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Abstract
Motivated by applications in machine learning, such as subset selection and data summarization,
we consider the problem of maximizing a monotone submodular function subject to mixed packing
and covering constraints. We present a tight approximation algorithm that for any constant ε > 0
achieves a guarantee of 1− 1/e− ε while violating only the covering constraints by a multiplicative
factor of 1 − ε. Our algorithm is based on a novel enumeration method, which unlike previously
known enumeration techniques, can handle both packing and covering constraints. We extend the
above main result by additionally handling a matroid independence constraint as well as finding
(approximate) pareto set optimal solutions when multiple submodular objectives are present. Finally,
we propose a novel and purely combinatorial dynamic programming approach. While this approach
does not give tight bounds it yields deterministic and in some special cases also considerably faster
algorithms. For example, for the well-studied special case of only packing constraints (Kulik et al.
[Math. Oper. Res. ‘13] and Chekuri et al. [FOCS ‘10]), we are able to present the first deterministic
non-trivial approximation algorithm. We believe our new combinatorial approach might be of
independent interest.
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1 Introduction

The study of combinatorial optimization problems with a submodular objective has attracted
much attention in the last decade. A set function f : 2N → R+ over a ground set N is called
submodular if it has the diminishing returns property: f(A∪{i})−f(A) ≥ f(B∪{i})−f(B)
for every A ⊆ B ⊆ N and i ∈ N \ B.1 Submodular functions capture the principle of
economy of scale, prevalent in both theory and real world applications. Thus, it is no surprise
that combinatorial optimization problems with a submodular objective arise in numerous
disciplines, e.g., machine learning and data mining [4, 5], algorithmic game theory and
social networks [13, 22, 25, 27, 39], and economics [2]. Additionally, many classical problems
in combinatorial optimization are in fact submodular in nature, e.g., maximum cut and
maximum directed cut [20, 21, 24, 26, 28], maximum coverage [15, 29], generalized assignment
problem [8, 10, 14, 16], maximum bisection [3, 17], and facility location [1, 11, 12].

In this paper we consider the problem of maximizing a monotone2 submodular function
given mixed packing and covering constraints. In addition to being a natural problem in its
own right, it has further real world applications.

As a motivating example consider the subset selection task in machine learning [18, 19, 30]
(also refer to Kulesza and Taskar [31] for a thorough survey). In the subset selection task the
goal is to select a diverse subset of elements from a given collection. One of the prototypical
applications of this task is the document summarization problem [30, 34, 35]: given textual
units the objective is to construct a short summary by selecting a subset of the textual
units that is both representative and diverse. The former requirement, representativeness,
is commonly achieved by maximizing a submodular objective function, e.g., graph based
[34, 35] or log subdeterminant [30]. The latter requirement, diversity, is typically tackled by
penalizing the submodular objective for choosing similar textual units (this is the case for
both of the above two mentioned submodular objectives). However, such an approach results
in a submodular objective which is not necessarily non-negative thus making it extremely
hard to cope with. As opposed to penalizing the objective, a remarkably simple and natural
approach to tackle the diversity requirement is by the introduction of covering constraints.
For example, one can require that for each topic that needs to appear in the summary, a
sufficient number of textual units that refer to it are chosen. Unfortunately, to the best
of our knowledge there is no previous work in the area of submodular maximization that
incorporates general covering constraints.3

Let us now formally define the main problem considered in this paper. We are given
a monotone submodular function f : 2N → R+ over a ground set N = {1, 2, . . . , n}.
Additionally, there are p packing constraints given by P ∈ Rp×n+ , and c covering constraints
given by C ∈ Rc×n+ (all entries of P and C are non-negative). Our goal is to find a subset
S ⊆ N that satisfies all packing and covering constraints that maximizes the value of f :

max {f(S) : S ⊆ N ,P1S ≤ 1p,C1S ≥ 1c} . (1)

In the above 1S ∈ Rn is the indicator vector for S ⊆ N and 1k ∈ Rk is a vector of dimension k
whose coordinates are all 1. We denote this problem as Packing-Covering Submodular
Maximization (PCSM). It is assumed we are given a feasible instance, i.e., there exists
S ⊆ N such that P1S ≤ 1p and C1S ≥ 1c.

1 An equivalent definition is: f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for every A, B ∈ N .
2 f is monotone if f(S) ≤ f(T ) for every S ⊆ T ⊆ N .
3 There are works on exact cardinality constraints for non-monotone submodular functions, which implies

a special, uniform covering constraint [6, 33, 41].
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As previously mentioned, (PCSM) captures several well known problems as a special case
when only a single packing constraint is present (p = 1 and c = 0): maximum coverage [29],
and maximization of a monotone submodular function given a knapsack constraint [40, 42]
or a cardinality constraint [37]. For all of these special cases an approximation of (1− 1/e) is
achievable and known to be tight [38] (even for the special case of a coverage function [15]).
When a constant number of knapsack constraints is given (p = O(1) and c = 0) Kulik et
al. [32] presented a tight (1− 1/e− ε)-approximation for any constant ε > 0. An alternative
algorithm with the same guarantee was given by Chekuri et al. [9].

Our Results. We present a tight approximation guarantee for (PCSM) when the number
of constraints is constant. Recall that we assume we are given a feasible instance, i.e., there
exists S ⊆ N such that P1S ≤ 1p and C1S ≥ 1c. The following theorem summarizes our
main result. From this point onwards we denote by O some fixed optimal solution to the
problem at hand.

I Theorem 1. For every constant ε > 0, assuming p and c are constants, there exists a
randomized polynomial time algorithm for (PCSM) running in time npoly(1/ε) that outputs
a solution S ⊆ N that satisfies: (1) f(S) ≥ (1− 1/e− ε) f(O); and (2) P1S ≤ 1p and
C1S ≥ (1− ε)1c.

We note four important remarks regarding the tightness of Theorem 1:
1. The loss of 1−1/e in the approximation cannot be avoided, implying that our approximation

guarantee is (virtually) tight. The reason is that no approximation better than 1− 1/e

can be achieved even for the case where only a single packing constraint is present [38].
2. The assumption that the number of constraints is constant is unavoidable. The reason

is that if the number of constraints is not assumed to be constant, then even with a
linear objective (PCSM) captures the maximum independent set problem. Hence, no
approximation better than n−(1−ε), for any constant ε > 0, is possible [23].4

3. No true approximation with a finite approximation guarantee is possible, i.e., finding a
solution S ⊆ N such that P1S ≤ 1p and C1S ≥ 1c with no violation of the constraints.
The reason is that one can easily encode the subset sum problem using a single packing
and a single covering constraint. Thus, just deciding whether a feasible solution exists,
regardless of its cost, is already NP-hard.

4. Guaranteeing one-sided feasibility, i.e., finding a solution which does not violate the
packing constraints and a violates the covering constraint only by a factor of 1 − ε,
cannot be achieved in time no(1/ε) unless the exponential time hypothesis fails (see [36]
for details).

Therefore, we can conclude that our main result (Theorem 1) provides the best possible
guarantee for the (PCSM) problem. We also note that all previous work on the special case
of only packing constraints [9, 32] have the same running time of npoly(1/ε).

We present additional extensions of the above main result. The first extension deals with
(PCSM) where we are also required that the output is an independent set in a given matroid
M = (N , I). We denote this problem by Matroid Packing-Covering Submodular
Maximization (MatroidPCSM), and it is defined as follows:

4 If the number of packing constraints p is super-constant then approximations are known only for special
cases with “loose” packing constraints, i.e., Pi,` ≤ O(ε2/ ln p) (see, e.g., [9]).

ICALP 2019
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max {f(S) : S ⊆ N ,P1S ≤ 1p,C1S ≥ 1c, S ∈ I} . As in (PCSM), we assume we are given
a feasible instance, i.e., there exists S ⊆ N such that P1S ≤ 1p, C1S ≥ 1c, and S ∈ I. Our
result is summarized in the following theorem.

I Theorem 2. For every constant ε > 0, assuming p and c are constants, there exists a
randomized polynomial time algorithm for (MatroidPCSM) that outputs a solution S ∈ I
that satisfies: (1) f(S) ≥ (1− 1/e− ε) f(O); and (2) P1S ≤ 1p and C1S ≥ (1− ε)1c.

The second extension deals with the multi-objective variant of (PCSM) where we wish to
optimize over several monotone submodular objectives. We denote this problem by Packing-
Covering Multiple Submodular Maximization (MultiPCSM). Its input is identical
to that of (PCSM) except that instead of a single objective f we are given t monotone
submodular functions f1, . . . , ft : 2N → R+. As before, we assume we are given a feasible
instance, i.e., there exists S ⊆ N such that P1S ≤ 1p and C1S ≥ 1c. Our goal is to find
pareto set solutions considering the t objectives. To this end we prove the following theorem.

I Theorem 3. For every constant ε > 0, assuming p, c and t are constants, there exists
a randomized polynomial time algorithm for (MultiPCSM) that for every target values
v1, . . . , vt either: (1) finds a solution S ⊆ N where P1S ≤ 1p and C1S ≥ (1 − ε)1c such
that for every 1 ≤ i ≤ t: fi(S) ≥ (1− 1/e− ε) vi; or (2) returns a certificate that there is no
solution S ⊆ N , where P1S ≤ 1p and C1S ≥ 1c such that for every 1 ≤ i ≤ t: fi(S) ≥ vi.

We also note that Theorems 2 and 3 can be combined such that we can handle (MultiPCSM)
where a matroid independence constraint is present, in addition to the given packing and
covering constraints, achieving the same guarantees as in Theorem 3.

All our previously mentioned results employ a continuous approach and are based on the
multilinear relaxation, and thus are inherently randomized.5 We present a new combinatorial
greedy-based dynamic programming approach for submodular maximization that enables us,
for several well studied special cases of (PCSM), to obtain deterministic and considerably
faster algorithms. Perhaps the most notable result is the first deterministic non-trivial
algorithm for maximizing a monotone submodular function subject to a constant number of
packing constraints (previous works [9, 32] are randomized).

I Theorem 4. For every constants ε > 0 and p ∈ N, there exists a deterministic algorithm
for maximizing a monotone submodular function subject to p packing constraints, that runs
in time O(npoly(1/ε)) and achieves an approximation of 1/e− ε.

The interesting special case of (PCSM) is when a single packing and a single covering
constraints are present (p = c = 1) is summarized in the following theorem.

I Theorem 5. For every constant ε > 0 and p = c = 1, there exists a deterministic algorithm
for (PCSM) running in time O(n1/ε) that outputs a solution S ⊆ N that satisfies: (1)
f(S) ≥ 0.353f(O); and (2) P1S ≤ (1 + ε)1p and C1S ≥ (1− ε)1c. For the case when the
packing constraint is a cardinality constraint, i.e., P = 1ᵀ

n/k, we can further guarantee that
P1S ≤ 1p and a running time of O(n4

/ε).

Our Techniques. Our main result is based on a continuous approach: first a continuous
relaxation is formulated, second it is (approximately) solved, and finally the fractional
solution is rounded into an integral solution. Similarly to the previous works of [9, 32], which

5 Known techniques to efficiently evaluate the multilinear extension are randomized, e.g., [7].
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focus on the special case of only packing constraints, the heart of the algorithm lies in an
enumeration preprocessing phase that chooses and discards some of the elements prior to
formulating the relaxation. The enumeration preprocessing step of [9, 32] is remarkably
simple and elegant. It enumerates over all possible collections of large elements the optimal
solution chooses, i.e., elements whose size exceeds some fixed constant in at least one of the
packing constraints and are chosen by the optimal solution.6 All remaining large elements
not in the guessed collection are discarded. This enumeration terminates in polynomial time
and ensures that no large elements are left in any of the packing constraints. Thus, once
no large elements remain concentration bounds can be applied. For the correct guess, any
of the several known randomized rounding techniques can be employed (alongside a simple
rescaling) to obtain an approximation of 1− 1/e− ε (here ε > 0 is a constant that is used to
determine which elements are considered large). Unfortunately, this approach fails in the
presence of covering constraints since an optimal solution can choose many large elements in
any given covering constraint. One can naturally adapt the above known preprocessing by
enumerating over all possible collections of covering constraints that the optimal solution
O covers using only large elements. However, this leads to an approximation of 1− 1/e− ε
while both packing and covering constraints are violated by a multiplicative factor of 1± ε.
We aim to obtain one sided violation of the constraints, i.e., only the covering constraints
are violated by a factor of 1− ε whereas the packing constraints are fully satisfied.

Avoiding constraint violation is possible in the presence of pure packing constraints [9, 32].
Known approaches for the latter are crucially based on removing elements in a pre-processing
and post-processing step in order to guarantee that concentration bounds hold. For mixed
constraints, these known removal operations may, however, arbitrarily violate the covering
constraints. Our approach aims at pre-processing the input instance via partial enumeration
so as to avoid discarding elements by ensuring that the remaining elements are “locally”
small relatively to the residual constraints. If this property would hold scaling down the
solution by a factor 1/(1 + ε) would be sufficient to avoid violation of the packing constraints.
Unfortunately, we cannot guarantee this to hold for all constraints. Rather, for some critical
constraints locally large elements may still be present. We introduce a novel enumeration
process that detects these critical constraints, i.e., constraints that are prone to violation.
Such constraints are given special attention as the randomized rounding might cause them
to significantly deviate from the target value. Unlike the previously known preprocessing
method, our enumeration process handles covering constraints with much care and it takes
into account the actual coverage of the optimal solution O of each of the covering constraints.
Combining the above, alongside a postprocessing phase that discards large elements from
critical packing constraints, suffices to yield the desired result.

We also independently present a novel purely combinatorial greedy-based dynamic
programming approach that yields deterministic and in some special cases considerably faster
algorithms. Previously, greedy algorithms were known for one cardinality constraint [37] and
one packing constraint [40]. But in the presence multiple constraints, it is not clear how
to design a rule to greedily pick the next element. In fact, we tried several natural greedy
strategies but all of them failed. This holds even when some oracle gives us the set of vectors
of packing and covering values from an optimum solution and the algorithm follows any fixed
sequence of these values.

6 An additional part of the preprocessing involves enumerating over collections of elements whose marginal
value is large with respect to the objective f , however this part of the enumeration is not affected by
the presence of covering constraints and thus is ignored in the current discussion.

ICALP 2019
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In our approach we maintain a table that contains greedy approximate solutions for all
possible packing and covering values. Using this table we extend the simple greedy process by
populating each table entry with the most profitable extension of the previous table entries.
In this way we are able to simulate (in a certain sense) all possible sequences of packing
and covering values for the greedy algorithm, ultimately leading to a good feasible solution.
Our result implies that there exists one sequence (depending on the instance) where greedy
performs well. To estimate the approximation factor we employ a factor-revealing linear
program. To the best of our knowledge, this is the first time a dynamic programming based
approach is used for submodular optimization. We believe our new combinatorial dynamic
programming approach is of independent interest.

2 Preliminaries

In this paper we assume the standard value oracle model, where the algorithm can only
access the given submodular function f with queries of the form: what is f(S) for a given S?
The running time of the algorithm is measured by the total number of value oracle queries
and arithmetic operations it performs. Additionally, let us define fA(S) , f(A ∪ S)− f(A)
for any subsets A,S ⊆ N . Furthermore, let fA(`) , fA({`}).

The multiliear extension F : [0, 1]N → R+ of a given set function f : 2N → R+ is:

F (x) ,
∑
R⊆N

f(R)
∏
`∈R

x`
∏
`/∈R

(1− x`) ∀x ∈ [0, 1]N .

Additionally, we make use of the following theorem that provides the guarantees of the
continuous greedy algorithm of [7].7

I Theorem 6 (Chekuri et al. [7]). We are given a ground set N , a monotone submodular
function f : 2N → R+, and a polytope P ⊆ [0, 1]N . If P 6= ∅ and one can solve in polynomial
time argmax

{
wTx : x ∈ P

}
for any w ∈ RN , then there exists a polynomial time algorithm

that finds x ∈ P where F (x) ≥ (1− 1/e)F (x∗). Here x∗ is an optimal solution to the problem:
max {F (y) : y ∈ P}.

3 Algorithms for the (PCSM) Problem

Preprocessing – Enumeration with Mixed Constraints. We define a guess D to be a triplet
(E0, E1, c′), where E0 ⊆ N denotes elements that are discarded, E1 ⊆ N denotes elements
that are chosen, and c′ ∈ Rc+ represents a rough estimate (up to a factor of 1 + ε) of how
much an optimal solution O covers each of the covering constraints, i.e., C1O. Let us denote
by Ñ , N \ (E0 ∪ E1) the remaining undetermined elements with respect to guess D.

We would like to define when a given fixed guess D = (E0, E1, c′) is consistent, and to
this end we introduce the notion of critical constraints. For the ith packing constraint the
residual value that can still be packed is: (rD)i , 1 −

∑
`∈E1

Pi,`, where rD ∈ Rp. For
the jth covering constraint the residual value that still needs to be covered is: (sD)j ,
max

{
0, c′j −

∑
`∈E1

Cj,`

}
, where sD ∈ Rc. A packing constraint i is called critical if

(rD)i ≤ δ, and a covering constraint j is called critical if (sD)j ≤ δc′j (δ ∈ (0, 1) is

7 We note that the actual guarantee of the continuous greedy algorithm is (1 − 1/e − o(1)). However,
for simplicity of presentation, we can ignore the o(1) term due to the existence of a loss of ε (for any
constant ε) in all of our theorems.
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a parameter to be chosen later). Thus, the collections of critical packing and covering
constraints, for a given guess D, are given by: YD , {i = 1, . . . , p : (rD)i ≤ δ} and
ZD , {j = 1, . . . , c : (sD)j ≤ δc′j}. Moreover, elements are considered large if their size
is at least some factor α of the residual value of some non-critical constraint (α ∈ (0, 1)
is a parameter to be chosen later). Formally, the collection of large elements with respect
to the packing constraints is defined as PD , {` ∈ Ñ : ∃i /∈ YD s.t. Pi,` ≥ α(rD)i},
and the collection of large elements with respect to the covering constraints is defined
as CD = {` ∈ Ñ : ∃j /∈ ZD s.t. Cj,` ≥ α(sD)j}. It is important to note, as previously
mentioned, that the notion of a large element is with respect to the residual constraint,
as opposed to previous works [9, 32] where the definition is with respect to the original
constraint. Let us now formally define when a guess D is called consistent.

I Definition 1. A guess D = (E0, E1, c′) is consistent if: (1) E0 ∩ E1 = ∅; (2) c′ ≥ 1c;
(3) P1E1 ≤ 1p; and (4) PD = CD = ∅.

Intuitively, requirement (1) states that a variable cannot be both chosen and discarded, (2)
states that the each covering constraint is satisfied by an optimal solution O, (3) states
the chosen elements E1 do not violate the packing constraints, and (4) states that no large
elements remain in any non-critical constraint.

Finally, we need to define when a consistent guess is correct. Assume without loss of gen-
erality that O = {o1, . . . , ok} and the elements of O are ordered greedily: f{o1,...,oi}(oi+1) ≤
f{o1,...,oi−1}(oi) for every i = 1, . . . , k − 1. In the following definition γ is a parameter to be
chosen later.

I Definition 2. A consistent guess D = (E0, E1, c′) is called correct with respect to O if:
(1) E1 ⊆ O; (2) E0 ⊆ Ō; (3) {o1, . . . , oγ} ⊆ E1; and (4) c′ ≤ C1O ≤ (1 + δ)c′.

Intuitively, requirement (1) states that the chosen elements E1 are indeed elements of O, (2)
states that no element of O is discarded, (3) states that the γ elements of largest marginal
value are all chosen, and (4) states that c′ represents (up to a factor of 1 + δ) how much O
actually covers each of the covering constraints.

We are now ready to present our preprocessing algorithm (Algorithm 1), which produces
a list L of consistent guesses that is guaranteed to contain at least one guess that is also
correct with respect to O. Lemma 7 summarizes this, its proof appears in [36].

Algorithm 1: Preprocessing.
1 L ← ∅
2 foreach j1, . . . , jc ∈ {0, 1, . . . , dlog1+δ ne} do
3 Let c′ = ((1 + δ)j1 , . . . , (1 + δ)jc)
4 foreach E1 ⊆ N such that |E1| ≤ γ + (p+c)/(αδ) do
5 Let H = (∅, E1, c′)
6 Let E0 = {` ∈ N \ E1 : fE1(`) > (γ−1)f(E1)} ∪ PH ∪ CH
7 Set D = (E0, E1, c′)
8 If D is consistent according to Definition 1 add it to L.

9 Output L.

I Lemma 7. The output L of Algorithm 1 contains at least one guess D that is correct with
respect to some optimal solution O.

ICALP 2019
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Proof. Fix any optimal solution O. At least one of the vectors c′ enumerated by Algorithm 1
satisfies property (4) in Definition 2 with respect to O. Let us fix an iteration in which such
a c′ is enumerated. Define the “large” elements O has with respect to this c′:

OL , {` ∈ O : ∃i s.t. Pi,` ≥ αδ} ∪
{
` ∈ O : ∃j s.t. Cj,` ≥ αδc′j

}
. (2)

Denote by Oγ , {o1, . . . , oγ} the γ elements of O with the largest marginal (recall the
ordering of O satisfies: f{o1,...,oi}(oi+1) ≤ f{o1,...,oi−1}(oi)). Let us fix E1 , Oγ ∪ OL and
choose H , (∅, E1, c′). Clearly, |E1| ≤ γ + (p+c)/(αδ) since |Oγ | = γ and |OL| ≤ (p+c)/(αδ).
Hence, we can conclude that H is considered by Algorithm 1.

We fix the iteration in which the above H is considered and show that the resulting
D = (E0, E1, c′) of this iteration is correct and consistent (recall that Algorithm 1 chooses
E0 = {` ∈ N \E1 : fE1(`) > (γ−1)f(E1)}∪PH ∪CH). The following two observations suffice
to complete the proof:
Observation 1: ∀` ∈ O ∪ (N \ E0): fE1(`) ≤ γ−1f(E1).
Observation 2: O ∩ PH = ∅ and O ∩ CH = ∅.
Clearly properties (1) and (3) of Definition 2 are satisfied by construction of E1, H, and
subsequently D. Property (2) of Definition 2 requires the above two observations, which
together imply that no element of O is added to E0 by Algorithm 1. Thus, all four properties
of Definition 2 are satisfied, and we focus on showing that the above D is consistent according
to Definition 1. Property (1) of Definition 1 follows from properties (1) and (2) of Definition 2.
Property (2) of Definition 1 follows from the choice of c′. Property (3) of Definition 1 follows
from the feasibility of O and property (1) of Definition 2. Lastly, property (4) of Definition 1
follows from the fact that PD ⊆ PH and that PH ⊆ E0, implying that PD = ∅ (the same
argument applies to CD). We are left with proving the above two observations.

We start with proving the first observation. Let ` ∈ O ∪ (N \E0). If ` ∈ N \E0 then the
observation follows by the construction of E0 in Algorithm 1. Otherwise, ` ∈ O. If ` ∈ Oγ
then we have that fE1(`) = 0 since Oγ ⊆ E1. Otherwise ` ∈ O \Oγ . Note:

fE1(`) ≤ fOγ (`) ≤ γ−1f(Oγ) ≤ γ−1f(E1).

The first inequality follows from diminishing returns and Oγ ⊆ E1. The third and last
inequality follows from the monotonicity of f and Oγ ⊆ E1. Let us focus on the second
inequality, and denote O = {o1, . . . , ok} and the sequence ai , f{o1,...,oi−1}(oi). The sequence
of ais is monotone non-increasing by the ordering of O and the monotonicity of f implies
that all ais are non-negative. Note that a1 + . . .+ aγ = f(Oγ), thus implying that fOγ (`) ≤
γ−1f(Oγ) for every ` ∈ {oγ+1, . . . , ok} (otherwise a1 + . . . + aγ > f(Oγ)). The second
inequality above, i.e., fOγ (`) ≤ γ−1f(Oγ), now follows since ` ∈ O \Oγ = {oγ+1, . . . , ok}.

Let us now focus on proving the second observation. Let us assume on the contrary
that there is an element ` such that ` ∈ O ∩ PH . Recall that PH = {` ∈ N \ E1 : ∃i /∈
YH s.t. Pi,` ≥ α(rH)i} where YH = {i : (rH)i ≤ δ}. This implies that ` ∈ O \ E1, namely
that ` /∈ OL, from which we derive that for all packing constraint i we have that Pi,` < αδ.
Since ` ∈ PH we conclude that there exists a packing constraint i for which (rH)i ≤ Pi,`/α.
Combining the last two bounds we conclude that (rH)i < δ, which implies that the ith
packing constraint is critical, i.e., i ∈ YH . This is a contradiction, and hence O ∩ PH = ∅. A
similar proof applies to CH and the covering constraints. � J

Randomized Rounding. Before presenting our main rounding algorithm, let us define the
residual problem we are required to solve given a consistent guess D. First, the residual
objective g : 2Ñ → R+ is defined as: g(S) , f(S ∪ E1)− f(E1) for every S ⊆ Ñ . Clearly, g
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is submodular, non-negative, and monotone. Second, let us focus on the feasible domain and
denote by P̃ (C̃) the submatrix of P (C) obtained by choosing all the columns in Ñ . Hence,
given D = (E0, E1, c′) the residual problem is:

max{g(S) + f(E1) : S ⊆ Ñ , P̃1S ≤ rD, C̃1S ≥ sD}. (3)

In order to formulate the multilinear relaxation of (3), consider the following two polytopes:
P , {x ∈ [0, 1]Ñ : P̃x ≤ rD} and C , {x ∈ [0, 1]Ñ : P̃x ≥ sD}. Let G : [0, 1]Ñ → R+ be the
multilinear extension of g. Thus, the continuous multilinear relaxation of (3) is:

max
{
f(E1) +G(x) : x ∈ [0, 1]Ñ ,x ∈ P ∩ C

}
. (4)

Our algorithm performs randomized rounding of a fractional solution to the above
relaxation (4). However, this is not enough to obtain our main result and an additional
post-processing step is required in which additional elements are discarded. Since covering
constraints are present, one needs to perform the post-processing step in great care. To this
end we denote by LD the collection of large elements with respect to some critical packing
constraint: LD , {` ∈ Ñ : ∃i ∈ YD s.t. Pi,` ≥ βrD} (β ∈ (0, 1) is a parameter to be chosen
later). Intuitively, we would like to discard elements in LD since choosing any one of those
will incur a violation of a packing constraint. We are now ready to present our rounding
algorithm (Algorithm 2).

Algorithm 2: (f,N ,P,C).
1 Use Algorithm 1 to obtain a list of guesses L.
2 foreach D = (E0, E1, c′) ∈ L do
3 Use Theorem 6 to compute an approximate solution x∗ to problem (4).
4 Scale down x∗ to x̄ = x∗/(1 + δ)
5 Let RD be such that for every ` ∈ Ñ independently: Pr [` ∈ RD] = x̄`.
6 Let R′D = RD \ LD.
7 SD ← E1 ∪R′D.
8 Salg ← argmax {f(SD) : D ∈ L,P · 1SD ≤ 1p,C · 1SD ≥ (1− ε)1c}

We note that Line 6 of Algorithm 2 is the post-processing step where all elements of LD
are discarded. Our analysis of Algorithm 2 shows that in an iteration a correct guess D
is examined, with a constant probability, SD satisfies the packing constraints, violates the
covering constraint by only a fraction of ε, and f(SD) is sufficiently high.

The following lemma gives a lower bound on the value of the fractional solution x̄
computed by Algorithm 2 (for a full proof refer [36]).

I Lemma 8. If D ∈ L is correct then in the iteration of Algorithm 2 it is examined the
resulting x̄ satisfies: G(x̄) ≥ (1− 1/e− δ)f(O)− f(E1).

Let us now fix an iteration of Algorithm 2 for which D is not only consistent but also
correct (the existence of such an iteration is guaranteed by Lemma 7). Intuitively, Algorithm 2
performs a straightforward randomized rounding where each element ` ∈ Ñ is independently
chosen with a probability that corresponds to its fractional value in the solution of the
multilinear relaxation (4). However, two key ingredients in Algorithm 2 are required in
order to achieve an ε violation of the covering constraints and no violation of the packing
constraints: (1) scaling: prior to the randomized rounding x∗ is scaled down by a factor
(1 + δ) (line 4 in Algorithm 2); and (2) post-processing: after the randomized rounding all
chosen large elements in a critical packing constraint are discarded (line 6 in Algorithm 2).
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The first ingredient above (scaling of x∗) allows us to prove using standard concentration
bounds that with good probability all non-critical packing constraints are not violated.
However, when considering critical packing constraints this does not suffice and the second
ingredient above (discarding LD) is required to show that with good probability even
the critical packing constraints are not violated. While discarding LD is beneficial when
considering packing constraints, it might have a destructive effect on both the covering
constraints and the value of the objective. To remedy this we argue that with high probability
only few elements in LD are actually discarded, i.e., |RD∩LD| is sufficiently small. Combining
the latter fact with the assumption that the current guess D is not only consistent but also
correct, according to Definition 2, allows us to prove the following lemma (for a full proof
refer to [36]).

I Lemma 9. For any constant ε > 0, choose constants α = δ3, β = δ2
/(3b), γ = 1/δ3, and

δ < min{1/(15(p+c)), ε/(2+30(p+c)2)}. With a probability of at least 1/2 Algorithm 2 outputs
a solution Salg satisfying: (1) P1Salg ≤ 1p; (2) C1Salg ≥ (1 − ε)1c; and (3) f(Salg) ≥
(1− 1/e− ε)f(O).

The above lemma suffices to prove Theorem 1, as it immediately implies it.

4 Greedy Dynamic Programming

In this section, we present a novel algorithmic approach for submodular maximization
that leads to deterministic and considerably faster approximation algorithms in several
settings. Perhaps the most notable application of our approach is Theorem 4. To the best of
our knowledge, it provides the first deterministic non-trivial approximation algorithm for
maximizing a monotone submodular function subject to packing constraints. To highlight
the core idea of our approach, we first present a vanilla version of the greedy dynamic
programming approach applied to (PCSM) that gives a constant-factor approximation and
satisfies the packing constraints, but violates the covering constraints by a factor of 2 and
works in pseudo-polynomial time.

Vanilla Greedy Dynamic Programming. Let us start with a sketch of the algorithm’s
definition and analysis. For simplicity of presentation, we assume in the current discussion
relating to pseudo-polynomial time algorithms that C ∈ Nc×n+ and P ∈ Np×n+ . Let p ∈ Np+
and c ∈ Nc+ be the packing and covering requirements, respectively. A solution S ⊆ N
is feasible if and only if C · 1S ≥ c and P · 1S ≤ p. We also use the following notations:
cmax = ‖c‖∞, pmax = ‖p‖∞, and [s]0 = {0, . . . , s} for every integer s.

We define our dynamic programming as follows: for every q ∈ [n]0, c′ ∈ [n·cmax]c0, and p′ ∈
[pmax]p0 a table entry T [q, c′,p′] is defined and it stores an approximate solution S of cardinality
q with C·1S = c′ and P·1S = p′. 8 For the base case, we set T [0,0c,0p]← ∅. For populating
T [q, c′,p′] when q > 0, we examine every set of the form T [q − 1, c′ − C`,p′ − P`] ∪ {`},
where ` satisfies ` ∈ N \ T [q − 1, c′ −C`,p′ −P`], c′ −C` ≥ 0, and p′ −P` ≥ 0. Out of all
these sets, we assign the most valuable one to T [q, c′,p′]. Note that this operation stores a
greedy approximate solution in the table entry T [q, c′,p′]. The output of our algorithm is the
best of the solutions T [q, c′,p′], for 1 ≤ q ≤ n, c′ ≥ c/2 and p′ ≤ p. See Algorithm 3 for
pseudo code.

8 We introduce a dummy solution ⊥ for denoting undefined table entries, and initialize the entire table
with ⊥. For the exact details we refer to [36].
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Algorithm 3: Vanilla Greedy Dynamic Program.
1 create a table T : [n]0 × [n · cmax]c0 × [pmax]p0 → 2N initialized with entries ⊥
2 T [0,0c,0p]← ∅
3 for q = 0 to n do
4 foreach c′ ∈ [n · cmax]c0 and p′ ∈ [pmax]p0 do
5 foreach ` ∈ N \ T [q, c′,p′] do
6 c′′ ← c′ + C`, p′′ ← p′ + P`

7 T [q + 1, c′′,p′′]← arg max{f(T [q + 1, c′′,p′′]), f(T [q, c′,p′] ∪ {`})}

8 Output argmax
q,c′≥c/2,p′≤p

f(T [q, c′,p′]).

Let us now sketch the analysis of the above algorithm. Let O be an optimal set solution.
We consider an arbitrary permutation of O, say {o1, o2, . . . , ok}. Let Oi = {o1, . . . , oi}
be the set of the first i elements in this permutation and let O0 = ∅. We introduce the
function g : O → R+ for denoting the marginal value of the elements in O. More precisely, let
g(oi) = fOi−1(oi). Note that f(O) =

∑
`∈O g(`). Let for any subset S ⊆ O, g(S) =

∑
`∈S g(`).

We then inductively construct an order o1, . . . , ok of O with the intention of upper bounding
for every prefix Oq = {o1, . . . , oq} the value g(Oq) in terms of the value f(Sq) of the table entry
Sq := T [q,C1Oq ,P1Oq ] corresponding to Oq. The construction of the sequence o1, . . . , ok
divides [k] into m phases where m is a positive integer parameter. A (possibly empty)
phase i ∈ [m] is characterized by the following property. Consider a prefix Oq and its
corresponding table entry Sq. If q is in phase i then there exists an element oq+1 ∈ O \Oq
such that adding oq+1 to Sq increases f by at least an amount of (1− i/m)g(oq+1). We set
Oq+1 = Oq ∪ {oq+1}. Thus, in earlier phases we make more progress in the corresponding
dynamic programming solution Sq relative to g(Oq) than in later phases. Additionally, we
can prove a complementing inequality. At the end of phase i ∈ [m] all elements in O \Oq
increase f by no more than (1 − i/m)g(oq+1). We prove that this implies that f(Sq) is
at least i/m · g(O \ Oq) and thus large relatively to the complement of Oq. We set up a
factor-revealing linear program that constructs the worst distribution of the marginal values
over the phases that satisfy the above inequalities. For the purpose of analysis, by scaling,
we assume that f(O) =

∑
o∈O g(o) = 1. The following lemma formalizes the above sketch. It

is also the basis for the factor-revealing LP below (for its proof refer to [36]).

I Lemma 10. Let m ≥ 1 be an integral parameter. We can pick for each i ∈ [m] a set
Oi = {oi1, oi2, . . . , oiqi} ⊆ O (possibly empty) such that the following holds. For i 6= j, we
have that Oi ∩ Oj = ∅. Let Li =

∑i
j=1 qj, Qi = ∪ij=1Oj, ci = C1Qi , pi = P1Qi and

let Ai := T [Li, ci,pi] be the corresponding DP cell. Then C1Am ≥ c/2 and the following
inequalities hold.

1. f(A0) = g(O0) where A0 = O0 = ∅,

2. f(Ai) ≥ f(Ai−1) + (1− i/m)g(Oi) ∀i ∈ [m] and

3. f(Ai) ≥ i
m

(
1−

∑
j≤i g(Oj)

)
∀i ∈ {0} ∪ [m].

Below we describe a factor-revealing LP that captures the above-described multi-phase
analysis for the greedy DP algorithm. The idea is to introduce variables for the quantities
in the inequalities in the previous lemma and determining the minimum ratio that can be
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guaranteed by these inequalities.

min am s.t. (LP)
a1 ≥

(
1− 1

m

)
o1; (5)

ai ≥ ai−1 +
(
1− i

m

)
oi ∀i ∈ [m] \ {1}; (6)

ai ≥ i
m

(
1−

∑
j≤i oj

)
∀i ∈ [m]; (7)

ai ≥ 0, oi ≥ 0 ∀i ∈ [m]. (8)

The variable oi corresponds to the marginal value g(Oi) for the set Oi in our analysis.
Variables ai correspond to the quantities f(Ai) for the approximate solution Ai for each
phase i = 1, 2, . . . ,m. We add all the inequalities we proved in Lemma 10 as the constraints
for this LP. Note that since f(O) = 1, the minimum possible value of am will correspond to
a lower bound on the approximation ratio of our algorithm.

The following is the dual for the above LP.

max
∑m
i=1

i
myi s.t. (DP)

xi + yi − xi+1 ≤ 0 ∀i ∈ [m− 1]; (9)
xm + ym ≤ 1; (10)∑

j≥i
j
myj − (1− i

m )xi ≤ 0 ∀i ∈ [m]; (11)

xi ≥ 0, yi ≥ 0 ∀i ∈ [m]. (12)

This linear program gives for every m a lower bound on the approximation ratio. Analyt-
ically, we can show that if m tends to infinity the optimum value of the LP converges to 1/e.
This leads to the following lemma (for its proof refer to [36]).

I Lemma 11. Assuming p and c are constants, the vanilla greedy dynamic programming
algorithm for (PCSM) runs in pseudo-polynomial time O(n2pmaxcmax) and outputs a solution
S ⊆ N that satisfies: (1) f(S) ≥ (1/e) · f(O), (2) P1S ≤ p and C1S ≥ 1/2 · c.

Applications and Extensions of Greedy Dynamic Programming Approach

We briefly explain the applications of the approach to the various specific settings and the
required tailored algorithmic extensions to the vanilla version of the algorithm.

Scaling, guessing and post-processing for packing constraints. An immediate consequence
of Lemma 11 is a deterministic (1/e)-approximation for the case of constantly many packing
constraints that runs in pseudo-polynomial time. We can apply standard scaling techniques
to achieve truly polynomial time. This may, however, introduce a violation of the constraints
within a factor of (1 + ε). To avoid this violation, we can apply a pre-processing and
post-processing by Kulik et al. [32] to achieve Theorem 4.

Forbidden sets for a single packing and a single covering constraints. In this setting we
are able to ensure a (1 − ε)-violation of the covering constraints by using the concept of
forbidden sets. Intuitively, we exclude the elements of these set from being included to the
dynamic programming table in order to be able to complete the table entries to solutions
with only small violation.
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Fix some ε > 0. By guessing we assume that we know the set G of all, at most 1/ε
elements ` from the optimum solution with P` > ε · p. We can guess G using brute force in
nO(1/ε) time. This allows us to remove all elements with P` ≥ ε · p from the instance. Let
N ′ be the rest of the elements. (For consistency reasons, we use bold-face vector notation
here also for dimension one.)

Fix an order of N ′ in which the elements are sorted in a non-increasing order of C`/P`

values, breaking ties arbitrarily. Let Ni be the set of the first i elements in this order. For
any p′ ≤ p, let Fp′ be the smallest set Ni with P1Ni ≥ p− p′. Note that the profit of Fp′

is at least the profit of any subset of N ′ with packing value at most p − p′ and that the
packing value of Fp′ is no larger than (1 + ε)p− p′. Also note that for any 0 ≤ p′ ≤ p′′ ≤ p,
it holds that Fp′′ ⊆ Fp′ .

Now we explain the modified Greedy-DP that incorporates the guessing and the forbidden
sets ideas. Let G be the set of the guessed big elements as described above. For the base case,
we set T [C1G,P1G] = G and T [c′,p′] = ⊥ for all table entries with c′ 6= C1G or p′ 6= P1G.

In order to compute T [c′,p′], we look at every set of the form T [c′ −C`,p′ −P`] ∪ {`},
where ` ∈ N \ (T [c′ −C`,p′ − P`] ∪ Fp′), c′ −C` ≥ 0, and p′ − P` ≥ 0. Notice that we
forbid elements belonging to Fp′ to be included in any table entry of the form T [c′,p′]. Now
out of all these sets, we assign the most valuable set to T [c′,p′]. The output of our algorithm
is the best of the solutions T [c′,p′] ∪ Fp′ , such that c′ + C1Fp′ ≥ c.

By means of a more sophisticated factor-revealing LP, we obtain Theorem 5. Finally, if
the packing constraint is actually a cardinality constraint we can assume that ε < 1/p. Hence,
there will be no violation of the cardinality constraint and also guessing can be avoided.

5 Extensions: Matroid Independence and Multi-Objective

Refer to [36] for the extensions that deal with a matroid independence constraint and with
multiple objectives.
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