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—— Abstract

The importance of being able to verify quantum computation delegated to remote servers increases

with recent development of quantum technologies. In some of the proposed protocols for this task,
a client delegates her quantum computation to non-communicating servers in multiple rounds of
communication. In this work, we propose the first protocol where the client delegates her quantum
computation to two servers in one-round of communication. Another advantage of our protocol is
that it is conceptually simpler than previous protocols. The parameters of our protocol also make
it possible to prove security even if the servers are allowed to communicate, but respecting the
plausible assumption that information cannot be propagated faster than speed of light, making it
the first relativistic protocol for quantum computation.
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1 Introduction

With the recent progress in the development of quantum technologies, large-scale quantum
computers may be available in a not-so-distant future. Their costs and infrastructure
requirements make it impractical for them to be ubiquitous, however clients could send
their quantum computation to be performed remotely by a quantum server in the cloud [9],
broadening the use of quantum advantage to solve computational problems (see Ref. [24]
for such examples). For the clients, it is a major concern whether the quantum servers are
performing the correct computation and quantum speedup is really being experienced.

In order to solve this problem, we aim a protocol for verifiable delegation of quantum
computation where the client exchanges messages with the server, and, at the end of the
protocol, either the client holds the output of her computation, or she detects that the
server is defective. Ideally, the client is a classical computer and an honest server only
needs polynomial-time quantum computation to answer correctly. Also, one would aim for
blind protocols, in which the server does not learn the circuit delegated by the client. We
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notice that verification protocols could also be used for validating devices that claim to have
quantum computational power, but in this work we focus on the point of view of delegation
of computation.

There are efficient protocols that can perform this task if the model is relaxed, for instance
giving limited quantum power and quantum communication to the client [14, 3, 8, 25, 26].
There are also protocols where the security of the protocol only holds against bounded
malicious servers [20].In this work, we focus on a third line of protocols, where a classical
client delegates her computation to non-communicating quantum servers. Although the
servers are supposed to share and maintain entangled states, which is feasible in principle
but technologically challenging, these protocols are “plug-and-play” in the sense that the
client only needs classical communication with the quantum servers.

Following standard notation in these protocols, we start calling the client and servers
by verifier and provers, respectively. The security of such protocols relies on the so called
self-testing of non-local games. We consider games where a verifier interacts with non-
communicating provers by exchanging one round of classical communication and, based on
the correlation of the provers’ answers, the verifier decides to accept or reject. The goal of
the provers is to maximize the acceptance probability in the game and they can share a
common strategy before the game starts. A game is non-local [6] whenever there exists a
quantum strategy for the provers that achieves acceptance probability strictly higher than any
classical strategy, allowing the verifier to certify that the provers share some entanglement, if
the classical bound is surpassed. Self-testing [21] goes one step further, proving that if the
correlation of the provers’ answers is close to the optimal quantum value, their strategy is
close to the honest one.

Reichardt, Unger and Vazirani [32] used the ideas of self-testing to propose a verifiable
delegation scheme where the verifier interleaves questions of non-local games and instructions
for the computation, and from the point of view of the provers, these two types of questions
are indistinguishable. In this case, the correctness of the quantum computation is inherited
by the guarantees achieved in self-testing. Follow-up works [22, 15, 17, 13, 27, 10] have used
the same approach in order to propose more efficient protocols (see Table 1 for summary of
the properties of the different protocols).

In this work, we present the first one-round protocol for verifiable delegation of quantum
computation. We notice that our protocol is conceptually simple, in contrast with previous
protocols that have a rather complicated structure. We expect that its main ideas can be
generalized to other contexts as MIP* protocols for iterated non-deterministic exponential
time and even in new protocols for delegation of quantum computation. We also remark
that the parameters of the protocol allow us to replace the unjustified assumption that the
provers do not communicate to a more plausible assumption that the communication cannot
be faster than speed of light.

Technically, we achieve our protocol by showing a non-local game for Local Hamiltonian
problem, where the verifier plays against two provers in one round of classical communication.
In this game, honest provers perform polynomial time quantum computation on copies of
the groundstate of the Hamiltonian. This non-local game is of independent interest since it
was an open question if a one-round game for Local Hamiltonian problem could be achieved
with only two efficient provers. This non-local game can be used as a delegation protocol
through the circuit-to-Hamiltonian construction.
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Table 1 Comparison between different protocols for verifiable delegation of quantum computation.

Client Provers Rounds Blind Security

ABOEM |3] Quantum 1 poly(g) yes information theoretical
FK [14] Quantum 1 poly(g) yes information theoretical
RUV [32] Classical 2 > ¢8192 yes  information theoretical
McKague [22] | Classical —poly(n) > 2'%3¢%? yes  information theoretical
GKW [15] Classical 2 > 2048 yes  information theoretical
HPDF [17] Classical poly(n) ©(g*logg) yes  information theoretical
FH [13] Classical 5 2 no information theoretical
NV [27, 28] Classical 7 2 no  information theoretical
CGJV [10] Classical 2 O(depth) yes  information theoretical
CFJV [10] Classical 2 2 no  information theoretical
Mahadev [20] | Classical 1 2 no computational

This work Classical 2 1 no information theoretical

1.1 Our contributions

New Non-local game for Local Hamiltonians. The main technical result of this work is
presenting one-round two-prover game for the Local Hamiltonian problem, where honest
provers only need quantum polynomial time computation, copies of the groundstate of the
Hamiltonian and shared EPR pairs. More concretely, we show how to construct a game G(H)
based on a X Z Local Hamiltonian! H acting on n qubits and the upper and lower bounds on
the maximum acceptance probability in G(H) are tightly related to the groundstate energy
of H. Then, based on G(H), we devise a game G(H) such that if the groundstate energy of
H is low, then the maximum acceptance probability in C?'(H ) is at least % + A, while if the
groundstate energy is high, the acceptance probability in the game is at most % — A. We
describe now the main ideas of G(H).

The game is composed by two tests: the Pauli Braiding Test (PBT) [27], where the verifier
checks if the provers share the expected state and perform the indicated Pauli measurements,
and the Energy Test (ET), where the verifier estimates the groundstate energy of H.

The same structure was used in a different way in the non-local game for LH proposed by
Natarajan and Vidick [27] (and implicitly in Ji [18]). In their game, 7 provers are expected
to share the encoding of the groundstate of H under a quantum error correcting code. In
ET, the provers estimate the groundstate energy by jointly performing the measurements on
the state, while PBT checks if the provers share a correct encoding of some state and if they
perform the indicated measurements. The provers receive questions consisting in a Pauli
tensor product observable and they answer with the one-bit outcome of the measurement on
their share of the state. The need of 7 provers comes from the fact that the verifier must test
if the provers are committed to an encoded state and use it in all of their measurements. It
is an open problem if the number of provers can be decreased in this setup.

In this work, we are able to reduce the number of provers to 2 by making them asymmetric.

In ET, one of the provers holds the groundstate of H and teleports it to the second prover,
who is responsible for measuring it. In our case, PBT checks if the provers share EPR pairs

! An XZ Local Hamiltonian is a Hamiltonian that can be decomposed in sum of polynomially many
terms that are tensor products of Paulis ox, oz and or
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and if the second prover’s measurements are correct. We remark that no test is needed
for the state, since the chosen measurement is not known by the first prover. We notice
that the size of the answers in our protocol is polynomial in n, since the verifier needs the
teleportation results for every qubit (in order to hide the measurement). We leave as an
open problem if the size of the answers can be reduced, hopefully achieving constant-size
answers as in [27].

We state now the key ideas to upper bound the maximum acceptance probability of G(H).
The behavior of the second prover in ET can be verified thanks to PBT, since the two tests
are indistinguishable to him. On the other hand, the first prover can perfectly distinguish
PBT and ET, but he has no information about the measurement being performed. We show
that his optimal strategy is to teleport the groundstate of H, but in this case the acceptance
probability is high iff the groundstate energy is low.

Protocol for verifiable delegation of quantum computation. The task of verifiable deleg-
ation of quantum computation can be easily reduced to estimating the groundenergy of local
Hamiltonians through the circuit-to-Hamiltonian construction [13, 27], which has been called
post-hoc verification of quantum computation. In this construction, a quantum circuit @ is
reduced to an instance Hg of LH, such that Hg has low groundstate energy iff Q) accepts
with high probability. Our non-local game for Hg can be seen as a delegation protocol,
where the verifier interacts with two non-communicating entangled provers in one-round of
classical communication.

When compared to previous protocols, our result has some very nice properties. First,
differently to previous results, our protocol is very simple to state, which could make it easier to
be extended to other settings. Secondly, using standard techniques in relativistic cryptography,
we can replace the unjustified assumption that the two servers do not communicate by the
No Superluminal Signaling (NSS) principle: the security of the protocol would only rely that
the two servers cannot communicate faster than the speed of light.

The circuit-to-Hamiltonian construction also causes an overhead on the resources needed
by honest provers. Namely, in our protocol the provers need O(ngz) EPR pairs for delegating
the computation of a quantum circuit acting on n qubits and composed by g gates, while
other protocols need only O(g) EPR pairs [10]. We leave as an open problem finding more
efficient two-provers one-round protocol for delegating quantum computation.

We also leave as an open question if it is possible to create a one-round and blind
verifiable delegation scheme for quantum computation, or proving that this is improbable, in
the lines of Ref. [1].

Non-local games for QMA. In Complexity Theory, the connection between the PCP
theorem [5, 4, 12] and multi-prover games [7] has had a lot of fruitful consequences, such as
tighter inapproximability results [31]. Our protocol directly implies a one-round two-prover
game for QMA but with polynomial-size questions and answers. We wonder if it could be
used to prove the game version of the quantum PCP theorem with two prover [28].

Organization

In Section 2, we give the necessary preliminaries, including the definition of the Pauli Braiding
Test. Then, in Section 3 we present our non-local game for local Hamiltonian problem.
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2 Preliminaries

We assume basic knowledge on Quantum Computation topics and we refer the readers that
are not familiar with them to Ref. [29].

2.1 Notation

We denote [n] as the set {1,...,n}. For a finite set S, we denote z €r S as x being an

uniformly random element from S. We assume that all Hilbert spaces are finite-dimensional.

For a Hilbert space H and a linear operator M on H, we denote Ag(M) as its smallest
eigenvalue and ||M]| as its maximum singular value. An n-qubit binary observable O is a
Hermitian matrix with eigenvalues +1. We denote Obs(#H) as the set of binary observables
on the Hilbert space H.

We will use the letters X, Z and I to denote questions in multi-prover games, the letters
in the sans-serif font X, Z and | to denote unitaries and ox, oz and o to denote observables
such that

|:01:<(1) 2), XZUX:<(1) é)and Z:UZ:((l) _01>

2.2 Non-local games, Self-testing and the Pauli Braiding Test

We consider games where a verifier plays against two provers in the following way. The
verifier sends questions to the provers according to a publicly known distribution and the
provers answer back to the verifier. Based on the correlation of the answers, the verifier
decides to accept or reject according to an acceptance rule that is also publicly known. The
provers share a common strategy before the game starts in order to maximize the acceptance
probability in the game, but they do not communicate afterwards.

For a game G, its classical value w(G) is the maximum acceptance probability in the game
if the provers share classical randomness, while the quantum value w*(G) is the maximum
acceptance probability if they are allowed to follow a quantum strategy, i.e. share a quantum
state and apply measurements on it. Non-local games (or Bell tests) [6] are such games
where w*(G) > w(G) and they have played a major role in Quantum Information Theory,
since they allow the verifier to certify that there exists some quantumness in the strategy of
the provers, if the classical bound is surpassed.

Self-testing (also known as device-independent certification or rigidity theorems) of a
non-local game G allows us to achieve stronger conclusions by showing that if the acceptance
probability on G is close to w*(G), then the strategy of the provers is close to the ideal one,
up to local isometries.

2.2.1 Magic Square game

The Magic Square or Mermin-Peres game [23, 30], is a two-prover non-local game where
one of the provers is asked a row r € {1, 2,3} and the second prover is asked with a column
¢ € {1,2,3}. The first and second prover answer with ay,as € {£1} and by,bs € {£1},
respectively. By setting az = a1 ® as and b3 = by @ bs, the provers win the game if a. = b,..

If the provers follow a classical strategy, their maximum winning probability in this game

is %, while we describe now a quantum strategy that makes them win with probability 1.

The provers share two EPR pairs and, on question r (resp. ¢), the prover performs the
measurements indicated in the first two columns (resp. rows) of row r (resp. column c) of
the following table
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1z | ZI | ZZ
XI | IX | XX
XZ | ZX | ' YY

and answer with the outcomes of the measurements. The values a3 and bg should correspond
to the measurement of the EPR pairs according to the third column and row, respectively.

The self-testing theorem proved by Wu, Bancal and Scarani [33] states that if the provers
win the Magic Square game with probability close to 1, they share two EPR pairs and the
measurements performed are close to the honest Pauli measurements, up to local isometries.

» Lemma 1. Suppose a strategy for the provers, using state |1)) and observables W, succeeds
with probability at least 1 — € in the Magic Square game. Then there exist isometries
Vb : Hp = (C2® C?)p @ Hp, for D € {A, B} and a state |AUX) 35 € H, ® Hp such that
2
H(VA ® Vi)Y as — [Poo) 5 |AUX) 25/ = O(VE),
and for W € {I, X, Z}?,

(W = ViewVa) @ Is|0)||* = O(v/2).

2.2.2 Pauli Braiding Test

The starting point of our work is the Pauli Braiding Test(PBT) [27], a non-local game that
allows the verifier to certify that two provers share ¢ EPR pairs and perform the indicated
measurements, which consist of tensors of Pauli observables.

We define PBT in details later in this section and here we state the main properties
that will be used in our Hamiltonian game. In PBT, each prover receives questions in the
form W € {X, Z,I'}!, and each one is answered with some b € {—1,+1}*. For W € {X, Z}'
and a € {0,1}!, we have W(a) € {X, Z,I}' where W(a); = W; if a; = 1 and W(a); = I
otherwise.

In the honest strategy, the provers share ¢ EPR pairs and measure them with respect to

the observable oy & ®i€[t] ow, on question W. However, the provers could deviate and
perform an arbitrary strategy, sharing an entangled state |¢)) ap € Ha ® Hg and performing
projective measurements TV‘?, and 75 for each possible question W. It was shown that if the
provers pass PBT with probability 1 — ¢, their strategy is, up to local isometries, O(y/¢)-close
to sharing ¢ EPR pairs and measuring oy on question W [27].

We describe now PBT. The test is divided in three different tests, which are performed with
equal probability. The first one, the Consistency Test, checks if the measurement performed
by both provers on question W are equivalent, i.e. 7y ® I|1) ap is close to [4 @75 |1 ap. In
the Linearity Test, the verifier checks if the measurement performed by the provers are linear,
ie. TII/?/(a)T{/?/(a’) ® Ip|t) ap is close to T{/?/(a+a,) ® Ip|¢) ap. Finally, in the Anti-commutation
Test, the verifier checks if the provers’ measurements follow commutation/anti-commutation
rules consistent with the honest measurements, namely 7'1‘,?,((1)7‘,’?,, (@) ® Ip|t)ap is close to
(—=1){Wi#W/ and ai:aé:l}lTv?/’(a’)TVI?/(a) ® IplY) ap.

The Consistency Test and Linearity Test are very simple and are described in Figure 1.
For the Anti-commutation Test, we can use non-local games that allow the verifier to check
that the provers share a constant number of EPR pairs and perform Pauli measurements
on them. In this work we use the Magic Square game since there is a perfect quantum

strategy for it.
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The verifier performs the following steps, with probability % each:
(A) Consistency test
a. The verifier picks W €g {X, Z}" and a € {0,1}".
b. The verifier sends W (a) to both provers.
c. The verifier accepts iff the provers’ answers are equal.
(B) Linearity test
a. The verifier picks W €g {X, Z}' and a,d’ €g {0,1}".
b. The verifier sends (W (a), W(a')) to P, and W' €g {W(a), W(a')} to Ps.
c. The verifier receives b, b’ € {£1} from P; and ¢ € {£1}' from P,.
d. The verifier accepts iff b = ¢ when W/ = W(a) or b’ = ¢ when W’ = W (d’).
(C) Anti-commutation test
a. The verifier makes the provers play Magic Square games in parallel with the ¢ EPR
pairs (see Section 2.2.1).

Figure 1 Pauli Braiding Test.

» Theorem 2 (Theorem 14 of [27]). Suppose |¢)) € Ha ® Hp and W(a) € Obs(Ha), for
W e {X,Z} and a € {0,1}", specify a strategy for the players that has success probability at
least 1—¢ in the Pauli Braiding Test. Then there exist isometries Vp : Hp — (((CQ)@t)D@’}:[D,
for D € {A, B}, such that

(Vi © Vi) ) a5 — [Boo0) g [aUX) 4517 = O(V2),

and on expectation over W € {X, Z},

B (W (a) = Vi(ow(a) ® hVa) @ Is|)||* = O(/2).

Moreover, if the provers share |(I>00>%,t3, and measure with the observables @ ow, on
question W, they pass the test with probability 1.

2.3 Local Hamiltonian problem

The Local Hamiltonian problem can be seen as the quantum analog of MAX-SAT problem.

An instance for this problem consists in m Hermitian matrices Hy, ..., H,,, where each H;
acts non-trivially on at most most k qubits. For some parameters «, 8 € R, a < 3, the
Local Hamiltonian problem asks if there is a global state such that its energy in respect
of H = % Zie[m] H; is at most « or all states have energy at least 8. This problem was
first proved to be QMA-complete for k =5 and 8 — a > m [19]. In this work, we are
particularly interested in the version of LH where all the terms are tensor products of oy,

oz and oy.

» Definition 3 (XZ Local Hamiltonian). The XZ k-Local Hamiltonian problem, for k € Z+
and parameters a, 8 € [0, 1] with o < f3, is the following promise problem. Let n be the number
of qubits of a quantum system. The input is a sequence of m(n) values Y1, ..., Ym(n) € [—1,1]
and m(n) Hamiltonians Hi, ..., Hp,(n) where m is a polynomial in n, and for each i € [m(n)],
Hi is of the form @;c, ow, € {ox,07,01}*™ with |{j|j € [n] and ow, # o1}| < k. For
g m(ln) Zgn:(?) v;Hj, one of the following two conditions hold.

Yes. There exists a state |1) € C*" such that (Y|H|[y) < a(n)

No. For all states |1) € C*" it holds that (|H|p) > B(n).

28:7
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Whenever the value of n is clear from the context, we call a(n), 8(n) and m(n) by a, 8 and
m. The XZ k-LH problem has been also proved QMA-complete [11, 18].

» Lemma 4 (Lemma 22 of [18], Lemma 22 of [11]). There exist o, 8 € [0,1] satisfying

1
f-az poly(n)

such that X Z k-Local Hamiltonian is QMA-complete, for some constant k.
It is an open question if k-LH is QMA-complete for 8 — a = O(1) while maintaining k
constant [2]. However, it is possible to achieve this gap at the cost of increasing the locality

of the Hamiltonian [27].

» Lemma 5 (Lemma 26 of [27]). Let H be an n-qubit Hamiltonian with minimum energy
Mo(H) > 0 and such that ||H|| < 1. Let o, 3 > W(n) and o < B for all n. Let H' be the
following Hamiltonian on (8 — o)~ 'n qubits

H' =% — (6% — (H — a"'0P™))%, wherea = (8 —a)™".

It follows that if \o(H) < « then \o(H') < 5, while if \o(H) > f3 then X\o(H') > 1.
Moreover if H is a XZ Hamiltonian, so is H'.

Finally, we define now non-local games for Local Hamiltonian problems.

» Definition 6 (Non-local games for Hamiltonians). A non-local game for the Local Hamiltonian
problem consists in a reduction from a Hamiltonian H acting on n qubits to a non-local game
G(H) where a verifier plays against r provers, and for some parameters «, 8, ¢,s € [0,1], for
a < B and ¢ > s, the following holds.

Completeness. If \g(H) < «, then w*(G(H)) > ¢

Soundness. If \o(H) > 3, then w*(G(H)) < s.

3 One-round two-prover game for Local Hamiltonian

In this section, we define our non-local game for Local Hamiltonian problem, proving
Theorem 9. We start with a XZ Hamiltonian H = % > iem VH acting on n qubits and
a, B € ]0,1] with o < 8. We propose then the Hamiltonian Test G(H), a non-local game
based on H, whose maximum acceptance probability upper and lower bounds are tightly
related to A\o(H). Based on G(H), we show how to construct another non-local game
G(H) for which there exists some universal constant A > 0 such that if \g(H) < «, then
w*(G(H)) > % + A, whereas if A\o(H) > 3, then w*(G(H)) < 3 — A. The techniques used to
devise G(H) and G(H) are based on Ref. [18, 27].

We describe now the Hamiltonian Test G(H ), which is composed by the Pauli Braiding
Test (PBT) (see Section 2.2) and the Energy Test (ET), which allows the verifier to estimate
Xo(H). The provers are expected to share ¢ EPR pairs and the first prover holds a copy of the
groundstate of H. In ET, the verifier picks | €g [m], W €r {X, Z}! and e € {0,1}¢, and
chooses T, ..., Tp, € [t] such that W (e)s; matches the i-th Pauli observable of H;. By setting
t = O(nlogn), it is possible to choose such positions for a random W (e) with overwhelming
probability. The verifier sends 71, ..., 7, to the first prover, who is supposed to teleport
the groundstate of H through the EPR pairs in these positions. As in PBT, the verifier
sends W (e) to the second prover, who is supposed to measure his EPR halves with the
corresponding observables. The values of 71, ..., T, were chosen in a way that the first prover
teleports the groundstate of H in the exact positions of the measurement according to H;.
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The verifier performs each of the following steps with probability 1 — p and p, respectively:
(A) Pauli Braiding Test
(B) Energy Test
a. The verifier picks W €g {X, Z}!, e €g {0,1}' and | € [m)]
The verifier picks positions 7y, ...7, such that H; = @ W (e), -
The verifier sends 7Ty, ..., 75, to the first prover and W (e) to the second prover.
The first prover answers with a,b € {0,1}" and the second prover with ¢ € {+1, —1}%.
Let d € {—1,+1}" such that d; = (—1)%cy, if Wy; = X and d; = (—1)becr, if
W, =Z.
If T e di # sign(m), the verifier accepts.
g. Otherwise, the verifier rejects with probability |v;|.

e aons

gl

Figure 2 Hamiltonian Test G(H) for a X Z Hamiltonian H.

With the outcomes of the teleportation measurements, the verifier can correct the output of
the measurement of the second prover and estimate A\o(H). The full description of the game
is presented in Figure 2.

We state now two auxiliary lemmas with lower and upper bounds on the maximum
acceptance probability on G(H).

» Lemma 7. Let H = Zle[m] viH; be a XZ Hamiltonian, let G(H) be the Hamiltonian-self
test for H, described in Figure 2, and

def 1 1
wp(H) =1—p ng] Ivi| — §>\0(H)

If the provers use the honest strategy in PBT, the maximum acceptance probability in G(H)
is wp(H). Moreover, this probability is achieved if the first prover behaves honestly in ET.

» Lemma 8. Let H, G(H) and wn(H) be defined as Lemma 7. For every n > 0, there is
some value of p = O(y/n) such that w*(G(H)) < wp(H) +1n.

We defer the proof of these lemmas to Section 3.1 and we concentrate now in proving our
main theorem.

» Theorem 9. There exists a universal constant A such that the following holds. Let
H= ZIEm viH; be XZ k-Local Hamiltonian acting on n qubits with parameters o, 5 € (0,1),
for B > a. There exists one-round two-prover non-local game such that

if Mo(H) < a, then the verifier accepts with probability at least % + A; and

if A\o(H) > 3, then the verifier accepts with probability at most % —A.
Moreover, each message is O(n(B — a)~1)-bit long.

Proof. Lemma 5 states that from H we can construct a Hamiltonian H’ such that
1
)\o(H) <a= )\o(H/) < 5 and )\o(H) > ﬂ = )\0(H’) >1,

and H' =}, v Hj is an instance of XZ Local Hamiltonian problem.
We now bound the maximum acceptance probability of the Hamiltonian Test on H’,
relating it to the groundstate energy of H. From Lemma 7 it follows that

i o 1 ;1 de
M(H)<a=w (GH))>1-p sz]m_4 def o

lelm
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while from Lemma 8, for any 7 > 0 and some p < C,/n, we have that

* 1 1 C\n
No(H) 2 = (GUH) <1—p (5 S bl — 3 | +n=e 4y
le[m]
By choosing 7 to be a constant such that 7’ e % —n > 0, it follows that

M(H) <a=w (G(H") >cand \g(H) > 8= w"(G(H)) <c—1.

We describe now the game G (H) that achieves the completeness and soundness properties
stated in the theorem. In this game, the verifier accepts with probability % — 262" , rejects
with probability QCT_", or play G(H') with probability 3. Within this new game, if A\o(H) < «

’

then w*(G(H')) > 3 + "Z,, whereas when \o(H) > 3, we have that w*(G(H')) < 5 — 2. «

» Corollary 10. There exists a protocol for verifiable delegation of quantum computation
where a classical client communicates with two entangled servers in one round of classical
communication.

Proof. The corollary holds from composing the circuit-to-Hamiltonian construction (see the
full version [16] of the paper for more details) with our non-local game. <

» Remark 11. The parameters of our delegation protocol allow us to use standard arguments
in relativistic cryptography to replace the assumption that the provers do not communicate
by the assumption that they can only communicate at most as fast as the speed of light. See
the full version [16] of this paper for more details on this matter.

3.1 Proof of Lemmas 7 and 8

We start by proving Lemma 7, showing an upper bound on the acceptance probability if the
provers are honest in PBT.

Proof of Lemma 7. Since PBT and ET are indistinguishable to the second prover, he also
follows the honest strategy in ET and the acceptance probability in G(H) depends uniquely
in the strategy of the first prover in ET.
Let a,b € {0,1}"™ be the answers of the first prover in ET and 7 be the reduced state held
by the second prover on the positions 77, ..., 7, of his EPR halves, after the teleportation.
For a fixed H, the verifier rejects with probability

vl + NE [[Tien di]
5 ‘

(1)

We notice that measuring a qubit |¢) in the Z-basis with outcome f € {£1} is equivalent
of considering the outcome (—1)9f when measuring X9Z"|¢) in the same basis. An analog
argument follows also for the X-basis. Therefore, by fixing the answers of the first prover,
instead of considering that the second prover measured 7 in respect of H; with outcome c,
we consider that he measured p = Z°X27X?Z° with respect to H; with outcome d. In this
case, by taking [],.,,
all [ € [m], it follows from Equation (1) that the verifier rejects in ET with probability

1 || + % Tr(pH;) 1 1
o E e T E || + iTY(PH),
le[m] le[m]

d; as the outcome of the measurement of H; on p, and averaging over
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and this value is minimized when p is the groundstate of H. In this case the overall acceptance
probability in G(H) is at most

1 1
o z?] Iyl — §>\0(H) = wy(H).

Finally, this acceptance probability is achieved if the first prover teleports the groundstate
1) of H and report the honest outcomes from the teleportation, since 7 = X*Z°[¢) (1h|Z°X*

and p = |¢)(¥]. <

We use now the self-testing of PBT to certify the measurements of the second prover in
ET. In this way, we can bound the acceptance probability in G(H) with Lemma 7 and prove
Lemma 8.

Proof of Lemma 8. Let S be the strategy of the provers, which results in acceptance
probabilities 1 — ¢ in PBT and 1 — ﬁ ZlG[m] |vi| — %)\O(H) + 6 in ET, for some € and ¢.

By Lemma 2, their strategy in PBT is O(y/€)-close to the honest strategy, up to the local
isometries V4 and Vpg. Let S} be the strategy where the provers follow the honest strategy
in PBT and, for ET, the first prover performs the same operations of S, but considering
the isometry V4 from Theorem 2. Since the measurements performed by the provers in S
and S}, are O(y/¢)-close to each other, considering the isometries, the distributions of the
corresponding transcripts have statistical distance at most O(y/g). Therefore, the provers
following strategy S}, are accepted in ET with probability at least

1 1
1- Zng:] Il — 5)\0(H) +6 — O(Ve).

Since in S}, the provers perform the honest strategy in PBT, it follows from Lemma 7
that

1 1 1 1
_ _z _ <1 _Z
1 leg[ ]|%\ 2>\0(H)+5 O(Ve) <1 o E |v1] 2)\O(H)v

l€[m]

which implies that 6 < C'y/e, for some constant C.
The original strategy S leads to acceptance probability at most

(1-p)(1—e)+p 1—fZ\ M) e | = wn(H) — (1 - pe + pOVE

le[m]

For any 7, we can pick p = min { ‘g, } for D > 2C, and it follows that

20 iz
D

pCVe — (1 —ple < —e<mVe—e<

and therefore the maximum acceptance probability is at most wy(H) + 7. <
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