds in Eq (4) for s = s∗
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into Eq (3), we have,

E
[
es

∗Y
]

es∗y
=
∏n
k=1 E

[
es

∗·Yk
]

es∗y
=

n∏
k=1

e−s
∗y

1− s∗µk
≤ e−s

∗y · exp
(

2
n∑
k=1

s∗µk

)
(as 1− x ≥ e−2x for x ∈ (0, 1/2])

= exp
(
− s∗y + 2s∗µ

)
= exp (−y/2µ1 + µ/µ1) .

We now plug in this bound into Eq (2) with the choice of y = 4µ to obtain that,

Pr (Y ≥ 4µ) ≤ exp (−4µ/2µ1 + µ/µ1) = exp (−µ/µ1) = exp (− logn) = 1/n,

where we used the fact that µ/µ1 ≥ logn. This means that with high probability, Y is only
4 times larger than its expectation, finalizing the proof. C

The high probability bound in Theorem 4 now follows from Claim 5 and Claim 10,
concluding the whole proof of this theorem.

Unknown β(G)
We next show that our algorithm can be easily adjusted to the case when β(G) is unknown.
The idea is simply to “guess” β(G) in powers of two, starting from β = 2 and ending at β = n,
and each time to (sequentially) run Algorithm 2 under the assumption that β(G) = β. For
each choice of β, we shall only run the algorithm for at most t = O(n logn · β(G)) iterations
(where the constant hiding in the O-notation should be sufficiently large, in accordance with
that in the proof of Claim 10) and if at the end of a run the set U in the algorithm has not
become empty, we start a new run from scratch with the next (doubled) value of β. (For
β = n, we do not terminate the algorithm prematurely and instead run it until U is empty.)

By Theorem 4, for the first choice of β for which β ≥ β(G), the algorithm must terminate
with high probability within O(n logn · β(G)) time (as β ≤ 2β(G) also). Moreover, the
runtime of every previous run is bounded deterministically by O(n logn ·β(G)). Consequently,
the total runtime is

O(n logn) ·
∑

{2i|2i≤2β(G)}

2i = O(n logn · β(G)),

where this bound holds with high probability. In this way we get an algorithm that uses no
prior knowledge of β(G) and achieves the same asymptotic performance as Algorithm 2.

5 A Lower Bound for Deterministic Maximal Matching

We prove that randomization is necessary to obtain a sublinear time algorithm for MM even
on graphs with bounded neighborhood independence.

I Theorem 11. Any deterministic algorithm that finds a maximal matching in every given
graph G with neighborhood independence β(G) = 2 (known to the algorithm) presented in the
adjacency array representation requires Ω(n2) time.

For every integer n = 8k for k ∈ N, we define Gn as the family of all graphs obtained by
removing a perfect matching from a clique Kn on n vertices. For a graph G in Gn we refer
to the removed perfect matching of size 5k as the non-edge matching of G and denote it by
M(G). Clearly, every graph in Gn has neighborhood independence β(G) = 2. Moreover, any
MM in G can have at most 2 unmatched vertices.



S. Assadi and S. Solomon 17:13

Let A be a deterministic algorithm for computing an MM on every graph in Gn. We
prove Theorem 11 by analyzing a game between A and an adaptive adversary that answers
the probes of A to the adjacency array of the graph. In particular, whenever A probes a new
entry of the adjacency array for some vertex v ∈ V , we can think of A making a query Q(v)
to the adversary, and the adversary outputs a vertex v that had not been so far revealed in
the neighborhood of u (as degree of all vertices in G is exactly n− 1, A knows the degree of
all vertices and we assume it never queries a vertex u more than n− 1 times).

We now show that there is a strategy for the adversary to answer the queries of A in a
way that ensures A needs to make Ω(n2) queries before it can output an MM of the graph.

Adversary’s Strategy. The adversary picks an arbitrary set of 2k vertices D referred to
as dummy vertices. We refer to remaining vertices as core vertices and denote them by
C := V \D. The adversary also fixes a non-edge matching of size k between vertices in D,
denoted by MD. The non-edge matching of G consists of MD and a non-edge matching of
size 4k between vertices in C, denoted by MC , which unlike MD is constructed adaptively
by the adversary. We assume A knows the partitioning of V into D and C, as well as the
non-edge matching MD. Hence, the only missing information to A is identity of MC .

To answer a query Q(u) for a dummy vertex u ∈ D, the adversary simply returns any
arbitrary vertex in V (not returned so far as an answer to Q(u)) except for the pair of u in
MD which cannot be neighbor to u. To answer the queries Q(w) for core vertices w ∈ C, the
adversary maintains a partitioning of C into Cused and Cfree. Initially all core vertices belong
to Cfree and hence Cused is empty. Throughout we only move vertices from Cfree to Cused.
The adversary also maintains a counter for every vertex in Cfree on how many times they
have been queried so far. Whenever a vertex w ∈ Cfree is queried, as long as this vertex has
been queried at most k times, the adversary returns an arbitrary dummy vertex u from D as
the answer to Q(w) (which is possible because of size of D is k). Once a vertex w ∈ Cfree is
queried for its (k+ 1)-th time, we pick another vertex w′ from Cfree also, add the pair (w,w′)
to the non-edge matching MC and move both w and w′ to Cused, and then answer Q(w) for
the case w ∈ Cused as described below.

Recall that for any vertex w ∈ Cused, by construction, there is another fixed vertex w′ in
Cused (joined at the same time with w) where (w,w′) ∈ MC . For any query for w ∈ Cused,
the adversary answers Q(w) by returning an arbitrary vertex from C \ {w′}. This concludes
the description of the strategy of the adversary.

We have the following basic claim regarding the correctness of the adversary’s strategy.

B Claim 12. The answers returned by the adversary for any sequence of queries are always
consistent with at least one graph G in Gn.

Proof. We can append the current sequence of queries by the sequence that ensures all
vertices are queried n− 1 times. Thus, the adversary would eventually construct the whole
non-edge matching MC also. There exists a unique graph G in Gn where M(G) = MD ∪MC ,
hence proving the claim (note that before appending the sequence, there can be more than
one graph consistent with the original sequence). C

We now prove the following lemma which is the key step in the proof of Theorem 11.

I Lemma 13. Suppose A makes at most k2 queries to the adversary and outputs a matching
M using only these queries. Then, there exists some graph G in Gn where G is consistent
with the answers returned by the adversary to A and M(G) ∩M 6= ∅.
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Proof. Since A makes at most k2 queries, there can only be 2k vertices in Cused by the
time the algorithm finishes its queries (as each pair of vertices in Cused consumed k queries).
Consider the maximal matching M . There are at most 2k edges of M that are incident on
Cused and k more edges incident on D. This implies that at most 3k vertices in Cfree are
matched to vertices outside Cfree. As |Cfree| ≥ 5k, it means that there are at least 2k vertices
in Cfree that are not matched by M to vertices outside Cfree. However, as M is maximal,
and since G is in Gn, there should be at least k − 1 edges in M between these vertices in
Cfree. As the adversary has not committed to the non-edge matching MC entirely at this
point and this non-edge matching pairs vertices in Cfree to each other, the adversary can
simply let MC contains M and still obtain a graph G in Gn. For this graph, M(G) ∩M 6= ∅,
finalizing the proof. J

Theorem 11 now follows immediately from Lemma 13, as it state that unless the algorithm
makes Ω(n2) queries, there always exists at least one graph in Gn for which the output
matching of the algorithm is not feasible. As graphs in Gn all have β(G) = 2, we obtain
the final result.
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