
Determinization of Büchi Automata: Unifying the
Approaches of Safra and Muller-Schupp
Christof Löding
RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany
loeding@cs.rwth-aachen.de

Anton Pirogov
RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany
pirogov@cs.rwth-aachen.de

Abstract
Determinization of Büchi automata is a long-known difficult problem, and after the seminal result of
Safra, who developed the first asymptotically optimal construction from Büchi into Rabin automata,
much work went into improving, simplifying, or avoiding Safra’s construction. A different, less known
determinization construction was proposed by Muller and Schupp. The two types of constructions
share some similarities but their precise relationship was still unclear. In this paper, we shed some
light on this relationship by proposing a construction from nondeterministic Büchi to deterministic
parity automata that subsumes both constructions: Our construction leaves some freedom in the
choice of the successor states of the deterministic automaton, and by instantiating these choices in
different ways, one obtains as particular cases the construction of Safra and the construction of Muller
and Schupp. The basis is a correspondence between structures that are encoded in the macrostates
of the determinization procedures – Safra trees on one hand, and levels of the split-tree, which
underlies the Muller and Schupp construction, on the other hand. Our construction also allows for
mixing the mentioned constructions, and opens up new directions for the development of heuristics.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Büchi automata, determinization, parity automata

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.120

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.02139.

Funding Anton Pirogov: This author is supported by the German research council (DFG) Research
Training Group 2236 UnRAVeL

1 Introduction

Büchi automata are finite automata for infinite words, and were initially introduced to show
decidability of the logic S1S [2]. Infinite words can be used to model infinite execution
traces of reactive, non-terminating systems, and serve as a translation target from logics
like LTL (see, e.g., [15, 5]), which is a popular and well-understood specification formalism.
For this reason, Büchi automata nowadays play a central role in formal methods like model-
checking [1] and runtime-verification [6], because they can represent all ω-regular languages
and are suitable for efficient algorithmic treatment. Unfortunately, the simplicity of the
Büchi acceptance condition makes it crucially dependent on nondeterminism, i.e., not every
ω-regular language (or LTL formula) can be accepted by a deterministic Büchi automaton
(see, e.g., [16]). In some settings, this nondeterminism causes difficulties, such that algorithms
require a representation of the property by a deterministic automaton, like in probabilistic
model-checking (see, e.g., [1, Section 10.3]), or in synthesis (see [17] for an overview of the
theory, and [9] for recent developments in practice).

EA
T

C
S

© Christof Löding and Anton Pirogov;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 120; pp. 120:1–120:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:loeding@cs.rwth-aachen.de
https://orcid.org/0000-0002-5077-7497
mailto:pirogov@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.ICALP.2019.120
https://arxiv.org/abs/1902.02139
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

120:2 Determinization of Büchi Automata

A first determinization procedure that translates nondeterministic Büchi automata into
deterministic automata was presented in [8]. The first asymptotically optimal and most
well-known determinization construction for Büchi automata is the construction of Safra
[13]. It translates a nondeterministic Büchi automaton with n states into a deterministic
Rabin automaton with at most 2O(n logn) states and O(n) sets in the acceptance condition.
In applications like synthesis, the deterministic automaton is used to build a game that
inherits as winning condition the acceptance condition of the automaton. In the theory of
infinite duration games, the parity condition plays a central role (see, e.g., the survey [18]).
For this reason, Piterman modified Safra’s construction in order to directly obtain a parity
automaton [11]. This construction was reformulated in [14], where also a tighter analysis
of its state complexity is given with an upper bound of O(n!2) for the number of states. A
similar construction is presented in [12], adapted to the translation of ω-regular expressions
directly into parity automata.

It is known that the Safra construction is essentially optimal [3], so there is no hope of
significantly improving the worst-case upper bounds of the known constructions. However, the
data structure of Safra trees (or history trees) that is used for the states of the deterministic
automata, is challenging to deal with in implementations. Therefore, alternative approaches
for determinization have been studied, leading to a family of constructions that are based
on a construction by Muller and Schupp, which appeared in [10] as a by-product of a
translation from alternating to non-deterministic tree automata. An explicit description of
the construction specifically for determinization of Büchi automata is presented in [7]. A
refinement of that construction is presented in [4], in which the states of the deterministic
automaton are no longer represented as trees but as ordered and labelled tuples of sets.

The two approaches of Safra and Muller-Schupp show some similarities, as pointed out in
the conclusion of [4], but from the existing formulations of the constructions, their precise
relationship is not clear.

In this paper, we provide a construction for transforming nondeterministic Büchi auto-
mata into deterministic parity automata that cleanly explains the connections between the
approaches of Safra and Muller-Schupp. It turns out that both types of constructions can be
formulated on the same data structure, which can either be understood as ordered tuples of
sets in which each set has an additional rank (a natural number), or as Safra trees in which
each node has an additional rank (the same structure is essentially used in the constructions
from [11] and [14]). The transitions are defined in terms of a sequence of simple operations,
and it turns out that the two constructions only differ in one of these operations. In summary,
our contributions are the following:

We provide a new and relatively simple formulation of a Muller-Schupp style determin-
ization construction that yields deterministic parity automata. Compared to previous
constructions from [7] and [4], we encode less information in the states, and obtain a
construction that has the same worst-case upper bound as the Safra style constructions.
We extend our Muller-Schupp style construction by introducing a degree of freedom in
the choice of the successor states. This freedom can be used to make the construction
correspond to Safra’s construction as presented in [11] and [14]. We therefore obtain
a construction that unifies the approaches of Safra and Muller-Schupp in one general
construction. Furthermore, the freedom in the choice of the successors of transitions
also yields new ways of obtaining deterministic parity automata, and can be used in
implementations as a heuristic to reduce the state space of the resulting automaton.

This work is organized as follows. After introducing the basic notations in Section 2, we
present the new variant of the Muller-Schupp construction in Section 3, and then briefly
review Safra’s construction in Section 4. We explain the structural relationship between

C. Löding and A. Pirogov 120:3

those two constructions in Section 5, and finally introduce our generalized construction as a
simple extension of the presented Muller-Schupp construction in Section 6. In Section 7 we
discuss and conclude.

2 Preliminaries

First we briefly review basic definitions concerning ω-automata and ω-languages. If Σ is
a finite alphabet, then Σω is the set of all infinite words w = w0w1 . . . with wi ∈ Σ. For
w ∈ Σω we denote by w(i) the i-th symbol wi. For convenience, we write [n] for the set
of natural numbers {1, . . . , n}. A Büchi automaton A is a tuple (Q,Σ,∆, Q0, F), where Q
is a finite set of states, Σ a finite alphabet, ∆ ⊆ Q × Σ ×Q is the transition relation and
Q0, F ⊆ Q are the sets of initial and accepting states, respectively. When Q is understood
and X ⊆ Q, then X := Q \ X. We write ∆(p, x) := {q | (p, x, q) ∈ ∆} to denote the set
of successors of p on symbol x and ∆(P, x) for

⋃
p∈P ∆(p, x). A run of an automaton on a

word w ∈ Σω is an infinite sequence of states q0, q1, . . . starting in some q0 ∈ Q0 such that
(qi, w(i), qi+1) ∈ ∆ for all i ≥ 0. An automaton is deterministic if |Q0| = 1 and |∆(p, x)| ≤ 1
for all p ∈ Q, x ∈ Σ, and non-deterministic otherwise. In this work, we assume Büchi
automata to be non-deterministic and refer to them as NBA. A transition-based deterministic
parity automaton (TDPA) is a deterministic automaton (Q,Σ,∆, Q0, c) where instead of
F ⊆ Q there is a priority function c : ∆→ N assigning a natural number to each transition.

A run of an NBA is accepting if it contains infinitely many accepting states. A run of a
TDPA is accepting if the smallest priority that appears infinitely often on transitions along
the run is even. An automaton A accepts w ∈ Σω if there exists an accepting run on w, and
the language L(A) ⊆ Σω recognized by A is the set of all accepted words. To avoid confusion,
we sometimes refer to states of TDPA that we construct as macrostates to distinguish them
from the states of the underlying Büchi automaton.

3 A Simplified Muller-Schupp Construction

The essential idea for determinization using the Muller-Schupp construction is the following:
given some Büchi automaton A and input word w, the resulting deterministic automaton
conceptually traverses a specific run-tree of A on w, called reduced split-tree in [7], and tracks
enough information to decide whether an infinite path with a specific shape exists in this tree.
Such a path is known to exist if and only if w is accepted by A. The construction presented
in [7] uses a structure called contraction trees in order to track the relevant information.
This has been simplified in [4] to macrostates that consist of an ordered tuple of disjoint sets
of Büchi states, and two preorders over the states appearing in the tuple.

In this section, we further simplify the structure of the macrostates for the deterministic
automaton to ordered tuples of disjoint sets of Büchi states, and a single additional linear
order on these sets (formally expressed as a ranking function that assigns to each set a natural
number). This also results in a relatively simple transition function on the macrostates.

The reduced split-tree trs(A, w) for NBA A and word w ∈ Σω is an ordered infinite tree
in which the nodes are labelled by state-sets, and each node has at most two successors.
Formally, it is constructed as follows. The first level of the tree consists of the root node
labelled by the initial states Q0. To construct level i+ 1 from level i, for each node at level
i labelled by set S of states, let the left child of S be labelled by ∆(S,w(i)) ∩ F and the
right child by ∆(S,w(i))∩F , i.e., accepting and non-accepting successor states are separated.
Then keep only the leftmost (wrt. the natural ordering of neighbors) occurrence of each state

ICALP 2019

120:4 Determinization of Büchi Automata

A :=
q0 q1

q2
a

aa
a a trs(A, aω) :=

{q0}
{q1} {q0}

{q1} {q2} {q0}
{q1} {q2} {q0}

. . .

Figure 1 Example of a reduced split-tree trs(A, aω) of an NBA A. It has an infinite path
representing the run qω

0 and a left-path representing the run q0q
ω
1 , from which finite paths q0q

∗
1q2

branch off.

in the level and finally remove nodes labelled by ∅. Clearly, because of the normalization,
the number of nodes on each level can be at most |Q|. An example of a reduced split-tree is
shown in Figure 1. We call an infinite path in the tree that takes the left branch infinitely
often a left-path. Reduced split-trees have the following useful property:

I Lemma 1 ([7], Lemma 2). A accepts w ⇐⇒ trs(A, w) has a left-path.

In the following, we identify nodes in the same level with their label sets. To obtain a
deterministic automaton, we augment the nodes of the reduced split-tree with number tokens
that we call (age-)ranks, which are used to infer a left-path.

The new macrostates in the deterministic automaton represent levels of reduced split-
trees and consist of a tuple of disjoint non-empty sets t := (S1, S2, . . . , Sn) equipped with a
bijection α : [n]→ [n] satisfying α(n) = 1, which assigns to each set Si the rank α(i). We call
a pair (α, t) that satisfies these constraints ranked slice and we call it pre-slice, if t contains
empty sets or α is not a bijection. Notice that all macrostates are ranked slices, whereas
pre-slices occur only during intermediate steps. We introduce the following useful notations
to work with ranked slices. Let |t| := n and Qt :=

⋃|t|
i=1 Si. The function idx : Qt → [|t|]

maps each state q ∈ Qt to the tuple index i such that q ∈ Si, and by α(q) we denote
α(idx(q)) for q ∈ Qt.

When reading symbol x ∈ Σ in macrostate (α, t), the successor macrostate (α′, t′) is
obtained by a sequence of successive operations step, prune and normalize, where, roughly,

step interprets t as nodes on a reduced split-tree level and calculates the next level sets,
prune removes the empty sets produced by step, reassigning ranks in a specific way, and
normalize just turns the ranking function obtained after prune into a bijection again.

Below, we formally define these operations (step and prune are illustrated in Figure 2).
First we describe step, which constructs the next level of the reduced split-tree and passes

each existing rank on to the respective right child. Let

∆t(q, x) := ∆(q, x) \∆(
idx(q)−1⋃
i=1

Si, x),

restricting for each state q ∈ Qt the successors to only those which are not reached by some
other state located in a set to the left of q. Then, for each node Si let Ŝ2i−1 := ∆t(Si, x)∩F
be the left child and Ŝ2i := ∆t(Si, x) ∩ F the right child, containing the accepting and
non-accepting normalized successors, respectively. Let α̂(2i) := α(i) and α̂(2i− 1) := n+ 1,
i.e., the right children inherit the rank of the parent and the left children all get the same
new maximal rank n+ 1, resulting in a pre-slice (α̂, t̂).

C. Löding and A. Pirogov 120:5

(α, t) = (S1
α(1)

∆t(S1,x)

S2
α(2)

∆t(S2,x)

S3
α(3)

∆t(S3,x)

. . . Sn
α(n)

∆t(Sn,x)

)

(α̂, t̂) = (Ŝ1
n+1

Ŝ2
α(1)

Ŝ3
n+1

Ŝ4
α(2)

Ŝ5
n+1

Ŝ6
α(3) . . . Ŝ2n−1

n+1
Ŝ2n

α(n))

(α̃, t̃) = (S̃1
α̃(1)

min

S̃2
α̃(2)

min

S̃ñ
α̃(ñ)

min

)

step

prune 6=∅ 6=∅ 6=∅

∩F ∩F ∩F ∩F ∩F ∩F ∩F ∩F

Figure 2 Abstract illustration of step and prune in a Muller-Schupp transition on some x ∈ Σ. The
superscripts represent the assigned ranks. First, step calculates the normalized successors, separating
accepting from non-accepting states and passing the parent rank on to the right child. In the
illustration, we assume that the sets Ŝi 6= ∅ for i ∈ {2, 5, 2n−1}, i.e., x1 = 2, x2 = 5, xñ = x3 = 2n−1.
Then prune keeps sets at these positions for the resulting tuple t̃, and α̃ is obtained by taking the
minimum of the ranks given by α̂ in the ranges spanning from one xi up to the position before xi+1.
Finally t′ := t̃ and α̃ is normalized to α′, while preserving strict ordering between positions wrt. α̃.
The dotted edges connect parent sets (in the top row) and resulting left/right children sets (bottom
row) in the conceptual reduced split-tree, the solid edges show the movements of the rank values
assigned to the sets.

Intuitively, in the prune operation, all ranks that mark empty sets after step are relocated
onto the closest non-empty set to the left (or removed, if no such set exists). When multiple
ranks occupy the same set, then the smallest one is preserved. Ranks that moved to the left
in this way and are not removed, indicate a good (green) event, whereas ranks which were
removed indicate a bad (red) event.

Formally, let x1 < x2 < . . . < xñ be the increasing sequence of all indices such that
Ŝxj
6= ∅. Then prune returns (α̃, t̃) with the tuple t̃ := (Ŝx1 , . . . , Ŝxñ

) without empty sets,
where α̃ is defined as α̃(i) := min{α̂(j) | xi ≤ j < xi+1} with xñ+1 := |t̂|+ 1.

The set of green ranks is given by G := img(α̃) ∩ {α̂(j) | Ŝj = ∅}, where img(α̃) denotes
the image of α̃. These are the ranks that mark empty sets after step and are not removed
by prune. The set of red ranks given by R := img(α̂) \ img(α̃) contains the ranks that were
not preserved during prune. The set of active ranks is A := G ·∪ R. Let k := minA (or
k := |Q|+ 1 if A = ∅) denote the dominating rank of the transition, i.e., the smallest active
rank. We define the priority p of the transition as 2k if k ∈ G and 2k − 1 otherwise.

The function α̃ might assign the same rank to several sets, and it might have gaps (unused
rank values between used ones). So finally, normalize returns (α′, t′) with t′ := t̃ and a final
bijective ranking function α′ : [|t′|] → [|t′|] such that α̃(j) < α̃(k) ⇒ α′(j) < α′(k) for all
j, k ∈ {1, . . . , |t′|}, i.e., a total order which is compatible with the preorder induced by α̃. If
there are several such ranking functions α′, then any of these works.

A TDPA B is obtained by taking the initial state (α0, t0) with t0 := (Q0), α0(1) := 1 and
a transition function that picks for each state a valid successor that satisfies the description
above, and assigns the corresponding priority p to the edge. Observe that by construction,
the sequence of states visited along some word w ∈ Σω from the initial state represents
exactly the levels of trs(A, w), marked with ranks.

I Theorem 2. For a given NBA with n states, the TDPA obtained by the Muller-Schupp
construction accepts the same language as the NBA, and its number of states is in O(n!2).

The correctness follows from the correctness of the generalized construction presented in
Section 6. The claim on the state complexity directly follows from the upper bound given in
[14, Proposition 2], and the bijection between the set of ranked slices and the set of ranked
Safra trees presented in Section 5.

ICALP 2019

120:6 Determinization of Büchi Automata

A :=
q0

q2

q1

q3

a

a

a a a
{q0, q1, q2}1

{q1}2 {q2}3
a→

{q0}1

∅2 ∅3 {q3}

∅ {q2}

→
{q0, q2, q3}1

{q2}2 {q3}3

Figure 3 Example of a Safra-tree transition on letter a, based on NBA A. The LIR position
of nodes is depicted as superscript of the sets. The “redundant” states that are implicit in our
definition are depicted in gray in the initial and resulting tree. In the intermediate step, the tree is
depicted after calculating and pruning successor state sets. In the final tree the remaining actions
are performed and LIR positions are updated. The transition has a red event for LIR position 2 and
a green event for position 3. Because of the removal of the node at position 2 in the LIR, the node
that originally was at position 3 moved up, whereas the fresh node labelled by {q3} comes last.

4 Sketch of the Safra Construction

In this section, we roughly illustrate the used structures and operations of the Safra con-
struction along the lines of [11, 14], so that we can demonstrate its relationship with the
Muller-Schupp construction in the next section. As before, A is an NBA with the usual
components.

A Safra tree is a finite ordered tree with non-empty state-sets as labels. Usually, it is
required that a parent is labelled by a strict superset of all states in its subtree and siblings
are labelled by pairwise disjoint sets. We use the equivalent requirement that all labels in the
tree are pairwise disjoint, i.e., refrain from listing states in the parent label which are already
present in some descendant. One can easily reconstruct the “full” label set of a node wrt.
the classical definition by taking the union of all the labels in its subtree. To obtain parity
automata, each node of the Safra tree is associated with a number from {1, . . . , n}, where
n is the number of nodes in the Safra tree [11]. These numbers satisfy the property that
parent nodes have smaller numbers than their children, and a node has a smaller number
than its right sibling. The numbers correspond to the ranks that we use in Section 3, and we
therefore refer to Safra trees in combination with these numbers as ranked Safra trees. Two
ranked Safra trees are shown in Figure 3 (and an intermediate tree in the middle).

In [14], a slightly different representation is used based on a later introduction record
(LIR), which just lists the tree nodes in their introduction order, i.e., nodes appear in this
list after parents and older siblings (in this representation, nodes have canonical names
depending only on their position in the tree). Safra trees with LIR directly correspond to
ranked Safra trees by annotating each tree node with its position in the LIR.

A transition on symbol x ∈ Σ is constructed as follows (see Figure 3 for an example).
First, for each label set S, the set S′ := ∆(S, x) of successor states is calculated. After this,
each node gets a fresh right-most child, and the accepting states in S′, that is S′ ∩ F , are
moved into the label of this child. Then, disjointness is ensured by keeping of each state
only the copy which is located at the deepest node along the leftmost branch where that
state occurs (this stage is represented by the middle tree in Figure 3). If now some internal
node has an empty label, but a non-empty subtree (a good event for the node), its subtree
is collapsed into a single node by removing all descendants and moving the states in their
labels into the parent label. Finally, all remaining sets that are labelled by ∅ are removed
(being removed is a bad event for a node). In the following, we refer to good and bad events
as green and red, respectively. The priority for the transition is derived from the green and
red events, which are associated with the relative position of the corresponding nodes in the
LIR. The LIR for the new tree is obtained by deleting removed nodes from the LIR and
appending fresh nodes that remain in the resulting tree in arbitrary order.

C. Löding and A. Pirogov 120:7

5 From Safra-trees to ranked slices and back

In this section we state the key observation that was the starting point of this work: there
is a bijection between the set of ranked slices and the set of ranked Safra trees. From a
ranked Safra tree, one obtains the ranked slice by simply listing the nodes of the Safra
tree by a depth-first post-order traversal (i.e., a parent processed after all its children).
We formalize this relationship below, and then explain that the transitions defined in the
Muller-Schupp construction and in the Safra construction are very similar, which then leads
to the unified construction.

Let (α, t) be a ranked slice with t = (S1, . . . , Sn). The tuple index of the parent of Si
is the closest index to the right of i that has a smaller rank and is formally defined as
↑(i) := mini<k≤n{k | α(k) < α(i)}. As we require by definition of ranked slices that the right-
most position in the tuple always has rank 1, this is the only position in the tuple for which
the parent is undefined. The ordered tree induced by ↑, with siblings in tuple index order, is
called the rank tree of (α, t). The tuple index of the left subtree boundary of Si is the closest
index to the left with a smaller rank, and is denoted by ←(i) := max1≤k<i{k | α(k) < α(i)}
or 0 if no such index exists. It points to either the direct left sibling of i, or the left sibling of
the closest ancestor, if one exists. Effectively, ←(i) is the closest neighbor to the left which is
not a descendant of i. As children by definition are always to the left of their parents, every
node at indices ←(i) + 1, . . . , i is in the subtree of i.

For an example, consider the tuple ({q3}4, {q1}2, {q2}3, {q0}1), where the superscripts
denote the assigned rank (e.g., α(1) = 4). The rightmost position 4 of the tuple is the root of
the tree. For the positions 2 and 3, which have rank 2 and 3 respectively, the next position
to the right with a smaller rank is in both cases position 4, i.e., ↑(2) = ↑(3) = 4. Finally,
position 1 in the tuple has position 2 as parent, i.e., ↑(1) = 2. The discussed tuple is depicted
with the parent edges at the bottom right of Figure 4. There is also one non-trivial left
subtree boundary in this tuple, assigned by ←(3) = 2, i.e. index 2 is not in the subtree of
index 3, and in this case is an actual left sibling of index 3.

We use the notation ↑α := α ◦ ↑ ◦ α−1 to denote the parent rank of another rank directly,
without mentioning the indices in the tuple. In the previous example, we have ↑α(4) = 2,
and ↑α(2) = ↑α(3) = 1. We identify the age-ranks α(i) as nodes of the tree, while each set
Si determines the label of the node α(i), called hosted set. We write S↓i :=

⋃i
k=←(i)+1 Sk for

the subtree set of node α(i).

I Definition 3. Let safra2slice be the mapping which takes a ranked Safra tree and returns
(α, t), with t := (S1, . . . , Sn) being the label sets of the nodes in depth-first post-order (i.e., a
parent processed after all its children) traversal order and ranking α defined by the ranks of
the corresponding Safra tree nodes.

Let slice2safra be the mapping which takes a ranked slice (α, t) and returns the ranked
Safra tree given by the rank tree of (α, t), i.e. the tree structure defined by ↑ and the ordering
of siblings given by the order of the corresponding sets in t.

It is easy to see from the definitions that safra2slice and slice2safra are injective and return
a valid ranked slice and ranked Safra tree, respectively. This implies that there exists a
bijection between the sets of ranked Safra trees and ranked slices. It is also not very hard to
see that the following holds:

I Lemma 4. safra2slice and slice2safra are inverses of each other and provide a bijection
between ranked Safra trees and ranked slices.

ICALP 2019

120:8 Determinization of Büchi Automata

q0 q1

q2 q3

q4

A :
a, b, c

b

a
b, c

c

c

b
a, b

a, c

c

ranked Safra tree sequence:

{q0}1◦
{q2}24 {q4}3�

{q3}49

a→ {q4}2�

{q0}1◦
{q2}4♥

{q3}39

c→ {q4}2�

{q0}1◦
{q2}3♥

{q3}4♦

b→{q1, q3}2�

{q0}1◦
{q2}3♥

{q0}1◦{q4}3�{q3}49{q2}24

Muller-Schupp sequence of ranked slices:

{q0}1◦{q2}4♥{q4}2�{q3}39

{q0}1◦{q2}3♥{q4}2�{q3}4♦

{q0}1◦{q2}3♥{q1}2�{q3}4♦

↓ a

↓ c

↓ b

/∈ F∈ F ∈ F /∈ F

/∈ F∈ F∈ F /∈ F

/∈ F∈ F∈ F ∈ F

{q0}1∅5∅3{q2}5∅2{q1}5∅4{q3}5

During last transition, after step:

()

({q1, q3}2 {q2}3 {q0}1)){q0}1{q2}3{q1}2{q3}4(

Safra Muller-Schupp

Figure 4 Transitions based on NBA A using both constructions. The superscripts denote the
ranks of tree nodes / sets in the slice tuple. The subscripts are added for illustration purposes
and conceptually track nodes throughout time, i.e., the same symbol marks the “same” node at
different times. The algorithms agree on all but the last transition, where they differ due to different
handling of green nodes/ranks, in this case rank 2 that marks an empty set after calculating and
splitting the successors (illustrated on the bottom right). In the Muller-Schupp case, the rank is
moved left during prune, resulting in a child being pulled into the parent in the rank tree, whereas
in the Safra construction the whole subtree is collapsed. The solid edges between sets depict the
rank tree induced by ↑, dotted edges depict the edges in the conceptual split-tree. In the bottom
right the slices are shown together with their tree interpretation.

As we have established that both constructions, Muller-Schupp and Safra, operate
on essentially the same structures, from now on we talk about ranked slices and trees
interchangeably. Using this relationship, one can take the same tree/slice and apply both
the successor calculation of the Safra construction and of the Muller-Schupp construction to
it. What one first notices, is that the resulting tree/slice is very similar or equal in many
cases. This is owed to the fact that most operations in one construction have an equivalent
operation in the other, just formulated for the other representation.

For example, moving accepting successor states into a fresh child node in Safra’s con-
struction corresponds to splitting accepting successors from non-accepting ones during step
in the Muller-Schupp construction, as in the successor tuple the new child (in the conceptual
split-tree) gets a fresh, larger rank and by definition becomes the rightmost child in the
rank tree of the resulting new slice. The normalization steps that make the successor sets
pairwise disjoint also yield the same results. The ranks of nodes with green events in the
Safra construction coincide with ranks of sets that signal green in the ranked slices, and
ranks of Safra nodes with red events with ranks of sets that signal red. The removal of empty
sets by prune and renumbering the ranks with normalize is the same as the removal of the
corresponding nodes in the Safra tree and updating the LIR, i.e., the ranks of Safra nodes.

In fact, the only difference between the constructions is what happens with a tree node
in case of a green event. Recall that in Safra’s construction, the whole subtree of a green
node is collapsed to a single node. In the Muller-Schupp construction, the green ranks are
those that end up on an empty set after step, and that survive the prune operation, in which
the ranks are moved to the next non-empty set to the left, and only the minimal ones are
kept on each non-empty set. In the view of ranked trees, this corresponds to a green node
absorbing its rightmost, uppermost child node into it, while keeping the rest of the subtree
unchanged. See Figure 4 for an illustration.

C. Löding and A. Pirogov 120:9

After observing that both constructions differ in only a minor step and noticing that
both yield correct (but possibly different) automata, it becomes apparent that the exact step
performed for green events is not essential and there must be a more general mechanism to
uncover. The construction we present in Section 6 results from this line of thought.

On the practical side, it is worth mentioning that the cost of switching between the
representations using the presented bijection is negligible – the traversal of a ranked Safra
tree to obtain a ranked slice is obviously possible in linear time. For the other direction
there also exists a simple linear time algorithm that calculates the parent and left subtree
boundary relation from the ranking α.

6 The unified construction

In this section, we present a construction that builds on the Muller-Schupp construction from
Section 3, and unifies it with Safra’s construction by adding another operation, called merge,
between prune and normalize: (α, t) step−−→ (α̂, t̂) prune−−−→ (α̃, t̃) merge−−−→ (α̌, ť) normalize−−−−−→ (α′, t′).

This new operation is nondeterministic, and can be instantiated in different ways. In
particular, it can be instantiated trivially and thus corresponds to the Muller-Schupp
construction, and it can be used to emulate the Safra construction.

We first describe the idea of merge, and then give a formal definition. Assume that, after
step and prune have been applied to some ranked slice (α, t), we have the pre-slice (α̃, t̃), and
the dominating (minimal active) rank k (determined by prune, see Section 3). Then merge
can collapse groups of neighbouring sets in the tuple, and preserves the minimum rank from
each collapsed range, similar to prune. In contrast to prune, which “merges” one non-empty
set with multiple empty sets in a deterministic manner, merge may actually take the union
of multiple adjacent non-empty sets, depending on the ranks currently assigned to them.

The non-overlapping intervals of sets that are collapsed together are not uniquely determ-
ined in general. They only have to satisfy the constraints that no sets with rank smaller than
the dominating rank k are merged with anything else, and that the set with rank k is not
merged with anything to the right of it. These constraints are important for the correctness,
and ensure that in the ranked Safra tree perspective, the nodes with rank smaller than k do
not change, and that the node with the dominating rank k is not merged with sets outside
of its subtree.

Formally, merge returns a pre-slice (α̌, ť) obtained in the following way (see Figure 5
for an illustration). Let I1, I2, . . . , In′ be a sequence of sets partitioning the set of indices
{1, . . . , ñ} in t̃ into adjacent groups, i.e., min I1 = 1, max In′ = ñ and for all j > 1 we have
min Ij = max Ij−1 + 1. This grouping should satisfy the following property for all 1 ≤ j ≤ n′
and l ∈ Ij : if α̃(l) < k, then |Ij | = 1, and if α̃(l) = k, then max Ij = l. Then the pre-slice (α̌, ť)
is defined by the sets Ši :=

⋃
j∈Ii

S̃j and the ranking function α̌(i) := min{α̃(j) | j ∈ Ii} for
all i ∈ {1, . . . , n′}, i.e., for each interval, the union of the sets and the smallest rank is taken.

As in the Muller-Schupp construction, normalize is applied to (α̌, ť) to obtain the successor
macrostate (α′, t′). This extended transition relation is used to obtain the transition-based
deterministic parity automaton, as before.

An example showing how the choice of different merge strategies leads to different successor
states is illustrated in Figure 6. Observe that we can recover the Muller-Schupp construction
by using the identity function for merge, or in other words, putting each index into its own
interval, which is the finest partitioning of indices that satisfies the requirements on merge.
On the other hand, we can also take the coarsest compatible partitioning, i.e., minimize the
number of intervals. We call this kind of update maximal collapse.

ICALP 2019

120:10 Determinization of Büchi Automata

(α̃, t̃) = (S̃1
>k S̃2

>k S̃3
<k S̃4

>k S̃5
>k S̃6

k S̃7
>k S̃8

<k)

(α̌, ť) = ()

⋃
min

⋃
min

Š1 Š2 Š3 Š4 Š5
α̌(1) α̌(2) α̌(3) α̌(4) α̌(5)

merge

I1={1,2} I2={3} I3={4,5,6} I4={7} I5={8}

Figure 5 Illustration of the general merge operation that comes after prune and before normalize,
with the minimal active rank k and ranks depicted as set superscripts. The illustrated intervals are
the coarsest partitioning of indices in t̃ satisfying the constraints.

We can emulate a Safra-update by imposing some additional constraints on the intervals,
ensuring that only the complete subtrees of nodes with green ranks are merged. More
concretely, we require that intervals that are not singletons span exactly the nodes of the
complete subtree that is rooted in a green rank in the view of the slice as ranked Safra tree.
Note that for an index ` in the tuple, the subtree of the corresponding node in the ranked
Safra tree corresponds to the interval that starts one step right of the left subtree boundary
of `, and ends in `, that is, the interval ←(l) + 1, . . . , `. Thus, for imitating the Safra merge
rule, the intervals I1, I2, . . . , In′ from merge are the unique smallest intervals satisfying

∀i ∈ [n′], l ∈ Ii : α̃(l) ∈ G =⇒ ←(l) + 1 ∈ Ii (complete subtrees collapsed).

I Proposition 5. The operation merge can be instantiated such that the transitions of the
constructed TDPA correspond to the transitions of the Muller-Schupp construction or to the
transitions of the Safra construction.

Notice that for all merge rules except for the Muller-Schupp update, the relationship of
ranked slices and consecutive levels of the reduced split-tree (see Section 3) breaks down.
One can, however, reflect the merges also in the reduced split-tree by doing the merges of
the corresponding sets on each level, which leads to an acyclic graph instead of a tree. This
view is helpful in the correctness proof of the construction.

I Theorem 6. Let A be an NBA. Then a deterministic parity automaton B, obtained by the
described determinization construction, has at most O(n!2) states and recognizes the same
language as A.

The upper bound holds because the same macrostates are used as in the presented
Muller-Schupp construction in Section 3. The correctness can be shown by a refinement of
the original correctness proof of the Safra construction [13].

7 Discussion and Conclusion

We have presented a new variant of the Muller-Schupp construction for determinization of
Büchi automata into parity automata, reducing the information stored in the macrostates to
ordered tuples of disjoint sets annotated with ranks. These ranked slices are in bijection with
ranked Safra trees, which leads to a general construction that can emulate the Muller-Schupp
construction and the Safra-construction. This answers, in some sense, the question from [4]
on the relation between the two types of constructions.

C. Löding and A. Pirogov 120:11

A :

q0

q1q5

q3

q2q4

(α, t) =

{q0}1

{q1}2 {q4}4

{q5}5{q2}3 {q3}6

(α, t) = ({q2}3 {q3}5 {q1}2 {q5}6 {q4}4 {q0}1)

(α̃, t̃) = ({q2}7 {q1}3 {q3}2 {q5}6 {q4}4 {q0}1)

step;
prune ∈F

∈F ∈F
∈F ∈F ∈F

G={2,6} R={5} =⇒ A={2,5,6} =⇒ k=2

M.-S.:

(α̃, t̃) = ({q2}7 {q3}3 {q1}2 {q5}6 {q4}4 {q0}1)

(α′, t′) = ({q2}6 {q1}3 {q3}2 {q5}5 {q4}4 {q0}1)

merge;
norm.

{q0}1

{q3}2 {q4}4

{q5}5{q1}3

{q2}6

Safra:

(α̃, t̃) = ({q2}7 {q3}3 {q1}2 {q5}6 {q4}4 {q0}1)

(α′, t′) = ({ q1, q2, q3 }2 {q5}4 {q4}3 {q0}1)

merge;
norm.

{q0}1

{q1, q2, q3}2 {q4}3

{q5}4

Max.:

(α̃, t̃) = ({q2}7 {q3}3 {q1}2 {q5}6 {q4}4 {q0}1)

(α′, t′) = ({ q1, q2, q3 }2 {q4, q5}3 {q0}1)

merge;
norm.

{q0}1

{q1, q2, q3}2 {q4, q5}3

{q0}1

{q3}2 {q4, q5}4

{q1}3

{q2}5

{q0}1

{q3}2 {q4, q5}4

{q1, q2}3

{q0}1

{q1, q3}2 {q4, q5}3

{q2}4

{q0}1

{q3}2 {q4}4

{q5}5{q1, q2}3

{q0}1

{q1, q3}2 {q4}3

{q5}4{q2}5

Figure 6 A illustrates the relevant part of an NBA during a transition on some symbol x ∈ Σ,
that is, the arrows correspond to the x-transitions of A. The gray edges are the ones pruned in the
reduced transition relation ∆t. The current macrostate (α, t) is represented as the rank tree to the
right of A, and as ranked slice below A. The step and prune operations (see Fig. 2 for details) result
in ranks 1,3 and 4 being passed down along the right child. Ranks 2 and 6 are moved to the left and
hence are green. Rank 5 is overwritten by 2 and hence is red. Rank 7 is a fresh rank which is larger
than the others. The dominating rank k is 2. The choice of different merge intervals (as shown in
Fig. 5) results in different successors. The successors for the three discussed variants, Muller-Schupp,
Safra, and maximal collapse, are shown as rank trees on the right. The 5 other permitted successors
are depicted at the bottom.

ICALP 2019

120:12 Determinization of Büchi Automata

In general, one can obtain many different valid deterministic automata by choosing
different deterministic transition functions that are compatible with the described successor
relation. One can also imagine this as constructing a non-deterministic automaton with all
permitted successors, and then pruning the edges arbitrarily, while preserving for each state
only one outgoing transition for each symbol, to “carve” out a valid deterministic automaton.

This non-determinism comes from two sources. One degree of freedom in our construction
comes from the different ways of assigning ranks (to new nodes, and when closing gaps
resulting from deleted ranks). This freedom is already mentioned in [14]. But here the
flexibility is just in the choice of the specific permutation, which still describes structurally
the same tree in any case. The novel and in our opinion powerful degree of freedom in our
construction is the possibility for different valid merge operations, which allows for a vastly
larger pool of possible successors, as the results may describe structurally different trees.
Furthermore, the smaller the smallest active rank, the more different a permitted successor
may look like.

We have explicitly mentioned the merge strategies that lead to the Muller-Schupp and
Safra constructions, and also have mentioned a third strategy, the maximal collapse rule that
merges as many sets as possible (as shown in e.g. Figure 6). We also want to point out that,
while fixing one such merge-rule for the whole construction is the simplest implementation,
the construction permits using any valid successor without the need to disambiguate the
merge operation beforehand, i.e., picking the successor of a state from the set of permitted
ones is a local choice. One may think of schemes where the successor is chosen dynamically,
depending on the input or already computed information. For example, one can check
whether a valid successor has already been constructed, and only add a new state according
to a fixed policy if this is not the case. We have already implemented a prototype making
use of such an optimization (among others) with encouraging results.

We also want to point out that the presented construction works equally well with
transition-based Büchi automata as input, in which case the step operation separates states
which are reached by at least one accepting transition from those that are not. One can
easily verify that this does not impact the reasoning in the proofs.

It is also possible to adapt the construction to yield Rabin automata, such that the
corresponding Safra construction as presented in [14] is subsumed. In this setting, however,
the presentation of macrostates as ordered tuples of sets is less natural. Furthermore, in this
setting the merges of sets needs to be restricted to subtrees of green nodes, because there is
no total order of importance of nodes as provided by the ranks.

References
1 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
2 J Richard Büchi. On a decision method in restricted second order arithmetic. In Studies in

Logic and the Foundations of Mathematics, volume 44, pages 1–11. Elsevier, 1966.
3 Thomas Colcombet and Konrad Zdanowski. A Tight Lower Bound for Determinization

of Transition Labeled Büchi Automata. In ICALP 2009, volume 5556 of Lecture Notes in
Computer Science, pages 151–162. Springer, 2009.

4 Seth Fogarty, Orna Kupferman, Moshe Y Vardi, and Thomas Wilke. Profile trees for Büchi word
automata, with application to determinization. Information and Computation, 245:136–151,
2015.

5 Paul Gastin and Denis Oddoux. Fast LTL to Büchi Automata Translation. In Computer
Aided Verification, 13th International Conference, CAV 2001, Paris, France, July 18-22, 2001,
Proceedings, pages 53–65, 2001. doi:10.1007/3-540-44585-4_6.

http://dx.doi.org/10.1007/3-540-44585-4_6

C. Löding and A. Pirogov 120:13

6 Dimitra Giannakopoulou and Klaus Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In 16th IEEE International Conference on Automated
Software Engineering (ASE 2001), 26-29 November 2001, Coronado Island, San Diego, CA,
USA, pages 412–416, 2001. doi:10.1109/ASE.2001.989841.

7 Detlef Kähler and Thomas Wilke. Complementation, disambiguation, and determinization of
Büchi automata unified. In ICALP 2008, pages 724–735. Springer, 2008.

8 Robert McNaughton. Testing and generating infinite sequences by a finite automaton. In-
formation and control, 9(5):521–530, 1966.

9 Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit Reactive
Synthesis Strikes Back! In Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I, pages 578–586, 2018. doi:10.1007/978-3-319-96145-3_31.

10 David E Muller and Paul E Schupp. Simulating alternating tree automata by nondeterministic
automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra.
Theoretical Computer Science, 141(1-2):69–107, 1995.

11 Nir Piterman. From nondeterministic Buchi and Streett automata to deterministic parity
automata. In Logic in Computer Science, 2006 21st Annual IEEE Symposium on, pages
255–264. IEEE, 2006.

12 Roman R Redziejowski. An improved construction of deterministic omega-automaton using
derivatives. Fundamenta Informaticae, 119(3-4):393–406, 2012.

13 Shmuel Safra. On the complexity of omega-automata. In 29th Annual Symposium on
Foundations of Computer Science, 1988., pages 319–327. IEEE, 1988.

14 Sven Schewe. Tighter bounds for the determinisation of Büchi automata. In FOSSACS, pages
167–181. Springer, 2009.

15 Fabio Somenzi and Roderick Bloem. Efficient Büchi Automata from LTL Formulae. In
Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL, USA,
July 15-19, 2000, Proceedings, pages 248–263, 2000. doi:10.1007/10722167_21.

16 Wolfgang Thomas. Languages, Automata, and Logic. In Grzegorz Rozenberg and Arto
Salomaa, editors, Handbook of Formal Languages, Vol. 3, pages 389–455. Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

17 Wolfgang Thomas. Church’s Problem and a Tour through Automata Theory. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th
Birthday, pages 635–655. Springer, 2008. doi:10.1007/978-3-540-78127-1.

18 Moshe Y. Vardi and Thomas Wilke. Automata: from logics to algorithms. In Logic and
automata - history and perspectives, volume 2 of Texts in Logic and Games, pages 629–724.
Amsterdam University Press, 2007.

ICALP 2019

http://dx.doi.org/10.1109/ASE.2001.989841
http://dx.doi.org/10.1007/978-3-319-96145-3_31
http://dx.doi.org/10.1007/10722167_21
http://dx.doi.org/10.1007/978-3-540-78127-1

	Introduction
	Preliminaries
	A Simplified Muller-Schupp Construction
	Sketch of the Safra Construction
	From Safra-trees to ranked slices and back
	The unified construction
	Discussion and Conclusion

