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—— Abstract

A t-spanner of a graph G is a subgraph H in which all distances are preserved up to a multiplicative
t factor. A classical result of Althofer et al. is that for every integer k and every graph G, there is a
(2k — 1)-spanner of G with at most O(n'*/*) edges. But for some settings the more interesting
notion is not the number of edges, but the degrees of the nodes. This spurred interest in and study
of spanners with small maximum degree. However, this is not necessarily a robust enough objective:
we would like spanners that not only have small maximum degree, but also have “few” nodes of
“large” degree. To interpolate between these two extremes, in this paper we initiate the study of
graph spanners with respect to the £,-norm of their degree vector, thus simultaneously modeling
the number of edges (the ¢1-norm) and the maximum degree (the £oc-norm). We give precise upper
bounds for all ranges of p and stretch ¢: we prove that the greedy (2k — 1)-spanner has £, norm of at
most max(O(n), O(nk’ﬂit@p))7 and that this bound is tight (assuming the Erd8s girth conjecture). We
also study universal lower bounds, allowing us to give “generic” guarantees on the approximation
ratio of the greedy algorithm which generalize and interpolate between the known approximations
for the ¢; and foc norm. Finally, we show that at least in some situations, the £, norm behaves
fundamentally differently from ¢; or {o: there are regimes (p = 2 and stretch 3 in particular) where
the greedy spanner has a provably superior approximation to the generic guarantee.
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1 Introduction

Graph spanners are subgraphs which approximately preserve distances. Slightly more
formally, given a graph G = (V, E) (possibly with lengths on the edges), a subgraph H of G
is a t-spanner of G if dg(u,v) < dg(u,v) < t-dg(u,v) for all u,v € V, where dg denotes
shortest-path distances in G (and dp in H). The value t is called the stretch of the spanner.

Graph spanners were originally introduced in the context of distributed computing [27, 26],
but have since proved to be a fundamental building block that is useful in a variety of
applications, from property testing [7] to network routing [28]. When building spanners
there are many objectives which we could try to optimize, but probably the most popular
is the number of edges (the size or the sparsity). Not only is sparsity important in many
applications, it also admits a beautiful tradeoff with the stretch, proved by Althofer et al. [2]:
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» Theorem 1 ([2]). For every integer k > 1 and every weighted graph G = (V, E) with
|V| = n, there is a (2k — 1)-spanner H of G with at most O(n'T1/*) edges.

While understanding the tradeoff between the size and the stretch was a seminal achieve-
ment, for many applications (particularly in distributed computing) we care not just about
the size, but also about the mazimum degree. Unfortunately, unlike the size, there is no
possible tradeoff between the stretch and the maximum degree. This is trivial to see: if
G is a star, then the only spanner of G with non-infinite stretch has maximum degree of
n — 1. In general, if G has maximum degree A, then all we can say is the trivial fact that
G has a spanner with maximum degree at most A. Nevertheless, given the importance of
the maximum degree objective, there has been significant work on building spanners that
minimize the maximum degree from the perspective of approzimation algorithms [23, 10, 9.
From this perspective, we are given a graph G and stretch value ¢ and are asked to find the
“best” t-spanner of G (where “best” means minimizing the maximum degree).

While this has been an interesting and productive line of research, clearly there are
problems with the maximum degree objective as well. For example, if it is unavoidable for
there to be some node of large degree d, the maximum degree objective allows us to make
every other vertex also of degree d, with no change in the objective function. But clearly we
would prefer to have fewer high-degree nodes if possible!

So we are left with a natural question: can we define a notion of “cost” of a spanner
which discourages very high degree nodes, but if there are high degree nodes, still encourages
the rest of the nodes to have small degree? There is of course an obvious candidate for such
a cost function: the £, norm of the degree vector. That is, given a spanner H, we can define
|H ||, to be the £,-norm of the n-dimensional vector in which the coordinate corresponding to
a node v contains the degree of v in H. Then || H]||; is just (twice) the total number of edges,
and ||H||« is precisely the maximum degree. Thus the ¢,-norm is an interpolation between
these two classical objectives. Moreover, for 1 < p < oo, this notion of cost has precisely the
properties that we want: it encourages low-degree nodes rather than high-degree nodes, but if
high-degree nodes are unavoidable it still encourages the rest of the nodes to be as low-degree
as possible. These properties, of interpolating between the average and the maximum, are
why the £,-norm has appeared as a popular objective for a variety of problems, ranging from
clustering (the famous k-means problem [22, 24]), to scheduling [4, 3, 1], to covering [21].

1.1 Our Results and Techniques

In this paper we initiate the study of graph spanners under the £,-norm objective. We prove
a variety of results, giving upper bounds, lower bounds, and approximation guarantees. Our
main result is the analog of Theorem 1 for the £,-norm objective, but we also characterize
universal lower bounds as part of an effort to understand the generic approximation ratio for
the related optimization problem. We also show that in some ways the £,-norm can behave
fundamentally differently than the traditional ¢; or ¢, norms, by proving that the greedy
algorithm can have an approximation ratio that is strictly better than the generic guarantee,
unlike the 1 or £, settings.

1.1.1 Upper Bound

We begin by proving our main result: a universal upper bound (the analog of Theorem 1)
for £,-norm spanners. Recall the classical greedy algorithm for constructing a t-spanner H
of a graph G = (V, E). Consider the edges in nondecreasing order of edge length, and when
considering edge {u,v}, add it to H if currently dg (u,v) > t-dg(u,v). We call H the greedy
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t-spanner of G. It is trivial to show that the greedy t-spanner has girth at least ¢ + 2. This
is the algorithm that was used to prove Theorem 1, and it has since received extensive study
(see, e.g., [20, 8]) and will form the basis of our upper bound:

» Theorem 2. Let k > 1 be an integer, let G = (V, E) be a graph (possibly with lengths
on the edges), and let H = (V, En) be the greedy (2k — 1)-spanner of G. Then |H|, <

max (O(n), 0 (nk’%)) for allp > 1.

In other words, if p > % then our upper bound is O(n), and otherwise it is O (nk’%)
Clearly this interpolates between p = 1 and p = co: when p = 1 this is the same bound as
Theorem 1, while if p = oo this gives O(n) which is the only possible bound in terms of n. To
get some more intuition for this bound, note that n'5 would be the ¢p-norm of H if H had
the size guaranteed by Theorem 1 and was also regular. So one way to think of this bound is
that while the greedy spanner can be non-regular, its £,-norm still acts as if it were regular.

It is also straightforward to prove that this bound is tight if we again assume the Erdés
girth conjecture [19]; for completeness, we do this in the full version [12].

The proof of Theorem 1 from [2] is relatively simple: the greedy (2k — 1)-spanner has
girth at least 2k + 1, and any graph with more than n'T1/*¥ edges must have a cycle of length
at most 2k. Generalizing this to the £,-norm is significantly more complicated, since it is
not nearly as easy to show a relationship between the girth and the £,-norm. But this is
precisely what we do.

It turns out to be easiest to prove Theorem 2 for stretch 3: it just takes one more step
beyond [2] to split the vertices of the high-girth graph (the spanner) into “low” and “high”
degrees, and show that each vertex set does not contribute too much to the £, norm. However
for larger stretch values this approach does not work: the main lemma used for stretch 3
(Lemma 5) is simply false when generalized to larger stretch bounds. Instead, we need a
much more involved decomposition into “low”, “medium”, and “high”-degree nodes. This
decomposition is very subtle, since the categories are not purely about the degree, but rather
about how the degree relates to expansion at some particular distances from the node. We also
need to further decompose the “high”-degree nodes into sets determined by which distance
level we consider the expansion of. We then separately bound the contribution to the p-norm
of each class in the decomposition; for “low”-degree nodes this is quite straightforward, but
for medium and high-degree nodes this requires some subtle arguments which strongly use
the structure of large-girth graphs.

1.1.2 Universal Lower Bounds

To motivate our next set of results, consider the optimization problem of finding the “best”
t-spanner of a given input graph. When “best” is the smallest £1-norm this is known as the
BASIC t-SPANNER problem [16, 5, 15, 18], and when “best” is the smallest {o-norm this is
the LOWEST-DEGREE ¢-SPANNER problem [23, 10, 9]. It is natural to consider this problem
for the £,-norm as well. It is also natural to consider how well the greedy algorithm (used to
prove the upper bound of Theorem 2) performs as an approximation algorithm.

To see an obvious way of analyzing the greedy algorithm as an approximation algorithm,
consider the ¢;-norm. Theorem 1 implies that the greedy algorithm always returns a spanner
of size at most O(n'*t1/*) while clearly every spanner must have size at least Q(n) (assuming
that the input graph is connected). Thus we immediately get that the greedy algorithm is
an O(nl/ ¥)-approximation. By dividing a universal upper bound (an upper bound on the
size of the greedy spanner that holds for every graph) by a universal lower bound (a lower
bound on the size of every spanner in every graph), we can bound the approximation ratio
in a way that is generic, i.e., that is essentially independent of the actual graph.
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Now consider the £,,-norm. The generic approach seems to break down here: the universal
upper bound is only ©(n) (as shown by the star graph), while the universal lower bound
is only O(1) (as shown by the path). So it seems like the generic guarantee is just the
trivial ©(n). But this is just because n is the wrong parameter in this setting: the correct
parameterization is based on A, the maximum degree of G (i.e., A = ||G||o). With respect
to A, the greedy algorithm (or any algorithm) returns a spanner with maximum degree at
most A, while any t-spanner of a graph with maximum degree A must have maximum degree
at least Q(A'/*) (assuming the graph is unweighted). So there is still a “generic” guarantee
which implies that the greedy algorithm is an O(A'~1/*) < O(n'~1/*)-approximation.

This suggests that for 1 < p < oo, we will need to parameterize by both the number of
nodes n and the ¢,-norm A of G. We can define both universal upper bounds and universal
lower bounds with respect to this dual parameterization:

UB?(n,A) = max min 1H |
G=(V,E):|V|=n,||G|l,=A, H: H is a t-spanner of G
and G is connected
LBY(n,A) = min min | H1|,
G=(V,E):|V|=n,||G|p,=A, H: H is a t-spanner of G

and G is connected

With this notation, we can define the generic guarantee g¥'(n, A) = UBY(n, A)/LBY (n, A),
and if we want a guarantee purely in terms of n we can define the generic guarantee
g (n) = maxy g¥'(n,A). Our upper bound of Theorem 2 can then be restated as the
claim that UBS, _(n,A) < min {A,max {O(n),O(n%p)}} for all n,k,p, A. So in order
to understand the generic guarantees g5, (n,A) or g5, ,(n), we need to understand the
universal lower bound quantity LBY, ,(n,A).

Surprisingly, unlike the ¢; and ., cases, the universal lower bound for other values of p is
extremely complex. Understanding its value, and understanding the structure of the extremal
graphs which match the bound given by LBY(n, A), are the most technically involved results
in this paper. However, while the analysis and even the exact formulation of the lower bound
is quite complex, it turns out to be easily computable from a simple linear program:

» Theorem 3. There is an explicit linear program of size O(t) which calculates LBY (n, A)
for any t € N,p > 1. The bound given by the program is tight up to a factor of log(n)°®.

Our linear program and the proof of Theorem 3 appear in the full version [12]. In fact,
our linear program not only calculates a lower bound on the £,-norm of any ¢-spanner, it also
gives the parameters which define an extremal graph of ¢,-norm A with a ¢-spanner whose
{,-norm matches this lower bound. While the structure of these extremal graphs is simple,
the dependence of the parameters of these graphs on ¢ and p is quite complex. Nevertheless,
we give a complete explicit description of these graphs for every possible value of p,t.

Interestingly, despite the fact that LBY(n,A) is fundamentally a question of extremal
graph theory (although as discussed our motivation is the generic guarantee on approximation
algorithms), our techniques are in some ways more related to approximation algorithms. We
give a linear program which computes the LB function, and we reason about it by explicitly
constructing dual solutions. This is, to the best of our knowledge, the first time that structural
bounds on spanners (as opposed to approximation bounds) have been derived using linear
programs. Moreover, the structure of the extremal graphs is fundamentally related to a
quantity which we call the p-log density of the input graph. This is a generalization of the
notion of “log-density”, which was introduced as the fundamental parameter when designing
approximation algorithms for the DENSEST k-SUBGRAPH (DkS) problem [6], and has since
proved useful in many approximation settings (see, e.g., [10, 11, 14, 13]).
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1.1.3 Greedy Can Do Better Than The Generic Bound

As discussed, when p = 1 or p = oo, the approximation ratio of the greedy algorithm can
be bounded by the generic guarantee. But it turns out that the connection is actually even
closer: when p = 1 and p = oo, for every n and A the approximation ratio of the greedy
algorithm is equal to the generic guarantee g5, ;(n,A). In other words, greedy is no better
than generic in the traditional settings (we prove this for completeness, but it is essentially
folklore). In fact, for the ¢; objective, giving any approximation algorithm which is better
than the generic guarantee g3, ,(n) is a long-standing open problem [18] which has only
been accomplished for stretch 3 [5] and stretch 4 [18], while for the £, objective such an
improvement was only shown recently [9] (and not with the greedy algorithm).

We show that, at least in some regimes of interest, £,-norm graph spanners exhibit
fundamentally different behavior from ¢, and {..: the greedy algorithm has approximation
ratio which is better than the generic guarantee, even though the universal upper bound
is proved via the greedy algorithm! In particular, we consider the regime of stretch 3,
p =2, and A = ©(n). This is a very natural regime, since p = 2 is the most obvious and
widely-studied norm other than ¢; and /., and stretch 3 is the smallest value for which
nontrivial sparsification can occur.

Our theorems about UB and LB imply that g3(n) = ¢3(n,n) = O(y/n). But we show
that in this setting (and in fact for any A as long as p = 2 and the stretch is 3) the greedy
algorithm is an O(n%3/12%)-approximation. Thus we show that, unlike ¢; and £, for p = 2
the greedy algorithm provides an approximation guarantee that is strictly better than the
generic bound, both for specific values of A and when considering the worst case A.

1.2 OQutline

We begin in Section 2 with some basic definitions and preliminaries. In order to illustrate
the basic concepts in a simpler and more understandable setting, we then focus in Section 3
on the special case of stretch 3: we prove the stretch-3 version of Theorem 1 in Section 3.1,
and then show that the greedy algorithm has approximation ratio better than the generic
guarantee in Section 3.2. We then prove our upper and lower bounds in full generality: the
upper bound (i.e., the proof of Theorem 2) in Section 4, and then our universal lower bound
in Section 5. Due to space constraints, all missing proofs can be found in the appendices.

2 Definitions and Preliminaries

Let G = (V, E) be a graph, possibly with lengths on the edges. For any vertex u € V', we let
d(u) denote the degree of u and let N(u) denote the neighbors of u. We will also generalize
this notation slightly by letting N;(u) denote the set of vertices that are exactly ¢ hops away
from w (i.e., their distance from u if we ignore lengths is exactly ), and we let d;(u) = |N;(w)|.
Note that by definition, No(u) = {u} and dg(u) = 1 for all u € V. We will sometimes use
B(v,r) = U;_,N;(v) to denote the ball around v of radius r.

We let dg : V x V. — R> denote the shortest-path distances in G. A subgraph
H = (V,Eg) of a graph G = (V, E) is a t-spanner of G if dg(u,v) < t-dg(u,v) for all
u,v € E. Recall that |7, = (3, xf)l/p for any p > 1 and ¥ € R™. To measure the “cost”
of a spanner, for any graph G = (V, E), let d_é denote the vector of degrees in G and for
any p > 1, let |G|, = \|d_£;||p. For any subset S C V, we let ||S||, denote the £, norm of the
vector obtained from d¢ by removing the coordinate of every node not in S (note that we do
not remove the nodes from the graph, i.e., ||S||, is the norm of the degrees in G of the nodes
in S, not in the subgraph induced by 5).

40:5
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3  Warmup: Stretch 3

We begin by analyzing the special case of stretch 3, particularly for the ¢s-norm. More
specifically, we will focus on bounding UB%(n, A). This is one of the simplest cases, but
demonstrates (at a very high level) the outlines of our upper bound. Moreover, in this
particular case we can prove that the greedy algorithm performs better than the generic
guarantee, showing a fundamental difference between the ¢ norm and the more traditional
{1 and {5, norms.

3.1 Upper Bound

Recall that greedy spanner is the spanner obtained from the obvious greedy algorithm: starting

with an empty graph as the spanner, consider the edges one at a time in nondecreasing

length order, and add an edge if the current spanner does not span it (within the given

stretch requirement). It is obvious that when run with stretch parameter ¢ this algorithm

does indeed return a t-spanner, and moreover it will return a t-spanner that has girth at

least ¢ + 2 (if there is a (¢ + 1)-cycle then the algorithm would not have added the final edge).
Our main goal in this section will be to prove the following theorem.

» Theorem 4. Let G = (V, E) be a graph and let H = (V, Eg) be the greedy 3-spanner of G.
Then ||H||, < max(O(n), O(n+P)/ ) for all p > 1.

In other words, when 1 < p < 2 the greedy 3-spanner H has ||H|, < O(n(2*P)/(2P)) and
when p > 2 we get that that | H||, < O(n).

To prove this theorem, we will first show that nodes with “large” degree cannot be incident
with too many edges in any graph of girth at least 5 (like the greedy 3-spanner). This is the
most important step, since for p > 1 the p-norm of a graph gives greater “weight” to nodes
with larger degree.

» Lemma 5. Let G = (V, E) be a graph with girth at least 5. Then Zvev:d(u)z2ﬁ d(v) < 2n.

Proof. Suppose for the sake of contradiction that these vertices have total degree greater
than 2n, and let {v1,...,v¢11} be a minimal set with this property. That is, all these vertices
have degree at least 21/n, and furthermore Zle d(v;) <2n < Ef;r; d(v).

Because G has girth at least 5, any two vertices v;,v; in this set have at most one
common neighbor. That is, |N(v;) N N(v;)| < 1. Thus, for every j € [+ 1], the number of
“new” neighbors contributed by N(v;) is ’N(vj) \ (Uf;ll N(Vl))‘ > |N(vy)| — Zf;ll |N(v;)N
N(vj)| = d(v;) = (5 = 1) = d(v;) — L.

On the other hand, we have 2n > Zle d(v;) > £ - 2+/n, and so we have £ < /n. Thus,
every v; contributes at least d(v;) — ¢ > d(v;) — /n > d(v;)/2 new neighbors, and so we get
n > ‘Uﬁg N(vj)‘ = Zﬁg ‘N(vj) \ (Uf;ll N(vi))‘ > Zfii d(v;)/2, which contradicts our
assumption that Zfii d(vj) > 2n. <

We can now prove Theorem 4.

Proof of Theorem 4. Let Vip, = {v € V : d(v) < 2y/n}, and let Vi = {v € V : d(v) >
2\/n}. Since H has girth at least 5, we can apply Lemma 5. So using this lemma and
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standard algebraic inequalities, we get that

1 . 1

1Hlp={ > deP+ Y dw)y S(Z d(U)”) | D dy

vEViow vE€Vhigh vEViow vEVhigh

S(Z (2\/5)]9)?4- Z d(®)§(n~2pnp/2)%+ Z d(v)§2n%+2n,

VEViow 'Uevhigh, 'Uevhigh

which implies the theorem. <

It is easy to show that the above bound is tight:2 +t;or every p > 1 there are graphs in which
every 3-spanner has size at least max(€2(n), 2(n 2 )). In fact, we can generalize slightly
to also account for different V%_l;les of A. Theorem 2 can be interpreted as claiming that
UBE(n,A) < O(min(max(n,n 2 ),A)). In the full version [12] we show that this is tight:
UB%(n,A) > Q(min(max(n,n%),A)) for all p > 1 and Q(n'/P) < A < O(nHTp)

3.2 Greedy vs Generic

It is not hard to show that in the traditional settings in which spanners have been studied,
the ¢; and ¢, norms, the greedy algorithm does no better than the generic guarantee,
for all relevant parameter regimes. In slightly more detail, for £, it is relatively easy to
show that UB{°(n,A) = O(A), while LB{°(n,A) = ©(A'/?). Thus the generic guarantee
g7°(n, A) = ©(A'~ %), and moreover we can build graphs in which the approximation ratio
of the greedy algorithm is also @(Al_%). Similarly, for the ¢;-norm, classical results on
spanners imply that UB}, | (n,A) = ©(min(n'*#%,A)) and LB}, ,(n,A) = O(n), so the
generic guarantee is g2, | (n, A) = ©(min(n'T#, A)/n) and there are graphs for all parameter
regimes where this is the approximation ratio achieved by greedy.

We show that the behavior of the greedy spanner in intermediate £,-norms is fundamentally
different: in some parameter regimes of interest, greedy outperforms the generic guarantee!

To demonstrate this, consider the regime of stretch 3 with the {5 norm and with A =n in
unweighted graphs. In this regime, the results of Section 3.1 imply that UB3(n,n) = ©(n).
On the other hand, our results on the universal lower bound from Section 5 (Corollary 19
in particular) directly imply that LBZ(n,n) = ©(y/n). Thus the generic guarantee is
g3(n,n) = ©(y/n), and this is the worst case over A and thus g3(n) = ©(y/n). However, we
show that the greedy algorithm is a strictly better approximation, even without parameterizing
by A.

» Theorem 6. The greedy algorithm is an O(n%3/128)

computing the 3-spanner with smallest {a-norm (where the input is an unweighted graph).

-approxzimation for the problem of

To prove this, let G = (V, E) be a graph with |V| = n, let H be the greedy 3-spanner of G,
and let H* be a 3-spanner of G with minimum ¢s-norm. Let a = log,, [|[H*||2, so || H*||2 = n%;
note that o > 1/2. We first prove a lemma which uses |H*||2 to bound neighborhoods.

» Lemma 7. |Bg-(v,7)| <n?*0=2"") for allv € V and r € N.

Proof. We use induction on r. For the base case r = 1, since |H*||2 = n®* we know that v
has degree less than n®, and thus |By«(v,1)] < n® = p2a(1=27")

Now suppose that the theorem is true for some integer r — 1. Let |By«(v,r — 1)] = n7 <
p2a(1-27070) (by induction). Since ||[H*||2 = n®, the average degree (in H*) of the nodes in
By« (v, —1) is at most n®~("/2). Thus we get that |Bpy-(v,7)| < nY-n®(1/2) = pnat(/2) <
pate=270") _ 2a(1-27") a9 claimed. <
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Using this lemma, we can now prove Theorem 6.

Proof of Theorem 6. Lemma 7 implies that | B (v, 6)| < n(63/32) for all v € V.. Since H*
is a 3-spanner of G, every vertex in Bg(v,2) must be in By« (v,6), and thus |Bg(v,2)| <
n(03/32)e Now we can use this to bound the number of 2-paths in H. Let P,(H) denote the
number of paths of length 2 in H. Since H is the greedy 3-spanner of G it must have girth at
least 5. This means that every path of length 2 in H which starts from v must have a different
other endpoint: there cannot be two different paths of the form v —w — u and v — x — u in
H, or else H would have girth at most 4. Thus the number of 2-paths in H which start from
v is bounded by |Bg(v,2)| < |Bg(v,2)| < n(63/32)a and thus Py(H) < n'+(63/32)a

On the other hand, note that instead of counting 2-paths in H by their starting vertex, we
could instead count them by their middle vertex. The number of 2-paths where v is the middle
node is (*{")) > dp(v)?/4, and thus Py(H) > 3,y (dn(v)?/4) = | H]||3/4. Combining

these two inequalities implies that ||H|ls < 4n3+61% and hence the greedy spanner has

1 63
. . . H zteie 1_ 1 1_ 1
approximation ratio of at most HHH*HHQz < 4n 2na64 =d4n3 81 < 43T = 4nb3/128, <

4 Upper Bound: General Stretch

We now want to generalize the bounds from Section 3 to hold for larger stretch (2k — 1 in
particular) in order to prove Theorem 2. A natural approach would be an extension of the
stretch 3 analysis: if in Lemma 5 we replaced the bound of 2y/n with 2n'/%, then the proof
of Theorem 4 could easily be extended to prove Theorem 2. Unfortunately this is impossible:
there are graphs of girth at least 2k + 1 where it is not true that the number of edges incident
with nodes of degree at least 2n'/*
k=3.

So we cannot just break the vertices into “high-degree” and “low-degree” as we did for

is at most O(n). This can be seen from, e.g., [25] for

stretch 3. Instead, our decomposition is more complicated. We will still have low-degree nodes,
which can be analyzed trivially. But our definition of “high” will actually be parameterized
by a distance j, and we will define a node to be “high-degree” at distance j if its degree is
large relative to the expansion of its neighborhood at approximately distance j. We will also
introduce a new type of “medium-degree” node. In Section 4.1 we define this decomposition
and prove that it is a full decomposition of V', and then in Sections 4.2 and 4.3 we show that
no part in this decomposition can contribute too much to the overall cost.

First, though, we make one simple observation that will allow us to simplify notation by
only considering one particular value of p. While we could analyze general values of p as we
did for stretch 3 in Section 3.1, it is actually sufficient to prove the bound for the special

case of k and p where the two terms in the maximum are equal, i.e., when kk—'?’ =1.

» Lemma 8. Let k > 1 be an integer, let G = (V, E) be a graph, and let H = (V, Eg)
be the greedy (2k — 1)-spanner of G. If |H||, = O(n) for p’ = k/(k — 1) then |H||, <
max (O(n)7 O (n%p)) for allp > 1.

Proof. First note that p’ = k/(k—1) if and only if k,;?,’/ = 1. So we break into two cases, one
for p > p’ and one for 1 < p < p’. For the first case, where p > p’, the result follows simply
because of the monotonicity of p-norms: || H|, < ||H||p = O(n) = max(O(n), O(n%)

For the second case, where 1 < p < p/, let ¢ be the value such that 1 < p < p’ and
; + % = %. Recall that d;{ is the degree vector of H. Then Hélder’s inequality implies that

ldzlly < ldzzlly I11llq = 77~ # ||dzll,r. Since by assumption we have ||dz|l, < O(n), this
— k
implies that ||H]||, < O3 7) = O(nv~ " T1) = O(n'*# ), as claimed. <
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4.1 Graph Decomposition

Recall that d;(v) denotes the number of vertices at distance exactly i from v. This will let
us define the following vertex sets.

» Definition 9. Let G = (V, E) be a graph of girth at least 2k + 1, with k > 3. Then define

View ={v €V :di(v) < nl/k}
Vinea = {v € V i n®=2/E=0 g, () E=1 < gy (v)}
Vaigh = {0 € V ¢ dimzj—1(v) < 0"/ Vdy_s;_5(v)dy (0) 27Dy,

where 0 < j < |(k—3)/2].

It is not hard to see that this notion of high still corresponds to a deviation from regularity,
as in the stretch 3 setting; the difference is that this deviation is relative to the size of the
neighborhood at distance k — 2j — 1 vs the neighborhood at distance k — 25 — 3.

As we will see in Sections 4.2 and 4.3, analyzing the contribution of Vj;gp ; to the p-
norm of the greedy spanner is in some sense the “main” technical step: analyzing Vi, is
straightforward, and analyzing V},,eq, while nontrivial, turns out to be easier than the case
for Viign,;j. Before we do this, though, we will show that we have a full decomposition of V:

» Theorem 10. Let G = (V, E) be a graph of girth at least 2k + 1, with k > 3. Then
V' = Viow U Vinea U (Uo<j<|(k—3)/2) Vhigh,j ) -

Proof. We prove the case when k is odd. The even case is similar. Assume that v ¢
Uo<j<|(k—=3)/2] Vhigh,j- Then by the definition of Viign ;, we know that dip—2j—1(v) >
nt/E=Ddy oi s(v)di(v)k=2/*=D for all j. Then a straightforward induction on j im-
plies that

di—1(v) > nt/2dy (v) k=272, (1)
If further we assume that v ¢ Vj,y, then dy(v) > n'/k and thus

(dy (v))RE=3)/RR=1)) 5 (k=3)/(2(k=1)) (2)

Finally, assuming that v ¢ V,,,cq implies that
n(k72)/(kfl)(dl(v))l/(kfl) > dp_1(v). (3)

If we then multiply inequalities (1), (2) and (3), after some elementary algebra we find that
1 > 1, a contradiction. Thus v € Vjuy U Vipeq U (Uogjﬂ(k_g)/gj Vhigh,j). <

4.2 Structural Lemmas for High-Girth Graphs

With Theorem 10 in hand, it remains to bound the contribution to the p-norm of the spanner
of these different vertex sets. In order to do this, we start with a few useful lemmas (proofs
can be found in the full version [12]). We first give a simple lemma: if the girth is large
enough, then the neighborhoods around a node can be bounded by the neighborhoods around
its neighbors.

> Lemma 11. Let G = (V, E) have girth at least 2k+1 with k > 2. Then 3, ¢ n, () de—1(w) <
d,(v) + dy(v)dg—2(v) for allv e V.

40:9
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With this lemma in hand, we will now prove a more complicated technical lemma which
will likewise hold for all high-girth graphs. For a given v, w with v € N(w), we can consider
the fraction of the k-neighborhood of w which is also contained in the (k — 1)-neighborhood
of v. Then if we sum this fraction over all neighbors v of w, we would of course get 1
since the girth constraint would imply that any two neighbors of v cannot both be first
hops on paths to the same node in Ni(w). But what if we consider the slightly different
ratio of d_1(v)/dy(w)? This is notably different since it includes in the numerator not just
Ni—1(v) N Ni(w), but also Ni_1(v) N Ni_o(w). It will prove useful for us to reason about
these values, so we show that “on average” they behave approximately the same: if we sum
over the neighbors of any given node then these fractions can add up to something quite
large (not 1), but overall they only add up to O(n).

» Lemma 12. Let k > 1 be an integer, and let G = (V, E) have girth at least 2k + 1 and

minimum degree at least 4. Then ) zveN(w) ds;(llg) < 2n.

The proof of this lemma is quite technical, but is done with an induction on k£ and careful
use of the arithmetic-harmonic mean inequality. While Lemma 12 is the main structural
result that we will use to bound the “high” degree nodes, the following corollary makes it
slightly simpler to use.

» Corollary 13. Let k > 2 be an integer, and let G = (V, E) have girth at least 2k + 1 and

minimum degree at least 4. Then ) % < 2n.

4.3 Proving Theorem 2

We can now finally prove Theorem 2 by analyzing the contribution of the different sets in the
decomposition to any graph of girth at least 2k+1 (in particular, the greedy (2k —1)-spanner).
All missing proofs can be found in the full version [12].

The analysis of the low nodes is straightforward, while the analysis of the medium nodes
is slightly more complex. But the main difficulty is in the high nodes.

» Lemma 14. Let k > 2 be an integer, let p = %, and let G = (V, E) have girth at least
2k + 1. Then |Viowllp, < n.

We next bound the medium nodes.

» Lemma 15. Let k > 2 be an integer, let p = %, and let G = (V, E) have girth at least
2k + 1. Then ||Viedllp < n.

We now bound the high nodes, with one degree assumption which we will later remove.

» Lemma 16. Let G = (V, E) be a graph of girth at least 2k + 1 with k > 3. Further
assume that the graph has minimum degree at least 4. Then ||Viign,jllk/—1) = O(n) for all
0<j<[(k=3)/2].

Proof. We will break the high nodes into the following two sets:

Viigh,j = 10 € Vhighj + dk—2j-1(v) > dj—2j-3(v)d1(v)}
Viigh.j = 10 € Vhign,j + dk—2j-1(v) < dy—2j-3(v)d1(v)}.
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Obviously Viigh,j = Viign i U Viign.j» 80 we can bound each of the two sets separately. For
the first set, we get that

k—1
= 1 R
k. n¥1dy (v)dp_o5_3(v
HVI:ith”% = Z (dy(v))F= < Z dki-l(v; )
veV,:lgh j Uev}{1gh g !
=
<z Y ”“ P2 (0) <an.
T\ o di2i-1(v) + di(v)di-2;-3(v) -

high,j

The first inequality is from the definition of Vj;4p, the second is from the definition of V,:igh,
and the final inequality is from Corollary 13.

To analyze Vy; ;. note that dy_2;—1(v) + di(v)dk—2j—3(v) < 2d1(v)dk—2j-3(v) by defini-
tion for all v € quh ;- Combining this with Corollary 13 implies that

d1(’l))2dk_2'_3(1))
Vi on < |V = E, di (v) = Z j
H hlgh,g”k/(k 1) = || hzgh,g”l 1( ) dl(’l))dk,Qj,g(U)

" 7
vevhigh] Uevhlghj

2 Y di(v)*dg—2;-3(v) < in.
—~ dp—2j-1(v) + d1(v)dg—2j-3(v)
Uevhzghj

Thus [[Vaigh,jllk/e—1) < [Viign.jlkse—1) + Viign jlle/e—1) < 8n. <
Putting this all together gives the following theorem.

» Theorem 17. Let G = (V, E) have girth at least 2k + 1, k > 2 and minimum degree at
least 4. Then |G|, < O(kn) for p = %5.

Proof. We know from Theorem 10 that V = Vjy, U Vipea U (UOSjSL(k_?))/QJ Vhigh,j) for k > 3.
Thus |G|, < ||Vlow||p—|—||Vmed||p—|-§:L K32 Viigh i |l < O (kn), where we used Lemmas 14,
15, 16, to bound the contribution of each set. If k = 2 then V,.q = V and the proof is similar
(alternatively see Theorem 4). <

We can now remove the degree assumption and the restriction to p = to finally

prove Theorem 2.

kl’

Proof of Theorem 2. The case of k = 1 is trivial since every graph H has ||H||, < O(inH)
For k£ > 2, by Lemma 8, we may assume that p = % We will use induction on the number
of vertices of degree less than 4. If H has no vertices with degree less than 4, then Theorem 17
implies Theorem 2. Otherwise, let v € V be a vertex of degree at most 3, and let G' =G —v
be the graph obtained by removing v. Then it is easy to see that ||dz; —der |li <6, since one
entry in the degree vector of value at most 3 gets removed and at most three other entries
get decreased by 1. Thus we can use triangle inequality and monotonicity of norms to get
that |G|, — |G'll, < |lde — derllp < |lde — der|y < 6. Hence by the induction hypothesis
we get that ||G||, < O (kn) as required. <

5 Universal Lower Bound

As stated in Theorem 3, our lower bound can be calculated by a simple linear program of
size O(t) (where t is the stretch). We give this linear program formally in the full version [12].
The linear program assumes that the graph has a fairly regular structure. In particular, it
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assumes that the extremal t-spanner H is a layered graph with ¢ + 1 layers Vp, ..., V4, such
that the subgraph induced on every two subsequent layers V;, V;;1 is bipartite and biregular
(in each side, all vertices have the same degree), and that the original extremal graph G (the
graph whose spanner H achieves the lower bound) in addition has a biregular graph between
Vo and V; which contributes most of the p-norm of G, and is spanned by the layered graph
H. Such a spanner H can be briefly described by the cardinalities of the layers V; and the
degrees of the bipartite graphs connecting every two consecutive layers.

As we show, this assumption is without loss of generality, in the sense that pruning any
graph to obtain this structure can change the p-norm of the graph or its spanner by at most
a polylogarithmic factor. The linear program captures the constraints that the parameters
of a spanner with such a regular structure must satisfy. These constraints are also sufficient
in the sense that given any solution to the linear program, we can construct a graph G and
spanner H of this form with the parameters given by this LP solution.

In fact, the extremal spanners which match our lower bound have a fairly specific structure
with consistent properties:

The layers in the extremal can be partitioned into three sections: an initial section in

which we have layers of decreasing size |Vp| > |[V1]... > |VL|, a middle section consisting

of equal size layers |V | = ... = |Vii¢|, and a final section with layers of increasing size

Vite| < ... <|Viic+r|- In some cases one of the first two sections may be missing.

The bipartite graphs between every two consecutive layers in the spanner have the same

contribution to the p-norm of the spanner.

In addition to the edges in the spanner, the original graph also contains a biclique between

the outer layers Vy and V;, so that ||G|, = ©(|Vo|*/?|Vi]).

The structure of these spanners has the property that given the lengths of the three sections,
we can derive the exact structure of the spanner, and hence the exact value of the lower
bound. In our analysis, we focus on this specific family of graphs, and show that it suffices
to describe our lower bound.

While the lower bound for p = 1 or p = oo is simple, it turns out that the lower bound for
intermediate values of p is quite complex, and depends on the stretch ¢, the norm parameter
p, and the p-norm of the input graph A in a highly non-trivial way. To identify the extremal
spanners and prove their optimality, we look at the dual of our linear program, and for every
graph in our family of candidate extremal spanners, examine whether there exists a dual
solution which satisfies complementary slackness w.r.t. the primal LP solution corresponding
to our spanner. With this approach, for every p,t, A, we are able to identify the exact
constraints that the parameters of an optimal spanner from our family must satisfy, and give
an explicit solution, which gives our lower bound.

As an example, our analysis identifies the lower bound for relatively low values of p.

» Theorem 18. If ¢ is even, then for all p € [1,¢] (where p = # is the golden ratio),
LB (n, A) = © (max {n'/7,A°}) fora =1/ ((p+1) (1= (0= 1)/p)")).
If t is odd, then for all p € [1,2],

LBY(n,A) = © (max {nl/P7AB}) for B=1/ (1 +p (1 —((p- 1)/p)(t—1)/2)) .

» Corollary 19. For all p € [1,¢], we have LBY(n, A) = © (max {n!/?, AP/P+D 1) | For all
p € [1,2], we have LB (n,A) = © (max {nl/p, \/K}) )



M. Dinitz, E. Chlamtaé¢, and T. Robinson

Note that the dependence on n for this range of parameters is minimal. In fact, the only
dependence on n is due to the fact that any connected n-vertex graph (such as the spanner of
a connected n-vertex graph) must have p-norm at least n!/P_ If we remove the condition that
the graph must be connected, the lower bounds in Theorem 18 become ©(A®) and O(A?).

For higher values of p, the lower bound becomes more complex. In particular, the
parameters which determine the extremal spanner depend not only on p and ¢, but also on
the p-log density of the graph, which we define to be log, (A) = log, (||G||,). This parameter
generalizes the notion of log-density, which is at the heart of several recent breakthroughs in
approximation algorithms [6, 10, 11, 14, 13], in which log-density was used to mean p-log
density for p =1 or p = co. As in that line of work, the structure and parameters of the
graphs of interest here (the extremal spanners) is a function of the p-log density of our graph
which does not depend on n. The complete technical details of our lower bound appear in
the full version of the paper [12].

6 Future Work

In this paper we have initiated the study of graph spanners with cost defined by the £,-norm
of the degree vector, since this provides an interesting interpolation between the ¢;-norm
(only caring about the number of edges) and the {,.-norm (only caring about the maximum
degree). But we have only scratched the surface: many of the hundreds of results on
graph spanners can be extended or reexamined with respect to the ¢,-norm. There are also
some very interesting direct extensions of this paper that would be interesting to study. In
particular, we showed that the approximation ratio achieved by the greedy algorithm is
strictly better than the generic guarantee for the fo-norm with stretch 3, unlike the ¢; and
{+ norms. This suggests further study of the greedy algorithm in general, but also suggests
extending the recent line of work on approximation algorithms for graph spanners (mostly
using convex relaxations and rounding) to general ¢,-norms. The approaches taken for the
¢1-norm in the past [16, 17, 5, 18] have been quite different from the approaches used for
the £o.-norm [23, 10, 9]; is there a way of interpolating between them to get even better
approximations for intermediate £,-norms?
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