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—— Abstract

We consider the problem of finding solutions to systems of polynomial equations over a finite field.
Lokshtanov et al. [SODA’17] recently obtained the first worst-case algorithms that beat exhaustive
search for this problem. In particular for degree-d equations modulo two in n variables, they gave
an O*(2<171/(5d))") time algorithm, and for the special case d = 2 they gave an O*(20'876")
algorithm.

We modify their approach in a way that improves these running times to O*(Z(lfl/(zm))") and

time

O*(20'804"), respectively. In particular, our latter bound — that holds for all systems of quadratic

20‘792") expected time bound of an algorithm empirically

equations modulo 2 — comes close to the O*(
found to hold for random equation systems in Bardet et al. [J. Complezity, 2013]. Our improvement
involves three observations:

1. The Valiant-Vazirani lemma can be used to reduce the solution-finding problem to that of
counting solutions modulo 2.

2. The monomials in the probabilistic polynomials used in this solution-counting modulo 2 have a
special form that we exploit to obtain better bounds on their number than in Lokshtanov et
al. [SODA’17].

3. The problem of solution-counting modulo 2 can be “embedded” in a smaller instance of the
original problem, which enables us to apply the algorithm as a subroutine to itself.
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1 Introduction
We study the problem of finding a simultaneous root to a system of m polynomials
Pl(.’L‘)ZO, PQ(.’E):O, ey Pm(l‘):() (1)

over n variables © = (x1,x2,...,2,). The computational tractability of this problem is
known to dramatically depend on the domain of the variables and polynomial coefficients.
Over the integers, the problem is undecidable, by Matiyasevich’s celebrated solution of
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Solving Systems of Polynomial Equations Modulo Two

Hilbert’s tenth problem on the algorithmic decidability of Diophantine equations [10]. Over
an algebraically closed field, the problem reduces via Hilbert’s Nullstellensatz to deciding
whether 1 belongs to the ideal generated by the polynomials, which for polynomials with
rational coefficients can be decided in exponential space by computing a reduced Grébner
basis for the ideal [3, 4, 11]. Over the integers modulo two — our object of study in this
paper — the problem is NP-complete even when the polynomials are severely constrained.
Indeed, systems of polynomial equations modulo two enable the compact modeling of a
versatile range of tasks. For example, one can easily represent k-CNFSAT formulas on n
Boolean variables by expressing each clause in the formula as a degree-k polynomial [5]. A
similar reduction from NAE3SAT proves that the problem remains NP-hard even in the
case of quadratic equations modulo two. As the fastest known worst-case algorithms for
k-CNF satisfiability (for example, see Moser and Scheder [13]) run in time 27~2(/F) it is
a difficult challenge to design faster-than-2"—("/*)_time algorithms for solving systems of
degree-k polynomial equations. Still it is interesting to ask precisely how much savings over
the brute-force O*(Q”)—time solution one can obtain, particularly in the case of quadratic
equations, since the postulated hardness of solving quadratic systems modulo two forms the
basis of several proposed cryptographic primitives, such as HFE proposed by Patarin [15]
and UOV proposed by Kipnis, Patarin, and Goubin [8].

An O*(20'792”) expected-time algorithm for a system of m = n quadratic polynomials
over n variables modulo two was proposed by Bardet, Fauggre, Salvy, and Spaenlehauer [1].
However, their algorithm only works for systems satisfying certain algebraic assumptions,
and these assumptions were only experimentally verified to hold for the vast majority of
such systems. Still, further refinements of the method makes it practical even for small
systems [6], and the algorithmic ideas underlies the to date fastest known implementation
we are aware of [14].

Such a result highlights the potential vulnerability of cryptographic primitives whose
security is based on the postulated hardness of solving random systems. However, from
a theoretical viewpoint it is preferable to have rigorous proofs and algorithms that work
efficiently on all inputs. The algorithm of Bardet et al. [1] is based on finding proofs of
non-solvability, a so-called effective Nullstellensatz of finding low-degree polynomials H;
such that

ZHi(z’)Pi(:r’,r) =1,

for each specialisation r of the polynomials, i.e. after replacing a fixed subset of the variables to
a restriction 7. The algorithm then continues to look for solutions only in those specialisations
r for which no proof was found. The search for proofs is formulated as a linear equation
system whose dimensions depend on the bound of the degree in the proofs. The argument
made in their paper is that for most equation systems with sufficiently more equations than
variables, “small-degree” polynomials can be used in the proofs. Getting rigorous bounds on
the degree appears to be a difficult problem, and in the worst case some systems will likely
require large-degree proofs.

Lokshtanov, Paturi, Tamaki, Williams, and Yu [9] took a radically different approach and
presented an O*(20‘876")-time algorithm for quadratic equation systems modulo two that
uses no algebraic assumptions at all and works for all quadratic systems. They also gave a
general O*(Q”_"/ (5d)) time algorithm for systems of equations of degree bounded by d.
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Their approach uses the so-called “polynomial method”: the entire system of equations
is randomly replaced by a single “probabilistic” polynomial that has a “small” exponential
number of terms, and is consistent with the system on exponentially many assignments. This
polynomial is then evaluated quickly on many assignments using an FFT or fast matrix
multiplication, gaining an advantage over exhaustive search.

We present a new algorithm that largely follows the approach of Lokshtanov et al. [9] but
offers a few simplifications to their scheme. Most prominently, we will consider the problem

of computing the parity of the number of solutions, rather than the decision problem directly.

Whereas Lokshtanov et al. [9] apply a random parity sieve on monomials of a subset of
the variables to implement a decision-to-parity reduction within the algorithm, our main
observation is that this can be done on the system itself. That is, rather than explicitly
being tailored into the algorithm, we can reduce decision to the parity problem by adding
random affine equations to the system. This is based on the well-known theorem of Valiant
and Vazirani [18] in complexity theory to isolate solutions to Boolean satisfiability by adding
random equations. Our analysis in Section 2.5 is borrowed from theirs and is included here
solely for the sake of completeness.

One immediate effect of our alternative parity-counting approach is that it reduces the
need for random bits from exponential in n to merely polynomial in n. A more interesting
gain is that our approach leads to faster algorithms, via two further observations. Our
algorithm for quadratic systems runs in O*(20'804") time, and for degree-d systems we
provide a O*(Q”*”/ (2'7d)) time algorithm. Our running time for quadratic equation systems
in particular comes much closer to the O*(20'792”) running time of Bardet et al. [1]. To get
a quantitive feeling of our incremental result, note:

1. We can solve quadratic systems modulo two with 9% more variables in about the same
time as the algorithm of [9].

2. Our algorithm for degree-3 systems is faster than the one for degree-2 systems in [9].

Our first observation is that the seemingly more difficult problem of computing the
parity of solutions apparently makes it easier to identify the structure of monomials in the
probabilistic polynomials used in the polynomial method. Making use of this structure leads
to better bounds on their number and (indirectly) on the total running time, and is the
source of most of our improvement. Our second observation is that the parity-summation
part in the method is identical to the original problem, leading to a self-reduction: we can
use our algorithm as a subroutine to itself, again leading to a faster algorithm.

We present our algorithm for computing the parity of the number of solutions to a
polynomial equation system in Section 3. We shall highlight the differences to the original
decision algorithm by Lokshtanov et al. [9] as we go along. We begin by some preliminaries
in the subsequent section.

2 Preliminaries

Here we review some notation and well-known facts. Let F5 denote the field of two elements;
that is, integer arithmetic modulo two. For a non-negative integer n, we write [n] for the

set {1,2,...,n}. For a finite set D, we write 2P for the power set of D, (g) for the set of

all k-element subsets of D, and ( fk) = U?:o (? ) for the set of all at-most-k-element subsets

of D. Accordingly, we write (]}) = Z?:o (%) For a function f(n), the notation O*(f(n))

suppresses factors polynomial in n.
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2.1 Yates’s algorithm

Let us write I, for an ¢ x £ identity matrix. For an s X ¢t matrix A and a non-negative integer
n, the n'® Kronecker power of A factors into the sequence of matrices

A = J[I& " @ A0 I ). (2)

Jj=1

Each matrix I%7~1 © A ® I2™ 7 is sparse with at most s/~ - st - "7 = s7t"~I+1 nonzero
entries. Thus, using sparse matrix—vector multiplication along the sequence (2), we may
multiply the matrix A®™ with a given vector in at most

LI 2nsntl if s=t
n—j+1 __ ’

2 I =S ey (3)
st T s At

operations on scalars. This algorithm is known as Yates’s algorithm [19].

2.2 The fast zeta transform for the subset lattice

The matrix ¢ =[] 9] is invertible over any ring, with inverse (~! = [_% (1)] In particular, in
the field F, of two elements, we have ¢ = (~'. Let = and y be vectors whose components are
indexed by the subsets in 2. Then, the matrix—vector multiplication y = ¢®"z implements
the linear map « + y defined for all B C [n| by yp = > sc5xa. This map is the zeta
transform for the lattice (2[*, C). By (3) in Section 2.1, Yates’s algorithm can be used to
implement the zeta transform in O(2™n) operations. This algorithm is known as the fast zeta
transform. The inverse transform is called the Mobius transform. In characteristic 2, these
transforms coincide. The zeta transform remains invertible when the relevant vectors and
matrices are restricted from 2" to ([E) The corresponding restriction of Yates’s algorithm
runs in O(( ﬁz)”) operations. See [2, 7] and the references therein for more on fast zeta
transforms.

2.3 Polynomials modulo two: the monomial basis and the evaluation
basis

Observe 22 = z holds for all € F,. Thus, WLOG, an n-variate polynomial f =

f(z1,x9,...,2,) in the polynomial ring Fy[z1, 22, . . ., 2] consists of only multilinear monomi-
als indicated by a function M : 2l 5 Fy with

F=> M) [
Y Cln]

jey

Intuitively, M;(S) gives the coefficient of [], g 2; in the (unique) multilinear polynomial
representing f. In particular, Fa[z1, 22, ..., 2,] is a 2"-dimensional vector space over Fa,
and the function M, viewed as a vector with entries indexed by 2" represents f in the
monomial basis. We say that f has degree at most d if My vanishes outside ([ﬁ%) The
monomial basis is the algebraic normal form of the Boolean function.

Associate each vector x € F} with the subset X = {i € [n] : #; = 1} C [n]. Define the
evaluation map Ey : 2"} — Ty for all X C [n] by the rule Ef(X) = f(z), where x is the
vector corresponding to X. In what follows we often find it convenient to abuse notation
slightly and write simply f(X) in place of E;(X). Viewing the function Ey as a vector with
entries indexed by 2"}, we say that Ey represents f in the evaluation basis.
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The monomial basis and the evaluation basis are related by the zeta transform. That is,
for all f € Fa[z], we have

Ep=(®"Mjy. (4)
Indeed, for all Z C [n] we have

E(Z)=f(Z)= ) M;(Y).

yCZz

By properties of the zeta transform, the basis-change identity (4) holds also when restricted
from 2" to ([ﬁi]); that is, when restricted from arbitrary polynomials to polynomials of
degree at most d. Fast zeta transforms enable fast basis changes between the monomial basis
and the evaluation basis as needed.

2.4 From finding to decision, from decision to parity-counting

The task of finding a solution to a given system of polynomial equations reduces to the task
of deciding whether a given system has at least one solution. Indeed, assuming the system
has a solution, we may try both values 0 and 1 to a selected variable, and focus on one

assignment that indicates that the system after the substitution of the value has a solution.

Thus, finding a solution takes at most 2n queries to a decision algorithm.

The task of deciding whether a given system of polynomial equations has a solution
reduces to computing the parity of the number of such solutions by randomized isolation
techniques. One elegant isolation technique is Valiant—Vazirani [18] affine hashing, which
inserts O(n) random linear equations into the system, without increasing the number of
variables. For completeness, we recall affine hashing in Section 2.5. Thus, from here on, we

consider the problem of counting the parity of solutions to a system of polynomial equations.

2.5 Valiant—Vazirani affine hashing

For completeness, this section recalls Valiant—Vazirani [18] affine hashing for isolating a
unique solution (if any) by introducing a collection of random linear equations into to the
system of polynomial equations. In particular, affine hashing does not increase the number
of variables or the degree of the system, only the number of equations increases.

Let S C {0,1}" be the set of solutions the system of polynomial equations. If S is
empty there is nothing to isolate, so let us assume that S is nonempty in what follows. Let
k=0,1,...,n be the unique integer such that 28 < |S| < 2k+1.

Draw independent uniform random values «;; € {0,1} for i = 1,2,...,k + 2 and
j=12....,n. Foreachi=1,2...,k+ 2, draw an independent uniform random value
B; € {0,1} and introduce the linear equation

Zaz‘jxj =B (5)
=1

into the system of polynomial equations.

Let us say that a solution x € S survives if it satisfies every introduced equation (5). Let
us write S, for the event that x survives, and U, for the event that x is the unique solution
in S that survives. We want to control the probability

Pr(U,) = Pr(S: NNyes (2 Sy) .
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By the union bound, we have
Pr(Se NNyes\ (o} Sy) = Pr(Se) — > Pr(8:nS,).
yeS\{z}

By independence of the events S, and S, for all z,y € S with x # y, we have

Pr(S,)— Y Pr(S,nS,) :Pr(SI)(l— > Pr(Sy)>.

yeS\{z} yeS\{z}
By mutual independence of the k + 2 equations, we have

1

Hence,
1 21€+1 1
Pr(U,) > ok+2 (1 - 2k+2> = ok+3
By mutual exclusiveness of the events U,, we have

1 1
Pr(Uyes Us) = %PY(UH > 2k okt3 8"

From (1 — §)" < exp(—%) < € we observe that r = [Ine~!] independent repetitions will
isolate a unique solution in S with probability at least 1 — €. Furthermore, we do not know
the value of k, but we can exhaustively try out all the values £ = 0,1,...,n with € = %
so that a solution, if one exists, will be isolated and hence witnessed as odd parity in the
solution space with high probability in total O(nlogn) repetitions of the parity-counting

algorithm.

3 A randomized reduction from parity-counting to itself

This section presents our technical contribution. All arithmetic in this section is over Fs.
Our task is to determine the parity of the number of solutions = € {0,1}" to a given system
of degree-d polynomial equations

We present a randomized self-reduction that reduces (6) to multiple similar systems of degree
at most d but over £ = An variables for a constant 0 < A < 1. Optimizing A and applying
the reduction recursively yields our main result.

3.1 Parity-counting as summation over the domain

We start with the elementary observation that determining the parity of the number of
solutions to (6) amounts to computing the sum

Ir = Z F(z) (7)

ze{0,1}m

of the polynomial function

F(z) = (1+ Pu(2))(1 + P(x)) - - (1 4 P(2)) - (8)
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Indeed, for z € {0,1}"™ we have F'(z) = 1 if and only if x is a solution to (6), and otherwise
F(z) = 0. For comparison, Lokshtanov et al. [9] used

Jr = \/ Z sy F(z,y) (9)

ze{0,1}7—" \ye{0,1}"

with s, independently and uniformly sampled scalars from {0,1}, with the observation that
JF is one with probability at least 1/2 if the original system has a solution, and is always
zero if the original system has no solutions. In the following, we show how to obtain a faster
algorithm by dealing with Iz instead.

We do not know how to quickly evaluate Ir directly, but we will take an indirect and
randomized approach to perform the summation.

3.2 Approximate the summand F by a low-degree probabilistic
polynomial

The main difficulty in directly working with the polynomial F' of (8) is its degree, which
could be dm in general. As in Lokshtanov et al. [9], we construct a probabilistic polynomial
F with the property that for 0 < € < 1 and for all z € {0,1}"™ we have

Pr (F(x) = f(z)) >1—¢€. (10)
fer

We use the following construction generally credited to Razborov [16] and Smolensky [17].

Fori=1,2,...,[logye ] and j = 1,2,...,m, draw an independent uniform random value
pi; € {0,1}, and construct the polynomials

Ri(z) :Zpij'Pj(x)' (11)

Let us now study the polynomial
f(x) = (L4 Ry(x))(1 4 Ra(2)) - - (1 + Rpiog, e-11()) - (12)

We easily observe that (10) holds. Furthermore, since each of the polynomials R; has degree
at most d, the degree of f is at most d[log, €~!], rather than the degree Q(dm) of F.

3.3 Sum the parts of multiple independent approximations

Suppose we replace the summands F(z) in the computation of Ir = Y F(x) with f(z)’s
from (12). By doing so we have reduced the degrees of the summands, but we also introduced
a difficulty in the process: the summands f(z) may introduce errors in the computation of
Ir. We resolve this issue by drawing a sample of s = O(n) independent Razborov—Smolensky
approximations f1, fa, ..., fs € I, and then sum each of these, in parts.

Let us define precisely what we mean. Suppose our summand is g. Let us view g as
the set function g : 2" — {0,1} defined over the set of subsets of [n]. Let A, B C [n] be
disjoint with AU B = [n]. Think of A and B as a partition of n variables (indexed by [n])
into two parts; a subset X C A will be construed as a 0-1 assignment to the variables in A,
and a subset Z C B will be construed as a 0-1 assignment to the variables in B. We will
compute (7) as

I :Z Z F(XUZ).

Ze2B Xe24
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This is similar to Lokshtanov et al. [9] with A = [n/] in (9), except we take the actual sum
modulo 2 over 28 assignments, instead of a disjunction over the assignments.
For every Z C B (construed as a 0-1 assignment to the variables in B), define the function

gl377 2% = {0,1}
for all X C A by

di7P(X)=g(Xxu2).

That is, g|577

is the part of g obtained from fixing the variables in B to the 0-1 assignment
g by Z. Each part of g is a polynomial over the variables in A.

Summing ¢ in parts now amounts to computing the sums of all parts

Iyzss =Y g(XUZ) foreach ZCB.
XCA

Once we have the sums of all parts, we can easily compute the overall sum:

Iy = Z 9(X) = Z Tyiz-m -

XCln] ZCB

However, we will not sum up the parts’ sums directly. Indeed, we are summing potentially
erroneous approximations of the true summands, and obtaining the (full) sum of a potentially
erroneous approximation is not what we want. What we want, with high probability, is the
sum of the true summands.

3.4 Correct the sum of each part by “scoreboarding”

Recall that we proposed to work with a sample of s < O(n) independent polynomials
fisfo,- o fs € F that approximate the true summand F. Suppose we have summed each
approximation, in parts, to obtain the summand of each part of each approximation. That
is, for each Z C B we have the scoreboard of s sums

Ij 78 = Y AXUZ), Ip, 75 = Y R(XUZ), ..., Iy 75 = > f(Xu2).

XCA XCA XCA

Each of these s sums is {0, 1}-valued. Assuming s is odd, we take the unique majority value
across the scoreboard and set, for every Z C B,

1 lf Z;:l If]‘iaB >

s ’ (13)
0 if Zj:l Ifj‘iaB <

Nl N|®»

IZ = MajOI'ity(IflliaB,If2|§~>B, ey Ifs‘iaB) = {

Consider now the true summand F' and a sum of its part F|5-5- We can control the

probability of error Pr[I, # IF‘gﬂB] as follows. First, set ¢ = 2~(4142) and use the union
bound with (10) to conclude that, for all Z C B and j =1,2,...,s, we have

Prl:IF‘iaB = Ifj‘i*)B} >1-— 2lAl . e > (14)

=]

Consequently, the approximate summands f; are bounded in degree by at most

A = logy e~ 11d = (|A| + 2)d. (15)
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Second, recalling that f1, fs,..., fs are independent, we can use a standard Chernoff bound to
control the error from scoreboarding. When T is a sum of independent identically distributed
random variables, for all 0 < ¢ <1 it holds that [12]

2
Pr[T < (1 - 0)E[T]] < exp(—251). (16)
Take Tz = 377, Iy, z—5. From (14) we have
E[TZ | IF‘iﬂB = 1] Z %S (17)
E[s _TZ|IF‘§~>B =0] > %S,
Recalling that we assume s to be odd, from (16) and (17) with § = 1/3 we thus have
Pr[Tz > 5| Ipzen =1] > 1 —exp(—31) 18)

Pr[s —T7 > % ’IFKHB = 0] >1-— exp(—i) .
Set s = 48n + 1 and use (18) in (13) to conclude that
Pr(ly = Ipjz-n] >1-27%".
Taking a union bound over all Z C B, we have
Prilp =Y ycplz] >1-27".

That is, error-correction by scoreboarding enables us to recover the sum Ip =) F(x) with
only exponentially small error probability. All that now remains is to sum in parts.

3.5 Summing the parts of a low-degree polynomial

As before, we view the summand as a set function f : 2" — {0,1} and assume that the
underlying polynomial representing f has degree at most A. For each Z C B, we want to
produce the sum Iyzos =3 4 f(X U Z).

Our strategy for summation will rely on the fact that these sums are linearly dependent,
and fast basis changes via fast zeta transforms will enable fast summation of parts.

To witness the linear dependence, let us put to use the fact that f is low-degree. Let
M; : 2"l — {0,1} be the representation of f in the monomial basis (M; maps monomials to
coefficients). For all W C [n], we thus have

FV) =" My(U).

UCwW

Now recall that f has degree at most A if and only if My vanishes on subsets of size greater
than A. That is, the representation in the monomial basis is sparse; we seek to express our
sums in this basis.

Toward this end, let us study summing a part from the perspective of the coefficients My
rather than f. For each Z C B, we have

Ijzon = Y f(XUZ)=Y Y MyU)=) Mj(AuY). (19)

XCA XCA UCXUZ YCZ

The last equality in (19) follows because every monomial (viewed as a subset) not containing A
will cancel modulo two, because it contributes to the sum an even number of times. This

26:9

ICALP 2019



26:10

Solving Systems of Polynomial Equations Modulo Two

property of contributing monomials being known to contain A is the key difference from the
approach of Lokshtanov et al. [9]; the property is lost if we take a disjunction (as in (9))
instead of a sum modulo 2 (as in (7)). It will yield a smaller upper bound on the number of
monomials.

Let us now get some corollaries of (19). First, since only monomials that contain A
contribute to the sums I £12-5, knowledge of only these monomials is sufficient information to
compute the sum I £17-5 for each Z C B. Second, we know that My vanishes on all subsets
of size greater than A. Since each monomial must contain A, we only have to consider
subsets from B of size at most 6 = A — | A|, compared to 6§ = A used in Lokshtanov et al. [9].

These two corollaries yield the following three-step strategy for summing the parts:

(i) Compute Iyz-z =3 v, [(X U Z) for each set Z € (ﬁ).
By (19), we thus have (lfg‘) equations for the (‘le) unknowns M;(AUY), for Y € (f‘;).
(ii) Solve the equations for the values My(AUY) for ¥V € (ﬁ) (the coefficients of f as a
polynomial).
(iii) Use the solved values to produce the sum Ijj5~z for each Z C B.

Observe that the only actual summations are made in (i). The step (iii) produces the
sums in batch from the values obtained in (ii). To solve the equations in (ii), we use the fast
zeta transform over the sets in ( f&)' For the step (iii), use the fast zeta transform over 25

with the knowledge that My(AUY') vanishes in 2¥ outside ¥ € ( f;).

3.6 Summing a part reduces back to parity-counting

Let us now define in detail what it means to sum a part in step (i). First, let us parameterise
the partition A, B of [n]. For 1 < ¢ < mn, set

|A] =¢ and |IBl=n—|Al=n—{¢.

By (15), we have
[logye '] = A +2=1(+2.

Thus our polynomials have degree A < (¢ + 2)d, and
d=A—|A|=(JA|+2)d—|A]=(d-1)+2d.

Recall that the given input consists of the polynomials P;, Ps, ..., P, in (6). Using
the polynomials Py, Ps, ..., Py, the algorithm draws s samples, where each sample is an
independent collection of Razborov—Smolensky polynomials R, Ra, ..., R¢1o constructed
using (11). (Recall the R;’s are simply random linear combinations of the P;’s.) Each
collection forms one of the approximate summands f; = [[,(1 + R;) of (12). However, in
our algorithm these approximate summands f; are never constructed in explicit form: in
Lokshtanov et al. [9] they are constructed explicitly, which leads to a worse running time.

Rather, we observe that we can access a part f;|47F for Z € ( 55) by making the
substitution Z — B directly into the Razborov—Smolensky polynomials Ry, Ro, ..., Ryto
that define f;, without constructing f; itself. In particular, after the substitution, the
polynomials have variables z4 = (z; : j € A). In notation, we construct by the substitution
Z — B the polynomials

Qi(ra) = Ri|578(xa), Qa(za)=Ro|57B(xa), ..., Quio(ra)= Rirald P (xa).
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Since the R;’s are just linear combinations of polynomials of degree at most d, these

polynomials also have degree at most d, and are over £ = |A| variables. Thus, computing

the sum I, z-5 of the part f|577 is exactly the task of summing over z4 € {0, 1}
f12 A

the polynomial

AP (@a) = (14 Qu@a)) (1 + Qa(wa)) - (1 + Qeralaa))

Recalling (8), this is exactly the task of determining the parity of the number of solutions
x4 € {0,1}4] to the system of polynomial equations

Ql(xA):Oa Q2($A):O> R Q€+2($A)=0-

This completes our randomized reduction from parity-counting to itself: we have reduced
parity counting for a system of degree-d polynomials in n variables to (lg‘) = ( U d_"f)f 2 d)
calls to parity counting a system of degree-d polynomials in ¢ variables.

To compare, in Lokshtanov et al. [9], such a self-reduction seems not to be possible when

one uses (9) instead of (7). A full O*(2!) time summation was used in their paper.

3.7 Running time analysis

Let us now analyze the running time as a function of the number of variables n and the
reduction parameter ¢ with 1 < ¢ < n. Let us write T'(n,m) for an upper bound for the
worst-case running time when the input consists of at most m polynomials of degree at most
d in at most n variables. Similarly, let us write S(n,m) for an upper bound for the worst-case
space complexity.

Let us now recall the structure of the self-reduction, then analyze its recursive application.

The reduction first builds the s = 48n + 1 approximate summands (via the constituent
polynomials Ry, Ra, ..., Ryy2) and then works to complete 2/81 = 27~¢ scoreboards, each

recording the sum (over the integers to enable majority-voting) of summation of s parts.

The summation of parts proceeds across the scoreboards, one entire approximate summand
at a time using steps (i), (ii), and (iii). In step (i), we recursively perform summations for
(Ii%') = (¢(d—n1_)5+2d) parts, each via the constituent polynomials Q1,Qa, ..., Q2 of degree
at most d over ¢ variables. In step (ii), we run the fast zeta transform over ( f&) to recover
the monomials of the summand for all AUY with YV € (f;). In step (iii), we run the fast
zeta transform over 28 to recover all sums of parts for one approximate summand. This
procedure is repeated for each of the approximate summands, updating the scoreboard as
we go. Once the scoreboards are complete, the algorithm takes the majority vote in each
scoreboard, and returns the parity of the majority votes.

The space complexity of the reduction can be upper-bounded via the recursive scoreboards
and the representation of the polynomials in the monomial basis, with

S(n,m) <S¢, L+2)+ 0(2”75 log s + m(ﬁi)) . (20)

Indeed, the zeta transforms at each level of recursion require only space O(2"~*).

The time complexity of the reduction can be upper-bounded via the brute-force base case
T(n,m) < O(Q"nm(fd)) and the recurrence
T(n,m) < 5(, 0" er2a) TEA+2) + O(s(( (0 Dy 0s2a) (0 (E+2)m([2)) +27 (n—0))) . (21)

The first term accounts for the parity self-reduction; the second term accounts for the fast
zeta transforms.
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Let us now assume that d = 2,3,... is a fixed constant. We will run the reduction (21)
recursively for D = D(d) levels, and then switch to the brute-force base case. The parameter
¢ at each level is set by means of a constant A = A(d) with 0 < A < 3 so that £ = [An]
where n is the number of variables in the input to the level. Let

H(p) = —plogy p — (1 = p)logy(1 — p)
be the binary entropy function and recall that we have (Lﬁj) < oRH(u/K) for all 1 < u < %
Since £ < 575, the sums of binomial coefficients in (21) can be upper-bounded as follows:

n— n— n(l— d=1r
(¢(d—1)ﬁ+2d) = ”zdﬂ((d—f)e) < n2t2n () :

Assuming that we run the recursion for D = D(d) levels and then use brute force, we
observe that there exists a constant C' = C(d) > 0 such that we have

T(n,m) = O(mn® (1 +27Mm))

where 7(\¥) is a parameter defined for k =0,1,...,D — 1 by

T(AF) = M max ((1 — N H (Y22 4 70 1), 1)) (22)
and
T(AP) = AP, (23)

Recalling that 1 + A+ A2 +... = and choosing a large enough D, we have that

1
—X»

7(1) <1—X whenever H((df_l/\))‘) <1-=2\.

Thus, for any d > 2 we can select A = 1/(2.7d) to obtain the running time O*(2(1=1/(2-7))n),
For d = 2, we can select A = 0.196774680497 to obtain the running time O*(20-803225m)
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