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Abstract
In a k-party communication problem, the k players with inputs x1, x2, . . . , xk, respectively, want
to evaluate a function f(x1, x2, . . . , xk) using as little communication as possible. We consider the
message-passing model, in which the inputs are partitioned in an arbitrary, possibly worst-case
manner, among a smaller number t of players (t < k). The t-player communication cost of computing
f can only be smaller than the k-player communication cost, since the t players can trivially simulate
the k-player protocol. But how much smaller can it be? We study deterministic and randomized
protocols in the one-way model, and provide separations for product input distributions, which are
optimal for low error probability protocols. We also provide much stronger separations when the
input distribution is non-product.

A key application of our results is in proving lower bounds for data stream algorithms. In partic-
ular, we give an optimal Ω(ε−2 log(N) log log(mM)) bits of space lower bound for the fundamental
problem of (1± ε)-approximating the number ‖x‖0 of non-zero entries of an n-dimensional vector
x after m updates each of magnitude M , and with success probability ≥ 2/3, in a strict turnstile
stream. Our result matches the best known upper bound when ε ≥ 1/polylog(mM). It also improves
on the prior Ω(ε−2 log(mM)) lower bound and separates the complexity of approximating L0 from
approximating the p-norm Lp for p bounded away from 0, since the latter has an O(ε−2 log(mM))
bit upper bound.
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1 Introduction

Consider a k-party communication problem, in which the players have inputs x1, x2, . . . , xk
respectively, and want to compute a function f(x1, x2, . . . , xk) of their inputs using as little
communication as possible. We consider the message-passing model, in which the inputs are
partitioned in an arbitrary, possibly worst-case manner among a smaller number t of players.
That is, we partition {1, 2, . . . , k} into t subsets S1, S2, . . . , St such that ∪ti=1Si = {1, 2, . . . , k}
and Si ∩Sj = ∅ for every 1 ≤ i < j ≤ t, and let the i-th player Pi hold the sequence of inputs
yi :=

(
xi1 , xi2 , . . . , xi|Si|

)
. We are still interested in computing the original function f . The

total communication required must be smaller than in the original k-player setting, since the
t players can simulate the protocol involving the original k players. A natural question is:
how much smaller can the communication be?

There are many communication models that are possible, but our main motivation for
looking at this question comes from applications to data streams, see below, and so we are
primarily interested in the one-way number-in-hand model. In this model, each of the t
players can only see its own input. The first player composes a message m1 based on its
input y1 and sends m1 to the second player. The second player takes m1 and its input y2
to compute a message m2 for the third player, and so on. The t-th (also the last) player,
upon receiving the message mt−1 from the (t − 1)-st player, computes the output of the
protocol based on mt−1 and its own input yt. We sometimes abuse notation and refer to
the output as mt. The total communication cost is the maximum of

∑t
i=1 |mi|, where |mi|

denotes the length of the i-th message and the maximum is taken over all possible inputs
y1, . . . , yt (which is a partition of {x1, . . . , xk}) and all random coin tosses of the players. For
streaming applications we are especially interested in maxi∈{1,...,t} |mi|.

To explain the connection to data streams, almost all known lower bound arguments on
the memory required of a data stream algorithm are proven via communication complexity, or
at least can be reformulated using communication complexity. The basic idea is to partition
the elements of an input stream contiguously, consisting of say k elements, into a possibly
smaller number t of players. Then one argues that if there is a data stream algorithm
solving the problem, then the communication problem can be solved by passing the memory
contents as messages from player to player. Note that this naturally gives rise to the one-way
number-in-hand model. Since the total communication cost is t · S, where S is the size of the
memory of the streaming algorithm, if the randomized t-player communication complexity of
the function f is CCt, we must have S ≥ CCt/t. Many lower bounds in data streams are
proven already with two players. However, it is known that for some functions more players
are needed to obtain stronger lower bounds, such as for estimating the frequency moments
in insertion only streams (see, e.g., [3, 17] and references therein).

One cannot help but ask how powerful is communication complexity for proving data
stream lower bounds? Another natural question is: for a given function f , which number t
of players should one partition the stream into? Yet another question is regarding the input
distribution – should it be a product distribution for which the inputs to the players are
chosen independently, or should the inputs be drawn from a non-product distribution to
obtain the best space lower bounds? Since we are interested in the limits of using t players
for establishing lower bounds for data stream algorithms, we allow the original k inputs
(which correspond to the k elements in a stream) to be partitioned in the worst possible way
for a t-player communication protocol, as this will give the strongest possible lower bound.
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1.1 Our Results
In this paper we study these communication questions and their connections to data streams.

We first make the simple observation that for non-product input distributions, the
communication complexity can be arbitrarily smaller if we partition the k inputs into t < k

players. Indeed, consider the k-player set disjointness problem in which the i-th player,
1 ≤ i ≤ k, has a set Si ⊆ [n], where for notational simplicity we define [n] := {1, 2, . . . , n}
for n ∈ N. The input distribution satisfies the promise that either (1) Si ∩ Sj = ∅ for every
1 ≤ i < j ≤ k, or (2) there is a unique item a ∈ [n] such that a ∈ Si for all i ∈ [k], and
for any other a′ 6= a, there is at most one i ∈ [k] for which a′ ∈ Si. It is well-known that
the randomized communication complexity of this problem is Ω (n/k) [3, 8, 10], and that
the bound holds even for multiple rounds of communication and players share a common
blackboard. However, if we look at t < k players and an arbitrary, even if the worst-case
mapping of the input sets S1, . . . , Sk to the t players, then by the pigeonhole principle
there exists a player who gets two input sets Si, Sj with i 6= j. Now this player can locally
determine the output of the function by checking if Si ∩ Sj = ∅. Thus with t < k players
the problem is solvable using O (1) bits per player. This simple argument shows that for
non-product distributions, there can be an arbitrarily large gap between the k-player and
the t-player worst-case-partitioned randomized communication complexities. Note that this
example applies to a symmetric problem, meaning that the k-player set disjointness problem
is invariant under any one-to-one assignment of x1, . . . , xk to the k players.

Perhaps surprisingly, and this is one of the main messages of our work: for symmetric
functions and product input distributions, we show that for any t < k, for deterministic
one-way communication complexity or randomized one-way communication complexity with
error probability 1/poly(k), there is no gap in maximum message length between the k-player
and t-player communication complexities. That is, the gap is at most a multiplicative O (1)
factor in message length and O(k) in total communication. Further, this gap is tight, as
there are problems for which the input distribution is a product distribution, and the t-player
communication with 1/poly(k) error probability is O (log k) for constant t = O (1), while the
k-player communication with 1/poly(k) error probability is Ω (k log k). Thus, the answer
for product input distributions is significantly different than what we saw for non-product
distributions, even for symmetric functions.

We also show that for constant error protocols and under product input distributions,
the gap is at most a multiplicative O(log k) factor in message length and O(k log k) in total
communication. Further, we show there exists a symmetric function and input distribution
which is product on any k − 1 out of k inputs, for which this gap is best possible. We leave
open the question of the existence of a symmetric function and product input distribution (on
all k inputs rather than k − 1 out of k) which realizes this gap for constant error protocols.

One takeaway message from our results is that when showing space lower bounds for
data stream algorithms computing symmetric functions on product distributions, by looking
at 2-player communication complexity (which is by far the most common communication
setup), there is only an O(1) factor loss for error probability 1/poly(k) protocols, and an
O (log k) factor loss for constant error protocols.

Data Stream Lower Bounds: As a key application of our lower bound techniques, we
provide a space lower bound for (1 ± ε)-approximating the Hamming norm in the strict
turnstile model. This problem, which is also known as the L0 norm estimation and denoted
by Tε, requires estimating ‖x‖0 := |{i | xi 6= 0}| of a vector x = (x1, . . . , xN ) and outputting
an estimate F̃ for which (1 − ε)‖x‖0 ≤ F̃ ≤ (1 + ε)‖x‖0 with constant probability. The
vector x is initialized to all zeros and undergoes a sequence of m updates each of the
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97:4 Separating k-Player from t-Player One-Way Communication

form (i, v) ∈ [N ] × [±M ], where [±M ] := {0,±1, . . . ,±M} and each update (i, v) causes
xi ← xi + v. In the strict turnstile model xi ≥ 0 holds for all i and at all points in the
stream. We obtain an Ω

(
ε−2 log(N) log log(mM)

)
bits of space lower bound for (1 ± ε)-

approximating the Hamming norm. This lower bound matches the best known upper
bound O

(
ε−2 log(N) (log(1/ε) + log log(mM))

)
[12] for any ε ≥ 1/polylog(mM). Note that

ε ≥ 1/polylog(mM) is required in order to obtain polylogarithmic space, and so is the
most common setting of parameters. Perhaps surprisingly, there is an upper bound of
O
(
ε−2 log(mM)

)
bits of space for (1 ± ε)-approximating Lp for p > 0 [13] (improving an

earlier O
(
log2N

)
bound of [9]; see also a time-efficient version in [11]), and thus we provide

a strict separation in the complexities for p = 0 and p > 0. The Hamming norm has many
applications, as it corresponds to estimating the number of distinct values, and can be used
to estimate set union and intersection sizes (see [7] where it was introduced).

Technical Overview: We first illustrate the idea behind showing there is no gap between
k-player and 2-player deterministic one-round communication complexity. The first player
P1 of the k-player protocol pretends to be Alice, the first player of the 2-player protocol, to
create the message m1 as Alice would do and sends it to the second player P2 of the k-player
protocol. Having received this message m1, P2 enumerates over all possible inputs of P1
until finding one which would cause P1 to send m1. Since the protocol is deterministic and
it evaluates a function defined on a product domain, meaning that it is a total function on
a domain of the form S1 × S2 × · · · × Sk, the function value must be the same as long as
P1’s input results in the same message m1 to be sent. So P2 can arbitrarily pick one of those
inputs as his guess for P1. Now P2 has a guess x for P1’s input together with his own input
y, and P2 can simulate Alice in the 2-player protocol. This is feasible because the 2-player
protocol works under any partitioning of the inputs. Then P2 sends to the third player P3
the message that Alice would send to Bob in the 2-player protocol, given that Alice had
input (x, y). In case when every player Pi cannot figure out how many input items have
been processed from his own input and the received message mi−1, which is important for
his simulation of the 2-player protocol, an additional logarithmic-many-bits index carrying
this piece of information should be passed together with the simulated messages. In this
way, the entire k-player protocol can be simulated and the per player communication equals
to the communication of the 2-player protocol between Alice and Bob, sometimes plus the
additional logarithmic many bits for the index. Moreover, both protocols are deterministic.

For the randomized case with a product input distribution, we first consider 2-player
protocols with error probability 1/poly(k). We would like to run the same simulation as for
deterministic protocols, except now it is unclear how the second player P2 can reconstruct a
valid input x for the first player P1 from the first message m1. A natural thing would be
for P2 to choose the input x1 to P1 for which the probability of sending m1, given that P1’s
input is x1, is greatest. This is not correct though, since the overall probability of P1 holding
x1 and sending m1 may be less than the 1/poly(k) error bound and the protocol could afford
to be always wrong on such a combination of x1 and m1. Thus we need some balancing
between two probabilities: i) the first player P1 sends m1 on input x1; and ii) the protocol
output is correct given that P1 has input x1 and sends m1.

The above naturally suggests that we should impose an input product distribution µ.
Then it must be that for a good fraction of x, weighted according to µ, the k-player protocol
is correct when the first player has input x1 and sends message m1. Thus we can sample x
from the conditional distribution on µ given that message m1 is sent. Here, for correctness,
it is crucial that µ is a product distribution; this ensures for most settings of remaining
player’s inputs (weighted according to µ), for most choices of x1 (weighted according to µ)
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giving rise to m1, the function evaluated on the inputs is the same, and x1 can be sampled
independently of remaining inputs. Once we have sampled x1, and given that the second
player has private input x2 in the k-player protocol, we can then have the second player
pretend to be Alice of a randomized 2-player protocol with input (x1, x2), similar to the
deterministic case. Ultimately, we will show that under distribution µ we obtain a protocol
with total communication at most O (k) times that of the 2-player protocol with error
probability 1/poly(k) (and an O (1) multiplicative blowup in maximum message length, times
that of the 2-player protocol), where the factor k comes from the number of invocations of
the 2-player protocol.

We illustrate the optimality of the randomized reduction above by looking at the Sum-
Equal problem studied by Viola [16]: in this problem each of k players holds an input xi
mod p, where p = Θ

(
k1/4) is a prime, and they wish to determine whether

∑
i xi = 0 or

1 mod p. Viola shows this problem has randomized communication complexity Θ (k log k),
for both randomized protocols with constant error probability as well as deterministic
protocols (and thus also randomized protocols with 1/poly(k) error probability). Moreover,
for randomized protocols with 1/poly(k) error probability, Viola’s Ω(k log k) lower bound
holds even for a product distribution on the inputs (where if

∑
i xi mod p /∈ {0, 1} the

output can be arbitrary). We observe that under any partition of the inputs into 2-players
Alice and Bob, the problem can be solved with O (log k) bits with probability 1− 1/poly(k)
just by running an equality test on the sum modulo p of Alice and the negated sum modulo
p of Bob. Thus, this illustrates that the factor O(k) gap for protocols for product input
distributions with 1/poly(k) error probability is optimal.

On the other hand, for constant error protocols and a product input distribution, there
is a 2-player O (1) bit upper bound in the public coin model which comes from running
an equality test with constant error probability (since we measure error with respect to an
input distribution, equality has an O(1) upper bound with constant error). We note that
the k-player protocol has communication Ω (k log k) for constant error protocols, which gives
the Ω (k log k) factor gap we claimed. The only downside is that the Ω (k log k) lower bound
holds for an input distribution which is product on k − 1 out of k players, rather than all k
players. We leave it as an open question to give an optimal separation for product input
distributions for constant error probability.

Given the importance of Viola’s problem in showing separations, we next show a direct
sum theorem for his problem, showing its communication complexity increases to Ω (kr log k)
for solving a constant fraction of r independent copies. To show the direct sum theorem for
Viola’s problem, one issue is that, unlike for two players where the technique of information
complexity often provides direct sum theorems, for k-players the analogues are much weaker.
A natural route would be to take Viola’s corruption bound, argue it implies a high information
bound, and then apply standard direct sum theorems for information. This approach does
not give an information cost lower bound on private coin protocols, though one can fix it for
two players using [5], which improves upon a bound in [6]. However, for k players similarly
strong bounds are unknown. Another natural approach is to use the fact that if a problem
has a corruption bound, then one immediately has a direct sum for it [4]. Again though, this
is only for two players or the number on forehead model, and not for our setting.

Instead, our proof is inspired by Viola’s rectangle argument for a single copy of the
Sum-Equal problem, where each rectangle, restricted to the first k − 1 players, is a product
distribution on which the protocol generates a message to the k-th player. We use a rectangle
argument on multiple copies where the output is now a binary vector instead of a single bit.
The main obstacle is that we must consider the Hamming distance between the protocol
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output and the correct answer in a vector space, which is much more involved than studying
the error probability for a single instance. The intuition of our proof is that for every large
rectangle, there must be linearly many copies that appear (almost) uniformly random in
the last player’s view. The above argument is fairly intricate, and involves several levels of
conversion: i) a large rectangle implies large conditional entropy in many players’ inputs;
ii) the large entropy of all copies implies we have min-entropy at least 1 on many copies;
iii) a random variable of min-entropy at least 1 can always be decomposed into a convex
combination of uniform distributions over two elements; iv) the summation of sufficiently
many independent random variables that are each drawn from a uniform-over-two-element
distribution turns out to be nearly uniform, and hence many Sum-Equal copies look uniform
to the last player.

Thus, the last player can hardly outperform a random guess. Note that it is insufficient
to prove uniformity for many copies individually (which is not too hard using the same
idea as in Viola’s proof), since such a situation could be simulated with a much smaller
rectangle with very small error. We instead perform our rectangle argument inductively to
show most copies appear almost uniform, even if conditioned on previous copies. For space
considerations this induction is mostly deferred to the full version.

This direct sum technique has further applications. One application is to proving a
lower bound for approximating the Hamming norm in a strict turnstile stream. Using a
result of [2], to show lower bounds for streaming algorithms in the strict turnstile model, it
suffices to show lower bounds in the simultaneous communication model, where each player
simultaneously sends a message to a referee who outputs the answer. While our direct sum
theorem holds in this more restrictive model, we also need to consider a composition of the
gap-Hamming problem on top of the Sum-Equal instances as well as an augmented index
version of the composed problem. In the augmented problem we additionally give a referee
an index i and the answers to all copies j, with j > i. Similar augmentation has been studied
for Lp-norms [13]. This allows us to reduce our communication problem to Hamming norm
approximation, and ultimately prove our data stream lower bound.

2 Preliminaries

A function f : Σk → Γ is called a k-party symmetric function if for every (x1, x2, . . . , xk) ∈ Σk
and for every permutation σ over {1, 2, . . . , k}, there is f(x1, . . . , xk) = f

(
xσ(1), . . . , xσ(k)

)
.

A k-dimensional vector space S is called a product space if it can be represented as S =
S1×S2× · · · ×Sk. A distribution µ is called a product distribution if it is obtained by taking
the product of k independent distributions, i.e., µ = µ1 × µ2 × · · · × µk.

In the t-player communication complexity model, there are t computationally unboun-
ded players, e.g., P1, . . . , Pt, required to compute a function f : X1 × · · · × Xt → Y ,
where f is usually a t-party symmetric function. Each player Pi is given a private input
xi ∈ Xi and follows a fixed protocol to exchange messages. For every input (x1, . . . , xt),
the message transcript is denoted by Πt(x1, . . . , xt) when all players follow the protocol
Πt (when Πt is randomized, Πt(x1, . . . , xt) is a random variable taking probabilities over
players’ random coins). A deterministic protocol Πt computes f if there is a function Πout

such that Πout

(
Π(t)
t (x1, . . . , xt), xt

)
≡ f , where Π(t)

t (x1, . . . , xt) denotes Pt’s view under
the execution of Πt on input (x1, . . . , xt) and for simplicity we let Πout (x1, . . . , xt) :=
Πout

(
Π(t)
t (x1, . . . , xt), xt

)
. A δ-error randomized protocol Πt for f requires the existence of

Πout such that for all inputs (x1, . . . , xt), Pr [Πout (x1, . . . , xt) = f(x1, . . . , xt)] ≥ 1− δ. The
communication cost of Πt is the maximum size of Πt(x1, . . . , xt) over all x1, . . . , xt and all
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random coins. The t-player deterministic communication complexity (resp. t-player δ-error
randomized communication complexity), denoted by DCCt(f) (resp. RCCt,δ(f)), is the cost
of the best t-player deterministic (resp. δ-error randomized) protocol Πt for f .

Given a k-party function f : X1 × · · · × Xk → Y and t < k, we define DCCt(f) and
RCCt,δ(f) under a worst-case partition of inputs. That is, let ft(z1, . . . , zt) = f(x1, . . . , xk)
be defined for every partition i0 = 0 ≤ i1 ≤ · · · ≤ it = k and zj := (xij−1+1, . . . , xij ), and
the t-player communication complexity of f is defined with respect to the worst choice of ft,
i.e., DCCt(f) := maxft DCCt(ft) and RCCt,δ(f) := maxft RCCt,δ(ft).

Given a t-party function f and its input distribution µ, we let DCCµ
t,δ(f) denote the

communication cost of the best t-player deterministic protocol Πt computing f such that
Prx∼µ [Πout(x) 6= f(x)] ≤ δ. Similarly we define RCCµ

t,δ(f) for randomized protocols.
In the restricted one-way communication model [15, 1, 14], the i-th player sends exactly

one message to the (i + 1)-st player for i ∈ [t − 1] following Πt, and then Pt announces
the output of Πt as specified by Πout. Note that in this setting there are only k − 1
messages sent by P1, . . . , Pk−1, and we do not count the final output announced by Pt
in the communication in order to best correspond to streaming algorithms. This is also
known as a sententious protocol in previous work, e.g., [16]. We denote the t-player one-way
communication complexities of f by −−−→DCCt(f) and −−−→RCCt,δ(f), respectively.

In the common reference string model (aka CRS model), there is a sequence of public
random coins, which is by default a uniformly random binary string, accessible to all players.
The obvious advantage of communication in the CRS model is that players have access to
the same random string and thus save the cost of synchronizing their private coins.

A streaming algorithm is an algorithm that scans the input (x1, . . . , xm) ∈ Σm as m
stream input items in sequence, updates its internal memory of size s = o (m log |Σ|) (i.e., a
streaming automaton with 2s states, where the space cost of updating the internal memory
is not accounted for), and finally outputs a function f(x1, . . . , xm) evaluated on all input
items. If the best deterministic (resp. δ-error randomized) streaming algorithm computes f
with s bits of memory and t passes over the data stream, then we say the deterministic (resp.
δ-error) streaming complexity of f is st, denoted by DSC(f) = st (resp. RSCδ(f) = st). In
a popular and standard setting, a streaming algorithm scans the input stream in a single pass
and only processes every input item once. The necessary amount of memory required by such
single-pass algorithms is called the single-pass deterministic/δ-error streaming complexity
and denoted by −−−→DSC(f) and −−−→RSCδ(f) respectively.

Note that every streaming algorithm can be naturally interpreted as a communication
protocol where each party holds some (possibly an empty set of) input items on the stream
and the messages capture the memory updates. The connection between streaming complexity
and communication complexity trivially follows in the following lemma.

I Lemma 1. For every function f and error tolerance δ, for every k ∈ N, it holds that:

DSC(f) ≥ 1
k
·DCCk(f), RSCδ(f) ≥ 1

k
·RCCk,δ(f)

Furthermore, similar relations hold for −−−→DSC, −−−→RSCδ and −−−→DCCk,
−−−→RCCk,δ.

3 Communication Complexity for Functions on Non-Product Spaces

I Theorem 2. For every t ≥ 2, there is a t-party symmetric function f defined on D ⊆
{0, 1}n =

(
{0, 1}n/t

)t such that for δ < 1/4, −−−→DCCt−1(f) ≤ t− 1 but RCCt,δ(f) = Ω (n/t).
If t = O (1), then −−−→DCCt−1(f) = O (1) and RSCδ(f) ≥ 1

t ·RCCt,δ(f) = Ω (n).
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Proof. Consider the t-party set disjointness problem Disjn/t,t defined as follows: there
are t players P1, . . . , Pt such that every player Pi holds a private indicator vector xi ∈
{0, 1}n/t which represents a subset of [n/t], i.e., Disjn/t,t(x1, . . . ,xt) = ∨n/tj=1 (∧ti=1xi,j),
where xi,j denotes the j-th coordinate of xi. We consider the domain D such that the
vectors x1, . . . ,xt ∈ {0, 1}n/t are either (1) pairwise disjoint, or (2) sharing a unique element
j ∈ [n/t]. Let f be the function that computes Disjn/t,t on domain D.

On the one hand, it is easy to verify that −−−→DCCt−1(f) ≤ t− 1. Indeed, at least one of the
t−1 players obtains two distinct indicator vectors and hence can itself decide the output of f .
The communication is 1 bit per player to pass the result, and hence the total communication
is bounded by t− 1 since there are t− 1 players.

On the other hand, the Ω(n/t) lower bound for RCCt,δ(f) follows from the known lower
bound for multi-player set disjointness (see [3], which was improved to optimal in [8, 10]).
The lower bound for RSCδ(f) immediately follows by Lemma 1. J

4 Deterministic Communication and Streaming Complexity

We first show that 2-player one-way communication complexity is equivalent to the streaming
complexity of single-pass streaming algorithms in the deterministic setting.

I Theorem 3. For every symmetric function f , −−−→DCC2(f) ≤ −−−→DSC(f) ≤ −−−→DCC2(f) + logn.

Proof. Obviously, −−−→DSC(f) ≥ −−−→DCC2(f) since a 2-player communication protocol simulates
a streaming algorithm. It remains to prove −−−→DSC(f) ≤ −−−→DCC2(f) + logn.

Suppose the input stream is (x1, . . . , xn) ∈ Σn, and for every partition into (x1, . . . , xi)
and (xi+1, . . . , xn) there is a deterministic 2-player one-way protocol Πi

2 computing f . We
design the deterministic single-pass streaming algorithm A for f by simulating 2-player
one-way communication protocols under different partitions. The memory usage of A is
therefore bounded by the maximum communication cost of the simulated 2-player protocols
plus an index in [n] recording the number of processed items. Notice that when processing
the item xi+1, A has already processed x1, . . . , xi and has (mi, i) in memory. A can thus
reconstruct a compatible guess of x′′1 , . . . , x′′i that would induce exactly the message mi as in
Πi

2, and then sets the memory to be (mi+1, i+ 1) where mi+1 is the message sent in Πi+1
2

when P1 has (x′′1 , . . . , x′′i , xi+1) and P2 has (xi+2, . . . , xn). A repeats this process for every
i = 1, . . . , n− 1 and at the end it outputs f(x1, . . . , xn).

Therefore, we complete the proof with −−−→DCC2(f) ≤ −−−→DSC(f) ≤ −−−→DCC2(f) + logn. J

I Corollary 4. For every k-party symmetric function f ,

(k − 1) · −−−→DCC2(f) ≤ −−−→DCCk(f) ≤ (k − 1) ·
(−−−→DCC2(f) + log k

)
Proof. Combining Lemma 1 and Theorem 3, it follows that
−−−→DCCk(f) ≤ (k − 1) · −−−→DSC(f) ≤ (k − 1) ·

(−−−→DCC2(f) + log k
)

The other direction −−−→DCCk(f) ≥ (k − 1) · −−−→DCC2(f) holds by giving zj = ∅ to every
player j ∈ {2, . . . , k − 1} in the k-player case, when the problem degenerates to 2-player
communication but the same message has to be passed k − 1 times. J

Such a linear separation naturally extends to the communication complexity of t-player
versus k-player protocols, as long as 2 ≤ t < k. Thus, the deterministic communication
complexity grows linearly in the number of parties.
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We remark that if every player must get a non-trivial input, i.e., at least one input element
to the function, the linear growth remains for some but not all problems. For example, the
communication complexity of the parity of k bits is linear in the number of players. However,
to decide whether k elements in [k] are distinct, the 2-player protocol requires communication
log
(
k
k/2
)
≈ k− log

√
k, whereas the k-player worst-case communication grows sublinearly, i.e.

for k players the communication is no more than
∑k−1
i=1 log

(
k
i

)
� (k − 1) · log

(
k
k/2
)
.

5 Communication Complexity for Functions on a Product Space

5.1 Separations for Randomized Communication Complexity
In this section, we consider the communication cost of randomized multi-player protocols
defined on product input distributions and present a k log k versus t log t separation between
k-player and t-player communication complexity.

First we introduce the Sum-Equal problem (as used in Viola’s work [16]).
The k-player Sum-Equal over integers, denoted by Sum-Equalk, requires deciding

whether
∑k
i=1 xi = 0, where each player Pi is given an integer xi as well as k. In the

CRS model, an additional public random string is also known to all players. The k-player
Sum-Equal over Zm, denoted by Sum-Equalk,m, is defined similarly as Sum-Equalk,
except that the input items are drawn from Zm and the summation is over Zm, for a publicly
known m.

I Lemma 5 ([16], Theorem 15 and Theorem 29). For every k ∈ N, 0 ≤ δ ≤ 1/3, and in the
CRS model, the k-player δ-error communication complexity of Sum-Equal satisfies:
(a) For every m ∈ N, −−−→RCCk,δ(Sum-Equalk,m) = O (k log(k/δ)).
(b) For every prime p ∈ (k1/4, 2k1/4), RCCk,δ(Sum-Equalk,p) = Ω (k log k).
In particular, RCCk,δ(Sum-Equalk,p) = Θ (k log k) in the CRS model if δ = Ω (1/poly(k)).

We remark that Viola’s lower bound for Sum-Equalk,p is proved for a non-product
distribution µH whose support covers exactly a 2/p fraction of the whole (product) input
space. Thus if a k-player protocol solves Sum-Equalk,p with error δ ≤ 1/k on a uniform
distribution µ over the whole input space, then its error with respect to µH is bounded by
1/k
2/p < k−3/4. By Lemma 5, the Ω (k) separation in Corollary 6 naturally follows.

I Corollary 6. For prime p ∈ (k1/4, 2k1/4) and δ ≤ 1/poly(k), there is a product distribution
µ such that RCCµ

k,δ(Sum-Equalk,p) = Ω (k log k), −−−→RCC2,δ(Sum-Equalk,p) = O (log k).

For a larger error tolerance, say δ is a constant, we have a stronger separation between
k-party communication and t-party communication. However, the hard distribution is slightly
non-product, that is, it is a product distribution on any k − 1 out of the k players.

I Corollary 7. For every k ∈ N, there is a k-party symmetric function f such that
(a) For any product distribution µ, for every 2 ≤ t ≤ k and 0 ≤ δ ≤ 1/3, −−−→RCCµ

t,δ(f) =
O (t log(t/δ)). In particular, −−−→RCCµ

2,δ(f) = O (log(1/δ)).
(b) There exists a distribution µH , which is product on any k− 1 out of k players, for which

RCCµ
k,δ(f) = Ω (k log k) as long as δ ≤ 1/3.

For δ ≥ 1/poly(t), the gap between RCCµ
k,δ(f) and −−−→RCCµ

t,δ(f) is bounded as below:

RCCµ
k,δ(f)

/ −−−→RCCµ
t,δ(f) = Ω

(
k log k
t log t

)

ICALP 2019
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The outline of the proof of Corollary 7 was given in Section 1. That is, the upper bound
in part (a) follows from applying k = t in the first part of Lemma 5, while the lower bound
in part (b) follows from the second part of Lemma 5. We defer the proofs to the full version.

5.2 Tightness of the Communication Complexity Separation
The following theorem and corollary show tightness of our separations.

I Theorem 8. For every k-party function f : Σk → Γ, product distribution µ over Σk, and
error tolerance δ < 1/3, if the optimal δ-error 2-player one-way protocol for f does not
degenerate to the deterministic case, then the following holds:

−−−→RCCµ
k,δ(f)

/ −−−→RCC2,δ(f) ≤O
(
k ·
(

1 + log k
log(1/δ)

))
=
{
O (k log k) if δ = Ω (1)
O (k) if δ = 1/kΩ(1)

Proof sketch. We present the major steps and leave the complete proof to the full version.
First we let Π0 be the optimal δ-error 2-player one-way protocol Π0 that computes f

with communication C = −−−→RCC2,δ(f), and construct a new protocol Π2 by taking M =
O
(

1 + log k
log(1/δ)

)
repetitions of Π0 such that the error probability of Π2 is reduced to δ2/(16k2).

Note that Π2 is still a 2-player one-way protocol but has communication O (CM).
Second we prove that for every product input distribution µ over Σk, the k-party function

f can be evaluated by a randomized k-player one-way protocol Πk with communication
O (k · CM) and error δ/2 with respect to µ. The idea is that given µ, each player Pi:
1) assumes that the received message mi−1 from Pi−1 will lead to a correct answer with
probability ≥ 1− δ

4k ; 2) samples a possible input x′1, . . . , x′i−1 of previous players P1, . . . , Pi−1
on which with probability ≥ 1 − δ

4k the protocol is correct conditioned on mi−1 being
sent and (x′1 . . . , x′i−1, xi, . . . , xk) being the actual input (here we use that µ is a product
distribution); 3) and finally sends a message mi of length O (CM) as in Π2 where Alice has
input (x′1, . . . , x′i−1, xi). By a union bound the error probability of Πk is bounded by δ/2
with respect to µ. The fact that µ is a product distribution is used in the second step where
the sampling process relies on that previous players’ inputs are independently distributed
from that of future players.

Thus we finish the proof and conclude that −−−→RCCµ
k,δ(f) ≤ O (kCM). J

Notice that in the proof of Theorem 8, every message in Πk has the length bounded by
O (CM), which gives an upper bound for the single-pass streaming complexity.

I Corollary 9. For every k-party function f and product input distribution µ, and for every
δ < 1/3, RSCµ

δ (f) ≤ −−−→RSCµ
δ (f) ≤ O

(
1 + log k

log(1/δ)

)
·
−−−→RCC2,δ(f).

6 A Direct Sum for Viola’s Problem

We next turn to our direct sum theorem for Viola’s problem, which is a crucial building
block for our streaming application.

I Theorem 10. Let F :
(
Zmp
)k → {0, 1}m be the k-party function computing m independent

copies of Sum-Equalk,p, where p is a prime between k1/4 and 2k1/4. For every error tolerance
δ ∈ (0, 1/9), we say a protocol Π is correct with probability 1− δ if there is a reconstruction
function G such that for every fixed i ∈ [m] and input x ∈

(
Zmp
)k, G(i,Πout(x)

)
equals the

output of the i-th instance of Sum-Equalk,p with probability at least 1− δ, over the internal
randomness of Π. Then the communication cost of any Π which is correct with probability
1− δ, is Ω (mk log k).
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We give a sketch of the proof of Theorem 10 here, and defer the full proof to the full version.

Proof sketch of Theorem 10. First we fix the randomness used in the protocol Π and
convert it into a deterministic protocol Π′ that has δ error with respect to a specific input
distribution H. Here H = (X1, . . . , Xk−1, Xk + v) for independent X1, . . . , Xk−1 uniformly
distributing over Zmp , Xk = −

∑k−1
j=1 Xj and v uniformly sampled from {0, 1}m. Note that

H−k := (X1, . . . , Xk−1) is uniform over
(
Zmp
)k−1.

We next recall the intuition behind rectangle arguments in multi-player number-in-hand
communication complexity: every k-player (number-in-hand) deterministic protocol with
communication at most c partitions the inputs into C = 2c sets R1, R2, . . . , RC , where each
Ri is a rectangle in the form of Ri = Ri1 ×Rt2 × . . .×Rik such that every input in Ri induces
exactly the same transcript πi. We will use the rectangle argument to show that Π′ uses
communication c ≥ Ω (1) ·mk log k.

The main step is the following claim (with proof sketched later in this subsection):

B Claim 11. If c < 1−9δ
135 ·mk log k, then for every rectangle R satisfying Pr[H−k ∈ R−k] ≥

1/(3C) = 1/(3× 2c), there must be L ⊆ [m] and ` := |L| ≥ 9δm such that conditioned on
X−k ∈ R−k, the distribution of X(L)

k , which is Xk restricted on L, is `/p-close to the uniform
distribution over Z`p.

Using Claim 11, it is easy to show Pr [Π′(H) errs on ≤ 3δm coordinates] ≤ 2/3, which
contradicts that Π′ has δ error with respect to H and δ < 1/9. Therefore, the communication
cost of Π′, and hence of Π, must be ≥ 1−9δ

135 ·mk log k = Ω (mk log k). J

Proof sketch of Claim 11. This claim is proved using induction on the size of L. Suppose
the claim is true for (w.l.o.g.) the first ≤ `− 1 indices, we prove it for the next one. More
specifically, we show that the last player Pk gets nearly no information about the `-th
copy when the input distribution follows H and X−k falls into a sufficiently large rectangle
R−k = R1 × · · · ×Rk−1. That is, for X−k ∼

(
Zmp
)k−1 and Xk = −

∑k−1
j=1 Xj , the marginal

distribution X(`)
k | X−k ∈ R−k is statistically close to uniform.

The proof outline is as follows: first, let Ex denote the event that the first k − 1 players
have x on their first ` − 1 coordinates, i.e. X

[`−1]
−k = x. Second, we consider frequently

appearing x conditioned on H−k ∈ R−k such that Pr [Ex | H−k ∈ R−k] ≥ 1
2p1+(`−1)(k−1) (the

missed probability measure is at most 1
2p since there are ≤ p(`−1)(k−1) different choices of

x), and let Jx ⊆ [k − 1] be the set of players whose input falls into R−k with “significant”
probability conditioned on Ex. Specifically, we prove that Jx must have size |Jx| ≥ 0.5k − 1
for Jx :=

{
j ∈ [k − 1]

∣∣∣ Pr
[
Xj ∈ Rj

∣∣ Ex] ≥ 2−1−2c/k
}
. Third, for every player j ∈ Jx, we

consider the set Ij,x of coordinates such that for every i ∈ Ij,x, the conditional min-entropy of
X

(i)
j is large given that player j’s input Xj is consistent with x and falls into Rj . In particular,

for Ij,x :=
{
i ∈ [m] | H∞

[
X

(i)
j | Xj ∈ Rj , Ex

]
≥ 1
}
, there is |Ij,x| > m− `− 2(1−9δ)

15 m+ 1.
Finally we apply Chebyshev’s inequality and a Chernoff bound together with a standard

averaging argument to conclude that there is a fixed coordinate, w.l.o.g. we call it `, such
that with probability ≥ 1−e−Ω(k), the conditional min-entropy H∞

[
X

(`)
j | Xj ∈ Rj , Ex

]
≥ 1

for ≥ k/30 players j ∈ [k − 1]. As a result, the last player Pk’s input X(`)
k = −

∑k−1
j=1 X

(`)
j is

a convex combination of random variables where each of them is the summation of ≥ k/30
uniform-over-two-elements variables. Repeating a very similar argument as in [16], we
conclude that X(`)

k is e−Ω(√k) close to uniform.
The overall error probability of above arguments is bounded by 1/p, which sums up to

≤ `/p for X(L)
k via a standard union bound. C
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7 Lower bound for Hamming Norm Estimation

In this section we present a space lower bound for single-pass streaming algorithms for (1±ε)-
approximating the Hamming norm L0, which is denoted by Tε as in Section 1.1. Recall that
the underlying vector is N -dimensional and there are m updates each of magnitude [±M ].

I Theorem 12. For error tolerance ε < 1/3 and ε = max
{

Ω
(√

log k
k

)
, 1
N0.49

}
, any single-

pass streaming algorithm solving Tε with probability ≥ 2/3 in the strict turnstile model must
use Ω

(
ε−2 log(N) log log(mM)

)
bits of space.

Proof sketch. We present a proof sketch here, with the detailed proof left to the full paper.
First we introduce the GHSEn,k problem, which is a composition of the n-dimensional
gap Hamming weight problem Gap-Hammingn over the results of n copies of k-player
Sum-Equalk instances, i.e., the result of GHSEn,k is 1 if there are ≥ (1 + ε)n/2 underlying
Sum-Equal instances outputting 1, and 0 if ≤ (1− ε)n/2 instances outputting 1.

The hard problem for our lower bound is the augmented index version of GHSEn,k, which
we denote by Aug-Index-GHSEt

n,k. In particular, Aug-Index-GHSEt
n,k has t = Θ (logn)

many GHSEn,k instances embedded, where the last player Pk is given an index i ∈ [t]
together with the results of GHSE(i+1)

n,k , . . . ,GHSE(t)
n,k, and Pk is required to output the

result of GHSE(i)
n,k. Following the reduction in Theorem 4.1 of [2] it suffices to prove our

space lower bound in the simultaneous communication model, where each of P1, . . . , Pk−1
sends a single message to the referee Pk.

In the reduction from Aug-Index-GHSEt
n,k to Tε, the input integers to underlying

Sum-Equalk instances are processed as updates to distinct elements. Furthermore, every
Sum-Equalk instance of GHSE(j)

n embedded in the Aug-Index-GHSEt
n,k problem is given

frequency 100j−1, i.e., is counted as 100j−1 distinct elements. Thus the universe has
N := n + 100 · n + · · · + 100t−1 · n ≤ 100tn/99 distinct elements in total, and the final
Hamming norm is a weighted sum F :=

∑t
j=1 100j−1fj , where fj is the Hamming weight of

Sum-Equalk instances of GHSE(j)
n for every j ∈ [t]. An algorithm solving Tε will give a

(1± ε)-estimate F̃ of F , such that (1− ε)F ≤ F̃ ≤ (1 + ε)F . From the estimate F̃ we need to
determine the result of GHSE(i)

n for the given index i. Since the referee can precisely remove
the influence of GHSE(i+1)

n,k , . . . ,GHSE(t)
n,k using the auxiliary input before computing F̃ ,

it suffices to consider the case i = t and the estimation of ft. Indeed we prove that F̃ is
also a good approximation to 100t−1ft with high probability, as long as the additive error∑t−1
j=1 100j−1fj is significantly less than the variance of 100t−1ft. More specifically,

RCCsim
k,1/3 (Tε) ≥ RCCsim

k,0.4
(
Aug-Index-GHSEt

n,k

)
(1)

for our specified input distribution, which induces variance O (n) on every fj while our gap
in advantage is Ω (n).

Then we prove that the communication cost of solving the augmented index version of t
copies of GHSEn,k is equal to simultaneously solving Ω (t) many copies.

RCCsim
k,0.4

(
Aug-Index-GHSEt

n,k

)
≥ Ω

(
t ·RCCsim

k,0.01 (GHSEn,k)
)

(2)

The proof relies on the direct sum property of one-way communication for the GHSE problem.
The intuition is that all necessary information for computing GHSE(1)

n,k, . . . ,GHSE(t)
n,k must

be included in the messages to the referee, since every instance GHSE(i)
n,k can be determined at

the referee’s position by changing the referee’s input alone (without tampering the messages).
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Next we prove an Ω
(
ε−2k log log k

)
lower bound for RCCsim

k,0.1 (GHSEn,k) and mM =
poly(k). Consider the input x = (x1, . . . ,xk) to the GHSEn,k problem, where each player Pj
gets xj =

(
x(1)
j , . . . ,x(n)

j

)
∈ Zn, and for every i ∈ [n], Z(i) := Sum-Equalk

(
x(i)

1 , . . . ,x(i)
k

)
denotes the result of the i-th Sum-Equal instance and the range is {±1}. Let HSE(x) :=∑k
i=1 Z

(i) denote the bias of the underlying vector for the Gap-Hammingn problem embed-
ded in GHSEn,k(x). Recall that GHSEn,k distinguishes HSE(x) ≥ εn and HSE(x) ≤ −εn,
where the gap becomes

√
n′ for GHSEn′,k and n′ = 1/ε2. With random universal hash

functions specified by the public randomness, we prove that

RCCsim
k,0.01 (GHSEn′,k) ≥ RCCsim

k,0.1

(
Aug-Index-Sum-Equaln

′′

k

)
(3)

where n′′ = Θ (n′) and Aug-Index-Sum-Equaln
′′

k is the augmented index version of n′′
instances of the Sum-Equalk problem.

Furthermore, the lower bound holds for a distribution µ over Zn′×k such that for x ∼ µ
the conditional expectation satisfies Var (HSE(x)) ≤ n′, E [HSE(x) | GHSEn′,k(x) = 1] =
10
√
n′ and E [HSE(x) | GHSEn′,k(x) = 0] = −10

√
n′. More specifically, let each player

specify independent hash functions for every Sum-Equalk instance, and send the majority
of those hash values to the referee. The referee can guess the input and corresponding hash
value of any specific Sum-Equalk instance, such that the conditional distribution of the
majority of hash values has a Θ

(
1/
√
n′′
)
bias under correct guesses. Therefore by taking

n′ = Θ (n′′) independent instances of the majority of hash values and conditioned on the
correctness of the guesses, the expected number of agreements of the majority and the
guessed hash value has a gap of Θ

(
n′/
√
n′′
)

= Θ
(√

n′
)
, while in both cases the variance is

linear in n′. For convenience we shift HSE(x) to ±10
√
n′ by padding and hence the vector

of majority instances becomes an input to Gap-Hammingn′ .
For RCCsim

k,0.1

(
Aug-Index-Sum-Equaln

′′

k

)
, i.e., k-player 0.1-error simultaneous com-

munication complexity of Aug-Index-Sum-Equaln
′′

k , the lower bound follows Theorem 13.

I Theorem 13. Let Π be an δ-error randomized simultaneous communication protocol for
Aug-Index-Sum-Equalm

′

k , where m′ ≤ k log log k
20 log k and the error tolerance δ < 1/6. Then

Π must have simultaneous communication cost RCCsim
k,δ (Π) = Ω (m′k log log k). Further-

more, the lower bound holds when the inputs to the Sum-Equalk problems are drawn from(
[a]m′

)k−1
× [±ka]m′ and the sum of inputs to each copy of Sum-Equalk is promised to be

0 or q, where a = O (log k) and q = 2O(a) ≤ k1/8 is a multiple of all integers in [a].

Here we present the proof intuition of Theorem 13, while the proof appears in the full paper.
Suppose that in a simultaneous communication protocol, a player P1 encodes multiple in-
stances of Sum-Equalk independently in a message, say t1 bits for Sum-Equal(1)

k , t2 bits for
Sum-Equal(2)

k , and so on. Then many Sum-Equalk instances will be irrecoverable if the mes-
sage length

∑m′

i=1 ti is significantly less than necessary for handlingm′ instances in parallel, say∑m′

i=1 ti ≤ 0.1·m′ ·RCCsim
k,δ (Sum-Equalk) /k, which means the Aug-Index-Sum-Equalm

′

k

cannot be solved with small error. Of course the full argument is much more involved, since
the information in different Sum-Equal instances can be combined in the message, which
we deal with via a dedicated rectangle argument for conditional distributions. Combining (1),
(2), (3), and Theorem 13, we get RCCsim

k,1/3 (Tε) ≥ Ω (tn′′k log log k). Recalling Theorem 4.1
of [2] and t = Θ (logn) = Ω (logN), n′′ = Θ (n′) = Θ

(
ε−2), mM = poly(k), we conclude

that −−−→RSCk,1/3 (Tε) = Ω
(
ε−2 log(N) log log(mM)

)
. J
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