
String-to-String Interpretations With
Polynomial-Size Output
Mikołaj Bojańczyk
Institute of Informatics, University of Warsaw, Poland
bojan@mimuw.edu.pl

Sandra Kiefer
Department of Computer Science, RWTH Aachen University, Germany
kiefer@cs.rwth-aachen.de

Nathan Lhote
Institute of Informatics, University of Warsaw, Poland
nlhote@mimuw.edu.pl

Abstract
String-to-string mso interpretations are like Courcelle’s mso transductions, except that a single
output position can be represented using a tuple of input positions instead of just a single input
position. In particular, the output length is polynomial in the input length, as opposed to mso
transductions, which have output of linear length. We show that string-to-string mso interpretations
are exactly the polyregular functions. The latter class has various characterisations, one of which is
that it consists of the string-to-string functions recognised by pebble transducers.

Our main result implies the surprising fact that string-to-string mso interpretations are closed
under composition.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases MSO, interpretations, pebble transducers, polyregular functions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.106

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version https://arxiv.org/abs/1905.13190, [6]

Acknowledgements The authors would like to thank Benedikt Brütsch for helpful discussions on
the topic.

1 Introduction

A string-to-string function is called regular if it is computed by a deterministic two-way
automaton with output. There are many equivalent models for the same class of functions:
string-to-string mso transductions [11], streaming string transducers [1], and various kinds
of combinator-based formalisms [2, 5, 9].

A deterministic two-way automaton can visit each input position at most once in each
state, otherwise it would loop forever. This means that the length of the run – and also the
size of the output word – is linear in the input string. One way to go beyond linear-sized
outputs was proposed by Milo, Suciu and Vianu [17], following earlier work by Globerman
and Harel [12]: equip the automaton with k pebbles which can be used to mark positions in
the input word. To avoid making the model Turing-powerful, the pebbles are required to
observe a so-called stack discipline: they are organised in a stack, and only the top-most
pebble can be moved. In [3], it is shown that pebble transducers are equivalent to multiple
other models: a higher-order functional programming language [3, Section 4], an imperative
programming language with for-loops [3, Section 3], combinators [3, end of Section 4], and

EA
T

C
S

© Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 106; pp. 106:1–106:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bojan@mimuw.edu.pl
mailto:kiefer@cs.rwth-aachen.de
mailto:nlhote@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://arxiv.org/abs/1905.13190
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

106:2 String-to-String Interpretations

compositions of certain simple atomic functions [3, Section 1]. Because of the multitude of
models and their polynomial-size outputs, the class of functions recognised by these models
is called polyregular functions.

The list of models for polyregular functions described in [3] does not include any logical
model. In this paper, we fix that omission. As mentioned above, for the regular functions,
which have linear-size output, the logical model consists in string-to-string mso transductions.
In an mso transduction, each position of the output string is interpreted as a single position
of the input string. A natural idea to capture polyregular functions is to consider what we
call string-to-string mso interpretations, where a position of the output string is represented
by a k-tuple of positions in the input string. At first glance, this idea looks suspicious:
if string-to-string mso interpretations were equivalent to polyregular functions, then they
would be closed under composition, because the class of polyregular functions is. However,
composing two string-to-string mso interpretations

Σ∗ f // Γ∗ g // ∆∗

raises the following issue. Suppose that positions of the intermediate word in Γ∗ are
represented by k-tuples of positions in the input word from Σ∗. If an mso formula defining g
quantifies over a set of positions in the intermediate word to define a property of the output
word in ∆∗, then this corresponds to quantifying over a set of k-tuples of positions in the
input word. If we assume dimension k = 1, then the problem dissolves, and this is why mso
transductions have dimension k = 1, whereas dimension k > 1 is never used in the context
of mso (as opposed to first-order logic, where the standard notion of transformation, i.e.
first-order interpretation, uses higher dimensions).

As our main result, we show that the problems discussed above only invalidate the natural
construction for composing mso interpretations, which uses substitutions of formulas. Still,
and surprisingly, for structures that represent strings there exists a (less natural) construction.
This follows from our main result, which states that polyregular functions are exactly the
string-to-string mso interpretations. Indeed, corollaries of the main result are that (a)
string-to-string mso interpretations are closed under composition; and (b) for every regular
string language, its inverse image under a string-to-string mso interpretation is also regular.
This is because (a) and (b) are true for polyregular functions. Proving (a) and (b) directly
for string-to-string mso interpretations seems hard; in fact an understandable (but wrong)
first reaction to the claims (a) and (b) would be that they are false, for the reasons discussed
in the previous paragraph.

It is easy to see that every polyregular function is a special case of a string-to-string
mso interpretation. One argument is that a k-pebble automaton can be simulated using a
string-to-string mso interpretation, by representing configurations of the pebble automaton
using k-tuples of positions in the input word. The difficulty lies in proving the opposite
direction and it comes from the stack discipline required in a pebble automaton. A k-tuple
of positions used by an mso interpretation can of course be viewed as a configuration of
a pebble automaton, but there does not seem to be any reason why the resulting pebble
automaton should observe stack discipline. It turns out – and this is the main technical
insight of this paper – that any mso formula which defines a linear ordering on k-tuples
of positions in strings must necessarily observe an implicit stack discipline, which makes it
possible to translate a string-to-string mso interpretation into a pebble automaton.

Outline. After describing string-to-string mso interpretations in Section 2, we revise poly-
regular functions via the formalism of for-programs in Section 3. In Section 4, we show that
the models are equivalent.

M. Bojańczyk, S. Kiefer, and N. Lhote 106:3

Due to space limits, we omit some of the technical details and proofs in this article. For
a full version, we defer the reader to [6]

2 Interpretations

In this section, we revise first-order and mso interpretations, which are transformations of
relational structures using formulas.

2.1 Logic and interpretations
Relational vocabularies and logic. A (relational) vocabulary is a set of relation names,
each one associated with a natural number called its arity. For short, we refer to relational
vocabularies simply as vocabularies. A structure over a vocabulary σ consists of a set called
the universe and for each relation name of σ a corresponding relation of the same arity over
the universe. To define properties of relational structures, we use monadic second-order logic
and its first-order fragment with the usual syntax and semantics [19]. We use the convention
that lower-case variables x, y, z range over elements and upper-case variables X,Y, Z range
over sets of elements.

Interpretations. Intuitively speaking, an interpretation is a function from relational struc-
tures to relational structures where each element of the universe of the output structure is a
tuple of elements of the input structure, and the relations of the output structure are defined
using formulas evaluated over the input structure.

I Definition 1 (Interpretations over general structures). For k ≥ 1, the syntax of a k-
dimensional first-order interpretation consists of:
1. two vocabularies, called the input vocabulary and the output vocabulary
2. an fo formula over the input vocabulary with k free variables, called the universe formula.
3. for each n and each n-ary relation name R of the output vocabulary, an associated fo

formula ϕR over the input vocabulary, with k · n free variables.
mso interpretations are defined analogously, except that formulas of mso are used, but the
free variables still range over elements and not over sets.

The semantics of an interpretation is a function from structures over the input vocabulary
to structures over the output vocabulary, defined as follows.

The universe of the output structure is the set of k-tuples of elements in the universe of
the input structure which satisfy the universe formula from item 2 in Definition 1.
An n-ary relation name R of the output vocabulary is interpreted as the set of n-tuples
of k-tuples from the input structure for which (a) each k-tuple is in the output universe,
and (b) the entire (n · k)-tuple satisfies the formula ϕR in item 3 in Definition 1.

Composition. First-order interpretations are closed under composition [14, p. 218]. Let us
recall the proof. Suppose that we want to compose interpretations

structures over σ1
I1 // structures over σ2

I2 // structures over σ3

of dimensions k1 and k2, respectively. The (k1 · k2)-dimensional composition is obtained
from I2 as follows: (a) quantification over elements of I2 is replaced by a quantification over
k1-tuples of elements; and (b) relation names from σ2 that appear in the input of I2 are
replaced by the corresponding formulas from I1. This idea does not work for mso in general,

ICALP 2019

106:4 String-to-String Interpretations

since set quantification in I2 would need to be replaced by quantification over sets of k1-tuples.
It does work when k1 = 1. This essentially corresponds to Courcelle’s transductions, for
which closure under composition follows naturally [8, Theorem 7.14]. To recover closure
under composition for k1 ≥ 2, one can use (not necessarily monadic) second-order logic,
which by Fagin’s Theorem [16, Corollary 9.9] corresponds to the polynomial hierarchy of
computational complexity and is outside the scope of this paper.

2.2 String-to-string interpretations
In this paper we are interested in interpretations that transform structures which represent
strings. While there are two natural ways to model strings as relational structures, namely
with an order relation or with a successor relation, only the order relation is useful in
our context.

I Definition 2 (String-to-string interpretations). For a string w ∈ Σ∗, its ordered model is
defined to be the following relational structure, denoted by w:

the universe consists of the positions in the string, i.e., natural numbers;
there is a binary relation for the natural order on positions;
for each a ∈ Σ there is a unary relation which is satisfied by every position with label a.

For alphabets Σ and Γ, a function f : Σ∗ → Γ∗ is called first-order string-to-string interpreta-
tion if the corresponding transformation on ordered models is a first-order interpretation for
strings with length at least two1. Likewise we define mso string-to-string interpretations.

I Example 3. Consider the function f : {a, b}∗ → {a, b}∗ which maps a word to the
concatenation of all of its reversed prefixes, as in the following example (with prefixes
grouped for better readability):

abbb 7→ a︸︷︷︸ ba︸︷︷︸ bba︸︷︷︸ bbba︸︷︷︸ .
This transformation is the running example in [3]. We show that f can be seen as a string-
to-string first-order interpretation. The dimension is 2, i.e. positions in the output word
represent pairs of positions in the input word. A pair (x1, x2) of positions in the input word
is used in the output word if it satisfies the universe formula x2 ≤ x1. The idea is that
x1 represents the length of the prefix, while x2 is the position in that prefix. The label of
a position (x1, x2) is inherited from the second coordinate, as expressed by the formulas
corresponding to labels on the output structure:

ϕa(x1, x2) = a(x2) ϕb(x1, x2) = b(x2)

The order on the positions of the output word is defined by the formula

ϕ≤(x1, x2︸ ︷︷ ︸
a position of

the output word

, x′1, x
′
2︸ ︷︷ ︸

another position of
the output word

) = (x1 < x′1) ∨ (x1 = x′1 ∧ x2 ≥ x′2).

1 A typical operation we want to model is string duplication. When the input length is at least two, one
can represent additional copies of the input string using a higher dimension. For input length n ≤ 1,
the output length will be nk ≤ 1 regardless of the dimension k. Another solution to this issue would be
to have duplication built into the definition of interpretations.

M. Bojańczyk, S. Kiefer, and N. Lhote 106:5

Note that the above formula defines the lexicographic ordering on pairs of positions, with
the first coordinate being used in increasing order, and the second coordinate being used in
decreasing order. This, as it will turn out, is not a coincidence, since our main technical result
says that it is impossible to define a linear order on tuples of positions without implicitly
using some kind of lexicographic ordering.

Successor instead of order. When modelling a string as a relational structure, we use the
order on positions. An alternative solution would be to use just the successor relation. The
difference between the two solutions is that it is harder to define an order on k-tuples of
positions than it is to define a successor relation. It turns out that the difference is crucial,
and functions that output strings with successor can be ill-behaved. Note that whether or
not the input string is equipped with an order or a successor relation makes no difference,
since the order on the positions of the input string can be recovered in mso, which can
compute the transitive closure of binary relations on positions.

Define the successor model of a string in the same way as the ordered model from
Definition 2, except that a binary relation for successor is used instead of the order. Define
a successor-mso string-to-string interpretation to be a string-to-string function which is
computed by an mso interpretation, assuming that strings are represented by their successor
models. Likewise, we define successor-first-order string-to-string interpretations. These are
closed under composition, because first-order interpretations are closed under composition.
On the other hand, successor-mso string-to-string interpretations are not closed under
composition and lead to undecidability, as summarised in the following theorem.

I Theorem 4.
1. The class of successor-mso string-to-string interpretations is not closed under composition,

and strictly contains the class of (order-)mso string-to-string interpretations.
2. The following is undecidable: given a successor-first-order string-to-string interpretation

f and a regular language L over the output alphabet, decide if f−1(L) is nonempty.

3 Polyregular functions

Here we describe the class of polyregular functions. It has several equivalent characterisations,
see [3, Theorem 4.4], one of which consists in the afore-mentioned pebble transducers. For
the purposes of this paper, it will be most convenient to use a slightly more abstract
characterisation in terms of for-programs, a machine model for string-to-string functions. We
just explain the formalism on short examples, for a more detailed description see [3].

for x in first..last
 for y in last..first
 if y≤x and a(y) then
 output a
 if y≤x and b(y) then
 output b

(a) A for-program for the
function in Example 3.

for x in first..last
 var P : Bool
 for y in last..first
 if y≥x then
 P := not P
 if P and a(x) then
 output a
 if P and b(x) then
 output b

(b) A for-program with a
Boolean variable P.

for y in first..last
 if x1≤y and y≤x2 and a(y)
 P := true

(c) A for-program which checks if
there is an a between the
positions x1 and x2.

Figure 1 Example for-programs.

ICALP 2019

106:6 String-to-String Interpretations

Most of the syntactic constructions that can be used in a for-program are illustrated in
Figure 1a: (1) variables that range over positions in the input word; (2) for-loops in which a
variable iterates over all positions in the input word in increasing or decreasing order; (3)
if-statements which depend on the order/labels of variables; (4) instructions which output
letters. Position variables cannot be declared or written to, they are implicitly declared by
for-loops and their only updates are the iterations performed by the for-loops.

The only feature of for-programs that is not used in Figure 1a is (5) Boolean variables.
Figure 1b shows a program that outputs only those letters in the input word which have
even distance to the last position. In the program, the Boolean variable P is declared in the
scope of a for-loop. On each iteration of the loop, the variable is reinitialised to false.

A for-program is called first-order definable if Boolean variables can only be updated from
false, which is their initial value upon declaration, to true. In other words, the only allowed
update for Boolean variables is P := true. For the first-order restriction, it is important
that Boolean variables can be declared inside for-loops, and that they are reinitialised to
false at each iteration of the loop that they are declared in. The reason for the name
“first-order definable” is that one can define in first-order logic the reachability relation on
program states of the for-program, see [3, Lemma 5.3].

I Definition 5. A string-to-string function is called polyregular if it is computed by a
for-program. It is called first-order polyregular if it is computed by a first-order definable
for-program.

The class of polyregular functions has other characterisations, including the string-to-
string pebble transducers introduced by Milo, Suciu and Vianu [17], as well as a higher-order
functional programming language [3, Section 4]. The main result of this paper, Theorem 7 in
the next section, adds a logical characterisation, namely string-to-string mso interpretations.

Evaluating first-order formulas. The for-programs described above take as input strings
and also output strings. One can also consider for-programs which input a string with
distinguished positions and which output a Boolean value, as in Figure 1c. The distinguished
positions are represented by free variables (here x1 and x2), while the output value is taken
from some distinguished Boolean variable, here P.

I Lemma 6. Let ϕ(x1, . . . , xk) be an fo formula over strings. There is a first-order for-
program which computes the following.

Input. A word w ∈ Σ∗ and positions x1, . . . , xk in w;
Output. Yes or No, depending on whether w satisfies ϕ(x1, . . . , xk).

Proof. The for-program implements the semantics of an fo formula. For each quantifier, it
loops over all possible values for the quantified position, and a Boolean variable is used to
remember if some value has already been found which renders the formula true. J

A similar result is true for mso formulas, but the proof for that statement uses automata.

4 Equivalence

We show that the models defined in Sections 2 and 3 are equivalent.

I Theorem 7.
1. String-to-string mso interpretations are exactly the polyregular functions.
2. First-order string-to-string interpretations are exactly the first-order polyregular functions.

M. Bojańczyk, S. Kiefer, and N. Lhote 106:7

Since the class of polyregular functions is closed under composition2, we obtain:

I Corollary 8. String-to-string mso interpretations are closed under composition.

By using Theorem 7, the proof of the corollary passes through for-programs. We are not
aware of any direct proof that does not exploit the equivalence to polyregular functions.

The rest of this paper is dedicated to the proof of Theorem 7. We begin with a reduction
of the first to the second item. This reduction illustrates a general phenomenon, namely that
results about first-order polyregular functions often imply results about general polyregular
functions, despite the latter class being larger. The reason behind this phenomenon is the
following lemma, which says that for every polyregular function, all of the behaviour that is
not first-order definable can be pushed into a simple preprocessing step. Define a rational
function, see [4, Section 13.2], to be a string-to-string function which is recognised by a
nondeterministic automaton, where every transition is labelled by a pair consisting of a letter
from the input alphabet and a string over the output alphabet, and which is unambiguous in
the sense that every input string admits exactly one accepting run.

I Lemma 9.
1. A function is polyregular if and only if it is a composition consisting of:

a. a (letter-to-letter) rational function; followed by
b. a first-order polyregular function.

2. A function is an mso string-to-string interpretation if and only if it is a composition
consisting of:
a. a (letter-to-letter) rational function; followed by
b. a first-order string-to-string interpretation.

The proof of Lemma 9 can be found in [6]. It is based on ideas from [7, 15, 3] and uses
factorisation forests. With the lemma, we show that item 2 in Theorem 7 implies item 1, i.e. if
first-order string-to-string interpretations are exactly the first-order polyregular functions,
then mso interpretations are exactly the polyregular functions:

polyregular = by item 1 of Lemma 9

(first-order polyregular) ◦ rational = by item 2 of Theorem 7
(first-order interpretations) ◦ rational = by item 2 of Lemma 9

mso interpretations

It remains to prove item 2 in Theorem 7, i.e. that first-order string-to-string interpret-
ations are exactly the first-order polyregular functions. The right-to-left inclusion follows
immediately from [3, Lemma 5.3], which says that a formula in first-order logic can define
the reachability relation on program states in first-order for-programs. We are left with the
left-to-right-inclusion:

first-order string-to-string interpretations ⊆ first-order definable for-programs (1)

The rest of the paper is devoted to showing the above inclusion. When simulating a
first-order interpretation by a for-program, we will mainly be concerned with the universe of
the output string (which is a set of k-tuples of positions in the input string) and its ordering.
The labelling of the k-tuples can then be recovered using the for-program from Lemma 6.

2 Closure under composition was proved for pebble transducers in [10, Theorem 11] and for the class of
for-programs in [3, Section 8.1] as a step in proving equivalence with the other models of polyregular
functions.

ICALP 2019

106:8 String-to-String Interpretations

The main result is that every first-order definable linear ordering on tuples of positions can
be implemented by a for-program. To be able to speak about this result, we introduce some
notation for devices that produce lists of tuples of positions.

Enumerators. Let k ∈ N. A k-enumerator over an alphabet Σ is a function of the following
form:

Input. A string w ∈ Σ∗;
Output. A list of k-tuples of positions in w, that is nonrepeating3.

We compare the following two ways of implementing k-enumerators:
1. A k-enumerator is called definable if there are two fo formulas: one with k variables,

which says when a tuple is part of the output list, and one with 2k variables, which
defines a total order on the tuples selected by the first formula.

2. A k-enumerator is called programmable if its output can be computed by a first-order
for-program that instead of outputting letters uses instructions of the form output
(x1,...,xk) where x1, . . . ,xk are position variables.

For definable k-enumerators, the order on tuples in the output list is given explicitly by the
formula ϕ, while in programmable ones, the order is implicit from the order in which the
output instructions are executed during the computation.

I Example 10. We present an enumerator based on Example 3. Consider the 2-enumerator
which outputs all pairs of positions (x1, x2) with x2 ≤ x1, listed in lexicographic order, where
x1 is ordered in increasing order and x2 is ordered in decreasing order. Here is an example:

abbb 7→ (1, 1), (2, 2), (2, 1), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1)

This enumerator is definable, as witnessed by the formula ϕ≤ in Example 3. The formula ϕ≤
is quantifier-free, but in general, quantifiers are allowed. Here is a for-program that computes
the same function:

for x1 in first..last
 for x2 in last..first
 if x2 ≤ x1 then
 output (x1,x2)

The following lemma is the main technical result of this paper.

I Lemma 11. Every definable k-enumerator is also programmable.

Our proof of Lemma 11 uses two fundamental ingredients. The first is by now standard:
this is Simon’s factorisation forest theorem [18], which roughly says that every string can be
cut into pieces that are similar to each other. The second ingredient is new: the Domination
Lemma, presented in Section 4.1, roughly says that if a string is cut into pieces that are
similar to each other, then any first-order definable linear order on tuples of positions must
observe an implicit stack discipline. These two results are combined in Section 4.2 to prove
Lemma 11. Before we proceed with the proof of Lemma 11, we use it to complete the proof
of Theorem 7.

3 Every tuple appears at most once, but positions can appear in multiple tuples. We need this for the
existence of the formulas stated in the following definitions.

M. Bojańczyk, S. Kiefer, and N. Lhote 106:9

Proof of Theorem 7, second part. The only part of Theorem 7 that has not been proved
yet is that every first-order string-to-string interpretation is polyregular. Suppose that f
is a k-dimensional first-order string-to-string interpretation. Consider the k-enumerator
that inputs a string w and outputs the list of k-tuples of positions in w used to represent
output positions of f(w), in the appropriate order. Apply Lemma 11 to obtain a first-order
for-program g which computes the same list. To compute the original function f , we use a
for-program which behaves as g, except that instead of outputting a k-tuple of positions like
g, it uses the program described in Lemma 6 as a subroutine to check what is the output
letter that should be produced for this tuple, and outputs that letter. J

4.1 The Domination Lemma
In this section we present the Domination Lemma, which says that if ≺ is a first-order
definable linear order on k-tuples of positions in a string, then there is an implicit stack
discipline in the following sense. For every type (see below) t of tuples of positions there is a
coordinate d ∈ {1, . . . , k} such that for the subset of k-tuples of positions formed by all of
type t, the order ≺ is uniquely determined by the order of the d-th coordinates in the string.

We begin by explaining the notions of types. For r ∈ {0, 1, . . .}, the rank r type of
a structure A with k distinguished positions x̄ := (x1, . . . , xk) is defined to be the set of
first-order formulas of quantifier rank at most r and with k free variables that are true in
A, x̄. The number k is the arity of the type. For arity 0, we talk about the rank r type of
the structure A. If the structure A is implicit from the context, then we talk about the rank
r type of the tuple x̄. For every finite vocabulary, there are finitely many types of given
arity and rank. We write ≡r for the equivalence relation on structures with distinguished
elements of having the same rank r type. For a binary relation R, its inverse is the set
{(v, u) | (u, v) ∈ R}. For p ∈ {1,−1}, define Rp to be either R or its inverse, depending on
the value of p.

I Lemma 12 (Domination Lemma). For all k,m, r ∈ {1, 2, . . .}, there is an ω ∈ {1, 2, . . .}
with the following property. Let n ∈ {1, 2, . . .}, let w1, . . . , wn be strings over some alphabet
Σ and let A be the ordered structure of the concatenation w1 · · ·wn extended with the block
order defined by

x @ y if x is a position in wi and y is a position in wj for some i < j.

Let ≺ be a linear order on k-tuples in A defined by a first-order formula of quantifier rank r,
and let t be a k-ary rank ω type over the vocabulary of A. If

wi ≡ω wi+1 holds for all i ∈ {1, . . . , n− 1} with at most m exceptions,

then there is a d ∈ {1, . . . , k}, called the dominating coordinate, and a p ∈ {−1, 1}, called
the polarity, such that

xd @p yd implies (x1, . . . , xk) ≺ (y1, . . . , yk) for all x1, . . . , xk︸ ︷︷ ︸
of type t

, y1, . . . , yk︸ ︷︷ ︸
of type t

in A.

The Domination Lemma is the technical heart of this paper. The full proof can be found
in [6]. To explain some of the ideas that we use, we treat a special case in detail. In the
Domination Lemma, the structure A consists of blocks organised in a linear way. A very
simple linear order – although infinite – is the natural one on the rational numbers; one
reason for its simplicity is that quantifiers can be eliminated (see [13, Section 5.6.2]). Because
of this, it is quite easy to prove a version of the Domination Lemma for the rational numbers
and still its proof bears some similarity to the proof of the general case.

ICALP 2019

106:10 String-to-String Interpretations

I Lemma 13 (Rational Domination Lemma). Let ≺ be a linear ordering on k-tuples of rational
numbers defined by a quantifier-free (equivalently, first-order) formula using only the usual
ordering < on rational numbers. Then there is a coordinate d ∈ {1, . . . , k} and a polarity
p ∈ {−1, 1} such that

xd <
p yd implies (x1, . . . , xk) ≺ (y1, . . . , yk)

for all tuples of rational numbers satisfying x1 < · · · < xk and y1 < · · · < yk.

Proof. We first prove the statement for k = 1 and k = 2 and then we deduce the general case.

1. When k = 1, then the formula defining ≺ must be either x < y or x > y.

2. For k = 2, we do a case analysis. Note that whether x̄ ≺ ȳ or ȳ ≺ x̄ holds depends only
on the order relationship of the positions in x̄ and ȳ in the rational numbers and not on
the precise values in x̄ and ȳ.
The following picture shows the two possible relationships for two pairs x̄ and ȳ when
they are “consecutive” and the two possible relationships when they are “nested”:

Suppose we are given a pair x̄ and without loss of generality, assume the “consecutive
growing” case for some second pair ȳ. We only show the proof for the case that there is a
pair ȳ′ such that x̄ and ȳ are “nested growing” (“nested decreasing” works analogously).
We prove that d = 1 is dominating for ≺ with polarity p = 1. Consider all three remaining
configurations of pairs x̄ and ȳ with x1 < y1. In all cases, x̄ ≺ ȳ is proved by finding an
intermediate pair (drawn in yellow), whose order with respect to x̄ and ȳ follows from
the assumptions “consecutive/nested growing” (in the pictures below, we assume that
lower lines represent bigger tuples in the ordering ≺):

3. Consider the case k > 2. Fix a “growing” tuple of k rational numbers, i.e. a tuple z̄
such that for 1 ≤ i < j ≤ k, it holds that z1 ≤ zi < zj ≤ zk. Define ≺z̄

ij to be the
restriction of ≺ to tuples that agree with z̄ on coordinates from {1, . . . , k} \ {i, j}. Using
the reasoning from the previous item, the ordering ≺z̄

ij must admit some dominating
coordinate d ∈ {i, j} and one of the cases “growing” or “decreasing”. This must hold for
every choice of z̄ and i, j. Furthermore, the dominating coordinate d depends only on i
and j and not on z̄, likewise for the choice of “growing” or “decreasing”. Let us write
i→ j if j dominates, otherwise we write j → i. The reasoning in the following picture
shows that → is transitive, i.e. i→ j and j → m implies i→ m:

M. Bojańczyk, S. Kiefer, and N. Lhote 106:11

Therefore, → is in fact a total order on {1, . . . , k}. Let d be the maximum with respect
to this order. The following picture explains why d is the dominating coordinate d from
the statement of Lemma 12.

Suppose without loss of generality that we are in the “growing” case for each pair of
coordinates. Then we can first move all coordinates apart from d to positions smaller than
min{x1, y1} or bigger than max{xk, yk} and then use the dominations i→ d to move them,
one by one, to their final positions (always increasing the d-th coordinate slightly to a value
in the open interval (xd, yd)). J

4.2 Proof of Lemma 11
We now return to Lemma 11, i.e., we prove that every definable k-enumerator is also
programmable. In the proof, we use the following version of the Factorisation Forest
Theorem. We use the term interval for a connected set of positions in a string.

I Theorem 14 (Factorisation Forest Theorem, aperiodic variant). Let h : Σ+ → S be a
semigroup homomorphism, where S is finite and aperiodic. Then there exists a function
which assigns to each string in Σ+ a partition of the positions into intervals (so-called blocks)
such that:
1. All blocks are nonempty, and for each string in Σ+ of length at least 2, there are at least

two blocks.
2. If a string has at least three blocks, then all of the blocks have the same value under h.
3. There exists M ∈ N such that all strings have height at most M , where the height of

a string is defined as follows: letters have height 1, for other strings the height is the
maximum of the heights of its blocks + 1.

4. There is a first-order formula ϕ such that for every string w, the positions satisfying ϕ(x)
are exactly the first positions of the blocks of w.

Apart from the Factorisation Forest Theorem and the Domination Lemma, our proof
uses the following straightforward result on combining outputs of two for-programs. As a
convention, if ψ is a first-order formula with k free variables and f is a k-enumerator, then
f |ψ denotes the k-enumerator where the output list of f is filtered so that it contains only
tuples satisfying ψ.

I Lemma 15 (Merging Lemma). Let f be a definable k-enumerator. Let Φ be a finite set of
fo formulas ψ, each one with k free variables, such that every k-tuple of positions satisfies at
least one formula from Φ. Then f is programmable if and only if every f |ψ is programmable.

ICALP 2019

106:12 String-to-String Interpretations

We are now ready to prove Lemma 11. Let f be a definable k-enumerator. We need
to describe a for-program that outputs the same list of tuples as f . Let r be the maximal
quantifier rank of the first-order formulas used in the definition of f . Apply the Domination
Lemma to k, m := 5k, and r, yielding a constant ω. Define h to be the function which maps a
string w ∈ Σ+ to the rank ω type of the corresponding ordered model of w. Compositionality
of first-order logic (see [16, Section 3.4]) on strings says that the image of h, the set of rank
ω types of strings, is a finite aperiodic semigroup and h is a semigroup homomorphism.
Apply the Factorisation Forest Theorem to h, yielding a function that partitions each string
into blocks and an upper bound M on heights of strings. By abuse of notation, we lift
notions about strings to intervals inside strings: the height of an interval X in a string w is
defined to be the height (in the sense of item 3 in Theorem 14) of the infix of w induced by
X. Likewise, we define the blocks of X as the blocks of the infix induced by X, viewed as
intervals contained in X.

To show that f is also programmable, we use an induction over heights in factorisation
forests. More precisely, we prove that for every i ∈ N there is a for-program which computes
the following:

Input. A string w ∈ Σ+ with distinguished nonempty intervals X1, . . . , Xk that are
pairwise equal or disjoint, and such that the sum of their heights (in the sense of
Theorem 14) is at most i. Each interval is represented by its first and its last position.
Output. The list f(w) restricted to tuples in X1 × · · · ×Xk.

By item 3 in Theorem 14, the for-program with parameter i := kM will work for every
choice of pairwise equal or disjoint intervals, in particular when all of the intervals are
the entire string. The induction base i = k (where every interval has the height 1) is
straightforward: each interval is a singleton, and the for-program simply checks if the unique
tuple in X1 × · · · ×Xk belongs to the output of f by using the subroutines from Lemma 6.
The rest of the proof is devoted to the induction step, more specifically, to producing the
correct order of the tuples: whether a tuple belongs to the output or not can again be checked
using the subroutines from Lemma 6.

Let X1, . . . , Xk be intervals in an input string w that are pairwise disjoint or equal. Define
X to be the coarsest partition of the positions in the input string into intervals that satisfies
X1, . . . , Xk ∈ X . This partition uses at most 2k + 1 intervals. Consider a factorisation

w = w1 · · ·wn

where each wj is a block of one of the elements of X . Define A as in the Domination Lemma,
i.e. as the ordered structure of w extended with an extra order @ that describes the partition
into factors w1, . . . , wn. By item 4 of the Factorisation Forest Theorem, the order @ can be
defined by a first-order formula which uses the input string and the endpoints of the intervals
X1, . . . , Xk. It follows that for every k-ary rank ω type t over the vocabulary of A, there is a
corresponding first-order formula that selects the k-tuples of positions in w that have type t
in A. Since there are finitely many choices of t, it follows from the Merging Lemma that it is
enough to show that for every t, there is a for-program which outputs the tuples of type t.

Let t be a k-ary rank ω type over the vocabulary of A. We show a for-program which
outputs all tuples in

T := {x̄ ∈ X1 × · · · ×Xk : x̄ has type t and is in the output of f(w)}

according to their order given by f(w), call this order ≺.

M. Bojańczyk, S. Kiefer, and N. Lhote 106:13

If an interval from X has more than two blocks, then, by item 2 of the Factorisation Forest
Theorem, all of these blocks have the same image under h, i.e., the same rank ω type. Since
there are at most 2k + 1 intervals, it follows that with at most 2(2k + 1)− 1 = 4k + 1 < 5k
exceptions, consecutive strings wj and wj+1 have the same rank ω type. Hence, for the order
≺ defined by f(w), the Domination Lemma yields d ∈ {1, . . . , k} and p ∈ {−1, 1} such that

xd @p yd implies (x1, . . . , xk) ≺ (y1, . . . , yk) for all x1, . . . , xk︸ ︷︷ ︸
of type t

, y1, . . . , yk︸ ︷︷ ︸
of type t

in A.

This means that the tuples in T are ≺-ordered as T1 ≺p T2 ≺p · · · ≺p Ts, where s is the
number of blocks in Xd and Tj consists of the tuples from T where the coordinate xd is
in the j-th block of Xd. Our for-program can simply loop over all the blocks of Xd – in
increasing or decreasing order depending on the choice of p – because the endpoints of each
block can be identified in first-order logic due to item 4 of the Factorisation Forest Theorem.
In each iteration of the loop, the for-program outputs the tuples in the corresponding Tj

using the following claim, thus completing the proof of the lemma.

B Claim 16. There is a for-program which inputs the i-th block of Xd, given by its endpoints,
and outputs the tuples from Tj ordered according to ≺.

Proof of the claim. The general idea is to replace Xd with its j-th block (call this block X)
and use the induction assumption. However, if there is some j 6= d such that Xj = Xd, then
replacing Xd with X would violate the assumption that the intervals are pairwise disjoint or
equal (since X (Xj). To overcome this issue, we use the following simple case disjunction.
For each of the 3k possible values of

v ∈ {positions before X, X, positions after X}k

construct a for-program that outputs all tuples from Y1×· · ·×Yk, where Yj is the intersection
of Xj with the j-th entry of v. Since each Yj is a union of blocks of Xj , it is empty or its
height is at most the height of Xj . Furthermore, if Yd is nonempty, then it is X, which is a
block of Xd, and therefore its height is strictly smaller than the height of Xd. It follows that
the induction assumption can be applied to produce all tuples in Y1 × · · · × Yk, for any given
choice of v. These choices can be combined using the Merging Lemma. C

References
1 Rajeev Alur and Pavol Cerný. Streaming transducers for algorithmic verification of single-pass

list-processing programs. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 599–610, 2011. doi:10.1145/1926385.1926454.

2 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), page 9. ACM, 2014.

3 Mikołaj Bojańczyk. Polyregular Functions, 2018. arXiv:1810.08760.
4 Mikołaj Bojańczyk and Wojciech Czerwiński. Automata Toolbox. URL: https://www.mimuw.

edu.pl/~bojan/upload/reduced-may-25.pdf.
5 Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and First-

Order List Functions. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 125–134, 2018. doi:
10.1145/3209108.3209163.

ICALP 2019

http://dx.doi.org/10.1145/1926385.1926454
http://arxiv.org/abs/1810.08760
https://www.mimuw.edu.pl/~bojan/upload/reduced-may-25.pdf
https://www.mimuw.edu.pl/~bojan/upload/reduced-may-25.pdf
http://dx.doi.org/10.1145/3209108.3209163
http://dx.doi.org/10.1145/3209108.3209163

106:14 String-to-String Interpretations

6 Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-string interpretations with
polynomial-size output, 2019. arXiv:1905.13190.

7 Thomas Colcombet. A combinatorial theorem for trees. In International Colloquium on
Automata, Languages, and Programming, pages 901–912. Springer, 2007.

8 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic. A
Language-Theoretic Approach. Cambridge University Press, June 2012.

9 Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular Transducer Expressions
for Regular Transformations. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 315–324, 2018.
doi:10.1145/3209108.3209182.

10 Joost Engelfriet. Two-way pebble transducers for partial functions and their composition.
Acta Informatica, 52(7-8):559–571, 2015.

11 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and two-way
finite-state transducers. ACM Transactions on Computational Logic (TOCL), 2(2):216–254,
2001.

12 Noa Globerman and David Harel. Complexity Results for Two-Way and Multi-Pebble Automata
and their Logics. Theor. Comput. Sci., 169(2):161–184, 1996.

13 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi,
Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2007. doi:10.1007/3-540-68804-8.

14 Wilfrid Hodges. Model Theory. Cambridge University Press, Cambridge, March 1993.
15 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees.

ACM Transactions on Computational Logic (TOCL), 14(4):1–12, 2013.
16 Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2013.
17 Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers. Journal of

Computer and System Sciences, 66(1):66–97, 2003.
18 Imre Simon. Factorization forests of finite height. Theoretical Computer Science, 72(1):65–94,

1990.
19 Wolfgang Thomas. Languages, Automata, and Logic. In Handbook of Formal Languages,

Volume 3: Beyond Words, pages 389–455. Springer, 1997. doi:10.1007/978-3-642-59126-6_7.

http://arxiv.org/abs/1905.13190
http://dx.doi.org/10.1145/3209108.3209182
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1007/978-3-642-59126-6_7

	Introduction
	Interpretations
	Logic and interpretations
	String-to-string interpretations

	Polyregular functions
	Equivalence
	The Domination Lemma
	Proof of Lemma 11

