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Abstract
Transducers extend finite state automata with outputs, and describe transformations from strings
to strings. Sequential transducers, which have a deterministic behaviour regarding their input, are
of particular interest. However, unlike finite-state automata, not every transducer can be made
sequential. The seminal work of Choffrut allows to characterise, amongst the functional one-way
transducers, the ones that admit an equivalent sequential transducer.

In this work, we extend the results of Choffrut to the class of transducers that produce their
output string by adding simultaneously, at each transition, a string on the left and a string on the
right of the string produced so far. We call them the string-to-context transducers. We obtain a
multiple characterisation of the functional string-to-context transducers admitting an equivalent
sequential one, based on a Lipschitz property of the function realised by the transducer, and on
a pattern (a new twinning property). Last, we prove that given a string-to-context transducer,
determining whether there exists an equivalent sequential one is in coNP.
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1 Introduction

Transducers are a fundamental model to describe programs manipulating strings. They
date back to the very first works in theoretical computer science, and are already present
in the pioneering works on finite state automata [25, 1]. While finite state automata are
very robust w.r.t. modifications of the model such as non-determinism and two-wayness, this
is not the case for transducers. These two extensions do affect the expressive power of the
model. Non-determinism is a feature very useful for modelisation and specification purposes.
However, when one turns to implementation, deriving a sequential, i.e. input-deterministic,
transducer is a major issue. A natural and fundamental problem thus consists, given a
(non-deterministic) transducer, in deciding whether there exists an equivalent sequential
transducer. This problem is called the sequentiality problem.

In [12], Choffrut addressed this problem for the class of functional (one-way) finite
state transducers, which corresponds to so-called rational functions. He proved a multiple
characterisation of the transducers admitting an equivalent sequential transducer. This
characterisation includes a machine-independent property, namely a Lipschitz property of the
function realised by the transducer. It also involves a pattern property, namely the twinning
property, that allows to prove that the sequentiality problem is decidable in polynomial
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time for the class of functional finite state transducers [27]. This seminal work has led to
developments on the sequentiality of finite state transducers [9, 8]. These results have also
been extended to weighted automata [11, 22, 17] and to tree transducers [26]. See also [23]
for a survey on sequentiality problems.

While the model of one-way transducers is now rather well-understood, a current challenge
is to address the so-called class of regular functions, which corresponds to functions realised by
two-way transducers. This class has attracted a lot of interest during the last years. It is closed
under composition [13] and enjoys alternative presentations using logic [16], a deterministic
one-way model equipped with registers, named streaming string transducers [2] (SST for
short), a set of regular combinators akin to regular expressions for regular languages [5, 7, 14]
as well as a class of functions operating on lists [10]. The class of regular functions is much
more expressive than the class of rational functions, as it captures for instance the mirror
image and the copy. Yet, it has good decidability properties: equivalence and type-checking
are decidable in PSpace [21, 3], Similarly, functionality of non-deterministic SST is also
decidable in PSpace [4]. We refer the interested reader to [19] for a recent survey. Intuitively,
two-way finite state transducers (resp. SST) extend one-way finite state transducers with
two important features: firstly, they can go through the input word both ways (resp. they
can prepend and append words to registers), and secondly, they can perform multiple passes
(resp. they can perform register concatenation).

In this paper, we lift the results of Choffrut [12] to a class of transducers that can perform
the first of the two features mentioned above, thus falling strictly between the classes of
rational and regular functions. More precisely, we consider non-deterministic transducers
which, at each transition, extend the output word produced so far by prepending and
appending two words to it. This operation can be defined as the extension of a word with
a context, and we call these transducers the string-to-context transducers. However, it is
important to notice that they still describe functions from strings to strings.

We characterise the functional string-to-context transducers that admit an equivalent
sequential string-to-context transducer through i) a machine independent property: the
function realised by the transducer satisfies a Lipschitz property that involves an original
factor distance and ii) a pattern property of the transducer which we call contextual twinning
property, and that generalises the twinning property to contexts. We also prove that the
sequentiality problem for these transducers is in the class coNP.

A key technical tool of the result of [12] was a combinatorial analysis of the loops, showing
that the output words of synchronised loops have conjugate primitive roots. For string-to-
context transducers, the situation is more complex, as the combinatorics may involve the
words of the two sides of the context. Intuitively, when these words do commute with the
output word produced so far, it is possible for instance to move to the right a part of the
word produced on the left. In order to prove our results, we thus dig into the combinatorics
of contexts associated with loops, identifying different possible situations, and we then use
this analysis to describe an original determinisation construction.

Our results also have a strong connection with the register minimisation problem for SST.
This problem consists in determining, given an SST and a natural number k, whether there
exists an equivalent SST with k registers. It has been proven in [15] that the problem is
decidable for SST that can only append (and not prepend) words to registers, and the proof
crucially relies on the fact that the k = 1 case exactly corresponds to the sequentiality problem
of one-way finite state transducers. Hence, our results constitute a first step towards register
minimisation for SST without register concatenation. The register minimisation problem for
non-deterministic SST has also been studied in [6] for the case of concatenation-free SST.
The targeted model being non-deterministic, the two problems are independent.



P.-A. Reynier and D. Villevalois 128:3

2 Models

Words, contexts and partial functions

Let A be a finite alphabet. The set of finite words (or strings) over A is denoted by A∗. The
empty word is denoted by ε. The length of a word u is denoted by |u|. We say that a word u
is a prefix (resp. suffix) of a word v if there exists a word y such that uy = v (resp. yu = v).
We say that two words u, v ∈ A∗ are conjugates if there exist two words t1, t2 ∈ A∗ such that
u = t1t2 and v = t2t1. If this holds, we write u ∼ v. The primitive root of a word u ∈ A∗,
denoted ρ(u), is the shortest word x such that u = xp for some p > 1. A word is said to be
primitive, if it is equal to its primitive root. Given a word u ∈ B∗, we say that v is a factor
of u if there exist words x, y such that u = xvy. For n,m ∈ N>0, we note by gcd(n,m) the
greatest common divisor of n and m.

I Lemma 1 (Fine and Wilf, [20], Chapter 9 of [24]). Let x, y ∈ A∗ and m,n ∈ N. If xm and
yn have a common factor of length at least |x|+ |y| − gcd(|x|, |y|), then their primitive roots
are conjugates.

Given two words u, v ∈ A∗, the longest common prefix (resp. suffix) of u and v is denoted
by lcp(u, v) (resp. lcs(u, v)). We define the prefix distance between u and v, denoted by
distp(u, v), as |u|+ |v| − 2|lcp(u, v)|.

Given two words u, v ∈ B∗, a longest common factor of u and v is a word w of maximal
length that is a factor of both u and v. Note that this word is not necessarily unique. We
denote such a word by lcf(u, v). The factor distance between u and v, denoted by distf (u, v),
is defined as distf (u, v) = |u| + |v| − 2|lcf(u, v)|. This definition is correct as |lcf(u, v)| is
independent of the choice of the common factor of maximal length.

Using a careful case analysis, we can prove that distf is indeed a distance, the only
difficulty lying in the subadditivity:

I Lemma 2. distf is a distance.

Given a finite alphabet B, a context on B is a pair of words (u, v) ∈ B∗ ×B∗. The set of
contexts on B is denoted C(B). The empty context is denoted by cε. For a context c = (u, v),
we denote by ←−c (resp. −→c ) its left (resp. right) component: ←−c = u (resp. −→c = v). The
length of a context c is defined by |c| = |←−c |+ |−→c |. The lateralized length of a context c is
defined by ‖c‖ = (|←−c |, |−→c |). For a context c ∈ C(B) and a word w ∈ B∗, we write c[w] for
the word ←−c w−→c . We define the concatenation of two contexts c1, c2 ∈ C(B) as the context
c1c2 = (←−c1←−c2 ,−→c2−→c1). Last, given a context c and a word u, we denote by c−1[u] the unique
word v such that c[v] = u, when such a word exists.

Given a set of contexts C ⊆ C(B), we denote by lcc(C) the longest common context
of elements in C, defined as lcc(C) = (lcs({←−c | c ∈ C}), lcp({−→c | c ∈ C})). We also write
C.lcc(C)−1 = {c′ | c′.lcc(C) ∈ C}.

We consider two sets X,Y . Given ∆ ⊆ X ×Y , we let dom(∆) = {x ∈ X | ∃y, (x, y) ∈ ∆}.
We denote the set of partial functions from X to Y as F(X,Y ). Given f ∈ F(X,Y ), we
write f : X ↪→ Y , and we denote by dom(f) its domain. When more convenient, we may
also see elements of F(X,Y ) as subsets of X × Y . Last, given ∆ ⊆ X × Y , we let choose(∆)
denote some ∆′ ∈ F(X,Y ) such that ∆′ ⊆ ∆ and dom(∆) = dom(∆′).

String-to-Context and String-to-String Transducers

I Definition 3. Let A,B be two finite alphabets. A string-to-context transducer (S2C
for short) T from A∗ to B∗ is a tuple (Q, tinit, tfinal, T ) where Q is a finite set of states,
tinit : Q ↪→ C(B) (resp. tfinal : Q ↪→ C(B)) is the finite initial (resp. final) function,
T ⊆ Q×A× C(B)×Q is the finite set of transitions.
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A state q is said to be initial (resp. final) if q ∈ dom(tinit) (resp. q ∈ dom(tfinal)). We
depict as c−→ q (resp. q c−→) the fact that tinit(q) = c (resp. tfinal(q) = c). A run ρ from a
state q1 to a state qk on a word w = w1 · · ·wk ∈ A∗ where for all i, wi ∈ A, is a sequence
of transitions: (q1, w1, c1, q2), (q2, w2, c2, q3), . . . , (qk, wk, ck, qk+1). The output of such a run
is the context c = ck . . . c2c1 ∈ C(B), and is denoted by out(ρ). We depict this situation as
q1

w|c−−→ qk+1. The set of runs of T is denoted R(T ). The run ρ is said to be accepting if q1 is
initial and qk+1 final. This string-to-context transducer T computes a relation [[T ]] ⊆ A∗×B∗

defined by the set of pairs (w, edc[ε]) such that there are p, q ∈ Q with c−→ p
w|d−−→ q

e−→. Thus,
even if its definition involves contexts on B, the semantics of T is a relation between words
on A and words on B. Given an S2C T = (Q, tinit, tfinal, T ), we define the constant MT as
MT = max{|c| | (p, a, c, q) ∈ T or (q, c) ∈ tinit ∪ tfinal}. Given ∆ : Q ↪→ C(B), we denote
by T∆ the S2C obtained by replacing tinit with ∆. An S2C is trimmed if each of its states
appears in some accepting run. W.l.o.g., we assume that the string-to-context transducers we
consider are trimmed. An S2C T from A∗ to B∗ is functional if the relation [[T ]] is a function
from A∗ to B∗. An S2C T = (Q, tinit, tfinal, T ) is sequential if dom(tinit) is a singleton and if
for every transitions (p, a, c, q), (p, a, c′, q′) ∈ T , we have q = q′ and c = c′.

The classical model of finite-state transducers is recovered in the following definition:

I Definition 4. Let A,B be two finite alphabets. A string-to-context transducer T =
(Q, tinit, tfinal, T ) is a string-to-string transducer (S2S for short) from A∗ to B∗ if, for all
(q, c) ∈ tinit ∪ tfinal, ←−c = ε, and for all (q, a, c, q′) ∈ T , ←−c = ε.

Notations defined for S2C hold for classical transducers as is. For an S2S, we write w−→ q

(resp. q w−→, and q u|w−−→ q′) instead of (ε,w)−−−→ q (resp. q (ε,w)−−−→, and q u|(ε,w)−−−−→ q′).
Given an S2C T = (Q, tinit, tfinal, T ), we define its right S2S, denoted −→T , as the tuple

(Q,−→tinit,
−−→
tfinal,

−→
T ) where, for all q ∈ Q, −→tinit(q) =

−−−−→
tinit(q) and −−→tfinal(q) =

−−−−→
tfinal(q), and, for all

(p, a, c, q) ∈ T , (p, a,−→c , q) ∈ −→T . Its left S2S ←−T is defined similarly, and by applying the
mirror image on its output labels.

I Example 5. Two examples of S2C (not realisable by S2S) are depicted on Figure 1.

cε

cε

a|(a, ε) b|(b, ε)

(a) Tmirror.

cε

cε

a|(a, ε) b|(ε, b)

(b) Tpartition.

Figure 1 1a Example of a S2C Tmirror computing the function fmirror : u1 . . . un ∈ {a, b}∗ 7→
un . . . u1. 1b Example of a S2C Tpartition computing the function fpartition : u ∈ {a, b}∗ 7→ a|u|a b|u|b .

3 Lipschitz and Twinning Properties

We recall the properties considered in [12], and the associated results.

I Definition 6. We say that a function f : A∗ ↪→ B∗ satisfies the Lipschitz property if there
exists K ∈ N such that ∀u, v ∈ dom(f),distp(f(u), f(v)) 6 K distp(u, v).

I Definition 7. We consider an S2S and L ∈ N. Two states q1 and q2 are said to be
L-twinned if for any two runs w1−−→ p1

u|x1−−−→ q1
v|y1−−→ q1 and w2−−→ p2

u|x2−−−→ q2
v|y2−−→ q2, where p1

and p2 are initial, we have for all j > 0, distp(w1x1y
j
1, w2x2y

j
2) 6 L. An S2S satisfies the

twinning property (TP) if there exists L ∈ N such that any two of its states are L-twinned.
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I Theorem 8 ([12]). Let T be a functional S2S. The following assertions are equivalent:
1. there exists an equivalent sequential S2S,
2. [[T ]] satisfies the Lipschitz property,
3. T satisfies the twinning property.

We present the adaptation of these properties to string-to-context transducers.

I Definition 9. We say that f : A∗ ↪→ B∗ satisfies the contextual Lipschitz property (CLip)
if there exists K ∈ N such that ∀u, v ∈ dom(f),distf (f(u), f(v)) 6 K distp(u, v).

I Definition 10. We consider an S2C and L ∈ N. Two states q1 and q2 are said to be L-
contextually twinned if for any two runs c1−→ p1

u|d1−−−→ q1
v|e1−−→ q1 and c2−→ p2

u|d2−−−→ q2
v|e2−−→ q2,

where p1 and p2 are initial, we have for all j > 0, distf (ej1d1c1[ε], ej2d2c2[ε]) 6 L. An S2C
satisfies the contextual twinning property (CTP) if there exists L ∈ N such that any two of
its states are L-contextually twinned.

4 Main Result

The main result of the paper is the following theorem, which extends to string-to-context
transducers the characterisation of sequential transducers amongst functional ones.

I Theorem 11. Let T be a functional S2C. The following assertions are equivalent:
1. there exists an equivalent sequential string-to-context transducer,
2. [[T ]] satisfies the contextual Lipschitz property,
3. T satisfies the contextual twinning property.

Proof. The implications 1⇒ 2 and 2⇒ 3 are proved in Proposition 12 and Proposition 13
respectively. The implication 3 ⇒ 1 is more involved, and is based on a careful analysis
of word combinatorics of loops of string-to-context transducers satisfying the CTP. This
analysis is summarised in Lemma 22 and used in Section 6 to describe the construction of an
equivalent sequential S2C. J

I Proposition 12. Let T be a sequential S2C realizing the function f . Then f satisfies the
contextual Lipschitz property.

Proof. We claim that f is context-Lipschitzian with coefficient 3MT . Consider two input
words u, v in the domain of f . If u = v, then the result is trivial. Otherwise, let w = lcp(u, v)
and let u = w.u′, with 0 6 |u′|. Then we have [[T ]](u) = c3c2c1[ε] where c1 is the context
produced along w, c2 the one produced along u′, and c3 is the final output context. Similarly,
we can write (with v = w.v′, and 0 6 |v′|) [[T ]](v) = d3d2d1[ε]. As T is sequential, we have
d1 = c1. We also have |c3| 6MT , |d3| 6MT , |c2| 6MT |u′| and |d2| 6MT |v′|. Finally, as
u 6= v, we have distp(u, v) = |u′|+ |v′| > 1 and we obtain:

distf (f(u), f(v)) 6 |c3c2|+ |d3d2| 6MT (2 + |u′|+ |v′|) 6 3MT distp(u, v) J

I Proposition 13. Let T be a functional S2C realizing the function f . If f satisfies the
contextual Lipschitz property, then T satisfies the contextual twinning property.

Proof. We consider an instance of the CTP and stick to the notations of Definition 10. We
denote by n the number of states of T . As T is trimmed, there exist runs qi

wi|fi−−−→ ri
gi−→,

with |wi| 6 n, for i ∈ {1, 2}. We consider the input words αj = uvjw1 and βj = uvjw2, for
all j > 0. We have, for every j, distp(αj , βj) 6 |w1|+ |w2| 6 2n.

The following property of distf can be proven using a case analysis:

ICALP 2019
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Fact. For every w,w′ ∈ B∗, c, c′ ∈ C(B), we have distf (w,w′) 6 distf (c[w], c′[w′])+|c|+|c′|.
As f is K context-Lipschitzian, for some fixed K, we obtain, for all j:

distf (ej1d1c1[ε], ej2d2c2[ε]) 6 distf (g1f1e
j
1d1c1[ε], g2f2e

j
2d2c2[ε]) + 2(n+ 1)MT

6 distf (f(αj), f(βj)) + 2(n+ 1)MT
6 Kdistp(αj , βj) + 2(n+ 1)MT 6 2Kn+ 2(n+ 1)MT J

5 Analysis of Loop Combinatorics

The classical twinning property forces the outputs of two runs reading the same input to only
diverge by a finite amount. This constraint in turn makes for strong combinatorial bindings
between runs involving loops: for two runs w1−−→ p1

u|x1−−−→ q1
v|y1−−→ q1 and w2−−→ p2

u|x2−−−→ q2
v|y2−−→

q2, we have |y1| = |y2|, and ρ(y1) ∼ ρ(y2). Similar behaviours are expected with string-to-
context transducers and lead us to study the combinatorial properties of synchronised runs
involving loops in those machines. Throughout this section, we consider a string-to-context
transducer T = (Q, tinit, tfinal, T ) that satisfies the contextual twinning property.

5.1 Behaviours of Loops
We start with two examples illustrating how output contexts of synchronised loops can be
modified to obtain an equivalent sequential S2C.

I Example 14. Figure 2a shows an example of a non-sequential functional S2C transducer
T1. The contexts produced on loops around states q1 and q2 both commute with word a.
This observation can be used to build an equivalent sequential S2C D1, depicted on Figure 2c.
Figure 2b shows an example of a non-sequential functional S2C transducer T2 where output
contexts are non-commuting, but can be slightly shifted so as to be aligned. This observation
can be used to build an equivalent sequential S2C D2, depicted on Figure 2d.

q0
cε

q1

q2

q3
cε

q4
cε

a|(a, a)

a|(a, a)

b|(a, a)

a|(ε, ba)

a|(ε, aa)

c|(ε, ab)

(a) T1.

q0
cε

q1

q2

q3
cε

q4
cε

a|(ε, c)

a|(ab, de)

b|cε

a|(b, cd)

a|(ba, ed)

c|cε

(b) T2.

q0
cε

q1

q2
cε

q3
cε

a|cε

a|(ε, aa)

b|(aa, aa)

c|(ba, ab)

(c) D1.

q0
cε

q1

q2
cε

q3
cε

a|(ε, c)

a|(ab, de)

b|cε

c|(b, d)

(d) D2.

Figure 2 2a An S2C T1 computing the function that maps anb to a2n+2 and anc to ba2nb. 2c
A sequential S2C D1 equivalent to T1. 2b An S2C T2 computing the function that maps anb to
(ab)n−1c(de)n−1 and anc to b(ab)n−1c(de)n−1d. 2d A sequential S2C D2 equivalent to T2.

The following definition follows from the intuition drawn by the previous example.
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I Definition 15 (Lasso, Aligned/Commuting/Non-commuting lasso). A lasso around a state q
is a run ρ of the form c−→ p

u|d−−→ q
v|e−−→ q with p an initial state. ρ is said to be productive, if

|e| 6= 0. We say that ρ is:
aligned w.r.t. f and w, for some f ∈ C(B) and w ∈ B∗, denoted as (f, w)−aligned, if
there exists a context g ∈ C(B) such that for all i ∈ N, eidc[ε] = gf i[w].
commuting w.r.t. x, for some x ∈ B+, denoted as x−commuting, if there exists a context
f ∈ C(B) such that for all i ∈ N>0, there exists k ∈ N such that eidc[ε] = f [xk].
non-commuting if there exists no word x ∈ B+ such that ρ is commuting w.r.t x.

Two lassos c1−→ p1
u1|d1−−−→ q1

v1|e1−−−→ q1 and c2−→ p2
u2|d2−−−→ q2

v2|e2−−−→ q2 are said to be synchronised
if u1 = u2 and v1 = v2. They are said to be strongly balanced if ‖e1‖ = ‖e2‖.

Given an integer k > 1, we consider the k-th power of T , that we denote by T k. A run in
T k naturally corresponds to k synchronised runs in T , i.e. on the same input word. We lift
the notion of lasso to T k, and we denote them by H1H2, where H1 starts in initial states and
ends in some state q = (qi)i∈{1,...,k} ∈ Qk, and H2 is a loop around state q. In the sequel, we
will only consider lassos such that q contains pairwise distinct states (qi 6= qj for all i 6= j).
Those lassos are included in the lassos in T 6|Q| = ∪16k6|Q|T k.

The intuition given by Example 14 is formalised in the following Lemma:

I Lemma 16. Let H1H2 = (ρj)j∈{1,...,k} a lasso in T k, for some 1 6 k 6 |Q|. We write

ρj : cj−→ pj
u1|dj−−−→ qj

u2|ej−−−→ qj for each j. Then there exists an integer m ∈ N such that
|ej | = m for all j ∈ {1, . . . , k}. If m > 0, we say that the lasso H1H2 is productive, and:

either there exists x ∈ B+ primitive such that ρj is x−commuting for all j ∈ {1, . . . , k}.
In this case, we say that the lasso H1H2 is x−commuting, and we let powc(x,H1, H2) =
m/|x| and splitc(x,H1, H2) = {(qj , fj) | j ∈ {1, . . . , k}} where fj ∈ C(B) is such that
∀α ∈ N, eαj djcj [ε] = fj [xα powc(x,H1,H2)].1

or there exist f ∈ C(B) and w ∈ B∗ such that ρj is non-commuting and (f, w)−aligned
for all j ∈ {1, . . . , k}. In this case, we say that the lasso H1H2 is (f, w)−aligned, and
we let splitnc(f, w,H1, H2) = {(qj , gj) | j ∈ {1, . . . , k}} where gj ∈ C(B) is such that
∀α ∈ N, eαj djcj [ε] = gjf

α[w].1

Proof Sketch. As T satisfies the CTP, the outputs must grow at the same pace when
the loops are pumped. This entails that the lengths of the ej must be equal. Next, the
result is proved by considering two productive synchronised lassos, with loops producing
respectively e1 and e2. If they are not strongly balanced or one of them is x−commuting,
for some x ∈ B+, then, using the result of Fine and Wilf (Lemma 1) between ←−e1 ,

←−e2 ,
−→e1

and −→e2 , we can prove that the other one is also x−commuting. Otherwise, they are both
non-commuting and strongly balanced. Using again Lemma 1 but first between ←−e1 and ←−e2 ,
and then between −→e1 and −→e2 , we prove that there exist f ∈ C(B) and w ∈ B∗ such that ρ1 and
ρ2 are (f, w)−aligned. Finally, the result is lifted to k productive synchronised lassos. J

I Example 17. We consider the example S2C in Figure 2. The lasso in T 2
1 around (q1, q2) is

a−commuting. We can compute a powc of 2 and {(q1, (a, a)), (q2, (b, a))} as a possible splitc.
The lasso in T 2

2 around (q1, q2) is ((ab, de), c)−aligned. We can compute {(q1, cε), (q2, (b, d))}
as a possible splitnc.

1 Because we only consider lassos around pairwise distinct states, both splitc(x, H1, H2) and
splitnc(f, w, H1, H2) are partial functions from Q to C(B).
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5.2 Analysis of Loops Consecutive to a Productive Loop
Consider a run that contains two consecutive productive loops. We can observe that the type
(commuting or non-commuting) of the lasso involving the first loop impacts the possible types
of the lasso involving the second loop. For instance, it is intuitive that a non-commuting
lasso cannot be followed by a commuting lasso. Similarly, an x−commuting lasso cannot
be followed by a y−commuting lasso, if x and y are not conjugates. We will see that
loops following a first productive loop indeed satisfy stronger combinatorial properties. The
following definition characterises their properties.

I Definition 18 (Strongly commuting/Strongly aligned lasso). Let ρ be a productive lasso
c−→ p

u|d−−→ q
v|e−−→ q and x ∈ B+. We say that ρ is:

strongly commuting w.r.t. x, denoted as strongly−x−commuting, if there exists a context
f ∈ C(B) such that for all i, j ∈ N>0, there exists k ∈ N such that eidc[xj ] = f [xk].
strongly aligned w.r.t. g, f and x, denoted as strongly−(g, f, x)−aligned, if there exists
a context h ∈ C(B) such that for all i, j ∈ N, ejdc[xi] = hgjf [xi].

The following Lemma states the properties of a lasso consecutive to a commuting lasso.
To prove it, we proceed as for Lemma 16 by proving the result first for two runs and then
lifting it to k runs. The case of two runs is obtained by distinguishing whether they are
strongly balanced or not, and using Lemma 1.

I Lemma 19. Let H1H2 a productive x−commuting lasso in T 6|Q|, for some x ∈ B+.
Let ∆ = splitc(x,H1, H2) and H3H4 = (ρj)j∈{1,...,k} a productive lasso in T k∆, for some

1 6 k 6 |Q|. We write ρj : cj−→ pj
u1|dj−−−→ qj

u2|ej−−−→ qj for each j. Then:
either every ρj is strongly−x−commuting: we say that H3H4 is strongly−x−commuting,
or there exist g, h ∈ C(B) such that every ρj is strongly−(h, g, x)−aligned. In this case,
we say that H3H4 is strongly−(h, g, x)−aligned and we let extractnc(h, g, x,∆, H3, H4) =
{(qj , hj) | j ∈ {1, . . . , k}} where hj ∈ C(B) is s.t. ∀α, β ∈ N, eαj djcj [xβ ] = hjh

αg[xβ ].

The following Lemma states that once a non-commuting loop is encountered, then the
alignment of production is fixed, i.e. no transfer between left and right productions is
possible anymore. Hence, the left and right S2S derived from the S2C both satisfy the
twinning property:

I Lemma 20. Let H1H2 be a productive non-commuting lasso that is either
(f, w)−aligned in T 6|Q|, for some f ∈ C(B) and w ∈ B∗, and ∆′ = splitnc(f, w,H1, H2),
or strongly−(g, f, x)−aligned in T 6|Q|

∆ , for some g, f ∈ C(B) and ∆ ∈ F(Q, C(B)), and
∆′ = extractnc(g, f, x,∆, H1, H2).

Then ←−T∆′ and −→T∆′ both satisfy the twinning property.

5.3 A Two-loop Pattern Property
The following 2-loop property summarises the combinatorial properties of the synchronised
runs involving loops in string-to-context transducers that satisfy the CTP.

I Definition 21 (2-loop property). Given four runs H1, H2, H3, H4 in T 6|Q|, such that H1H2
and (H1H3)H4 are lassos in T 6|Q|, we say that they satisfy the 2-loop property if:
1. H1H2 is

a. either non productive,
b. or productive and x−commuting, for some x ∈ B+,
c. or productive, non-commuting and (f, w)−aligned, for some f ∈ C(B) and w ∈ B∗.
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2. if H1H2 is productive and x−commuting, we let ∆ = splitc(x,H1, H2), then H3H4 is a
lasso in T 6|Q|

∆ . If productive then it is:
a. either strongly−x−commuting,
b. or non-commuting and strongly−(h, g, x)−aligned, for some g, h ∈ C(B). We let

∆′ = extractnc(h, g, x,∆, H3, H4), then ←−T∆′ and −→T∆′ both satisfy the twinning property.
3. if H1H2 is productive, non-commuting and (f, w)−aligned, we let

∆ = splitnc(f, w,H1, H2), then ←−T∆ and −→T∆ both satisfy the twinning property.

A string-to-context transducer T is said to satisfy the 2-loop property if for all runs
H1, H2, H3, H4 as above, they satisfy the 2-loop property.

As a consequence of Lemmas 16, 19 and 20, we have:

I Lemma 22. If an S2C T satisfies the CTP then it satisfies the 2-loop property.

6 Determinisation

Throughout this section, we consider a string-to-context transducer T = (Q, tinit, tfinal, T )
from A∗ to B∗ that satisfies the 2-loop property. Intuitively, our construction stores the set
of possible runs of T , starting in an initial state, on the input word read so far. These runs
are incrementally simplified by erasing synchronised loops, and by replacing a prefix by a
partial function ∆ : Q ↪→ C(B). These simplifications are based on the 2-loop property.

Observation. It is worth noticing that, as T is functional, if two runs reach the same state,
it is safe to keep only one of them. This allows us to maintain a set of at most |Q| runs.

Notations. Given ∆ ∈ F(Q, C(B)), c ∈ C(B), w ∈ B∗, a ∈ A and H ∈ R(T 6|Q|), we define
the following notations and operations:

∆c = {(q, dc) | (q, d) ∈ ∆},
∆[w] = {(q, d[w]) | (q, d) ∈ ∆},
∆ • a = choose({(q′, dc) | (q, c) ∈ ∆ and q a|d−−→ q′}),
H •a ∈ R(T 6|Q|) is the run obtained by extending runs of H with consecutive transitions
of T associated with input symbol a, and by eliminating runs so as to ensure that runs
reach pairwise distinct states of T ,
∆ •H = choose({(q′, dc) | (q, c) ∈ ∆ and there is a run ρ : q x|d−−→ q′ ∈ H}),
id∆ = (qi)16i6k ∈ R(T k), for some enumeration {q1, . . . , qk} of dom(∆).

Construction. We define an equivalent deterministic string-to-context transducer D =
(Q, tinit, tfinal, T ), and we denote by D its trim part. While D may have infinitely many states,
we will prove that D is finite. Formally, we define Q = Qstart ]Qcom ]Q¬com where:

Qstart = {(ε, tinit, H) | H ∈ R(T 6|Q|)}
Qcom = {(x,∆, H) | x ∈ B+,∆ ∈ F(Q, C(B)), H ∈ R(T 6|Q|)}
Q¬com = {(⊥,∆, id∆) | ∆ ∈ F(Q, C(B))}.

By definition, we have Q ⊆ (B∗ ∪ {⊥}) × F(Q, C(B)) × R(T 6|Q|) = Q∞. Given
q = (x,∆, H) ∈ Q∞, we let ∆q = ∆ •H ∈ F(Q, C(B)). An invariant of our construction is
that every starting state of a run in H belongs to dom(∆).
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Intuitively, the semantics of a state q = (x,∆, H) ∈ Q can be understood as follows: x is
used to code the type of state (Qstart, Qcom or Q¬com), and ∆ and H are used to represent
the runs that remain to be executed to faithfully simulate the runs of T on the input word u
read so far. As we have seen in the previous section, loops may either be commuting, allowing
to shift some parts of the output from one side of the context to the other side, or they
are non-commuting, and then should be aligned, forbidding such modifications. Intuitively,
states in Qstart correspond to situations in which no productive loop has been encountered
yet. States in Qcom (with x ∈ B+) correspond to situations in which only x-commuting loops
have been encountered. States in Q¬com correspond to situations in which a non-commuting
loop has been encountered. A representation of D is given in Figure 3.

Qstart Qcom Q¬com

x-com

¬com

¬com

¬prod ¬prod ∨ x-com

Figure 3 A schematic representation of states and transitions of D.

Initial and final states. They are defined as follows:
tinit = {(i, cε)} where i = (ε, tinit, idtinit) ∈ Qstart
tfinal = choose({(q̄, dc) | q ∈ Q, (p, c) ∈ ∆q̄, (p, d) ∈ tfinal})

Transitions. They are defined as follows:
D = {p a|c−−→ q | p = (x,∆, H) ∈ Q, a ∈ A and (q, c) = simplify((x,∆, H • a))}

Intuitively, a transition of D leaving some state p = (x,∆, H) ∈ Q with letter a ∈ A aims at
first extending H with a, obtaining the new set of runs H • a, and then simplifying this set
of runs by removing loops, using the function simplify. This function is implemented as
Algorithm 2, which calls Algorithm 1 to remove all loops of H • a one by one. Depending on
the type of the loop encountered, the type of the state is updated.

We first define extend_with_loop(p,H2) in Algorithm 1 that takes as input a state
p = (x,∆, H1) ∈ Qstart ∪ Qcom and a run H2 in T 6|Q| such that H1H2 is a lasso in T 6|Q|

∆ .
The algorithm enumerates the possible cases for the type of this lasso, depending on the type
of p. This enumeration strongly relies on the 2-loop property. Depending on the case, the
loop is processed, and a pair composed of a new state and a context is returned. This context
will be part of the output associated with the transition. By a case analysis, we prove:

I Lemma 23. Let p = (x,∆, H1) ∈ Qstart ∪Qcom and H2 ∈ R(T 6|Q|) such that H1H2 is a
lasso in T 6|Q|

∆ . We let (q, c) = extend_with_loop(p,H2).
If x = ε then (∆p •H2)[ε] = ∆qc[ε].
If x ∈ B+ then for all k ∈ N, (∆p •H2)[xk] = ∆qc[xk].

We then define simplify(p) in Algorithm 2 that takes as input a state p ∈ Q∞ (we need
to consider Q∞ as input and not only Q because of the recursive calls) and returns a pair
composed of a new state and a context. Intuitively, it recursively processes the lassos present
in the runs stored by the state p, by using calls to the previous algorithm. The following
result is proved by induction, using Lemma 23:
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Algorithm 1 Extending a state p = (x,∆, H1) ∈ Qstart ∪ Qcom with H2 ∈ R(T 6|Q|) s.t.
H1H2 is a lasso in T 6|Q|

∆ .
1: function extend_with_loop(p,H2)
2: if H2 is non-productive then
3: return (p, cε)
4: else if p = (ε, tinit, H1) then
5: if H1H2 is x−commuting, for some x ∈ B+, then
6: let ∆ = splitc(x,H1, H2) and k = powc(x,H1, H2)
7: return ((x,∆, id∆), (ε, xk))
8: else if H1H2 is (f, w)−aligned, for some f ∈ C(B) and w ∈ B∗, then
9: let ∆ = splitnc(f, w,H1, H2)
10: return ((⊥,∆, id∆), f · (ε, w))
11: end if
12: else if p = (x,∆0, H1), where x ∈ B+, then
13: if H1H2 is strongly−x−commuting then
14: let k = |out(H2)|/|x|
15: return (p, (ε, xk))
16: else if H1H2 is strongly−(g, f, x)−aligned, for some g, f ∈ C(B), then
17: let ∆ = extractnc(g, f, x,∆0, H1, H2)
18: return ((⊥,∆, id∆), gf)
19: end if
20: end if
21: end function

I Lemma 24. Let p = (x,∆, H) ∈ Q∞ and (q, c) = simplify(p). Then q ∈ Q and we have:
If x = ε then ∆p[ε] = ∆qc[ε].
If x ∈ B+ then for all k ∈ N, ∆p[xk] = ∆qc[xk].
If x = ⊥ then ∆p = ∆qc.

I Theorem 25. D is a finite sequential string-to-context transducer equivalent to T .

Proof Sketch. First observe that D is sequential. The correctness of D is a consequence
of the following property, that we prove using Lemma 24 and an induction on |u|: for all
u ∈ A∗, if we have i u|c−−→ q in D, then ∆qc[ε] = (tinit • u)[ε]. Last, we prove that D is finite.
By construction, for every state q = (x,∆, H) of D, H contains no loop, hence its length is
bounded by |Q||Q|. This can be used to bound the size of x, as well as the size of ∆, for states
in Qstart ∪Qcom. The case of states in Q¬com is different: when such a state (⊥,∆, id∆) is
reached, then by the 2-loop property, the transducers ←−T∆ and −→T∆ both satisfy the (classical)
twinning property. It remains to observe that the operations performed on Line 24 precisely
correspond to two determinisations of [12], on both sides of the S2C. J

7 Decision

In this section, we prove the following result:

I Theorem 26. Given a string-to-context transducer, determining whether there exists an
equivalent sequential string-to-context transducer is in coNP.
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Algorithm 2 Simplifying a state p = (x,∆, H) ∈ Q∞.
22: function simplify(p)
23: if p = (⊥,∆, H) then
24: let ∆′ = ∆ •H, c = lcc(∆′) and q = (⊥,∆′.c−1, id∆′)
25: return (q, c)
26: else if p = (x,∆, H1H2H3), where x ∈ B∗ and H2 is the first loop in H, then
27: let q = (x,∆, H1)
28: let (r, c) = extend_with_loop(q,H2) with r = (x′,∆′, H ′)
29: let (s, d) = simplify((x′,∆′, H ′.H3))
30: return (s, dc)
31: else
32: return (p, cε)
33: end if
34: end function

In order to show this result, we introduce a restriction of the 2-loop property:

I Definition 27 (small-2-loop property). A string-to-context transducer T is said to satisfy
the small-2-loop property if, for all runs H1, H2, H3, H4 ∈ T 2 with |Hi| 6 |Q|2 for each i,
H1H2, H1H3H4 are lassos and they satisfy the 2-loop property (in the sense of Definition 21).

By definition, if a string-to-context transducer satisfies the 2-loop property then it also
satisfies the small-2-loop property. We will show that the two properties are equivalent.

I Lemma 28. If a string-to-context transducer T satisfies the small-2-loop property then
[[T ]] satisfies the contextual Lipschitz property.

Proof Sketch. We claim there exists K ∈ N such that for every pair of synchronised runs
H : (c0,d0)−−−−→ (p0, q0) u|(c1,d1)−−−−−→ (p1, q1) in T 2, we have distf (c1c0[ε], d1d0[ε]) 6 K. The result
then easily follows. To prove this claim, we apply the main procedure simplify (see Section 6)
to the state p = (ε, tinit, H). This procedure can indeed be applied: as it always processes
the first loop (see Line 29), the lassos considered satisfy the premises of the small-2-loop
property. The claim follows from the proof of finiteness of D. J

Proof Sketch of Theorem 26. By Theorem 11 and Lemma 28, T admits an equivalent
sequential S2C transducer iff T satisfies the small-2-loop property (see also Figure 4). Thus,
we describe a procedure to decide whether T satisfies the small-2-loop property.

The procedure first non-deterministically guesses a counter-example to the small-2-loop
property and then verifies that it is indeed a counter-example. By definition of the small-2-
loop property, the counter-example can have finitely many shapes. Those shapes require the
verification of the properties of the involved lassos: being productive or not, being commuting
or not, being aligned or not, satisfying the (classical) twinning property, etc.

Verifying that a lasso in T 2 is not commuting (resp. not aligned) boils down to checking
whether there exists no x ∈ B+ such that the lasso is x−commuting (resp. no f ∈ C(B) and
w ∈ B∗ such that the lasso is (f, w)−aligned). In both cases, the search space for the words
x,w and context f can be narrowed down to factors of the output contexts of the given lasso.
Thus these verifications can be done in polynomial time. The classical twinning property can
also be checked in polynomial time. As a summary, we can show that the verifications for all
the shapes can be done in polynomial time. Furthermore, all the shapes are of polynomial
size, by definition of the small-2-loop property, yielding the result. J
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Figure 4 Overview of the equivalent properties we consider.

Note that if one can express in the logic of [18] that a lasso in T 2 is not commuting
(resp. not aligned), then this would show that the problem can be solved in polynomial time.
However, this seems difficult because of the universal quantification on the factor x.

8 Conclusion

We have proposed a multiple characterisation of string-to-context transducers that admit an
equivalent sequential S2C, including a machine independent property, a pattern property,
as well as a “small” pattern property allowing to derive a decision procedure running in
non-deterministic polynomial time. All these equivalences are summarised in Figure 4.
Future work includes a lower bound for the complexity of the problem, the extension of this
work to the register minimisation problem for streaming string transducers without register
concatenation, and the extension of our results to infinite words.
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