
Tight Bounds for Online Weighted Tree
Augmentation
Joseph (Seffi) Naor
Technion, Haifa, Israel
naor@cs.technion.ac.il

Seeun William Umboh
The University of Sydney, Australia
william.umboh@sydney.edu.au

David P. Williamson
Cornell University, Ithaca, NY, USA
http://www.davidpwilliamson.net/work
davidpwilliamson@cornell.edu

Abstract
The Weighted Tree Augmentation problem (WTAP) is a fundamental problem in network design. In
this paper, we consider this problem in the online setting. We are given an n-vertex spanning tree T

and an additional set L of edges (called links) with costs. Then, terminal pairs arrive one-by-one and
our task is to maintain a low-cost subset of links F such that every terminal pair that has arrived so
far is 2-edge-connected in T ∪ F . This online problem was first studied by Gupta, Krishnaswamy and
Ravi (SICOMP 2012) who used it as a subroutine for the online survivable network design problem.
They gave a deterministic O(log2 n)-competitive algorithm and showed an Ω(log n) lower bound on
the competitive ratio of randomized algorithms. The case when T is a path is also interesting: it
is exactly the online interval set cover problem, which also captures as a special case the parking
permit problem studied by Meyerson (FOCS 2005). The contribution of this paper is to give tight
results for online weighted tree and path augmentation problems. The main result of this work is a
deterministic O(log n)-competitive algorithm for online WTAP, which is tight up to constant factors.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, competitive analysis, tree augmentation, network design

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.88

Category Track A: Algorithms, Complexity and Games

Related Version A full version of this paper is available at http://arxiv.org/abs/1904.11777.

Funding Joseph (Seffi) Naor : Supported in part by ISF grant 1585/15 and BSF grant 2014414.
Seeun William Umboh: Supported in part by NWO grant 639.022.211 and ISF grant 1817/17. Part
of this work was done while a postdoc at Eindhoven University of Technology, and while visiting the
Hebrew University of Jerusalem and the Technion.

Acknowledgements This work was done in part while the authors were visiting the Simons Institute
for the Theory of Computing.

1 Introduction

In the weighted tree augmentation problem (WTAP), we are given an n-vertex spanning tree
T = (V,E) together with an additional set of edges L called links, where L ⊆

(
V
2
)
. Each link

` ∈ L has a cost c(`) ≥ 0. Terminal pairs (si, ti), i = {1, . . . , k}, are given and the goal is
to compute a minimum cost subset of links F ⊆ L such that each terminal pair is (edge)
2-connected in T ∪ F . In the unweighted version, the links have unit costs and the problem

EA
T

C
S

© Joseph (Seffi) Naor, Seeun William Umboh, and David P. Williamson;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 88; pp. 88:1–88:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:naor@cs.technion.ac.il
https://orcid.org/0000-0001-6984-4007
mailto:william.umboh@sydney.edu.au
https://orcid.org/0000-0002-2884-0058
http://www.davidpwilliamson.net/work
mailto:davidpwilliamson@cornell.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.88
http://arxiv.org/abs/1904.11777
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

88:2 Tight Bounds for Online Weighted Tree Augmentation

is known as the tree augmentation problem (TAP). If the spanning tree T is a path, then
the unweighted problem is called the path augmentation problem (PAP), while the weighted
version is called weighted path augmentation (WPAP).

TAP and WTAP are considered to be fundamental connectivity augmentation problems,
and have been studied extensively. TAP is already known to be APX-hard and the best
approximation algorithms for WTAP and TAP achieve approximation factors of 2 and 1.458
respectively [6, 7]. Improving these bounds is an important open problem.

We consider these problems in the online setting. In online WTAP, we are initially given
a spanning tree T = (V,E), and the set of links L together with their costs. The terminal
pairs (si, ti) arrive online one by one. Our goal is to maintain a low-cost subset of links
F ⊆ L such that each terminal pair seen so far is (edge) 2-connected in T ∪ F .

Online WTAP occurs as a subproblem in the online survivable network design algorithm
of Gupta, Krishnaswamy and Ravi [8]. They observed that the online tree augmentation
problem can be cast as an instance of the online set cover problem1 in which the elements
are the fundamental cuts defined by the terminal pairs and the sets are the links. Since
there are only n elements and O(n2) sets, applying the results of Alon et al. [1] yields a
fractional O(logn)-competitive algorithm. But, then, how does one round the fractional
solution online? Randomized rounding seems to be the only rounding technique we have for
this problem, and it yields a randomized O(log2 n)-competitive algorithm, as observed by [1].
This competitive factor can even be achieved deterministically at no further cost [1]. We
note that the loss of a logarithmic factor in the rounding step seems inherent. Interestingly,
Gupta, Krishnaswamy and Ravi [8] also showed for the rooted setting (si = r for some root
r) a lower bound of Ω(logn) against randomized algorithms. It is easy to observe that this
lower bound also holds against fractional online algorithms.

There has been a long line of work on maintaining connectivity online, starting in the
seminal paper of Imase and Waxman [11]. A Θ(logn)-competitive algorithm is given there
for the online Steiner problem in undirected graphs. In this problem the graph with a fixed
root vertex is known in advance and the terminals are given one by one, and one must ensure
that all terminals that have arrived so far are connected to the root. Other polylogarithmic
(in n) competitive algorithms have been given for more complex models of connectivity,
including those with node costs rather than edge costs and penalties for violating connectivity
constraints; see [2, 3, 13, 9, 10, 16, 14]. Gupta, Krishnaswamy, and Ravi [8] consider the
online survivable network design problem, which generalizes WTAP. In this problem, a graph
is fixed in advance and terminal pairs (si, ti) arrive with connectivity requirements ri; one
must ensure that there are at least ri edge-disjoint paths between si and ti for all pairs that
have arrived thus far. They give a randomized Õ(rmax log3 n)-competitive algorithm for the
problem, where rmax = maxi ri. Note that this problem with uniform requirements ri = 2
already generalizes WTAP.

The online WPAP, when T is a path, is an interesting problem in its own right. This
problem is equivalent to online interval set cover. It captures as a special case the parking
permit problem introduced by Meyerson [12]. In this problem, there is a sequence of days;
each day it is either sunny or it rains, and if it rains we must purchase a parking permit.
Permits have various durations and costs. We can model the parking permit problem by
online path augmentation by letting the edges of the path correspond to the sequence
of days, the links to the permits, and the rainy days to a terminal pair request for the

1 In the online set cover problem, elements arrive online and need to be covered upon arrival by sets from
a set system known in advance. (Note that not necessarily all elements will appear.)

J. Naor, S.W. Umboh, and D. P. Williamson 88:3

corresponding day. Meyerson [12] gives a deterministic O(logn)-competitive algorithm for
the problem and a randomized O(log logn)-competitive algorithm, and shows lower bounds
on the competitive ratio of Ω(logn/ log logn) for deterministic algorithms and Ω(log logn)
for randomized algorithms. Note that online WPAP is a strict generalization of the parking
permit problem because the parking permit problem assumes that permits of the same
duration have the same cost, whereas no such assumption is made of the links in WPAP.

1.1 Our Results
The contribution of this paper is to give tight results (within constant factors) for online tree
and path augmentation problems. Our main result is that weighted online tree augmentation
has a competitive ratio of Θ(logn).

I Theorem 1. There is a deterministic algorithm for online WTAP with competitive ratio
O(logn).

This result is tight up to constant factors because of the Ω(logn) lower bound on ran-
domized algorithms for WTAP given by [8]. As we mention above, [8] gives a randomized
Õ(rmax log3 n)-competitive algorithm for the online survivable network design problem. An in-
triguing open question is whether this competitive ratio can be improved, say to O(rmax logn)
or even O(logn). In fact, we are unaware of lower bounds that rule out the latter bound.
We view our main result as a necessary stepping stone towards obtaining an O(rmax logn) or
O(logn) bound. Indeed, for rmax = 2, plugging in our algorithm for online WTAP into the
algorithm of [8] improves their competitive ratio from Õ(log3 n) to Õ(log2 n).

I Corollary 2. For online survivable network design with rmax = 2, there is a randomized
algorithm with competitive ratio Õ(log2 n).

Our second result shows that the competitive ratio for deterministic algorithms for online
path augmentation is also Θ(logn). Meyerson [12] gives a lower bound of Ω(logn/ log logn)
for deterministic algorithms for the parking permit problem, and hence for online path
augmentation. We improve the analysis of his lower bound instance to show the following.

I Theorem 3. Every deterministic algorithm for online WPAP has competitive ratio Ω(logn).

Since we use a parking permit instance to show the lower bound, we have the same lower
bound for the parking permit problem.

Finally, we show that the fractional version of online path augmentation has compet-
itive ratio Θ(log logn) for deterministic algorithms. Meyerson [12] gives a lower bound
of Ω(log logn) for randomized algorithms for the parking permit problem, and hence for
online fractional path augmentation. Our algorithm implies an exponential gap between the
competitive ratios of fractional path augmentation and fractional tree augmentation. We
show the following.

I Theorem 4. There is a deterministic algorithm for online fractional WPAP with competitive
ratio O(log logn).

Recall that online WPAP is equivalent to online interval set cover. Thus, Theorems 1 and 4
imply that restricting online set cover to interval sets allows for improved competitive ratios.
Also, even though interval set cover and interval hitting set are equivalent in the offline case,
the latter turns out to be exponentially more difficult than the former in the online case; in
contrast to Theorem 4, Even and Smorodinsky [5] gave a lower bound of Ω(logn) for online
fractional hitting set.

ICALP 2019

88:4 Tight Bounds for Online Weighted Tree Augmentation

1.2 Our Techniques

We now outline some of the ideas behind our algorithms.

Online WTAP

As mentioned before, there is an online fractional O(logn)-competitive algorithm for WTAP
that follows from the work of [1] on the online set cover problem. However, it is unclear how
to exploit the special structure of the set system in hand in WTAP (as defined by the links)
to avoid the loss of another factor of O(logn) when rounding the fractional solution into an
integral one (either randomized or deterministic). Thus, our approach to proving Theorem 1
takes a completely different route. There are two key ingredients in our proof:
1. Low-width path decomposition. The first ingredient is a path decomposition of low

“width”: in particular, there is a decomposition of the tree into edge-disjoint paths such
that any path in the tree intersects at most O(logn) paths of the decomposition. Such
a decomposition can be obtained using the heavy-path decomposition of Sleator and
Tarjan [15]. This immediately implies an O(logn)-approximate black-box reduction from
online tree augmentation to online path augmentation. Unfortunately, Theorem 3 gives a
lower bound of Ω(logn) for the latter problem. Since a tree may have width Ω(logn) in
the worst case (e.g., a binary tree), the best we can achieve for WTAP using a black-box
reduction is a competitive ratio of O(log2 n).

2. Refined guarantee for path augmentation. The second ingredient is our main
technical contribution. We define a notion of projection for links onto paths in the path
decomposition, and call the projected link rooted if it has, as its endpoint, the node of
the path closest to the root of the tree. The key insight is that the path decomposition
has a special structure: for each link, its projection is rooted for all but at most one of
the paths in the decomposition. We then give a version of the path algorithm that treats
rooted links differently from non-rooted links; in particular, an online path augmentation
algorithm that finds a solution whose cost is within a constant factor of the rooted links of
the optimal solution plus an O(logn) factor of the cost of the non-rooted links. Intuitively,
then, summing the cost over all the paths in the decomposition, each link appears as a
rooted link in at most O(logn) paths in the decomposition and as a non-rooted link in at
most one path in the decomposition, yielding the O(logn) factor overall.

Online Fractional WPAP

Directly applying the online fractional set cover algorithm of [1] to online fractional WPAP
only yields a competitive ratio of O(logn). However, for online set cover instances in which
each element is covered by at most d sets, the algorithm of [1] is O(log d)-competitive. Thus,
to get a competitive ratio of O(log logn), the basic idea is to reduce to a restricted instance
in which each request can only be covered by O(logn) links. For such restricted instances,
applying the algorithm of [1] gives a competitive ratio of O(log logn).

1.3 Other Related Work

Recently, Dehghani et al. [4] studied online survivable network design, giving a bicriteria
approximation algorithm, and considering several stochastic settings.

J. Naor, S.W. Umboh, and D. P. Williamson 88:5

1.4 Organization of the Paper
We start with the preliminaries and describe the low-width path decomposition in Section 2.
In Section 3, we present the refined guarantee needed for online path augmentation. Then,
we show how to achieve the required refined guarantee in Section 4. Due to lack of space, we
defer the proofs of Theorems 3 and 4 to the full version.

2 Preliminaries

We restate the formal definition of the problem. In the online weighted tree augmentation
problem, we are initially given a spanning tree T = (V,E), and an additional set of edges
called links L ⊆

(
V
2
)
with costs c(`) ≥ 0. Then, terminal pairs (si, ti) arrive one by one. Our

goal is to maintain a low-cost subset of links F ⊆ L such that each terminal pair seen so far
is 2-connected in T ∪ F .

Notation

Denote by P (u, v) the path between u and v in T . For a link ` = (u, v), we write P (`) = P (u, v)
and for a set S of links, we write P (S) =

⋃
`∈S P (`). We say that a link ` ∈ L covers an

edge e ∈ E if e ∈ P (`). Define cov(e) = {` ∈ L : e ∈ P (`)} to be the set of links covering e.
Note that cov(e) is exactly the set of links crossing the cut induced by the tree edge e. Let
R ⊆ E be a set of requests. Then, a solution F is feasible if and only if for every edge e ∈ R,
we have F ∩ cov(e) 6= ∅; or equivalently, if P (F) ⊇ R.

Simplifying assumptions

In the rest of this paper, we assume that link costs are powers of 2; this assumption is
without loss of generality since we can round up all edge costs and lose only a factor of 2 in
the competitive ratio. Given that link costs are powers of 2, we say that the class of a link `
is j if c(`) = 2j and we write class(`) = j.

Given an instance in which link costs are powers of 2, we also assume that requests are
elementary: each request (si, ti) is a tree edge e ∈ E. This is without loss of generality
because an adversary can simulate a non-elementary request (si, ti) by a sequence of requests,
where each request is an edge along the path between si and ti in T .

Path decomposition

We next define a rooted path decomposition, see Figure 1 for an example.

I Definition 5 (Rooted Path Decomposition). Let T be a tree. A path decomposition of T is
a partition P of its edge set into edge-disjoint paths. We say P is rooted if there is a vertex
r ∈ T such that if we root T at r, then for each path p ∈ P, the least common ancestor of
the vertices on p is an endpoint of the path (we call this endpoint the root of p). The width
of P is width(P) = maxu,v∈V (T) |{p ∈ P : P (u, v) ∩ p 6= ∅}|, the maximum number of paths
p ∈ P that any path in T intersects.

I Lemma 6 (Existence of Low Width Rooted Path Decompositions). Every tree on n vertices
admits a rooted path decomposition of width O(logn).

An O(logn)-width rooted path decomposition can be obtained using the so-called heavy
path decomposition of Sleator and Tarjan [15]. For the sake of completeness, we give a proof
here. The following notion of a caterpillar decomposition will be convenient.

ICALP 2019

88:6 Tight Bounds for Online Weighted Tree Augmentation

Figure 1 Example of a graph and its rooted path decomposition. The edge colors reflect the
partition of the edges. The root of each path is the highest vertex of the path.

u
<latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit>

v
<latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit>

Figure 2 Illustration of the projections of the link (u, v) onto the paths of the decompositon.
Only the projection onto the blue path is non-rooted.

I Definition 7 (Caterpillar Decomposition). Let T be a rooted tree on n vertices. A caterpillar
decomposition of T is a vertex-disjoint decomposition of T into a root-to-leaf path B (called
the backbone) and subtrees Ti that are connected to B. The decomposition is balanced if for
each subtree Ti, we have |V (Ti)| ≤ n/2.

I Lemma 8. Every tree admits a balanced caterpillar decomposition.

Proof. The existence of a balanced caterpillar decomposition is an easy consequence of the
fact that every tree T has a balanced vertex separator v, i.e. after removing v from T , each
of the remaining connected components has at most n/2 vertices. The following is a balanced
caterpillar decomposition of T : pick an arbitrary root-to-leaf path containing v to be the
backbone B, and the subtrees Ti to be the connected components of T after removing B. J

Proof of Lemma 6. The lemma easily follows by choosing an arbitrary root vertex of T and
recursively applying Lemma 8. J

3 Refined Guarantee for Online Path Augmentation

As already mentioned, Lemma 6 implies an O(logn)-approximate black-box reduction to
online path augmentation: given an α-competitive algorithm for online path augmentation, we
have an O(α logn)-competitive algorithm for online tree augmentation. However, Theorem 3
says that α = Ω(logn) for deterministic algorithms. To get around this lower bound, a more
refined guarantee for online path augmentation is needed.

We need some notation to describe this refined guarantee. Suppose P is a rooted path
decomposition of T and ` a link. For Q ∈ P, let πQ(`) be the link whose endpoints are
endpoints of the path P (`) ∩Q; we call πQ(`) the projection of ` onto Q. We say that ` is
Q-rooted if one of the endpoints of πQ(`) is the root of Q, and Q-non-rooted otherwise. (See
Fig. 2 for an illustration.) The main ingredient for the refined guarantee is the next lemma.

I Lemma 9. Consider a tree T and link ` = (u, v). Suppose P is a rooted path decomposition
of T . Then, there is at most one path Q ∈ P for which ` is Q-non-rooted.

J. Naor, S.W. Umboh, and D. P. Williamson 88:7

Proof. We claim that for any path Q ∈ P such that ` is a non-rooted link, the least common
ancestor a of u and v must lie in Q but is not an endpoint of Q, i.e. it lies strictly in the
middle of Q. Since P is an edge-disjoint decomposition of T , there can be at most one such
path and thus the claim implies the lemma.

We proceed to prove the claim. Let u′, v′ be the endpoints of πQ(`). Since P is a rooted
path decomposition, either u′ is an ancestor of v′ or vice versa; suppose the former. We now
argue that u′ is the least common ancestor of u and v. There are two cases: (1) either u′ is
an endpoint of `; (2) or there is a vertex z of P (u, v) adjacent to u′ but is not on Q. In case
(1), we are done. Consider case (2). Since u′ is not an endpoint of Q, its parent must be on
Q, and thus z is a child of u′. Therefore, u′ is the least common ancestor of u and v. J

Motivated by Lemma 9, we define the online rooted path augmentation problem. An
instance of online rooted path augmentation consists of a rooted path Q where the root r is
an endpoint of Q. For such an instance, we say that a link is rooted if one of its endpoints is
r. Lemma 9 suggests that we should devise an algorithm for online rooted path augmentation
with the following refined guarantee.

I Definition 10 (Nice Solution). A solution F for an instance of online rooted path aug-
mentation is nice if for any feasible solution F ∗, we have c(F) ≤ O(1)c(R∗) +O(logn)c(S∗)
where R∗ is the set of rooted links and S∗ is the set of non-rooted links of F ∗, respectively.
An algorithm is nice if it always produces a nice solution.

I Lemma 11. Suppose that there exists a deterministic nice algorithm Path-ALG for online
rooted path augmentation. Then, there exists an O(logn)-competitive deterministic algorithm
for online tree augmentation.

Proof. Here is our algorithm for general instances. Consider a general instance of online
weighted tree augmentation with tree T = (V,E), requests e1, . . . , ek ⊆ E and links L =

(
V
2
)

with costs c(`). Our algorithm works as follows. By Lemma 6, there exists a rooted path
decomposition P of T with width w = O(logn). Now, each rooted path Q ∈ P defines an
instance of online rooted path augmentation: the links are LQ = {πQ(`) : ` ∈ L} where πQ(`)
has cost c(`), and the sequence of requests is exactly the subsequence of requests that lie on
Q. So, our algorithm runs in parallel |P| instantiations of Path-ALG, one per rooted path
Q ∈ P. When request ei arrives, if ei ∈ Q (since ei is an elementary request, it must lie
on some path of P), then our algorithm uses the instantiation of Path-ALG on Q to handle
that request; in particular, if Path-ALG buys the projected link πQ(`), then our algorithm
buys the link `.

Let us now analyze the competitive ratio of this algorithm. Let F ∗ be a feasible solution.
For Q ∈ P , we denote by R∗Q, and S∗Q the subset of F ∗ which is Q-rooted, and Q-non-rooted,
respectively. Since Path-ALG is nice, we have that our algorithm’s solution F has cost

c(F) ≤
∑
Q∈P

[
O(1)c(R∗Q) +O(logn)c(S∗Q)

]
≤ O(logn)c(F ∗),

where the last inequality is because Lemma 9 implies that each link of F ∗ is in S∗Q for at
most one Q ∈ P and is in R∗Q for at most w = O(logn) paths Q ∈ P. J

In the next section, we construct a nice deterministic algorithm. Together with Lemma 11
this gives a deterministic O(logn)-competitive algorithm for online tree augmentation, thus
proving Theorem 1.

ICALP 2019

88:8 Tight Bounds for Online Weighted Tree Augmentation

4 A Nice Algorithm for Online Path Augmentation

In this section, we devise a nice algorithm for online rooted path augmentation. In the
following, we use the convention that the root of the path is the left endpoint of the path.

We begin by showing in Section 4.1 that it suffices to consider simpler instances that we
call minimal instances. Then, we describe in Section 4.2 how to prove niceness using an LP
for the problem. Finally, we describe and analyze the algorithm in Sections 4.3 and 4.4.

4.1 Minimal Instances

The first step is a preprocessing step that simplifies the structure of the link set. In particular,
we prune the instance so that it is of the following type.

I Definition 12 (Minimal Instances). A set of links L and its costs c are minimal if they
satisfy the following properties:

1. for each class j, there is at most one rooted link and for every edge e, there are at most
two links ` with e ∈ P (`);

2. for any two rooted links ` and `′, if class(`) > class(`′), then P (`)) P (`′).
An instance is minimal if its links and costs are minimal.

Given a set of links L and its costs c, we prune L to get a minimal subset of links L′ ⊆ L
as follows. We begin by pruning the rooted links: while there exists a rooted link ` and a
rooted link `′ of the same or lower class such that P (`′) ⊇ P (`), remove `. Then we prune the
non-rooted links for each class j: let Lj be the set of class j links and L′j be a minimum-size
subset of Lj that covers Lj , i.e. P (L′j) ⊇ P (Lj); then, remove the links Lj \ L′j . Such a
minimum cover may be computed efficiently using an algorithm for minimum interval cover.
By minimality, we have that for any edge e, there are at most two links `, `′ ∈ L′j such that
e ∈ P (`) ∩ P (`′). The following claim shows that any link ` ∈ Lj that was pruned away can
be replaced with at most three links of L′j and so restricting to L′ only causes the value of the
optimal solution to increase by at most a factor of 3. We defer the proof to the full version.

B Claim 13. For every link ` ∈ Lj \L′j , there exists (at most) three links `1, `2, `3 ∈ L′j with
P (`) ⊆ P (`1) ∪ P (`2) ∪ P (`3).

Given a subset of links L′ ⊆ L, we say that a solution F ⊆ L′ is nice for L′ if for any
feasible solution F ′ ⊆ L′, we have c(F) ≤ O(1)c(R′) +O(logn)c(S′) where R′ is the set of
rooted links and S′ is the set of non-rooted links of F ′, respectively. The following lemma
says that it suffices to have a solution that is nice for a pruning of L and thus it suffices to
devise a nice algorithm for minimal instances. We defer the proof of the lemma to the full
version.

I Lemma 14. Let L′ ⊆ L be a pruning of L. Then, a solution that is nice for L′ is also
nice for L.

Henceforth, we will focus on devising a nice algorithm for minimal instances.

J. Naor, S.W. Umboh, and D. P. Williamson 88:9

4.2 Proving Niceness via the Dual LP
Our algorithm uses the standard LP formulation of the problem. Let R be the set of requests.
The following are the primal and dual LPs, respectively.

minimize
∑
`∈L

x(`)c(`)

subject to
∑

`∈cov(e)

x(`) ≥ 1 ∀e ∈ R
(1)

maximize
∑
e∈R

y(e)

subject to
∑

e∈P (`)

y(e) ≤ c(`) ∀` ∈ L
(2)

We say that a link ` is tight with respect to a dual solution y if
∑

e∈P (`) y(e) = c(`).
The following lemma tells us how to use the dual to prove niceness.

I Lemma 15. Let F be a solution. Suppose y is a dual solution such that
1. c(F) ≤ O(1)

∑
e y(e),

2.
∑

e∈P (`) y(e) ≤ O(logn)c(`) for every non-rooted link `, and
3.
∑

e∈P (`) y(e) ≤ O(1)c(`) for every rooted link `.
Then, F is a nice solution.

Proof. Let F ∗ be a feasible solution, R∗ be the subset of F ∗ that is rooted and S∗ the subset
that is non-rooted. We now show that

∑
e y(e) ≤ O(1)c(R∗) + O(logn)c(S∗), which then

implies that c(F) ≤ O(1)c(R∗) +O(logn)c(S∗). Since we have a dual variable y(e) for each
request e and F ∗ is feasible, we have that∑

e

y(e) ≤
∑

e∈P (R∗)

y(e) +
∑

e∈P (S∗)

y(e).

Using the fact that
∑

e∈P (`) y(e) ≤ O(1)c(`) for every rooted link `, we also have∑
e∈P (R∗)

y(e) ≤
∑

`∈R∗

∑
e∈P (`)

y(e) ≤ O(1)c(R∗).

Similarly, we get that
∑

e∈P (S∗) y(e) ≤ O(logn)c(S∗). Putting all of these together, we
conclude that

∑
e y(e) ≤ O(1)c(R∗) +O(logn)c(S∗), as desired. J

4.3 Algorithm
We now give some of the ideas behind our algorithm.

An O(log n)-competitive algorithm

First, we describe a simple algorithm that constructs a solution F and a dual solution y
that satisfies c(F) ≤ O(1)

∑
e y(e) and

∑
e∈P (`) y(e) ≤ O(logn)c(`) for every link `. The

algorithm maintains a maximal feasible dual solution y and is as follows: when a request
ei arrives, raise its dual variable y(ei) until some link ` with ei ∈ P (`) goes tight; add this
link to F . There are two parts to the analysis. First, let F̂ be the set of links in F that

ICALP 2019

88:10 Tight Bounds for Online Weighted Tree Augmentation

cost at least max`∈F c(`)/n2. Since |F | ≤ n2, we get that c(F) ≤ 2c(F̂) so it suffices to
bound c(F̂). The second part of the analysis uses the following charging argument to bound
c(F̂): whenever we add a tight link ` to F̂ , we charge its cost to the dual variables y(e) for
e ∈ P (`). Let λ(e) be the total number of links charged to y(e) and ŷ be the dual solution
where ŷ(e) = λ(e)y(e). We have c(F̂) ≤ O(1)

∑
e λ(e)y(e). Now observe that λ(e) ≤ O(logn)

because Property 1 of minimal instance implies that there can be at most 2 links ` ∈ F̂ with
e ∈ P (`) for a single cost class, and, by definition, F̂ can have at most O(logn) cost classes.
So, for each link `, we have∑

e∈P (`)

λ(e)y(e) ≤ O(logn)
∑

e∈P (`)

y(e) ≤ O(logn)c(`)

where the last inequality follows from the fact that y is feasible.

Saving the rooted links

A natural idea to ensure that
∑

e∈P (`) λ(e)y(e) ≤ O(1)c(`) for each rooted link ` is to modify
the above algorithm to explicitly take into account the charging method as follows: after
buying the tight link (we call this a type-1 link), if there is a rooted link `′ such that∑

e∈P (`′) λ(e)y(e) > c(`′), buy the one of highest class among such links (we call this a type-2
link). Moreover, we also modify the charging method to only charge each type-1 link ` to
the dual variables y(e) for e /∈ P (`′) where `′ is the last type-2 link bought.

As we will see later, these modifications allow us to argue that
∑

e∈P (`) λ(e)y(e) ≤ O(1)c(`)
for each rooted link `. However, it also introduces a complication: it might be possible that
for some type-1 link `, most of the dual variables y(e) paying towards its cost have e ∈ P (`′)
where `′ is the last type-2 link bought. Since the charging method only charges to dual
variables y(e) for e /∈ P (`′), this would mean that it might charge an amount that is much
less than the cost of `′.

Fixing the complication

To fix the above issue, whenever we buy a type-2 link `′, we also buy all links `′′ of class at
most class(`′) that crosses `′, i.e. ∅ (P (`′′) ∩ P (`′) (P (`′). Property 1 implies that the
total cost of these links is at most O(1)c(`′). We call these links type-3 links. This ensures
that later on, when we buy a type-1 link `, if P (`)∩P (`′) 6= ∅, then ` must be of higher class
than `′ and thus most of its cost is paid for by dual variables y(e) for e /∈ P (`′).

We describe the complete algorithm formally in Algorithm 1. In Algorithm 1, we use
Z to keep track of P (`) where ` is the last type-2 link bought so far (Z = ∅ if no type-2
link is bought yet). The links bought in Step 4, 9, 11, are type-1, type-2, and type-3
links, respectively.

4.4 Analysis of Algorithm
We now prove that Algorithm 1 is nice. Let F1, F2, F3 ⊆ F be the sets of type-1, type-
2 and type-3 links, respectively. The proof consists of three steps. First, we show that
c(F) ≤ O(1)c(F1) (Lemma 17) and thus it suffices to bound the cost of type-1 links. Then,
we construct a dual solution ŷ that accounts for the cost of type-1 links (Lemma 18). This
shows that ŷ satisfies the first condition of Lemma 15. Finally, Lemmas 20 and 19 show that
ŷ satisfies the remaining conditions of Lemma 15.

For each type-1 link ` ∈ F1, define C(`) to be the set of edges e such that λ(e) was
incremented during the iteration that ` was assigned to F1, i.e. each dual variable y(e)
for e ∈ C(`) contributes towards paying c(`). Observe that λ(e) = |{` : e ∈ C(`)}| and
C(`) ⊆ P (`).

J. Naor, S.W. Umboh, and D. P. Williamson 88:11

Algorithm 1 Nice algorithm for online rooted path augmentation.
1: F ← ∅; y ← 0;λ← 0;Z ← ∅
2: for each unsatisfied request ei do
3: Increase y(ei) until some link ` with ei ∈ P (`) goes tight
4: Add such a link ` to F
5: for each e ∈ P (`) \ Z such that y(e) > 0 do
6: λ(e)← λ(e) + 1
7: end for
8: if there exists a rooted link ` /∈ F such that

∑
e∈P (`) λ(e)y(e) ≥ c(`) then

9: Among such links, add to F the link ` of highest class
10: for j ≤ class(`) do
11: Add to F all class-j links `′ that cross `, i.e. ∅ (P (`′) ∩ P (`) (P (`)
12: end for
13: Z ← P (`)
14: end if
15: end for

I Proposition 16. Algorithm 1 satisfies the following properties. Let Zi and λi denote Z
and λ at the end of the i-th iteration. Then, for every iteration i, we have
1. Zi ⊇ Zi−1;
2. if y(ei) > 0, then λi(ei) > 0.

Proof. The first follows from Property 2 of minimal instances. The second follows from the
fact that in the iteration that ei arrives, since it is unsatisfied, it must not be contained in Z.
Let ` be the link added to F in that iteration. Since ei ∈ P (`) \ Z and y(ei) > 0, we have
that λ(ei) is increased by 1 during the iteration and thus λi(ei) > 0. J

I Lemma 17. c(F) ≤ O(1)c(F1).

Proof. We will show that c(F3) ≤ O(1)c(F2), that c(F2) ≤ O(1)
∑

e λ(e)y(e) and that∑
e λ(e)y(e) ≤ c(F1). Let `r be the last type-2 link bought. We have that c(`r) ≤∑
e∈P (`r) λ(e)y(e) by construction. Moreover, since c(`r) ≥ c(`) for every ` ∈ F2 and

there is at most one rooted link of each class, we get that c(F2) ≤ 2c(`r). Thus, we get
that c(F2) ≤ 2

∑
e∈P (`r) λ(e)y(e). For each type-2 link ` bought, we buy at most two type-3

links per class j ≤ class(`) because of Property 1 of minimal instances. Therefore, we have
c(F3) ≤ 2c(F2) ≤ 4

∑
e∈P (`r) λ(e)y(e).

Finally, we show that
∑

e λ(e)y(e) ≤ c(F1). Since λ(e) = |{` : e ∈ C(`)}|, we have∑
e λ(e)y(e) =

∑
`∈F1

(∑
e∈C(`) y(e)

)
. Now, since C(`) ⊆ P (`) and y is feasible, we get∑

e∈C(`) y(e) ≤
∑

e∈P (`) y(e) ≤ c(`). Combining the previous two inequalities gives us that∑
e λ(e)y(e) ≤ c(F1). J

Let cmax = max`∈F1 c(`). Define F̂1 = {` ∈ F1 : c(`) ≥ cmax/n
2} and λ̂(e) = |{` ∈ F̂1 :

e ∈ C(`)}|. We now show that F and the dual solution ŷ where ŷ(e) = λ̂(e)y(e) satisfies the
conditions of Lemma 15.

I Lemma 18. c(F1) ≤ O(1)
∑

e λ̂(e)y(e).

Proof. Observe that c(F1) ≤ 2c(F̂1) so it suffices to prove that

c(F̂1) ≤ O(1)
∑

e

λ̂(e)y(e). (3)

ICALP 2019

88:12 Tight Bounds for Online Weighted Tree Augmentation

We now show that this inequality holds at the end of each iteration of the algorithm. Consider
an iteration in which the current request ei is not already covered and suppose ` ∈ F̂1 is
the type-1 link bought in this iteration. The LHS of Inequality (3) increases by c(`) in this
iteration. We now show that

∑
e λ̂(e)y(e) increases by at least c(`)/2. In this iteration, λ̂(e)

increases by 1 for every e ∈ P (`) \ Z and y(e) > 0, and so
∑

e λ̂(e)y(e) increases by exactly∑
e∈P (`)\Z y(e).
In the remainder of the proof, we show that

∑
e∈P (`)\Z y(e) ≥ c(`)/2. If P (`) ∩ Z = ∅,

then
∑

e∈P (`)\Z y(e) =
∑

e∈P (`) y(e) = c(`) since ` is tight. Now suppose P (`) ∩ Z 6= ∅. Let
`′ be the type-2 link such that Z = P (`′). Since P (`) ∩ P (`′) 6= ∅, it must be the case that `
is of type higher than class(`′). This is because otherwise, ` would have been bought earlier
as a type-3 link in the same iteration as `′. But then since ei ∈ P (`), it would contradict
the assumption that ei is not already covered at the start of the current iteration. Thus,
class(`) > class(`′) and so c(`) ≥ 2c(`′). So, we now have∑

e∈P (`)\Z

y(e) ≥
∑

e∈P (`)

y(e)−
∑

e∈P (`′)

y(e) ≥ c(`)− c(`′) ≥ c(`)/2,

where the second last inequality follows from the fact that y is a feasible dual and ` is tight.
Therefore, Inequality (3) holds at the end of each iteration, as desired. J

Lemmas 17 and 18 imply that c(F) ≤ O(1)
∑

e ŷ(e).

I Lemma 19. For each non-rooted link `, we have
∑

e∈P (`) λ̂(e)y(e) ≤ O(logn)c(`).

Proof. Property 1 of minimal instances implies that for each j, there are at most two
links `′ ∈ F̂1 of class j with e ∈ C(`′). Since each link in F̂1 has cost between cmax/n

2

and cmax and link costs are powers of 2, we have that λ̂(e) ≤ O(logn). Thus we get that∑
e∈P (`) λ̂(e)y(e) ≤ O(logn)

∑
e∈P (`) y(e) ≤ O(logn)c(`), where the last inequality follows

from the fact that y is a feasible dual. J

I Lemma 20. For each rooted link `, we have
∑

e∈P (`) λ̂(e)y(e) ≤ O(1)c(`).

Proof. We will in fact show that
∑

e∈P (`) λ(e)y(e) ≤ O(1)c(`). Suppose, at the end of some
iteration, that we have

∑
e∈P (`) λ(e)y(e) > c(`). Consider the earliest iteration that this

happens. We now show that
∑

e∈P (`) λ(e)y(e) ≤ O(1)c(`) at the end of the iteration and
later show that the LHS cannot increase in future iterations.

Let λold(e) and yold(e) denote the values of λ(e) and y(e) at the start of the iteration and
λnew(e) and ynew(e) denote their values at the end. We have that

∑
e∈P (`) λ

old(e)yold(e) <
c(`). We now show that

∑
e∈P (`) λ

new(e)ynew(e) ≤ 3c(`). Let ei be the request of the current
iteration. During this iteration, we only increase y(e) for e = ei and we set λ(ei) = 1 so
λnew(ei)ynew(ei) = y(ei). So, we have∑

e∈P (`)

λnew(e)ynew(e) =
∑

e∈P (`)\{ei}

λnew(e)yold(e) + y(ei).

Since y is a feasible dual, we have that y(ei) ≤ c(`). Now, Proposition 16 implies that
λold(e) ≥ 1 if yold(e) > 0. Together with the fact that λnew(e) ≤ λold(e) + 1, we get that
λnew(e)yold(e) ≤ 2λold(e)yold(e) and so∑

e∈P (`)\{ei}

λnew(e)ynew(e) ≤ 2
∑

e∈P (`)\{ei}

λold(e)yold(e) < 2c(`).

Thus,
∑

e∈P (`) λ
new(e)ynew(e) ≤ 3c(`) at the end of the current iteration.

J. Naor, S.W. Umboh, and D. P. Williamson 88:13

Finally, we show that
∑

e∈P (`) λ(e)y(e) does not increase in future iterations. At the
end of the current iteration, ` is a candidate to be added to F . Among all candidates, the
one with highest class is added, so either ` is added to F or a rooted link `′ of higher class
is added to F . In the second case, by Proposition 16, we have P (`′) ⊇ P (`). Thus, in
either case, we have that Z ⊇ P (`) at the end of the current iteration. Moreover, in future
iterations, we still have Z ⊇ P (`) by Proposition 16. Therefore,

∑
e∈P (`) λ(e)y(e) does not

increase in future iterations. Thus, we conclude that
∑

e∈P (`) λ(e)y(e) ≤ 3c(`) at the end of
the algorithm. J

Therefore, we conclude that Algorithm 1 is nice. Together with Lemma 11, we get
Theorem 1.

References
1 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The Online Set

Cover Problem. SIAM J. Comput., 39(2):361–370, 2009. doi:10.1137/060661946.
2 Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized Steiner problem. Theoretical

Computer Science, 324:313–324, 2004.
3 Piotr Berman and Chris Coulston. On-Line Algorithms for Steiner Tree Problems. In

Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 344–353,
1997.

4 Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed
Seddighin. Greedy Algorithms for Online Survivable Network Design. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, pages 152:1–152:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.152.

5 Guy Even and Shakhar Smorodinsky. Hitting sets online and unique-max coloring. Discrete
Applied Mathematics, 178:71–82, 2014. doi:10.1016/j.dam.2014.06.019.

6 Greg N. Frederickson and Joseph JáJá. Approximation Algorithms for Several Graph Aug-
mentation Problems. SIAM J. Comput., 10(2):270–283, 1981. doi:10.1137/0210019.

7 Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for
tree augmentation: saving by rewiring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 632–645, 2018. doi:10.1145/3188745.3188898.

8 Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. Online and Stochastic Survivable
Network Design. SIAM J. Comput., 41(6):1649–1672, 2012. doi:10.1137/09076725X.

9 MohammadTaghi Hajiaghayi, Vahid Liaghat, and Debmalya Panigrahi. Online Node-weighted
Steiner Forest and Extensions via Disk Paintings. In Proceedings of the 54th Annual Symposium
on Foundations of Computer Science, pages 558–567, 2013.

10 MohammadTaghi Hajiaghayi, Vahid Liaghat, and Debmalya Panigrahi. Near-Optimal Online
Algorithms for Prize-Collecting Steiner Problems. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming, 41st
International Colloquium, ICALP 2014, volume 8572 of Lecture Notes in Computer Science,
pages 576–587. Springer, 2014.

11 Makoto Imase and Bernard M. Waxman. Dynamic Steiner Tree Problem. SIAM Journal on
Discrete Mathematics, 4:369–384, 1991.

12 Adam Meyerson. The Parking Permit Problem. In Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science, pages 274–282, 2005.

13 Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online Node-Weighted Steiner Tree
and Related Problems. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 210–219, 2011.
doi:10.1109/FOCS.2011.65.

ICALP 2019

http://dx.doi.org/10.1137/060661946
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.152
http://dx.doi.org/10.1016/j.dam.2014.06.019
http://dx.doi.org/10.1137/0210019
http://dx.doi.org/10.1145/3188745.3188898
http://dx.doi.org/10.1137/09076725X
http://dx.doi.org/10.1109/FOCS.2011.65

88:14 Tight Bounds for Online Weighted Tree Augmentation

14 Jiawei Qian, Seeun William Umboh, and David P. Williamson. Online Constrained Forest
and Prize-Collecting Network Design. Algorithmica, 80(11):3335–3364, 2018.

15 Daniel Dominic Sleator and Robert Endre Tarjan. A Data Structure for Dynamic Trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

16 Seeun Umboh. Online Network Design Algorithms via Hierarchical Decompositions. In
Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1373–
1387, 2015.

http://dx.doi.org/10.1016/0022-0000(83)90006-5

	Introduction
	Our Results
	Our Techniques
	Other Related Work
	Organization of the Paper

	Preliminaries
	Refined Guarantee for Online Path Augmentation
	A Nice Algorithm for Online Path Augmentation
	Minimal Instances
	Proving Niceness via the Dual LP
	Algorithm
	Analysis of Algorithm

