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Abstract
Conjunctive queries select and are expected to return certain tuples from a relational database. We
study the potentially easier problem of counting all selected tuples, rather than enumerating them.
In particular, we are interested in the problem’s parameterized and data complexity, where the
query is considered to be small or even fixed, and the database is considered to be large. We identify
two structural parameters for conjunctive queries that capture their inherent complexity: The
dominating star size and the linked matching number. If the dominating star size of a conjunctive
query is large, then we show that counting solution tuples to the query is at least as hard as counting
dominating sets, which yields a fine-grained complexity lower bound under the Strong Exponential
Time Hypothesis (SETH) as well as a #W[2]-hardness result in parameterized complexity. Moreover,
if the linked matching number of a conjunctive query is large, then we show that the structure of the
query is so rich that arbitrary queries up to a certain size can be encoded into it; in the language of
parameterized complexity, this essentially establishes a #A[2]-completeness result.

Using ideas stemming from Lovász (1967), we lift complexity results from the class of conjunctive
queries to arbitrary existential or universal formulas that might contain inequalities and negations
on constraints over the free variables. As a consequence, we obtain a complexity classification that
refines and generalizes previous results of Chen, Durand, and Mengel (ToCS 2015; ICDT 2015;
PODS 2016) for conjunctive queries and of Curticapean and Marx (FOCS 2014) for the subgraph
counting problem. Our proof also relies on graph minors, and we show a strengthening of the
Excluded-Grid-Theorem which might be of independent interest: If the linked matching number (and
thus the treewidth) is large, then not only can we find a large grid somewhere in the graph, but we
can find a large grid whose diagonal has disjoint paths leading into an assumed node-well-linked set.
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1 Introduction

Conjunctive query evaluation is a core problem in database theory. Using first-order logic,
conjunctive queries can be expressed by formulas of the form

x1 . . . xk∃y1 . . . ∃y`(a1 ∧ · · · ∧ am) , (1)

where the xi are the free variables, the yi are the (existentially) quantified variables, and the
ai are atomic formulas (such as edge E(x1, y4) or relational R(x7, y3, y6) constraints on the
variables). Conjunctive queries exactly correspond to select-project-join queries; a detailed
introduction can be found in the textbook of Abiteboul, Hull, and Vianu [1]. The conjunctive
query evaluation problem is given a conjunctive query and a relational database, and is tasked
to compute the set of all assignments to the free variables such that the formula is satisfied.
Since enumerating all solution tuples s1 . . . sk can be costly for reasons not inherent to the
problem’s complexity, it is more meaningful to consider the decision problem (Does there
exist a solution tuple?) or the more general counting problem (How many solution tuples
exist?). The decision problem is equivalent to setting k = 0 and also called the constraint
satisfaction problem (CSP). In this paper, we study the problem of counting the number of
all solution tuples for conjunctive and more general queries.

Perhaps the most naïve way to study the complexity of this problem is via its combined
complexity, in which both the query and the database are considered to be worst-case inputs.
Since conjunctive queries generalize the clique problem on graphs, the problem is clearly
NP-hard in this setting [2]. In the real world, however, the database is much larger than
the query, and thus the combined complexity may fixate on instances that we do not care
about. Instead, we consider two other models in this paper: the data complexity and the
parameterized complexity of conjunctive query evaluation.

The data complexity considers the query to be completely fixed and only the database to
be worst-case input. If the query is fixed, the number of variables k + ` is a constant, and so
the problem is polynomial-time solvable: even the exhaustive search algorithm just needs
to try out and check all nk+` possible assignments to the variables, where n is the size of
the universe. Unsurprisingly, exhaustive search is not the best strategy for every query. For
example, Chekuri and Rajaraman [3] showed that the decision and counting problems can be
solved in time O(nt+1) where t is the treewidth of the query’s Gaifman graph, that is, the
graph containing a vertex for every variable and an edge between two vertices whenever the
corresponding variables are contained in a common constraint. Since t+ 1 is typically much
smaller than k + `, this algorithm is better than exhaustive search. For each fixed query Q,
the guiding question for a fine-grained understanding of data complexity is this: What is the
smallest constant cQ such that the query evaluation problem can be solved in time O(ncQ)?

Parameterized complexity offers a third vantage point from which conjunctive query
evaluation can be studied. Here the query isn’t completely fixed, but it’s also not completely
free either. Instead, it is assumed that only certain types of queries will be used, meaning
that the class of queries that are allowed as input is restricted. As a hybrid between data
complexity and combined complexity, the parameterized complexity of query evaluation is
more difficult to study than the combined complexity, but easier than the data complexity,
while still offering some insight. For example, Grohe, Schwentick, and Segoufin [18] show
that the conjunctive query evaluation problem is W[1]-hard if the class of allowed input
queries has Gaifman graphs of unbounded treewidth.
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1.1 Context and Previous Work

When only one constraint type E of arity two is allowed, the conjunctive query evaluation
problem specializes to the graph homomorphism problem: The decision problem (where k = 0)
is given two graphs H,G to decide whether there is a homomorphism from H to G. Dalmau
et al. [9] prove that this problem can be solved in polynomial time if the homomorphic core
of H has bounded treewidth, and conversely, Grohe [17] shows that the graph homomorphism
problem is W[1]-complete even if H is restricted to be from an arbitrary class of graphs
whose homomorphic cores have unbounded treewidth. Taken together, these two results yield
a dichotomy theorem for the complexity of detecting graph homomorphisms: Depending on
the class of allowed graphs H, the problem is either polynomial-time computable or W[1]-
complete, and in particular there are not infinitely many cases of intermediate complexity.
For the counting problem without quantified variables (where ` = 0), such a dichotomy is
also known: Dalmau and Jonsson [8] show that the number of homomorphisms from H to G
is polynomial-time computable if H itself has bounded treewidth, and it is #W[1]-complete
if H comes from any class of unbounded treewidth. In the mixed situation when both free
and quantified variables may exist (and thus k, ` > 0), then the resulting counting problem
actually counts partial homomorphisms, that is, homomorphisms from k vertices of H that
can be extended to a homomorphism on all k + ` vertices of H. A line of work [27, 25],
culminating in Durand and Mengel [12] and Chen and Mengel [4], studies the parameterized
complexity of this mixed problem, and depending on the class of graphs H that are allowed,
they classify the complexity either as polynomial-time, W[1]-equivalent, or #W[1]-hard. A
corollary to the present work is a finer classification that splits up the #W[1]-hard cases
into three classes.

One way to go beyond homomorphisms is to consider injective homomorphisms, which
leads to the corresponding decision problem that is given H,G to decide whether H is
a subgraph of G – this problem can be solved in time f(H)nO(t) if t is the treewidth
of H (e.g., [15]), that is, it is fixed-parameter tractable when parameterized by |H| and
if the treewidth is bounded. However, it is an important open problem [24] whether the
subgraph detection problem is W[1]-hard when H is restricted to be from an arbitrary class
of unbounded treewidth. The counting problem is better understood: Vassilevska Williams
and Williams [33] (also cf. [21, 7]) show that the number of times H occurs as a subgraph
in G can be computed in time f(H)nvc(H)+O(1) where vc(H) is the size of the smallest vertex
cover, but Curticapean and Marx [7] (also cf. [6]) show that the problem is #W[1]-complete
if H is from any class of graphs whose minimum vertex cover is not bounded. Now, what
do injective homomorphisms have to do with conjunctive queries? As it turns out, what
we are doing is to add inequalities as an additional, but very restricted constraint type:
Injective homomorphisms correspond to queries without quantified variables that have edge
constraints and are augmented with inequalities (xi 6= xj) for all distinct i, j. If some, but
not all, inequality constraints are present, we obtain partially injective homomorphisms, the
complexity of which has a known dichotomy theorem for the counting version [30], and has
been studied to some extent for the decision version [20]. As part of the present work, we
are able to classify the mixed situation with free and quantified variables (k, ` > 0) as well
as some inequalities on the free variables.

The mentioned complexity classification for counting partial homomorphisms into three
cases [12, 4] was actually proved in the more general setting of conjunctive queries. Chen
and Mengel [5] extended their classification to queries that are monotone, but not neces-
sarily conjunctive. That is, the corresponding formula is supposed to be an existential
positive formula, which may contain existential quantifiers ∃, logical ands ∧, and ors ∨.

ICALP 2019
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In the present work, we are able to further extend (our finer version of) the classification to
existential formulas that may have negations on constraints involving only free variables; we
truly study the complexity of counting answers to existential questions.

1.2 Our Contributions
As already indicated in Section 1.1, we make simultaneous progress on two fronts: Our
complexity classifications are finer than previous work, and we can prove the classification
for more general classes of queries. An important feature of our work is that the proofs
are modular and largely self-contained: We first prove the complexity results for counting
partial homomorphisms, then lift them to conjunctive queries, and then further to a more
general class of queries. So what is the most general class of queries that we study? We allow
queries ϕ of the form

x1 . . . xk∃y1 . . . ∃y` : ψ , (2)

where ψ is a quantifier-free formula in first-order logic and all negations in ψ must be
directly applied to constraints that only involve free variables (e.g. E(x1, x7)∨ (R(x7, y7, y9)∧
¬R(x1, x4, x9))). Constraints of the form ¬R(x1, x4, x9) are referred to as non-monotone
constraints in the remainder of the paper. Furthermore ϕ may be equipped with a set of
inequalities over the free variables (eg. x3 6= x5).

All of our theorems also apply to the corresponding universal queries, where each ∃ in (2)
is replaced with ∀, but for the sake of readability we will often omit this fact. We are able to
generalize from conjunctive queries to queries of the form (2) by using ideas that go back
to Lovász’s work from 1967 [22] (also cf. [23]): We prove that queries ϕ of the form (2) can
be expressed in a meaningful way as an abstract linear combination of conjunctive queries
(which are of the form (1)); positive results (algorithms) as well as negative results (hardness)
for each “summand” translate to the abstract linear combination and thus to ϕ.

Data Complexity

To study the data complexity of the problem, we employ the Strong Exponential Time
Hypothesis (SETH) by Impagliazzo and Paturi [19], which was developed in the context
of fine-grained complexity. The k-dominating set problem can be easily expressed as a
(universal) conjunctive query, and Williams and Pătraşcu [28] show that this problem cannot
be solved in time O(nk−ε) unless SETH is false. We are able to lift this hardness result
to all queries ϕ that have the k-dominating set query as a query minor, a notion that we
translate from graphs and formalize later. The dominating star size dss(ϕ) of a conjunctive
query ϕ is the maximum number k such that the k-dominating set query is a query minor.
Equivalently, this means that some connected component in the quantified variables of ϕ
has k neighbors in the free variables.1 We obtain the following result:

I Theorem 1. Let ϕ be a fixed query of the form (2). Given a logical structure B with a
domain of size n, we wish to compute the number of solutions of ϕ in B. If SETH holds,
this problem cannot be solved in time O(ndss(ϕ)−ε) for any ε > 0.

In the full version, we also obtain an algorithm for the problem in Theorem 1, with a
running time of O(ndss(ϕ)+t+1 + nt

′+1), where t and t′ are treewidths related to the query ϕ.
Neglecting many technical details, the proof of Theorem 1 reduces the k-dominating set

1 The dominating star size coincides with the strict star size from [4].
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problem to the model counting problem for ϕ by following operations of the query minor. If
ϕ is a query of the form (2), then it can be represented by an abstract linear combination
of conjunctive queries ϕ′; in this case, we define dss(ϕ) as the maximum dss(ϕ′) over all
constituents ϕ′ that occur in this abstract linear combination.

Theorem 1 is similar in spirit to other known conditional lower bounds for first-order
model checking, such as the one of Williams [32] and Gao et al. [16]. One of their results is
that first-order sentences with k + 1 variables cannot be decided in time O(mk−ε), where m
is the size of the structure, unless SETH fails. However, these results are incomparable
to Theorem 1 for several reasons: The results in [32, 16] allow negations and consider the
decision problem, while we allow only limited negations and consider the counting problem.
More fundamentally, however, Theorem 1 gives a hardness result for every fixed query ϕ,
while the results in [32, 16] show that there exists a query ϕ that is hard. Moreover, the
lower bounds in [32, 16] are in terms of the size m of the structure, not merely the size n of
the domain.

Parameterized Complexity

We refine the classification of Chen and Mengel [4] for counting answers to conjunctive
queries. For every class of allowed queries they show the problem to be either fixed-parameter
tractable, W[1]-equivalent or #W[1]-hard. Here, W[1]-equivalent means that there are
parameterized Turing reductions from and to the decision version of the k-Clique problem.
Understanding the parameterized complexity of problems even beyond the usual classes W[1]
and #W[1] is interesting from a structural complexity point of view, and it also provides
meaningful information about the studied problem. Indeed we show that the dominating star
size, i.e., the parameter considered in Theorem 1, is a structural parameter for conjunctive
queries that, if unbounded, makes the problem #W[2]-hard and that, if bounded, keeps the
problem #W[1]-easy.

This extension to #W[2]-hard cases only partially resolves the parameterized complexity
of the problem of counting answers to conjunctive queries. It is known that the general
problem of counting answers to formulas of the form

x1 . . . xk∃y1 . . . ∃y` : ψ , where ψ is a quantifier-free first-order formula, (3)

is #A[2]-equivalent.2 For which families of conjunctive queries is the counting problem
as hard as for unrestricted queries as in (3)? Such families have the hardest counting
problems, even harder than the #W[2]-hard cases unless #A[2] = #W[2] holds, which
seems unlikely.3 We prove that families of conjunctive queries are #A[2]-hard if their linked
matching number is unbounded. Intuitively a conjunctive query ϕ with free variables X and
quantified variables Y has a large linked matching if there is a large well-linked set in Y
that cannot be separated from X by removing a small number of variables. We obtain the
following refined complexity classification.

2 Due to a technicality in the original definition of #A[2], we cannot establish #A[2]-completeness and
will instead only talk about equivalence to a #A[2]-complete problem under parameterized Turing
reductions.

3 See Chapt. 8 and 14 in [14] for a discussion.
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I Theorem 2. Let Φ be a family of conjunctive queries. Given a formula ϕ from Φ and a
logical structure B, we wish to compute the number of solutions of ϕ in B. When parameterized
by |ϕ| this problem is
1. #W[1]-easy if the dominating star size of Φ is bounded,
2. #W[2]-hard if the dominating star size of Φ is unbounded, and
3. #A[2]-equivalent if the linked matching number of Φ is unbounded.

It is instructive to provide examples for the application of the above theorem. First
consider the problem of, given a graph G without self-loops and a natural number k,
computing the number of cliques of size k that are not maximal. While the problem of
counting cliques of size k is #W[1]-complete, adding the non-maximality constraint makes
the problem hard for #W[2]. To see this, we will express the problem as a conjunctive query

ϕk := x1 . . . xk∃y :
∧

1≤i<j≤k
E(xi, xj) ∧

∧
1≤i≤k

E(xi, y) . (4)

Note that the number of solutions to ϕk in G is precisely k! times the number of non-maximal
cliques of size k in G. Furthermore, it holds that ϕk has dominating star size k and hence
that Φ = {ϕk | k ∈ N} has unbounded dominating star size. By Theorem 2 the problem
of counting answers to queries in Φ is #W[2]-hard. Furthermore, invoking Theorem 1, we
obtain that counting non-maximal cliques of size k cannot be done in time O(nk−ε) for any
ε > 0. Note that this is also in sharp contrast to the problem of counting (not necessarily
non-maximal) cliques of size k which can be done in time O(nωk/3) [26]. Furthermore deciding
the existence of a non-maximal clique of size k is equivalent to deciding the existence of a
clique of size k + 1 and hence the lower bound under SETH crucially depends on the fact
that we count the solutions.

On the other hand, counting non-maximal cliques of size k is most likely not #A[2]-hard
as it is #W[2]-easy4. An example for a #A[2]-hard problem would be the following. Assume
a graph G and a natural number k are given. Then the goal is to compute the number of
k-vertex sets that can be (perfectly) matched to a k-clique. Let us express the problem as a
conjunctive query

ψk := x1 . . . xk∃y1 . . . ∃yk :
∧

1≤i<j≤k
E(yi, yj) ∧

∧
1≤i≤k

E(xi, yi) . (5)

We point out that ψk does not correspond directly to the vertex sets we would like to count
as xi and xj could be the same vertex in G. However, it can be shown that an oracle for
counting answers to ψk allows us to compute the desired number efficiently and vice versa.
Finally, as the linked matching number of ψk is not bounded for k → ∞, #A[2]-hardness
follows from Theorem 2.

Building up on Theorem 2 and using the framework of linear combinations, we obtain
the following, extensive classification result.

4 If there is a constant bound on the number of quantified variables then the problem of counting answers
to conjunctive queries is reducible to a #W[2]-complete problem w.r.t. parameterized Turing reductions.
We omit a proof of this statement but point out that it can be done by lifting the results of Chapt. 7.4
in [14] to the realm of counting problems.
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I Theorem 3. Let Φ be a family of existential or universal positive formulas with inequalities
and non-monotone constraints, both over the free variables. Given a formula ϕ from Φ and a
logical structure B, we wish to compute the number of solutions of ϕ in B.

When parameterized by |ϕ|, this problem is either fixed parameter tractable, W[1]-equiva-
lent, #W[1]-equivalent, #W[2]-hard or #A[2]-equivalent.

Note that allowing the inequalities and non-monotone constraints over all variables, not
just the free ones, would in particular include the subgraph decision problem. However, the
parameterized complexity of finding a subgraph in G that is isomorphic to a small pattern
graph P is a long-standing open question in parameterized complexity [11, Chapt. 33.1].

1.3 Techniques and Overview
Our paper brings together questions and techniques from a wide variety of areas, such as
parameterized and fine-grained complexity, logics, database theory, matroid theory, lattice
theory, graph minor theory, and the theory of graph limits. The interested reader should
not be alarmed, however, as we put considerable effort into making the presentation as
self-contained and smooth as possible, introducing the required background material carefully
and only once needed in both, the extended abstract as well as in the full version this
paper: After reviewing some basic preliminaries (Section 2), we formally present our refined
complexity classifications in Section 3 for the special case of partial graph homomorphisms,
rather than the full query evaluation problem. Due to the incompatibility of the space
constraints and the amount of results and techniques required, we deferred all proofs as well
as the treatment of the full query evaluation problem over arbitrary signatures of bounded
arity to the full version of this paper.

Colors and Query Minors

We will mainly work with a color-prescribed variant of the problem of counting answers to
conjunctive queries. Here we assume that the elements of a given database B are colored
according to the variables of the given conjunctive query ϕ and the goal is to compute the
number of solutions that are additionally color-preserving. For this variant we will show and
heavily exploit that the problem of counting answers to a conjunctive query ϕ is at least as
hard as counting answers to any query that is a minor of ϕ. Minors of a query are defined
via the (graph theoretic) minors of its Gaifman graph. It is then required to show that the
color-prescribed variant and the uncolored variant are interreducible for all minimal queries.
Intuitively, a query is minimal if it does not contain a proper subquery that produces the
same set of solutions for each database. The proof of the interreducibility relies on the theory
of homomorphic equivalence.

For Theorem 1 and the second case of Theorem 2 we construct a tight reduction from
the problem of counting dominating sets of size k which cannot be solved in time O(nk−ε)
for any ε > 0 unless SETH fails [28] and which is hard for #W[2] [13].

Minor Theory

For #A[2]-hardness in Theorem 2 we take a detour to graph minor theory: Given a graph G,
we call a set S ⊆ V (G) node-well-linked if, for every pair of disjoint, equal-sized subsets A,B
of S, there are |A| = |B| vertex disjoint paths in G that connect the vertices in A with the
vertices in B. Now, we obtain the following strengthening of the Excluded-Grid-Theorem,
which might be of independent interest.

ICALP 2019
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Y X

M

(a) A query (H,X) with a large linked matching
number (lmn(H,X) = 6): There is a large match-
ing M (gold-colored) connecting vertices in X with
a node-well-linked set in Y (enclosed within the
dashed line).

Y X

M

(b) A query (H,X) with a small linked matching
number (lmn(H,X) = 3): While there may be larger
matchings between vertices of X and Y , a largest
matching M into a node-well-linked set in Y has
size 3.

Figure 1 Examples for queries with large and small linked matching number.

I Theorem 4 (Intuitive version). There exists an unbounded function f such that every graph
with a node-well-linked set S of k vertices has an (f(k)× f(k))-grid minor with the property
that there are f(k) vertex-disjoint paths leading from S to the f(k) vertices of the first column
of the grid and without touching the grid minor elsewhere.

If we drop the requirement that the minor model can be reached by disjoint paths from S,
then this theorem is well-known and due to Diestel et al. [10].

Intuitively, we use Theorem 4 in the following way: If the quantified variables of a query
contain a node-well-linked set S, we obtain a large grid-like structure that is connected to S
by many vertex-disjoint paths. Next, we show that if that set S also has a large matching to
a subset of the free variables of the query, then the query becomes #A[2]-hard. For this last
step, we use an #A[2]-normalization theorem, which we will provide at the end of the paper.

Formally, we define the linked matching number of a query and prove #A[2]-hardness if
this parameter is unbounded. Consider Figure 1 for examples for the linked matching number.

I Definition 5 (Linked matching number). Let (H,X) be graphical conjunctive query, let
Y = V (H) \X be the set of quantified variables, and let M be a matching from X to Y . We
call the matching M linked if the set V (M) ∩ Y is node-well-linked in H[Y ]. The linked
matching number lmn of (H,X) is defined as the size of the largest linked matching of H.

Abstract Linear Combinations

To prove Theorem 3, we use abstract linear combinations that are called quantum graphs (or
rather, quantum queries in our setting) and were developed in the theory of graph limits [23].
For our computational questions, the complexity monotonicity property [6] is the useful
phenomenon that the quantum graph and its constituents (i.e., its abstract summands) often
lead to computational problems that have precisely the same complexity. Using elementary
linear-algebraic and polynomial interpolation arguments, we prove that this property holds,
and we use Rota’s NBC Theorem from lattice theory [29] to determine which graphs
are constituents of the relevant quantum graphs. The complexity monotonicity property
has been used (implicitly) by Chen and Mengel [5] for their extension from conjunctive
queries to monotone queries; and the extension from homomorphisms to partially injective
homomorphism [30] used Rota’s Theorem in a similar fashion as we do in the present work.
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2 Preliminaries

We use the notation [n] = {1, . . . , n} and [m,n] = {m, . . . , n} for natural numbers with
m < n. We write #M for the cardinality of a finite set M . We write f |M for the restriction
of a function f to elements of M . For a function f : A×B → C and a ∈ A, we write f(a, ?)
for the function b 7→ f(a, b).

Graphs, Homomorphisms, and Formulas

Graphs in this paper are unlabeled, undirected, simple and without self-loops, unless stated
otherwise. Let V (G) denote the set of vertices and E(G) denote the set of edges of G. We
define the size of a graph G to be the number of vertices. Given a subset Y of V (G), we
write G[Y ] for the subgraph induced by the vertices of Y . The complement graph G has
the same vertices as G and contains an edge uv if and only if u 6= v and uv /∈ E(G). A
homomorphism h from a graph F to a graph G is a mapping from V (F ) to V (G) that is
edge-preserving, that is, all uv ∈ E(F ) satisfy h(u)h(v) ∈ E(G). We write Hom(F → G) for
the set of all homomorphisms from F to G. A bijective homomorphism whose inverse is also
a homomorphism is called an isomorphism, and a homomorphism from F to F itself is called
endomorphism. An endomorphism that is also an isomorphism is called an automorphism.
We write Aut(F ) for the set of all automorphisms of F .

Parameterized Counting Complexity

A counting problem is a function P : {0, 1}∗ → N, and a parameterized counting problem is
a pair (P, π) where π : {0, 1}∗ → N is computable and called a parameterization. Param-
eterized decision problems are defined likewise for decision problems P : {0, 1}∗ → {0, 1}.
A parameterized (decision or counting) problem is fixed-parameter tractable if there is a
computable function t : N→ N such that, for every input x ∈ {0, 1}∗, the function P can be
computed in time t(π(x)) · poly(|x|). We denote the class of all fixed-parameter tractable
problems as FPT.

A parameterized Turing-reduction from (P, π) to (P ′, π′) is an algorithm A with oracle
access to P ′ that solves P , such that A runs in fixed-parameter tractable time when pa-
rameterized by π and there exists a computable function r such that, for every input x,
the parameter π′(y) of every query y is bounded by r(π(x)). A parameterized parsimonious
reduction is a parameterized Turing-reduction with the additional requirement that A is
only allowed to query the oracle a single time at the very end of the computation and then
outputs the result of the query without further modification.

Clique is the parameterized (decision) problem to decide whether a given graph G contains
a k-clique. Similarly, DomSet is to decide whether G has a dominating set of size k. The
parameterized counting problems #Clique and #DomSet count the number of the respective
objects. We define the parameterized complexity classes that appear in this paper by their
well-known complete problems: W[1] contains all parameterized problems that are reducible
to Clique with respect to parameterized parsimonious reductions. Similarly, #W[1], W[2],
and #W[2] contain all problems reducible to #Clique, DomSet, and #DomSet, respectively.
Furthermore #A[2] is the class of all parameterized counting problems that are expressible
as model counting problem with one quantifier alternation. It is known that

FPT ≤T W[1] ≤T #W[1] ⊆ #W[2] ⊆ #A[2] ,

where C ≤T D denotes that every problem in C can be reduced to a problem in D with
respect to parameterized Turing-reductions.
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y

x1

xk

(a)
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ỹ

x1

xk

(b)

Figure 2 (a) Graphical representation of the conjunctive query in (6). (b) A graphical conjunctive
query that is “equivalent” to the example on the left in the sense that an assignment a : {x1, . . . , xk} →
V (G) is a partial homomorphism from the left graph to G if and only if it is a partial homomorphism
from the right graph to G.

For further background on parameterized counting complexity, see [14, Chapter 14]. While
the parameterized complexity classes are defined via parsimonious reductions, we will rely
on Turing reductions. Hence we cannot speak of completeness but instead of equivalence.

I Definition 6. Let C be a parameterized complexity class. A parameterized counting problem
(P, π) is C-easy if it can be reduced to a problem in C and it is C-hard if every problem
in C reduces to (P, π), both with respect to parameterized Turing-reductions. A problem is
C-equivalent if it is C-easy and C-hard.

Exponential-Time Hypotheses

The strong exponential time hypothesis (SETH) asserts that for all δ > 0 there is some k ∈ N
such that k-SAT cannot be computed in time O(2(1−δ)n), where n is the number of variables
of the input formula [19]. A dominating set of size k in an n-vertex graph cannot be computed
in time O(nk−ε) for any ε > 0 unless SETH is false [28]. The exponential time hypothesis
(ETH) asserts that 3-SAT cannot be computed in time exp(o(m)), where m is the number of
clauses of the input formula [19].

3 Formal Statements of Our Results

It is instructive to first focus on conjunctive queries with one relation symbol E of arity two.
An example of such a query is the following formula:

x1 . . . xk∃y : Ex1y ∧ · · · ∧ Exky . (6)

The relation E corresponds to a graph G and the free and quantified variables will be assigned
vertices of G. In this example, an assignment a1, . . . , ak ∈ V (G) to the free variables satisfies
the formula if and only if the vertices a1, . . . , ak have a common neighbor in G. It will be
convenient for us to view the formula as a graph H as depicted in Figure 2. The vertices of H
are partitioned into a set X = {x1, . . . , xk} of free variables and a set Y = {y} of quantified
variables. An assignment to the free variables corresponds to a function a : X → V (G), and
such an assignment satisfies the formula if it can be consistently extended to a homomorphism
from H to G. This motivates the following definition, where we only consider simple graphs
without loops, so we do not allow atomic subformulas of the form Ezz.

I Definition 7. A graphical conjunctive query (H,X) consists of a graph H and a set
X of vertices of H. We let Hom(H,X → G) be the set of all mappings from X to V (G)
that can be extended to a homomorphism from H to G, and we call these mappings partial
homomorphisms. Formally, the set of partial homomorphisms is defined via

Hom(H,X → G) =
{
a : X → V (G)

∣∣∣ ∃h ∈ Hom(H → G) : h|X = a
}
. (7)
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Given two different graphical conjunctive queries (H,X) and (Ĥ, X̂) it might be the case
that #Hom(H,X → ?) and #Hom(Ĥ, X̂ → ?) are the same functions. An example for this
is given in Figure 2. In this case, we say that (H,X) and (Ĥ, X̂) are equivalent, denoted
as (H,X) ∼ (Ĥ, X̂), and the subgraph-minimal elements of the induced equivalence classes
are called minimal. In what follows, we classify the complexity of counting homomorphisms
for classes of graphical conjunctive queries. More precisely, we consider the parameterized
counting problem #Hom(∆) for each fixed class ∆ of graphical conjunctive queries. This
problem is given as input a query (H,X) ∈ ∆ and a graph G and the task is to compute the
number #Hom(H,X → G). The problem is parameterized by the size of H. We start with
the formal definitions of the different structural parameters of graphical conjunctive queries
and present the classification theorem thereafter. All parameters, along with five example
classes, are depicted in Figure 3.

I Definition 8 (Contract). The contract of a graphical conjunctive query (H,X) is a graph
on the vertex set X, obtained by adding an edge between two vertices u and v in X if uv is
an edge of H or if there exists a connected component C in H \X that is adjacent to both u
and v. Given a class ∆ of conjunctive queries, we write contract(∆) for the set of all of its
contracts.

I Definition 9 (Dominating star size). Let (H,X) be graphical conjunctive query and let
Y1, . . . , Y` be the connected components of the subgraph H[V (H)\X] induced by the quantified
variables. Further, let ki be the number of vertices x ∈ X for which there exists a vertex
y ∈ Yi that is adjacent to x. The dominating star size of (H,X) is defined via

dss(H,X) = max
{
ki | i ∈ `

}
.

We are now in position to state our main result, the full classification for counting answers
to conjunctive queries. Note that Theorem 2 is subsumed by the full classification in the case
of graphs. The general version, that is, the case of arbitrary logical signatures with bounded
arity, is stated and proved in the full version.

I Theorem 10. Let ∆ be a recursively enumerable class of minimal conjunctive queries.
1. If the treewidth of ∆ and contract(∆) is bounded, then #Hom(∆) can be computed in

polynomial time.
2. If the treewidth of ∆ is unbounded and the treewidth of contract(∆) is bounded, then

#Hom(∆) is W[1]-equivalent.
3. If the treewidth of contract(∆) is unbounded and the dominating star size of ∆ is bounded,

then #Hom(∆) is #W[1]-equivalent.
4. If the dominating star size of ∆ is unbounded, then #Hom(∆) is #W[2]-hard. Moreover,

for any fixed query δ with dss(δ) ≥ 3, the problem #Hom(δ → ?) cannot be computed in
time O(ndss(δ)−ε) for any ε > 0 unless SETH fails.

5. If the linked matching number of ∆ is unbounded, then #Hom(∆) is #A[2]-equivalent.

In proving the last case of Theorem 10, we establish the following generalization of the
Excluded-Grid-Theorem which applies for conjunctive queries with a large linked matching
number and is essentially equivalent to Theorem 4; consult Figure 3 for the notion of a grate.

I Theorem 11. Let ∆ be a class of graphical conjunctive queries. If the linked matching
number of ∆ is unbounded, then ∆ contains arbitrarily large grates as minors.
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Query Classes ∆poly ∆W[1] ∆#W[1] ∆#W[2] ∆#A[2]

Query
for k = 4

contract
for k = 4 ∅

tw O(1) ∞ ∞ O(1) ∞
tw(contract) O(1) O(1) ∞ ∞ ∞
dss O(1) O(1) O(1) ∞ ∞
lmn O(1) O(1) O(1) O(1) ∞
Complexity P W[1]-eq. #W[1]-eq. #W[2]-hard #A[2]-eq.(∗)

Figure 3 Example problems for each case of the complexity classification (Theorem 10):

∆poly = {ϕk | k ∈ N } , where ϕk := x1 . . . xk ∃y1 . . .∃yk−1 :
∧

1≤i<k

Exiyi ∧ Eyixi+1

∆W[1] = {ψk | k ∈ N }, where ψk := ∃y1 . . .∃yk :
∧

1≤i<j≤k

Eyiyj

∆#W[1] = { υk | k ∈ N }, where υk := x1 . . . xk :
∧

1≤i<j≤k

∃yij : Exiyij ∧ Eyijxj

∆#W[2] = { δk | k ∈ N } , where δk := x1 . . . xk∃y :
∧

1≤i≤k

Exiy

Furthermore, ∆#A[2] is the set of all grates. Here, a k-grate is the conjunctive query whose
quantified variables constitute half of a k × k grid whose diagonal is connected to k free variables by
a matching of size k. The formal definition is given in the full version.
Depicted is the query (H,X) for k = 4, where free variables (i.e., vertices in X) are drawn as solid
discs and quantified variables (i.e., vertices in V (G) \ X) are drawn as hollow squares. We also
display the contract (see Definition 8) of each query. We write O(1) whenever a parameter is
bounded by a constant in the entire query class, and ∞ whenever it is unbounded. Finally, we
show the complexity of counting answers to conjunctive queries in each of the classes in terms of
polynomial-time tractability (P) and equivalence (-eq.) or hardness for one of the parameterized
complexity classes.

(∗) The observant reader might have noticed that a k-grate is not a minimal conjunctive query.
For this reason, #A[2]-equivalence in the last column refers to minimal conjunctive queries that contain
arbitrary large grates as minors. Alternatively, #A[2]-equivalence is shown to hold for k-grates in the
color-prescribed case. Details are given in the full version.
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Building upon Theorem 10, we invoke the complexity monotonicity property of linear
combinations of conjunctive queries to classify the complexity of counting answers to queries
of the form (2), that is, existential or universal first-order queries for which we allow
inequalities and non-monotone constraints, both over the free variables. Specifically, we
prove the classification as given by Theorem 3. Again, we refer to the full version for the
general case of arbitrary logical structures of bounded arity. We also discuss conjunctive
queries that may contain inequalities over the free variables. Note that in that case, we are
able to give explicit criteria for the five different cases in Theorem 3.

4 Conclusions

We established a comprehensive classification of the complexity of counting answers to
conjunctive queries and linear combinations thereof. Depending on the structural parameters
of the class of allowed queries, the problem is either polynomial-time solvable, W[1]-equivalent,
#W[1]-equivalent, #W[2]-hard or #A[2]-equivalent. This classification, however, leaves out
a gap between the latter two cases. More precisely, the following question remains open:

Does a class of conjunctive queries ∆ exist for which #Hom(∆) is #W[2]-hard
but neither equivalent for #W[2] nor for #A[2]?

We conjecture a positive answer; the interested reader is encouraged to make themself familiar
with the parameterized complexity class Wfunc[2] (see e.g. [14, Chapter 8.8]). This class has
a canonical counting version which we call #Wfunc[2] and which interpolates between #W[2]
and #A[2]. In particular, we conjecture that there exists a class of conjunctive queries ∆ for
which #Hom(∆) is #Wfunc[2]-equivalent. Consequently, a negative answer to the previous
question would imply that either #Wfunc[2] = #W[2] or #Wfunc[2] = #A[2], which seems to
be very unlikely (see e.g. the discussion of Wfunc[2] in [14, Chapter 8.8]).

A further question that remains open, and which should be considered a stronger version
of the previous question, reads as follows:

Does a class of conjunctive queries ∆ exist such that ∆ has bounded linked matching number
and the problem #Hom(∆) is #A[2]-equivalent?

In other words, the above question asks whether the absence of a bound on the linked
matching number is not only sufficient, but also necessary for #A[2]-equivalence. In contrast
to the previous question, we conjecture a negative answer. Let us provide some intuition for
the latter conjecture: It seems that a constant bound on the linked matching number of a
class of conjunctive queries ∆ yields a separator decomposition of the quantified variables of
queries in ∆ in components that have either small treewidth or a small matching number to
the free variables. We conjecture that such a decomposition implies the existence of what is
called a κ-restricted nondeterministic Turing machine M such that the number of accepting
paths of M on input (H,X) ∈ ∆ and a graph G is precisely #Hom(H,X → G) (see e.g. [14,
Definition 14.15]). If additionally #Hom(∆) is #A[2]-equivalent, this would imply that the
set of #A[2]-equivalent problems is a subset of the set of #W[P]-equivalent problems; consult
e.g. [14, Chapter 3 and 14.2] for a treatment of the class #W[P]. However, the latter inclusion
seems to be unlikely and we refer the interested reader to [14, Chapter 8] for a detailed
treatment of the corresponding question whether A[2] ⊆ W[P] in the decision world. We
conclude with the remark that even a proof of A[2] ⊆ #W[P] would be a major breakthrough
as it constitutes the first step of a parameterized analogue of Toda’s theorem [31], which is
one of the fundamental open problems in (structural) parameterized counting complexity.
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