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Abstract
For fixed h ≥ 2, we consider the task of adding to a graph G a set of weighted shortcut edges on the
same vertex set, such that the length of a shortest h-hop path between any pair of vertices in the
augmented graph is exactly the same as the original distance between these vertices in G. A set
of shortcut edges with this property is called an exact h-hopset and may be applied in processing
distance queries on graph G. In particular, a 2-hopset directly corresponds to a distributed distance
oracle known as a hub labeling. In this work, we explore centralized distance oracles based on
3-hopsets and display their advantages in several practical scenarios. In particular, for graphs of
constant highway dimension, and more generally for graphs of constant skeleton dimension, we show
that 3-hopsets require exponentially fewer shortcuts per node than any previously described distance
oracle, and also offer a speedup in query time when compared to simple oracles based on a direct
application of 2-hopsets. Finally, we consider the problem of computing minimum-size h-hopset
(for any h ≥ 2) for a given graph G, showing a polylogarithmic-factor approximation for the case
of unique shortest path graphs. When h = 3, for a given bound on the space used by the distance
oracle, we provide a construction of hopset achieving polylog approximation both for space and
query time compared to the optimal 3-hopset oracle given the space bound.
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1 Introduction

An exact h-hopset for a weighted graph G is a weighted edge set, whose addition to the
graph guarantees that every pair of vertices has a path between them with at most h edges
(hops) and whose length is exactly the length of shortest path between the vertices.
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143:2 Exact Distance Oracles Using Hopsets

The concept of a hopset was first explicitly described by Cohen [19] in its approximate
setting, in which the length of h-hop path between a pair of vertices in the hopset should
approximate the length of the shortest path in G. Hopsets were introduced in the context of
parallel computation of approximate shortest paths. In this paper, we study hopsets in their
exact version, with the general objective of optimizing exact shortest path queries.

Data structures which allow for querying distance between any pair of vertices of a
graph have been intensively studied under the name of distance oracles. The efficiency of an
exact distance oracle is typically measured by the interplay between the space requirement
of the representation of the data structure and its decoding time. It is a well-established
empirical fact that many real-world networks admit efficient (i.e., low-space and fast) distance
oracles [6, 22]. A key example here concerns transportation networks, and specifically road
networks, which are empirically known [34, 32, 5] to be augmentable by carefully tailored sets
of shortcut edges, allowing for shortest-path computation. These sets of shortcuts may be
hopsets (as is the case for the hub-labeling approach which effectively implements a 2-hopset),
but may also be considered in some related (and frequently more involved) framework, such
as contraction hierarchies [31] or transit-node routing [11].

An interesting theoretical insight due to Abraham et al. [3, 4, 5] provides theoretical
bounds on the number of shortcuts required in all of the above-mentioned frameworks. They
introduce a parameter describing the structure of shortest paths within ball neighborhoods
of a graph, called highway dimension h̃. They also express the number of shortcuts that need
to be added for each node so as to achieve shortest-path queries in a graph of n nodes with
weighted diameter D as a polynomial of h̃, logn, and logD; this approach has been extended
in subsequent work [2, 37]. The value of h̃ is known to be small in practice (e.g., typically
h̃ < 100 for continental-sized road networks [4]), and does indeed appear to be inherently
linked to the size of the required shortcut sets. In fact, empirical tests have suggested that
the (average) number of necessary shortcuts per node is in fact very close to h̃, laying open
the question of whether the additional dependence of the number of shortcuts on logarithmic
factors in n and D may be an artifact of the theoretical analysis of the oracles, which for
each node require a separate shortcut for every “scale” of distance.

1.1 Results and Organization of the Paper
Our main result is to provide strong evidence that the dependence of the number of shortcuts
on such logarithmic factors in n and D is indeed not essential, and we design a simple
distance oracle based on a 3-hopset in which the number of shortcuts per node depends only
on h̃, log logn, and the logarithm of the average edge length. This result is in fact shown in
the framework of a strictly broader class of graphs, namely, graphs with a bounded value of a
parameter known as skeleton dimension k (k ≤ h̃), describing the width of the shortest-path
tree of a node after pruning all branches at a constant fraction α of their depth. Considering
various ranges of fraction α for increasing distance ranges was a novel key step for improving
over [37, 36] from a 2-hopset construction to a 3-hopset construction.

From a general perspective, our connection between h-hopsets and distance oracles is
original and offers new perspectives for studying the trade-off between size and query time
of distance oracles. To exemplify this, we provide a construction of h-hopsets for graphs of
treewidth t following a classical approach in pre-processing product queries on trees [7, 16].
For 3-hopsets, we obtain a distance oracle with quadratic dependency in t which improves
over the construction of [15] (which has cubic dependency) for t = ω(log2 logn). The space
and time-bounds of oracles based on 3-hopsets are presented in Table 1, and compared with
the corresponding parameters of oracles based on 2-hopsets. For the case of constant skeleton
dimension or constant treewidth, we remark that using a 3-hopset instead of a 2-hopset
reduces the number of shortcuts per node from O(logn) to O(log logn) while achieving a
query time of O(log2 logn).
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Table 1 Comparison of distance oracles based on 2-hopsets (hub labeling [19, 28, 37]) and
3-hopsets (this paper). Size represents the number of shortcut edges in the hopset, i.e., the number
of O(logn)-bitsize words when measuring oracle size. The main results concern skeleton dimension
and are stated in simplified form, assuming average edge length at most O(poly logn), with expected
query times given for both types of oracles.

Distance oracle Treewidth t Skeleton dimension k
Size Time Size Time

2-hopset (hubs): n ·O(t logn) O(t+ log logn) n ·O(k logn) O(k logn)
3-hopset: n ·O(t log logn) O(t2 log2 logn) n ·O(k log k log logn) O(k2 log2 k log2 logn)

A classical assumption (applied, e.g., in almost all literature on transportation networks)
resides in the uniqueness of shortest paths. It can be made without loss of generality by
slightly perturbing the weights of the edges or by using appropriate tie break rules. In this
context of unique shortest path graph (USP) graphs where there is a unique shortest path
Puv between any two nodes u and v, we propose an LP-based approximation algorithm for
constructing h-hopsets with size within a polylog factor from optimal. Our construction can
be seen as a non-trivial generalization of the prehub labeling introduced in [9] from 2 to
more hops. In the case h = 3, we further extend our approach to provide an algorithm which
constructs distance oracles in USP graphs based on 3-hopsets, with (approximate) optimality
guarantees on size and query time. The form of guarantees we obtain is again novel: for a
given size bound S of 3-hopset based oracle, we construct an oracle with size larger than
S by at most a polylog factor which has average query time within a polylog factor of the
performance achieved by the best oracle with size S.

The rest of the paper is organized as follows. In Section 2, we introduce the necessary
notions related to h-hopset and give a general approach for how a h-hopset can be used
as a distance oracle, focusing on the special case of h = 3. In Section 3, we provide our
first main result, using 3-hopsets to obtain improved (smaller and faster) distance oracles in
graphs with bounded skeleton dimension. In Section 4, we present our second main result
about approximating h-hopsets and constructing 3-hopset based oracles in USP graphs.
Finally, Section 5, we show how to construct efficient h-hopsets and 3-hopset based oracles
for bounded treewidth graphs. We provide full details of omitted and sketched proofs in the
full version [33].

Our work is presented in the context of weighted undirected graphs, but all results can
easily be extended to weighted directed graphs.

1.2 Other Related Work
Hopsets. Exact hopsets were implicitly constructed in the context of single-source shortest
paths parallel computation [43, 35, 18, 40]. Such works study the work versus time trade-offs
of such computation. Cohen [19] explicitly introduced the notion of (h, ε)-hopset of G as set
H of weighted edges such that paths of at most h hops in G ∪H have length within (1 + ε)
of the corresponding shortest path in G. The parameter h is called the hopbound. For any
graph G and ε, ε′ > 0, she proposed a construction of (O(poly logn), ε)-hopset of G with size
O(n1+ε′). More recently, Elkin et al. [24] proposed the construction of (O(ε−1 log κ)logκ, ε)-
hopset with O(n1+1/κ logn log κ) edges for any ε > 0 and integral κ ≥ 1. Abboud et al. [1]
recently showed the optimality of the Elkin et al. [24] result. In particular, they showed that
for any δ > 0 and integer k, any hopset of size less than n1+ 1

2k+1−1
−δ must have hop bound

h = Ω(ck/εk+1), where ck is a constant depending only on k. The linear size case was then
improved in [25]. As far as we know, exact hopsets (with ε = 0) have not been explicitly
studied. However, they are related to the following well studied notion.
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143:4 Exact Distance Oracles Using Hopsets

Hopsets vs. TC-spanners. In directed graphs, a hopset can be seen as a special case of
an h-transitive-closure spanner (h-TC-spanner). Hopsets and TC-spanners are fundamental
graph-theoretic objects and are widely used in various settings from distance oracles to pre-
processing for range queries in sequential or parallel setting or even in property testing. The
concept of adding transitive arcs to a digraph in order to reduce its diameter was introduced
by Thorup [41] in the context of parallel processing. Bhattacharyya et al. [12] defined an
h-TC-spanner of an unweighted digraph G as a digraph H with same transitive closure as
G and diameter at most h. They note that this is a central concept in a long line of work
around pre-processing a tree for range queries [7, 16, 42]. A TC-spanner can also be defined
as a spanner (for the classical spanner definition [38]) of the transitive closure of a graph that
has bounded diameter. We will see that an exact h-hopset defines a h-TC-spanner but that
the converse is not necessarily true. Bhattacharyya et al. [12] proposed a construction of
h-TC-spanner of size O(n lognλh(n)) for H-minor-free graphs (where λh denotes the hth-row
inverse Ackermann function, cf. Section 5).

Exact Distance Oracles. A long line of research studies the interplay between data structure
space and query decoding time. A lot of attention has been given to distance oracles for
planar graphs [23, 10, 17, 14, 26, 21, 30], and it has recently been shown that a distance
oracle with O(n1.5) space and O(logn) query-time is possible [30]. In the context of weighted
directed graphs with treewidth t, Chaudhuri and Zaroliagis [15] propose a distance oracle
using O(t2nλh(n)) space and O(t3h + λh(n)) query time for integral h > 1 where λh is
the hth-row inverse Ackermann function (as defined in Subsection 5). In the context of
unweighted graphs with treewidth t, Farzan and Kamali [27] obtain distance oracles with
O(t3 log3 t) query time using optimal space (within low order terms). This construction
heavily relies on the unweighted setting as exhaustive look-up tables are constructed for
handling graphs with polylogarithmic size.

Distance Labelings and 2-Hopsets. The distance labeling problem is a special case of a
distributed distance oracle, and consists of assigning labels to the nodes of a graph such
that the distance between two nodes s and t can be computed from the labels of s and t
(see, e.g., [28]).

The notion of 2-hopset studied in this work coincides with the special case of two-hop
distance labeling (also called hub-labeling), where labels are constructed from hub sets: in
hub-labeling, a small hub set S(u) ⊆ V (G) is assigned to each node of a graph G such that for
any pair u, v of nodes, the intersection of hub sets S(u) ∩ S(v) contains a node on a shortest
u− v path. Such a construction is formally proposed in [20] and is implicitly introduced by
Gavoille et al. [28] and applied to graphs of treewidth t with labels of O(t logn) size and allows
to answer distance queries in O(t logn) time; the hub sets have a hierarchical structure, which
allows for an improvement of query time to O(t log logn) time by a binary search over levels.
Hub labelings are the currently best known distance labelings for sparse graphs, achieving
sublinear node label size [8, 29], and may also be used to provide a 2-additive-approximation
for distance labeling in general graphs using sublinear-space labels [29].

In graphs of bounded highway dimension, hub labels were among the first identified
distance oracles to provide label size and query time polynomial in the highway dimension
and polylogarithmic in other graph parameters [5]. This result was then extended to the
more general class of graphs with bounded skeleton dimension [37, 36].

Hub sets with near to optimal size can be constructed in polynomial time. A greedy set
cover-type O(logn)-approximation algorithm (with respect to average size of a hub set) was
proposed by Cohen et al. [20]. For the case of USP graphs, this approximation ratio was
improved by Angelidakis et al. [9] to the logarithm of the graph hop-diameter DH , i.e., the
maximum number of hops of a shortest path in G, showing an approximation gap between
USP and non-USP graphs.
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2 Preliminaries

2.1 Definitions
We are given a weighted undirected graph G = (V,E, ω) where ω : E → R+ associates a
weight with each edge of G. For a positive integer parameter h and a pair u, v ∈ V , the
h-limited distance between u and v, denoted dhG(u, v), is defined as the length of the shortest
path from u to v that contains at most h edges (aka hops). The usual shortest path distance
can be defined as dG(u, v) = dn−1

G (u, v). For the sake of brevity, we often let uv denote the
pair {u, v} representing an edge from u to v.

I Definition 1. An (exact) h-hopset for a weighted graph G is a set of edges H such that
dhG∪H(u, v) = dG(u, v) for all u, v in V (G) where G ∪ H = (V,E ∪ H,w′) is the graph
augmented with edges of the hopset with weights w′(u, v) = dG(u, v) for uv ∈ H and
w′(u, v) = w(u, v) for uv ∈ E \H. The parameter h is called the hopbound of the hopset.
Edges from set H are called shortcuts in G.

By convention, we will assume that all self-loops at nodes of V are included in H. Thus,
G∪H is a graph whose h-th power in the (min,+) algebra on n×n matrices of edge weights
corresponds to the transitive closure of the weight matrix of graph G.

Equivalently, a h-hopset can be defined as a set H of edges such that for any pair s, t,
there exists a path P of at most h edges from s to t in G ∪H and a shortest path Q from s
to t in G such that all nodes of P belong to Q and appear in the same order. Note that a
h-hopset is completely specified by its set H of edges as the associated weights are deduced
from distances in the graph.

2.2 Using a Hopset as a Distance Oracle
Hopsets may be used to answer shortest-path queries in a graph G = (V,E). In general,
given a hopset H, the naïve way to approach a query for dG(u, v) for a given node pair u, v
is to perform a bidirectional Dijkstra search in graph G ∪H from this node pair, limited to
a maximum of dh/2e hops distance from each of these nodes. We have, in particular for any
pair u, v ∈ V :

dG(u, v) = min
w∈V

(ddh/2e
G∪H (u,w) + d

bh/2c
G∪H (v, w)).

Different optimizations of this technique are possible.
In this paper, we focus only on the time complexity of the case of h = 3, where we

perform the following optimization of query execution. We represent set H as the union
of two (not necessarily disjoint) sets of shortcuts, H = H1 ∪H2, where an edge belongs to
H1 if it is used as the first or third (last) hop on a shortest path in G ∪H, and it belongs
to G ∪H2 if it is used as the second hop on such a path. By convention, we assume that
self-loops at nodes are added to H1, thus e.g. a 3-hop path between a pair of adjacent nodes
in G is constructed by taking a self-loop from H1, the correct edge from G ⊆ G ∪H2, and
another self-loop from H1. (Note that we never directly use edges of G as first or last hops in
the hopset; if such an edge is required for correctness of construction, it should be explicitly
added to set H1.) We further apply an orientation to the shortcuts in H1, constructing a
corresponding set of arcs ~H1, such that, for any node pair u, v ∈ V , there exist x, y ∈ V such
that (u, x) ∈ ~H1, {x, y} ∈ H2, (v, y) ∈ ~H1, and:

dG(u, v) = dG(u, x) + dG(x, y) + dG(y, v).

The orientation (w, z) of an arc in ~H1 indicates that edge {w, z} can be used as the first
edge of a 3-hop path from w or as the third edge of a 3-hop path to w. We note that
|H1| ≤ | ~H1| ≤ 2|H1|, since each shortcut from H1 corresponds to at most a pair of symmetric
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143:6 Exact Distance Oracles Using Hopsets

arcs in ~H1. For a node w ∈ V , let N1(w) = |{x ∈ V : (w, x) ∈ ~H1}| represent the out-
neighborhood of w in the graph (V, ~H1). To perform shortest path queries on G, for each node
w, we now store the list {(x, dG(w, x)) : x ∈ N1(w)}. We also store a hash map, mapping all
node pairs {x, y} ∈ H2 to the length of the respective link, dG(x, y). Now, we answer the
distance query for a node pair u, v ∈ G as follows:

dG(u, v) = min
x∈N1(u),y∈N1(v):{x,y}∈H2

(dG(u, x) + dG(x, y) + dG(y, v)).

Using the given data structures, the query is then processed using |N1(u)| · |N1(v)| hashmap
look-ups, one for each pair (x, y) ∈ N1(u)×N1(v), i.e., in time Tuv = O(|N1(u)| · |N1(v)|).
Time Tuv is simply referred to as the query time for the considered node pair in the 3-hopset
oracle H. Assuming uniform query density over all node pairs, the uniform-average query
time T (H) is given as: T (H) ≡ EuvTuv = O

(
1
n2

(∑
u∈V |N1(u)|

)2
)

= O(|H1|2/n2). Thus,
in the uniform density setting (which we refer to only in Section 4), the average time of
processing a query is proportional to the square of the average degree of a node with respect
to edge set H1.

The size of set H2 affects only the size of the data structure required by the distance
oracle, which is given as at most S = O(|E|+ |H1|+ |H2|) edges, with each edge represented
using O(logn) bits.

In the 3-hopset distance oracles described in the following sections, we will confine
ourselves to describing shortcut sets H1 and H2, noting that the correct orientation ~H1 of
H1 will follow naturally from the details of the provided constructions.

3 Bounded Skeleton Dimension

A formal definition of the notion of skeleton dimension relies on the concept of the geometric
realization of a graph, cf. [37]. The geometric realization G̃ of G can be seen as the
“continuous” graph where each edge is seen as infinitely many vertices of degree two with
infinitely small edges, such that for any uv ∈ E(G) and t ∈ [0, 1], there is a node in G̃ at
distance tdG(u, v) from u on edge uv. Given a shortest-path tree Tu of node u with length
function ` : E(Tu) → R+, obtained as the union of shortest paths

⋃
{Puv : v ∈ V (G)}, we

treat it as directed from root to leaves and consider the geometric realization T̃u of this
directed graph. We define the reach of v ∈ V (T̃u) as the distance from v to the furthest leaf
in its subtree of the directed tree T̃u, i.e., Reach

T̃u
(v) := maxx:v∈Pux dT̃u

(v, x). For a given
value α > 0, we then define the skeleton T ∗u of Tu as the subtree of T̃u induced by nodes with
reach at least α times their distance from the root. More precisely, T̃ ∗u is the subtree of T̃u
induced by {v ∈ V (T̃u) | Reach

T̃u
(v) ≥ αd

T̃u
(u, v)}.

The α-skeleton dimension kα of a graph G is now defined as the maximum width of the
skeleton of a shortest path tree, taken over cuts at all possible distances from the root of
the tree: k = maxu∈V (G) maxr>0 |Cutr(T̃ ∗u )|, where Cutr(T̃ ∗u ) is the set of nodes v ∈ V (T̃ ∗u )
with d

T̃∗u
(u, v) = r. When α = 1

2 , k1/2 is simply called the skeleton dimension of G and we
let k = k1/2 denote it.

The definition was originally proposed with α = 1
2 (for comparison with highway dimen-

sion) in the context of USP graphs [37]. In the long version [36], the definition is extended
to other choices of α with 0 < α < 1 and applies to any choice of shortest paths trees that
pairwise agree on their paths (the path from u to v in Tu must be the reverse of the path
from v to u in Tv). In the non-USP case, the skeleton dimension should be measured with
the best choice of agreeing trees. In particular, if a small perturbation of the edge weights
of G provides unique shortest path trees whose skeletons have width at most kα, then the
skeleton dimension of G is at most kα. The α-skeleton dimension (with parameter α) was
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introduced in [36] for the sake of a general definition with fixed α value in mind. We use it
here in a novel manner with α tending towards 0 as we consider larger distances, enabling
analysis of our new construction.

For the definition of the related concept of highway dimension, we refer the readers
to [4]. We note that if a graph G has highway dimension h, then G has skeleton dimension
k = k1/2 ≤ h; hence, in all subsequent asymptotic analyses, upper bounds expressed in terms
of skeleton dimension can be replaced by analogous bounds in terms of highway dimension.

3.1 Construction of the 3-Hopset
We denote by Lmax the maximum length of an edge in graph G. The construction of the
3-hopset H is obtained by taking a union of sets of shortcuts, each of which covers sets of
node pairs within a given distance range. The first shortcut set H ′ covers all node pairs
u, v ∈ V with dG(u, v) ≤ D′, for some choice of distance bound D′, whereas each of the
subsequent shortcut sets H(D) covers nodes at a distance in an exponentially increasing
distance range, dG(u, v) ∈ [D,D1+ε], where ε := 1

2 log2 k
is suitably chosen. We then put:

H = H ′ ∪
⋃

i=1,2,...
H(D′ i(1+ε)).

Construction of set H ′. We note that a construction of 2-hopsets for graphs of skeleton
dimension k was performed in [37]. As a direct corollary of [37][Lem. 2, Cor. 1,2], given
a distance bound D′, there exists a randomized polynomial-time construction of a set of
shortcuts H ′ for graph G with the property that for any pair of nodes u, v ∈ V with
dG(u, v) ≤ D′, we have d2

G∪H′ = dG(u, v), such that |H ′| = O(nk logD′), and moreover for
all u ∈ V , we have E degH′(u) = O(k logD′) and degH′(u) = O(k logD′ log logn + logn).
We directly use set H ′ for the value D′ := L4

maxk
6 log12 n, considering H ′ as a 3-hopset for

node pairs u, v ∈ V with dG(u, v) ≤ D′. So we have:

|H ′| = O(nk(log logn+ logLmax + log k)),

and for all u ∈ V :

E degH′(u) = O(k(log logn+ logLmax + log k)),
degH′(u) = O(k log logn(log logn+ logLmax + log k) + logn).

We remark that, without loss of generality, in asymptotic analysis one may assume that
Lmax ≤ kL, where L is the average edge length in G, noting that edges longer than kL can
be subdivided into edges of length at most kL by inserting additional vertices, increasing the
number of nodes of the graph only by a multiplicative constant. Thus, in the above bounds,
we can replace (log logn+ logLmax + log k) by (log logn+ logL+ log k).

Construction of set H(D). We now proceed to construct a 3-hopset for node pairs u, v with
dG(u, v) ∈ [D,D1+ε]. The construction of set H(D) is randomized and completely determined
by assignment of real values ρ(u) ∈ [0, 1] to each node u ∈ V , uniformly and independently
at random. We condition all subsequent considerations on the event that all values ρ are
distinct, i.e., |ρ(V )| = |V |, which holds with probability 1. ( ρ(V ) = {ρ(v)|v ∈ V } )

Now, hopset H(D) is defined as H(D) := H
(D)
1 ∪H(D)

2 , where following our usual notation,
H

(D)
1 is the set of first and last hops, and H(D)

2 is the set of middle hops.
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143:8 Exact Distance Oracles Using Hopsets

Set of first and last hops. For u ∈ V , let R(D)(u) be the set of nodes which lie on a shortest
path of length at least D which has one of its endpoints at u, and which have minimum
value of ρ among all vertices on this path at distance in [D/4, D/2] from u:

R(D)(u) =
⋃

v∈V :dG(u,v)≥D

{
argminr∈Puv,dG(u,r)∈[D/4,D/2] ρ(r)

}
.

We now put: H(D)
1 := {ur : u ∈ V, r ∈ R(u)}.

Set of middle hops. We put in H(D)
2 links between all pairs of nodes which have a small

value of ρ, satisfy the natural upper bound of D1+ε on distance between them, and have
sufficiently large reach, i.e., the shortest path between them can be extended by at least D/4:

H
(D)
2 :=

{
qr : q, r ∈

⋃
u∈V

R(D)(u) ∧ dG(q, r) ≤ D1+ε −D/2 ∧ (∃v∈V r ∈ Pqv ∧ dG(r, v) ≥ D/4)

}
.

The validity of H as a 3-hopset is immediate to verify from the construction: consider
u, v and i ≥ 0 such that dG(u, v) ∈ [D,D1+ε] with D = D′i(1+ε).

For q = argminw∈Puv,dG(u,w)∈[D/4,D/2] ρ(w) and r = argminw∈Puv,dG(u,w)∈[D/2,3D/4] ρ(w),
we then have uq ∈ H(D)

1 , qr ∈ H(D)
2 and vr ∈ H(D)

1 , yielding a 3-hop shortest path from u
to v. For dG(u, v) ≤ D′, H ′ contains a 2-hop shortest path from u to v.

3.2 Bound on 3-Hopset Size and Oracle Time
I Lemma 2. Fix u ∈ V and D > 0. We have: |R(D)(u)| ≤ k.

From the above Lemma, it follows that for any u ∈ V , we have deg
H

(D)
1

(u) ≤ k. Thus
summing over all the O(log log(nLmax)/ log(1 + ε)) = O(log log(nLmax) log k) levels of the
construction, we successively obtain:

degH1
(u) ≤ degH′(u) + k ·O(log log(nLmax) log k) = O(k log logn log k(log logn+ logL) + logn), (1)

E degH1
(u) ≤ E degH′(u) + k ·O(log log(nLmax) log k) = O(k log k(log logn+ logL)), (2)
|H1| ≤ |H ′|+ nk ·O(log log(nLmax) log k) = O(nk log k(log logn+ logL)). (3)

We now proceed to bound the size of the set H2 of middle hopsets.

I Lemma 3. Fix D ≥ D′. With probability 1−O(1/n2), it holds that for all u ∈ V and for
all r ∈ R(D)(u), we have ρ(r) ≤ Lmax/D.

We now proceed under the assumption that the event from the claim of the Lemma holds.
We now consider an arbitrary node q ∈ R(D)(u) for some u ∈ V , and look at deg

H
(D)
2

(q).

We now have that if qr ∈ H(D)
2 , then by the definition of H(D)

2 and the above Lemma, the
following conditions jointly hold:

ρ(r) ≤ Lmax/D
r ∈ {w ∈ V : ∃v∈V D1+ε ≥ dG(q, v) ≥ dG(q, w) +D/4 ∧ Pqw ⊆ Pgv} =: W (q).

We note that W (q) is the subset of the vertex set of the shortest path tree of node q,
pruned to contain only those paths which have reach at least D/4 at depth less than D1+ε.
This tree has depth bounded by D1+ε, and width bounded by an α-skeleton dimension kα
(following [36]), with parameter α = D/4

D1+ε = D−ε/4. Following [36][Section 6], kα can be
easily expressed using skeleton dimension k = k1/2 as:

kα ≤ kdlog2(1+1/α)e < k1+log2(4Dε) = k3Dε log2 k.
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We then have |W (q)| ≤ D1+εkα < k3D1+ε(1+log2 k). Moreover, by an easy concentration
bound, we have that for all q ∈ V , |{r ∈W (q) : ρ(r) ≤ Lmax/D}| = O(logn) + 2Lmax

D |W (q)|,
with probability 1−O(1/n2). It follows that with probability 1−O(1/n2), we have for all
q ∈

⋃
u∈V R

(D)(u):

deg
H

(D)
2

(q) ≤ O(logn) + 2Lmax

D
|W (q)| ≤ O(logn+ Lmaxk

3Dε log2 k).

Noting that with probability 1−O(1/n2):

|
⋃
u∈V

R(D)(u)| ≤ |{w ∈ V : ρ(w) ≤ Lmax/D| ≤ O(logn+ nLmax/D)

we finally obtain that with probability 1−O(1/n2):

|H(D)
2 | ≤ O(logn+ nLmax/D)O(logn+ Lmaxk

3Dε log2 k) = O(log2 n+ nL2
maxk

3Dε log2 k−1)

≤ O(nL2
maxk

3D−1/2) ≤ O(nD′−1/4) ≤ O(n/ log3 n),

where in the last two transformations we use the fact that ε = 1
2 log2 k

and that D ≥ D′ ≥
L4

maxk
6 log12 n. Using a union bound and summing over all levels of the construction, we

eventually obtain that with probability 1−O(1/n):

|H2| ≤ O(n/ log2 n). (4)

Thus, the set of middle links is sparse and does not contribute to the asymptotic size of the
overall representation of the 3-hopset.

Overall, considering a randomized construction which rejects random choices of ρ for
which any of the considered w.h.p. events fail, by combining Eq. (1)–(4) with the hopset-based
distance oracle framework described in the Preliminaries, we obtain the following Theorem.

I Theorem 4. For a unique shortest path graph with skeleton dimension k and average link
length L ≥ 1, there exists a randomized construction of a 3-hopset distance oracle of size
|H| = O(nk log k(log logn+logL)), which for an arbitrary queried node pair performs distance
queries in expected time O(k2 log2 k(log2 logn+ log2 L)) (where the expectation is taken over
the randomized construction of the oracle), and in time O(k2 log2 k log2 logn(log2 logn +
log2 L) + log2 n) with certainty.

In particular, for graphs with constant-length edges and small skeleton dimension (k =
O(logn)), the 3-hopset has size |H| = O(nk log k log logn), with expected time of any query
given as O(k2 log2 k log2 logn).

4 LP-based Approximation Algorithm

In this section, we propose an Integer Linear Programming (ILP) formulation for h-hopsets
with a minimum number of edges, which we then relax to a LP formulation. Whereas both
formulations are applicable to the general case, we prove relations between them only for
USP graphs.

4.1 ILP and LP Formulations
A necessary and sufficient condition for H to be a h-hopset for G is that for every pair of
vertices s, t there exists a path Pst = (s = v0, v1, . . . , vlst = t) in G∪H such that lst ≤ h and
in graph G there exists some shortest s− t path passing through all of the vertices v0, . . . , vlst ,
in the given order. For a fixed pair s, t, we consider the directed graph Hst with vertex set
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V × {0, . . . , h} ≡ Vh (by convention, elements of Vh will be denoted compactly as vi, where
v ∈ V , i ∈ {0, . . . , h}) and with an arc set defined as follows. For i ∈ {0, . . . , h− 1}, we add
arc (ui, vi+1) to Hst if and only if {u, v} ∈ G ∪H and u, v lie on some shortest s− t path in
the given order, i.e., if dG(s, u) + dG(u, v) + dG(v, t) = dG(s, t). In particular, all arcs of the
form (ui, ui+1), for u ∈ V on a s− t shortest path, belong to Hst. Now, we have that H is a
h-hopset for G if and only if there exists a path from s0 to th in Hst. This is equivalent to
saying that for all s, t ∈ V , the flow value from s0 to th is at least 1 in Hst. Given graph
G, we thus have the following ILP formulation for the minimum h-hopset problem, using
indicator variables xuv for G∪H (given as 1 if {u, v} ∈ G∪H and 0 otherwise) and variables
fstuivj , representing the flow value along arc (ui, vj) in Hst:

Minimize:
∑

u6=v,{u,v}/∈E

xuv (5)

Subject to:

xuv ∈ {0, 1} (6)

0 ≤ fstuivj ≤
{
xuv, if j = i+ 1 and dG(s, u) + dG(u, v) + dG(v, t) = dG(s, t),
0, otherwise.

(7)

∑
ui

fstvjui −
∑
ui

fstuivj =


0, for vj ∈ Vh \ {s0, th}
+1, for vj = s0

−1, for vj = th

, (8)

where indices s, t, u, v traverse V and indices i, j traverse {0, . . . , h}.
To obtain an LP relaxation of the above problem, we replace the integral condition

xuv ∈ {0, 1} by the fractional one xuv ∈ [0, 1]. We look at the connection between the
integral and fractional forms for the special case of unique shortest path graphs.

We remark that the above formulation can be seen as a generalization of the LP and ILP
statement of Angelidakis et al. [9] proposed for the special case of 2-hop labeling. In the
case of 2-hop labeling, Angelidakis et al. do not rely on an explicit flow formulation but
use a single constraint of the simpler form

∑
w∈P st min{xsw, xwt} ≥ 1, where P st represents

the set of nodes on some shortest s− t path in G. However, the analysis of the integrality
gap does not carry over from the case of h = 2 to h > 2, i.e., as soon as there exist internal
shortcuts which have neither s nor t as one of their endpoints.

4.2 Bounding Integrality Gap for Unique Shortest Path Graphs
We analyze the integrality gap of the above LP formulation for the case of unique shortest
path (USP) graphs, i.e., graphs in which each pair of nodes s, t ∈ V is connected by a
unique shortest path P st in G. We will occasionally identify P st with its set of nodes,
and we will introduce a linear order on its vertices, writing for u, v ∈ P st that u <st v if
dG(s, u) < dG(s, v); we will denote the order simply as “<” when the path P st is clear from
the context. Observe that in the LP formulation, we may have fstuivj 6= 0 only if u <st v
and j = i+ 1. Thus, fixing s, t ∈ V , the flow fst = (fstuivj : ui, vj ∈ Vh) is non-zero between
vertices of {P st} × {0, 1, . . . , h} only, and the flow is oriented towards t on this path.

Let (xuv, fstuivj ) be a fixed solution to the LP problem in a USP graph, with cost COSTLP =∑
u6=v,{u,v}/∈E xuv. We will show how to use this set to construct a valid hopset H ′′ for G

(thus, equivalently, also solving the ILP formulation). We first apply a randomized rounding
procedure following the classical scheme of Raghavan and Thomson [39]. We define the family
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of independent random variables (x′uivi+1
: u, v ∈ V, i ∈ {0, . . . , h}), with x′uivi+1

∈ {0, 1}. For
u 6= v, {u, v} /∈ E we put Pr[x′uivi+1

= 1] = min{Cxuv, 1}, where C ≥ 1 is a suitably chosen
probability amplification parameter (we put C = 8h lnn). We will assume, without affecting
the validity or cost of the solution, that xuv = x′uivi+1

= 1, when u = v or {u, v} ∈ E.
We denote H ′ = {{u, v} : u, v ∈ V ∧ u 6= v ∧ {u, v} /∈ E ∧ ∃i∈{0,...,h−1} x

′
uivi+1

= 1}. Let
π : V → {1, . . . , n} be a bijection picked uniformly at random (it is a random permutation
when V = {1, . . . , n}). We define the set of shortcuts S({u, v}) associated with each pair
{u, v} ∈ H ′ as the set of all pairs of nodes on path Puv, one of which is a prefix minimum on
this path with respect to π, and the other of which is a suffix minimum with respect to π:

S({u, v}) :=
{
{u∗, v∗} : u∗, v∗ ∈ Puv ∧ π(u∗) = min

z∈Puv,z≤uvu∗
π(z) ∧ π(v∗) = min

z∈Puv,z≥uvv∗
π(z)

}
.

The obtained solution is given as the set of all such shortcuts: H ′′ :=
⋃
{u,v}∈H′ S({u, v}).

I Proposition 5. With probability 1−O(1/n), set H ′′ is a hopset for G of size O(h2 log3 n ·
COSTLP).

We remark that the above Proposition implies that the h-hopset problem can be efficiently
approximated by finding an optimal fractional LP solution and constructing set H ′′.

I Theorem 6. There exists a randomized polynomial-time O(poly logn)-approximation
algorithm for the h-hopset problem in unique shortest path graphs, for any h ≤ O(poly logn).

4.3 Approximating Average Query Time for 3-Hopsets
In order to design an efficient distance oracle based on 3-hopsets, we follow the framework
described in the preliminaries and use an LP-rounding technique to obtain sets H1∪H2 =: H.
The obtained claim relies on the notion of uniform-average query time introduced in the
Preliminaries.

I Theorem 7. For any feasible bound S, let HOPT,S be a 3-hopset for a unique shortest
path graph, which satisfies the given bound on the number of edges |HOPT,S | ≤ S and
such that the uniform-average query time T (HOPT,S) is minimized. Then, there exists a
randomized polynomial-time algorithm which finds a 3-hopset H with |H ′′| ≤ O(log3 n)S and
T (H ′′) ≤ O(log4 n)T (HOPT,S).

We remark that the above Theorem can be directly generalized to a notion of average query
time for non-uniform query densities, in which the goal is to minimize expected query time
in a model in which each node v ∈ V is assigned its relative frequency fv ∈ [0, 1], and a node
pair uv is queried with frequency fufv.

5 Bounded Treewidth Graphs

We now show how to obtain h-hopsets for graphs with bounded treewidth by following a
classical construction for trees. We first begin with preliminaries recalling the definitions of
treewidth and inverse Ackermann function.

Treewidth definition. Recall that a graph G has treewidth t if there exists a tree T whose
nodes are subsets of V (G) called bags such that: |X| ≤ t+ 1 for all X ∈ V (T ); for all edges
uv ∈ E(G), there exists a bag X ∈ V (T ) containing both u and v (u, v ∈ X); and for all
nodes u ∈ V (G), the bags containing u form a sub-tree of T . Without loss of generality, we
assume that each bag contains exactly t + 1 nodes, and that two neighboring bags share
exactly t nodes (the decomposition is standard). This implies |V (T )| ≤ n as each bag brings
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one new node. Note that removing a non-leaf bag separates the graph into several connected
components. We consider that all edges of T have weight 1. For convenience, we assume
that T is rooted at some bag R and define for each node u ∈ V (G) the root bag of u as the
bag Ru ∈ V (T ) containing u which is closest to the root.

Inverse Ackermann notation. The kth-row inverse Ackermann function λk(.) can be defined
by λ0(n) = n

2 , λ1(n) =
√
n, λ2(n) = logn, λ3(n) = log logn, λ4(n) = log∗ n, and more

generally for k ≥ 2 by the recurrence λk(n) = λ∗k−2(n) where we define for any function
f : f (0)(n) = n, f (i)(n) = f(f (i−1)(n)) for i > 0, and f∗(n) = min{j | f (j)(n) ≤ 1}. The
inverse Ackermann function can be defined as α(n) = min{j | λ2j(n) ≤ j}. See [33] for a
more formal definition based on Ackermann function.

We first consider the case of (weighted) trees for which the construction of h-hopsets is
classical (even though the connection with hopsets was not made). It is implicit in [7, 16],
explicit for unweighted trees in [13] and directed trees in [42]. We provide a short construction
which fine-grains the dependence of the hopset size on h (e.g., replacing 2h by h with respect
to the asymptotic analysis in [7]). The construction is based on the following folklore lemma
for splitting a tree into smaller sub-trees (it can be seen as a generalization of the existence
of a centroid).

I Lemma 8. Given a rooted tree T with n nodes and a value p > 1, there exists a set P of
at most 2p nodes such that each connected component of T \ P contains less than n/p nodes
and is connected to at most two nodes in P . Set P can be computed in linear time through a
bottom-up traversal of the tree.

h-hopset construction for trees. A 1-hopset in a tree T is obtained by adding all pairs as
edges with appropriate weight. For h > 1, we recursively define a h-hopset of T as follows.
Select a set P of 2p nodes at most with p = n

λh−2(n) according to Lemma 8. When h = 2, we
add an edge from each node u of T to each node in P . When h > 2, we consider the forest
T ′ induced by nodes in P : it has node set P and edges xy such that y is the closest ancestor
of x in T that belongs to P . The weight of such an edge is defined as w′(x, y) = dT (x, y).
We then add a (h − 2)-hopset of T ′ to the construction. Additionally, we add one or two
edges per node not in P : for each connected component C of T \ P , add an edge ux for each
node u ∈ C and each x ∈ P connected to C. Note that Lemma 8 ensures that there are
at most two such nodes x for a given component C. In both cases (h ≥ 2), we construct
recursively a h-hopset of each sub-tree induced by a connected component C of T \ P . In
the special case of h = 3, the (h− 2)-hopsets contribute to H2 while all edges connecting to
a node in some selected set P contribute to H1 according to the H = H1 ∪H2 convention
introduced in the Preliminaries.

Following a similar approach on the tree decomposition of a graph with treewidth t, we
obtain the following result (detailed construction is given in the full paper [33]).

I Theorem 9. For all h > 1, any graph with treewidth t has a h-hopset with O(tnλh(n))
edges and a 2(α(n) + 1)-hopset with O(t2n) edges.

For the special case of h = 3, we have λ3(n) = log logn, and the size required to represent
the 3-hop data structure is S = O(tn log logn) edges. Following the convention H = H1∪H2,
we note that we have degH1(v) = O(t log logn) for any v ∈ V . The following bound on the
query time follows.

I Theorem 10. Any graph with treewidth t admits a 3-hopset distance oracle represented on
O(tn log logn) edges of O(logn) bits, with a query time of O(t2 log2 logn).
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