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Abstract

A temporal graph is a graph whose edge set can change over time. We only require that the edge set
in each time step forms a connected graph. The temporal exploration problem asks for a temporal
walk that starts at a given vertex, moves over at most one edge in each time step, visits all vertices,
and reaches the last unvisited vertex as early as possible. We show in this paper that every temporal
graph with n vertices can be explored in O(n1.75) time steps provided that either the degree of the
graph is bounded in each step or the temporal walk is allowed to make two moves per step. This
result is interesting because it breaks the lower bound of Ω(n2) steps that holds for the worst-case
exploration time if only one move per time step is allowed and the graph in each step can have
arbitrary degree. We complement this main result by a logarithmic inapproximability result and
a proof that for sparse temporal graphs (i.e., temporal graphs with O(n) edges in the underlying
graph) making O(1) moves per time step can improve the worst-case exploration time at most by a
constant factor.
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1 Introduction

Temporal graphs, or time-varying graphs, are graphs whose edge set changes over time. Due
to the prevalence of dynamic networks whose links change over time in many application
settings (e.g., wireless mobile networks, transportation networks, social networks), the study
of algorithmic aspects of temporal graphs has received increasing attention recently [14].
A temporal graph G with lifetime τ is a sequence of graphs Gi = (V,Ei), for i = 1, . . . , τ ,
that all have the same vertex set, but possibly different edge sets. A particular problem of
interest is the temporal exploration problem (TEXP) where an agent starts at a given vertex
s ∈ V and aims to visit all vertices in V as quickly as possible (i.e., minimizing the time
step in which the last unvisited vertex is reached) while making one move (either stay at
the current vertex or move to a neighboring vertex in the current graph) in each time step.
The existence of such an exploration is guaranteed if the graph Gi in each time step is a
connected graph [13], and so it has become customary to study TEXP for temporal graphs
with this property [6, 7, 13]. We make the same assumption throughout this paper. The
number of vertices of the temporal graph under consideration is denoted by n.

It is known that every temporal graph (under the assumption that the graph in each step
is connected) can be explored in O(n2) steps and that there are temporal graphs that require
Ω(n2) steps to be explored [6]. The construction of temporal graphs that require Ω(n2) steps
for an exploration from [6] produces temporal graphs for which the graph in each step has a
vertex of high degree (the graph in each step is a star, so one vertex has degree n− 1) and
in which the edge set changes in every step (the center of the star changes in each step).
This poses the natural question whether a better upper bound on the worst-case exploration
time holds if any of these properties is avoided, i.e., if the graph in each step has bounded
degree or if the edge set of the graph changes only in every other step (which is, up to a
factor of two, equivalent to allowing the agent to make two moves instead of one in each
step). A first step towards answering this question was made in [7], where it was shown
that O(log ∆ · n2

logn ) steps1 suffice for the exploration if the graph in each step has maximum
degree at most ∆. For constant ∆, this proves that O( n2

logn ) steps suffice.
In this paper, we present a substantial further improvement by showing that O(n1.75)

steps suffice for an exploration if either the graph in each step has bounded degree, or if the
graph in each step has arbitrary degree but the agent can make two moves in each step (or,
equivalently, if the agent can make one move per step but the graph changes only in every
other step). Surprisingly, the improvement for both cases follows from the same analysis: The
key insight is that the better bound on the number of time steps required for an exploration
can be proved if the graph in each time step admits a spanning tree of bounded degree.
The existence of such a spanning tree is obvious if the graph itself is connected and has
bounded degree, and it follows in the model with two moves per step because the square of
any connected graph has a spanning tree of bounded degree.

To complement our positive result, we also show that letting the agent make c moves
per step, for any constant c, cannot improve the worst-case exploration time for any family
of temporal graphs where the underlying graph (the union of the graphs in all steps) has
O(n) edges by more than a constant factor. Furthermore, we show that it is NP-hard to
approximate the exploration time with approximation ratio better than c logn for some
constant c, both for the case of bounded degree and the case of two moves per step.

1 The conference paper [7] proves a weaker bound of O(∆ log ∆ · n2

log n ), but a simple change in one
calculation shows that the factor ∆ can be avoided.
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The remainder of the paper is organized as follows. Section 1.1 discusses related work.
Preliminaries are given in Section 2. The main results, showing that exploration in O(n1.75)
time steps is possible for the case of bounded degree and the case of two moves per step,
are presented in Sections 3 and 4, respectively. The result that bounds the improvement
obtainable by using c moves per step for sparse temporal graphs and the inapproximability
results appear in Sections 5 and 6, respectively. Section 7 concludes the paper.

1.1 Related Work
Brodén et al. [3] studied a temporal analogue of the traveling salesperson problem (TSP)
in which the graph is a complete graph in every step and the cost of every edge is either
1 or 2 in each time step, with each edge being allowed to change its cost at most k times
over the graph’s lifetime. They provided an approximation algorithm with approximation
ratio 2 − 2

3k . Michail and Spirakis [13] studied this model as well, showing the general
problem to be APX -hard and presenting a (1.7 + ε)-approximation algorithm. They also
considered the temporal exploration problem and showed that it is NP-hard to decide if
a temporal graph can be explored if no restrictions are placed on the graph in each step.
They therefore suggested making the assumption that the graph is connected in each step,
which has turned out to be a very useful model to study. They proved that it is NP-hard
to approximate the temporal exploration problem under this assumption with ratio 2− ε.
Erlebach et al. [6] strengthened this result and proved that approximation with ratio n1−ε

for any ε > 0 is NP-hard. Moreover, they constructed a concrete family of temporal graphs
for which exploration takes Ω(n2) time. They also presented further results for special graph
classes, including upper bounds of O(n1.5k2 logn) steps for underlying graphs of treewidth k
and O(n log3 n) steps for the case that the underlying graph is a 2 × n grid. For the case
that the underlying graph is a planar graph of maximum degree 4 and the graph in each
step is a path, they proved that Ω(n logn) steps can be necessary in the worst case. The
temporal exploration problem for the special case where the underlying graph is a ring
has been studied for the setting of T -interval-connectivity (the intersection of the graphs
of any T consecutive time steps is connected) by Ilcinkas and Wade [11]. Decentralized
algorithms for the exploration of temporal rings have been studied by Di Luna et al. [5].
Temporal exploration for the case where the underlying graph is a cactus has been studied
by Ilcinkas et al. [10].

For surveys of other work on algorithmic aspects and different models of temporal or
time-varying graphs we refer to [4, 12]. Examples of recent work include results on the design
of temporal networks [1], on temporal (s, t)-separation problems [8, 15], and on temporal
vertex cover with sliding time windows [2].

2 Preliminaries

I Definition 2.1 (Temporal Graph). We represent a temporal graph G with underlying graph
G = (V,E) using an ordered sequence of static graphs: G = 〈G1, G2, . . . , Gτ 〉. The subscripts
i ∈ 1, 2, . . . , τ indexing the graphs in the sequence are the discrete time steps 1 to τ , where τ
is known as the lifetime of G. Each Gi represents the structure of G in time step i. More
precisely, Gi = (V,Ei) is a subgraph of G with V (Gi) = V (G) and Ei ⊆ E for all 1 ≤ i ≤ τ .

I Definition 2.2 (Temporal walk). A temporal walk W through a temporal graph G is given
as an alternating sequence of vertices and edge-time pairs

W = v0, (e0, i0), v1, (e1, i1), v2, . . . , vk−1, (ek−1, ik−1), vk

ICALP 2019
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that starts at vertex v0 and ends at vertex vk. Additionally, we require that i0 < i1 < . . . <

ik−1, so that an agent following W can traverse at most one edge per time step. Each
edge-time pair (ej , ij) denotes the traversal of edge ej = {vj , vj+1} at time step ij. For such
a traversal to be possible, ej must be present in graph Gij , i.e., ej ∈ Eij . We say that the
walk W departs at time i0 (or, at a time i′ ≤ i0 if we imagine the walk to wait at v0 from
time i′ to time i0), and arrives at time ik−1 + 1.

We often view a temporal walk W , defined as above, as describing the movement of an
agent that is initially located at v0 and can, in each step, either stay at its current vertex or
move to a neighboring vertex in the current graph.

I Lemma 2.3 (Reachability Lemma [6]). Let G be a temporal graph with vertex set V , and
assume that G is connected in each step. Then an agent situated at any vertex u ∈ V at any
time t ≤ τ − n can reach any other vertex v ∈ V in at most |V | − 1 = n− 1 steps, i.e., by
time step t+ n− 1.

I Problem (Temporal Exploration). An instance of the Temporal Exploration (TEXP)
problem is given by a pair (G, s), where G = 〈G1, G2, . . . , Gτ 〉 is an arbitrary temporal graph
with lifetime τ ≥ |V (G)|2 = n2 (in order to ensure that there exist feasible solutions for any
instance), and s ∈ V (G) is a start vertex. The problem then asks for a temporal walk W that
departs from vertex s and visits all vertices of G and minimizes the arrival time at the last
unvisited vertex. We make the extra assumption that the graph is connected in each step;
without this it could happen that there exists no valid exploration schedule.

We end the section with an auxiliary lemma used in the next section.

I Lemma 2.4. Let T = (V,E) be a tree with maximum degree ∆ and U ⊆ V . Then
b|U |/(∆ + 1)c pairs of vertices in U can be found such that the paths between all pairs are
pairwise vertex-disjoint.

Proof. We root T at an arbitrary vertex and explain how to iteratively select pairs {u, v} ⊆ U .
The procedure will ensure that, whenever we select a pair of vertices in U , there are at most
∆− 1 other vertices in U that can no longer be paired up and have to be removed from U .

Let u, v ∈ U be two vertices such that their lowest common ancestor w = lca(u, v) has
the largest possible depth. Note that we may have w = v or w = u. Since T has maximum
degree ∆, w can have at most ∆ children. There can be at most ∆ + 1 vertices from U in
the subtree rooted at w: Each subtree rooted at a child of w contains at most one vertex
from U (by our choice of w), and w itself may be in U . Select the pair {u, v} and remove u,
v and all other vertices that are in the subtree rooted at w from U , a total of at most ∆ + 1
vertices. It is easy to see that the paths between the pairs selected by this procedure are
vertex-disjoint. J

3 Exploration of Degree-Bounded Temporal Graphs

In this section, our goal is to construct a temporal walk using O(n1+α) time steps on a
temporal n-vertex graph G for some α with 0 < α < 1. We assume that the maximum
degree of the graph Gi in each step is bounded by a constant ∆ ∈ N. While constructing
the temporal walk, we distinguish between vertices that already belong to our constructed
temporal walk, which we call seen vertices, and the remaining vertices, called unseen vertices.
We first show in Section 3.1 that O(n1.8) time steps suffice, and then improve the analysis
further to get O(n1.75) time steps in Section 3.2.
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3.1 Phases, Subphases, Labels and Forbidden Sets
Recall that the reachability lemma allows us to easily construct a temporal walk with arrival
time O(n2) by picking an arbitrary order s = v1, v2, . . . , vn of vertices and searching for a
temporal walk from v1 to v2, from v2 to v3, and so on, each starting when the previous walk
arrives and using O(n) time steps. To find a better solution, we have to avoid fixing the order
of the vertices without considering the given temporal graph. We divide our construction
into so-called phases, each consisting of O(n) time steps. Within each phase we construct
several temporal subwalks, one ending at each unseen vertex. We say that a subwalk is better
than another subwalk if it contains more unseen vertices. Among the constructed subwalks,
we then choose a best subwalk and use it to extend the temporal walk constructed so far.

By leaving O(n) time steps between two phases, we can easily connect the subwalks of
two subsequent phases by the reachability lemma.

Let ` be the number of unseen vertices at the beginning of the current phase. The phase
is split into subphases 1, 2, 3, . . . where the goal of each subphase is to replace a constant
fraction of the subwalks by subwalks that have at least one more unseen vertex. For every
unseen vertex v we use a label L(v) to store the (ordered sequence of the) unseen vertices of
the subwalk ending at v. We also keep track of the subwalk that visits all the unseen vertices
in L(v), and we use L(v) to refer to that subwalk if no confusion can arise.

We set L(v) = v at the beginning of the phase. Moreover, we maintain the invariant that
after the ith subphase, no subwalk has more than i+ 1 unseen vertices, i.e., |L(v)| ≤ i+ 1
for all unseen vertices v. We cannot guarantee that there is an improvement w.r.t. the total
number of unseen vertices of the subwalks in every time step. Instead, at the beginning
of each subphase, we place labels on all unseen vertices. In each time step the idea is to
propagate labels from a vertex to one of its neighbors and analyze the total improvement
in the spread of the labels. Whenever a label reaches another unseen vertex w, a longer
subwalk is found that may replace the label of w in the next subphase. A similar approach
was used by Erlebach and Spooner [7].

To measure the improvement during the time steps, we additionally define for every
vertex v a home set H(v) consisting of labels of unseen vertices that can reach v within the
time steps of the current subphase. At the beginning of a subphase, we set H(v) = {L(v)}
for every unseen vertex v, and H(v) = ∅ for the remaining vertices. For technical reasons, in
subphase i, the size of each home set is bounded by 2i+ 1.

During the extension of a subwalk we have to avoid adding the same unseen vertices
to a subwalk again. For this purpose, we store for every unseen vertex v a set of vertices
whose subwalks cannot be extended by v (because they already contain v). More precisely,
we store a forbidden set F (v) of every unseen vertex v that consist of all unseen vertices w
with v ∈ L(w). Note that v ∈ F (v) for every unseen vertex v. We next describe our first
operation on the home sets.
Operation 1: If u and v are connected by an edge in the current time step, we are allowed

to copy a label L from the home set H(v) into the home set H(u). In addition, we can
delete a label L′ from H(u), i.e., we can replace a label L′ by L in H(u).

As one can easily see by induction, a label of an unseen vertex u can be part of a home set
of a vertex v by the start of time step t only if there is a temporal walk from u to v with
arrival time t in the current subphase.

In the following, we motivate a second operation. Let v and u be unseen vertices. If
L(u) ∈ H(w) where w = v or w is a neighbor of v, u /∈ F (v) and |L(u)| ≥ |L(v)| holds, the
subwalk L(u) ending at u can be extended by v and this can be a subwalk ending at v that
is better than the current subwalk L(v). In this case, we can take the better subwalk for v,
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141:6 Two Moves per Time Step Make a Difference

i.e., we define Lnew(v) := L(u) ◦ v. Note that we have that |L(u)| ≤ i at the end of subphase
i− 1 by our invariant and hence it follows that |Lnew(v)| ≤ i+ 1. Thus, the invariant holds
also in the next subphase.

For the remaining time steps of the current subphase, it would seem to be useful to start
propagating the new label of v starting from v. However, then we would have several labels
ending at v and this would increase the total size of the forbidden sets, which we cannot
afford. Therefore, we set L(v) := Lnew(v) only at the end of the current subphase. For
the remainder of the current subphase, we leave all L(v) in the home sets unchanged. In
particular, it is still possible that the label L(v) reaches another unseen vertex w – which
means that we may also be able to set Lnew(w) := L(v) ◦w. Altogether, we get the following
operation.

Operation 2: If a label L(u) is in H(x) for some vertex x in the closed neighborhood of
an unseen vertex v and if |L(v)| ≤ |L(u)| as well as u /∈ F (v), then we can define
Lnew(v) := L(u) ◦ v.

In the following we measure our progress by an increase in the potential function φ =
|{u unseen vertex | L′(u) 6= L(u)}|+

∑
v∈V

∑
L∈H(v) |L| where L′(u) := Lnew(u) if Lnew(u)

is defined in the current subphase and L′(u) := L(u) otherwise.

I Lemma 3.1. Assume that we are in the ith subphase. Given a set of unseen vertices U of
size k with L(u) ∈ H(u), L′(u) = L(u) and |F (u)| ≤ 2i for all u ∈ U , the operations from
above allow us to modify the labels of the unseen vertices and the home sets of all vertices in
such a way that φ increases by Ω(k/i) within one time step.

Proof. We consider a spanning tree T in the graph of G in the time step under consideration.
Since the graph has maximum degree at most ∆, also T obeys this degree bound.

Next we pair up the unseen vertices in such a way that they are connected by pairwise
vertex-disjoint paths. However, we are not allowed to pair up vertices where one is in the
forbidden set of the other. Therefore, we compute a set of unseen vertices U ′ ⊆ U such that
we can pair up the vertices in U ′ without taking the forbidden sets into consideration. To
determine U ′, start with U ′ = ∅ and greedily iterate over the vertices u ∈ U . Whenever
F (u) ∩ U ′ = ∅ and L(u) ∩ U ′ = ∅ holds, add u to U ′. The latter condition guarantees
F (v) ∩ (U ′ ∪ {u}) = ∅ for all v already in U ′. Since each vertex u in U ′ can prevent the

insertion of at most |L(u) \ {u}|+ |F (u) \ {u}|
invariant
≤ 3i− 1 vertices into U ′, |U ′| = Ω(k/i).

Next, pair up the vertices of U ′ in such a way that, in T , the paths between every two pairs
of vertices are pairwise vertex-disjoint. By Lemma 2.4, we obtain at least Ω(k/i) pairs since
the current graph of G and thus T has constant degree ∆.

We next show that, for each of the chosen pairs of vertices u and v, φ increases by at
least one. For this purpose, we focus on the path P between u and v in T , and let w be the
neighbor of u in P . W.l.o.g. |L(u)| ≤ |L(v)| holds. We consider two cases.

Case 1. The home set of w contains a label L(x) with x /∈ F (u) and |L(x)| ≥ |L(u)|. Then
we define Lnew(u) := L(x) ◦ u using Operation 2 and remove u from U , but leave all
occurrences of L(u) in the home sets unchanged. In this way we get a potential increase
since u newly satisfies the condition L′(u) 6= L(u).

Case 2. Otherwise, we argue as follows. Note that, if |H(w)| = 2i+ 1 and |L(x)| ≥ |L(u)|
for all L(x) ∈ H(w), then we are in Case 1 since |F (u)| ≤ 2i for all u ∈ U . Thus,
either |H(w)| < 2i+ 1 or H(w) contains a label L(x) that is strictly shorter than |L(u)|.
Moreover, since u, v ∈ U ′, we have v /∈ F (u). Since we are not in Case 1, L(v) /∈ H(w).
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Let f be the function that removes from a set all labels that are shorter than |L(v)|. Note
that |f(H(w))| ≤ 2i because either |H(w)| ≤ 2i or H(w) contains a label that is strictly
shorter than |L(u)| and thus also strictly shorter than |L(v)|.
Now, observe that it is not possible that, for each pair of subsequent vertices x (possibly
w) and y (possibly v) on the path from w to v, where x is closer to w than y, f(H(x)) ⊇
f(H(y)) holds – this would be a contradiction to L(v) /∈ f(H(w)) and L(v) ∈ f(H(v)).
Therefore, there must be a pair of consecutive vertices x and y on the path, with x closer
to w, such that f(H(x)) is not a superset of f(H(y)). Among all such pairs of vertices,
choose the one such that x is closest to w. As we have |f(H(w))| ≤ 2i, it follows that
|f(H(x))| ≤ 2i. By Operation 1 we copy a label L ∈ f(H(y)) \ f(H(x)) from H(y) to
H(x). Possibly, we additionally have to remove a shorter label L′ from H(x) in order to
ensure that |H(x)| remains bounded by 2i + 1. If |H(x)| = 2i + 1, then L′ must exist
since H(x) has at most 2i labels being ≥ |L(v)| long. Thus, φ increases. In case x ∈ U ,
we have to be careful that we do not remove L(x) from H(x) in this operation. Therefore,
in that case we do not replace L(x) in H(x) by a longer label unless all other labels in
H(x) are longer than L(x). If this is the case and we replace L(x) in H(x), then H(x)
now contains 2i+ 1 labels longer than L(x) and, since |F (x)| ≤ 2i, one of these is L(v′)
for some v′ /∈ F (x) and we can apply Operation 2 and set Lnew(x) = L(v′)◦x and remove
x from U . J

To guarantee the condition on the size of the forbidden sets in the lemma above, we do
not add all unseen vertices u with L′(u) = L(u) into the set U . Instead, we initially define
U = {u unseen vertex | L′(u) = L(u) and |F (u)| ≤ 2i}. Since the total label length is at
most i` by our invariant, there can be at most `/2 unseen vertices u with |F (u)| > 2i. As
long as we have L′(u) 6= L(u) for at most `/4 unseen vertices u in the current subphase, we
have |U | ≥ `− `/2− `/4 = `/4.

Within each time step, the set of vertices u with L′(u) = L(u) shrinks whenever we apply
Operation 2. We apply the lemma only while at most `/4 vertices have been removed from U ,
so this does not cause a problem.

I Lemma 3.2. Given a set of unseen vertices U of size ` in the beginning of the ith subphase,
Θ(ni3/`) time steps allow us to increase the length of at least `/4 subpaths (i.e., labels of
unseen vertices) by one.

Proof. By Lemma 3.1, φ ≥ `/4 + i(2i + 1)n after Θ(i/4 + i2(2i + 1)(n/`)) = Θ(ni3/`)
time steps (or we set Lnew for at least `/4 vertices even earlier). This can happen only if
L′(u) 6= L(u) for at least `/4 unseen vertices u since we have in the home sets at most (2i+ 1)
labels of length i for every vertex. J

We stop the construction of the temporal walk in phases when fewer than nα unseen
vertices remain for some α with 0 < α < 1 and finish the temporal walk by adding the
remaining nα unseen vertices in O(n1+α) time steps (by visiting them in arbitrary order
using the reachability lemma). Therefore, we can assume for the next lemma that the number
of unseen vertices is ` ≥ nα.

I Lemma 3.3. After O(n) time steps within one phase, a temporal subwalk consisting of
Θ(`1/4) = Ω(nα/4) unseen vertices has been found.

Proof. By Lemma 3.2, we spend Θ(ni3/`) time steps in subphase i. Since we have O(n)
time steps, the number of subphases x within one phase is bounded by the following equation:
Θ((n/`)(13 +23 + . . .+x3)) ⊆ O(n). This means that we can have x = Θ(`1/4) subphases. J
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By choosing α = 4/5, we have to run (n− nα)/nα/4 = Θ(n4/5) phases until nα vertices
remain. Thus, this part uses Θ(n9/5) time steps, which is also true for the construction of
the rest of the temporal walk.

I Theorem 3.4. Let G be a temporal graph with n vertices that is connected and has constant
degree in every time step. Then, G admits a temporal walk that visits all vertices and arrives
at the last unvisited vertex after O(n9/5) = O(n1.8) time steps.

3.2 A Tighter Analysis
For the analysis in the previous section, we have applied Lemma 3.3 with the pessimistic
assumption that the number of unseen vertices at the start of each phase is only nα (giving
subwalks visiting Θ(nα/4) = Θ(n1/5) unvisited vertices). There are clearly more unseen
vertices in the earlier phases (e.g., n− 1 unseen vertices at the start of the first phase, thus
admitting a subwalk visiting Θ(n1/4) vertices by Lemma 3.3). To get a tighter bound, we
analyze the required number of phases more carefully. Let γ, 0 < γ < 1, be the constant
hidden in the bound Θ(`1/4) from Lemma 3.3, i.e., each phase visits at least γ · `1/4 unseen
vertices if there are ` unseen vertices at the start of the phase. An upper bound f(t) on the
number of unseen vertices after t phases is now given by the following equation system:

f(0) = n

f(t) = f(t− 1)− γ · (f(t− 1))1/4, for t ≥ 1 (1)

The following claim establishes a closed formula for an upper bound on f(t).

B Claim 3.5. f(t) ≤ (n3/4 − 3
4γt)

4/3 for all t ≥ 0.

Proof. We prove the claim by induction. For the base of the induction, note that for t = 0
we have f(0) = n = (n3/4 − 3

4γ · 0)4/3. For the induction step, assume that the claim holds
for t− 1. We want to show that it also holds for t. By the induction hypothesis and using
the fact that the function g(x) = x − γx1/4 is monotone increasing for x ≥ 1 (even for
x ≥ (γ/4)4/5) we get:

f(t) = f(t− 1)− γ · (f(t− 1))1/4

≤ (n3/4 − 3
4γ(t− 1))4/3 − γ · 4

√
(n3/4 − 3

4γ(t− 1))4/3

= (n3/4 − 3
4γt+ 3

4γ)4/3 − γ · (n3/4 − 3
4γt+ 3

4γ)1/3

We need to show that the right-hand side is bounded by (n3/4− 3
4γt)

4/3. Setting y = n3/4− 3
4γt,

this is equivalent to:

(y + 3
4γ)4/3 − γ · (y + 3

4γ)1/3 ≤ y4/3

⇔ (y + 3
4γ)4/3 − y4/3 ≤ γ · (y + 3

4γ)1/3

With h(x) = x4/3, the latter inequality is equivalent to

h(y + 3
4γ)− h(y) ≤ 3

4γ · h
′(y + 3

4γ),

which holds because the function h(x) is convex. Hence, the inductive step is complete. C

Equation (1) is valid as long as the number of unseen vertices is sufficiently large. The
value of t for which f(t) becomes smaller than n3/4 is clearly smaller than 4

3γn
3/4. Hence,

O(n3/4) phases of length O(n), a total of O(n1.75) time steps, suffice to reduce the number
of unseen vertices to a value below n3/4, and the remaining unseen vertices can be visited in
O(n1.75) steps via the reachability lemma.
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I Theorem 3.6. Let G be a temporal graph with n vertices and constant degree that is
connected in every time step. Then, G has a temporal walk that visits all vertices and uses
O(n7/4) = O(n1.75) time steps.

4 Two Moves per Time Step in a Graph of Unbounded Degree

Erlebach, Hoffmann and Kammer [6] showed that there are temporal graphs of unbounded
degree where a temporal walk visiting all vertices needs Θ(n2) time steps. We show in this
section that we can break this lower bound not only if the graph in each step has bounded
degree, but also if we allow up to two moves per time step, i.e., in each time step we are
allowed to move from a vertex v to a neighbor w of v and then to a neighbor of w.

We handle the two moves in a temporal graph G = 〈G1, G2, . . . , Gτ 〉 for some τ ∈ N
by adding additional edges between each pair of vertices of distance 2 in each graph Gi
(i = 1, . . . , τ) to obtain a graph G2

i , the so-called square graph of Gi. Afterwards, we can
simply use the “one-move-per-time-step approach” in G2 = 〈G2

1, G
2
2, . . . , G

2
τ 〉.

I Lemma 4.1. The square of a connected graph has a spanning tree with maximum degree 3.

Proof. Let G be a connected graph and G2 the square of G. Compute a spanning tree T
in G. This spanning tree T is also a spanning tree in G2. Now color all edges of T black.
Note that, because the children of every vertex of T are directly connected in G2, we are
allowed to connect them in T and still have a subgraph of G2.

We next reduce the degree of each vertex in T . First, delete all black edges from each
vertex v to all its children except one. Starting from that child, we then connect the children
of v by a red path, see also Fig. 1. After applying these changes to each vertex v we can
observe the following: Each vertex v (except the root) was either the first child in T or not.
In the former case, v has a red edge and the remaining black edges can be to a parent and to
at most one child. In the second case, v has at most two red edges to siblings and possible
one black edge to a child. Hence, in both cases v has maximum degree 3. J

⇒

Figure 1 Left: A spanning tree T of a graph G. Right: The transformation of T into a spanning
tree in G2 of maximum degree 3 as shown in Lemma 4.1.

By using the lemma above for the construction of a spanning tree in the proof of
Lemma 3.1, we get the following theorem.

I Theorem 4.2. Let G be a temporal graph with n vertices and unbounded degree that is
connected in every time step. Then G has a temporal walk that visits all vertices and uses
O(n7/4) = O(n1.75) time steps if we allow at least two moves per time step.

5 Bounded Benefit of c Moves per Step for Sparse Graphs

In the previous section we showed that allowing more than one move per time step enables us
to break the existing lower bound of Ω(n2) steps on general temporal graphs [6, Theorem 3.5].
We next show that there are certain temporal graph classes where c moves per time step, for
an arbitrary integer c = O(1), cannot decrease the worst-case bound on the exploration time
by more than a constant factor.

ICALP 2019
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Let G be a temporal graph with underlying graph G = (V,E). The vertices of G are
called original vertices. Denote the graph in time step i by Gi. For odd `, we define an
operation called edge-path transformation of length ` that produces a temporal graph G′
with underlying graph G′ and graph G′i in time step i as follows: To construct G′ from the
underlying graph G = (V,E) of G, the transformation replaces each edge {u, v} ∈ E by a
path πu,v = u, a1, a2, . . . , a`−1, v of ` edges, where each ai is a new artificial vertex. For an
artificial vertex ai, we define o(ai) to be the nearest original vertex, i.e., o(ai) = u if i < `/2
and o(ai) = v if i > `/2. For an original vertex w, we set o(w) = w. If {u, v} is present in
Gi, the whole path πu,v is present in G′i. If {u, v} is not present in Gi, the path πu,v without
its middle edge {ab`/2c, ad`/2e} is present in G′i.

A temporal graph with n ∈ N vertices is called sparse if its underlying graph has O(n)
edges. We say that a function f : N→ N is nice if f(n/b) = Ω(f(n)) holds for any constant
b ≥ 1. For example, it is easy to see that all functions of the form f(n) = ng(logn)h for
constant g, h are nice.

I Theorem 5.1. Let c = O(1) and let G∗ be a class of sparse temporal graphs such that G∗
is closed under the edge-path transformation of the odd length ` ∈ {c, c + 1}. If there is a
lower bound on the number of steps for TEXP on G∗ for one move per time step, given as a
nice function of the number of vertices, then the same lower bound, up to a constant factor,
also applies to TEXP on G∗ if c moves per time step are allowed.

Proof. Let G′ be the temporal graph obtained from a temporal graph G ∈ G∗ by the edge-
path transformation of length `. We claim the following: If a temporal walk W ′ visiting all
vertices in G′ uses k time steps with ≤ ` moves per time step, then there is a temporal walk
W visiting all vertices in G consisting of k time steps with one move per time step.

To construct W , we iterate over the time steps and analyze the moves in W ′ within the
current time step. Before and after each time step, we ensure the following invariants. (1) If
W ′ is at a vertex a, then W is at o(a). (2) All original vertices already visited by W ′ have
also been visited by W .

Let a and a′ be the (possibly artificial) vertices at which W ′ is located just before and
just after the current time step, respectively. Let u = o(a). Note that W is located at u just
before the current step by (1). We let W move from u to o(a′) in the current step. Note that,
if W ′ visits during the current step an original vertex that has not yet been visited by W ,
then that vertex must be o(a′). This is because W ′ starts on the far side of the middle edge
on the path to that original vertex, and thus must end on the near side of the middle edge
on the same or another path incident with that original vertex. It is easy to see that both
invariants hold again after the time step.

Assume there is a lower bound on the worst-case exploration time for G∗ given by a nice
function f of the number of vertices. Let G ∈ G∗ be a worst case instance where TEXP
requires at least k = f(n) steps. Let G′ be obtained from G by the edge-path-transformation
of length `. Using the claim above, we can conclude that TEXP requires at least k steps
in G′ even if ` ≥ c moves per time step are allowed. Since G′ ∈ G∗ and since G and G′ have
the same number of vertices and edges up to constant factors, we have that k = f(n′/b) for
some constant b, where n′ is the number of vertices of G′. As f is a nice function, we get a
lower bound of Ω(f(n′)) for the case where c moves per time step are allowed. J

As an application of the theorem above, we can conclude the following from the known
lower bound of Ω(n logn) steps for sparse temporal graphs in the one-move-per-step model
(Theorem 4.1 in [6]).
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I Corollary 5.2. For a temporal n-vertex graph G whose underlying graph is planar with
maximum degree 4, an optimal exploration can take Ω(n logn) steps even if c = O(1) moves
per time step are allowed.

6 Inapproximability Result

I Theorem 6.1. It is NP-hard to approximate TEXP with two moves per step on an n′-vertex
temporal graph with ratio smaller than b logn′ for some constant b > 0.

Proof. We give a reduction from the Hamiltonian s-t-path problem, which is NP-complete
even if the input graph is planar and has maximum degree 3 as shown by Garey, Johnson, and
Tarjan [9]. Let an instance of the Hamiltonian s-t-path problem be given by a graph G with
n vertices and s, t ∈ V (G). Assume without loss of generality that n = 2k for some k ∈ N
with k ≥ 2 (otherwise, simply add a new leaf t′ adjacent to t and consider the Hamiltonian
s-t′-path problem in the new graph).

We now construct an n′-vertex temporal graph G′ in two phases, for some n′ specified
later. First, we specify the vertex set and all edges that will be present during at least one
step of the first phase.
Underlying graph during the first phase. The construction is illustrated in Fig. 2. Create
2nc copies of G (for an arbitrary constant c ≥ 2). Form two groups of these copies, each of
size nc, calling the first group T and the second group B. Let T (i) be the i-th T -copy of G
and B(j) the j-th B-copy of G. For all i ∈ {1, . . . , nc − 1}, connect vertex t ∈ V (T (i)) and
s ∈ V (T (i+ 1)) by a quick link et(i, i+ 1). Create similar quick links eb(i, i+ 1) between the
B-copies. Between t ∈ V (T (nc)) and s ∈ V (B(1)), let there be a super quick link.

Moreover, build a path P consisting of further vertices vt(1), . . . , vt(12nc+1). Use the
first (last) quarter of the path to connect each vertex s in the T -copies (B-copies) of G to
the path such that the minimal distance of two such vertices s on the path is at least 3n.
More precisely, for k ∈ {0, . . . , nc− 1}, connect vertex vt(3kn+ 1) with s ∈ V (T (k+ 1)), and
connect vt(9nc+1 + 3kn+ 1) with s ∈ V (B(nc − k)). In total, G′ has n′ = O(nc+1) vertices.
Temporal realization of the first phase. Let the start vertex be s ∈ V (T (1)). Let the steps
t ∈ {1, 2, . . . , nc+1} constitute the first phase of G′’s lifetime. During this phase, the edges of
all 2nc copies of G, the path of length 12nc+1 and the connections between the T -copies or
B-copies and the path P described in the previous paragraph always exist. Additionally, let
the edge et(i, i+ 1) be present only in step in/2, for all i ∈ {1, . . . , nc − 1}. Let the super
quick link be present only in step nc+1/2. Let the edge eb(i, i+ 1) be present only in step
(nc+1 + in)/2, again for all i ∈ {1, . . . , nc − 1}.

It is not hard to see that, if G has a Hamiltonian s-t-path, then a temporal walk with
two moves per step can visit all vertices in all copies of G within the first phase: In each
copy of G, it uses the n/2 time steps to follow the n− 1 edges of the Hamiltonian s-t-path
and then the quick link (or super quick link) to move to the vertex s of the next copy.

Assume now that G does not have a Hamiltonian s-t-path. If a temporal walkW with two
moves per step does not use the super quick link, then none of the vertices in the B-copies
have been visited in the first phase.

Otherwise, W must have used all quick links connecting the T -copies. We claim that in
any two consecutive T -copies, W has missed at least one vertex. To see this, note that an
s-t walk in G consists of at least n edges if there is no Hamiltonian s-t-path. Thus, for the
walk to arrive at the ith T -copy via a quick link in step (i− 1)n/2, visit all vertices of the
copy, and leave via a quick link in step in/2, it must have used the quick links as the first

ICALP 2019
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move in step (i− 1)n/2 and as the second move in step in/2, respectively. But then it is not
possible for the walk to visit all vertices of the (i+ 1)th copy and leave it via a quick link.

6nc+1

. . .

. . .

s t s t s t

s t s t s t

super quick link
T-Copies

B-Copies

G G G

G G G

3n

Figure 2 The underlying graph during the first phase. A red line is a quick link.

s s

ss

s

G

G

. . .

. . .

s s

s s

12nc+1

s
T-Copies

B-Copies

B-Copies

T-Copies

G G

G
G

G G

G
G

Figure 3 Construction of the temporal graph in the second phase. The connections between the
orange vertices differ in the time steps and result from the connections between the labeled vertices
in the temporal graph in Fig. 3 in [6].

The second phase. For the whole second phase, the path P is present. Thus, all vertices of
P can be visited in O(n′) time steps. Therefore, if G has a Hamiltonian s-t-path, G′ can be
explored in O(n′) time steps.

Erlebach et al. [6, Theorem 4.1] show that TEXP takes Ω(N logN) steps on a planar
N -vertex temporal graph. More precisely, the proof of their theorem shows that, for arbitrary
parameters r,m ∈ N, there is a planar temporal graph H with r + m vertices, consisting
of r vertices that we call path vertices and m vertices that we call target vertices, in which
Ω(r logm) time steps are necessary for visiting all m target vertices. In the temporal graph H,
the r path vertices are connected in the form of a path Q in all time steps. The lower bound
of Ω(r logm) steps for visiting the m target vertices also holds for the model with two moves
per step if the length of the rounds in the construction of H is divided by two. Let H′ be H
with this modification of the length of the rounds.

The idea is now to take in the second phase of our construction the temporal graph H′
for parameters r = 12nc+1 and m = nc/2. However, we must construct the temporal graph
with the vertices used in Phase 1. Therefore, the second phase of our temporal graph G′ is
constructed as follows – see also Fig. 3: Each of the m target vertices v in H′ is identified
with a vertex s of a T -copy T (2i) such that no two such vertices s are identified with the
same vertex v. Furthermore, the vertex s of each T -copy T (2i− 1) is made adjacent to the
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vertex s of T (2i). In addition, connect exactly the vertices s of two B-copies to each such
vertex v. Our path P becomes the path Q. As in Phase 1, the edges in the copies of G are
present in all time steps. Note that the only edges that change during the time steps of the
second phase are the edges between the m target vertices of H′. Such an edge exists in the
ith time step within Phase 2 exactly if it exists in H′ in the ith time step.
Analysis. Assume that G does not have a Hamiltonian s-t-path. Since we have an unvisited
vertex in each pair of consecutive T -copies or in each B-copy after Phase 1, we must
visit all m target vertices of H′ to reach the unvisited vertices. Thus, we have to spend
Ω(r logm) = Ω(nc+1 lognc) = Ω(n′ logn′) time steps to explore all vertices of G′, where the
last equality follows from r = Θ(n′) and m = nc/2 = Θ((n′)c/c+1).

Since establishing whether G′ can be explored in its entirety in just O(n′) steps or requires
Ω(n′ logn′) steps also decides whether there exists a Hamiltonian s-t-path in G, we get that
it is NP-hard to approximate TEXP with two moves per step with approximation ratio
smaller than b logn′ for some constant b > 0. J

Using a simple variation of the proof of Theorem 6.1, we also get:

I Corollary 6.2. It is NP-hard to approximate TEXP on n-vertex temporal graphs whose
underlying graph has bounded degree with ratio smaller than c logn for some constant c > 0.

7 Conclusion

In this paper we have shown that temporal graphs can be explored in O(n1.75) time steps if
the graph in each step has bounded degree or if two moves per step are allowed. We remark
that our proofs are constructive and also yield polynomial-time algorithms to compute such
exploration schedules. Moreover, we have shown that TEXP is NP-hard to approximate
with ratio better than b logn for some constant b for the considered cases (bounded degree
or two moves per step). The main open problem for these cases is to further reduce the
gap between the lower bound of Ω(n logn) steps (proved in [6] for bounded degree and in
Corollary 5.2 for two moves per step) and the upper bound proved in this paper.
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